WorldWideScience

Sample records for cellular response dna-damaging

  1. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  2. HSV-I and the cellular DNA damage response

    OpenAIRE

    Smith, Samantha; Weller, Sandra K.

    2015-01-01

    Peter Wildy first observed genetic recombination between strains of HSV in 1955. At the time, knowledge of DNA repair mechanisms was limited, and it has only been in the last decade that particular DNA damage response (DDR) pathways have been examined in the context of viral infections. One of the first reports addressing the interaction between a cellular DDR protein and HSV-1 was the observation by Lees-Miller et al. that DNA-dependent protein kinase catalytic subunit levels were depleted i...

  3. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  4. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  5. The involvement of XPC protein in the cisplatin DNA damaging treatment-mediated cellular response

    Institute of Scientific and Technical Information of China (English)

    Gan WANG; Alan DOMBKOWSKI; Lynn CHUANG; Xiao Xin S XU

    2004-01-01

    Recognition of DNA damage is a critical step for DNA damage-mediated cellular response. XPC is an important DNA damage recognition protein involved in nucleotide excision repair (NER). We have studied the XPC protein in cisplatin DNA damaging treatment-mediated cellular response. Comparison of the microarray data from both normal and XPCdefective human fibroblasts identified 861 XPC-responsive genes in the cisplatin treatment (with minimum fold change≥1.5).The cell cycle and cell proliferation-related genes are the most affected genes by the XPC defect in the treatment. Many other cellular function genes, especially the DNA repair and signal transduction-related genes, were also affected by the XPC defect in the treatment. To validate the microarray data, the transcription levels of some microarray-identified genes were also determined by an RT-PCR based real time PCR assay. The real time PCR results are consistent with the microarray data for most of the tested genes, indicating the reliability of the microarray data. To further validate the microarray data, the cisplatin treatment-mediated caspase-3 activation was also determined. The Western blot hybridization results indicate that the XPC defect greatly attenuates the cisplatin treatment-mediated Caspase-3 activation. We elucidated the role of p53 protein in the XPC protein DNA damage recognition-mediated signaling process. The XPC defect reduces the cisplatin treatment-mediated p53 response. These results suggest that the XPC protein plays an important role in the cisplatin treatment-mediated cellular response. It may also suggest a possible mechanism of cancer cell drug resistance.

  6. DNA Damage Response

    OpenAIRE

    Giglia-Mari, Giuseppina; Zotter, Angelika; Vermeulen, Wim

    2011-01-01

    Structural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network of DNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance processes, and cell-cycle checkpoints safeguard genomic integrity. Like transcription and replication, DDR is a chromatin-associated process that is generally tightly controlled in time and space. As DNA damag...

  7. Effects of Spaceflight on Molecular and Cellular Responses to Bleomycin-Induced DNA Damages in Confluent Human Fibroblasts

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2016-01-01

    Spaceflights expose human beings to various risk factors. Among them are microgravity related physiological stresses in immune, cytoskeletal, and cardiovascular systems, and space radiation related elevation of cancer risk. Cosmic radiation consists of energetic protons and other heavier charged particles that induce DNA damages. Effective DNA damage response and repair mechanism is important to maintain genomic integrity and reduce cancer risk. There were studies on effects of spaceflight and microgravity on DNA damage response in cell and animal models, but the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on molecular and cellular responses to DNA damages, bleomycin, an anti-cancer drug and radiomimetic reagent, was used to induce DNA damages in confluent human fibroblasts flown to the International Space Station (ISS) and on ground. After exposure to 1.0 µg/ml bleomycin for 3 hours, cells were fixed for immunofluorescence assays and for RNA preparation. Extents of DNA damages were quantified by foci and pattern counting of phosphorylated histone protein H2AX (?-H2AX). The cells on the ISS showed modestly increased average foci counts per nucleus while the distribution of patterns was similar to that on the ground. PCR array analysis showed that expressions of several genes, including CDKN1A and PCNA, were significantly changed in response to DNA damages induced by bleomycin in both flight and ground control cells. However, there were no significant differences in the overall expression profile of DNA damage response genes between the flight and ground samples. Analysis of cellular proliferation status with Ki-67 staining showed a slightly higher proliferating population in cells on the ISS than those on ground. Our results suggested that the difference in ?-H2AX focus counts between flight and ground was due to the higher percentage of proliferating cells in space, but spaceflight did not significantly affect

  8. DNA damage response

    NARCIS (Netherlands)

    G. Giglia-Mari (Giuseppina); A. Zotter (Angelika); W. Vermeulen (Wim)

    2011-01-01

    textabstractStructural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network ofDNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance p

  9. Potential Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to DNA Damage in Humans

    Science.gov (United States)

    Abegglen, Lisa M.; Caulin, Aleah F.; Chan, Ashley; Lee, Kristy; Robinson, Rosann; Campbell, Michael S.; Kiso, Wendy K.; Schmitt, Dennis L.; Waddell, Peter J; Bhaskara, Srividya; Jensen, Shane T.; Maley, Carlo C.; Schiffman, Joshua D.

    2016-01-01

    IMPORTANCE Evolutionary medicine may provide insights into human physiology and pathophysiology, including tumor biology. OBJECTIVE To identify mechanisms for cancer resistance in elephants and compare cellular response to DNA damage among elephants, healthy human controls, and cancer-prone patients with Li-Fraumeni syndrome (LFS). DESIGN, SETTING, AND PARTICIPANTS A comprehensive survey of necropsy data was performed across 36 mammalian species to validate cancer resistance in large and long-lived organisms, including elephants (n = 644). The African and Asian elephant genomes were analyzed for potential mechanisms of cancer resistance. Peripheral blood lymphocytes from elephants, healthy human controls, and patients with LFS were tested in vitro in the laboratory for DNA damage response. The study included African and Asian elephants (n = 8), patients with LFS (n = 10), and age-matched human controls (n = 11). Human samples were collected at the University of Utah between June 2014 and July 2015. EXPOSURES Ionizing radiation and doxorubicin. MAIN OUTCOMES AND MEASURES Cancer mortality across species was calculated and compared by body size and life span. The elephant genome was investigated for alterations in cancer-related genes. DNA repair and apoptosis were compared in elephant vs human peripheral blood lymphocytes. RESULTS Across mammals, cancer mortality did not increase with body size and/or maximum life span (eg, for rock hyrax, 1% [95%CI, 0%–5%]; African wild dog, 8%[95%CI, 0%–16%]; lion, 2%[95%CI, 0% –7%]). Despite their large body size and long life span, elephants remain cancer resistant, with an estimated cancer mortality of 4.81% (95%CI, 3.14%–6.49%), compared with humans, who have 11% to 25%cancer mortality. While humans have 1 copy (2 alleles) of TP53, African elephants have at least 20 copies (40 alleles), including 19 retrogenes (38 alleles) with evidence of transcriptional activity measured by reverse transcription polymerase chain

  10. Epigenetic and genetic factors in the cellular response to radiations and DNA-damaging chemicals

    International Nuclear Information System (INIS)

    DNA-damaging agents are widely used as therapeutic tools for a variety of disease states. Many such agents are considered to produce detrimental side effects. Thus, it is important to evaluate both therapeutic efficacy and potential risk. DNA-damaging agents can be so evaluated by comparison to agents whose therapeutic benefit and potential hazards are better known. We propose a framework for such comparison, demonstrating that a simple transformation of cytotoxicity-dose response patterns permits a facile comparison of variation between cells exposed to a single DNA-damaging agent or to different cytotoxic agents. Further, by transforming data from experiments which compare responses of 2 cell populations to an effects ratio, different patterns for the changes in cytotoxicity produced by epigenetic and genetic factors were compared. Using these transformations, we found that there is a wide variation (a factor of 4) between laboratories for a single agent (UVC) and only a slightly larger variation (factor of 6) between normal cell response for different types of DNA-damaging agents (x-ray, UVC, alkylating agents, crosslinking agents). Epigenetic factors such as repair and recovery appear to be a factor only at higher dose levels. Comparison in the cytotoxic effect of a spectrum of DNA-damaging agents in xeroderma pigmentosum, ataxia telangiectasia, and Fanconi's anemia cells indicates significantly different patterns, implying that the effect, and perhaps the nature, of these genetic conditions are quite different

  11. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    International Nuclear Information System (INIS)

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  12. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  13. Effects of Spaceflight on Molecular and Cellular Responses to Bleomycin-induced DNA Damages in Confluent Human Fibroblasts

    Science.gov (United States)

    Lu, Tao; Wu, Honglu; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Wong, Michael

    2016-07-01

    Spaceflights expose human beings to various risk factors. Among them are microgravity related physiological stresses in immune, cytoskeletal, and cardiovascular systems, and space radiation related elevation of cancer risk. Cosmic radiation consists of energetic protons and other heavier charged particles that induce DNA damages. Effective DNA damage response and repair mechanism is important to maintain genomic integrity and reduce cancer risk. There were studies on effects of spaceflight and microgravity on DNA damage response in cell and animal models, but the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on molecular and cellular responses to DNA damages, bleomycin, an anti-cancer drug and radiomimetic reagent, was used to induce DNA damages in confluent human fibroblasts flown to the International Space Station (ISS) and on ground. After exposure to 1.0 mg/ml bleomycin for 3 hours, cells were fixed for immunofluorescence assays and for RNA preparation. Extents of DNA damages were quantified by focus pattern and focus number counting of phosphorylated histone protein H2AX (γg-H2AX). The cells on the ISS showed modestly increased average focus counts per nucleus while the distribution of patterns was similar to that on the ground. PCR array analysis showed that expressions of several genes, including CDKN1A and PCNA, were significantly changed in response to DNA damages induced by bleomycin in both flight and ground control cells. However, there were no significant differences in the overall expression profiles of DNA damage response genes between the flight and ground samples. Analysis of cellular proliferation status with Ki-67 staining showed a slightly higher proliferating population in cells on the ISS than those on ground. Our results suggested that the difference in γg-H2AX focus counts between flight and ground was due to the higher percentage of proliferating cells in space, but spaceflight did not

  14. CELLULAR RESPONSES TO DNA DAMAGE AND ONCOGENESIS BY THE p53 AND pRb/E2F PATHWAYS

    OpenAIRE

    Elza Ibrahim Auerkari; Ismu Suharsono Suwelo; Achmad Tjarta; Santoso Cornain; T. W. Rahardjo; Eto, K; Ikeda, M.A

    2015-01-01

    Cellular responses to stress including DNA damage, show multiple options involving the mechanisms of growth arrest. DNA repair and programmed cell death or apoptosis. Failures in these mechanisms can result in oncogenesis or accelerated senescence. Much of the response is coordinated by p53, a nuclear phosphoprotein with a central role in the defences against physical, chemical and pathogenic agents which challenge the DNA integrity. The p53 pathways for mobilising the cellular defences are l...

  15. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Roper, Katherine; Coverley, Dawn, E-mail: dc17@york.ac.uk

    2012-03-10

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naieve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naieve nuclei. At the same time, H2AX is phosphorylated in naieve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naieve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: Black-Right-Pointing-Pointer A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. Black-Right-Pointing-Pointer Damage-activated extracts impose the cellular response to DNA damage on naieve nuclei. Black-Right-Pointing-Pointer PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. Black-Right-Pointing-Pointer Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. Black-Right-Pointing-Pointer LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening

  16. Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells

    International Nuclear Information System (INIS)

    In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naïve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naïve nuclei. At the same time, H2AX is phosphorylated in naïve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naïve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002. -- Highlights: ► A cell free system that reconstitutes the response to DNA damage in the absence of DNA lesions. ► Damage-activated extracts impose the cellular response to DNA damage on naïve nuclei. ► PIKK-dependent response impacts positively and negatively on two separate fluorescent outputs. ► Can be used to screen for inhibitors that impact on the response to damage but not on DNA repair. ► LY294002 and wortmannin demonstrate the system's potential as a pathway focused screening approach.

  17. DNA-damage response network at the crossroads of cell-cycle checkpoints,cellular senescence and apoptosis

    Institute of Scientific and Technical Information of China (English)

    SCHMITT Estelle; PAQUET Claudie; BEAUCHEMIN Myriam; BERTRAND Richard

    2007-01-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation,cellular senescence and cell death.Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities.Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms.Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death.The intimate link between the cell cycle,cellular senescence,apoptosis regulation,cancer development and tumor responses to cancer treatment has become eminently apparent.Extensive research on tumor suppressor genes,oncogenes,the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways,referred to as the DNA-damage response network,are tied to cell proliferation,cell-cycle arrest,cellular senescence and apoptosis.DNA-damage responses are complex,involving "sensor" proteins that sense the damage,and transmit signals to "transducer" proteins,which,in turn,convey the signals to numerous "effector" proteins implicated in specific cellular pathways,including DNA repair mechanisms,cell-cycle checkpoints,cellular senescence and apoptosis.The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation.In addition,several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle,DNA repair/recombination and cellular senescence,effects that are generally distinct from their function in apoptosis.In this review,we report progress in understanding the molecular networks that regulate cell-cycle checkpoints,cellular senescence and apoptosis after DNA damage,and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.

  18. Dynamic modeling of cellular response to DNA damage based on p53 stress response networks

    Institute of Scientific and Technical Information of China (English)

    Jinpeng Qi; Yongsheng Ding; Shihuang Shao

    2009-01-01

    Under acute perturbations from the outside, cells can trigger self-defensive mechanisms to fight against genome stress. To investigate the cellular response to continuous ion radiation (IR), a dynamic model for p53 stress response networks at the cellular level is proposed. The model can successfully be used to simulate the dynamic processes of double-strand breaks (DSBs) generation and their repair, switch-like ataxia telangiectasia mutated (ATM) activation, oscillations occurring in the p53-MDM2 feedback loop, as well as toxins elimination triggered by p53 stress response networks. Especially, the model can predict the plausible outcomes of cellular response under different IR dose regimes.

  19. Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage

    Czech Academy of Sciences Publication Activity Database

    Moudrý, Pavel; Lukas, C.; Macůrek, Libor; Hanzlíková, Hana; Hodný, Zdeněk; Lukas, J.; Bartek, Jiří

    2012-01-01

    Roč. 11, č. 8 (2012), s. 1573-1582. ISSN 1538-4101 R&D Projects: GA ČR GA301/08/0353; GA ČR GAP301/10/1525 Grant ostatní: 7.RP EU(XE) CZ.1.05/2.1.00/01.0030 Institutional research plan: CEZ:AV0Z50520514 Keywords : 53BP1 * DNA damage response * UBA1 * UBA6 * ubiquitylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.243, year: 2012

  20. Gene Expression Profile Changes and Cellular Responses to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Kidane, Yared; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Rohde, Larry; Wu, Honglu

    2016-01-01

    Living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. In addition, DNA in space can be damaged by toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage affects the accuracy of the radiation risk assessment for astronauts and the mutation rate in microorganisms. Although possible synergistic effects of space radiation and microgravity have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate the effects of spaceflight on cellular responses to DNA damage, confluent human fibroblast cells (AG1522) flown on the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB). Damages in the DNA were quantified by immunofluorescence staining for ?-H2AX, which showed similar percentages of different types of stained cells between flight and ground. However, there was a slight shift in the distribution of the ?-H2AX foci number in the flown cells with countable foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. A microarray analysis of gene expressions in response to bleomycin treatment was also performed. Comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. Similar responses at the RNA level between different gravity conditions were also observed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly

  1. Human T-cell leukemia virus type 1 tax attenuates the ATM-mediated cellular DNA damage response.

    Science.gov (United States)

    Chandhasin, Chandtip; Ducu, Razvan I; Berkovich, Elijahu; Kastan, Michael B; Marriott, Susan J

    2008-07-01

    Genomic instability, a hallmark of leukemic cells, is associated with malfunctioning cellular responses to DNA damage caused by defective cell cycle checkpoints and/or DNA repair. Adult T-cell leukemia, which can result from infection with human T-cell leukemia virus type 1 (HTLV-1), is associated with extensive genomic instability that has been attributed to the viral oncoprotein Tax. How Tax influences cellular responses to DNA damage to mediate genomic instability, however, remains unclear. Therefore, we investigated the effect of Tax on cellular pathways involved in recognition and repair of DNA double-strand breaks. Premature attenuation of ATM kinase activity and reduced association of MDC1 with repair foci were observed in Tax-expressing cells. Following ionizing radiation-induced S-phase checkpoint activation, Tax-expressing cells progressed more rapidly than non-Tax-expressing cells toward DNA replication. These results demonstrate that Tax expression may allow premature DNA replication in the presence of genomic lesions. Attempts to replicate in the presence of these lesions would result in gradual accumulation of mutations, leading to genome instability and cellular transformation. PMID:18434398

  2. CELLULAR RESPONSES TO DNA DAMAGE AND ONCOGENESIS BY THE p53 AND pRb/E2F PATHWAYS

    Directory of Open Access Journals (Sweden)

    Elza Ibrahim Auerkari

    2015-07-01

    Full Text Available Cellular responses to stress including DNA damage, show multiple options involving the mechanisms of growth arrest. DNA repair and programmed cell death or apoptosis. Failures in these mechanisms can result in oncogenesis or accelerated senescence. Much of the response is coordinated by p53, a nuclear phosphoprotein with a central role in the defences against physical, chemical and pathogenic agents which challenge the DNA integrity. The p53 pathways for mobilising the cellular defences are linked to the pRB/E2D pathways regulating the cell cycle progression. This paper aims to review the current understanding on the networks and main molecular machinery of these processes. In addition, the implications on cellular decision making for the defences as well as revolutionary aspects of these mechanisms are discussed in brief.

  3. DNA damage responses in mammalian oocytes.

    Science.gov (United States)

    Collins, Josie K; Jones, Keith T

    2016-07-01

    DNA damage acquired during meiosis can lead to infertility and miscarriage. Hence, it should be important for an oocyte to be able to detect and respond to such events in order to make a healthy egg. Here, the strategies taken by oocytes during their stages of growth to respond to DNA damaging events are reviewed. In particular, recent evidence of a novel pathway in fully grown oocytes helps prevent the formation of mature eggs with DNA damage. It has been found that fully grown germinal vesicle stage oocytes that have been DNA damaged do not arrest at this point in meiosis, but instead undergo meiotic resumption and stall during the first meiotic division. The Spindle Assembly Checkpoint, which is a well-known mitotic pathway employed by somatic cells to monitor chromosome attachment to spindle microtubules, appears to be utilised by oocytes also to respond to DNA damage. As such maturing oocytes are arrested at metaphase I due to an active Spindle Assembly Checkpoint. This is surprising given this checkpoint has been previously studied in oocytes and considered to be weak and ineffectual because of its poor ability to be activated in response to microtubule attachment errors. Therefore, the involvement of the Spindle Assembly Checkpoint in DNA damage responses of mature oocytes during meiosis I uncovers a novel second function for this ubiquitous cellular checkpoint. PMID:27069010

  4. Cellular response to DNA damage. Link between p53 and DNA-PK

    International Nuclear Information System (INIS)

    Cells which lack DNA-activated protein kinase (DNA-PK) are very susceptible to ionizing radiation and display an inability to repair double-strand DNA breaks. DNA-PK is a member of a protein kinase family that includes ATR and ATM which have strong homology in their carboxy-terminal kinase domain with Pl-3 kinase. ATM has been proposed to act upstream of p53 in cellular response to ionizing radiation. DNA-PK may similarly interact with p53 in cellular growth control and in mediation of the response to ionizing radiation. (author)

  5. Autophagy in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Piotr Czarny

    2015-01-01

    Full Text Available DNA damage response (DDR involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1. mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADPribose polymerase 1 (PARP-1, Mre11–Rad50–Nbs1 (MRN complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  6. The DNA damage response during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Heijink, Anne Margriet; Krajewska, Małgorzata; Vugt, Marcel A.T.M. van, E-mail: m.vugt@umcg.nl

    2013-10-15

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.

  7. Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage

    International Nuclear Information System (INIS)

    Mammalian cells exhibit complex, but intricate cellular responses to genotoxic stress, including cell cycle checkpoints, DNA repair and apoptosis. Inactivation of these important biological events may result in genomic instability and cell transformation, as well as alterations of therapeutic sensitivity. Gadd45a, a p53- and BRCA1-regulated stress-inducible gene, has been characterized as one of the important players that participate in cellular response to a variety of DNA damage agents. Interestingly, the signaling machinery that regulates Gadd45a induction by genotoxic stress involves both p53-dependent and -independent pathways; the later may employ BRCA1-related or MAP kinase-mediated signals. Gadd45a protein has been reported to interact with multiple important cellular proteins, including Cdc2 protein kinase, proliferating cell nuclear antigen (PCNA), p21Waf1/Cip1 protein, core histone protein and MTK/MEKK4, an up-stream activator of the JNK/SAPK pathway, indicating that Gadd45a may play important roles in the control of cell cycle checkpoint, DNA repair process, and signaling transduction. The importance of Gadd45a in maintaining genomic integrity is well manifested by the demonstration that disruption of endogenous Gadd45a in mice results in genomic instability and increased carcinogenesis. Therefore, Gadd45a appears to be an important component in the cellular defense network that is required for maintenance of genomic stability

  8. DNA damage induction and/or repair as mammalian cell biomarker for the prediction of cellular radiation response

    Science.gov (United States)

    Baumstark-Khan, C.

    DNA damage and its repair processes are key factors in cancer induction and also in the treatment of malignancies. Cancer prevention during extended space missions becomes a topic of great importance for space radiobiology. The knowledge of individual responsiveness would allow the protection strategy to be tailored optimally in each case. Radiobiological analysis of cultured cells derived from tissue explants from individuals has shown that measurement of the surviving fraction after 2 Gy (SF2) may be used to predict the individual responsiveness. However, clonogenic assays are timeconsuming, thus alternative assays for the determination of radiore-sponse are being sought. For that reason CHO cell strains having different repair capacities were used for examining whether DNA strand break repair is a suitable experimental design to allow predictive statements. Cellular survival (CFA assay) and DNA strand breaks (total DNA strand breaks: FADU technique; DSBs: non-denaturing elution) were determined in parallel immediately after irradiation as well as after a 24 hour recovery period according to dose. There were no correlations between the dose-response curves of the initial level of DNA strand breaks and parameters that describe clonogenic survival curves (SF2). A good correlation exists between intrinsic cellular radioresistance and the extent of residual DNA strand breaks.

  9. Polyomavirus interaction with the DNA damage response

    Institute of Scientific and Technical Information of China (English)

    Joshua; L.Justice; Brandy; Verhalen; Mengxi; Jiang

    2015-01-01

    Viruses are obligate intracellular parasites that subvert cellular metabolism and pathways to mediate their own replication—normally at the expense of the host cell. Polyomaviruses are a group of small DNA viruses, which have long been studied as a model for eukaryotic DNA replication. Polyomaviruses manipulate host replication proteins, as well as proteins involved in DNA maintenance and repair, to serve as essential cofactors for productive infection. Moreover, evidence suggests that polyomavirus infection poses a unique genotoxic threat to the host cell. In response to any source of DNA damage, cells must initiate an effective DNA damage response(DDR) to maintain genomic integrity, wherein two protein kinases, ataxia telangiectasia mutated(ATM) and ATM- and Rad3-related(ATR), are major regulators of DNA damage recognition and repair. Recent investigation suggests that these essential DDR proteins are required for productive polyomavirus infection. This review will focus on polyomaviruses and their interaction with ATMand ATR-mediated DNA damage responses and the effect of this interaction on host genomic stability.

  10. Strategies to Potentiate the Cellular Poly(ADP-ribosyl)ation Response to DNA Damage

    OpenAIRE

    Kunzmann, Andrea

    2009-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification of cellular proteins, which is mainly catalyzed by poly(ADP-ribose) polymerase 1 (PARP1) by using NAD+ as substrate. The catalytic activity of PARP1 is known to be triggered by the binding of PARP1 to broken DNA via its two aminoterminal zinc finger motifs. DNA strand break-induced poly(ADP-ribosyl)ation is linked to DNA repair and maintenance of genomic stability.Up to now, little information exists on the biological consequences of ...

  11. The RNA Response to DNA Damage.

    Science.gov (United States)

    Giono, Luciana E; Nieto Moreno, Nicolás; Cambindo Botto, Adrián E; Dujardin, Gwendal; Muñoz, Manuel J; Kornblihtt, Alberto R

    2016-06-19

    Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields. PMID:26979557

  12. Deinococcus radiodurans PprI Switches on DNA Damage Response and Cellular Survival Networks after Radiation Damage*S⃞

    OpenAIRE

    Lu, Huiming; Gao, Guanjun; Xu, Guangzhi; Fan, Lu; Yin, Longfei; Shen, Binghui; Hua, Yuejin

    2009-01-01

    Preliminary findings indicate that PprI is a regulatory protein that stimulates transcription and translation of recA and other DNA repair genes in response to DNA damage in the extremely radioresistant bacterium Deinococcus radiodurans. To define the repertoire of proteins regulated by PprI and investigate the in vivo regulatory mechanism of PprI in response to γ radiation, we performed comparative proteomics analyses on wild type (R1) and a pprI knock-out strain (YR1) under conditions of io...

  13. Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage

    Directory of Open Access Journals (Sweden)

    Olsen Birgitte B

    2012-03-01

    Full Text Available Abstract Background The DNA-dependent protein kinase (DNA-PK is a nuclear complex composed of a large catalytic subunit (DNA-PKcs and a heterodimeric DNA-targeting subunit Ku. DNA-PK is a major component of the non-homologous end-joining (NHEJ repair mechanism, which is activated in the presence of DNA double-strand breaks induced by ionizing radiation, reactive oxygen species and radiomimetic drugs. We have recently reported that down-regulation of protein kinase CK2 by siRNA interference results in enhanced cell death specifically in DNA-PKcs-proficient human glioblastoma cells, and this event is accompanied by decreased autophosphorylation of DNA-PKcs at S2056 and delayed repair of DNA double-strand breaks. Results In the present study, we show that CK2 co-localizes with phosphorylated histone H2AX to sites of DNA damage and while CK2 gene knockdown is associated with delayed DNA damage repair, its overexpression accelerates this process. We report for the first time evidence that lack of CK2 destabilizes the interaction of DNA-PKcs with DNA and with Ku80 at sites of genetic lesions. Furthermore, we show that CK2 regulates the phosphorylation levels of DNA-PKcs only in response to direct induction of DNA double-strand breaks. Conclusions Taken together, these results strongly indicate that CK2 plays a prominent role in NHEJ by facilitating and/or stabilizing the binding of DNA-PKcs and, possibly other repair proteins, to the DNA ends contributing to efficient DNA damage repair in mammalian cells.

  14. Activation of the DNA Damage Response by RNA Viruses

    OpenAIRE

    Ryan, Ellis L.; Robert Hollingworth; Grand, Roger J.

    2016-01-01

    RNA viruses are a genetically diverse group of pathogens that are responsible for some of the most prevalent and lethal human diseases. Numerous viruses introduce DNA damage and genetic instability in host cells during their lifecycles and some species also manipulate components of the DNA damage response (DDR), a complex and sophisticated series of cellular pathways that have evolved to detect and repair DNA lesions. Activation and manipulation of the DDR by DNA viruses has been extensively ...

  15. Cellular response to DNA damage is enhanced by the pR plasmid in mouse cells and in Escherichia coli

    International Nuclear Information System (INIS)

    The pR plasmid, which enhances the survival of Escherichia coli C600 exposed to UV light by induction of the SOS regulatory mechanism, showed the same effect when it transformed mouse LTA cells (tk-, aprt-). With Tn5 insertion mutagenesis which inactivates UV functions in the pR plasmid, we recognized two different regions of the plasmid, uvp1 and uvp2. These pR UVR- mutants exhibited the same effect in LTA transformed cells, demonstrating that resistance to UV light, carried by the pR plasmid, was really due to the expression of these two regions, which were also in the mouse cells. Statistical analysis showed that the expression of the uvp1 and uvp2 regions significantly increased (P less than 0.01) the survival upon exposure to UV light in mouse cells and bacteria. These results might suggest the presence of an inducible repair response to DNA damage in mouse LTA cells

  16. Methods to assess the nucleocytoplasmic shuttling of the HPV E1 helicase and its effects on cellular proliferation and induction of a DNA damage response.

    Science.gov (United States)

    Lehoux, Michaël; Fradet-Turcotte, Amélie; Archambault, Jacques

    2015-01-01

    Replication of the human papillomavirus (HPV) double-stranded DNA genome in the nucleus of infected cells relies on the viral proteins E1 and E2 in conjunction with the host DNA replication machinery. This process is tightly linked to the replication of cellular DNA, in part through the cyclin-dependent phosphorylation of E1, which inhibits its export out of the nucleus to promote its accumulation in this compartment during S-phase. It has been recently shown that accumulation of E1 in the nucleus, while a prerequisite for viral DNA replication, leads to the inhibition of cellular proliferation and the activation of a DNA damage response (DDR). Here we describe methods to monitor the subcellular localization of E1 and to assess the deleterious effects of its nuclear accumulation on cellular proliferation, cell cycle progression and the induction of a DDR, using a combination of colony formation assays, immunofluorescence microcopy, and flow cytometry approaches. PMID:25348298

  17. Dancing on damaged chromatin. Functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage

    International Nuclear Information System (INIS)

    In order to preserve and protect genetic information, eukaryotic cells have developed a signaling or communications network to help the cell respond to DNA damage, and ATM and NBS1 are key players in this network. ATM is a protein kinase which is activated immediately after a DNA double strand break (DSB) is formed, and the resulting signal cascade generated in response to cellular DSBs is regulated by post-translational protein modifications such as phosphorylation and acetylation. In addition, to ensure the efficient functioning of DNA repair and cell cycle checkpoints, the highly ordered structure of eukaryotic chromatin must be appropriately altered to permit access of repair-related factors to DNA. These alterations are termed chromatin remodeling, and are executed by a specific remodeling complex in conjunction with histone modifications. Current advances in the molecular analysis of DNA damage responses have shown that the auto-phosphorylation of ATM and the interaction between ATM and NBS1 are key steps for ATM activation, and that the association of ATM and NBS1 is involved in chromatin remodeling. Identification of novel factors which function in ubiquitination (RNF8, Ubc13, Rap80, etc.) has also enabled us to understand more details of the early stages in DNA repair pathways which respond to DSBs. In this review, the focus is on the role of ATM and the RAD50/MRE11/NBS1 complex in DSB response pathways, and their role in DSB repair and in the regulation of chromatin remodeling. (author)

  18. Epigenome Maintenance in Response to DNA Damage.

    Science.gov (United States)

    Dabin, Juliette; Fortuny, Anna; Polo, Sophie E

    2016-06-01

    Organism viability relies on the stable maintenance of specific chromatin landscapes, established during development, that shape cell functions and identities by driving distinct gene expression programs. Yet epigenome maintenance is challenged during transcription, replication, and repair of DNA damage, all of which elicit dynamic changes in chromatin organization. Here, we review recent advances that have shed light on the specialized mechanisms contributing to the restoration of epigenome structure and function after DNA damage in the mammalian cell nucleus. By drawing a parallel with epigenome maintenance during replication, we explore emerging concepts and highlight open issues in this rapidly growing field. In particular, we present our current knowledge of molecular players that support the coordinated maintenance of genome and epigenome integrity in response to DNA damage, and we highlight how nuclear organization impacts genome stability. Finally, we discuss possible functional implications of epigenome plasticity in response to genotoxic stress. PMID:27259203

  19. The DNA-damage response in human biology and disease

    DEFF Research Database (Denmark)

    Jackson, Stephen P; Bartek, Jiri

    2009-01-01

    , signal its presence and mediate its repair. Such responses, which have an impact on a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management....

  20. The DNA damage response during mitosis

    NARCIS (Netherlands)

    Heijink, Anne Margriet; Krajewska, Malgorzata; van Vugt, Marcel A. T. M.

    2013-01-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance

  1. MicroRNAs: new players in the DNA damage response

    Institute of Scientific and Technical Information of China (English)

    Hailiang Hu; Richard A. Gatti

    2011-01-01

    The DNA damage response (DDR) is a signal transduction pathway that decides the cell's fate either to repair DNA damage or to undergo apoptosis if there is too much damage. Post-translational modifications modulate the assembly and activity of protein complexes during the DDR pathways. MicroRNAs (miRNAs) are emerging as a class of endogenous gene modulators that control protein levels, thereby adding a new layer of regulation to the DDR. In this review, we describe a new role for miRNAs in regulating the cellular response to DNA damage with a focus on DNA double-strand break damage. We also discuss the implications of miRNA's role in the DDR to stem cells, including embryonic stem cells and cancer stem cells, stressing the potential applications for miRNAs to be used as sensitizers for cancer radiotherapy and chemotherapy.

  2. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis*

    OpenAIRE

    Schmitt, Estelle; Paquet, Claudie; Beauchemin, Myriam; Bertrand, Richard

    2007-01-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycl...

  3. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage

    NARCIS (Netherlands)

    M. Tresini (Maria); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2016-01-01

    textabstractIn response to DNA damage cells activate intricate protein networks to ensure genomic fidelity and tissue homeostasis. DNA damage response signaling pathways coordinate these networks and determine cellular fates, in part, by modulating RNA metabolism. Here we discuss a replication-indep

  4. The role of NIPA in DNA damage response

    OpenAIRE

    Kulinski, Michal Andrzej

    2014-01-01

    DNA damage response (DDR) is a highly sophisticated process composed of coordinated activation of cell cycle checkpoints and DNA repair. NIPA, a member of E3 ubiquitin ligase family, was shown important in maintaining proper DNA damage repair. Its loss was manifested with aberrant localization of repair factors to the sites of DNA breaks after induction of DNA damage. NIPA was identified as a nuclear pore (NPC) associated protein by the interaction with the nuclear basket protein TPR. This st...

  5. Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level.

    Science.gov (United States)

    Kumar, Abhay; Prasad, M N V; Mohan Murali Achary, V; Panda, Brahma B

    2013-07-01

    Hydroponic experiments were performed with Talinum triangulare (Jacq.) Willd. focusing the root cellular biochemistry with special emphasis on DNA damage, structural, and elemental analyses in Pb(NO3)2 exposed with 0, 0.25, 0.5, 0.75, 1.0, and 1.25 mM for 7 days. Lead (Pb) increased reactive oxygen species production, lipid peroxidation, protein oxidation, cell death, and DNA damage and decreased the protein content in a dose-dependent manner. Likewise, a dose-dependent induction of antioxidative enzymes superoxide dismutase and catalase by Pb was evident. Ascorbate peroxidase on the other hand responded biphasically to Pb treatments by showing induction at low (0.25 and 0.50) and repression at high (0.75-1.25 mM) concentrations. The estimation of proline content also indicated a similar biphasic trend. Scanning electron microscope and energy-dispersive X-ray spectroscopy analysis showed that 1.25 mM Pb treatment resulted in ultrastructural modifications in roots and stem tissue that was marked by the change in the elemental profile. The findings pointed to the role of oxidative stress in the underlying Pb phytotoxicity and genotoxicity in T. triangulare. PMID:23263755

  6. Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress.

    Science.gov (United States)

    Aggarwal, Monika; Sommers, Joshua A; Shoemaker, Robert H; Brosh, Robert M

    2011-01-25

    Modulation of DNA repair proteins by small molecules has attracted great interest. An in vitro helicase activity screen was used to identify molecules that modulate DNA unwinding by Werner syndrome helicase (WRN), mutated in the premature aging disorder Werner syndrome. A small molecule from the National Cancer Institute Diversity Set designated NSC 19630 [1-(propoxymethyl)-maleimide] was identified that inhibited WRN helicase activity but did not affect other DNA helicases [Bloom syndrome (BLM), Fanconi anemia group J (FANCJ), RECQ1, RecQ, UvrD, or DnaB). Exposure of human cells to NSC 19630 dramatically impaired growth and proliferation, induced apoptosis in a WRN-dependent manner, and resulted in elevated γ-H2AX and proliferating cell nuclear antigen (PCNA) foci. NSC 19630 exposure led to delayed S-phase progression, consistent with the accumulation of stalled replication forks, and to DNA damage in a WRN-dependent manner. Exposure to NSC 19630 sensitized cancer cells to the G-quadruplex-binding compound telomestatin or a poly(ADP ribose) polymerase (PARP) inhibitor. Sublethal dosage of NSC 19630 and the chemotherapy drug topotecan acted synergistically to inhibit cell proliferation and induce DNA damage. The use of this WRN helicase inhibitor molecule may provide insight into the importance of WRN-mediated pathway(s) important for DNA repair and the replicational stress response. PMID:21220316

  7. Histone ubiquitylation and its roles in transcription and DNA damage response.

    Science.gov (United States)

    Meas, Rithy; Mao, Peng

    2015-12-01

    DNA in human cells is constantly assaulted by endogenous and exogenous DNA damaging agents. It is vital for the cell to respond rapidly and precisely to DNA damage to maintain genome integrity and reduce the risk of mutagenesis. Sophisticated reactions occur in chromatin surrounding the damaged site leading to the activation of DNA damage response (DDR), including transcription reprogramming, cell cycle checkpoint, and DNA repair. Histone proteins around the DNA damage play essential roles in DDR, through extensive post-translational modifications (PTMs) by a variety of modifying enzymes. One PTM on histones, mono-ubiquitylation, has emerged as a key player in cellular response to DNA damage. In this review, we will (1) briefly summarize the history of histone H2A and H2B ubiquitylation (H2Aub and H2Bub, respectively), (2) discuss their roles in transcription, and (3) their functions in DDR. PMID:26422137

  8. Melanogenesis: a photoprotective response to DNA damage?

    Energy Technology Data Exchange (ETDEWEB)

    Agar, Nita [St. John' s Institute of Dermatology, Guy' s, Kings and St. Thomas' School of Medicine, Kings College London, London (United Kingdom); Young, Antony R. [St. John' s Institute of Dermatology, Guy' s, Kings and St. Thomas' School of Medicine, Kings College London, London (United Kingdom)]. E-mail: antony.r.young@kcl.ac.uk

    2005-04-01

    Exposure to ultra violet radiation (UVR) is associated with significant long-term deleterious effects such as skin cancer. A well-recognised short-term consequence of UVR is increased skin pigmentation. Pigmentation, whether constitutive or facultative, has widely been viewed as photoprotective, largely because darkly pigmented skin is at a lower risk of photocarcinogenesis than fair skin. Research is increasingly suggesting that the relationship between pigmentation and photoprotection may be far more complex than previously assumed. For example, photoprotection against erythema and DNA damage has been shown to be independent of level of induced pigmentation in human white skin types. Growing evidence now suggests that UVR induced DNA photodamage, and its repair is one of the signals that stimulates melanogenesis and studies suggest that repeated exposure in skin type IV results in faster DNA repair in comparison to skin type II. These findings suggest that tanning may be a measure of inducible DNA repair capacity, and it is this rather than pigment per se which results in the lower incidence skin cancer observed in darker skinned individuals. This evokes the notion that epidermal pigmentation may in fact be the mammalian equivalent of a bacterial SOS response. Skin colour is one of most conspicuous ways in which humans vary yet the function of melanin remains controversial. Greater understanding of the role of pigmentation in skin is vital if one is to be able to give accurate advice to the general public about both the population at risk of skin carcinogenesis and also public perceptions of a tan as being healthy.

  9. Melanogenesis: a photoprotective response to DNA damage?

    International Nuclear Information System (INIS)

    Exposure to ultra violet radiation (UVR) is associated with significant long-term deleterious effects such as skin cancer. A well-recognised short-term consequence of UVR is increased skin pigmentation. Pigmentation, whether constitutive or facultative, has widely been viewed as photoprotective, largely because darkly pigmented skin is at a lower risk of photocarcinogenesis than fair skin. Research is increasingly suggesting that the relationship between pigmentation and photoprotection may be far more complex than previously assumed. For example, photoprotection against erythema and DNA damage has been shown to be independent of level of induced pigmentation in human white skin types. Growing evidence now suggests that UVR induced DNA photodamage, and its repair is one of the signals that stimulates melanogenesis and studies suggest that repeated exposure in skin type IV results in faster DNA repair in comparison to skin type II. These findings suggest that tanning may be a measure of inducible DNA repair capacity, and it is this rather than pigment per se which results in the lower incidence skin cancer observed in darker skinned individuals. This evokes the notion that epidermal pigmentation may in fact be the mammalian equivalent of a bacterial SOS response. Skin colour is one of most conspicuous ways in which humans vary yet the function of melanin remains controversial. Greater understanding of the role of pigmentation in skin is vital if one is to be able to give accurate advice to the general public about both the population at risk of skin carcinogenesis and also public perceptions of a tan as being healthy

  10. DNA damage response during mouse oocyte maturation

    Czech Academy of Sciences Publication Activity Database

    Mayer, Alexandra; Baran, Vladimír; Sakakibara, Y.; Brzáková, Adéla; Ferencová, Ivana; Motlík, Jan; Kitajima, T.; Schultz, R. M.; Šolc, Petr

    2016-01-01

    Roč. 15, č. 4 (2016), s. 546-558. ISSN 1538-4101 R&D Projects: GA MŠk LH12057; GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : double strand DNA breaks * DNA damage * MRE11 * meiotic maturation * mouse oocytes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.565, year: 2014

  11. NMR Metabolomic Profiling Reveals New Roles of SUMOylation in DNA Damage Response

    OpenAIRE

    Cano, Kristin E.; Li, Yi-Jia; Chen, Yuan

    2010-01-01

    Post-translational modifications by the Small Ubiquitin-like Modifier (SUMO) family of proteins have been established as critical events in the cellular response to a wide range of DNA damaging reagents and radiation; however, the detailed mechanism of SUMOylation in DNA damage response is not well understood. In this study, we used nuclear magnetic resonance (NMR) spectroscopy based metabolomics approach to examine the effect of an inhibitor of SUMO-mediated protein-protein interactions on M...

  12. Role of c-Abl in the DNA damage stress response

    Institute of Scientific and Technical Information of China (English)

    Yosef SHAUL; Merav BEN-YEHOYADA

    2005-01-01

    c-Abl has been implicated in many cellular processes including differentiation, division, adhesion, death, and stress response. c-Abl is a latent tyrosine kinase that becomes activated in response to numerous extra- and intra-cellular stimuli. Here we briefly review the current knowledge about c-Abl involvement in the DNA-damage stress response and its implication on cell physiology.

  13. Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling

    Czech Academy of Sciences Publication Activity Database

    Blažková, Hana; Krejčíková, Kateřina; Moudrý, Pavel; Frisan, T.; Hodný, Zdeněk; Bartek, Jiří

    2009-01-01

    Roč. 14, 1-2 (2009), s. 357-367. ISSN 1582-1838 R&D Projects: GA AV ČR IAA500390501; GA ČR GA204/08/1418; GA ČR GA301/08/0353 Institutional research plan: CEZ:AV0Z50520514 Keywords : cellular senescence * DNA damage response * bacterial toxins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.228, year: 2009

  14. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    Science.gov (United States)

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92–1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  15. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation.

    Science.gov (United States)

    Zhang, Xurui; Ye, Caiyong; Sun, Fang; Wei, Wenjun; Hu, Burong; Wang, Jufang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research. PMID:27187621

  16. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Xurui Zhang

    Full Text Available Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research.

  17. Roles of RNA-Binding Proteins in DNA Damage Response.

    Science.gov (United States)

    Kai, Mihoko

    2016-01-01

    Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR)), and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR) pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, "sensor" proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM)'s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ) pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP) with low complexity domains, called intrinsically disordered proteins (IDPs), and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs) in a poly(ADP-ribose) (PAR)-dependent manner (unpublished data). DNA-dependent PARP1 (poly-(ADP) ribose polymerase 1) makes key contributions in the DNA damage response (DDR) network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as "liquid-demixing"). Among the

  18. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation

    OpenAIRE

    Xurui Zhang; Caiyong Ye; Fang Sun; Wenjun Wei; Burong Hu; Jufang Wang

    2016-01-01

    Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. ...

  19. Live cell microscopy of DNA damage response in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pinela da Silva, Sonia Cristina; Gallina, Irene; Eckert-Boulet, Nadine Valerie; Lisby, Michael

    Fluorescence microscopy of the DNA damage response in living cells stands out from many other DNA repair assays by its ability to monitor the response to individual DNA lesions in single cells. This is particularly true in yeast, where the frequency of spontaneous DNA lesions is relatively low...... live cell imaging allows for multiple cellular markers to be monitored over several hours. This chapter reviews useful fluorescent markers and genotoxic agents for studying the DNA damage response in living cells and provides protocols for live cell imaging, time-lapse microscopy, and for induction of...

  20. Caveolar vesicles generate DNA damage and perpetuate cellular aging

    Institute of Scientific and Technical Information of China (English)

    Keith Wheaton

    2011-01-01

    @@ The replicative limit of human fibroblasts has long provided a model to assess the molecular mechanisms underlying cellular aging [1].In culture, fibroblasts which reach the end of their proliferative lifespan acquire profound molecular changes that limit their response to growth factors, and cause permanent exit from the cell cycle [2].

  1. SUMO boosts the DNA damage response barrier against cancer

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2010-01-01

    Roč. 17, č. 1 (2010), s. 9-11. ISSN 1535-6108 R&D Projects: GA ČR GA301/08/0353 Institutional research plan: CEZ:AV0Z50520514 Keywords : DNA damage response * ubiquitylation * sumoylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 26.925, year: 2010

  2. The DNA-damage response in human biology and disease

    Czech Academy of Sciences Publication Activity Database

    Jackson, S.P.; Bartek, Jiří

    2009-01-01

    Roč. 461, č. 7267 (2009), s. 1071-1078. ISSN 0028-0836 Institutional research plan: CEZ:AV0Z50520514 Keywords : DNA damage response * human disease * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 34.480, year: 2009

  3. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  4. Involvement of DNA Damage Response Pathways in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Sheau-Fang Yang

    2014-01-01

    Full Text Available Hepatocellular carcinoma (HCC has been known as one of the most lethal human malignancies, due to the difficulty of early detection, chemoresistance, and radioresistance, and is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. Its development has been closely associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Genetic alterations and genomic instability, probably resulted from unrepaired DNA lesions, are increasingly recognized as a common feature of human HCC. Dysregulation of DNA damage repair and signaling to cell cycle checkpoints, known as the DNA damage response (DDR, is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. It has been demonstrated that various HCC-associated risk factors are able to promote DNA damages, formation of DNA adducts, and chromosomal aberrations. Hence, alterations in the DDR pathways may accumulate these lesions to trigger hepatocarcinogenesis and also to facilitate advanced HCC progression. This review collects some of the most known information about the link between HCC-associated risk factors and DDR pathways in HCC. Hopefully, the review will remind the researchers and clinicians of further characterizing and validating the roles of these DDR pathways in HCC.

  5. DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies

    Institute of Scientific and Technical Information of China (English)

    Qi-En; Wang

    2015-01-01

    The identification of cancer stem cells(CSCs) that are responsible for tumor initiation, growth, metastasis, and therapeutic resistance might lead to a new thinking on cancer treatments. Similar to stem cells,CSCs also display high resistance to radiotherapy and chemotherapy with genotoxic agents. Thus, conventional therapy may shrink the tumor volume but cannot eliminate cancer. Eradiation of CSCs represents a novel therapeutic strategy. CSCs possess a highly efficient DNA damage response(DDR) system, which is considered as a contributor to the resistance of these cells from exposures to DNA damaging agents. Targeting of enhanced DDR in CSCs is thus proposed to facilitate the eradication of CSCs by conventional therapeutics. To achieve this aim, a better understanding of the cellular responses to DNA damage in CSCs is needed. In addition to the protein kinases and enzymes that are involved in DDR, other processes that affect the DDR including chromatin remodeling should also be explored.

  6. The DNA damage-induced cell death response: a roadmap to kill cancer cells.

    Science.gov (United States)

    Matt, Sonja; Hofmann, Thomas G

    2016-08-01

    Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response. PMID:26791483

  7. Phosphorylation of PTEN at STT motif is associated with DNA damage response

    International Nuclear Information System (INIS)

    Highlights: • Phosphorylation PTEN at the C-terminal STT motif is necessary for DNA repair. • DNA damage induces phosphorylation of STT motif of PTEN. • Phospho-PTEN translocates to nucleus after DNA damage. • Phospho-PTEN forms nuclear foci after DNA damage which co localized with γH2AX. - Abstract: Phosphatase and tensin homolog deleted on chromosome Ten (PTEN), a tumor suppressor protein participates in multiple cellular activities including DNA repair. In this work we found a relationship between phosphorylation of carboxy (C)-terminal STT motif of PTEN and DNA damage response. Ectopic expression of C-terminal phospho-mutants of PTEN, in PTEN deficient human glioblastoma cells, U87MG, resulted in reduced viability and DNA repair after etoposide induced DNA damage compared to cells expressing wild type PTEN. Also, after etoposide treatment phosphorylation of PTEN increased at C-terminal serine 380 and threonine 382/383 residues in PTEN positive HEK293T cells and wild type PTEN transfected U87MG cells. One-step further, DNA damage induced phosphorylation of PTEN was confirmed by immunoprecipitation of total PTEN from cellular extract followed by immunobloting with phospho-specific PTEN antibodies. Additionally, phospho-PTEN translocated to nucleus after etoposide treatment as revealed by indirect immunolabeling. Further, phosphorylation dependent nuclear foci formation of PTEN was observed after ionizing radiation or etoposide treatment which colocalized with γH2AX. Additionally, etoposide induced γH2AX, Mre11 and Ku70 foci persisted for a longer period of times in U87MG cells after ectopic expression of PTEN C-terminal phospho-mutant constructs compared to wild type PTEN expressing cells. Thus, our findings strongly suggest that DNA damage induced phosphorylation of C-terminal STT motif of PTEN is necessary for DNA repair

  8. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors

    Science.gov (United States)

    Francia, Sofia; Cabrini, Matteo; Matti, Valentina; Oldani, Amanda; d'Adda di Fagagna, Fabrizio

    2016-01-01

    ABSTRACT The DNA damage response (DDR) plays a central role in preserving genome integrity. Recently, we reported that the endoribonucleases DICER and DROSHA contribute to DDR activation by generating small non-coding RNAs, termed DNA damage response RNA (DDRNA), carrying the sequence of the damaged locus. It is presently unclear whether DDRNAs act by promoting the primary recognition of DNA lesions or the secondary recruitment of DDR factors into cytologically detectable foci and consequent signal amplification. Here, we demonstrate that DICER and DROSHA are dispensable for primary recruitment of the DDR sensor NBS1 to DNA damage sites. Instead, the accumulation of the DDR mediators MDC1 and 53BP1 (also known as TP53BP1), markers of secondary recruitment, is reduced in DICER- or DROSHA-inactivated cells. In addition, NBS1 (also known as NBN) primary recruitment is resistant to RNA degradation, consistent with the notion that RNA is dispensable for primary recognition of DNA lesions. We propose that DICER, DROSHA and DDRNAs act in the response to DNA damage after primary recognition of DNA lesions and, together with γH2AX, are essential for enabling the secondary recruitment of DDR factors and fuel the amplification of DDR signaling. PMID:26906421

  9. Chromatin perturbations during the DNA damage response in higher eukaryotes.

    Science.gov (United States)

    Bakkenist, Christopher J; Kastan, Michael B

    2015-12-01

    The DNA damage response is a widely used term that encompasses all signaling initiated at DNA lesions and damaged replication forks as it extends to orchestrate DNA repair, cell cycle checkpoints, cell death and senescence. ATM, an apical DNA damage signaling kinase, is virtually instantaneously activated following the introduction of DNA double-strand breaks (DSBs). The MRE11-RAD50-NBS1 (MRN) complex, which has a catalytic role in DNA repair, and the KAT5 (Tip60) acetyltransferase are required for maximal ATM kinase activation in cells exposed to low doses of ionizing radiation. The sensing of DNA lesions occurs within a highly complex and heterogeneous chromatin environment. Chromatin decondensation and histone eviction at DSBs may be permissive for KAT5 binding to H3K9me3 and H3K36me3, ATM kinase acetylation and activation. Furthermore, chromatin perturbation may be a prerequisite for most DNA repair. Nucleosome disassembly during DNA repair was first reported in the 1970s by Smerdon and colleagues when nucleosome rearrangement was noted during the process of nucleotide excision repair of UV-induced DNA damage in human cells. Recently, the multi-functional protein nucleolin was identified as the relevant histone chaperone required for partial nucleosome disruption at DBSs, the recruitment of repair enzymes and for DNA repair. Notably, ATM kinase is activated by chromatin perturbations induced by a variety of treatments that do not directly cause DSBs, including treatment with histone deacetylase inhibitors. Central to the mechanisms that activate ATR, the second apical DNA damage signaling kinase, outside of a stalled and collapsed replication fork in S-phase, is chromatin decondensation and histone eviction associated with DNA end resection at DSBs. Thus, a stress that is common to both ATM and ATR kinase activation is chromatin perturbations, and we argue that chromatin perturbations are both sufficient and required for induction of the DNA damage response

  10. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Ivo A. Hendriks

    2015-03-01

    Full Text Available Small ubiquitin-like modifiers play critical roles in the DNA damage response (DDR. To increase our understanding of SUMOylation in the mammalian DDR, we employed a quantitative proteomics approach in order to identify dynamically regulated SUMO-2 conjugates and modification sites upon treatment with the DNA damaging agent methyl methanesulfonate (MMS. We have uncovered a dynamic set of 20 upregulated and 33 downregulated SUMO-2 conjugates, and 755 SUMO-2 sites, of which 362 were dynamic in response to MMS. In contrast to yeast, where a response is centered on homologous recombination, we identified dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO-targeted ubiquitin ligase RNF4 and degraded by the proteasome in response to DNA damage, JARID1C was SUMOylated and recruited to the chromatin to demethylate histone H3K4.

  11. Mechanisms of DNA damage response to targeted irradiation in organotypic 3D skin cultures.

    Directory of Open Access Journals (Sweden)

    Anna Acheva

    Full Text Available DNA damage (caused by direct cellular exposure and bystander signaling and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays, low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2.

  12. Rho GTPases: Novel Players in the Regulation of the DNA Damage Response?

    Directory of Open Access Journals (Sweden)

    Gerhard Fritz

    2015-09-01

    Full Text Available The Ras-related C3 botulinum toxin substrate 1 (Rac1 belongs to the family of Ras-homologous small GTPases. It is well characterized as a membrane-bound signal transducing molecule that is involved in the regulation of cell motility and adhesion as well as cell cycle progression, mitosis, cell death and gene expression. Rac1 also adjusts cellular responses to genotoxic stress by regulating the activity of stress kinases, including c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK and p38 kinases as well as related transcription factors. Apart from being found on the inner side of the outer cell membrane and in the cytosol, Rac1 has also been detected inside the nucleus. Different lines of evidence indicate that genotoxin-induced DNA damage is able to activate nuclear Rac1. The exact mechanisms involved and the biological consequences, however, are unclear. The data available so far indicate that Rac1 might integrate DNA damage independent and DNA damage dependent cellular stress responses following genotoxin treatment, thereby coordinating mechanisms of the DNA damage response (DDR that are related to DNA repair, survival and cell death.

  13. Genomic approaches for identifying DNA damage response pathways in S. cerevisiae

    NARCIS (Netherlands)

    Chang, Michael; Parsons, Ainslie B; Sheikh, Bilal H; Boone, Charles; Brown, Grant W

    2006-01-01

    DNA damage response pathways have been studied extensively in the budding yeast Saccharomyces cerevisiae, yet new genes with roles in the DNA damage response are still being identified. In this chapter we describe the use of functional genomic approaches in the identification of DNA damage response

  14. Modeling the Study of DNA Damage Responses in Mice

    Science.gov (United States)

    Specks, Julia; Nieto-Soler, Maria; Lopez-Contreras, Andres J; Fernandez-Capetillo, Oscar

    2016-01-01

    Summary Damaged DNA has a profound impact on mammalian health and overall survival. In addition to being the source of mutations that initiate cancer, the accumulation of toxic amounts of DNA damage can cause severe developmental diseases and accelerate ageing. Therefore, understanding how cells respond to DNA damage has become one of the most intense areas of biomedical research in the recent years. However, whereas most mechanistic studies derive from in vitro or in cellulo work, the impact of a given mutation on a living organism is largely unpredictable. For instance, why BRCA1 mutations preferentially lead to breast cancer whereas mutations compromising mismatch repair drive colon cancer is still not understood. In this context, evaluating the specific physiological impact of mutations that compromise genome integrity has become crucial for a better dimensioning of our knowledge. We here describe the various technologies that can be used for modeling mutations in mice, and provide a review of the genes and pathways that have been modeled so far in the context of DNA damage responses. PMID:25636482

  15. Coordinate to guard: crosstalk of phosphorylation, sumoylation and ubiquitylation in DNA damage response

    Directory of Open Access Journals (Sweden)

    DavidKongAnn

    2012-01-01

    Full Text Available Small ubiquitin-like modifier-1/2/3 (SUMO-1/2/3 and ubiquitin share similar structure and utilize analogous machinery for protein lysine conjugation. Although sumoylation and ubiquitylation have distinct functions, they are often tightly associated with each other to fine-tune protein fate in transducing signals to regulate a wide variety of cellular functions, including DNA damage response, cell proliferation, DNA replication, embryonic development and cell differentiation. In this Perspective, we specifically highlight the role of sumoylation and ubiquitylation in ATM signaling in response to DNA double-strand breaks and hypothesize that ATM-induced phosphorylation is a unique node in regulating SUMO-targeted ubiquitylation in mammalian cells to combat DNA damage and to maintain genome integrity. A potential role for the coordination of three types of post-translational modification in dictating the tempo and extent of cellular response to genotoxic stress is speculated.

  16. SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage.

    Science.gov (United States)

    Yin, Yili; Seifert, Anne; Chua, Joy Shijia; Maure, Jean-François; Golebiowski, Filip; Hay, Ronald T

    2012-06-01

    Here we demonstrate that RNF4, a highly conserved small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, plays a critical role in the response of mammalian cells to DNA damage. Human cells in which RNF4 expression was ablated by siRNA or chicken DT40 cells with a homozygous deletion of the RNF4 gene displayed increased sensitivity to DNA-damaging agents. Recruitment of RNF4 to double-strand breaks required its RING and SUMO interaction motif (SIM) domains and DNA damage factors such as NBS1, mediator of DNA damage checkpoint 1 (MDC1), RNF8, 53BP1, and BRCA1. In the absence of RNF4, these factors were still recruited to sites of DNA damage, but 53BP1, RNF8, and RNF168 displayed delayed clearance from such foci. SILAC-based proteomics of SUMO substrates revealed that MDC1 was SUMO-modified in response to ionizing radiation. As a consequence of SUMO modification, MDC1 recruited RNF4, which mediated ubiquitylation at the DNA damage site. Failure to recruit RNF4 resulted in defective loading of replication protein A (RPA) and Rad51 onto ssDNA. This appeared to be a consequence of reduced recruitment of the CtIP nuclease, resulting in inefficient end resection. Thus, RNF4 is a novel DNA damage-responsive protein that plays a role in homologous recombination and integrates SUMO modification and ubiquitin signaling in the cellular response to genotoxic stress. PMID:22661230

  17. Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Sonja Koopal

    2007-09-01

    Full Text Available Kaposi sarcoma is a tumor consisting of Kaposi sarcoma herpesvirus (KSHV-infected tumor cells that express endothelial cell (EC markers and viral genes like v-cyclin, vFLIP, and LANA. Despite a strong link between KSHV infection and certain neoplasms, de novo virus infection of human primary cells does not readily lead to cellular transformation. We have studied the consequences of expression of v-cyclin in primary and immortalized human dermal microvascular ECs. We show that v-cyclin, which is a homolog of cellular D-type cyclins, induces replicative stress in ECs, which leads to senescence and activation of the DNA damage response. We find that antiproliferative checkpoints are activated upon KSHV infection of ECs, and in early-stage but not late-stage lesions of clinical Kaposi sarcoma specimens. These are some of the first results suggesting that DNA damage checkpoint response also functions as an anticancer barrier in virally induced cancers.

  18. Human longevity and variation in DNA damage response and repair

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike;

    2014-01-01

    others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning...... and mitochondrial DNA processes. The study population was 1089 long-lived and 736 middle-aged Danes. A self-contained set-based test of all SNPs displayed association with longevity (P-value=9.9 × 10-5), supporting that the overall pathway could affect longevity. Investigation of the nine sub-processes using...

  19. ERK3 regulates TDP2-mediated DNA damage response and chemoresistance in lung cancer cells

    OpenAIRE

    Bian, Ka; Muppani, Naveen Reddy; Elkhadragy, Lobna; Wang, Wei; Zhang, Cheng; Chen, Tenghui; Jung, Sungyun; Seternes, Ole Morten; Long, Weiwen

    2015-01-01

    Posttranslational modifications (PTMs), such as phosphorylation and ubiquitination, play critical regulatory roles in the assembly of DNA damage response proteins on the DNA damage site and their activities in DNA damage repair. Tyrosyl DNA phosphodiesterase 2 (TDP2) repairs Topoisomerase 2 (Top2)-linked DNA damage, thereby protecting cancer cells against Top2 inhibitors-induced growth inhibition and cell death. The regulation of TDP2 activity by post-translational modifications in DNA repair...

  20. Viral DNA Replication-Dependent DNA Damage Response Activation during BK Polyomavirus Infection

    OpenAIRE

    Verhalen, Brandy; Justice, Joshua L.; Imperiale, Michael J; Jiang, Mengxi

    2015-01-01

    BK polyomavirus (BKPyV) reactivation is associated with severe human disease in kidney and bone marrow transplant patients. The interplay between viral and host factors that regulates the productive infection process remains poorly understood. We have previously reported that the cellular DNA damage response (DDR) is activated upon lytic BKPyV infection and that its activation is required for optimal viral replication in primary kidney epithelial cells. In this report, we set out to determine...

  1. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling

    Directory of Open Access Journals (Sweden)

    Elisa eFerrando-May

    2013-07-01

    Full Text Available Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly nonlinear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to nonlinear photoperturbation experiments.

  2. Low Dose Iron Treatments Induce a DNA Damage Response in Human Endothelial Cells within Minutes.

    Directory of Open Access Journals (Sweden)

    Inês G Mollet

    Full Text Available Spontaneous reports from patients able to report vascular sequelae in real time, and recognition that serum non transferrin bound iron may reach or exceed 10μmol/L in the blood stream after iron tablets or infusions, led us to hypothesize that conventional iron treatments may provoke acute vascular injury. This prompted us to examine whether a phenotype could be observed in normal human endothelial cells treated with low dose iron.Confluent primary human endothelial cells (EC were treated with filter-sterilized iron (II citrate or fresh media for RNA sequencing and validation studies. RNA transcript profiles were evaluated using directional RNA sequencing with no pre-specification of target sequences. Alignments were counted for exons and junctions of the gene strand only, blinded to treatment types.Rapid changes in RNA transcript profiles were observed in endothelial cells treated with 10μmol/L iron (II citrate, compared to media-treated cells. Clustering for Gene Ontology (GO performed on all differentially expressed genes revealed significant differences in biological process terms between iron and media-treated EC, whereas 10 sets of an equivalent number of randomly selected genes from the respective EC gene datasets showed no significant differences in any GO terms. After 1 hour, differentially expressed genes clustered to vesicle mediated transport, protein catabolism, and cell cycle (Benjamini p = 0.0016, 0.0024 and 0.0032 respectively, and by 6 hours, to cellular response to DNA damage stimulus most significantly through DNA repair genes FANCG, BLM, and H2AFX. Comet assays demonstrated that 10μM iron treatment elicited DNA damage within 1 hour. This was accompanied by a brisk DNA damage response pulse, as ascertained by the development of DNA damage response (DDR foci, and p53 stabilization.These data suggest that low dose iron treatments are sufficient to modify the vascular endothelium, and induce a DNA damage response.

  3. NMR metabolomic profiling reveals new roles of SUMOylation in DNA damage response.

    Science.gov (United States)

    Cano, Kristin E; Li, Yi-Jia; Chen, Yuan

    2010-10-01

    Post-translational modifications by the Small Ubiquitin-like Modifier (SUMO) family of proteins have been established as critical events in the cellular response to a wide range of DNA damaging reagents and radiation; however, the detailed mechanism of SUMOylation in DNA damage response is not well understood. In this study, we used a nuclear magnetic resonance (NMR) spectroscopy-based metabolomics approach to examine the effect of an inhibitor of SUMO-mediated protein-protein interactions on MCF7 breast cancer cell response to radiation. Metabolomics is sensitive to changes in cellular functions and thus provides complementary information to other biological studies. The peptide inhibitor (SUMO interaction motif mimic, SIM) and a control peptide were stably expressed in MCF-7 cell line. Metabolite profiles of the cell lines before and after radiation were analyzed using solution NMR methods. Various statistical methods were used to isolate significant changes. Differences in the amounts of glutamine, aspartate, malate, alanine, glutamate and NADH between the SIM-expressing and control cells suggest a role for SUMOylation in regulating mitochondrial function. This is also further verified following the metabolism of (13)C-labeled glutamine. The inability of the cells expressing the SIM peptide to increase production of the antioxidants carnosine and glutathione after radiation damage suggests an important role of SUMOylation in regulating the levels of antioxidants that protect cells from free radicals and reactive oxygen species generated by radiation. This study reveals previously unknown roles of SUMOylation in DNA damage response. PMID:20695451

  4. DDRprot: a database of DNA damage response-related proteins.

    Science.gov (United States)

    Andrés-León, Eduardo; Cases, Ildefonso; Arcas, Aida; Rojas, Ana M

    2016-01-01

    The DNA Damage Response (DDR) signalling network is an essential system that protects the genome's integrity. The DDRprot database presented here is a resource that integrates manually curated information on the human DDR network and its sub-pathways. For each particular DDR protein, we present detailed information about its function. If involved in post-translational modifications (PTMs) with each other, we depict the position of the modified residue/s in the three-dimensional structures, when resolved structures are available for the proteins. All this information is linked to the original publication from where it was obtained. Phylogenetic information is also shown, including time of emergence and conservation across 47 selected species, family trees and sequence alignments of homologues. The DDRprot database can be queried by different criteria: pathways, species, evolutionary age or involvement in (PTM). Sequence searches using hidden Markov models can be also used.Database URL: http://ddr.cbbio.es. PMID:27577567

  5. DNA damage responses and oxidative stress in dyskeratosis congenita.

    Directory of Open Access Journals (Sweden)

    Larisa Pereboeva

    Full Text Available Dyskeratosis congenita (DC is an inherited multisystem disorder of premature aging, cancer predisposition, and bone marrow failure caused by selective exhaustion of highly proliferative cell pools. DC patients also have a poor tolerance to chemo/radiotherapy and bone marrow transplantation. Although critically shortened telomeres and defective telomere maintenance contribute to DC pathology, other mechanisms likely exist. We investigate the link between telomere dysfunction and oxidative and DNA damage response pathways and assess the effects of antioxidants. In vitro studies employed T lymphocytes from DC subjects with a hTERC mutation and age-matched controls. Cells were treated with cytotoxic agents, including Paclitaxel, Etoposide, or ionizing radiation. Apoptosis and reactive oxygen species (ROS were assessed by flow cytometry, and Western blotting was used to measure expression of DNA damage response (DDR proteins, including total p53, p53S15, and p21(WAF. N-acetyl-cysteine (NAC, an antioxidant, was used to modulate cell growth and ROS. In stimulated culture, DC lymphocytes displayed a stressed phenotype, characterized by elevated levels of ROS, DDR and apoptotic markers as well as a proliferative defect that was more pronounced after exposure to cytotoxic agents. NAC partially ameliorated the growth disadvantage of DC cells and decreased radiation-induced apoptosis and oxidative stress. These findings suggest that oxidative stress may play a role in the pathogenesis of DC and that pharmacologic intervention to correct this pro-oxidant imbalance may prove useful in the clinical setting, potentially alleviating untoward toxicities associated with current cytotoxic treatments.

  6. Ubiquitination of HTLV-I Tax in response to DNA damage regulates nuclear complex formation and nuclear export

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2007-12-01

    Full Text Available Abstract Background The HTLV-I oncoprotein, Tax, is a pleiotropic protein whose activity is partially regulated by its ability to interact with, and perturb the functions of, numerous cellular proteins. Tax is predominantly a nuclear protein that localizes to nuclear foci known as Tax Speckled Structures (TSS. We recently reported that the localization of Tax and its interactions with cellular proteins are altered in response to various forms of genotoxic and cellular stress. The level of cytoplasmic Tax increases in response to stress and this relocalization depends upon the interaction of Tax with CRM1. Cellular pathways and signals that regulate the subcellular localization of Tax remain to be determined. However, post-translational modifications including sumoylation and ubiquitination are known to influence the subcellular localization of Tax and its interactions with cellular proteins. The sumoylated form of Tax exists predominantly in the nucleus while ubiquitinated Tax exists predominantly in the cytoplasm. Therefore, we hypothesized that post-translational modifications of Tax that occur in response to DNA damage regulate the localization of Tax and its interactions with cellular proteins. Results We found a significant increase in mono-ubiquitination of Tax in response to UV irradiation. Mutation of specific lysine residues (K280 and K284 within Tax inhibited DNA damage-induced ubiquitination. In contrast to wild-type Tax, which undergoes transient nucleocytoplasmic shuttling in response to DNA damage, the K280 and K284 mutants were retained in nuclear foci following UV irradiation and remained co-localized with the cellular TSS protein, sc35. Conclusion This study demonstrates that the localization of Tax, and its interactions with cellular proteins, are dynamic following DNA damage and depend on the post-translational modification status of Tax. Specifically, DNA damage induces the ubiquitination of Tax at K280 and K284

  7. Potential Relationship between Inadequate Response to DNA Damage and Development of Myelodysplastic Syndrome

    Directory of Open Access Journals (Sweden)

    Ting Zhou

    2015-01-01

    Full Text Available Hematopoietic stem cells (HSCs are responsible for the continuous regeneration of all types of blood cells, including themselves. To ensure the functional and genomic integrity of blood tissue, a network of regulatory pathways tightly controls the proliferative status of HSCs. Nevertheless, normal HSC aging is associated with a noticeable decline in regenerative potential and possible changes in other functions. Myelodysplastic syndrome (MDS is an age-associated hematopoietic malignancy, characterized by abnormal blood cell maturation and a high propensity for leukemic transformation. It is furthermore thought to originate in a HSC and to be associated with the accrual of multiple genetic and epigenetic aberrations. This raises the question whether MDS is, in part, related to an inability to adequately cope with DNA damage. Here we discuss the various components of the cellular response to DNA damage. For each component, we evaluate related studies that may shed light on a potential relationship between MDS development and aberrant DNA damage response/repair.

  8. Sumoylation of MDC1 is important for proper DNA damage response.

    Science.gov (United States)

    Luo, Kuntian; Zhang, Haoxing; Wang, Liewei; Yuan, Jian; Lou, Zhenkun

    2012-06-29

    In response to DNA damage, many DNA damage factors, such as MDC1 and 53BP1, redistribute to sites of DNA damage. The mechanism governing the turnover of these factors at DNA damage sites, however, remains enigmatic. Here, we show that MDC1 is sumoylated following DNA damage, and the sumoylation of MDC1 at Lys1840 is required for MDC1 degradation and removal of MDC1 and 53BP1 from sites of DNA damage. Sumoylated MDC1 is recognized and ubiquitinated by the SUMO-targeted E3 ubiquitin ligase RNF4. Mutation of the MDC1 Lys 1840 (K1840R) results in impaired CtIP, replication protein A, and Rad51 accumulation at sites of DNA damage and defective homologous recombination (HR). The HR defect caused by MDC1K1840R mutation could be rescued by 53BP1 downregulation. These results reveal the intricate dynamics governing the assembly and disassembly of DNA damage factors at sites of DNA damage for prompt response to DNA damage. PMID:22635276

  9. Identification of S-phase DNA damage-response targets in fission yeast reveals conservation of damage-response networks.

    Science.gov (United States)

    Willis, Nicholas A; Zhou, Chunshui; Elia, Andrew E H; Murray, Johanne M; Carr, Antony M; Elledge, Stephen J; Rhind, Nicholas

    2016-06-28

    The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog of mammalian Chk2. Although several critical downstream targets of Rad3 and Cds1 have been identified, most of their presumed targets are unknown, including the targets responsible for regulating replication kinetics and coordinating replication and repair. To characterize targets of the S-phase DDR, we identified proteins phosphorylated in response to methyl methanesulfonate (MMS)-induced S-phase DNA damage in wild-type, rad3∆, and cds1∆ cells by proteome-wide mass spectrometry. We found a broad range of S-phase-specific DDR targets involved in gene expression, stress response, regulation of mitosis and cytokinesis, and DNA replication and repair. These targets are highly enriched for proteins required for viability in response to MMS, indicating their biological significance. Furthermore, the regulation of these proteins is similar in fission and budding yeast, across 300 My of evolution, demonstrating a deep conservation of S-phase DDR targets and suggesting that these targets may be critical for maintaining genome stability in response to S-phase DNA damage across eukaryotes. PMID:27298342

  10. Coordination of the Nuclear and Cytoplasmic Activities of p53 in Response to DNA Damage

    OpenAIRE

    Pu, Tian; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2010-01-01

    The tumor suppressor p53 plays a key role in the cellular response to various stresses. Most previous studies have focused on either the nuclear or cytoplasmic proapoptotic functions of p53, ignoring the combination of both functions. To explore how the two functions of p53 are coordinated in the DNA damage response via computer simulation, we construct a model for the p53 network comprising coupled positive and negative feedback loops involving p53, Mdm2, and Akt, as well as PUMA and Bax. In...

  11. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response

    DEFF Research Database (Denmark)

    Beli, Petra; Lukashchuk, Natalia; Wagner, Sebastian A; Weinert, Brian T; Olsen, Jesper V; Baskcomb, Linda; Mann, Matthias; Jackson, Stephen P; Choudhary, Chuna Ram

    2012-01-01

    The regulatory networks of the DNA damage response (DDR) encompass many proteins and posttranslational modifications. Here, we use mass spectrometry-based proteomics to analyze the systems-wide response to DNA damage by parallel quantification of the DDR-regulated phosphoproteome, acetylome, and ...

  12. HCLK2 is required for activity of the DNA damage response kinase ATR

    DEFF Research Database (Denmark)

    Rendtlew Danielsen, Jannie M; Larsen, Dorthe Helena; Schou, Kenneth Bødtker;

    2008-01-01

    ATR is a protein kinase that orchestrates the cellular response to replication problems and DNA damage. HCLK2 has previously been reported to stabilize ATR and Chk1. Here we provide evidence that human HCLK2 acts at an early step in the ATR signaling pathway and contributes to full-scale activation...... of ATR kinase activity. We show that HCLK2 forms a complex with ATR-ATRIP and the ATR activator TopBP1. We demonstrate that HCLK2-induced ATR kinase activity toward substrates requires TopBP1 and vice versa and provides evidence that HCLK2 facilitates efficient ATR-TopBP1 association. Consistent with...

  13. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    Science.gov (United States)

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing. PMID:27221660

  14. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Institute of Scientific and Technical Information of China (English)

    Tangliang Li; Zhong-Wei Zhou; Zhenyu Ju; Zhao-Qi Wang

    2016-01-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employ-ing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically reg-ulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  15. BRCA1 in the DNA damage response and at telomeres

    Directory of Open Access Journals (Sweden)

    Eliot Michael Rosen

    2013-06-01

    Full Text Available Abstract. Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1 account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s is (are most important for tumor suppression, nor is it clear why BRCA1 mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR, which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.

  16. A dual role of Cdk2 in DNA damage response

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2009-05-01

    Full Text Available Abstract Once it was believed that Cdk2 was the master regulator of S phase entry. Gene knockout mouse studies of cell cycle regulators revealed that Cdk2 is dispensable for S phase initiation and progression whereby Cdk1 can compensate for the loss of Cdk2. Nevertheless, recent evidence indicates that Cdk2 is involved in cell cycle independent functions such as DNA damage repair. Whether these properties are unique to Cdk2 or also being compensated by other Cdks in the absence of Cdk2 is under extensive investigation. Here we review the emerging new role of Cdk2 in DNA damage repair and also discuss how the loss of Cdk2 impacts the G1/S phase DNA damage checkpoint.

  17. DNA-damage response associated with occupational exposure, age and chronic inflammation in workers in the automotive industry.

    Science.gov (United States)

    Savina, Natalya V; Smal, Marharyta P; Kuzhir, Tatyana D; Ershova-Pavlova, Alla A; Goncharova, Roza I

    2012-10-01

    The evaluation of genome integrity in populations occupationally exposed to combine industrial factors is of medical importance. In the present study, the DNA-damage response was estimated by means of the alkaline comet assay in a sizeable cohort of volunteers recruited among workers in the automotive industry. For this purpose, freshly collected lymphocytes were treated with hydrogen peroxide (100μM, 1min, 4°C) in vitro, and the levels of basal and H(2)O(2)-induced DNA damage, and the kinetics and efficiency of DNA repair were measured during a 180-min interval after exposure. The parameters studied in the total cohort of workers were in a range of values prescribed for healthy adult residents of Belarus. Based on the 95th percentiles, individuals possessing enhanced cellular sensitivity to DNA damage were present in different groups, but the frequency was significantly higher among elderly persons and among individuals with chronic inflammatory diseases. The results indicate that the inter-individual variations in DNA-damage response should be taken into account to estimate adequately the environmental genotoxic effects and to identify individuals with an enhanced DNA-damage response due to the influence of some external factors or intrinsic properties of the organism. Underling mechanisms need to be further explored. PMID:22772077

  18. Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage.

    Science.gov (United States)

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2016-02-01

    Due to the widespread use of indium tin oxide (ITO), it is important to investigate its effect on human health. In this study, we evaluated the cellular effects of ITO nanoparticles (NPs), indium chloride (InCl3) and tin chloride (SnCl3) using human lung epithelial A549 cells. Transmission electron microscopy and inductively coupled plasma mass spectrometry were employed to study cellular ITO NP uptake. Interestingly, greater uptake of ITO NPs was observed, as compared with soluble salts. ITO NP species released could be divided into two types: 'indium release ITO' or 'tin release ITO'. We incubated A549 cells with indium release ITO, tin release ITO, InCl3 or SnCl2 and investigated oxidative stress, proinflammatory response, cytotoxicity and DNA damage. We found that intracellular reactive oxygen species were increased in cells incubated with indium release ITO, but not tin release ITO, InCl3 or SnCl2. Messenger RNA and protein levels of the inflammatory marker, interleukin-8, also increased following exposure to indium release ITO. Furthermore, the alkaline comet assay revealed that intracellular accumulation of indium ions induced DNA damage. Our results demonstrate that the accumulation of ionic indium, but not ionic tin, from ITO NPs in the intracellular matrix has extensive cellular effects. PMID:26378248

  19. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    formation of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct...

  20. UHRF1 is a genome caretaker that facilitates the DNA damage response to γ-irradiation

    Directory of Open Access Journals (Sweden)

    Mistry Helena

    2010-06-01

    Full Text Available Abstract Background DNA double-strand breaks (DSBs caused by ionizing radiation or by the stalling of DNA replication forks are among the most deleterious forms of DNA damage. The ability of cells to recognize and repair DSBs requires post-translational modifications to histones and other proteins that facilitate access to lesions in compacted chromatin, however our understanding of these processes remains incomplete. UHRF1 is an E3 ubiquitin ligase that has previously been linked to events that regulate chromatin remodeling and epigenetic maintenance. Previous studies have demonstrated that loss of UHRF1 increases the sensitivity of cells to DNA damage however the role of UHRF1 in this response is unclear. Results We demonstrate that UHRF1 plays a critical role for facilitating the response to DSB damage caused by γ-irradiation. UHRF1-depleted cells exhibit increased sensitivity to γ-irradiation, suggesting a compromised cellular response to DSBs. UHRF1-depleted cells show impaired cell cycle arrest and an impaired accumulation of histone H2AX phosphorylation (γH2AX in response to γ-irradiation compared to control cells. We also demonstrate that UHRF1 is required for genome integrity, in that UHRF1-depleted cells displayed an increased frequency of chromosomal aberrations compared to control cells. Conclusions Our findings indicate a critical role for UHRF1 in maintenance of chromosome integrity and an optimal response to DSB damage.

  1. The relationship between cellular radiosensitivity and radiation-induced DNA damage measured by the comet assay

    International Nuclear Information System (INIS)

    The relationship between deoxyribonucleic acid (DNA) damage and the cell death induced by γ-irradiation was examined in three kinds of cells, Chinese hamster ovary fibroblast CHO-K1, human melanoma HMV-II and mouse leukemia L5178Y. Cell survival was determined by a clonogenic assay. The induction and rejoining of DNA strand breaks induced by radiation were measured by the alkaline and neutral comet assay. L5178Y cells were the most radiosensitive, while CHO-K1 cells and HMV-II cells were radioresistant. There was an inverse relationship between the survival fraction at 2 Gy (SF2) and the yield of initial DNA strand breaks per unit dose under the alkaline condition of the comet assay, and also a relationship between SF2 and the residual DNA strand breaks (for 4 hr after irradiation) under the neutral condition for the comet assay, the latter being generally considered to be relative to cellular radiosensitivity. In the present analysis, it was considered that the alkaline condition for the comet assay was optimal for evaluating the initial DNA strand breaks, while the neutral condition was optimal for evaluating the residual DNA strand breaks. Since the comet assay is simpler and more rapid than other methods for detecting radiation-induced DNA damage, this assay appears to be a useful predictive assay for evaluating cellular clonogenic radiosensitivity of tumor cells. (author)

  2. Autophagy and senescence, stress responses induced by the DNA-damaging mycotoxin alternariol

    International Nuclear Information System (INIS)

    Highlights: • AOH induces autophagy, lamellar bodies and senescence in RAW264.7 macrophages. • DNA damage is suggested as a triggering signal. • The Sestrin2-AMPK-mTOR-S6K pathway is proposed to link DNA damage to autophagy. - Abstract: The mycotoxin alternariol (AOH), a frequent contaminant in fruit and grain, is known to induce cellular stress responses such as reactive oxygen production, DNA damage and cell cycle arrest. Cellular stress is often connected to autophagy, and we employed the RAW264.7 macrophage model to test the hypothesis that AOH induces autophagy. Indeed, AOH treatment led to a massive increase in acidic vacuoles often observed upon autophagy induction. Moreover, expression of the autophagy marker LC3 was markedly increased and there was a strong accumulation of LC3-positive puncta. Increased autophagic activity was verified biochemically by measuring the degradation rate of long-lived proteins. Furthermore, AOH induced expression of Sestrin2 and phosphorylation of AMPK as well as reduced phosphorylation of mTOR and S6 kinase, common mediators of signaling pathways involved in autophagy. Transmission electron microscopy analyzes of AOH treated cells not only clearly displayed structures associated with autophagy such as autophagosomes and autolysosomes, but also the appearance of lamellar bodies. Prolonged AOH treatment resulted in changed cell morphology from round into more star-shaped as well as increased β-galactosidase activity. This suggests that the cells eventually entered senescence. In conclusion, our data identify here AOH as an inducer of both autophagy and senescence. These effects are suggested to be to be linked to AOH-induced DSB (via a reported effect on topoisomerase activity), resulting in an activation of p53 and the Sestrin2-AMPK-mTOR-S6K signaling pathway

  3. Nucleolar exit of RNF8 and BRCA1 in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Guerra-Rebollo, Marta; Mateo, Francesca; Franke, Kristin [Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona (Spain); Huen, Michael S.Y. [Department of Anatomy, Centre for Cancer Research, The University of Hong Kong, L1, Laboratory Block, 21 Sassoon Road, Hong Kong Special Administrative Region (Hong Kong); Lopitz-Otsoa, Fernando; Rodriguez, Manuel S. [Proteomics Unit, CIC bioGUNE CIBERehd, ProteoRed, Technology Park of Bizkaia, Building 801A, 48160 Derio (Spain); Plans, Vanessa [Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona (Spain); Thomson, Timothy M., E-mail: titbmc@ibmb.csic.es [Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona (Spain)

    2012-11-01

    The induction of DNA double-strand breaks (DSBs) elicits a plethora of responses that redirect many cellular functions to the vital task of repairing the injury, collectively known as the DNA damage response (DDR). We have found that, in the absence of DNA damage, the DSB repair factors RNF8 and BRCA1 are associated with the nucleolus. Shortly after exposure of cells to {gamma}-radiation, RNF8 and BRCA1 translocated from the nucleolus to damage foci, a traffic that was reverted several hours after the damage. RNF8 interacted through its FHA domain with the ribosomal protein RPSA, and knockdown of RPSA caused a depletion of nucleolar RNF8 and BRCA1, suggesting that the interaction of RNF8 with RPSA is critical for the nucleolar localization of these DDR factors. Knockdown of RPSA or RNF8 impaired bulk protein translation, as did {gamma}-irradiation, the latter being partially countered by overexpression of exogenous RNF8. Our results suggest that RNF8 and BRCA1 are anchored to the nucleolus through reversible interactions with RPSA and that, in addition to its known functions in DDR, RNF8 may play a role in protein synthesis, possibly linking the nucleolar exit of this factor to the attenuation of protein synthesis in response to DNA damage. -- Highlights: Black-Right-Pointing-Pointer RNF8 and BRCA1 are associated with the nucleolus of undamaged cells. Black-Right-Pointing-Pointer Upon {gamma}-radiation, RNF8 and BRCA1 are translocated from the nucleolus to damage foci. Black-Right-Pointing-Pointer The ribosomal protein RPSA anchors RNF8 to the nucleolus. Black-Right-Pointing-Pointer RNF8 may play previously unsuspected roles in protein synthesis.

  4. Nucleolar exit of RNF8 and BRCA1 in response to DNA damage

    International Nuclear Information System (INIS)

    The induction of DNA double-strand breaks (DSBs) elicits a plethora of responses that redirect many cellular functions to the vital task of repairing the injury, collectively known as the DNA damage response (DDR). We have found that, in the absence of DNA damage, the DSB repair factors RNF8 and BRCA1 are associated with the nucleolus. Shortly after exposure of cells to γ-radiation, RNF8 and BRCA1 translocated from the nucleolus to damage foci, a traffic that was reverted several hours after the damage. RNF8 interacted through its FHA domain with the ribosomal protein RPSA, and knockdown of RPSA caused a depletion of nucleolar RNF8 and BRCA1, suggesting that the interaction of RNF8 with RPSA is critical for the nucleolar localization of these DDR factors. Knockdown of RPSA or RNF8 impaired bulk protein translation, as did γ-irradiation, the latter being partially countered by overexpression of exogenous RNF8. Our results suggest that RNF8 and BRCA1 are anchored to the nucleolus through reversible interactions with RPSA and that, in addition to its known functions in DDR, RNF8 may play a role in protein synthesis, possibly linking the nucleolar exit of this factor to the attenuation of protein synthesis in response to DNA damage. -- Highlights: ► RNF8 and BRCA1 are associated with the nucleolus of undamaged cells. ► Upon γ-radiation, RNF8 and BRCA1 are translocated from the nucleolus to damage foci. ► The ribosomal protein RPSA anchors RNF8 to the nucleolus. ► RNF8 may play previously unsuspected roles in protein synthesis.

  5. Alternative splicing of DNA damage response genes and gastrointestinal cancers

    OpenAIRE

    Rahmutulla, Bahityar; Matsushita, Kazuyuki; Nomura, Fumio

    2014-01-01

    Alternative splicing, which is a common phenomenon in mammalian genomes, is a fundamental process of gene regulation and contributes to great protein diversity. Alternative splicing events not only occur in the normal gene regulation process but are also closely related to certain diseases including cancer. In this review, we briefly demonstrate the concept of alternative splicing and DNA damage and describe the association of alternative splicing and cancer pathogenesis, focusing on the pote...

  6. Estrogen signalling and the DNA damage response in hormone dependent breast cancers

    Directory of Open Access Journals (Sweden)

    C Elizabeth Caldon

    2014-05-01

    Full Text Available Estrogen is necessary for the normal growth and development of breast tissue, but high levels of estrogen are a major risk factor for breast cancer. One mechanism by which estrogen could contribute to breast cancer is via the induction of DNA damage. This perspective discusses the mechanisms by which estrogen alters the DNA damage response (DDR and DNA repair through the regulation of key effector proteins including ATM, ATR, CHK1, BRCA1 and p53 and the feedback on estrogen receptor signalling from these proteins. We put forward the hypothesis that estrogen receptor signalling converges to suppress effective DNA repair and apoptosis in favour of proliferation. This is important in hormone-dependent breast cancer as it will affect processing of estrogen-induced DNA damage, as well as other genotoxic insults. DDR and DNA repair proteins are frequently mutated or altered in estrogen responsive breast cancer which will further change the processing of DNA damage. Finally the action of estrogen signalling on DNA damage is also relevant to the therapeutic setting as the suppression of a DNA damage response by estrogen has the potential to alter the response of cancers to anti-hormone treatment or chemotherapy that induces DNA damage.

  7. Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins

    Science.gov (United States)

    Gaspar, Miguel; Shenk, Thomas

    2006-02-01

    The DNA damage checkpoint pathway responds to DNA damage and induces a cell cycle arrest to allow time for DNA repair. Several viruses are known to activate or modulate this cellular response. Here we show that the ataxia-telangiectasia mutated checkpoint pathway, which responds to double-strand breaks in DNA, is activated in response to human cytomegalovirus DNA replication. However, this activation does not propagate through the pathway; it is blocked at the level of the effector kinase, checkpoint kinase 2 (Chk2). Late after infection, several checkpoint proteins, including ataxia-telangiectasia mutated and Chk2, are mislocalized to a cytoplasmic virus assembly zone, where they are colocalized with virion structural proteins. This colocalization was confirmed by immunoprecipitation of virion proteins with an antibody that recognizes Chk2. Virus replication was resistant to ionizing radiation, which causes double-strand breaks in DNA. We propose that human CMV DNA replication activates the checkpoint response to DNA double-strand breaks, and the virus responds by altering the localization of checkpoint proteins to the cytoplasm and thereby inhibiting the signaling pathway. ionizing radiation | ataxia-telangiectasia mutated pathway

  8. 5-Hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione.

    Science.gov (United States)

    Janzowski, C; Glaab, V; Samimi, E; Schlatter, J; Eisenbrand, G

    2000-09-01

    5-(hydroxymethyl)-2-furfural (HMF), a common product of the Maillard reaction, occurs in many foods in high concentrations, sometimes exceeding 1 g/kg (in certain dried fruits and caramel products). The toxicological relevance of this exposure has not yet been clarified. Induction of aberrant colonic crypt foci had been reported for HMF, in vitro studies on genotoxicity/mutagenicity have given controversial results. To elucidate the toxic potential of HMF, cytotoxicity (trypan blue exclusion), growth inhibition (SRB assay), mutagenicity (HPRT assay), DNA damage (single-cell gel electrophoresis) and depletion of cellular glutathione were investigated in mammalian cells. Genotoxicity (SOS repair) was monitored in Salmonella typhimurium (umu assay). HMF induced moderate cytotoxicity in V79 cells (LC(50): 115 mM, 1 hr incubation) and in Caco-2 cells (LC(50): 118 mM, 1 hr incubation). Growth inhibition was monitored following 24 hr of incubation (V79, IC(50): 6.4 mM). DNA damage was detectable neither in these cell lines nor in primary rat hepatocytes up to the cytotoxic threshold concentration (75% absolute viability). Likewise, in primary human colon cells, obtained from biopsy material, DNA damage was not measurable. At 120 mM, already exhibiting some reduction in cell viability, HMF was weakly mutagenic at the hprt-locus in V79 cells (mutants/10(6) cells: HMF 120 mM: 16 vs control: 3). Intracelluar glutathione was depleted by HMF (>/=50 mM) in V79 cells, in the human colon adenocarcinoma cell line Caco-2 and in primary rat hepatocytes down to approximately 30% of control (120 mM). Genotoxicity was observed with HMF in the umu assay without external activation (16 mM: 185 rel. umu units, %, P<0.001). The genotoxic potential was not altered by addition of rat liver microsomes. By comparison, the natural flavour constituent (E)-2-hexenal (HEX) was already cytotoxic, mutagenic and depleted glutathione at about 1000-fold lower concentrations. It induced DNA damage in

  9. Gymnemagenin-a triterpene saponin prevents γ-radiation induced cellular DNA damage

    International Nuclear Information System (INIS)

    Gymnema sylvestre an ethno-medicinally important plant was investigated for its protecting activity against radiation induced DNA damage. The major bioactive component present in Gymnema sylvestre such as gymnemic acid and gymnemagenin a triterpene saponin, were tested for its radioprotective effects against 60Co irradiation induced DNA damage in fish model using fresh water fish Pangasius sutchi. Fishes subjected to a dose of 133 Gy of gamma radiation and observed for eight days. The genotoxic assessment by micronucleus assay showed us that that the plant extract helped in reducing the frequency of micronucleated and binucleated erythrocytes compared to the irradiated control group. The genotoxic assessment by alkaline comet assay by single gel electrophoresis shows that pretreatment with the plant extract appreciably decreased the percentage of tail DNA towards the levels close to those of normal control group. The gradual increase in the level of the antioxidant enzymes: superoxide dismutase (SOD) and catalase (CAT) during the course of the experiment indicates that the antioxidant enzyme activities play an important role in protecting organisms against gamma radiation-induced cellular oxidative stress. In conclusion the leaf extracts of Gymnema sylvstre exerts its radio protective potential by suppressing the toxic assault of ROS generated by the ionizing radiation through its ability to boost the levels of antioxidant enzymes (CAT and SOD) due to the presence of its phytochemicals like gymnemgenenin- a Triterpene Saponin. (author)

  10. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    Czech Academy of Sciences Publication Activity Database

    Macůrek, Libor; Benada, Jan; Müllers, E.; Halim, V.A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Soňa; Hodný, Zdeněk; Lindqvist, A.; Medema, R.H.; Bartek, Jiří

    2013-01-01

    Roč. 12, č. 2 (2013), s. 251-262. ISSN 1538-4101 R&D Projects: GA ČR GPP305/10/P420; GA ČR GAP301/10/1525 Grant ostatní: Netherlands Genomic Initiative of NWO(NL) CGC; EK(XE) 259893 Institutional support: RVO:68378050 Keywords : DNA damage response * Wip1 phosphatase * cell cycle * mitotic progression * γH2AX Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.006, year: 2013

  11. Activation of a DNA Damage Checkpoint Response in a TAF1-Defective Cell Line

    OpenAIRE

    Buchmann, Ann M.; Skaar, Jeffrey R.; DeCaprio, James A.

    2004-01-01

    Although the link between transcription and DNA repair is well established, defects in the core transcriptional complex itself have not been shown to elicit a DNA damage response. Here we show that a cell line with a temperature-sensitive defect in TBP-associated factor 1 (TAF1), a component of the TFIID general transcription complex, exhibits hallmarks of an ATR-mediated DNA damage response. Upon inactivation of TAF1, ATR rapidly localized to subnuclear foci and contributed to the phosphoryl...

  12. Manipulation of cellular DNA damage repair machinery facilitates propagation of human papillomaviruses.

    Science.gov (United States)

    Wallace, Nicholas A; Galloway, Denise A

    2014-06-01

    In general, the interplay among viruses and DNA damage repair (DDR) pathways can be divided based on whether the interaction promotes or inhibits the viral lifecycle. The propagation of human papillomaviruses is both promoted and inhibited by DDR proteins. As a result, HPV proteins both activate repair pathways, such as the ATM and ATR pathways, and inhibit other pathways, most notably the p53 signaling pathway. Indeed, the role of HPV proteins, with regard to the DDR pathways, can be divided into two broad categories. The first set of viral proteins, HPV E1 and E2 activate a DNA damage response and recruit repair proteins to viral replication centers, where these proteins are likely usurped to replicate the viral genome. Because the activation of the DDR response typically elicits a cell cycle arrest that would impeded the viral lifecycle, the second set of HPV proteins, HPV E6 and E7, prevents the DDR response from pausing cell cycle progression or inducing apoptosis. This review provides a detailed account of the interactions among HPV proteins and DDR proteins that facilitate HPV propagation. PMID:24412279

  13. The histone demethylase LSD1/KDM1A promotes the DNA damage response

    OpenAIRE

    Mosammaparast, Nima; Kim, Haeyoung; Laurent, Benoit; Zhao, Yu; Lim, Hui Jun; Majid, Mona C.; Dango, Sebastian; Luo, Yuying; Hempel, Kristina; Sowa, Mathew E.; Gygi, Steven P.; Steen, Hanno; Harper, J. Wade; Yankner, Bruce; Shi, Yang

    2013-01-01

    Histone demethylation is known to regulate transcription, but its role in other processes is largely unknown. We report a role for the histone demethylase LSD1/KDM1A in the DNA damage response (DDR). We show that LSD1 is recruited directly to sites of DNA damage. H3K4 dimethylation, a major substrate for LSD1, is reduced at sites of DNA damage in an LSD1-dependent manner. The E3 ubiquitin ligase RNF168 physically interacts with LSD1 and we find this interaction to be important for LSD1 recrui...

  14. Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970

    OpenAIRE

    Hall, Amy B.; Newsome, Dave; Wang, Yuxin; Boucher, Diane M.; Eustace, Brenda; Gu, Yong; Hare, Brian; Mac A. Johnson; Milton, Sean; Murphy, Cheryl E.; Takemoto, Darin; Tolman, Crystal; Wood, Mark; Charlton, Peter; Charrier, Jean-Damien

    2014-01-01

    Platinum-based DNA-damaging chemotherapy is standard-of-care for most patients with lung cancer but outcomes remain poor. This has been attributed, in part, to the highly effective repair network known as the DNA-damage response (DDR). ATR kinase is a critical regulator of this pathway, and its inhibition has been shown to sensitize some cancer, but not normal, cells in vitro to DNA damaging agents. However, there are limited in vivo proof-of-concept data for ATR inhibition. To address this w...

  15. The dynamic behavior of Ect2 in response to DNA damage

    OpenAIRE

    Dan He; Jinnan Xiang; Baojie Li; Huijuan Liu

    2016-01-01

    Ect2 is a BRCT-containing guanidine exchange factor for Rho GTPases. It is essential for cytokinesis and is also involved in tumorigenesis. Since most BRCT-containing proteins are involved in DNA damage response and/or DNA repair, we tested whether Ect2 plays similar roles. We report that in primary mouse embryonic fibroblasts (MEFs), DNA damage quickly led to Ect2 relocalization to the chromatin and DNA damage foci-like structures. Ect2 knockdown did not affect foci localization of γH2AX, To...

  16. HAUSP-nucleolin interaction is regulated by p53-Mdm2 complex in response to DNA damage response.

    Science.gov (United States)

    Lim, Key-Hwan; Park, Jang-Joon; Gu, Bon-Hee; Kim, Jin-Ock; Park, Sang Gyu; Baek, Kwang-Hyun

    2015-01-01

    HAUSP (herpes virus-associated ubiquitin specific protease, known as ubiquitin specific protease 7), one of DUBs, regulates the dynamics of the p53 and Mdm2 network in response to DNA damage by deubiquitinating both p53 and its E3 ubiquitin ligase, Mdm2. Its concerted action increases the level of functional p53 by preventing proteasome-dependent degradation of p53. However, the protein substrates that are targeted by HAUSP to mediate DNA damage responses in the context of the HAUSP-p53-Mdm2 complex are not fully identified. Here, we identified nucleolin as a new substrate for HAUSP by proteomic analysis. Nucleolin has two HAUSP binding sites in its N- and C-terminal regions, and the mutation of HAUSP interacting peptides on nucleolin disrupts their interaction and it leads to the increased level of nucleolin ubiquitination. In addition, HAUSP regulates the stability of nucleolin by removing ubiquitin from nucleolin. Nucleolin exists as a component of the HAUSP-p53-Mdm2 complex, and both Mdm2 and p53 are required for the interaction between HAUSP and nucleolin. Importantly, the irradiation increases the HAUSP-nucleolin interaction, leading to nucleolin stabilization significantly. Taken together, this study reveals a new component of the HAUSP-p53-Mdm2 complex that governs dynamic cellular responses to DNA damage. PMID:26238070

  17. Correlations between cellular resistance to ionizing radiation and other DNA-damaging agents: Patterns of interaction with DFMO

    International Nuclear Information System (INIS)

    The authors evaluated a number of antitumor agents to determine the extent to which cytotoxic responses to these agents correlate with those of x-rays and PUVA. As part of this determination, the authors measured the effect of depletion of cellular levels of polyamines by DFMO on the survival patterns in V79 cells. These studies indicate several agents are cosensitive with x-rays and PUVA in that cell survival is markedly decreased in DFMO treated cells: cis-platinum, nitrogen mustard, mitomycin-C and 4 hydroxycyclophosphamide. The authors data taken in toto suggest common factors in the cytotoxic response of mammalian cells to most DNA-damaging agents whose initial level of damage can be modulated by higher-order chromatin structure

  18. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response.

    Science.gov (United States)

    Poulsen, Sara L; Hansen, Rebecca K; Wagner, Sebastian A; van Cuijk, Loes; van Belle, Gijsbert J; Streicher, Werner; Wikström, Mats; Choudhary, Chunaram; Houtsmuller, Adriaan B; Marteijn, Jurgen A; Bekker-Jensen, Simon; Mailand, Niels

    2013-06-10

    Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs), promoting their K48-linked ubiquitylation and degradation. Only a single mammalian STUbL, RNF4, has been identified. We show that human RNF111/Arkadia is a new STUbL, which used three adjacent SIMs for specific recognition of poly-SUMO2/3 chains, and used Ubc13-Mms2 as a cognate E2 enzyme to promote nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV)-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response. PMID:23751493

  19. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    Science.gov (United States)

    Renis, M.; Borghesi, M.; Favetta, M.; Malfa, G.; Manti, L.; Romano, F.; Schettino, G.; Tomasello, B.; Cirrone, G. A. P.

    2013-07-01

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/μm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately

  20. DDB2 (Damaged DNA binding protein 2) in nucleotide excision repair and DNA damage response

    OpenAIRE

    Stoyanova, Tanya; Roy, Nilotpal; Kopanja, Dragana; Raychaudhuri, Pradip; Bagchi, Srilata

    2009-01-01

    DDB2 was identified as a protein involved in the Nucleotide Excision Repair (NER), a major DNA repair mechanism that repairs UV damage to prevent accumulation of mutations and tumorigenesis. However, recent studies indicated additional functions of DDB2 in the DNA damage response pathway. Herein, we discuss the proposed mechanisms by which DDB2 activates NER and programmed cell death upon DNA damage through its E3 ligase activity.

  1. Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair

    OpenAIRE

    Chou, Wen-Cheng; Wang, Hui-Chun; Wong, Fen-Hwa; Ding, Shian-ling; Wu, Pei-Ei; Shieh, Sheau-Yann; Shen, Chen-Yang

    2008-01-01

    The DNA damage response (DDR) has an essential function in maintaining genomic stability. Ataxia telangiectasia-mutated (ATM)-checkpoint kinase 2 (Chk2) and ATM- and Rad3-related (ATR)-Chk1, triggered, respectively, by DNA double-strand breaks and blocked replication forks, are two major DDRs processing structurally complicated DNA damage. In contrast, damage repaired by base excision repair (BER) is structurally simple, but whether, and how, the DDR is involved in repairing this damage is un...

  2. S1P lyase regulates DNA damage responses through a novel sphingolipid feedback mechanism

    OpenAIRE

    Kumar, A.; Oskouian, B; Fyrst, H; Zhang, M.; Paris, F; Saba, J D

    2011-01-01

    The injurious consequences of ionizing radiation (IR) to normal human cells and the acquired radioresistance of cancer cells represent limitations to cancer radiotherapy. IR induces DNA damage response pathways that orchestrate cell cycle arrest, DNA repair or apoptosis such that irradiated cells are either repaired or eliminated. Concomitantly and independent of DNA damage, IR activates acid sphingomyelinase (ASMase), which generates ceramide, thereby promoting radiation-induced apoptosis. H...

  3. The role of SOG1, a plant-specific transcriptional regulator, in the DNA damage response

    OpenAIRE

    Yoshiyama, Kaoru O.; Kimura, Seisuke; Maki, Hisaji; Britt, Anne B.; Umeda, Masaaki

    2014-01-01

    Plants are inescapably exposed to environmental stress because of their sessile lifestyle. Such stress induces the production of reactive oxygen species (ROS), which are in turn a source of genotoxic stress. ROS are also generated intrinsically during photosynthesis in the chloroplasts. Furthermore, plants are affected by the UV component of sunlight, which damages their genomes. To protect their genomic integrity from DNA damage, plants activate a DNA damage response (DDR) system that regula...

  4. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    Directory of Open Access Journals (Sweden)

    Naoto Tatewaki

    Full Text Available Ataxia telangiectasia mutated (ATM kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR. The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15 and Chk1 (Ser317 was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.

  5. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    Science.gov (United States)

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression. PMID:26824362

  6. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response

    DEFF Research Database (Denmark)

    Xing, Meichun; Wang, Xiaohui; Palmai-Pallag, Timea;

    2015-01-01

    The MUS81 protein belongs to a conserved family of DNA structure-specific nucleases that play important roles in DNA replication and repair. Inactivation of the Mus81 gene in mice has no major deleterious consequences for embryonic development, although cancer susceptibility has been reported. We...... have investigated the role of MUS81 in human cells by acutely depleting the protein using shRNAs. We found that MUS81 depletion from human fibroblasts leads to accumulation of ssDNA and a constitutive DNA damage response that ultimately activates cellular senescence. Moreover, we show that MUS81 is...... required for efficient replication fork progression during an unperturbed S-phase, and for recovery of productive replication following replication stalling. These results demonstrate essential roles for the MUS81 nuclease in maintenance of replication fork integrity....

  7. Response to DNA damage: why do we need to focus on protein phosphatases?

    Directory of Open Access Journals (Sweden)

    MidoriShimada

    2013-01-01

    Full Text Available Eukaryotic cells are continuously threatened by unavoidable errors during normal DNA replication or various sources of genotoxic stresses that cause DNA damage or stalled replication. To maintain genomic integrity, cells have developed a coordinated signaling network, known as the DNA damage response (DDR. Following DNA damage, sensor molecules detect the presence of DNA damage and transmit signals to downstream transducer molecules. This in turn conveys the signals to numerous effectors, which initiate a large number of specific biological responses, including transient cell cycle arrest mediated by checkpoints, DNA repair, and apoptosis. It is recently becoming clear that dephosphorylation events are involved in keeping DDR factors inactive during normal cell growth. Moreover, dephosphorylation is required to shut off checkpoint arrest following DNA damage and has been implicated in the activation of the DDR. Spatial and temporal regulation of phosphorylation events is essential for the DDR, and fine-tuning of phosphorylation is partly mediated by protein phosphatases. While the role of kinases in the DDR has been well documented, the complex roles of protein dephosphorylation have only recently begun to be investigated. Therefore, it is important to focus on the role of phosphatases and to determine how their activity is regulated upon DNA damage. In this work, we summarize current knowledge on the involvement of serine/threonine phosphatases, especially the protein phosphatase 1, protein phosphatase 2A, and protein phosphatase Mg2+/Mn2+-dependent families, in the DDR.

  8. DNA damage response during mitosis induces whole chromosome mis-segregation

    Science.gov (United States)

    Bakhoum, Samuel F.; Kabeche, Lilian; Murnane, John P.; Zaki, Bassem I.; Compton, Duane A.

    2014-01-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here we show that activation of the DNA damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and Plk1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or Chk2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, DDR during mitosis inappropriately stabilizes k-MTs creating a link between s-CIN and w-CIN. PMID:25107667

  9. Ubiquitin-specific Peptidase 10 (USP10) Deubiquitinates and Stabilizes MutS Homolog 2 (MSH2) to Regulate Cellular Sensitivity to DNA Damage.

    Science.gov (United States)

    Zhang, Mu; Hu, Chen; Tong, Dan; Xiang, Shengyan; Williams, Kendra; Bai, Wenlong; Li, Guo-Min; Bepler, Gerold; Zhang, Xiaohong

    2016-05-13

    MSH2 is a key DNA mismatch repair protein, which plays an important role in genomic stability. In addition to its DNA repair function, MSH2 serves as a sensor for DNA base analogs-provoked DNA replication errors and binds to various DNA damage-induced adducts to trigger cell cycle arrest or apoptosis. Loss or depletion of MSH2 from cells renders resistance to certain DNA-damaging agents. Therefore, the level of MSH2 determines DNA damage response. Previous studies showed that the level of MSH2 protein is modulated by the ubiquitin-proteasome pathway, and histone deacetylase 6 (HDAC6) serves as an ubiquitin E3 ligase. However, the deubiquitinating enzymes, which regulate MSH2 remain unknown. Here we report that ubiquitin-specific peptidase 10 (USP10) interacts with and stabilizes MSH2. USP10 deubiquitinates MSH2 in vitro and in vivo Moreover, the protein level of MSH2 is positively correlated with the USP10 protein level in a panel of lung cancer cell lines. Knockdown of USP10 in lung cancer cells exhibits increased cell survival and decreased apoptosis upon the treatment of DNA-methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and antimetabolite 6-thioguanine (6-TG). The above phenotypes can be rescued by ectopic expression of MSH2. In addition, knockdown of MSH2 decreases the cellular mismatch repair activity. Overall, our results suggest a novel USP10-MSH2 pathway regulating DNA damage response and DNA mismatch repair. PMID:26975374

  10. A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen species-dependent DNA damage responses

    Energy Technology Data Exchange (ETDEWEB)

    Preta, Giulio; Klark, Rainier de [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden); Glas, Rickard, E-mail: rickard.glas@ki.se [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden)

    2009-11-27

    Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to {gamma}-irradiation, and that nuclear expression of TPPII was present in most {gamma}-irradiated transformed cell lines. We used a panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after {gamma}-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following {gamma}-irradiation (at 1-4 h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in {gamma}-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.

  11. A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen species-dependent DNA damage responses

    International Nuclear Information System (INIS)

    Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to γ-irradiation, and that nuclear expression of TPPII was present in most γ-irradiated transformed cell lines. We used a panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after γ-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following γ-irradiation (at 1-4 h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in γ-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.

  12. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  13. Activation of a DNA damage checkpoint response in a TAF1-defective cell line.

    Science.gov (United States)

    Buchmann, Ann M; Skaar, Jeffrey R; DeCaprio, James A

    2004-06-01

    Although the link between transcription and DNA repair is well established, defects in the core transcriptional complex itself have not been shown to elicit a DNA damage response. Here we show that a cell line with a temperature-sensitive defect in TBP-associated factor 1 (TAF1), a component of the TFIID general transcription complex, exhibits hallmarks of an ATR-mediated DNA damage response. Upon inactivation of TAF1, ATR rapidly localized to subnuclear foci and contributed to the phosphorylation of several downstream targets, including p53 and Chk1, resulting in cell cycle arrest. The increase in p53 expression and the G(1) phase arrest could be blocked by caffeine, an inhibitor of ATR. In addition, dominant negative forms of ATR but not ATM were able to override the arrest in G(1). These results suggest that a defect in TAF1 can elicit a DNA damage response. PMID:15169897

  14. Real Estate in the DNA Damage Response: Ubiquitin and SUMO Ligases Home in on DNA Double-Strand Breaks.

    Science.gov (United States)

    Dantuma, Nico P; Pfeiffer, Annika

    2016-01-01

    Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process. PMID:27148355

  15. Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling

    DEFF Research Database (Denmark)

    Airik, Rannar; Slaats, Gisela G; Guo, Zhi;

    2014-01-01

    Nephronophthisis-related ciliopathies (NPHP-RCs) are developmental and degenerative kidney diseases that are frequently associated with extrarenal pathologies such as retinal degeneration, obesity, and intellectual disability. We recently identified mutations in a gene encoding the centrosomal...... kidneys. Instead, renal pathology was associated with elevated levels of DNA damage response signaling activity. Cell culture studies confirmed the aberrant activation of DNA damage response in Sdccag8(gt/gt)-derived cells, characterized by elevated levels of γH2AX and phosphorylated ATM and cell cycle...

  16. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response

    DEFF Research Database (Denmark)

    Poulsen, Sara L; Hansen, Rebecca K; Wagner, Sebastian A;

    2013-01-01

    )-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response....... nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV...

  17. Ciliogenesis and the DNA damage response: a stressful relationship

    OpenAIRE

    Johnson, Colin A.; Collis, Spencer J.

    2016-01-01

    Both inherited and sporadic mutations can give rise to a plethora of human diseases. Through myriad diverse cellular processes, sporadic mutations can arise through a failure to accurately replicate the genetic code or by inaccurate separation of duplicated chromosomes into daughter cells. The human genome has therefore evolved to encode a large number of proteins that work together with regulators of the cell cycle to ensure that it remains error-free. This is collectively known as the DNA d...

  18. Cellular and molecular mechanistic insight into the DNA-damaging potential of few-layer graphene in human primary endothelial cells.

    Science.gov (United States)

    Sasidharan, Abhilash; Swaroop, Siddharth; Chandran, Parwathy; Nair, Shantikumar; Koyakutty, Manzoor

    2016-07-01

    Despite graphene being proposed for a multitude of biomedical applications, there is a dearth in the fundamental cellular and molecular level understanding of how few-layer graphene (FLG) interacts with human primary cells. Herein, using human primary umbilical vein endothelial cells as model of vascular transport, we investigated the basic mechanism underlying the biological behavior of graphene. Mechanistic toxicity studies using a battery of cell based assays revealed an organized oxidative stress paradigm involving cytosolic reactive oxygen stress, mitochondrial superoxide generation, lipid peroxidation, glutathione oxidation, mitochondrial membrane depolarization, enhanced calcium efflux, all leading to cell death by apoptosis/necrosis. We further investigated the effect of graphene interactions using cDNA microarray analysis and identified potential adverse effects by down regulating key genes involved in DNA damage response and repair mechanisms. Single cell gel electrophoresis assay/Comet assay confirmed the DNA damaging potential of graphene towards human primary cells. PMID:26970024

  19. The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage

    DEFF Research Database (Denmark)

    Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A; Gwerder, Myriam; Gutsche, Katrin; Altmeyer, Matthias; Jungmichel, Stephanie; Toledo Lazaro, Luis Ignacio; Fink, Daniel; Rask, Maj-Britt; Grøfte, Merete; Lukas, Claudia; Nielsen, Michael L; Smerdon, Stephen J; Lukas, Jiri; Stucki, Manuel

    2014-01-01

    Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recrui...

  20. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis

    DEFF Research Database (Denmark)

    Evangelou, K.; Bartkova, J.; Kotsinas, A.;

    2013-01-01

    Oncogenic stimuli trigger the DNA damage response (DDR) and induction of the alternative reading frame (ARF) tumor suppressor, both of which can activate the p53 pathway and provide intrinsic barriers to tumor progression. However, the respective timeframes and signal thresholds for ARF induction...

  1. Polo-like kinase 1 inhibits DNA damage response during mitosis

    Czech Academy of Sciences Publication Activity Database

    Benada, Jan; Burdová, Kamila; Liďák, Tomáš; von Morgen, Patrick; Macůrek, Libor

    2015-01-01

    Roč. 14, č. 2 (2015), s. 219-231. ISSN 1538-4101 R&D Projects: GA ČR GAP305/12/2485; GA MŠk LO1220 Institutional support: RVO:68378050 Keywords : 53BP1 * DNA damage response * Polo like kinase 1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.565, year: 2014

  2. Predicted Role of NAD Utilization in the Control of Circadian Rhythms during DNA Damage Response.

    Directory of Open Access Journals (Sweden)

    Augustin Luna

    2015-05-01

    Full Text Available The circadian clock is a set of regulatory steps that oscillate with a period of approximately 24 hours influencing many biological processes. These oscillations are robust to external stresses, and in the case of genotoxic stress (i.e. DNA damage, the circadian clock responds through phase shifting with primarily phase advancements. The effect of DNA damage on the circadian clock and the mechanism through which this effect operates remains to be thoroughly investigated. Here we build an in silico model to examine damage-induced circadian phase shifts by investigating a possible mechanism linking circadian rhythms to metabolism. The proposed model involves two DNA damage response proteins, SIRT1 and PARP1, that are each consumers of nicotinamide adenine dinucleotide (NAD, a metabolite involved in oxidation-reduction reactions and in ATP synthesis. This model builds on two key findings: 1 that SIRT1 (a protein deacetylase is involved in both the positive (i.e. transcriptional activation and negative (i.e. transcriptional repression arms of the circadian regulation and 2 that PARP1 is a major consumer of NAD during the DNA damage response. In our simulations, we observe that increased PARP1 activity may be able to trigger SIRT1-induced circadian phase advancements by decreasing SIRT1 activity through competition for NAD supplies. We show how this competitive inhibition may operate through protein acetylation in conjunction with phosphorylation, consistent with reported observations. These findings suggest a possible mechanism through which multiple perturbations, each dominant during different points of the circadian cycle, may result in the phase advancement of the circadian clock seen during DNA damage.

  3. Distinct Initiation and Maintenance Mechanisms Cooperate to Induce G1 Cell Cycle Arrest in Response to DNA Damage

    NARCIS (Netherlands)

    Agami, R.; Bernards, R.A.

    2000-01-01

    DNA damage causes stabilization of p53, leading to G1 arrest through induction of p21cip1. As this process requires transcription, several hours are needed to exert this response. We show that DNA damage causes an immediate and p53-independent G1 arrest, caused by rapid proteolysis of cyclin D1. Deg

  4. Translational Control Protein 80 Stimulates IRES-Mediated Translation of p53 mRNA in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    2015-01-01

    Full Text Available Synthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES that is located at the 5′-untranslated region (UTR of p53 mRNA and found that the IRES activity increases following DNA damage. However, the mechanism underlying IRES-mediated p53 translation in response to DNA damage is still poorly understood. In this study, we discovered that translational control protein 80 (TCP80 has increased binding to the p53 mRNA in vivo following DNA damage. Overexpression of TCP80 also leads to increased p53 IRES activity in response to DNA damage. TCP80 has increased association with RNA helicase A (RHA following DNA damage and overexpression of TCP80, along with RHA, leads to enhanced expression of p53. Moreover, we found that MCF-7 breast cancer cells with decreased expression of TCP80 and RHA exhibit defective p53 induction following DNA damage and diminished expression of its downstream target PUMA, a proapoptotic protein. Taken together, our discovery of the function of TCP80 and RHA in regulating p53 IRES and p53 induction following DNA damage provides a better understanding of the mechanisms that regulate IRES-mediated p53 translation in response to genotoxic stress.

  5. Exposure to environmental polycyclic aromatic hydrocarbons: Influences on cellular susceptibility to DNA damage (sampling Kosice and Sofia)

    International Nuclear Information System (INIS)

    The aim of this study was to investigate a possible influence of occupational exposure to carcinogenic environmental polycyclic aromatic hydrocarbons (c-PAHs) on cellular susceptibility to the induction of the DNA damage. Monitoring was performed and blood samples were collected from two groups of male subjects: occupationally exposed and matched controls. The group exposed to c-PAHs (average age of 35.1 years) consisted of 52 policemen from Kosice and 26 policemen and 25 bus drivers (51 altogether) from Sofia. The control group (average age of 36.4 years) consisted of 54 unexposed subjects from Kosice and 24 from Sofia. In the investigated groups 52.5% of exposed subjects and 45.3% of control were current smokers. A challenging dose of X-rays (3 Gy) and an alkaline version of the single cell gel electrophoresis (SCGE) assay, known as Comet assay, were used to evaluate levels of induced DNA damage and repair kinetics in isolated human blood lymphocytes. DNA damage detected in lymphocytes prior to or after irradiation did not differ significantly between exposed and unexposed subjects. A significant decrease in repair efficiency due to exposure to PAHs was observed in the exposed individuals from Kosice and Sofia, when analysed separately or together. A negative influence of tobacco smoking on the efficiency of DNA repair was observed. Statistically significant differences were found between subgroups stratified according to education level in Sofia: the half times for DNA repair declined with the increasing level of education. These results confirm that environmental exposure to c-PAHs can alter the ability of blood lymphocytes to repair DNA damage and, as a result could potentially lead to effects that are hazardous to human health

  6. Interaction between ATM protein and c-Abl in response to DNA damage

    International Nuclear Information System (INIS)

    The gene mutated in the autosomal recessive disorder ataxia telangiectasia (AT), designated ATM (for 'AT mutated'), is a member of a family of phosphatidylinositol-3-kinase-like enzymes that are involved in cell-cycle control, meiotic recombination, telomere length monitoring and DNA-damage response. Previous results have demonstrated that AT cells are hypersensitive to ionizing radiation and are defective at the G1/S checkpoint after radiation damage. Because cells lacking the protein tyrosine kinase c-Abl are also defective in radiation-induced G1 arrest, we investigated the possibility that ATM might interact with c-Abl in response to radiation damage. These findings indicate that ATM is involved in the activation of c-Abl by DNA damage and this interaction may in part mediate radiation-induced G1 arrest. (author)

  7. Protein kinase Cη activates NF-κB in response to camptothecin-induced DNA damage

    International Nuclear Information System (INIS)

    Highlights: → Protein kinase C-eta (PKCη) is an upstream regulator of the NF-κB signaling pathway. → PKCη activates NF-κB in non-stressed conditions and in response to DNA damage. → PKCη regulates NF-κB by activating IκB kinase (IKK) and inducing IκB degradation. -- Abstract: The nuclear factor κB (NF-κB) family of transcription factors participates in the regulation of genes involved in innate- and adaptive-immune responses, cell death and inflammation. The involvement of the Protein kinase C (PKC) family in the regulation of NF-κB in inflammation and immune-related signaling has been extensively studied. However, not much is known on the role of PKC in NF-κB regulation in response to DNA damage. Here we demonstrate for the first time that PKC-eta (PKCη) regulates NF-κB upstream signaling by activating the IκB kinase (IKK) and the degradation of IκB. Furthermore, PKCη enhances the nuclear translocation and transactivation of NF-κB under non-stressed conditions and in response to the anticancer drug camptothecin. We and others have previously shown that PKCη confers protection against DNA damage-induced apoptosis. Our present study suggests that PKCη is involved in NF-κB signaling leading to drug resistance.

  8. ZNF281 contributes to the DNA damage response by controlling the expression of XRCC2 and XRCC4.

    Science.gov (United States)

    Pieraccioli, M; Nicolai, S; Antonov, A; Somers, J; Malewicz, M; Melino, G; Raschellà, G

    2016-05-19

    ZNF281 is a zinc-finger factor involved in the control of cellular stemness and epithelial-mesenchymal transition (EMT). Here, we report that ZNF281 expression increased after genotoxic stress caused by DNA-damaging drugs. Comet assays demonstrated that DNA repair was delayed in cells silenced for the expression of ZNF281 and treated with etoposide. Furthermore, the expression of 10 DNA damage response genes was downregulated in cells treated with etoposide and silenced for ZNF281. In line with this finding, XRCC2 and XRCC4, two genes that take part in homologous recombination and non-homologous end joining, respectively, were transcriptionally activated by ZNF281 through a DNA-binding-dependent mechanism, as demonstrated by luciferase assays and Chromatin crosslinking ImmunoPrecipitation experiments. c-Myc, which also binds to the promoters of XRCC2 and XRCC4, was unable to promote their transcription or to modify ZNF281 activity. Of interest, bioinformatic analysis of 1971 breast cancer patients disclosed a significant correlation between the expression of ZNF281 and that of XRCC2. In summary, our data highlight, for the first time, the involvement of ZNF281 in the cellular response to genotoxic stress through the control exercised on the expression of genes that act in different repair mechanisms. PMID:26300006

  9. P17.17INHIBITION OF DNA DAMAGE RESPONSE ABROGATES GLIOBLASTOMA CANCER STEM CELL RADIORESISTANCE

    OpenAIRE

    Carruthers, R.; Ahmed, S.; Chalmers, A. J.

    2014-01-01

    GBM recurrence following radiotherapy is due to a subset of tumour propagating cells with stem like characteristics (cancer stem cells, CSC). CSCs have the ability to recapitulate the tumour of origin whereas the majority of tumour cells (tumour bulk) do not. CSCs in GBM have been reported to exhibit an upregulated DNA damage response (DDR) and a radioresistant phenotype. However, literature and opinion regarding GBM CSC radiosensitivity is conflicting. The prospect of influencing GBM CSC rad...

  10. Phosphorylation-Dependent Regulation of the DNA Damage Response of Adaptor Protein KIBRA in Cancer Cells.

    Science.gov (United States)

    Mavuluri, Jayadev; Beesetti, Swarnalatha; Surabhi, Rohan; Kremerskothen, Joachim; Venkatraman, Ganesh; Rayala, Suresh K

    2016-05-01

    Multifunctional adaptor proteins encompassing various protein-protein interaction domains play a central role in the DNA damage response pathway. In this report, we show that KIBRA is a physiologically interacting reversible substrate of ataxia telangiectasia mutated (ATM) kinase. We identified the site of phosphorylation in KIBRA as threonine 1006, which is embedded within the serine/threonine (S/T) Q consensus motif, by site-directed mutagenesis, and we further confirmed the same with a phospho-(S/T) Q motif-specific antibody. Results from DNA repair functional assays such as the γ-H2AX assay, pulsed-field gel electrophoresis (PFGE), Comet assay, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and clonogenic cell survival assay using stable overexpression clones of wild-type (wt.) KIBRA and active (T1006E) and inactive (T1006A) KIBRA phosphorylation mutants showed that T1006 phosphorylation on KIBRA is essential for optimal DNA double-strand break repair in cancer cells. Further, results from stable retroviral short hairpin RNA-mediated knockdown (KD) clones of KIBRA and KIBRA knockout (KO) model cells generated by a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that depleting KIBRA levels compromised the DNA repair functions in cancer cells upon inducing DNA damage. All these phenotypic events were reversed upon reconstitution of KIBRA into cells lacking KIBRA knock-in (KI) model cells. All these results point to the fact that phosphorylated KIBRA might be functioning as a scaffolding protein/adaptor protein facilitating the platform for further recruitment of other DNA damage response factors. In summary, these data demonstrate the imperative functional role of KIBRAper se(KIBRA phosphorylation at T1006 site as a molecular switch that regulates the DNA damage response, possibly via the nonhomologous end joining [NHEJ] pathway), suggesting that KIBRA could be a potential

  11. Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage.

    Science.gov (United States)

    Gibbs-Seymour, Ian; Oka, Yasuyoshi; Rajendra, Eeson; Weinert, Brian T; Passmore, Lori A; Patel, Ketan J; Olsen, Jesper V; Choudhary, Chunaram; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase core complex, and the SUMO E3 ligases PIAS1/PIAS4 and is antagonized by the SUMO protease SENP6. SUMOylation of the ID complex drives substrate selectivity by triggering its polyubiquitylation by the SUMO-targeted ubiquitin ligase RNF4 to promote its removal from sites of DNA damage via the DVC1-p97 ubiquitin segregase complex. Deregulation of ID complex SUMOylation compromises cell survival following replication stress. Our results uncover a regulatory role for SUMOylation in the FA pathway, and we propose that ubiquitin-SUMO signaling circuitry is a mechanism that contributes to the balance of activated ID complex dosage at sites of DNA damage. PMID:25557546

  12. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells

    International Nuclear Information System (INIS)

    Silver nanoparticles (Ag NPs) have recently received much attention for their possible applications in biotechnology and life sciences. Ag NPs are of interest to defense and engineering programs for new material applications as well as for commercial purposes as an antimicrobial. However, little is known about the genotoxicity of Ag NPs following exposure to mammalian cells. This study was undertaken to examine the DNA damage response to polysaccharide surface functionalized (coated) and non-functionalized (uncoated) Ag NPs in two types of mammalian cells; mouse embryonic stem (mES) cells and mouse embryonic fibroblasts (MEF). Both types of Ag NPs up-regulated the cell cycle checkpoint protein p53 and DNA damage repair proteins Rad51 and phosphorylated-H2AX expression. Furthermore both of them induced cell death as measured by the annexin V protein expression and MTT assay. Our observations also suggested that the different surface chemistry of Ag NPs induce different DNA damage response: coated Ag NPs exhibited more severe damage than uncoated Ag NPs. The results suggest that polysaccharide coated particles are more individually distributed while agglomeration of the uncoated particles limits the surface area availability and access to membrane bound organelles

  13. Checkpoint Kinases Regulate a Global Network of Transcription Factors in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Eric J. Jaehnig

    2013-07-01

    Full Text Available DNA damage activates checkpoint kinases that induce several downstream events, including widespread changes in transcription. However, the specific connections between the checkpoint kinases and downstream transcription factors (TFs are not well understood. Here, we integrate kinase mutant expression profiles, transcriptional regulatory interactions, and phosphoproteomics to map kinases and downstream TFs to transcriptional regulatory networks. Specifically, we investigate the role of the Saccharomyces cerevisiae checkpoint kinases (Mec1, Tel1, Chk1, Rad53, and Dun1 in the transcriptional response to DNA damage caused by methyl methanesulfonate. The result is a global kinase-TF regulatory network in which Mec1 and Tel1 signal through Rad53 to synergistically regulate the expression of more than 600 genes. This network involves at least nine TFs, many of which have Rad53-dependent phosphorylation sites, as regulators of checkpoint-kinase-dependent genes. We also identify a major DNA damage-induced transcriptional network that regulates stress response genes independently of the checkpoint kinases.

  14. DBC1 phosphorylation by ATM/ATR inhibits SIRT1 deacetylase in response to DNA damage

    Institute of Scientific and Technical Information of China (English)

    Laura Zannini; Giacomo Buscemi; Ja-Eun Kim; Enrico Fontanella; Domenico Delia

    2012-01-01

    Human DBC1 (deleted in breast cancer-1; KIAA1967) is a nuclear protein that,in response to DNA damage,competitively inhibits the NAD+-dependent deacetylase SIRT1,a regulator of p53 apoptotic functions in response to genotoxic stress.DBC1 depletion in human cells increases SIRT1 activity,resulting in the deacetylation of p53 and protection from apoptosis.However,the mechanisms regulating this process have not yet been determined.Here,we report that,in human cell lines,DNA damage triggered the phosphorylation of DBC1 on Thr454 by ATM (ataxia telangiectasia-mutated) and ATR (ataxia telangiectasia and Rad3-related)kinases.Phosphorylated DBC1 bound to and inhibited SIRT1,resulting in the dissociation of the SIRT1-p53 complex and stimulating p53 acetylation and p53-dependent cell death.Indeed,DBC1-mediated genotoxicity,which was shown in knockdown experiments to be dependent on SIRT1 and p53 expression,was defective in cells expressing the phospho-mutant DBC1T454A.This study describes the first post-translational modification of DBC1 and provides new mechanistic insight linking ATM/ATR to the DBC1-SIRT1-p53 apoptotic axis triggered by DNA damage.

  15. DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity.

    Directory of Open Access Journals (Sweden)

    Katherine S Lawrence

    2015-04-01

    Full Text Available Errors in replication or segregation lead to DNA damage, mutations, and aneuploidies. Consequently, cells monitor these events and delay progression through the cell cycle so repair precedes division. The DNA damage response (DDR, which monitors DNA integrity, and the spindle assembly checkpoint (SAC, which responds to defects in spindle attachment/tension during metaphase of mitosis and meiosis, are critical for preventing genome instability. Here we show that the DDR and SAC function together throughout the cell cycle to ensure genome integrity in C. elegans germ cells. Metaphase defects result in enrichment of SAC and DDR components to chromatin, and both SAC and DDR are required for metaphase delays. During persistent metaphase arrest following establishment of bi-oriented chromosomes, stability of the metaphase plate is compromised in the absence of DDR kinases ATR or CHK1 or SAC components, MAD1/MAD2, suggesting SAC functions in metaphase beyond its interactions with APC activator CDC20. In response to DNA damage, MAD2 and the histone variant CENPA become enriched at the nuclear periphery in a DDR-dependent manner. Further, depletion of either MAD1 or CENPA results in loss of peripherally associated damaged DNA. In contrast to a SAC-insensitive CDC20 mutant, germ cells deficient for SAC or CENPA cannot efficiently repair DNA damage, suggesting that SAC mediates DNA repair through CENPA interactions with the nuclear periphery. We also show that replication perturbations result in relocalization of MAD1/MAD2 in human cells, suggesting that the role of SAC in DNA repair is conserved.

  16. FBXL5-mediated degradation of single-stranded DNA-binding protein hSSB1 controls DNA damage response.

    Science.gov (United States)

    Chen, Zhi-Wei; Liu, Bin; Tang, Nai-Wang; Xu, Yun-Hua; Ye, Xiang-Yun; Li, Zi-Ming; Niu, Xiao-Min; Shen, Sheng-Ping; Lu, Shun; Xu, Ling

    2014-10-01

    Human single-strand (ss) DNA binding proteins 1 (hSSB1) has been shown to participate in DNA damage response and maintenance of genome stability by regulating the initiation of ATM-dependent signaling. ATM phosphorylates hSSB1 and prevents hSSB1 from ubiquitin-proteasome-mediated degradation. However, the E3 ligase that targets hSSB1 for destruction is still unknown. Here, we report that hSSB1 is the bona fide substrate for an Fbxl5-containing SCF (Skp1-Cul1-F box) E3 ligase. Fbxl5 interacts with and targets hSSB1 for ubiquitination and degradation, which could be prevented by ATM-mediated hSSB1 T117 phosphorylation. Furthermore, cells overexpression of Fbxl5 abrogated the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets and exhibited increased radiosensitivity, chemosensitivity and defective checkpoint activation after genotoxic stress stimuli. Moreover, the protein levels of hSSB1 and Fbxl5 showed an inverse correlation in lung cancer cells lines and clinical lung cancer samples. Therefore, Fbxl5 may negatively modulate hSSB1 to regulate DNA damage response, implicating Fbxl5 as a novel, promising therapeutic target for lung cancers. PMID:25249620

  17. Maximiscin Induces DNA Damage, Activates DNA Damage Response Pathways, and Has Selective Cytotoxic Activity against a Subtype of Triple-Negative Breast Cancer.

    Science.gov (United States)

    Robles, Andrew J; Du, Lin; Cichewicz, Robert H; Mooberry, Susan L

    2016-07-22

    Triple-negative breast cancers are highly aggressive, and patients with these types of tumors have poor long-term survival. These breast cancers do not express estrogen or progesterone receptors and do not have gene amplification of human epidermal growth factor receptor 2; therefore, they do not respond to available targeted therapies. The lack of targeted therapies for triple-negative breast cancers stems from their heterogeneous nature and lack of a clear definition of driver defects. Studies have recently identified triple-negative breast cancer molecular subtypes based on gene expression profiling and representative cell lines, allowing for the identification of subtype-specific drug leads and molecular targets. We previously reported the identification of a new fungal metabolite named maximiscin (1) identified through a crowdsourcing program. New results show that 1 has selective cytotoxic efficacy against basal-like 1 MDA-MB-468 cells compared to cell lines modeling other triple-negative breast cancer molecular subtypes. This compound also exhibited antitumor efficacy in a xenograft mouse model. The mechanisms of action of 1 in MDA-MB-468 cells were investigated to identify potential molecular targets and affected pathways. Compound 1 caused accumulation of cells in the G1 phase of the cell cycle, suggesting induction of DNA damage. Indeed, treatment with 1 caused DNA double-strand breaks with concomitant activation of the DNA damage response pathways, indicated by phosphorylation of p53, Chk1, and Chk2. Collectively, these results suggest basal-like triple-negative breast cancer may be inherently sensitive to DNA-damaging agents relative to other triple-negative breast cancer subtypes. These results also demonstrate the potential of our citizen crowdsourcing program to identify new lead molecules for treating the subtypes of triple-negative breast cancer. PMID:27310425

  18. Microgravity increases DNA damage response in Caenorhabditis elegans during Shenzhou-8 spaceflight

    Science.gov (United States)

    Gao, Ying; Sun, Yeqing; Xu, Dan; Zhao, Lei; Xu, Jiamin

    DNA damage response (DDR) plays an important role in genome maintenance through cell cycle arrest followed by DNA repair and/or apoptosis. Perturbing DDR may elicit genomic instability, carcinogenesis, even cell death. Space radiation and microgravity both have been reported to cause DDR in mammal cells,while, in the space environment, the interaction of space radiation and microgravity on DDR is still controversial. To clarify the interaction, dauer larva of Caenorhabditis elegans were employed in Shenzhou-8 space mission and suffered space synthetic environment (RM) and space radiation (R) during 16.5-day spaceflight. mRNA microarray, qPCR and miRNA microarray were performed individually to detect the differences of transcriptome and microRNome affected by two environments. The results showed that, two fold genes were regulated more significantly by RM than by R. These regulated genes were involved in different physiological activities from each environment, which mainly involve in protein metabolic and modification processes in RM, and energy metabolic process in R. 21 of 500 DDR genes were extracted as significantly different expression in two space environments. DNA repair and apoptosis were enhanced by microgravity, since 18 of 21 genes were altered by RM specifically, including six “Response to DNA damage stimulus” genes, four “DNA repair” genes and eight “apoptosis process” genes. miRNAome also showed changes in response to microgravity. miRNA-81, 82, 124 and 795 were predicted to respond to RM and regulate DDR in C.elegans for the first time. These results suggest that microgravity increases the physiological activities to the space environment, especially enhance DNA damage response on transcription and post-transcriptional regulation in metazoan. We expect the finding provides new informations on synergetic effects between microgravity and radiation, and may be helpful for space risk assessment.

  19. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint.

    Directory of Open Access Journals (Sweden)

    Junchao Duan

    Full Text Available Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH release were observed in human umbilical vein endothelial cells (HUVECs as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS generation caused oxidative damage followed by the production of malondialdehyde (MDA as well as the inhibition of superoxide dismutase (SOD and glutathione peroxidase (GSH-Px. Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases.

  20. Influence of ATM-Mediated DNA Damage Response on Genomic Variation in Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lu, Junjie; Li, Hu; Baccei, Anna; Sasaki, Takayo; Gilbert, David M; Lerou, Paul H

    2016-05-01

    Genome instability is a potential limitation to the research and therapeutic application of induced pluripotent stem cells (iPSCs). Observed genomic variations reflect the combined activities of DNA damage, cellular DNA damage response (DDR), and selection pressure in culture. To understand the contribution of DDR on the distribution of copy number variations (CNVs) in iPSCs, we mapped CNVs of iPSCs with mutations in the central DDR gene ATM onto genome organization landscapes defined by genome-wide replication timing profiles. We show that following reprogramming the early and late replicating genome is differentially affected by CNVs in ATM-deficient iPSCs relative to wild-type iPSCs. Specifically, the early replicating regions had increased CNV losses during retroviral (RV) reprogramming. This differential CNV distribution was not present after later passage or after episomal reprogramming. Comparison of different reprogramming methods in the setting of defective DDR reveals unique vulnerability of early replicating open chromatin to RV vectors. PMID:26935587

  1. Protease activity of PprI facilitates DNA damage response: Mn2+-dependence and substrate sequence-specificity of the proteolytic reaction.

    Directory of Open Access Journals (Sweden)

    Yunguang Wang

    Full Text Available The extremophilic bacterium Deinococcus radiodurans exhibits an extraordinary resistance to ionizing radiation. Previous studies established that a protein named PprI, which exists only in the Deinococcus-Thermus family, acts as a general switch to orchestrate the expression of a number of DNA damage response (DDR proteins involved in cellular radio-resistance. Here we show that the regulatory mechanism of PprI depends on its Mn(2+-dependent protease activity toward DdrO, a transcription factor that suppresses DDR genes' expression. Recognition sequence-specificity around the PprI cleavage site is essential for DNA damage repair in vivo. PprI and DdrO mediate a novel DNA damage response pathway differing from the classic LexA-mediated SOS response system found in radiation-sensitive bacterium Escherichia coli. This PprI-mediated pathway in D. radiodurans is indispensable for its extreme radio-resistance and therefore its elucidation significantly advances our understanding of the DNA damage repair mechanism in this amazing organism.

  2. Human cytomegalovirus gene UL76 induces IL-8 expression through activation of the DNA damage response.

    Directory of Open Access Journals (Sweden)

    Helena Costa

    2013-09-01

    Full Text Available Human cytomegalovirus (HCMV, a β-herpesvirus, has evolved many strategies to subvert both innate and adaptive host immunity in order to ensure its survival and propagation within the host. Induction of IL-8 is particularly important during HCMV infection as neutrophils, primarily attracted by IL-8, play a key role in virus dissemination. Moreover, IL-8 has a positive effect in the replication of HCMV. This work has identified an HCMV gene (UL76, with the relevant property of inducing IL-8 expression at both transcriptional and protein levels. Up-regulation of IL-8 by UL76 results from activation of the NF-kB pathway as inhibition of both IKK-β activity or degradation of Ikβα abolishes the IL-8 induction and, concomitantly, expression of UL76 is associated with the translocation of p65 to the nucleus where it binds to the IL-8 promoter. Furthermore, the UL76-mediated induction of IL-8 requires ATM and is correlated with the phosphorylation of NEMO on serine 85, indicating that UL76 activates NF-kB pathway by the DNA Damage response, similar to the impact of genotoxic drugs. More importantly, a UL76 deletion mutant virus was significantly less efficient in stimulating IL-8 production than the wild type virus. In addition, there was a significant reduction of IL-8 secretion when ATM -/- cells were infected with wild type HCMV, thus, indicating that ATM is also involved in the induction of IL-8 by HCMV. In conclusion, we demonstrate that expression of UL76 gene induces IL-8 expression as a result of the DNA damage response and that both UL76 and ATM have a role in the mechanism of IL-8 induction during HCMV infection. Hence, this work characterizes a new role of the activation of DNA Damage response in the context of host-pathogen interactions.

  3. Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3.

    Directory of Open Access Journals (Sweden)

    Rui Gao

    2015-01-01

    Full Text Available Spinocerebellar ataxia type 3 (SCA3, also known as Machado-Joseph disease (MJD, is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-δ pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers

  4. Low-dose DNA damage and replication stress responses quantified by optimized automated single-cell image analysis

    DEFF Research Database (Denmark)

    Mistrik, Martin; Oplustilova, Lenka; Lukas, Jiri;

    2009-01-01

    advantages and applicability of this technique. Our present data on assessment of low radiation doses, repair kinetics, spontaneous DNA damage in cancer cells, as well as constitutive and replication stress-induced HR events and their dependence on upstream factors within the DDR machinery document the......Maintenance of genome integrity is essential for homeostasis and survival as impaired DNA damage response (DDR) may predispose to grave pathologies such as neurodegenerative and immunodeficiency syndromes, cancer and premature aging. Therefore, accurate assessment of DNA damage caused by...... environmental or metabolic genotoxic insults is critical for contemporary biomedicine. The available physical, flow cytometry and sophisticated scanning approaches to DNA damage estimation each have some drawbacks such as insufficient sensitivity, limitation to analysis of cells in suspension, or high costs and...

  5. Aberrant DNA damage response pathways may predict the outcome of platinum chemotherapy in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Dimitra T Stefanou

    Full Text Available Ovarian carcinoma (OC is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780 and one resistant (A2780/C30 to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs from OC patients, sensitive (n = 7 or resistant (n = 4 to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9 were studied in parallel. DNA damage was evaluated by immunofluorescence γH2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05. Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of γH2AX foci: 2.7±0.5h, 8.8±1.9h and 15.4±3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8±1.4h, 12.9±1.9h and 21.4±2.6h, respectively; all P<0.03. Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05. We conclude

  6. Dysregulation of the DNA Damage Response and KMT2A Rearrangement in Fetal Liver Hematopoietic Cells.

    Directory of Open Access Journals (Sweden)

    Mai Nanya

    Full Text Available Etoposide, a topoisomerase 2 (TOP2 inhibitor, is associated with the development of KMT2A (MLL-rearranged infant leukemia. An epidemiological study suggested that in utero exposure to TOP2 inhibitors may be involved in generation of KMT2A (MLL rearrangement. The present study examined the mechanism underlying the development of KMT2A (MLL-rearranged infant leukemia in response to in utero exposure to etoposide in a mouse model. Fetal liver hematopoietic stem cells were more susceptible to etoposide than maternal bone marrow mononuclear cells. Etoposide-induced Kmt2a breakage was detected in fetal liver hematopoietic stem cells using a newly developed chromatin immunoprecipitation (ChIP assay. Assessment of etoposide-induced chromosomal translocation by next-generation RNA sequencing (RNA-seq identified several chimeric fusion messenger RNAs that were generated by etoposide treatment. However, Kmt2a (Mll-rearranged fusion mRNA was detected in Atm-knockout mice, which are defective in the DNA damage response, but not in wild-type mice. The present findings suggest that in utero exposure to TOP2 inhibitors induces Kmt2a rearrangement when the DNA damage response is defective.

  7. DNA damage and cellular death in oral mucosa cells of children who have undergone panoramic dental radiography

    International Nuclear Information System (INIS)

    Despite wide use as a diagnostic tool in medical and dental practice, radiography can induce cytotoxic effects and genetic damage. To evaluate DNA damage (micronucleus) and cellular death (pyknosis, karyolysis and karyorrhexis) in exfoliated buccal mucosa cells taken from healthy children following exposure to radiation during dental radiography. A total of 17 children who had undergone panoramic dental radiography were included. We found no statistically significant differences (P > 0.05) between micronucleated oral mucosa cells in children before and after exposure to radiation. On the other hand, radiation did cause other nuclear alterations closely related to cytotoxicity including karyorrhexis, pyknosis and karyolysis. Taken together, these results indicate that panoramic dental radiography might not induce chromosomal damage, but may be cytotoxic. Overall, the results reinforce the importance of evaluating the health side effects of radiography and contribute to the micronucleus database, which will improve our understanding and practice of this methodology in children. (orig.)

  8. DNA damage and cellular death in oral mucosa cells of children who have undergone panoramic dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Angelieri, Fernanda; Oliveira, Gabriela R. de [Sao Paulo Metodista University (UMESP), Department of Orthodontics, Sao Bernardo do Campo, Sao Paulo (Brazil); Sannomiya, Eduardo K. [Sao Paulo Metodista University (UMESP), Department of Dento-Maxillofacial Radiology, Sao Bernardo do Campo, Sao Paulo (Brazil); Ribeiro, Daniel A. [Federal University of Sao Paulo (UNIFESP), Department of Health Sciences, Santos, Sao Paulo (Brazil); Universidade Federal de Sao Paulo (UNIFESP), Departamento de Ciencias da Saude, Santos, Sao Paulo (Brazil)

    2007-06-15

    Despite wide use as a diagnostic tool in medical and dental practice, radiography can induce cytotoxic effects and genetic damage. To evaluate DNA damage (micronucleus) and cellular death (pyknosis, karyolysis and karyorrhexis) in exfoliated buccal mucosa cells taken from healthy children following exposure to radiation during dental radiography. A total of 17 children who had undergone panoramic dental radiography were included. We found no statistically significant differences (P > 0.05) between micronucleated oral mucosa cells in children before and after exposure to radiation. On the other hand, radiation did cause other nuclear alterations closely related to cytotoxicity including karyorrhexis, pyknosis and karyolysis. Taken together, these results indicate that panoramic dental radiography might not induce chromosomal damage, but may be cytotoxic. Overall, the results reinforce the importance of evaluating the health side effects of radiography and contribute to the micronucleus database, which will improve our understanding and practice of this methodology in children. (orig.)

  9. Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone [Department of Radiation Oncology, University Hospital Freiburg, Freiburg (Germany); Huai, Jisen [Institute of Molecular Medicine and Cell Research, Center for Biochemistry and Molecular Cell Research, Albert-Ludwig University, Freiburg (Germany); Mandal, Pankaj Kumar [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Clinical Molecular Biology and Tumor Genetics, Muenchen (Germany); Niedermann, Gabriele, E-mail: gabriele.niedermann@uniklinik-freiburg.de [Department of Radiation Oncology, University Hospital Freiburg, Freiburg (Germany)

    2009-09-04

    Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPII expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.

  10. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage.

    Science.gov (United States)

    Salzman, David W; Nakamura, Kotoka; Nallur, Sunitha; Dookwah, Michelle T; Metheetrairut, Chanatip; Slack, Frank J; Weidhaas, Joanne B

    2016-01-01

    MicroRNA (miRNA) expression is tightly regulated by several mechanisms, including transcription and cleavage of the miRNA precursor RNAs, to generate a mature miRNA, which is thought to be directly correlated with activity. MiR-34 is a tumour-suppressor miRNA important in cell survival, that is transcriptionally upregulated by p53 in response to DNA damage. Here, we show for the first time that there is a pool of mature miR-34 in cells that lacks a 5'-phosphate and is inactive. Following exposure to a DNA-damaging stimulus, the inactive pool of miR-34 is rapidly activated through 5'-end phosphorylation in an ATM- and Clp1-dependent manner, enabling loading into Ago2. Importantly, this mechanism of miR-34 activation occurs faster than, and independently of, de novo p53-mediated transcription and processing. Our study reveals a novel mechanism of rapid miRNA activation in response to environmental stimuli occurring at the mature miRNA level. PMID:26996824

  11. Nuclear Localization of p38 MAPK in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    C. David Wood, Tina M. Thornton, Guadalupe Sabio, Roger A. Davis, Mercedes Rincon

    2009-01-01

    Full Text Available p38 MAP kinase (MAPK is activated in response to environmental stress, cytokines and DNA damage, and mediates death, cell differentiation and cell cycle checkpoints. The intracellular localization of p38 MAPK upon activation remains unclear, and may depend on the stimulus. We show here that activation of p38 MAPK by stimuli that induce DNA double strand breaks (DSBs, but not other stimuli, leads to its nuclear translocation. In addition, naturally occurring DSBs generated through V(DJ recombination in immature thymocytes also promote nuclear accumulation of p38 MAPK. Nuclear translocation of p38 MAPK does not require its catalytic activity, but is induced by a conformational change of p38 MAPK triggered by phosphorylation within the active site. The selective nuclear accumulation of p38 MAPK in response to DNA damage could be a mechanism to facilitate the phosphorylation of p38 MAPK nuclear targets for the induction of a G2/M cell cycle checkpoint and DNA repair.

  12. Protective effect of extract of Crataegus pinnatifida pollen on DNA damage response to oxidative stress.

    Science.gov (United States)

    Cheng, Ni; Wang, Yuan; Gao, Hui; Yuan, Jialing; Feng, Fan; Cao, Wei; Zheng, Jianbin

    2013-09-01

    The protective effect of extract of Crataegus pinnatifida (Rosaceae) pollen (ECPP) on the DNA damage response to oxidative stress was investigated and assessed with an alkaline single-cell gel electrophoresis (SCGE) assay and pBR322 plasmid DNA breaks in site-specific and non-site-specific systems. Total phenolic content, total flavonoid content, individual phenolic compounds, antioxidant activities (1,1-diphenyl-2-picrylhydrazyl (DPPH), radical scavenging activity, FRAP, and chelating activity) were also determined. The results showed that ECPP possessed a strong ability to protect DNA from being damaged by hydroxyl radicals in both the site-specific system and the non-site-specific system. It also exhibited a cytoprotection effect in mouse lymphocytes against H₂O₂-induced DNA damage. These protective effects may be related to its high total phenolic content (17.65±0.97 mg GAE/g), total flavonoid content (8.04±0.97 mg rutin/g), strong free radical scavenging activity and considerable ferrous ion chelating ability (14.48±0.21 mg Na₂EDTA/g). PMID:23871827

  13. MKP1 phosphatase mediates G1-specific dephosphorylation of H3Serine10P in response to DNA damage

    International Nuclear Information System (INIS)

    Highlights: • Reversible reduction of H3S10 phosphorylation after DNA damage is G1 phase specific. • Dynamic balance between MAP kinases, MKP1 and MSK1 regulate H3S10P during DDR. • MKP1 associates with chromatin bearing γH2AX in response to DNA damage. • Inhibition of MKP1 activity with specific inhibitor promotes radiation-induced cell death. - Abstract: Histone mark, H3S10 phosphorylation plays a dual role in a cell by maintaining relaxed chromatin for active transcription in interphase and condensed chromatin state in mitosis. The level of H3S10P has also been shown to alter on DNA damage; however, its cell cycle specific behavior and regulation during DNA damage response is largely unexplored. In the present study, we demonstrate G1 cell cycle phase specific reversible loss of H3S10P in response to IR-induced DNA damage is mediated by opposing activities of phosphatase, MKP1 and kinase, MSK1 of the MAP kinase pathway. We also show that the MKP1 recruits to the chromatin in response to DNA damage and correlates with the decrease of H3S10P, whereas MKP1 is released from chromatin during recovery phase of DDR. Furthermore, blocking of H3S10 dephosphorylation by MKP1 inhibition impairs DNA repair process and results in poor survival of WRL68 cells. Collectively, our data proposes a pathway regulating G1 cell cycle phase specific reversible reduction of H3S10P on IR induced DNA damage and also raises the possibility of combinatorial modulation of H3S10P with specific inhibitors to target the cancer cells in G1-phase of cell cycle

  14. MKP1 phosphatase mediates G1-specific dephosphorylation of H3Serine10P in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit K.; Khan, Shafqat A.; Sharda, Asmita; Reddy, Divya V; Gupta, Sanjay, E-mail: sgupta@actrec.gov.in

    2015-08-15

    Highlights: • Reversible reduction of H3S10 phosphorylation after DNA damage is G1 phase specific. • Dynamic balance between MAP kinases, MKP1 and MSK1 regulate H3S10P during DDR. • MKP1 associates with chromatin bearing γH2AX in response to DNA damage. • Inhibition of MKP1 activity with specific inhibitor promotes radiation-induced cell death. - Abstract: Histone mark, H3S10 phosphorylation plays a dual role in a cell by maintaining relaxed chromatin for active transcription in interphase and condensed chromatin state in mitosis. The level of H3S10P has also been shown to alter on DNA damage; however, its cell cycle specific behavior and regulation during DNA damage response is largely unexplored. In the present study, we demonstrate G1 cell cycle phase specific reversible loss of H3S10P in response to IR-induced DNA damage is mediated by opposing activities of phosphatase, MKP1 and kinase, MSK1 of the MAP kinase pathway. We also show that the MKP1 recruits to the chromatin in response to DNA damage and correlates with the decrease of H3S10P, whereas MKP1 is released from chromatin during recovery phase of DDR. Furthermore, blocking of H3S10 dephosphorylation by MKP1 inhibition impairs DNA repair process and results in poor survival of WRL68 cells. Collectively, our data proposes a pathway regulating G1 cell cycle phase specific reversible reduction of H3S10P on IR induced DNA damage and also raises the possibility of combinatorial modulation of H3S10P with specific inhibitors to target the cancer cells in G1-phase of cell cycle.

  15. Identification of BC005512 as a DNA damage responsive murine endogenous retrovirus of GLN family involved in cell growth regulation.

    Directory of Open Access Journals (Sweden)

    Yuanfeng Wu

    Full Text Available Genotoxicity assessment is of great significance in drug safety evaluation, and microarray is a useful tool widely used to identify genotoxic stress responsive genes. In the present work, by using oligonucleotide microarray in an in vivo model, we identified an unknown gene BC005512 (abbreviated as BC, official full name: cDNA sequence BC005512, whose expression in mouse liver was specifically induced by seven well-known genotoxins (GTXs, but not by non-genotoxins (NGTXs. Bioinformatics revealed that BC was a member of the GLN family of murine endogenous retrovirus (ERV. However, the relationship to genotoxicity and the cellular function of GLN are largely unknown. Using NIH/3T3 cells as an in vitro model system and quantitative real-time PCR, BC expression was specifically induced by another seven GTXs, covering diverse genotoxicity mechanisms. Additionally, dose-response and linear regression analysis showed that expression level of BC in NIH/3T3 cells strongly correlated with DNA damage, measured using the alkaline comet assay,. While in p53 deficient L5178Y cells, GTXs could not induce BC expression. Further functional studies using RNA interference revealed that down-regulation of BC expression induced G1/S phase arrest, inhibited cell proliferation and thus suppressed cell growth in NIH/3T3 cells. Together, our results provide the first evidence that BC005512, a member from GLN family of murine ERV, was responsive to DNA damage and involved in cell growth regulation. These findings could be of great value in genotoxicity predictions and contribute to a deeper understanding of GLN biological functions.

  16. DNA damage

    OpenAIRE

    Kumari, Sunita; Rastogi, Rajesh P.; Singh, Kanchan L.; Singh, Shailendra P; Sinha, Rajeshwar P.

    2008-01-01

    Even under the best of circumstances, DNA is constantly subjected to chemical modifications. Several types of DNA damage such as SSB (single strand break), DSB (double strand break), CPDs (cyclobutane pyrimidine dimers), 6-4PPs (6-4 photoproducts) and their Dewar valence isomers have been identified that result from alkylating agents, hydrolytic deamination, free radicals and reactive oxygen species formed by various photochemical processes including UV radiation. There are a n...

  17. The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where.

    Science.gov (United States)

    Pateras, Ioannis S; Havaki, Sophia; Nikitopoulou, Xenia; Vougas, Konstantinos; Townsend, Paul A; Panayiotidis, Michalis I; Georgakilas, Alexandros G; Gorgoulis, Vassilis G

    2015-10-01

    The characteristic feature of healthy living organisms is the preservation of homeostasis. Compelling evidence highlight that the DNA damage response and repair (DDR/R) and immune response (ImmR) signaling networks work together favoring the harmonized function of (multi)cellular organisms. DNA and RNA viruses activate the DDR/R machinery in the host cells both directly and indirectly. Activation of DDR/R in turn favors the immunogenicity of the incipient cell. Hence, stimulation of DDR/R by exogenous or endogenous insults triggers innate and adaptive ImmR. The immunogenic properties of ionizing radiation, a prototypic DDR/R inducer, serve as suitable examples of how DDR/R stimulation alerts host immunity. Thus, critical cellular danger signals stimulate defense at the systemic level and vice versa. Disruption of DDR/R-ImmR cross talk compromises (multi)cellular integrity, leading to cell-cycle-related and immune defects. The emerging DDR/R-ImmR concept opens up a new avenue of therapeutic options, recalling the Hippocrates quote "everything in excess is opposed by nature." PMID:26145166

  18. Systems Biology of Saccharomyces cerevisiae Physiology and its DNA Damage Response

    DEFF Research Database (Denmark)

    Fazio, Alessandro

    The yeast Saccharomyces cerevisiae is a model organism in biology, being widely used in fundamental research, the first eukaryotic organism to be fully sequenced and the platform for the development of many genomics techniques. Therefore, it is not surprising that S. cerevisiae has also been widely...... used in the field of systems biology during the last decade. This thesis investigates S. cerevisiae growth physiology and DNA damage response by using a systems biology approach. Elucidation of the relationship between growth rate and gene expression is important to understand the mechanisms regulating...... set of growth dependent genes by using a multi-factorial experimental design. Moreover, new insights into the metabolic response and transcriptional regulation of these genes have been provided by using systems biology tools (Chapter 3). One of the prerequisite of systems biology should be the...

  19. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Gooderham Nigel J

    2005-08-01

    Full Text Available Abstract Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent, cryptolepine (CLP, a cytotoxic alkaloid, benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular

  20. The role of hnRPUL1 involved in DNA damage response is related to PARP1.

    Directory of Open Access Journals (Sweden)

    Zehui Hong

    Full Text Available Heterogeneous nuclear ribonucleoprotein U-like 1 (hnRPUL1 -also known as adenovirus early region 1B-associated proteins 5 (E1B-AP5 - plays a role in RNA metabolism. Recently, hnRPUL1 has also been shown to be involved in DNA damage response, but the function of hnRPUL1 in response to DNA damage remains unclear. Here, we have demonstrated that hnRPUL1 is associated with PARP1 and recruited to DNA double-strand breaks (DSBs sites in a PARP1-mediated poly (ADP-ribosyl ation dependent manner. In turn, hnRPUL1 knockdown enhances the recruitment of PARP1 to DSBs sites. Specifically, we showed that hnRPUL1 is also implicated in the transcriptional regulation of PARP1 gene. Thus, we propose hnRPUL1 as a new component related to PARP1 in DNA damage response and repair.

  1. RNF4 interacts with both SUMO and nucleosomes to promote the DNA damage response.

    Science.gov (United States)

    Groocock, Lynda M; Nie, Minghua; Prudden, John; Moiani, Davide; Wang, Tao; Cheltsov, Anton; Rambo, Robert P; Arvai, Andrew S; Hitomi, Chiharu; Tainer, John A; Luger, Karolin; Perry, J Jefferson P; Lazzerini-Denchi, Eros; Boddy, Michael N

    2014-05-01

    The post-translational modification of DNA repair and checkpoint proteins by ubiquitin and small ubiquitin-like modifier (SUMO) critically orchestrates the DNA damage response (DDR). The ubiquitin ligase RNF4 integrates signaling by SUMO and ubiquitin, through its selective recognition and ubiquitination of SUMO-modified proteins. Here, we define a key new determinant for target discrimination by RNF4, in addition to interaction with SUMO. We identify a nucleosome-targeting motif within the RNF4 RING domain that can bind DNA and thereby enables RNF4 to selectively ubiquitinate nucleosomal histones. Furthermore, RNF4 nucleosome-targeting is crucially required for the repair of TRF2-depleted dysfunctional telomeres by 53BP1-mediated non-homologous end joining. PMID:24714598

  2. DNA damage response and DNA repair – dog as a model?

    International Nuclear Information System (INIS)

    Companion animals like dogs frequently develop tumors with age and similarly to human malignancies, display interpatient tumoral heterogeneity. Tumors are frequently characterized with regard to their mutation spectra, changes in gene expression or protein levels. Among others, these changes affect proteins involved in the DNA damage response (DDR), which served as a basis for the development of numerous clinically relevant cancer therapies. Even though the effects of different DNA damaging agents, as well as DDR kinetics, have been well characterized in mammalian cells in vitro, very little is so far known about the kinetics of DDR in tumor and normal tissues in vivo. Due to (i) the similarities between human and canine genomes, (ii) the course of spontaneous tumor development, as well as (iii) common exposure to environmental agents, canine tumors are potentially an excellent model to study DDR in vivo. This is further supported by the fact that dogs show approximately the same rate of tumor development with age as humans. Though similarities between human and dog osteosarcoma, as well as mammary tumors have been well established, only few studies using canine tumor samples addressed the importance of affected DDR pathways in tumor progression, thus leaving many questions unanswered. Studies in humans showed that misregulated DDR pathways play an important role during tumor development, as well as in treatment response. Since dogs are proposed to be a good tumor model in many aspects of cancer research, we herein critically investigate the current knowledge of canine DDR and discuss (i) its future potential for studies on the in vivo level, as well as (ii) its possible translation to veterinary and human medicine

  3. A p53-independent role for the MDM2 antagonist Nutlin-3 in DNA damage response initiation

    International Nuclear Information System (INIS)

    The mammalian DNA-damage response (DDR) has evolved to protect genome stability and maximize cell survival following DNA-damage. One of the key regulators of the DDR is p53, itself tightly regulated by MDM2. Following double-strand DNA breaks (DSBs), mediators including ATM are recruited to the site of DNA-damage. Subsequent phosphorylation of p53 by ATM and ATM-induced CHK2 results in p53 stabilization, ultimately intensifying transcription of p53-responsive genes involved in DNA repair, cell-cycle checkpoint control and apoptosis. In the current study, we investigated the stabilization and activation of p53 and associated DDR proteins in response to treatment of human colorectal cancer cells (HCT116p53+/+) with the MDM2 antagonist, Nutlin-3. Using immunoblotting, Nutlin-3 was observed to stabilize p53, and activate p53 target proteins. Unexpectedly, Nutlin-3 also mediated phosphorylation of p53 at key DNA-damage-specific serine residues (Ser15, 20 and 37). Furthermore, Nutlin-3 induced activation of CHK2 and ATM - proteins required for DNA-damage-dependent phosphorylation and activation of p53, and the phosphorylation of BRCA1 and H2AX - proteins known to be activated specifically in response to DNA damage. Indeed, using immunofluorescent labeling, Nutlin-3 was seen to induce formation of γH2AX foci, an early hallmark of the DDR. Moreover, Nutlin-3 induced phosphorylation of key DDR proteins, initiated cell cycle arrest and led to formation of γH2AX foci in cells lacking p53, whilst γH2AX foci were also noted in MDM2-deficient cells. To our knowledge, this is the first solid evidence showing a secondary role for Nutlin-3 as a DDR triggering agent, independent of p53 status, and unrelated to its role as an MDM2 antagonist

  4. A p53-independent role for the MDM2 antagonist Nutlin-3 in DNA damage response initiation

    Directory of Open Access Journals (Sweden)

    Kumar Sonia

    2011-02-01

    Full Text Available Abstract Background The mammalian DNA-damage response (DDR has evolved to protect genome stability and maximize cell survival following DNA-damage. One of the key regulators of the DDR is p53, itself tightly regulated by MDM2. Following double-strand DNA breaks (DSBs, mediators including ATM are recruited to the site of DNA-damage. Subsequent phosphorylation of p53 by ATM and ATM-induced CHK2 results in p53 stabilization, ultimately intensifying transcription of p53-responsive genes involved in DNA repair, cell-cycle checkpoint control and apoptosis. Methods In the current study, we investigated the stabilization and activation of p53 and associated DDR proteins in response to treatment of human colorectal cancer cells (HCT116p53+/+ with the MDM2 antagonist, Nutlin-3. Results Using immunoblotting, Nutlin-3 was observed to stabilize p53, and activate p53 target proteins. Unexpectedly, Nutlin-3 also mediated phosphorylation of p53 at key DNA-damage-specific serine residues (Ser15, 20 and 37. Furthermore, Nutlin-3 induced activation of CHK2 and ATM - proteins required for DNA-damage-dependent phosphorylation and activation of p53, and the phosphorylation of BRCA1 and H2AX - proteins known to be activated specifically in response to DNA damage. Indeed, using immunofluorescent labeling, Nutlin-3 was seen to induce formation of γH2AX foci, an early hallmark of the DDR. Moreover, Nutlin-3 induced phosphorylation of key DDR proteins, initiated cell cycle arrest and led to formation of γH2AX foci in cells lacking p53, whilst γH2AX foci were also noted in MDM2-deficient cells. Conclusion To our knowledge, this is the first solid evidence showing a secondary role for Nutlin-3 as a DDR triggering agent, independent of p53 status, and unrelated to its role as an MDM2 antagonist.

  5. DOE contractors' workshop: Cellular and molecular aspects of radiation induced DNA damage and repair

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    For four decades the US Department of Energy and its predecessors have been the lead federal agency in supporting radiation biology research. Over the years emphasis in this program has gradually shifted from dose-effect studies on animals to research on the effects of radiations of various qualities on cells and molecules. Mechanistic studies on the action of radiation at the subcellular level are few in number and there is a need for more research in this area if we are to gain a better understanding of how radiation affects living cells. The intent of this workshop was to bring together DOE contractors and grantees who are investigating the effects of radiation at the cellular and molecular levels. The aims were to foster the exchange of information on research projects and experimental results, promote collaborative research efforts, and obtain an overview of research currently supported by the Health Effects Research Division of the Office of Health and Environmental Research. The latter is needed by the Office for program planning purposes. This report on the workshop which took place in Albuquerque, New Mexico on March 10-11, 1987, includes an overview with future research recommendations, extended abstracts of the plenary presentations, shorter abstracts of each poster presentation, a workshop agenda and the names and addresses of the attendees.

  6. DOE contractors' workshop: Cellular and molecular aspects of radiation induced DNA damage and repair

    International Nuclear Information System (INIS)

    For four decades the US Department of Energy and its predecessors have been the lead federal agency in supporting radiation biology research. Over the years emphasis in this program has gradually shifted from dose-effect studies on animals to research on the effects of radiations of various qualities on cells and molecules. Mechanistic studies on the action of radiation at the subcellular level are few in number and there is a need for more research in this area if we are to gain a better understanding of how radiation affects living cells. The intent of this workshop was to bring together DOE contractors and grantees who are investigating the effects of radiation at the cellular and molecular levels. The aims were to foster the exchange of information on research projects and experimental results, promote collaborative research efforts, and obtain an overview of research currently supported by the Health Effects Research Division of the Office of Health and Environmental Research. The latter is needed by the Office for program planning purposes. This report on the workshop which took place in Albuquerque, New Mexico on March 10-11, 1987, includes an overview with future research recommendations, extended abstracts of the plenary presentations, shorter abstracts of each poster presentation, a workshop agenda and the names and addresses of the attendees

  7. Comet assay measures of DNA damage as biomarkers of irinotecan response in colorectal cancer in vitro and in vivo

    International Nuclear Information System (INIS)

    The use of irinotecan to treat metastatic colorectal cancer (CRC) is limited by unpredictable response and variable toxicity; however, no reliable clinical biomarkers are available. Here, we report a study to ascertain whether irinotecan-induced DNA damage measures are suitable/superior biomarkers of irinotecan effect. CRC-cell lines (HCT-116 and HT-29) were treated in vitro with irinotecan and peripheral blood lymphocytes (PBL) were isolated from patients before and after receiving irinotecan-based chemotherapy. Levels of in vitro-, in vivo-, and ex vivo-induced DNA damage were measured using the Comet assay; correlations between damage levels with in vitro cell survival and follow-up clinical data were investigated. Irinotecan-induced DNA damage was detectable in both CRC cell-lines in vitro, with higher levels of immediate and residual damage noted for the more sensitive HT-29 cells. DNA damage was not detected in vivo, but was measurable in PBLs upon mitogenic stimulation prior to ex vivo SN-38 treatment. Results showed that, following corrections for experimental error, those patients whose PBLs demonstrated higher levels of DNA damage following 10 h of SN-38 exposure ex vivo had significantly longer times to progression than those with lower damage levels (median 291 vs. 173 days, P = 0.014). To conclude, higher levels of irinotecan-induced initial and residual damage correlated with greater cell kill in vitro and a better clinical response. Consequently, DNA damage measures may represent superior biomarkers of irinotecan effect compared to the more often-studied genetic assays for differential drug metabolism

  8. Opposing effects of pericentrin and microcephalin on the pericentriolar material regulate CHK1 activation in the DNA damage response.

    Science.gov (United States)

    Antonczak, A K; Mullee, L I; Wang, Y; Comartin, D; Inoue, T; Pelletier, L; Morrison, C G

    2016-04-14

    Genotoxic stresses lead to centrosome amplification, a frequently-observed feature in cancer that may contribute to genome instability and to tumour cell invasion. Here we have explored how the centrosome controls DNA damage responses. For most of the cell cycle, centrosomes consist of two centrioles embedded in the proteinaceous pericentriolar material (PCM). Recent data indicate that the PCM is not an amorphous assembly of proteins, but actually a highly organised scaffold around the centrioles. The large coiled-coil protein, pericentrin, participates in PCM assembly and has been implicated in the control of DNA damage responses (DDRs) through its interactions with checkpoint kinase 1 (CHK1) and microcephalin (MCPH1). CHK1 is required for DNA damage-induced centrosome amplification, whereas MCPH1 deficiency greatly increases the amplification seen after DNA damage. We found that the PCM showed a marked expansion in volume and a noticeable change in higher-order organisation after ionising radiation treatment. PCM expansion was dependent on CHK1 kinase activity and was potentiated by MCPH1 deficiency. Furthermore, pericentrin deficiency or mutation of a separase cleavage site blocked DNA damage-induced PCM expansion. The extent of nuclear CHK1 activation after DNA damage reflected the level of PCM expansion, with a reduction in pericentrin-deficient or separase cleavage site mutant-expressing cells, and an increase in MCPH1-deficient cells that was suppressed by the loss of pericentrin. Deletion of the nuclear export signal of CHK1 led to its hyperphosphorylation after irradiation and reduced centrosome amplification. Deletion of the nuclear localisation signal led to low CHK1 activation and low centrosome amplification. From these data, we propose a feedback loop from the PCM to the nuclear DDR in which CHK1 regulates pericentrin-dependent PCM expansion to control its own activation. PMID:26165835

  9. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo.

    Science.gov (United States)

    Phesse, T J; Myant, K B; Cole, A M; Ridgway, R A; Pearson, H; Muncan, V; van den Brink, G R; Vousden, K H; Sears, R; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-06-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein. PMID:24583641

  10. DNA damage foci in mitosis are devoid of 53BP1.

    Science.gov (United States)

    Nelson, Glyn; Buhmann, Matthias; von Zglinicki, Thomas

    2009-10-15

    Nuclear DNA damage foci indicate ongoing DNA damage response, which is the major inducer of cell cycle arrest, cellular senescence and apoptosis. 53BP1 is one central mediator of the DNA damage response and a component of active DNA damage foci. Using an AcGFP-53BP1c fluorescent fusion protein that quantitatively reports DNA damage, we show that the recruitment of 53BP1 into gammaH2A.X-containing DNA damage foci was inhibited at G(2)/M. This suggests a possible mechanism for cells to continue through the G(2) checkpoint with gammaH2A.X-flagged double strand breaks via inhibition of 53BP1-mediated DNA damage signalling. PMID:19806024

  11. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Peter [University of Oxford; Anderson, Jennifer [University of Oxford

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  12. Ionizing radiation-induced DNA damage response identified in marine mussels, Mytilus sp

    International Nuclear Information System (INIS)

    There is growing concern over the potential detrimental impact of ionizing radiation on natural biota. The mechanistic cause-and-effect impact of ionizing radiation has yet to be characterized in any aquatic species. Adopting an integrated approach, including radiochemical analysis of environmental samples, we evaluate molecular responses to ionizing radiation in the marine mussel, Mytilus edulis. These responses included analyses of RAD51 mRNA expression, a gene involved in the repair of DNA double strand breaks, and induction of DNA strand breaks using the comet assay, in samples collected from a site impacted by low level ionizing radiation discharges. Based on activities of the radionuclides measured in sediment and mussel tissue at the discharge site, external and internal dose rates were low, at ca. 0.61 μGyh−1 and significantly lower than the generic (all species) “no effect” dose rate of 10 uGyh−1, yet DNA strand breakage and RAD51 mRNA expression were both altered. - Highlights: ► We measure radiochemical concentrations and biological effects markers in mussels. ► We develop an assay of RAD51 mRNA expression for ionizing radiation exposure. ► We relate DNA damage in mussels to low-level ionizing radiation exposure. - Apparent detrimental biological effects at the internationally agreed “no effect” chronic radiation dose rate to the natural biota.

  13. Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage.

    Science.gov (United States)

    Chen, Yongcan; Zhu, Wei-Guo

    2016-07-01

    DNA damage response (DDR) signaling network is initiated to protect cells from various exogenous and endogenous damage resources. Timely and accurate regulation of DDR proteins is required for distinct DNA damage repair pathways. Post-translational modifications of histone and non-histone proteins play a vital role in the DDR factor foci formation and signaling pathway. Phosphorylation, ubiquitylation, SUMOylation, neddylation, poly(ADP-ribosyl)ation, acetylation, and methylation are all involved in the spatial-temporal regulation of DDR, among which phosphorylation and ubiquitylation are well studied. Studies in the past decade also revealed extensive roles of lysine methylation in response to DNA damage. Lysine methylation is finely regulated by plenty of lysine methyltransferases, lysine demethylases, and can be recognized by proteins with chromodomain, plant homeodomain, Tudor domain, malignant brain tumor domain, or proline-tryptophan-tryptophan-proline domain. In this review, we outline the dynamics and regulation of histone lysine methylation at canonical (H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20) and non-canonical sites after DNA damage, and discuss their context-specific functions in DDR protein recruitment or extraction, chromatin environment establishment, and transcriptional regulation. We also present the emerging advances of lysine methylation in non-histone proteins during DDR. PMID:27217472

  14. Regulation of DNA Damage Response by Estrogen Receptor β-Mediated Inhibition of Breast Cancer Associated Gene 2

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Lee

    2015-04-01

    Full Text Available Accumulating evidence suggests that ubiquitin E3 ligases are involved in cancer development as their mutations correlate with genomic instability and genetic susceptibility to cancer. Despite significant findings of cancer-driving mutations in the BRCA1 gene, estrogen receptor (ER-positive breast cancers progress upon treatment with DNA damaging-cytotoxic therapies. In order to understand the underlying mechanism by which ER-positive breast cancer cells develop resistance to DNA damaging agents, we employed an estrogen receptor agonist, Erb-041, to increase the activity of ERβ and negatively regulate the expression and function of the estrogen receptor α (ERα in MCF-7 breast cancer cells. Upon Erb-041-mediated ERα down-regulation, the transcription of an ERα downstream effector, BCA2 (Breast Cancer Associated gene 2, correspondingly decreased. The ubiquitination of chromatin-bound BCA2 was induced by ultraviolet C (UVC irradiation but suppressed by Erb-041 pretreatment, resulting in a blunted DNA damage response. Upon BCA2 silencing, DNA double-stranded breaks increased with Rad51 up-regulation and ataxia telangiectasia mutated (ATM activation. Mechanistically, UV-induced BCA2 ubiquitination and chromatin binding were found to promote DNA damage response and repair via the interaction of BCA2 with ATM, γH2AX and Rad51. Taken together, this study suggests that Erb-041 potentiates BCA2 dissociation from chromatin and co-localization with Rad51, resulting in inhibition of homologous recombination repair.

  15. Gain of Cellular Adaptation Due to Prolonged p53 Impairment Leads to Functional Switchover from p53 to p73 during DNA Damage in Acute Myeloid Leukemia Cells*

    OpenAIRE

    Chakraborty, Juni; Banerjee, Shuvomoy; Ray, Pallab; Hossain, Dewan Md Sakib; Bhattacharyya, Sankar; Adhikary, Arghya; Chattopadhyay, Sreya; Das, Tanya; Sa, Gaurisankar

    2010-01-01

    Tumor suppressor p53 plays the central role in regulating apoptosis in response to genotoxic stress. From an evolutionary perspective, the activity of p53 has to be backed up by other protein(s) in case of any functional impairment of this protein, to trigger DNA damage-induced apoptosis in cancer cells. We adopted multiple experimental approaches to demonstrate that in p53-impaired cancer cells, DNA damage caused accumulation of p53 paralogue p73 via Chk-1 that strongly impacted Bax expressi...

  16. Repair responses to DNA damage: enzymatic pathways in E coli and human cells

    International Nuclear Information System (INIS)

    Bacteria and eukaryotic cells employ a variety of enzymatic pathways to remove damage from DNA or to lessen its impact upon cellular functions. Most of these processes were discovered in Escherichia coli and have been most extensively analyzed in this organism because suitable mutants have been isolated and characterized. Analogous pathways have been inferred to exist in mammalian cells from the presence of enzyme activities similar to those known to be involved in repair in bacteria, from the analysis of events in cells treated with DNA damaging agents, and from the analysis of the few naturally occurring mutant cell types. Mammalian cells possess an excision repair pathway similar to the constitutive pathway in E coli. Although not as well understood, the incision event is at least as complex, and repair resynthesis produces patches of about the same size as the constitutive short patches. In mammalian cells, no patches comparable in size to those produced by the inducible pathway of E coli are observed. Endonuclease V of bacteriophage T4 incises DNA at pyrimidine dimers by cleaving first the glycosylic bond between deoxyribose and the 5'pyrimidine of the dimer and then the phosphodiester bond between the two pyrimidines. We have cloned the gene (den V) that codes for this enzyme and have demonstrated its expression in uvrA recA and uvrB recA cells of E coli. Because T4 endonuclease V can alleviate the excission repair deficiency of xeroderma pigmentosum when added to permeabilized cells or to isolated nuclei after UV irradiation, the cloned denV gene may ultimately be of value for analyzing DNA repair pathways in cultured human cells

  17. Role of polycomb group proteins in the DNA damage response--a reassessment.

    Directory of Open Access Journals (Sweden)

    Hollie Chandler

    Full Text Available A growing body of evidence suggests that Polycomb group (PcG proteins, key regulators of lineage specific gene expression, also participate in the repair of DNA double-strand breaks (DSBs but evidence for direct recruitment of PcG proteins at specific breaks remains limited. Here we explore the association of Polycomb repressive complex 1 (PRC1 components with DSBs generated by inducible expression of the AsiSI restriction enzyme in normal human fibroblasts. Based on immunofluorescent staining, the co-localization of PRC1 proteins with components of the DNA damage response (DDR in these primary cells is unconvincing. Moreover, using chromatin immunoprecipitation and deep sequencing (ChIP-seq, which detects PRC1 proteins at common sites throughout the genome, we did not find evidence for recruitment of PRC1 components to AsiSI-induced DSBs. In contrast, the S2056 phosphorylated form of DNA-PKcs and other DDR proteins were detected at a subset of AsiSI sites that are predominantly at the 5' ends of transcriptionally active genes. Our data question the idea that PcG protein recruitment provides a link between DSB repairs and transcriptional repression.

  18. Adaptive response in mice exposed to 900 MHz radiofrequency fields: primary DNA damage.

    Directory of Open Access Journals (Sweden)

    Bingcheng Jiang

    Full Text Available The phenomenon of adaptive response (AR in animal and human cells exposed to ionizing radiation is well documented in scientific literature. We have examined whether such AR could be induced in mice exposed to non-ionizing radiofrequency fields (RF used for wireless communications. Mice were pre-exposed to 900 MHz RF at 120 µW/cm(2 power density for 4 hours/day for 1, 3, 5, 7 and 14 days and then subjected to an acute dose of 3 Gy γ-radiation. The primary DNA damage in the form of alkali labile base damage and single strand breaks in the DNA of peripheral blood leukocytes was determined using the alkaline comet assay. The results indicated that the extent of damage in mice which were pre-exposed to RF for 1 day and then subjected to γ-radiation was similar and not significantly different from those exposed to γ-radiation alone. However, mice which were pre-exposed to RF for 3, 5, 7 and 14 days showed progressively decreased damage and was significantly different from those exposed to γ-radiation alone. Thus, the data indicated that RF pre-exposure is capable of inducing AR and suggested that the pre-exposure for more than 4 hours for 1 day is necessary to elicit such AR.

  19. PARP2 Is the Predominant Poly(ADP-Ribose Polymerase in Arabidopsis DNA Damage and Immune Responses.

    Directory of Open Access Journals (Sweden)

    Junqi Song

    2015-05-01

    Full Text Available Poly (ADP-ribose polymerases (PARPs catalyze the transfer of multiple poly(ADP-ribose units onto target proteins. Poly(ADP-ribosylation plays a crucial role in a variety of cellular processes including, most prominently, auto-activation of PARP at sites of DNA breaks to activate DNA repair processes. In humans, PARP1 (the founding and most characterized member of the PARP family accounts for more than 90% of overall cellular PARP activity in response to DNA damage. We have found that, in contrast with animals, in Arabidopsis thaliana PARP2 (At4g02390, rather than PARP1 (At2g31320, makes the greatest contribution to PARP activity and organismal viability in response to genotoxic stresses caused by bleomycin, mitomycin C or gamma-radiation. Plant PARP2 proteins carry SAP DNA binding motifs rather than the zinc finger domains common in plant and animal PARP1 proteins. PARP2 also makes stronger contributions than PARP1 to plant immune responses including restriction of pathogenic Pseudomonas syringae pv. tomato growth and reduction of infection-associated DNA double-strand break abundance. For poly(ADP-ribose glycohydrolase (PARG enzymes, we find that Arabidopsis PARG1 and not PARG2 is the major contributor to poly(ADP-ribose removal from acceptor proteins. The activity or abundance of PARP2 is influenced by PARP1 and PARG1. PARP2 and PARP1 physically interact with each other, and with PARG1 and PARG2, suggesting relatively direct regulatory interactions among these mediators of the balance of poly(ADP-ribosylation. As with plant PARP2, plant PARG proteins are also structurally distinct from their animal counterparts. Hence core aspects of plant poly(ADP-ribosylation are mediated by substantially different enzymes than in animals, suggesting the likelihood of substantial differences in regulation.

  20. Role of Inositol Phosphosphingolipid Phospholipase C1, the Yeast Homolog of Neutral Sphingomyelinases in DNA Damage Response and Diseases

    Directory of Open Access Journals (Sweden)

    Kaushlendra Tripathi

    2015-01-01

    Full Text Available Sphingolipids play a very crucial role in many diseases and are well-known as signaling mediators in many pathways. Sphingolipids are produced during the de novo process in the ER (endoplasmic reticulum from the nonsphingolipid precursor and comprise both structural and bioactive lipids. Ceramide is the central core of the sphingolipid pathway, and its production has been observed following various treatments that can induce several different cellular effects including growth arrest, DNA damage, apoptosis, differentiation, and senescence. Ceramides are generally produced through the sphingomyelin hydrolysis and catalyzed by the enzyme sphingomyelinase (SMase in mammals. Presently, there are many known SMases and they are categorized into three groups acid SMases (aSMases, alkaline SMases (alk-SMASES, and neutral SMases (nSMases. The yeast homolog of mammalians neutral SMases is inositol phosphosphingolipid phospholipase C. Yeasts generally have inositol phosphosphingolipids instead of sphingomyelin, which may act as a homolog of mammalian sphingomyelin. In this review, we shall explain the structure and function of inositol phosphosphingolipid phospholipase C1, its localization inside the cells, mechanisms, and its roles in various cell responses during replication stresses and diseases. This review will also give a new basis for our understanding for the mechanisms and nature of the inositol phosphosphingolipid phospholipase C1/nSMase.

  1. Keratin23 (KRT23 knockdown decreases proliferation and affects the DNA damage response of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Karin Birkenkamp-Demtröder

    Full Text Available Keratin 23 (KRT23 is strongly expressed in colon adenocarcinomas but absent in normal colon mucosa. Array based methylation profiling of 40 colon samples showed that the promoter of KRT23 was methylated in normal colon mucosa, while hypomethylated in most adenocarcinomas. Promoter methylation correlated with absent expression, while increased KRT23 expression in tumor samples correlated with promoter hypomethylation, as confirmed by bisulfite sequencing. Demethylation induced KRT23 expression in vitro. Expression profiling of shRNA mediated stable KRT23 knockdown in colon cancer cell lines showed that KRT23 depletion affected molecules of the cell cycle and DNA replication, recombination and repair. In vitro analyses confirmed that KRT23 depletion significantly decreased the cellular proliferation of SW948 and LS1034 cells and markedly decreased the expression of genes involved in DNA damage response, mainly molecules of the double strand break repair homologous recombination pathway. KRT23 knockdown decreased the transcript and protein expression of key molecules as e.g. MRE11A, E2F1, RAD51 and BRCA1. Knockdown of KRT23 rendered colon cancer cells more sensitive to irradiation and reduced proliferation of the KRT23 depleted cells compared to irradiated control cells.

  2. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter

    International Nuclear Information System (INIS)

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNA damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.

  3. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    International Nuclear Information System (INIS)

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair

  4. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  5. The effects of over-expressing Tip60 on cellular DNA damage repair and cell cycle progression

    International Nuclear Information System (INIS)

    To investigate the effects of Tip60 on DNA damage repair, cell cycle and the related mechanism as well, the proliferative activity, DNA double strand break (DSB) repair competency and cell cycle arrest were analyzed in stable Tip60-overexpression U2OS cells established by transfecting with exogenous Tip60 gene. It was found that the overexpression of Tip60 inhibited the proliferative activity but increased the DNA damage repair competency. The radiation-induced G2/M arrest was prolonged in Tip60 over-expressed U2OS cells, which was associated with a decreasing level of cell cycle checkpoint protein Cyclin B/CDC2 complex. (authors)

  6. DNA damage tolerance.

    Science.gov (United States)

    Branzei, Dana; Psakhye, Ivan

    2016-06-01

    Accurate chromosomal DNA replication is fundamental for optimal cellular function and genome integrity. Replication perturbations activate DNA damage tolerance pathways, which are crucial to complete genome duplication as well as to prevent formation of deleterious double strand breaks. Cells use two general strategies to tolerate lesions: recombination to a homologous template, and trans-lesion synthesis with specialized polymerases. While key players of these processes have been outlined, much less is known on their choreography and regulation. Recent advances have uncovered principles by which DNA damage tolerance is regulated locally and temporally - in relation to replication timing and cell cycle stage -, and are beginning to elucidate the DNA dynamics that mediate lesion tolerance and influence chromosome structure during replication. PMID:27060551

  7. CDK2 Is Required for the DNA Damage Response During Porcine Early Embryonic Development.

    Science.gov (United States)

    Wang, HaiYang; Kim, Nam-Hyung

    2016-08-01

    Cyclin-dependent kinase (CDK) 2 inhibition plays a central role in DNA damage-induced cell cycle arrest and DNA repair. However, whether CDK2 also influences early porcine embryo development is unknown. In this study, we examined whether CDK2 is involved in the regulation of oocyte meiosis and early embryonic development of porcine embryos. We found that disrupting CDK2 activity with RNAi or an inhibitor did not affect meiotic resumption or meiosis II arrest. However, CDK2 inhibitor-treated embryos showed delayed cleavage and ceased development before the blastocyst stage. Disrupting CDK2 activity is able to induce sustained DNA damage, as demonstrated by the formation of distinct gammaH2AX foci in nuclei of Day-3 and Day-5 embryos. Inhibiting CDK2 triggers a DNA damage checkpoint by activation of the ataxia telangiectasia mutated (ATM)-P53-P21 pathway. However, the mRNA expression of genes involved in nonhomologous end joining or homologous recombination pathways for double-strand break repair were reduced after administering CDK2 inhibitor to 5-day-old embryos. Furthermore, CDK2 inhibition caused apoptosis in Day-7 blastocysts. Thus, our results indicate that an ATM-P53-P21 DNA damage checkpoint is intact in the absence of CDK2; however, CDK2 is important for proper repair of the damaged DNA by either directly or indirectly influencing DNA repair-related gene expression. PMID:27307074

  8. Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response

    DEFF Research Database (Denmark)

    Bennetzen, Martin; Larsen, Dorthe Helena; Bunkenborg, Jakob;

    2010-01-01

    telangiectasia mutated (ATM) kinase SQ consensus sequence motif and a novel SXXQ motif. Importantly, in addition to induced phosphorylation, we identified a considerable group of sites that undergo DNA damage-induced dephosphorylation. Together, our data extend the number of known phosphorylation sites regulated...

  9. ATP-dependent chromatin remodeling in the DNA-damage response

    NARCIS (Netherlands)

    H. Lans (Hannes); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2012-01-01

    textabstractThe integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired prope

  10. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling.

    Science.gov (United States)

    Li, Renfeng; Liao, Gangling; Nirujogi, Raja Sekhar; Pinto, Sneha M; Shaw, Patrick G; Huang, Tai-Chung; Wan, Jun; Qian, Jiang; Gowda, Harsha; Wu, Xinyan; Lv, Dong-Wen; Zhang, Kun; Manda, Srikanth S; Pandey, Akhilesh; Hayward, S Diane

    2015-12-01

    Epstein-Barr virus (EBV) is etiologically linked to infectious mononucleosis and several human cancers. EBV encodes a conserved protein kinase BGLF4 that plays a key role in the viral life cycle. To provide new insight into the host proteins regulated by BGLF4, we utilized stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to compare site-specific phosphorylation in BGLF4-expressing Akata B cells. Our analysis revealed BGLF4-mediated hyperphosphorylation of 3,046 unique sites corresponding to 1,328 proteins. Frequency analysis of these phosphosites revealed a proline-rich motif signature downstream of BGLF4, indicating a broader substrate recognition for BGLF4 than its cellular ortholog cyclin-dependent kinase 1 (CDK1). Further, motif analysis of the hyperphosphorylated sites revealed enrichment in ATM, ATR and Aurora kinase substrates while functional analyses revealed significant enrichment of pathways related to the DNA damage response (DDR), mitosis and cell cycle. Phosphorylation of proteins associated with the mitotic spindle assembly checkpoint (SAC) indicated checkpoint activation, an event that inactivates the anaphase promoting complex/cyclosome, APC/C. Furthermore, we demonstrated that BGLF4 binds to and directly phosphorylates the key cellular proteins PP1, MPS1 and CDC20 that lie upstream of SAC activation and APC/C inhibition. Consistent with APC/C inactivation, we found that BGLF4 stabilizes the expression of many known APC/C substrates. We also noted hyperphosphorylation of 22 proteins associated the nuclear pore complex, which may contribute to nuclear pore disassembly and SAC activation. A drug that inhibits mitotic checkpoint activation also suppressed the accumulation of extracellular EBV virus. Taken together, our data reveal that, in addition to the DDR, manipulation of mitotic kinase signaling and SAC activation are mechanisms associated with lytic EBV replication. All MS data have been deposited in

  11. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Elisa Coluzzi

    Full Text Available One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5 in vitro with hydrogen peroxide (100 and 200 µM for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs, we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect.

  12. A Novel Aspect of Tumorigenesis-BMI1 Functions in Regulating DNA Damage Response.

    Science.gov (United States)

    Lin, Xiaozeng; Ojo, Diane; Wei, Fengxiang; Wong, Nicholas; Gu, Yan; Tang, Damu

    2015-01-01

    BMI1 plays critical roles in maintaining the self-renewal of hematopoietic, neural, intestinal stem cells, and cancer stem cells (CSCs) for a variety of cancer types. BMI1 promotes cell proliferative life span and epithelial to mesenchymal transition (EMT). Upregulation of BMI1 occurs in multiple cancer types and is associated with poor prognosis. Mechanistically, BMI1 is a subunit of the Polycomb repressive complex 1 (PRC1), and binds the catalytic RING2/RING1b subunit to form a functional E3 ubiquitin ligase. Through mono-ubiquitination of histone H2A at lysine 119 (H2A-K119Ub), BMI1 represses multiple gene loci; among these, the INK4A/ARF locus has been most thoroughly investigated. The locus encodes the p16INK4A and p14/p19ARF tumor suppressors that function in the pRb and p53 pathways, respectively. Its repression contributes to BMI1-derived tumorigenesis. BMI1 also possesses other oncogenic functions, specifically its regulative role in DNA damage response (DDR). In this process, BMI1 ubiquitinates histone H2A and γH2AX, thereby facilitating the repair of double-stranded DNA breaks (DSBs) through stimulating homologous recombination and non-homologous end joining. Additionally, BMI1 compromises DSB-induced checkpoint activation independent of its-associated E3 ubiquitin ligase activity. We review the emerging role of BMI1 in DDR regulation and discuss its impact on BMI1-derived tumorigenesis. PMID:26633535

  13. A Novel Aspect of Tumorigenesis—BMI1 Functions in Regulating DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Xiaozeng Lin

    2015-12-01

    Full Text Available BMI1 plays critical roles in maintaining the self-renewal of hematopoietic, neural, intestinal stem cells, and cancer stem cells (CSCs for a variety of cancer types. BMI1 promotes cell proliferative life span and epithelial to mesenchymal transition (EMT. Upregulation of BMI1 occurs in multiple cancer types and is associated with poor prognosis. Mechanistically, BMI1 is a subunit of the Polycomb repressive complex 1 (PRC1, and binds the catalytic RING2/RING1b subunit to form a functional E3 ubiquitin ligase. Through mono-ubiquitination of histone H2A at lysine 119 (H2A-K119Ub, BMI1 represses multiple gene loci; among these, the INK4A/ARF locus has been most thoroughly investigated. The locus encodes the p16INK4A and p14/p19ARF tumor suppressors that function in the pRb and p53 pathways, respectively. Its repression contributes to BMI1-derived tumorigenesis. BMI1 also possesses other oncogenic functions, specifically its regulative role in DNA damage response (DDR. In this process, BMI1 ubiquitinates histone H2A and γH2AX, thereby facilitating the repair of double-stranded DNA breaks (DSBs through stimulating homologous recombination and non-homologous end joining. Additionally, BMI1 compromises DSB-induced checkpoint activation independent of its-associated E3 ubiquitin ligase activity. We review the emerging role of BMI1 in DDR regulation and discuss its impact on BMI1-derived tumorigenesis.

  14. Molecular mechanism of radioadaptive response: A cross-adaptive response for enhanced repair of DNA damage in adapted cells

    International Nuclear Information System (INIS)

    The radioadaptive response (RAR) has been attributed to the induction of a repair mechanism by low doses of ionizing radiation, but the molecular nature of the mechanism is not yet elucidated. We have characterized RAR in a series of experiments in cultured Chinese hamster V79 cells. A 4-h interval is required for the full expression of RAR, which decays with the progression of cell proliferation. Treatments with inhibitors of poly(ADP-ribose) polymerase, protein- or RNA synthesis, and protein kinase C suppress the RAR expression. The RAR cross-reacts on clastogenic lesions induced by other physical and chemical DNA-damaging agents. The presence of newly synthesised proteins has been detected during the expression period. Experiments performed using single-cell gel electrophoresis provided more direct evidence for a faster and enhaced DNA repair rate in adapted cells. Here, using single-cell gel electrophoresis, a cross-adaptive response has been demonstrated for enhanced repair of DNA damage induced by neocarzinostatin in radio-adapted cells. (author)

  15. Protein kinase C{eta} activates NF-{kappa}B in response to camptothecin-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Raveh-Amit, Hadas; Hai, Naama; Rotem-Dai, Noa; Shahaf, Galit [The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev (Israel); Gopas, Jacob [The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev (Israel); The Department of Oncology, Soroka University Medical Center, Beer-Sheva 84105 (Israel); Livneh, Etta, E-mail: etta@bgu.ac.il [The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, The Cancer Research Center, Ben-Gurion University of the Negev (Israel)

    2011-08-26

    Highlights: {yields} Protein kinase C-eta (PKC{eta}) is an upstream regulator of the NF-{kappa}B signaling pathway. {yields} PKC{eta} activates NF-{kappa}B in non-stressed conditions and in response to DNA damage. {yields} PKC{eta} regulates NF-{kappa}B by activating I{kappa}B kinase (IKK) and inducing I{kappa}B degradation. -- Abstract: The nuclear factor {kappa}B (NF-{kappa}B) family of transcription factors participates in the regulation of genes involved in innate- and adaptive-immune responses, cell death and inflammation. The involvement of the Protein kinase C (PKC) family in the regulation of NF-{kappa}B in inflammation and immune-related signaling has been extensively studied. However, not much is known on the role of PKC in NF-{kappa}B regulation in response to DNA damage. Here we demonstrate for the first time that PKC-eta (PKC{eta}) regulates NF-{kappa}B upstream signaling by activating the I{kappa}B kinase (IKK) and the degradation of I{kappa}B. Furthermore, PKC{eta} enhances the nuclear translocation and transactivation of NF-{kappa}B under non-stressed conditions and in response to the anticancer drug camptothecin. We and others have previously shown that PKC{eta} confers protection against DNA damage-induced apoptosis. Our present study suggests that PKC{eta} is involved in NF-{kappa}B signaling leading to drug resistance.

  16. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells

    Directory of Open Access Journals (Sweden)

    Peixin Huang

    2015-06-01

    Full Text Available Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague–Dawley (SD rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1 and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR, ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo.

  17. Identification of Intermediate-Size Non-Coding RNAs Involved in the UV-Induced DNA Damage Response in C. elegans

    OpenAIRE

    Li, Aqian; Wei, Guifeng; Wang, Yunfei; Zhou, Ying; Zhang, Xian-En; Bi, Lijun; Chen, Runsheng

    2012-01-01

    Background A network of DNA damage response (DDR) mechanisms functions coordinately to maintain genome integrity and prevent disease. The Nucleotide Excision Repair (NER) pathway is known to function in the response to UV-induced DNA damage. Although numbers of coding genes and miRNAs have been identified and reported to participate in UV-induced DNA damage response (UV-DDR), the precise role of non-coding RNAs (ncRNAs) in UV-DDR remains largely unknown. Methodology/Principal Findings We used...

  18. Radio-adaptive response using transcriptional status of DNA damage response genes in human peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Venous blood samples were collected from random healthy male individuals with informed consent. Peripheral Blood Mono Nuclear cells (PBMCs) were separated at 1 hour and 5 hours post-irradiation. Dose response was studied using 30 cGy, 60 cGy, 1.0 Gy and 2.0 Gy. For adaptive response study two priming doses (30 cGy and 60 cGy) was used followed by a challenging dose of 2.0 Gy after 4 hours. Total RNA was isolated and cDNA was synthesized. Relative quantitation was performed using a SYBR green based real time PCR with respect to beta actin. The results have shown significant up-regulation of DNA damage response genes like P53, GADD45A, CDKN1A and also in H2B, CTP Synthase and PLK3 at 5 hours post irradiation (P<0.001) as compared to 1 hour. In contrast, the transcriptional expression of ATM, ATR, MDM2, CDK2, cyclin E and cytokine genes remained same at both the time points (1 hour and 5 hours). Few genes like CDKN1A, GADD45A and P53 showed down regulation with 2 Gy at 5 hrs. Transcription profile at priming dose of 0.3 and 0.6 Gy followed by a challenging dose 2.0 Gy was studied. Adaptive response was observed at most of the DNA damage response genes. However, no difference was observed at master regulator ATM and P53. Similarly cytokines and histone modification gene also did not show any change. Detailed results will be discussed during the presentation

  19. The Oxygen-Rich Postnatal Environment Induces Cardiomyocyte Cell-Cycle Arrest through DNA Damage Response

    OpenAIRE

    Bao\\xa0N. Puente; Wataru Kimura; Shalini\\xa0A. Muralidhar; Jesung Moon; James\\xa0F. Amatruda; Kate\\xa0L. Phelps; David Grinsfelder; Beverly\\xa0A. Rothermel; Rui Chen; Joseph\\xa0A. Garcia; Celio\\xa0X. Santos; SuWannee Thet; Eiichiro Mori; Michael\\xa0T. Kinter; Paul\\xa0M. Rindler

    2014-01-01

    The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary post-natal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen rich postnatal environment is the upstream signal that results in cell cycle arrest of cardiomyocytes. Here we show that reactive oxygen species (ROS), oxidative DNA damage, and D...

  20. A distinct response to endogenous DNA damage in the development of Nbs1-deficient cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Rui Li; Yun-Gui Yang; Yunzhou Gao; Zhao-Qi Wang; Wei-Min Tong

    2012-01-01

    Microcephaly is a clinical characteristic for human nijmegen breakage syndrome (NBS,mutated in NBS1 gene),a chromosomal instability syndrome.However,the underlying molecular pathogenesis remains elusive.In the present study,we demonstrate that neuronal disruption ofNBS (Nbn in mice) causes microcephaly characterized by the reduction of cerebral cortex and corpus cailosum,recapitulating neuronal anomalies in human NBS.Nbs1-deficient neocortex shows accumulative endogenous DNA damage and defective activation ofAtaxia telangiectasia and Rad3-related (ATR)-Chk1 pathway upon DNA damage.Notably,in contrast to massive apoptotic cell death in Nbs1-deficient cerebella,activation of p53 leads to a defective neuroprogenitor proliferation in neocortex,likely via specific persistent induction of hematopoietic zinc finger (Hzf) that preferentially promotes p53-mediated cell cycle arrest whilst inhibiting apoptosis.Moreover,Trp53 mutations substantially rescue the microcephaly in Nbs1-deficient mice.Thus,the present results reveal the first clue that developing neurons at different regions of brain selectively respond to endogenous DNA damage,and underscore an important role for Nbs1 in neurogenesis.

  1. The ovarian DNA damage repair response is induced prior to phosphoramide mustard-induced follicle depletion, and ataxia telangiectasia mutated inhibition prevents PM-induced follicle depletion.

    Science.gov (United States)

    Ganesan, Shanthi; Keating, Aileen F

    2016-02-01

    Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fisher 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96h in medium containing DMSO ±60μM PM or KU 55933 (48h; 10nM). PM-induced activation of DNA damage repair genes was observed as early as 12h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity. PMID:26708502

  2. DNA-damage response gene GADD45A induces differentiation in hematopoietic stem cells without inhibiting cell cycle or survival.

    Science.gov (United States)

    Wingert, Susanne; Thalheimer, Frederic B; Haetscher, Nadine; Rehage, Maike; Schroeder, Timm; Rieger, Michael A

    2016-03-01

    Hematopoietic stem cells (HSCs) maintain blood cell production life-long by their unique abilities of self-renewal and differentiation into all blood cell lineages. Growth arrest and DNA-damage-inducible 45 alpha (GADD45A) is induced by genotoxic stress in HSCs. GADD45A has been implicated in cell cycle control, cell death and senescence, as well as in DNA-damage repair. In general, GADD45A provides cellular stability by either arresting the cell cycle progression until DNA damage is repaired or, in cases of fatal damage, by inducing apoptosis. However, the function of GADD45A in hematopoiesis remains controversial. We revealed the changes in murine HSC fate control orchestrated by the expression of GADD45A at single cell resolution. In contrast to other cellular systems, GADD45A expression did not cause a cell cycle arrest or an alteration in the decision between cell survival and apoptosis in HSCs. Strikingly, GADD45A strongly induced and accelerated the differentiation program in HSCs. Continuous tracking of individual HSCs and their progeny via time-lapse microscopy elucidated that once GADD45A was expressed, HSCs differentiate into committed progenitors within 29 hours. GADD45A-expressing HSCs failed to long-term reconstitute the blood of recipients by inducing multilineage differentiation in vivo. Importantly, γ-irradiation of HSCs induced their differentiation by upregulating endogenous GADD45A. The differentiation induction by GADD45A was transmitted by activating p38 Mitogen-activated protein kinase (MAPK) signaling and allowed the generation of megakaryocytic-erythroid, myeloid, and lymphoid lineages. These data indicate that genotoxic stress-induced GADD45A expression in HSCs prevents their fatal transformation by directing them into differentiation and thereby clearing them from the system. Stem Cells 2016;34:699-710. PMID:26731607

  3. Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats

    Directory of Open Access Journals (Sweden)

    Brown Ian L

    2009-03-01

    Full Text Available Abstract Background We investigated in rats the effects of feeding different forms of high amylose maize starches (HAMS rich in resistant starch (RS to understand what the implications of RS heterogeneity might be for colonic biology, including innate cellular responses to DNA-damage. Methods A range of maize starches were compared: digestible cornstarch (Control, HYLON® VII, Hi-maize® 1043, Hi-maize® 240, Hi-maize® 260 and NOVELOSE® 330. Included in the comparison was Cellulose. End-points after 4 weeks included: pH, short chain fatty acids (SCFA levels, colonic epithelial cell kinetics and apoptotic response to carcinogen 'azoxymethane' in the colonic epithelium. Results The RS diets significantly increased SCFA and reduced pH in caecal content and faeces. Hi-maize 260 resulted in the highest butyrate concentrations. All RS diets prevented the mucosal atrophy as seen in the rats fed the Control diet. Epithelial cell turnover was increased in the Control and Cellulose groups compared to the Hi-maize 260, HYLON VII and NOVELOSE 330 groups (P Conclusion The consumption of RS elicits a range of beneficial physiological and protective effects associated with the fermentation of RS. Increased production of butyrate seems a likely explanation by which RS enhances the apoptotic response to carcinogen-induced DNA damage which is consistent with the proposed role of this SCFA in promoting a normal cell phenotype and preventing the development of abnormal cell populations.

  4. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells.

    Science.gov (United States)

    Pereboeva, Larisa; Hubbard, Meredith; Goldman, Frederick D; Westin, Erik R

    2016-01-01

    Dyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS). Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT), perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients' cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC) for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold) and ROS (1.5-fold to 2-fold). Upon exposure to ionizing radiation (XRT), DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold). DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease). Together, our data supports a mechanism

  5. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells.

    Directory of Open Access Journals (Sweden)

    Larisa Pereboeva

    Full Text Available Dyskeratosis Congenita (DC is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF syndromes, converges on the DNA damage response (DDR pathway and subsequent elevation of reactive oxygen species (ROS. Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT, perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients' cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold and ROS (1.5-fold to 2-fold. Upon exposure to ionizing radiation (XRT, DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold. DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease. Together, our data supports a

  6. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    Science.gov (United States)

    Mirzayans, Razmik; Andrais, Bonnie; Kumar, Piyush; Murray, David

    2016-01-01

    It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and triggers growth arrest (e.g., through premature senescence) in some genetic backgrounds; such growth arrested cells remain viable, secrete growth-promoting factors, and give rise to progeny with stem cell-like properties. In addition, caspase 3, which is best known for its role in the execution phase of apoptosis, has been recently reported to facilitate (rather than suppress) DNA damage-induced genomic instability and carcinogenesis. This observation is consistent with an earlier report demonstrating that caspase 3 mediates secretion of the pro-survival factor prostaglandin E2, which in turn promotes enrichment of tumor repopulating cells. In this article, we review these and related discoveries and point out novel cancer therapeutic strategies. One of our objectives is to demonstrate the growing complexity of the DNA damage response beyond the conventional “repair and survive, or die” hypothesis. PMID:27187358

  7. Increased DNA damage in progression of COPD: a response by poly(ADP-ribose polymerase-1.

    Directory of Open Access Journals (Sweden)

    Ingrid Oit-Wiscombe

    Full Text Available Chronic oxidative stress (OS, a major mechanism of chronic obstructive pulmonary disease (COPD, may cause significant damage to DNA. Poly(ADP-ribose polymerase (PARP-1 is rapidly activated by OS-induced DNA lesions. However, the degree of DNA damage along with the evolution of COPD is unclear. In peripheral blood mononuclear cells of non-smoking individuals, non-obstructive smokers, patients with COPD of all stages and those with COPD exacerbation, we evaluated DNA damage, PARP activity and PARP-1 mRNA expression using Comet Assay IV, biotinylated-NAD incorporation assay and qRT-PCR, respectively and subjected results to ordinal logistic regression modelling. Adjusted for demographics, smoking-related parameters and lung function, novel comet parameters, tail length/cell length ratio and tail migration/cell length ratio, showed the greatest increase along the study groups corresponding to the evolution of COPD [odds ratio (OR 7.88, 95% CI 4.26-14.57; p<0.001 and OR 3.91, 95% CI 2.69-5.66; p<0.001, respectively]. Analogously, PARP activity increased significantly over the groups (OR = 1.01; 95%; p<0.001. An antioxidant tetrapeptide UPF17 significantly reduced the PARP-1 mRNA expression in COPD, compared to that in non-obstructive individuals (p = 0.040. Tail length/cell length and tail migration/cell length ratios provide novel progression-sensitive tools for assessment of DNA damage. However, it remains to be elucidated whether inhibition of an elevated PARP-1 activity has a safe enough potential to break the vicious cycle of the development and progression of COPD.

  8. Ku Regulates Signaling to DNA Damage Response Pathways through the Ku70 von Willebrand A Domain

    OpenAIRE

    Fell, Victoria L.; Schild-Poulter, Caroline

    2012-01-01

    The Ku heterodimer (Ku70/Ku80) is a main component of the nonhomologous end-joining (NHEJ) pathway that repairs DNA double-strand breaks (DSBs). Ku binds the broken DNA end and recruits other proteins to facilitate the processing and ligation of the broken end. While Ku interacts with many proteins involved in DNA damage/repair-related functions, few interactions have been mapped to the N-terminal von Willebrand A (vWA) domain, a predicted protein interaction domain. The mutagenesis of Ku70 v...

  9. Characterisation of the histone methyltransferase SET8 in cell cycle progression and the DNA damage response

    DEFF Research Database (Denmark)

    Jørgensen, Stine

    2008-01-01

    recombination and repair. I therefore initiated a mass spectrometry based study to identify changes in histone modifications after DNA damage. By using SILAC labelling of cells to quantatively measure the changes in histone modifications, we observed a marked reduction in the level of monomethylated Histone H4...... of DNA double strand breaks (DSBs) and activation of CHK1, an important mediator of the S phase checkpoint. Furthermore, we demonstrated that the generation of DSBs, seen upon depletion of SET8, was dependent on replication. Additionally, we identified an interaction between SET8 and PCNA, a key...

  10. Population variability in biological adaptive responses to DNA damage and the shapes of carcinogen dose-response curves

    International Nuclear Information System (INIS)

    Carcinogen dose-response curves for both ionizing radiation and chemicals are typically assumed to be linear at environmentally relevant doses. This assumption is used to ensure protection of the public health in the absence of relevant dose-response data. A theoretical justification for the assumption has been provided by the argument that low dose linearity is expected when an exogenous agent adds to an ongoing endogenous process. Here, we use computational modeling to evaluate (1) how two biological adaptive processes, induction of DNA repair and cell cycle checkpoint control, may affect the shapes of dose-response curves for DNA-damaging carcinogens and (2) how the resulting dose-response behaviors may vary within a population. Each model incorporating an adaptive process was capable of generating not only monotonic dose-responses but also nonmonotonic (J-shaped) and threshold responses. Monte Carlo analysis suggested that all these dose-response behaviors could coexist within a population, as the spectrum of qualitative differences arose from quantitative changes in parameter values. While this analysis is largely theoretical, it suggests that (a) accurate prediction of the qualitative form of the dose-response requires a quantitative understanding of the mechanism (b) significant uncertainty is associated with human health risk prediction in the absence of such quantitative understanding and (c) a stronger experimental and regulatory focus on biological mechanisms and interindividual variability would allow flexibility in regulatory treatment of environmental carcinogens without compromising human health

  11. CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response.

    Science.gov (United States)

    Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie

    2016-04-01

    To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR. PMID:26700936

  12. Measurement of DNA damage after exposure to electromagnetic radiation in the cellular phone communication frequency band (835.62 and 847.74 MHz).

    Science.gov (United States)

    Malyapa, R S; Ahern, E W; Straube, W L; Moros, E G; Pickard, W F; Roti Roti, J L

    1997-12-01

    Mouse C3H 10T1/2 fibroblasts and human glioblastoma U87MG cells were exposed to cellular phone communication frequency radiations to investigate whether such exposure produces DNA damage in in vitro cultures. Two types of frequency modulations were studied: frequency-modulated continuous-wave (FMCW), with a carrier frequency of 835.62 MHz, and code-division multiple-access (CDMA) centered on 847.74 MHz. Exponentially growing (U87MG and C3H 10T1/2 cells) and plateau-phase (C3H 10T1/2 cells) cultures were exposed to either FMCW or CDMA radiation for varying periods up to 24 h in specially designed radial transmission lines (RTLs) that provided relatively uniform exposure with a specific absorption rate (SAR) of 0.6 W/kg. Temperatures in the RTLs were monitored continuously and maintained at 37 +/- 0.3 degrees C. Sham exposure of cultures in an RTL (negative control) and 137Cs gamma-irradiated samples (positive control) were included with every experiment. The alkaline comet assay as described by Olive et al. (Exp. Cell Res. 198, 259-269, 1992) was used to measure DNA damage. No significant differences were observed between the test group exposed to FMCW or CDMA radiation and the sham-treated negative controls. Our results indicate that exposure of cultured mammalian cells to cellular phone communication frequencies under these conditions at an SAR of 0.6 W/kg does not cause DNA damage as measured by the alkaline comet assay. PMID:9399708

  13. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo

    OpenAIRE

    Phesse, T J; Myant, K.B.; Cole, A M; Ridgway, R.A.; Pearson, H; Muncan, V.; van den Brink, G R; Vousden, K H; Sears, R.; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-01-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes ...

  14. Prolonged mitotic arrest induces a caspase-dependent DNA damage response at telomeres that determines cell survival.

    Science.gov (United States)

    Hain, Karolina O; Colin, Didier J; Rastogi, Shubhra; Allan, Lindsey A; Clarke, Paul R

    2016-01-01

    A delay in the completion of metaphase induces a stress response that inhibits further cell proliferation or induces apoptosis. This response is thought to protect against genomic instability and is important for the effects of anti-mitotic cancer drugs. Here, we show that mitotic arrest induces a caspase-dependent DNA damage response (DDR) at telomeres in non-apoptotic cells. This pathway is under the control of Mcl-1 and other Bcl-2 family proteins and requires caspase-9, caspase-3/7 and the endonuclease CAD/DFF40. The gradual caspase-dependent loss of the shelterin complex protein TRF2 from telomeres promotes a DDR that involves DNA-dependent protein kinase (DNA-PK). Suppression of mitotic telomere damage by enhanced expression of TRF2, or the inhibition of either caspase-3/7 or DNA-PK during mitotic arrest, promotes subsequent cell survival. Thus, we demonstrate that mitotic stress is characterised by the sub-apoptotic activation of a classical caspase pathway, which promotes telomere deprotection, activates DNA damage signalling, and determines cell fate in response to a prolonged delay in mitosis. PMID:27230693

  15. Modulation of the E2F1-driven cancer cell fate by the DNA damage response machinery and potential novel E2F1 targets in osteosarcomas

    DEFF Research Database (Denmark)

    Liontos, Michalis; Niforou, Katerina; Velimezi, Georgia;

    2009-01-01

    Osteosarcoma is the most common primary bone cancer. Mutations of the RB gene represent the most frequent molecular defect in this malignancy. A major consequence of this alteration is that the activity of the key cell cycle regulator E2F1 is unleashed from the inhibitory effects of pRb. Studies...... in animal models and in human cancers have shown that deregulated E2F1 overexpression possesses either "oncogenic" or "oncosuppressor" properties, depending on the cellular context. To address this issue in osteosarcomas, we examined the status of E2F1 relative to cell proliferation and apoptosis...... in a clinical setting of human primary osteosarcomas and in E2F1-inducible osteosarcoma cell line models that are wild-type and deficient for p53. Collectively, our data demonstrated that high E2F1 levels exerted a growth-suppressing effect that relied on the integrity of the DNA damage response network...

  16. Adaptive response to DNA-damaging agents in natural Saccharomyces cerevisiae populations from "Evolution Canyon", Mt. Carmel, Israel.

    Directory of Open Access Journals (Sweden)

    Gabriel A Lidzbarsky

    Full Text Available BACKGROUND: Natural populations of most organisms, especially unicellular microorganisms, are constantly exposed to harsh environmental factors which affect their growth. UV radiation is one of the most important physical parameters which influences yeast growth in nature. Here we used 46 natural strains of Saccharomyces cerevisiae isolated from several natural populations at the "Evolution Canyon" microsite (Nahal Oren, Mt. Carmel, Israel. The opposing slopes of this canyon share the same geology, soil, and macroclimate, but they differ in microclimatic conditions. The interslope differences in solar radiation (200%-800% more on the "African" slope caused the development of two distinct biomes. The south-facing slope is sunnier and has xeric, savannoid "African" environment while the north-facing slope is represented by temperate, "European" forested environment. Here we studied the phenotypic response of the S. cerevisiae strains to UVA and UVC radiations and to methyl methanesulfonate (MMS in order to evaluate the interslope effect on the strains' ability to withstand DNA-damaging agents. METHODOLOGY/PRINCIPAL FINDINGS: We exposed our strains to the different DNA-damaging agents and measured survival by counting colony forming units. The strains from the "African" slope were more resilient to both UVA and MMS than the strains from the "European" slope. In contrast, we found that there was almost no difference between strains (with similar ploidy from the opposite slopes, in their sensitivity to UVC radiation. These results suggest that the "African" strains are more adapted to higher solar radiation than the "European" strains. We also found that the tetraploids strains were more tolerant to all DNA-damaging agents than their neighboring diploid strains, which suggest that high ploidy level might be a mechanism of adaptation to high solar radiation. CONCLUSIONS/SIGNIFICANCE: Our results and the results of parallel studies with several other

  17. Mdb1, a fission yeast homolog of human MDC1, modulates DNA damage response and mitotic spindle function.

    Directory of Open Access Journals (Sweden)

    Yi Wei

    Full Text Available During eukaryotic DNA damage response (DDR, one of the earliest events is the phosphorylation of the C-terminal SQ motif of histone H2AX (H2A in yeasts. In human cells, phosphorylated H2AX (γH2AX is recognized by MDC1, which serves as a binding platform for the accumulation of a myriad of DDR factors on chromatin regions surrounding DNA lesions. Despite its important role in DDR, no homolog of MDC1 outside of metazoans has been described. Here, we report the characterization of Mdb1, a protein from the fission yeast Schizosaccharomyces pombe, which shares significant sequence homology with human MDC1 in their C-terminal tandem BRCT (tBRCT domains. We show that in vitro, recombinant Mdb1 protein binds a phosphorylated H2A (γH2A peptide, and the phospho-specific binding requires two conserved phospho-binding residues in the tBRCT domain of Mdb1. In vivo, Mdb1 forms nuclear foci at DNA double strand breaks (DSBs induced by the HO endonuclease and ionizing radiation (IR. IR-induced Mdb1 focus formation depends on γH2A and the phospho-binding residues of Mdb1. Deleting the mdb1 gene does not overtly affect DNA damage sensitivity in a wild type background, but alters the DNA damage sensitivity of cells lacking another γH2A binder Crb2. Overexpression of Mdb1 causes severe DNA damage sensitivity in a manner that requires the interaction between Mdb1 and γH2A. During mitosis, Mdb1 localizes to spindles and concentrates at spindle midzones at late mitosis. The spindle midzone localization of Mdb1 requires its phospho-binding residues, but is independent of γH2A. Loss of Mdb1 or mutating its phospho-binding residues makes cells more resistant to the microtubule depolymerizing drug thiabendazole. We propose that Mdb1 performs dual roles in DDR and mitotic spindle regulation.

  18. RAD9 deficiency enhances radiation induced bystander DNA damage and transcriptomal response

    International Nuclear Information System (INIS)

    Radiation induced bystander effects are an important component of the overall response of cells to irradiation and are associated with human health risks. The mechanism responsible includes intra-cellular and inter-cellular signaling by which the bystander response is propagated. However, details of the signaling mechanism are not well defined. We measured the bystander response of Mrad9+/+ and Mrad9−/− mouse embryonic stem cells, as well as human H1299 cells with inherent or RNA interference-mediated reduced RAD9 levels after exposure to 1 Gy α particles, by scoring chromosomal aberrations and micronuclei formation, respectively. In addition, we used microarray gene expression analyses to profile the transcriptome of directly irradiated and bystander H1299 cells. We demonstrated that Mrad9 null enhances chromatid aberration frequency induced by radiation in bystander mouse embryonic stem cells. In addition, we found that H1299 cells with reduced RAD9 protein levels showed a higher frequency of radiation induced bystander micronuclei formation, compared with parental cells containing inherent levels of RAD9. The enhanced bystander response in human cells was associated with a unique transcriptomic profile. In unirradiated cells, RAD9 reduction broadly affected stress response pathways at the mRNA level; there was reduction in transcript levels corresponding to genes encoding multiple members of the UVA-MAPK and p38MAPK families, such as STAT1 and PARP1, suggesting that these signaling mechanisms may not function optimally when RAD9 is reduced. Using network analysis, we found that differential activation of the SP1 and NUPR1 transcriptional regulators was predicted in directly irradiated and bystander H1299 cells. Transcription factor prediction analysis also implied that HIF1α (Hypoxia induced factor 1 alpha) activation by protein stabilization in irradiated cells could be a negative predictor of the bystander response, suggesting that local hypoxic stress

  19. The role of germline alterations in the DNA damage response genes BRIP1 and BRCA2 in melanoma susceptibility.

    Science.gov (United States)

    Tuominen, Rainer; Engström, Pär G; Helgadottir, Hildur; Eriksson, Hanna; Unneberg, Per; Kjellqvist, Sanela; Yang, Muyi; Lindén, Diana; Edsgärd, Daniel; Hansson, Johan; Höiom, Veronica

    2016-07-01

    We applied a targeted sequencing approach to identify germline mutations conferring a moderately to highly increased risk of cutaneous and uveal melanoma. Ninety-two high-risk melanoma patients were screened for inherited variation in 120 melanoma candidate genes. Observed gene variants were filtered based on frequency in reference populations, cosegregation with melanoma in families and predicted functional effect. Several novel or rare genetic variants in genes involved in DNA damage response, cell-cycle regulation and transcriptional control were identified in melanoma patients. Among identified genetic alterations was an extremely rare variant (minor allele frequency of 0.00008) in the BRIP1 gene that was found to cosegregate with the melanoma phenotype. We also found a rare nonsense variant in the BRCA2 gene (rs11571833), previously associated with cancer susceptibility but not with melanoma, which showed weak association with melanoma susceptibility in the Swedish population. Our results add to the growing knowledge about genetic factors associated with melanoma susceptibility and also emphasize the role of DNA damage response as an important factor in melanoma etiology. © 2016 Wiley Periodicals, Inc. PMID:27074266

  20. Subnuclear domain proteins in cancer cells support the functions of RUNX2 in the DNA damage response.

    Science.gov (United States)

    Yang, Seungchan; Quaresma, Alexandre J C; Nickerson, Jeffrey A; Green, Karin M; Shaffer, Scott A; Imbalzano, Anthony N; Martin-Buley, Lori A; Lian, Jane B; Stein, Janet L; van Wijnen, Andre J; Stein, Gary S

    2015-02-15

    Cancer cells exhibit modifications in nuclear architecture and transcriptional control. Tumor growth and metastasis are supported by RUNX family transcriptional scaffolding proteins, which mediate the assembly of nuclear-matrix-associated gene-regulatory hubs. We used proteomic analysis to identify RUNX2-dependent protein-protein interactions associated with the nuclear matrix in bone, breast and prostate tumor cell types and found that RUNX2 interacts with three distinct proteins that respond to DNA damage - RUVBL2, INTS3 and BAZ1B. Subnuclear foci containing these proteins change in intensity or number following UV irradiation. Furthermore, RUNX2, INTS3 and BAZ1B form UV-responsive complexes with the serine-139-phosphorylated isoform of H2AX (γH2AX). UV irradiation increases the interaction of BAZ1B with γH2AX and decreases histone H3 lysine 9 acetylation levels, which mark accessible chromatin. RUNX2 depletion prevents the BAZ1B-γH2AX interaction and attenuates loss of H3K9 and H3K56 acetylation. Our data are consistent with a model in which RUNX2 forms functional complexes with BAZ1B, RUVBL2 and INTS3 to mount an integrated response to DNA damage. This proposed cytoprotective function for RUNX2 in cancer cells might clarify its expression in chemotherapy-resistant and/or metastatic tumors. PMID:25609707

  1. The Protein Arginine Methylase 5 (PRMT5/SKB1) Gene Is Required for the Maintenance of Root Stem Cells in Response to DNA Damage.

    Science.gov (United States)

    Li, Qiuling; Zhao, Yan; Yue, Minghui; Xue, Yongbiao; Bao, Shilai

    2016-04-20

    Plant root stem cells and their surrounding microenvironment, namely the stem cell niche, are hypersensitive to DNA damage. However, the molecular mechanisms that help maintain the genome stability of root stem cells remain elusive. Here we show that the root stem cells in the skb1 (Shk1 kinase binding protein 1) mutant undergoes DNA damage-induced cell death, which is enhanced when combined with a lesion of the Ataxia-telangiectasia mutated (ATM) or the ATM/RAD3-related (ATR) genes, suggesting that the SKB1 plays a synergistically effect with ATM and ATR in DNA damage pathway. We also provide evidence that SKB1 is required for the maintenance of quiescent center (QC), a root stem cell niche, under DNA damage treatments. Furthermore, we report decreased and ectopic expression of SHORTROOT (SHR) in response to DNA damage in the skb1 root tips, while the expression of SCARECROW (SCR) remains unaffected. Our results uncover a new mechanism of plant root stem cell maintenance under DNA damage conditions that requires SKB1. PMID:27090604

  2. Utilization of isogenic yeast DNA repair mutants and gene expression profiling to elucidate DNA damage response networks

    International Nuclear Information System (INIS)

    In order to assess the effects of defects in the base excision repair (BER), and/or nucleotide excision repair (NER) pathways on levels of gene expression, the global genome expression patterns of a wild type S. cerevisiae strain, and mutant strains defective in BER, NER, and both BER and NER were compared. Isogenic strains were exposed to equitoxic doses of hydrogen peroxide such that for each strain the same level of cell death occurs. Two doses of hydrogen peroxide were used, a moderate toxicity dose resulting in 50% cell survival and a highly toxic dose resulting in approximately 1% cell survival. We observed a global down regulation of ORFs in the normal (wild type), the BER defective, or the NER defective strains in response to the highly toxic dose. For transcriptional responses at the moderate toxicity dose, the BER defective, and the NER defective strains respond similarly. The normal response differs significantly compared to the BER defective, the NER defective or the combined BER / NER dual pathway defective strain. ORFs, which respond to a moderate toxicity dose of hydrogen peroxide can be grouped into several categories, including DNA repair/tolerance, DNA replication, cell cycle, transcription, signal transduction, general stress response proteins, and protein degradation. These studies differ markedly from other microarray studies which examined mainly stress responses in wild type yeast strains with normal DNA repair capacities. One outcome of our experiments is the identification of responses due to the presence of unrepaired DNA damage which serves as the signal for the observed up- or down-regulation of certain genes. Using this type of approach, such responses can be distinguished from stress responses initiated by signals (e.g. at the membrane or cytoplasmic level) other than DNA damage. We have also gauged spontaneous and induced mutation frequencies and recombination rates, as well as cell cycle and morphological characteristics of these

  3. Construction of DNA damage response gene pprI function-deficient and function-complementary mutants in Deinococcus radiodurans

    Institute of Scientific and Technical Information of China (English)

    GAO Guanjun; LU Huiming; HUANG Lifen; HUA Yuejin

    2005-01-01

    PprI, a DNA damage response factor from the extraordinary radioresistant bacterium Deinococcus radiodurans, plays a central regulatory role in multiple DNA damage repair. In this study, a fusion DNA fragment carrying kanamycin resistance gene with the D. Radiodurans groEL promoter was cloned by PCR amplification and reversely inserted into the pprI locus in the genome of the wild-type strain R1. The resulting pprI-deficient strain, designated YR1, was very sensitive to ionizing radiation. Meanwhile, the re- combinant DNA fragment was cloned into the shuttle vector pRADZ3, and resulted in plasmid pRADK with kanamycin resistance in D. Radiodurans. The fragments containing complete pprI gene and 3'-terminal deletion pprI△ were cloned into plasmid pRADK. The resulted plasmids designated pRADKpprI and pRADKpprI△ were then transformed to YR1. Results show that YR1 carrying pRADKpprI was able to fully restore the extreme radioresistance to the same level as the wild-type D. Raiodurans R1, whereas YR1 pRADKpprI△ failed to do so. Construction of DNA repair switch PprI function-deficient and function-complementary mutants in D. Radiodurans is not only useful to elucidating the relationship between domains and functions of PprI protein, but also opens the door to the further studies of the biological functions of PprI protein in vivo.

  4. Early Loss of Telomerase Action in Yeast Creates a Dependence on the DNA Damage Response Adaptor Proteins.

    Science.gov (United States)

    Jay, Kyle A; Smith, Dana L; Blackburn, Elizabeth H

    2016-07-15

    Telomeres cap the ends of chromosomes, protecting them from degradation and inappropriate DNA repair processes that can lead to genomic instability. A short telomere elicits increased telomerase action on itself that replenishes telomere length, thereby stabilizing the telomere. In the prolonged absence of telomerase activity in dividing cells, telomeres eventually become critically short, inducing a permanent cell cycle arrest (senescence). We recently showed that even early after telomerase inactivation (ETI), yeast cells have accelerated mother cell aging and mildly perturbed cell cycles. Here, we show that the complete disruption of DNA damage response (DDR) adaptor proteins in ETI cells causes severe growth defects. This synthetic-lethality phenotype was as pronounced as that caused by extensive DNA damage in wild-type cells but showed genetic dependencies distinct from such damage and was completely alleviated by SML1 deletion, which increases deoxynucleoside triphosphate (dNTP) pools. Our results indicated that these deleterious effects in ETI cells cannot be accounted for solely by the slow erosion of telomeres due to incomplete replication that leads to senescence. We propose that normally occurring telomeric DNA replication stress is resolved by telomerase activity and the DDR in two parallel pathways and that deletion of Sml1 prevents this stress. PMID:27161319

  5. Cell type-dependent induction of DNA damage by 1800 MHz radiofrequency electromagnetic fields does not result in significant cellular dysfunctions.

    Directory of Open Access Journals (Sweden)

    Shanshan Xu

    Full Text Available BACKGROUND: Although IARC clarifies radiofrequency electromagnetic fields (RF-EMF as possible human carcinogen, the debate on its health impact continues due to the inconsistent results. Genotoxic effect has been considered as a golden standard to determine if an environmental factor is a carcinogen, but the currently available data for RF-EMF remain controversial. As an environmental stimulus, the effect of RF-EMF on cellular DNA may be subtle. Therefore, more sensitive method and systematic research strategy are warranted to evaluate its genotoxicity. OBJECTIVES: To determine whether RF-EMF does induce DNA damage and if the effect is cell-type dependent by adopting a more sensitive method γH2AX foci formation; and to investigate the biological consequences if RF-EMF does increase γH2AX foci formation. METHODS: Six different types of cells were intermittently exposed to GSM 1800 MHz RF-EMF at a specific absorption rate of 3.0 W/kg for 1 h or 24 h, then subjected to immunostaining with anti-γH2AX antibody. The biological consequences in γH2AX-elevated cell type were further explored with comet and TUNEL assays, flow cytometry, and cell growth assay. RESULTS: Exposure to RF-EMF for 24 h significantly induced γH2AX foci formation in Chinese hamster lung cells and Human skin fibroblasts (HSFs, but not the other cells. However, RF-EMF-elevated γH2AX foci formation in HSF cells did not result in detectable DNA fragmentation, sustainable cell cycle arrest, cell proliferation or viability change. RF-EMF exposure slightly but not significantly increased the cellular ROS level. CONCLUSIONS: RF-EMF induces DNA damage in a cell type-dependent manner, but the elevated γH2AX foci formation in HSF cells does not result in significant cellular dysfunctions.

  6. CDK2 and PKA mediated-sequential phosphorylation is critical for p19INK4d function in the DNA damage response.

    Directory of Open Access Journals (Sweden)

    Mariela C Marazita

    Full Text Available DNA damage triggers a phosphorylation-based signaling cascade known as the DNA damage response. p19INK4d, a member of the INK4 family of CDK4/6 inhibitors, has been reported to participate in the DNA damage response promoting DNA repair and cell survival. Here, we provide mechanistic insight into the activation mechanism of p19INK4d linked to the response to DNA damage. Results showed that p19INK4d becomes phosphorylated following UV radiation, β-amyloid peptide and cisplatin treatments. ATM-Chk2/ATR-Chk1 signaling pathways were found to be differentially involved in p19INK4d phosphorylation depending on the type of DNA damage. Two sequential phosphorylation events at serine 76 and threonine 141 were identified using p19INK4d single-point mutants in metabolic labeling assays with (32P-orthophosphate. CDK2 and PKA were found to participate in p19INK4d phosphorylation process and that they would mediate serine 76 and threonine 141 modifications respectively. Nuclear translocation of p19INK4d induced by DNA damage was shown to be dependent on serine 76 phosphorylation. Most importantly, both phosphorylation sites were found to be crucial for p19INK4d function in DNA repair and cell survival. In contrast, serine 76 and threonine 141 were dispensable for CDK4/6 inhibition highlighting the independence of p19INK4d functions, in agreement with our previous findings. These results constitute the first description of the activation mechanism of p19INK4d in response to genotoxic stress and demonstrate the functional relevance of this activation following DNA damage.

  7. Genetic Control or Repair and Adaptive Response to Low-Level DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    J. E. Haber

    2009-10-05

    Research was focused on how a single double-strand break - a model of low-dose ionizing radiation-induced DNA damage - could be studied in a simple model system, budding yeast. Breaks were induced in several different ways. We used the site-specific HO endonuclease to create a single DSB in all cells of the population so that its fate could be extensively analyzed genetically and molecularly. We also used two heterologous systems, the plant DS element and the Rag1/Rag2 proteins, to generate different types of DSBs, these containing hairpin ends that needed to be cleaved open before end-joining could take place. All three approaches yielded important new findings. We also extended our analysis of the Mre11 protein that plays key roles in both NHEJ and in homologous recombination. Finally we analyzed the poorly understood recombination events that were independent of the key recombination protein, Rad52. This line of inquiry was strongly motivated by the fact that vertebrate cells do not rely strongly on Rad52 for homologous recombination, so that some clues about alternative mechanisms could be gained by understanding how Rad52-independent recombination occurred. We found that the Mre11 complex was the most important element in Rad52-independent recombination.

  8. Patterns of DNA damage response in intracranial germ cell tumors versus glioblastomas reflect cell of origin rather than brain environment

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Hoei-Hansen, Christina E; Krizova, Katerina; Hamerlik, Petra; Skakkebæk, Niels E; Rajpert-De Meyts, Ewa; Bartek, Jiri

    2014-01-01

    were no clear aberrations in the ATM-Chk2-p53 pathway components among the PIGCT cohort; iii) Subsets of PIGCTs showed unusual cytosolic localization of Chk2 and/or ATM. Collectively, these results show that PIGCTs mimic the DDR activation patterns of their gonadal germ cell tumor counterparts, rather......The DNA damage response (DDR) machinery becomes commonly activated in response to oncogenes and during early stages of development of solid malignancies, with an exception of testicular germ cell tumors (TGCTs). The active DDR signaling evokes cell death or senescence but this anti-tumor barrier...... cell tumors (PIGCTs), to address the roles of cell-intrinsic factors including cell of origin, versus local tissue environment, in the constitutive DDR activation in vivo. Immunohistochemical analysis of 7 biomarkers on a series of 21 PIGCTs (germinomas and other subtypes), 20 normal brain specimens...

  9. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage.

    Science.gov (United States)

    Barroso-González, J; Auclair, S; Luan, S; Thomas, L; Atkins, K M; Aslan, J E; Thomas, L L; Zhao, J; Zhao, Y; Thomas, G

    2016-09-01

    Nuclear factor kappa B (NF-κB) promotes cell survival in response to genotoxic stress by inducing the expression of anti-apoptotic proteins including Bcl-xL, which protects mitochondria from stress-induced mitochondrial outer membrane permeabilization (MOMP). Here we show that the multifunctional sorting protein Pacs-2 (phosphofurin acidic cluster sorting protein-2) is required for Bcl-xL induction following DNA damage in primary mouse thymocytes. Consequently, in response to DNA damage, Pacs-2(-/-) thymocytes exhibit a blunted induction of Bcl-xL, increased MOMP and accelerated apoptosis. Biochemical studies show that cytoplasmic PACS-2 promotes this DNA damage-induced anti-apoptotic pathway by interacting with ataxia telangiectasia mutated (ATM) to drive NF-κB activation and induction of Bcl-xL. However, Pacs-2 was not required for tumor necrosis factor-α-induced NF-κB activation, suggesting a role for PACS-2 selectively in NF-κB activation in response to DNA damage. These findings identify PACS-2 as an in vivo mediator of the ATM and NF-κB-dependent induction of Bcl-xL that promotes cell survival in response to DNA damage. PMID:26943323

  10. Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response

    International Nuclear Information System (INIS)

    Ionizing radiation-induced hematopoietic injury could occur either due to accidental exposure or due to diagnostic and therapeutic interventions. Currently there is no approved drug to mitigate radiation toxicity in hematopoietic cells. This study investigates the potential of ON 01210.Na, a chlorobenzylsulfone derivative, in ameliorating radiation-induced hematopoietic toxicity when administered after exposure to radiation. We also investigate the molecular mechanisms underlying this activity. Male C3H/HeN mice (n = 5 mice per group; 6-8 weeks old) were exposed to a sub-lethal dose (5 Gy) of γ radiation using a 137Cs source at a dose rate of 0.77 Gy/min. Two doses of ON 01210.Na (500 mg/kg body weight) were administered subcutaneously at 24 h and 36 h after radiation exposure. Mitigation of hematopoietic toxicity by ON 01210.Na was investigated by peripheral white blood cell (WBC) and platelet counts at 3, 7, 21, and 28 d after radiation exposure. Granulocyte macrophage colony forming unit (GM-CFU) assay was done using isolated bone marrow cells, and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) was performed on bone marrow sections at 7 d post-exposure. The DNA damage response pathway involving ataxia telangiectasia mutated (ATM) and p53 was investigated by Western blot in bone marrow cells at 7 d post-exposure. Compared to the vehicle, ON 01210.Na treated mice showed accelerated recovery of peripheral WBC and platelet counts. Post-irradiation treatment of mice with ON 01210.Na also resulted in higher GM-CFU counts. The mitigation effects were accompanied by attenuation of ATM-p53-dependent DNA damage response in the bone marrow cells of ON 01210.Na treated mice. Both phospho-ATM and phospho-p53 were significantly lower in the bone marrow cells of ON 01210.Na treated than in vehicle treated mice. Furthermore, the Bcl2:Bax ratio was higher in the drug treated mice than the vehicle treated groups. ON 01210.Na treatment significantly

  11. ATM and ATR:Sensing DNA damage

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Zheng-Ping Xu; Yun Huang; Hope E. Hamrick; Penelope J. Duerksen-Hughes; Ying-Nian Yu

    2004-01-01

    Cellular response to genotoxic stress is a very complex process, and it usually starts with the "sensing" or "detection" of the DNA damage, followed by a series of events that include signal transduction and activation of transcription factors. The activated transcription factors induce expressions of many genes which are involved in cellular functions such as DNA repair, cell cycle arrest, and cell death. There have been extensive studies from multiple disciplines exploring the mechanisms of cellular genotoxic responses, which have resulted in the identification of many cellular components involved in this process, including the mitogen-activated protein kinases (MAPKs) cascade. Although the initial activation of protein kinase cascade is not fully understood,human protein kinases ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) are emerging as potential sensors of DNA damage. Current progresses in ATM/ATR research and related signaling pathways are discussed in this review, in an effort to facilitate a better understanding of genotoxic stress response.

  12. ErbB4 localization to cardiac myocyte nuclei, and its role in myocyte DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Icli, Basak [Department of Medicine, Cardiovascular Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Bharti, Ajit [Center of Molecular Stress Response Whitaker Cardiovascular Institute, Department of Medicine, Boston University Medical Center, Boston, MA 02118 (United States); Pentassuglia, Laura; Peng, Xuyang [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (United States); Sawyer, Douglas B., E-mail: douglas.b.sawyer@vanderbilt.edu [Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer ErbB4 localizes to cardiac myocyte nuclei as a full-length receptor. Black-Right-Pointing-Pointer Cardiac myocytes express predominantly JM-a/CYT-1 ErbB4. Black-Right-Pointing-Pointer Myocyte p53 activation in response to doxorubicin requires ErbB4 activity. -- Abstract: The intracellular domain of ErbB4 receptor tyrosine kinase is known to translocate to the nucleus of cells where it can regulate p53 transcriptional activity. The purpose of this study was to examine whether ErbB4 can localize to the nucleus of adult rat ventricular myocytes (ARVM), and regulate p53 in these cells. We demonstrate that ErbB4 does locate to the nucleus of cardiac myocytes as a full-length protein, although nuclear location occurs as a full-length protein that does not require Protein Kinase C or {gamma}-secretase activity. Consistent with this we found that only the non-cleavable JM-b isoform of ErbB4 is expressed in ARVM. Doxorubicin was used to examine ErbB4 role in regulation of a DNA damage response in ARVM. Doxorubicin induced p53 and p21 was suppressed by treatment with AG1478, an EGFR and ErbB4 kinase inhibitor, or suppression of ErbB4 expression with small interfering RNA. Thus ErbB4 localizes to the nucleus as a full-length protein, and plays a role in the DNA damage response induced by doxorubicin in cardiac myocytes.

  13. DNA damage induces p53-dependent BRCA1 nuclear export

    International Nuclear Information System (INIS)

    Full text: Carriers of BRCA1 mutations have an 85% risk of developing breast cancer by age 70. This risk is about 20-fold higher than the general population. BRCA1 functions in multiple DNA damage response pathways, and its functions are regulated by a variety of mechanisms including transcription control, phosphorylation, and protein-protein interactions. Given the critical role of BRCA1 in nucleus, its sub-cellular localization could be an important mechanism in regulating its function. Recent studies showed that BRCA1 is a nuclear-cytoplasmic shuttle protein. It is imported to the nucleus through a nuclear localization signal (NLS)-mediated importing receptor pathway, and exported to cytoplasm via a nuclear export signal (NES)-facilitated CRM1 pathway. However, little is known on how BRCA1 shuttling between the nucleus and cytoplasm is controlled, what cellular process(s) or environmental insult(s) triggers cell to import BRCA1 protein to nucleus and verse visa. In view of the fact that BRCA1 plays critical roles in several DNA damage response pathways, we hypothesized that ionizing radiation-induced DNA damage may affect BRCA1 shuttling. We found that ionizing radiation-induced DNA damage promotes BRCA1 nuclear export in human breast cancer cells through a CRM1-dependent mechanism. We further found that DNA damage-induced BRCA1 nuclear export is dependent on wild-type p53 function. These results suggest that p53-dependent BRCA1 nucleus export might be an alternative mechanism for BRCA1 functional regulation in cellular response to DNA damage. Interruption of BRCA1 shuttling in breast cancer cells that do not have functional p53 may compromise the precise regulation of BRCA1 function timely and spatially, resulting in aberrant DNA repair and increased genetic instability in surviving cells

  14. A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response

    DEFF Research Database (Denmark)

    Blasius, Melanie; Wagner, Sebastian A; Choudhary, Chuna Ram;

    2014-01-01

    RNA metabolism is altered following DNA damage, but the underlying mechanisms are not well understood. Through a 14-3-3 interaction screen for DNA damage-induced protein interactions in human cells, we identified protein complexes connected to RNA biology. These include the nuclear exosome...

  15. XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Sundheim, Ottar; Peña-Diaz, Javier; Andersen, Sonja; Slupphaug, Geir; Krokan, Hans E; Wilson, David M; Akbari, Mansour; Otterlei, Marit

    2011-01-01

    -inhibitors only slightly reduces the recruitment of XRCC1, PNK, or POLß to sites of DNA damage. Recruitment of PCNA and FEN-1 requires higher doses of irradiation and is enhanced by XRCC1, as well as by accumulation of PARP-1 at the site of DNA damage. These data improve our understanding of recruitment of BER...

  16. How Diet Intervention via Modulation of DNA Damage Response through MicroRNAs May Have an Effect on Cancer Prevention and Aging, an in Silico Study.

    Science.gov (United States)

    Carotenuto, Felicia; Albertini, Maria C; Coletti, Dario; Vilmercati, Alessandra; Campanella, Luigi; Darzynkiewicz, Zbigniew; Teodori, Laura

    2016-01-01

    The DNA damage response (DDR) is a molecular mechanism that cells have evolved to sense DNA damage (DD) to promote DNA repair, or to lead to apoptosis, or cellular senescence if the damage is too extensive. Recent evidence indicates that microRNAs (miRs) play a critical role in the regulation of DDR. Dietary bioactive compounds through miRs may affect activity of numerous genes. Among the most studied bioactive compounds modulating expression of miRs are epi-gallocatechin-3-gallate, curcumin, resveratrol and n3-polyunsaturated fatty acids. To compare the impact of these dietary compounds on DD/DDR network modulation, we performed a literature search and an in silico analysis by the DIANA-mirPathv3 software. The in silico analysis allowed us to identify pathways shared by different miRs involved in DD/DDR vis-à-vis the specific compounds. The results demonstrate that certain miRs (e.g., -146, -21) play a central role in the interplay among DD/DDR and the bioactive compounds. Furthermore, some specific pathways, such as "fatty acids biosynthesis/metabolism", "extracellular matrix-receptor interaction" and "signaling regulating the pluripotency of stem cells", appear to be targeted by most miRs affected by the studied compounds. Since DD/DDR and these pathways are strongly related to aging and carcinogenesis, the present in silico results of our study suggest that monitoring the induction of specific miRs may provide the means to assess the antiaging and chemopreventive properties of particular dietary compounds. PMID:27213347

  17. How Diet Intervention via Modulation of DNA Damage Response through MicroRNAs May Have an Effect on Cancer Prevention and Aging, an in Silico Study

    Directory of Open Access Journals (Sweden)

    Felicia Carotenuto

    2016-05-01

    Full Text Available The DNA damage response (DDR is a molecular mechanism that cells have evolved to sense DNA damage (DD to promote DNA repair, or to lead to apoptosis, or cellular senescence if the damage is too extensive. Recent evidence indicates that microRNAs (miRs play a critical role in the regulation of DDR. Dietary bioactive compounds through miRs may affect activity of numerous genes. Among the most studied bioactive compounds modulating expression of miRs are epi-gallocatechin-3-gallate, curcumin, resveratrol and n3-polyunsaturated fatty acids. To compare the impact of these dietary compounds on DD/DDR network modulation, we performed a literature search and an in silico analysis by the DIANA-mirPathv3 software. The in silico analysis allowed us to identify pathways shared by different miRs involved in DD/DDR vis-à-vis the specific compounds. The results demonstrate that certain miRs (e.g., -146, -21 play a central role in the interplay among DD/DDR and the bioactive compounds. Furthermore, some specific pathways, such as “fatty acids biosynthesis/metabolism”, “extracellular matrix-receptor interaction” and “signaling regulating the pluripotency of stem cells”, appear to be targeted by most miRs affected by the studied compounds. Since DD/DDR and these pathways are strongly related to aging and carcinogenesis, the present in silico results of our study suggest that monitoring the induction of specific miRs may provide the means to assess the antiaging and chemopreventive properties of particular dietary compounds.

  18. Radiation-induced changes in expression of genes related to DNA damage response in lymphocytes of human peripheral blood

    International Nuclear Information System (INIS)

    Objective: To detect the expression of DNA damage response genes induced by radiation in human peripheral blood lymphocyte, and to explore the new biomarkers of radiation. Methods: The human peripheral blood cells were irradiated to X-rays at different doses of 0, 1, 2, 3, 4, and 5 Gy. The quantitative real, time qPCR wag used to detect the expressions of cyclin-dependent kinase inhibitor l a gene (Cdkn1 a) and growth arrest and DNA damage inducible gene (Gadd45α) in lymphocytes at 4 and 24 h post-irradiation, respectively.The method of CB micronucleus was used to determine the change of micronucleus ratio. Results: The expression of Cdkn1 a in peripheral blood lymphocytes wag increased significantly at 4 and 24 h post-irradiation to 0-5 Gy, reached the peak at 4 Gy and began to decrease at 5 Gy, which showed a dose-dependent manner (r=0.946, 0.975, P<0.05). Similarly, the expression of Gadd45α in human peripheral blood lymphocytes was also increased significantly at 4 and 24 h post-irradiation to 0-5 Gy in a dose-dependent manner,while the expression of Gadd45α at 4 h wag higher than that at 24 h (r=0.936, 0.797, P<0.05). The ratio of micronuclei wag increased significantly at 4 and 24 h post-irradiation to 0-5 Gy (r=0.990, 0.984, P<0.05). Conclusions: Cdkn1 a and Gadd45α expression could be increased significantly at 4 and 24 h post-irradiation to 0-5 Gy, showing a good linear relationship, which might be candidate for radiation biological dosimeter. (authors)

  19. TIMELESS Forms a Complex with PARP1 Distinct from Its Complex with TIPIN and Plays a Role in the DNA Damage Response

    OpenAIRE

    Lauren M. Young; Antonio Marzio; Pablo Perez-Duran; Dylan A. Reid; Daniel N. Meredith; Domenico Roberti; Ayelet Star; Eli Rothenberg; Beatrix Ueberheide; Michele Pagano

    2015-01-01

    SUMMARY PARP1 is the main sensor of single- and double-strand breaks in DNA and, in building chains of poly(ADP-ribose), promotes the recruitment of many downstream signaling and effector proteins involved in the DNA damage response (DDR). We show a robust physical interaction between PARP1 and the replication fork protein TIMELESS, distinct from the known TIMELESS-TIPIN complex, which activates the intra-S phase checkpoint. TIMELESS recruitment to laser-induced sites of DNA damage is depende...

  20. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Shi, Qiong; Song, Xiufang; Fu, Juanli; Hu, Lihua; Xu, Demei; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang, E-mail: songyangwenrong@hotmail.com

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observed phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.

  1. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    International Nuclear Information System (INIS)

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observed phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings

  2. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response

    OpenAIRE

    Poulsen, Sara L.; Hansen, Rebecca K.; Wagner, Sebastian A.; van Cuijk, Loes; van Belle, Gijsbert J.; Streicher, Werner; Wikström, Mats; Choudhary, Chunaram; Houtsmuller, Adriaan B.; Marteijn, Jurgen A.; Bekker-Jensen, Simon; Mailand, Niels

    2013-01-01

    Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs), promoting their K48-linked ubiquitylation and degradation. Only a single mammalian STUbL, RNF4, has been identified. We show that human RNF111/Arkadia is a new STUbL, which used three adjacent SIMs for s...

  3. DNA damage response and role of shelterin complex in human peripheral blood mononuclear cells exposed to gamma radiation

    International Nuclear Information System (INIS)

    Telomeres are the DNA protein structures that cap the ends of linear DNA. It consists of short repetitive DNA sequences (TTAGGG)n and specialized telomere binding proteins. There are six telomeric proteins (TRF1, TRF2, TIN2, TERF2, PTOP and POT1) called as shelterin complex/telosome which maintains telomere integrity. The function of this 'telosome' is to protect the natural ends of the chromosomes from being recognized as artificial DNA breaks, thereby preventing chromosome end-to-end fusions. DNA Damage Response (DDR) induced by radiation and its interaction with telomeric protein complex is poorly understood in human PBMCs at G0 stage. Alterations in either telomeric DNA or telomere binding proteins can impair the function of the telosome, which may lead to senescence or apoptosis. Ionizing radiation which induces a plethora of DNA lesions in human cell may also alter the expression of telomere associated proteins. In the present study, we have made an attempt to study the DNA damage response of telomere proteins in human peripheral blood mononuclear cells exposed to gamma radiation. Venous blood samples were collected from eight random healthy volunteers and PBMCs were separated. Dose response as well as time point kinetics study was carried out at transcription as well as protein level. PBMCs were irradiated at various doses between 10 cGy to 2.0 Gy at a dose rate of 1.0 Gy/min. Total RNA was isolated for gene expression analysis at 0 hour and 4 hours respectively. cDNA was prepared and transcriptional pattern as studied using real time q-PCR where Taqman probes were used. Time point kinetics of transcriptional pattern of TRF1, TRF2, TIN2, TERF2, PTOP and POT1 was carried out at 0 min, 15 min, 30 min, 60 min, and 120 min for two different doses (1.0 Gy and 2.0 Gy). Dose response and time point kinetics of TRF2 was studied at similar doses using confocal microscopy. Our results revealed that at 2.0 Gy there was a two fold increase at the level of transcription

  4. Characterisation of Human Keratinocytes by Measuring Cellular Repair Capacity of UVB-Induced DNA Damage and Monitoring of Cytogenetic Changes in Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Greinert, R.; Breibart, E.W.; Mitchell, D.; Smida, J.; Volkmer, B

    2000-07-01

    The molecular mechanisms for UV-induced photocarcinogenesis are far from being understood in detail, especially in the case of malignant melanoma of the skin. Nevertheless, it is known that deficiencies in cellular repair processes of UV-induced DNA damage (e.g. in the case of Xeroderma pigmentosum) represent important aetiological factors in the multistep development of skin cancer. The repair kinetics have therefore been studied of an established skin cell line (HaCaT), primary human keratinocytes, melanocytes and melanoma cell lines, using fluorescence microscopy and flow cytometry. Our data show a high degree of interindividual variability in cellular repair capacity for UV-induced DNA lesions, which might be due to individual differences in the degree of tolerable damage and/or the onsets of saturation of the enzymatic repair system. The cytogenetic analysis of melanoma cell lines, using spectral karyotyping (SKY) furthermore proves that malignant melanoma of the skin are characterised by high numbers of chromosomal aberrations. (author)

  5. Characterisation of Human Keratinocytes by Measuring Cellular Repair Capacity of UVB-Induced DNA Damage and Monitoring of Cytogenetic Changes in Melanoma Cell Lines

    International Nuclear Information System (INIS)

    The molecular mechanisms for UV-induced photocarcinogenesis are far from being understood in detail, especially in the case of malignant melanoma of the skin. Nevertheless, it is known that deficiencies in cellular repair processes of UV-induced DNA damage (e.g. in the case of Xeroderma pigmentosum) represent important aetiological factors in the multistep development of skin cancer. The repair kinetics have therefore been studied of an established skin cell line (HaCaT), primary human keratinocytes, melanocytes and melanoma cell lines, using fluorescence microscopy and flow cytometry. Our data show a high degree of interindividual variability in cellular repair capacity for UV-induced DNA lesions, which might be due to individual differences in the degree of tolerable damage and/or the onsets of saturation of the enzymatic repair system. The cytogenetic analysis of melanoma cell lines, using spectral karyotyping (SKY) furthermore proves that malignant melanoma of the skin are characterised by high numbers of chromosomal aberrations. (author)

  6. DNA Repair Genes: Alternative Transcription and Gene Expression at the Exon Level in Response to the DNA Damaging Agent, Ionizing Radiation

    OpenAIRE

    Forrester, Helen B.; Li, Jason; Hovan, Daniel; Ivashkevich, Alesia N.; Sprung, Carl N.

    2012-01-01

    DNA repair is an essential cellular process required to maintain genomic stability. Every cell is subjected to thousands of DNA lesions daily under normal physiological conditions. Ionizing radiation (IR) is a major DNA damaging agent that can be produced by both natural and man-made sources. A common source of radiation exposure is through its use in medical diagnostics or treatments such as for cancer radiotherapy where relatively high doses are received by patients. To understand the detai...

  7. Stress-induced DNA Damage biomarkers: Applications and limitations

    Science.gov (United States)

    Nikitaki, Zacharenia; Hellweg, Christine; Georgakilas, Alexandros; Ravanat, Jean-Luc

    2015-06-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism’s endogenous processes like replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damages play a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g. X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e. single, complex DNA lesions etc. that can be used as biomarkers. We critically compare DNA damage detection methods and their limitations. In addition to such DNA damage products, we suggest possible gene inductions that can be used to characterize responses to different types of stresses i.e. radiation, oxidative and replication stress, based on bioinformatic approaches and stringent meta-analysis of literature data.

  8. ZTF-8 interacts with the 9-1-1 complex and is required for DNA damage response and double-strand break repair in the C. elegans germline.

    Directory of Open Access Journals (Sweden)

    Hyun-Min Kim

    2014-10-01

    Full Text Available Germline mutations in DNA repair genes are linked to tumor progression. Furthermore, failure in either activating a DNA damage checkpoint or repairing programmed meiotic double-strand breaks (DSBs can impair chromosome segregation. Therefore, understanding the molecular basis for DNA damage response (DDR and DSB repair (DSBR within the germline is highly important. Here we define ZTF-8, a previously uncharacterized protein conserved from worms to humans, as a novel factor involved in the repair of both mitotic and meiotic DSBs as well as in meiotic DNA damage checkpoint activation in the C. elegans germline. ztf-8 mutants exhibit specific sensitivity to γ-irradiation and hydroxyurea, mitotic nuclear arrest at S-phase accompanied by activation of the ATL-1 and CHK-1 DNA damage checkpoint kinases, as well as accumulation of both mitotic and meiotic recombination intermediates, indicating that ZTF-8 functions in DSBR. However, impaired meiotic DSBR progression partially fails to trigger the CEP-1/p53-dependent DNA damage checkpoint in late pachytene, also supporting a role for ZTF-8 in meiotic DDR. ZTF-8 partially co-localizes with the 9-1-1 DDR complex and interacts with MRT-2/Rad1, a component of this complex. The human RHINO protein rescues the phenotypes observed in ztf-8 mutants, suggesting functional conservation across species. We propose that ZTF-8 is involved in promoting repair at stalled replication forks and meiotic DSBs by transducing DNA damage checkpoint signaling via the 9-1-1 pathway. Our findings define a conserved function for ZTF-8/RHINO in promoting genomic stability in the germline.

  9. DNA damage response mediators MDC1 and 53BP1: constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours

    Czech Academy of Sciences Publication Activity Database

    Bartkova, J.; Hořejší, Zuzana; Sehested, M.; Nesland, J.M.; Rajpert-De Meyts, E.; Skakkebaek, N.E.; Stucki, M.; Jackson, S.; Lukas, J.; Bartek, Jiří

    2007-01-01

    Roč. 26, č. 53 (2007), s. 7414-7422. ISSN 0950-9232 Institutional research plan: CEZ:AV0Z50520514 Keywords : DNA damage response * cancer * MDC1 and 53BP1 defects * tumour suppressors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.440, year: 2007

  10. DNA damage response and evasion from immunosurveillance in CLL: New options for NK cell-based immunotherpies.

    Directory of Open Access Journals (Sweden)

    Olga M. Shatnyeva

    2015-02-01

    Full Text Available Chronic lymphocytic leukemia (CLL is the most prominent B cell malignancy among adults in the Western world and characterized by a clonal expansion of B cells. The patients suffer from severe immune defects resulting in increased susceptibility to infections and failure to generate an antitumor immune response. Defects in both, DNA damage response (DDR pathway and crosstalk with the tissue microenvironment have been reported to play a crucial role for the survival of CLL cells, therapy resistance and impaired immune response. To this end, major advances over the past years have highlighted several T cell immune evasion mechanisms in CLL. Here, we discuss the consequences of an impaired DDR pathway for detection and elimination of CLL cells by Natural killer (NK cells. NK cells are considered to be a major component of the immunosurveillance in leukemia but NK cell activity is impaired in CLL. Restoration of NK cell activity using immunoligands and immunoconstructs in combination with the conventional chemotherapy may provide a future perspective for CLL treatment.

  11. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response

    DEFF Research Database (Denmark)

    Bennetzen, Martin; Andersen, J.S.; Lasen, D.H.;

    2013-01-01

    -dependent posttranslational modifications (PT Ms). To complement our previous analysis of IR-induced temporal dynamics of nuclear phosphoproteome, we now identify a range of human nuclear proteins that are dynamically regulated by acetylation, and predominantly deacetylation, during IR-induced DDR by using mass spectrometry......-based proteomic approaches. Apart from cataloging acetylation sites through SILAC proteomic analyses before IR and at 5 and 60 min after IR exposure of U2OS cells, we report that: (1) key components of the transcriptional machinery, such as EP 300 and CREBBP, are dynamically acetylated; (2) that nuclear...... to assess lysine acetylation status and thereby validate the mass spectrometry data. We thus present evidence that nuclear proteins, including those known to regulate cellular functions via epigenetic modifications of histones, are regulated by (de)acetylation in a timely manner upon cell's exposure...

  12. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis

    OpenAIRE

    Langelier, Marie-France; Pascal, John M.

    2013-01-01

    Poly(ADP-ribose) polymerase 1 (PARP-1) regulates gene transcription, cell death signaling, and DNA repair through production of the posttranslational modification poly(ADP-ribose). During the cellular response to genotoxic stress PARP-1 rapidly associates with DNA damage, which robustly stimulates poly(ADP-ribose) production over a low basal level of PARP-1 activity. DNA damage-dependent PARP-1 activity is central to understanding PARP-1 biological function, but structural insights into the m...

  13. Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy.

    Directory of Open Access Journals (Sweden)

    Mona Meyer

    Full Text Available Acute myeloid leukemia (AML is a clonal disease originating from myeloid progenitor cells with a heterogeneous genetic background. High-dose cytarabine is used as the standard consolidation chemotherapy. Oncogenic RAS mutations are frequently observed in AML, and are associated with beneficial response to cytarabine. Why AML-patients with oncogenic RAS benefit most from high-dose cytarabine post-remission therapy is not well understood. Here we used bone marrow cells expressing a conditional MLL-ENL-ER oncogene to investigate the interaction of oncogenic RAS and chemotherapeutic agents. We show that oncogenic RAS synergizes with cytotoxic agents such as cytarabine in activation of DNA damage checkpoints, resulting in a p53-dependent genetic program that reduces clonogenicity and increases myeloid differentiation. Our data can explain the beneficial effects observed for AML patients with oncogenic RAS treated with higher dosages of cytarabine and suggest that induction of p53-dependent differentiation, e.g. by interfering with Mdm2-mediated degradation, may be a rational approach to increase cure rate in response to chemotherapy. The data also support the notion that the therapeutic success of cytotoxic drugs may depend on their ability to promote the differentiation of tumor-initiating cells.

  14. Prophage induction and differential RecA and UmuDAb transcriptome regulation in the DNA damage responses of Acinetobacter baumannii and Acinetobacter baylyi.

    Directory of Open Access Journals (Sweden)

    Janelle M Hare

    Full Text Available The SOS response to DNA damage that induces up to 10% of the prokaryotic genome requires RecA action to relieve LexA transcriptional repression. In Acinetobacter species, which lack LexA, the error-prone polymerase accessory UmuDAb is instead required for ddrR induction after DNA damage, suggesting it might be a LexA analog. RNA-Seq experiments defined the DNA damage transcriptome (mitomycin C-induced of wild type, recA and umuDAb mutant strains of both A. baylyi ADP1 and A. baumannii ATCC 17978. Of the typical SOS response genes, few were differentially regulated in these species; many were repressed or absent. A striking 38.4% of all ADP1 genes, and 11.4% of all 17978 genes, were repressed under these conditions. In A. baylyi ADP1, 66 genes (2.0% of the genome, including a CRISPR/Cas system, were DNA damage-induced, and belonged to four regulons defined by differential use of recA and umuDAb. In A. baumannii ATCC 17978, however, induction of 99% of the 152 mitomycin C-induced genes depended on recA, and only 28 of these genes required umuDAb for their induction. 90% of the induced A. baumannii genes were clustered in three prophage regions, and bacteriophage particles were observed after mitomycin C treatment. These prophages encoded esvI, esvK1, and esvK2, ethanol-stimulated virulence genes previously identified in a Caenorhabditis elegans model, as well as error-prone polymerase alleles. The induction of all 17978 error-prone polymerase alleles, whether prophage-encoded or not, was recA dependent, but only these DNA polymerase V-related genes were de-repressed in the umuDAb mutant in the absence of DNA damage. These results suggest that both species possess a robust and complex DNA damage response involving both recA-dependent and recA-independent regulons, and further demonstrates that although umuDAb has a specialized role in repressing error-prone polymerases, additional regulators likely participate in these species' transcriptional

  15. Ubiquitin-SUMO Circuitry Controls Activated Fanconi Anemia ID Complex Dosage in Response to DNA Damage

    DEFF Research Database (Denmark)

    Gibbs-Seymour, Ian; Oka, Yasuyoshi; Rajendra, Eeson;

    2015-01-01

    We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase...

  16. Single-Cell Analysis of Ribonucleotide Reductase Transcriptional and Translational Response to DNA Damage

    OpenAIRE

    Mazumder, Aprotim; Tummler, Katja; Bathe, Mark; Samson, Leona D.

    2013-01-01

    The ribonucleotide reductase (RNR) enzyme catalyzes an essential step in the production of deoxyribonucleotide triphosphates (dNTPs) in cells. Bulk biochemical measurements in synchronized Saccharomyces cerevisiae cells suggest that RNR mRNA production is maximal in late G1 and S phases; however, damaged DNA induces RNR transcription throughout the cell cycle. But such en masse measurements reveal neither cell-to-cell heterogeneity in responses nor direct correlations between transcript and p...

  17. A genetic basis for the variation in the vulnerability of cancer to DNA damage

    Science.gov (United States)

    Yard, Brian D.; Adams, Drew J.; Chie, Eui Kyu; Tamayo, Pablo; Battaglia, Jessica S.; Gopal, Priyanka; Rogacki, Kevin; Pearson, Bradley E.; Phillips, James; Raymond, Daniel P.; Pennell, Nathan A.; Almeida, Francisco; Cheah, Jaime H.; Clemons, Paul A.; Shamji, Alykhan; Peacock, Craig D.; Schreiber, Stuart L.; Hammerman, Peter S.; Abazeed, Mohamed E.

    2016-01-01

    Radiotherapy is not currently informed by the genetic composition of an individual patient's tumour. To identify genetic features regulating survival after DNA damage, here we conduct large-scale profiling of cellular survival after exposure to radiation in a diverse collection of 533 genetically annotated human tumour cell lines. We show that sensitivity to radiation is characterized by significant variation across and within lineages. We combine results from our platform with genomic features to identify parameters that predict radiation sensitivity. We identify somatic copy number alterations, gene mutations and the basal expression of individual genes and gene sets that correlate with the radiation survival, revealing new insights into the genetic basis of tumour cellular response to DNA damage. These results demonstrate the diversity of tumour cellular response to ionizing radiation and establish multiple lines of evidence that new genetic features regulating cellular response after DNA damage can be identified. PMID:27109210

  18. ShaPINg cell fate upon DNA damage:role of Pin1 isomerase in DNA damage-induced cell death and repair

    Directory of Open Access Journals (Sweden)

    Thomas G Hofmann

    2014-06-01

    Full Text Available The peptidyl-prolyl cis/trans isomerase Pin1 acts as a molecular timer in proline-directed Ser/Thr kinase signaling and shapes cellular responses based on recognition of phosphorylation marks and implementing conformational changes in its substrates. Accordingly, Pin1 has been linked to numerous phosphorylation-controlled signaling pathways and cellular processes such as cell cycle progression, proliferation and differentiation. In addition, Pin1 plays a pivotal role in DNA damage-triggered cell fate decisions. Whereas moderate DNA damage is balanced by DNA repair, cells confronted with massive genotoxic stress are eliminated by the induction of programmed cell death or cellular senescence. In this review we summarize and discuss the current knowledge on how Pin1 specifies cell fate through regulating key players of the apoptotic and the repair branch of the DNA damage response.

  19. Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway.

    Directory of Open Access Journals (Sweden)

    Da-yong Zhang

    Full Text Available Recent studies have demonstrated the importance of cellular extrinsic factors in the aging of adult stem cells. However, the effects of an aged cell-extrinsic environment on mesenchymal stem cell (MSC aging and the factors involved remain unclear. In the current study, we examine the effects of old rat serum (ORS on the aging of MSCs, and explore the effects and mechanisms of Wnt/β-catenin signaling on MSC aging induced by ORS treatment. Senescence-associated changes in the cells are examined with SA-β-galactosidase staining and ROS staining. The proliferation ability is detected by MTT assay. The surviving and apoptotic cells are determined using AO/EB staining. The results suggest that ORS promotes MSC senescence and reduces the proliferation and survival of cells. The immunofluorescence staining shows that the expression of β-catenin increases in MSCs of old rats. To identify the effects of Wnt/β-catenin signaling on MSC aging induced with ORS, the expression of β-catenin, GSK-3β, and c-myc are detected. The results show that the Wnt/β-catenin signaling in the cells is activated after ORS treatment. Then we examine the aging, proliferation, and survival of MSCs after modulating Wnt/β-catenin signaling. The results indicate that the senescence and dysfunction of MSCs in the medium containing ORS is reversed by the Wnt/β-catenin signaling inhibitor DKK1 or by β-catenin siRNA. Moreover, the expression of γ-H2A.X, a molecular marker of DNA damage response, p16(INK4a, p53, and p21 is increased in senescent MSCs induced with ORS, and is also reversed by DKK1 or by β-catenin siRNA. In summary, our study indicates the Wnt/β-catenin signaling may play a critical role in MSC aging induced by the serum of aged animals and suggests that the DNA damage response and p53/p21 pathway may be the main mediators of MSC aging induced by excessive activation of Wnt/β-catenin signaling.

  20. Association between DNA damage response and repair genes and risk of invasive serous ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Joellen M Schildkraut

    Full Text Available BACKGROUND: We analyzed the association between 53 genes related to DNA repair and p53-mediated damage response and serous ovarian cancer risk using case-control data from the North Carolina Ovarian Cancer Study (NCOCS, a population-based, case-control study. METHODS/PRINCIPAL FINDINGS: The analysis was restricted to 364 invasive serous ovarian cancer cases and 761 controls of white, non-Hispanic race. Statistical analysis was two staged: a screen using marginal Bayes factors (BFs for 484 SNPs and a modeling stage in which we calculated multivariate adjusted posterior probabilities of association for 77 SNPs that passed the screen. These probabilities were conditional on subject age at diagnosis/interview, batch, a DNA quality metric and genotypes of other SNPs and allowed for uncertainty in the genetic parameterizations of the SNPs and number of associated SNPs. Six SNPs had Bayes factors greater than 10 in favor of an association with invasive serous ovarian cancer. These included rs5762746 (median OR(odds ratio(per allele = 0.66; 95% credible interval (CI = 0.44-1.00 and rs6005835 (median OR(per allele = 0.69; 95% CI = 0.53-0.91 in CHEK2, rs2078486 (median OR(per allele = 1.65; 95% CI = 1.21-2.25 and rs12951053 (median OR(per allele = 1.65; 95% CI = 1.20-2.26 in TP53, rs411697 (median OR (rare homozygote = 0.53; 95% CI = 0.35 - 0.79 in BACH1 and rs10131 (median OR( rare homozygote = not estimable in LIG4. The six most highly associated SNPs are either predicted to be functionally significant or are in LD with such a variant. The variants in TP53 were confirmed to be associated in a large follow-up study. CONCLUSIONS/SIGNIFICANCE: Based on our findings, further follow-up of the DNA repair and response pathways in a larger dataset is warranted to confirm these results.

  1. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response

    International Nuclear Information System (INIS)

    Highlights: • The UV sensitivity of POLH−/− cells was suppressed by disruption of WRNIP1. • In WRNIP1−/−/−/POLH−/− cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH−/− cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH−/−) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation

  2. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Akari, E-mail: akari_yo@stu.musashino-u.ac.jp [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Kobayashi, Yume [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Tada, Shusuke [Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510 (Japan); Seki, Masayuki [Department of Biochemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai-shi, Miyagi 981-8558 (Japan); Enomoto, Takemi [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan)

    2014-09-12

    Highlights: • The UV sensitivity of POLH{sup −/−} cells was suppressed by disruption of WRNIP1. • In WRNIP1{sup −/−/−}/POLH{sup −/−} cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH{sup −/−} cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH{sup −/−}) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  3. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Somnath [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Narang, Himanshi, E-mail: himinarang@gmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sarma, Asitikantha [Radiation Biology Laboratory, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Krishna, Malini [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-11-01

    Carbon beams (5.16 MeV/u, LET = 290 keV/{mu}m) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between {gamma}-rays and carbon ion-irradiation. A549 cells were irradiated with 1 Gy carbon or {gamma}-rays. Carbon beam was found to be three times more cytotoxic than {gamma}-rays despite the fact that the numbers of {gamma}-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with {gamma}-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike {gamma}-rays irradiated cells and prosurvival ERK pathway was activated after {gamma}-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored.

  4. Systems biology approach identifies the kinase Csnk1a1 as a regulator of the DNA damage response in embryonic stem cells

    DEFF Research Database (Denmark)

    Carreras Puigvert, Jordi; von Stechow, Louise; Siddappa, Ramakrishnaiah;

    2013-01-01

    In pluripotent stem cells, DNA damage triggers loss of pluripotency and apoptosis as a safeguard to exclude damaged DNA from the lineage. An intricate DNA damage response (DDR) signaling network ensures that the response is proportional to the severity of the damage. We combined an RNA interference...... screen targeting all kinases, phosphatases, and transcription factors with global transcriptomics and phosphoproteomics to map the DDR in mouse embryonic stem cells treated with the DNA cross-linker cisplatin. Networks derived from canonical pathways shared in all three data sets were implicated in DNA....... Instead, this response occurred through reduced abundance of Csnk1a1 (CK1α), a kinase that inhibits β-catenin. Together, our findings reveal a balance between p53-mediated elimination of stem cells (through loss of pluripotency and apoptosis) and Wnt signaling that attenuates this response to tune the...

  5. TH-C-18A-09: Exam and Patient Parameters Affecting the DNA Damage Response Following CT Studies

    International Nuclear Information System (INIS)

    Purpose: To identify exam and patient parameters affecting the biological response to CT studies using in vivo and ex vivo blood samples. Methods: Blood samples were collected under IRB approval from 16 patients undergoing clinically-indicated CT exams. Blood was procured prior to, immediately after and 30minutes following irradiation. A sample of preexam blood was placed on the patient within the exam region for ex vivo analysis. Whole blood samples were fixed immediately following collection and stained for γH2AX to assess DNA damage response (DDR). Median fluorescence of treated samples was compared to non-irradiated control samples for each patient. Patients were characterized by observed biological kinetic response: (a) fast — phosphorylation increased by 2minutes and fell by 30minutes, (b) slow — phosphorylation continued to increase to 30minutes and (c) none — little change was observed or irradiated samples fell below controls. Total dose values were normalized to exam time for an averaged dose-rate in dose/sec for each exam. Relationships between patient biological responses and patient and exam parameters were investigated. Results: A clearer dose response at 30minutes is observed for young patients (<61yoa; R2>0.5) compared to old patients (>61yoa; R2<0.11). Fast responding patients were significantly younger than slow responding patients (p<0.05). Unlike in vivo samples, age did not significantly affect the patient response ex vivo. Additionally, fast responding patients received exams with significantly smaller dose-rate than slow responding patients (p<0.05). Conclusion: Age is a significant factor in the biological response suggesting that DDR may be more rapid in a younger population and slower as the population ages. Lack of an agerelated response ex vivo suggests a systemic response to radiation not present when irradiated outside the body. Dose-rate affects the biological response suggesting that patient response may be related to scan

  6. TH-C-18A-09: Exam and Patient Parameters Affecting the DNA Damage Response Following CT Studies

    Energy Technology Data Exchange (ETDEWEB)

    Elgart, S; Adibi, A; Bostani, M; Ruehm, S; Enzmann, D; McNitt-Gray, M; Iwamoto, K [UCLA School of Medicine, Los Angeles, CA (United States)

    2014-06-15

    Purpose: To identify exam and patient parameters affecting the biological response to CT studies using in vivo and ex vivo blood samples. Methods: Blood samples were collected under IRB approval from 16 patients undergoing clinically-indicated CT exams. Blood was procured prior to, immediately after and 30minutes following irradiation. A sample of preexam blood was placed on the patient within the exam region for ex vivo analysis. Whole blood samples were fixed immediately following collection and stained for γH2AX to assess DNA damage response (DDR). Median fluorescence of treated samples was compared to non-irradiated control samples for each patient. Patients were characterized by observed biological kinetic response: (a) fast — phosphorylation increased by 2minutes and fell by 30minutes, (b) slow — phosphorylation continued to increase to 30minutes and (c) none — little change was observed or irradiated samples fell below controls. Total dose values were normalized to exam time for an averaged dose-rate in dose/sec for each exam. Relationships between patient biological responses and patient and exam parameters were investigated. Results: A clearer dose response at 30minutes is observed for young patients (<61yoa; R2>0.5) compared to old patients (>61yoa; R{sup 2}<0.11). Fast responding patients were significantly younger than slow responding patients (p<0.05). Unlike in vivo samples, age did not significantly affect the patient response ex vivo. Additionally, fast responding patients received exams with significantly smaller dose-rate than slow responding patients (p<0.05). Conclusion: Age is a significant factor in the biological response suggesting that DDR may be more rapid in a younger population and slower as the population ages. Lack of an agerelated response ex vivo suggests a systemic response to radiation not present when irradiated outside the body. Dose-rate affects the biological response suggesting that patient response may be related to

  7. DNA damage response proteins and oxygen modulate prostaglandin E2 growth factor release in response to low and high LET ionizing radiation

    Directory of Open Access Journals (Sweden)

    Christopher P. Allen

    2015-12-01

    Full Text Available Common cancer therapies employ chemicals or radiation that damage DNA. Cancer and normal cells respond to DNA damage by activating complex networks of DNA damage sensor, signal transducer, and effector proteins that arrest cell cycle progression, and repair damaged DNA. If damage is severe enough, the DNA damage response (DDR triggers programmed cell death by apoptosis or other pathways. Caspase 3 is a protease that is activated upon damage and triggers apoptosis, and production of prostaglandin E2 (PGE2, a potent growth factor that can enhance growth of surviving cancer cells leading to accelerated tumor repopulation. Thus, dying tumor cells can promote growth of surviving tumor cells, a pathway aptly named Phoenix Rising. In the present study we surveyed Phoenix Rising responses in a variety of normal and established cancer cell lines, and in cancer cell lines freshly derived from patients. We demonstrate that IR induces a Phoenix Rising response in many, but not all cell lines, and that PGE2 production generally correlates with enhanced growth of cells that survive irradiation, and of unirradiated cells co-cultured with irradiated cells. We show that PGE2 production is stimulated by low and high LET ionizing radiation, and can be enhanced or suppressed by inhibitors of key DNA damage response proteins. PGE2 is produced downstream of Caspase 3 and the cyclooxygenases COX1 and COX2, and we show that the pan COX1-2 inhibitor indomethacin blocks IR-induced PGE2 production in the presence or absence of DDR inhibitors. COX1-2 require oxygen for catalytic activity, and we further show that PGE2 production is markedly suppressed in cells cultured under low (1% oxygen concentration. Thus, Phoenix Rising is most likely to cause repopulation of tumors with relatively high oxygen, but not in hypoxic tumors. This survey lays a foundation for future studies to further define tumor responses to radiation and inhibitors of the DDR and Phoenix Rising to

  8. Functional relevance of the histone γH2Ax in the response to DNA damaging agents

    OpenAIRE

    Revet, Ingrid; Feeney, Luzviminda; Bruguera, Stephanie; Wilson, Wade; Dong, Tiffany K.; Oh, Dennis H.; Dankort, David; Cleaver, James E.

    2011-01-01

    The phosphorylation of H2Ax on its S139 site, γH2Ax, is important during DNA double-strand repair and is considered necessary for assembly of repair complexes, but its functional role after other kinds of DNA damage is less clear. We have measured the survival of isogenic mouse cell lines with the H2Ax gene knocked out, and replaced with wild-type or mutant (S139A) H2Ax genes, exposed to a range of agents with varied mechanisms of DNA damage. Knockout and mutant cells were sensitive to γ-rays...

  9. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling

    DEFF Research Database (Denmark)

    Chaki, Moumita; Airik, Rannar; Ghosh, Amiya K;

    2012-01-01

    Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina, and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as "ciliopathies." However, disease mechanisms remain poorly understood. Here, we......, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. Our findings link degenerative diseases of the kidney and retina, disorders of...

  10. Concerted action of the ubiquitin-fusion degradation protein 1 (Ufd1 and Sumo-targeted ubiquitin ligases (STUbLs in the DNA-damage response.

    Directory of Open Access Journals (Sweden)

    Julie Bonne Køhler

    Full Text Available In eukaryotes many players in the DNA-damage response (DDR catalyze protein sumoylation or ubiquitylation. Emphasis has been placed on how these modifications orchestrate the sequential recruitment of repair factors to sites of DNA damage or stalled replication forks. Here, we shed light on a pathway in which sumoylated factors are eliminated through the coupled action of Sumo-targeted ubiquitin ligases (STUbLs and the ubiquitin-fusion degradation protein 1 (Ufd1. Ufd1 is a subunit of the Cdc48-Ufd1-Npl4 complex implicated in the sorting of ubiquitylated substrates for degradation by the proteasome. We find that in fission yeast, Ufd1 interacts physically and functionally with the Sumo-targeted ubiquitin ligase (STUbL Rfp1, homologous to human RNF4, and with the Sumo E3 ligase Pli1, homologous to human PIAS1. Deleting a C-terminal domain of Ufd1 that mediates the interaction of Ufd1 with Rfp1, Pli1, and Sumo (ufd1ΔCt(213-342 lead to an accumulation of high-molecular-weight Sumo conjugates and caused severe genomic instabilities. The spectrum of sensitivity of ufd1ΔCt(213-342 cells to genotoxins, the epistatic relationships of ufd1ΔCt(213-342 with mutations in DNA repair factors, and the localization of the repair factor Rad22 in ufd1ΔCt(213-342 cells point to ufd1ΔCt(213-342 cells accumulating aberrant structures during replication that require homologous recombination (HR for their repair. We present evidence that HR is however often not successful in ufd1ΔCt(213-342 cells and we identify Rad22 as one of the high-molecular-weight conjugates accumulating in the ufd1ΔCt(213-342 mutant consistent with Rad22 being a STUbL/Ufd1 substrate. Suggesting a direct role of Ufd1 in the processing of Sumo-conjugates, Ufd1 formed nuclear foci colocalizing with Sumo during the DDR, and Sumo-conjugates accumulated in foci in the ufd1ΔCt(213-342 mutant. Broader functional relationships between Ufd1 and STUbLs conceivably affect numerous cellular

  11. Concerted action of the ubiquitin-fusion degradation protein 1 (Ufd1) and Sumo-targeted ubiquitin ligases (STUbLs) in the DNA-damage response.

    Science.gov (United States)

    Køhler, Julie Bonne; Jørgensen, Maria Louise Mønster; Beinoraité, Gabriele; Thorsen, Michael; Thon, Geneviève

    2013-01-01

    In eukaryotes many players in the DNA-damage response (DDR) catalyze protein sumoylation or ubiquitylation. Emphasis has been placed on how these modifications orchestrate the sequential recruitment of repair factors to sites of DNA damage or stalled replication forks. Here, we shed light on a pathway in which sumoylated factors are eliminated through the coupled action of Sumo-targeted ubiquitin ligases (STUbLs) and the ubiquitin-fusion degradation protein 1 (Ufd1). Ufd1 is a subunit of the Cdc48-Ufd1-Npl4 complex implicated in the sorting of ubiquitylated substrates for degradation by the proteasome. We find that in fission yeast, Ufd1 interacts physically and functionally with the Sumo-targeted ubiquitin ligase (STUbL) Rfp1, homologous to human RNF4, and with the Sumo E3 ligase Pli1, homologous to human PIAS1. Deleting a C-terminal domain of Ufd1 that mediates the interaction of Ufd1 with Rfp1, Pli1, and Sumo (ufd1ΔCt(213-342) ) lead to an accumulation of high-molecular-weight Sumo conjugates and caused severe genomic instabilities. The spectrum of sensitivity of ufd1ΔCt(213-342) cells to genotoxins, the epistatic relationships of ufd1ΔCt(213-342) with mutations in DNA repair factors, and the localization of the repair factor Rad22 in ufd1ΔCt(213-342) cells point to ufd1ΔCt(213-342) cells accumulating aberrant structures during replication that require homologous recombination (HR) for their repair. We present evidence that HR is however often not successful in ufd1ΔCt(213-342) cells and we identify Rad22 as one of the high-molecular-weight conjugates accumulating in the ufd1ΔCt(213-342) mutant consistent with Rad22 being a STUbL/Ufd1 substrate. Suggesting a direct role of Ufd1 in the processing of Sumo-conjugates, Ufd1 formed nuclear foci colocalizing with Sumo during the DDR, and Sumo-conjugates accumulated in foci in the ufd1ΔCt(213-342) mutant. Broader functional relationships between Ufd1 and STUbLs conceivably affect numerous cellular processes

  12. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Judy [Division of Nephrology, Department of Medicine, McMaster University, Juravinski Innovation Tower, Room T3310, St. Joseph' s Hospital, 50 Charlton Ave East, Hamilton, Ontario, Canada L8S 4L8 (Canada); Father Sean O' Sullivan Research Institute, Hamilton, Ontario, Canada L8N 4A6 (Canada); The Hamilton Centre for Kidney Research (HCKR), St. Joseph' s Hamilton Healthcare, Hamilton, Ontario, Canada L8N 4A6 (Canada); Tang, Damu, E-mail: damut@mcmaster.ca [Division of Nephrology, Department of Medicine, McMaster University, Juravinski Innovation Tower, Room T3310, St. Joseph' s Hospital, 50 Charlton Ave East, Hamilton, Ontario, Canada L8S 4L8 (Canada); Father Sean O' Sullivan Research Institute, Hamilton, Ontario, Canada L8N 4A6 (Canada); The Hamilton Centre for Kidney Research (HCKR), St. Joseph' s Hamilton Healthcare, Hamilton, Ontario, Canada L8N 4A6 (Canada)

    2014-10-15

    Despite the development of chemoresistance as a major concern in prostate cancer therapy, the underlying mechanisms remain elusive. In this report, we demonstrate that DU145-derived prostate cancer stem cells (PCSCs) progress slowly with more cells accumulating in the G1 phase in comparison to DU145 non-PCSCs. Consistent with the important role of the AKT pathway in promoting G1 progression, DU145 PCSCs were less sensitive to growth factor-induced activation of AKT in comparison to non-PCSCs. In response to etoposide (one of the most commonly used chemotherapeutic drugs), DU145 PCSCs survived significantly better than non-PCSCs. In addition to etoposide, PCSCs demonstrated increased resistance to docetaxel, a taxane drug that is commonly used to treat castration-resistant prostate cancer. Etoposide produced elevated levels of γH2AX and triggered a robust G2/M arrest along with a coordinated reduction of the G1 population in PCSCs compared to non-PCSCs, suggesting that elevated γH2AX plays a role in the resistance of PCSCs to etoposide-induced cytotoxicity. We have generated xenograft tumors from DU145 PCSCs and non-PCSCs. Consistent with the knowledge that PCSCs produce xenograft tumors with more advanced features, we were able to demonstrate that PCSC-derived xenograft tumors displayed higher levels of γH2AX and p-CHK1 compared to non-PCSC-produced xenograft tumors. Collectively, our research suggests that the elevation of DNA damage response contributes to PCSC-associated resistance to genotoxic reagents. - Highlights: • Increased survival in DU145 PCSCs following etoposide-induced cytotoxicity. • PCSCs exhibit increased sensitivity to etoposide-induced DDR. • Resistance to cytotoxicity may be due to slower proliferation in PCSCs. • Reduced kinetics to growth factor induced activation of AKT in PCSCs.

  13. Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response

    International Nuclear Information System (INIS)

    Despite the development of chemoresistance as a major concern in prostate cancer therapy, the underlying mechanisms remain elusive. In this report, we demonstrate that DU145-derived prostate cancer stem cells (PCSCs) progress slowly with more cells accumulating in the G1 phase in comparison to DU145 non-PCSCs. Consistent with the important role of the AKT pathway in promoting G1 progression, DU145 PCSCs were less sensitive to growth factor-induced activation of AKT in comparison to non-PCSCs. In response to etoposide (one of the most commonly used chemotherapeutic drugs), DU145 PCSCs survived significantly better than non-PCSCs. In addition to etoposide, PCSCs demonstrated increased resistance to docetaxel, a taxane drug that is commonly used to treat castration-resistant prostate cancer. Etoposide produced elevated levels of γH2AX and triggered a robust G2/M arrest along with a coordinated reduction of the G1 population in PCSCs compared to non-PCSCs, suggesting that elevated γH2AX plays a role in the resistance of PCSCs to etoposide-induced cytotoxicity. We have generated xenograft tumors from DU145 PCSCs and non-PCSCs. Consistent with the knowledge that PCSCs produce xenograft tumors with more advanced features, we were able to demonstrate that PCSC-derived xenograft tumors displayed higher levels of γH2AX and p-CHK1 compared to non-PCSC-produced xenograft tumors. Collectively, our research suggests that the elevation of DNA damage response contributes to PCSC-associated resistance to genotoxic reagents. - Highlights: • Increased survival in DU145 PCSCs following etoposide-induced cytotoxicity. • PCSCs exhibit increased sensitivity to etoposide-induced DDR. • Resistance to cytotoxicity may be due to slower proliferation in PCSCs. • Reduced kinetics to growth factor induced activation of AKT in PCSCs

  14. The Prp19/Pso4 Core complex Undergoes Ubiquitylation and Structural Alterations in Response to DNA Damage

    Science.gov (United States)

    Lu, Xiaoyan; Legerski, Randy J.

    2007-01-01

    Prp19/Pso4, a U-box containing E3 ligase, has a demonstrated role in pre-mRNA splicing, but has also been implicated in both yeast and mammalian cells as having a direct role in DNA damage processing. In this report we provide further evidence in support of this latter assertion. We show that hPrp19 forms an ubiquitylated oligomeric species that is resistant to disruption by SDS gel electrophoresis under nonreducing conditions suggesting that is mediated by a thiolester between ubiquitin and a cysteine residue in Prp19. The level of this species is significantly enhanced upon treatment of cells with DNA damaging agents, and its association with chromatin is increased. In addition, hPrp19 is known to form a stable core complex with Cdc5L, Plrg1, and Spf27; however, ubiquitylated hPrp19 fails to interact with either Cdc5L or Plrg1 indicating that DNA damage can induce profound alterations to the hPrp19 core complex. Finally, we show that overexpression of hPrp19 in human cells provides a pro-survival affect in that it reduces the levels of apoptosis observed after exposure of cells to DNA damage. PMID:17276391

  15. LZ-106, a novel analog of enoxacin, inducing apoptosis via activation of ROS-dependent DNA damage response in NSCLCs.

    Science.gov (United States)

    Yang, Lin; Yuan, Yinan; Fu, Chengyu; Xu, Xuefen; Zhou, Jieying; Wang, Shuhao; Kong, Lingyi; Li, Zhiyu; Guo, Qinglong; Wei, Libin

    2016-06-01

    Lung cancer, especially non-small-cell lung cancer (NSCLC), plays the leading role in cancer which is closely related to a myriad of fatal results. Unfortunately, current molecular mechanisms and clinical treatment of NSCLC still remain to be explored despite the fact that intensive investigations have been carried out in the last two decades. Recently, growing attention to finding exploitable sources of anticancer agents is refocused on quinolone compounds, an antibiotic with a long period of clinic application, for their remarkable cell-killing activity against not only bacteria, but eukaryotes as well. In this study, we found LZ-106, an analog of enoxacin, exhibiting potent inhibitory effects on NSCLC in both cultured cells and xenograft mouse model. We identified apoptosis-inducing action of LZ-106 in NSCLC cells through the mitochondrial and endoplasmic reticulum (ER)-stress apoptotic pathways via Annexin-V/PI double-staining assay, membrane potential detection, calcium level detection and the expression analysis of the key apoptotic proteins. Through comet assay, reactive oxygen species (ROS) detection, the expression analysis of DNA damage response (DDR) marker γ-H2AX and other DDR-related proteins, we also demonstrated that LZ-106 notably induced ROS overproduction and DDR. Interestingly, additional evidence in our findings revealed that DDR and apoptosis could be alleviated in the presence of ROS scavenger N-acetyl-cysteine (NAC), indicating ROS-dependent DDR involvement in LZ-106-induced apoptosis. Thus our data not only offered a new therapeutic candidate for NSCLC, but also put new insights into the pharmacological research of quinolones. PMID:27012423

  16. Arsenic Transformation Predisposes Human Skin Keratinocytes To UV-induced DNA Damage Yet Enhances Their Survival Apparently by Diminishing Oxidant Response

    OpenAIRE

    Sun, Yang(Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China); Kojima, Chikara; Chignell, Colin; Mason, Ronald; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark o...

  17. New interaction partners for Nek4.1 and Nek4.2 isoforms: from the DNA damage response to RNA splicing

    OpenAIRE

    Basei, Fernanda Luisa; Meirelles, Gabriela Vaz; Righetto, Germanna Lima; dos Santos Migueleti, Deivid Lucas; Smetana, Juliana Helena Costa; Kobarg, Jörg

    2015-01-01

    Background Neks are serine-threonine kinases that are similar to NIMA, a protein found in Aspergillus nidulans which is essential for cell division. In humans there are eleven Neks which are involved in different biological functions besides the cell cycle control. Nek4 is one of the largest members of the Nek family and has been related to the primary cilia formation and in DNA damage response. However, its substrates and interaction partners are still unknown. In an attempt to better unders...

  18. A DNA Damage Response Screen Identifies RHINO: a 9-1-1 and TopBP1 interacting protein required for ATR signaling

    OpenAIRE

    Cotta-Ramusino, Cecilia; 3, E. Robert McDonald; Hurov, Kristen; Sowa, Mathew E.; Harper, J. Wade; Elledge, Stephen J.

    2011-01-01

    The DNA damage response (DDR) is a protein kinase cascade that orchestrates DNA repair processes via transcriptional and post-translational mechanisms. Cell cycle arrest is a hallmark of the DDR. We performed a damage-induced cell cycle arrest screen and uncovered a critical role for Fanconi anemia (FA) and homologous recombination (HR) proteins in ATR signaling. HR was required to maintain prolonged cell cycle arrest and to prevent massive genomic instability. Over 100 high scoring DDR candi...

  19. Heterochromatin marks HP1gamma, HP1alpha and H3K9me3, and DNA damage response activation in human testis development and germ cell tumours

    Czech Academy of Sciences Publication Activity Database

    Bartkova, J.; Moudrý, Pavel; Hodný, Zdeněk; Lukas, J.; Rajpert-De Meyts, E.; Bartek, Jiří

    2011-01-01

    Roč. 34, 4 Pt 2 (2011), e103-e113. ISSN 0105-6263 R&D Projects: GA ČR GA301/08/0353 Grant ostatní: Lundbeck Foundation(DK) R13-A1287; EU FP7(XE) TRIREME 223575 Institutional research plan: CEZ:AV0Z50520514 Keywords : heterochromatinization * DNA damage response * germinal tumours Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.591, year: 2011

  20. Transcriptional Response of Human Neurospheres to Helper-Dependent CAV-2 Vectors Involves the Modulation of DNA Damage Response, Microtubule and Centromere Gene Groups.

    Directory of Open Access Journals (Sweden)

    Stefania Piersanti

    Full Text Available Brain gene transfer using viral vectors will likely become a therapeutic option for several disorders. Helper-dependent (HD canine adenovirus type 2 vectors (CAV-2 are well suited for this goal. These vectors are poorly immunogenic, efficiently transduce neurons, are retrogradely transported to afferent structures in the brain and lead to long-term transgene expression. CAV-2 vectors are being exploited to unravel behavior, cognition, neural networks, axonal transport and therapy for orphan diseases. With the goal of better understanding and characterizing HD-CAV-2 for brain therapy, we analyzed the transcriptomic modulation induced by HD-CAV-2 in human differentiated neurospheres derived from midbrain progenitors. This 3D model system mimics several aspects of the dynamic nature of human brain. We found that differentiated neurospheres are readily transduced by HD-CAV-2 and that transduction generates two main transcriptional responses: a DNA damage response and alteration of centromeric and microtubule probes. Future investigations on the biochemistry of processes highlighted by probe modulations will help defining the implication of HD-CAV-2 and CAR receptor binding in enchaining these functional pathways. We suggest here that the modulation of DNA damage genes is related to viral DNA, while the alteration of centromeric and microtubule probes is possibly enchained by the interaction of the HD-CAV-2 fibre with CAR.

  1. Tripartite Motif-containing 33 (TRIM33) protein functions in the poly(ADP-ribose) polymerase (PARP)-dependent DNA damage response through interaction with Amplified in Liver Cancer 1 (ALC1) protein.

    Science.gov (United States)

    Kulkarni, Atul; Oza, Jay; Yao, Ming; Sohail, Honeah; Ginjala, Vasudeva; Tomas-Loba, Antonia; Horejsi, Zuzana; Tan, Antoinette R; Boulton, Simon J; Ganesan, Shridar

    2013-11-01

    Activation of poly(ADP-ribose) polymerase (PARP) near sites of DNA breaks facilitates recruitment of DNA repair proteins and promotes chromatin relaxation in part through the action of chromatin-remodeling enzyme Amplified in Liver Cancer 1 (ALC1). Through proteomic analysis we find that ALC1 interacts after DNA damage with Tripartite Motif-containing 33 (TRIM33), a multifunctional protein implicated in transcriptional regulation, TGF-β signaling, and tumorigenesis. We demonstrate that TRIM33 is dynamically recruited to DNA damage sites in a PARP1- and ALC1-dependent manner. TRIM33-deficient cells show enhanced sensitivity to DNA damage and prolonged retention of ALC1 at sites of DNA breaks. Conversely, overexpression of TRIM33 alleviates the DNA repair defects conferred by ALC1 overexpression. Thus, TRIM33 plays a role in PARP-dependent DNA damage response and regulates ALC1 activity by promoting its timely removal from sites of DNA damage. PMID:23926104

  2. Tripartite Motif-containing 33 (TRIM33) Protein Functions in the Poly(ADP-ribose) Polymerase (PARP)-dependent DNA Damage Response through Interaction with Amplified in Liver Cancer 1 (ALC1) Protein*

    Science.gov (United States)

    Kulkarni, Atul; Oza, Jay; Yao, Ming; Sohail, Honeah; Ginjala, Vasudeva; Tomas-Loba, Antonia; Horejsi, Zuzana; Tan, Antoinette R.; Boulton, Simon J.; Ganesan, Shridar

    2013-01-01

    Activation of poly(ADP-ribose) polymerase (PARP) near sites of DNA breaks facilitates recruitment of DNA repair proteins and promotes chromatin relaxation in part through the action of chromatin-remodeling enzyme Amplified in Liver Cancer 1 (ALC1). Through proteomic analysis we find that ALC1 interacts after DNA damage with Tripartite Motif-containing 33 (TRIM33), a multifunctional protein implicated in transcriptional regulation, TGF-β signaling, and tumorigenesis. We demonstrate that TRIM33 is dynamically recruited to DNA damage sites in a PARP1- and ALC1-dependent manner. TRIM33-deficient cells show enhanced sensitivity to DNA damage and prolonged retention of ALC1 at sites of DNA breaks. Conversely, overexpression of TRIM33 alleviates the DNA repair defects conferred by ALC1 overexpression. Thus, TRIM33 plays a role in PARP-dependent DNA damage response and regulates ALC1 activity by promoting its timely removal from sites of DNA damage. PMID:23926104

  3. Determining Omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: part B--structuromics.

    Science.gov (United States)

    Falk, Martin; Hausmann, Michael; Lukášová, Emílie; Biswas, Abin; Hildenbrand, Georg; Davídková, Marie; Krasavin, Evgeny; Kleibl, Zdeněk; Falková, Iva; Ježková, Lucie; Štefančíková, Lenka; Ševčík, Jan; Hofer, Michal; Bačíková, Alena; Matula, Pavel; Boreyko, Alla; Vachelová, Jana; Michaelidisová, Anna; Kozubek, Stanislav

    2014-01-01

    Recent groundbreaking developments in Omics and bioinformatics have generated new hope for overcoming the complexity and variability of (radio)biological systems while simultaneously shedding more light on fundamental radiobiological questions that have remained unanswered for decades. In the era of Omics, our knowledge of how genes and dozens of proteins interact in the frame of complex signaling and repair pathways (or, rather, networks) to preserve the integrity of the genome has been rapidly expanding. Nevertheless, these functional networks must be observed with strong correspondence to the cell nucleus, which is the main target of ionizing radiation. Information regarding these intricate processes cannot be achieved using high-throughput Omics approaches alone; it requires sophisticated structural probing and imaging. In the first part of this review, the article "Giving Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part A--Radiomics," we showed the development of different Omics solutions and how they are contributing to a better understanding of cellular radiation response. In this Part B we show how high-resolution confocal microscopy as well as novel approaches of molecular localization nanoscopy fill the gaps to successfully place Omics data in the context of space and time. The dynamics of double-strand breaks during repair processes and chromosomal rearrangements at the microscale correlated to aberration induction are explained. For the first time we visualize pan-nuclear nucleosomal rearrangements and clustering at the nanoscale during repair processes. Finally, we introduce a novel method of specific chromatin nanotargeting based on a computer database search of uniquely binding oligonucleotide combinations (COMBO-FISH). With these challenging techniques on hand, we speculate future perspectives that may combine specific COMBO-FISH nanoprobing and structural nanoscopy to

  4. Cellular Iron Depletion and the Mechanisms Involved in the Iron-dependent Regulation of the Growth Arrest and DNA Damage Family of Genes*

    OpenAIRE

    Saletta, Federica; Rahmanto, Yohan Suryo; Siafakas, Aritee R.; Richardson, Des R.

    2011-01-01

    Iron plays a crucial part in proliferation while iron deficiency results in G1/S arrest, DNA damage, and apoptosis. However, the precise role of iron in cell cycle control remains unclear. We showed that iron depletion using the iron chelators, desferrioxamine (DFO), or 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone (311), increased the mRNA levels of the growth arrest and DNA damage 45α gene, GADD45α (Darnell, G. and Richardson, D. R. (1999) Blood 94, 781–792). In this study, we examine...

  5. Nuclear export regulation of COP1 by 14-3-3σ in response to DNA damage

    Directory of Open Access Journals (Sweden)

    Chen Jian

    2010-09-01

    Full Text Available Abstract Mammalian constitutive photomorphogenic 1 (COP1 is a p53 E3 ubiquitin ligase involved in regulating p53 protein level. In plants, the dynamic cytoplasm/nucleus distribution of COP1 is important for its function in terms of catalyzing the degradation of target proteins. In mammalian cells, the biological consequence of cytoplasmic distribution of COP1 is not well characterized. Here, we show that DNA damage leads to the redistribution of COP1 to the cytoplasm and that 14-3-3σ, a p53 target gene product, controls COP1 subcellular localization. Investigation of the underlying mechanism suggests that COP1 S387 phosphorylation is required for COP1 to bind 14-3-3σ. Significantly, upon DNA damage, 14-3-3σ binds to phosphorylated COP1 at S387, resulting in COP1's accumulation in the cytoplasm. Cytoplasmic COP1 localization leads to its enhanced ubiquitination. We also show that N-terminal 14-3-3σ interacts with COP1 and promotes COP1 nuclear export through its NES sequence. Further, we show that COP1 is important in causing p53 nuclear exclusion. Finally, we demonstrate that 14-3-3σ targets COP1 for nuclear export, thereby preventing COP1-mediated p53 nuclear export. Together, these results define a novel, detailed mechanism for the subcellular localization and regulation of COP1 after DNA damage and provide a mechanistic explanation for the notion that 14-3-3σ's impact on the inhibition of p53 E3 ligases is an important step for p53 stabilization after DNA damage.

  6. Targeting DNA Damage Response in the Radio(Chemo)therapy of Non-Small Cell Lung Cancer

    OpenAIRE

    Ling Li; Tao Zhu; Yuan-Feng Gao; Wei Zheng; Chen-Jing Wang; Ling Xiao; Ma-Sha Huang; Ji-Ye Yin; Hong-Hao Zhou; Zhao-Qian Liu

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide due to its high incidence and mortality. As the most common lung cancer, non-small cell lung cancer (NSCLC) is a terrible threat to human health. Despite improvements in diagnosis and combined treatments including surgical resection, radiotherapy and chemotherapy, the overall survival for NSCLC patients still remains poor. DNA damage is considered to be the primary cause of lung cancer development and is normally recognized and repair...

  7. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    OpenAIRE

    Razmik Mirzayans; Bonnie Andrais; Piyush Kumar; David Murray

    2016-01-01

    It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and t...

  8. Critical involvement of the ATM-dependent DNA damage response in the apoptotic demise of HIV-1-elicited syncytia.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Perfettini

    Full Text Available DNA damage can activate the oncosuppressor protein ataxia telangiectasia mutated (ATM, which phosphorylates the histone H2AX within characteristic DNA damage foci. Here, we show that ATM undergoes an activating phosphorylation in syncytia elicited by the envelope glycoprotein complex (Env of human immunodeficiency virus-1 (HIV-1 in vitro. This was accompanied by aggregation of ATM in discrete nuclear foci that also contained phospho-histone H2AX. DNA damage foci containing phosphorylated ATM and H2AX were detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Knockdown of ATM or of its obligate activating factor NBS1 (Nijmegen breakage syndrome 1 protein, as well as pharmacological inhibition of ATM with KU-55933, inhibited H2AX phosphorylation and prevented Env-elicited syncytia from undergoing apoptosis. ATM was found indispensable for the activation of MAP kinase p38, which catalyzes the activating phosphorylation of p53 on serine 46, thereby causing p53 dependent apoptosis. Both wild type HIV-1 and an HIV-1 mutant lacking integrase activity induced syncytial apoptosis, which could be suppressed by inhibiting ATM. HIV-1-infected T lymphoblasts from patients with inactivating ATM or NBS1 mutations also exhibited reduced syncytial apoptosis. Altogether these results indicate that apoptosis induced by a fusogenic HIV-1 Env follows a pro-apoptotic pathway involving the sequential activation of ATM, p38MAPK and p53.

  9. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    International Nuclear Information System (INIS)

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair

  10. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit K.; Bhattacharya, Saikat; Khan, Shafqat A.; Khade, Bharat; Gupta, Sanjay, E-mail: sgupta@actrec.gov.in

    2015-03-15

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair.

  11. The Prp19/Pso4 Core complex Undergoes Ubiquitylation and Structural Alterations in Response to DNA Damage

    OpenAIRE

    Lu, Xiaoyan; Legerski, Randy J.

    2007-01-01

    Prp19/Pso4, a U-box containing E3 ligase, has a demonstrated role in pre-mRNA splicing, but has also been implicated in both yeast and mammalian cells as having a direct role in DNA damage processing. In this report we provide further evidence in support of this latter assertion. We show that hPrp19 forms an ubiquitylated oligomeric species that is resistant to disruption by SDS gel electrophoresis under nonreducing conditions suggesting that is mediated by a thiolester between ubiquitin and ...

  12. Induction of S.cerevisiae MAG 3-methyladenine DNA glycosylase transcript levels in response to DNA damage.

    OpenAIRE

    J. Chen; Samson, L

    1991-01-01

    We previously showed that the expression of the Saccharomyces cerevisiae MAG 3-methyladenine (3MeA) DNA glycosylase gene, like that of the E. coli alkA 3MeA DNA glycosylase gene, is induced by alkylating agents. Here we show that the MAG induction mechanism differs from that of alkA, at least in part, because MAG mRNA levels are not only induced by alkylating agents but also by UV light and the UV-mimetic agent 4-nitroquinoline-1-oxide. Unlike some other yeast DNA-damage-inducible genes, MAG ...

  13. Chronic exposure to MDMA (ecstasyinduces DNA damage, impairs functional antioxidant cellular defenses, enhances the lipid peroxidation process and alters testes histopathology in male rat

    Directory of Open Access Journals (Sweden)

    Nadia Gamal Zaki, ** Laila Abdel Kawy

    2013-04-01

    Full Text Available Background : 3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy" is consumed mainly by young population. For this reason, it is especially relevant to take into consideration the effects on the reproductive system. The influence of MDMA on the fertility and reproduction of the male rat was assessed in this study. Material and methods: MDMA was administered orally at 0 mg/kg (control, 10 and 30 mg/kg to male rats for 15,30,45 consecutive days followed by 15 days withdrawal. Hormonal, biochemical, histological and testicular were evaluated in the rats. The present study aimed to investigate if daily oral administration of ecstasy at low doses(10mg for 45 days has any deleterious effects on reproductive functions of male rats. Animals were randomly divided into four groups of ten rats each, assigned as control rats, or(0mg ecstasy, rats treated with 10mg ecstasy for, (15,30,45 days, rats treated with 30mg/kg body weight ecstasy for(,15,30,45days by oral gavage. The third group(45 days was followed by 15 withdrawal period(W15. Results: The activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in testicular homogenate were decreased while the levels of lipid peroxidation increased significantly in the treated rats as compared with the corresponding group of control animals. In group 30mg, only, arachidonic acid was significantly elevated in the testicular homogenate while linoleic acid was decresed when compared to control. Testis DNA fragmentation was observed in 30mg group, but not 10.mg. It is concluded that low doses of ecstasy exposure(10 mg/Kg had moderate detrimental effects on reproductive organ system and more severe effects are likely to be observed at higher dose levels. These results indicate that ecstasy is directly toxic to primary Leydig cells, and that the decreased percentage of normal cells and the increased level of DNA damage in ecstasy -exposed Leydig cells may be responsible for

  14. Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part B-Structuromics

    Czech Academy of Sciences Publication Activity Database

    Falk, Martin; Hausmann, M.; Lukášová, Emilie; Biswas, A.; Hildenbrand, G.; Davídková, Marie; Krasavin, E.; Kleibl, Z.; Falková, Iva; Ježková, L.; Štefančíková, Lenka; Ševčík, J.; Hofer, Michal; Bačíková, Alena; Matula, Pavel; Boreyko, A.; Vachelová, Jana; Michaelidesová, Anna; Kozubek, Stanislav

    2014-01-01

    Roč. 24, č. 3 (2014), s. 225-247. ISSN 1045-4403 R&D Projects: GA ČR GBP302/12/G157; GA ČR GAP302/10/1022; GA MŠk LD12039; GA MŠk LD12008; GA MŠk(XE) LM2011019 Institutional support: RVO:68081707 ; RVO:61389005 Keywords : omics * ionizing radiation * low-dose dilemma * biological complexity and variability * higher-order chromatin structure * DNA damage response * formation of chromosomal translocations * confocal microscopy * localization nanoscopy Subject RIV: BO - Biophysics; BO - Biophysics (BFU-R) Impact factor: 1.571, year: 2014

  15. Chemical genetics reveals a specific requirement for Cdk2 activity in the DNA damage response and identifies Nbs1 as a Cdk2 substrate in human cells.

    Directory of Open Access Journals (Sweden)

    Lara Wohlbold

    2012-08-01

    Full Text Available The cyclin-dependent kinases (CDKs that promote cell-cycle progression are targets for negative regulation by signals from damaged or unreplicated DNA, but also play active roles in response to DNA lesions. The requirement for activity in the face of DNA damage implies that there are mechanisms to insulate certain CDKs from checkpoint inhibition. It remains difficult, however, to assign precise functions to specific CDKs in protecting genomic integrity. In mammals, Cdk2 is active throughout S and G2 phases, but Cdk2 protein is dispensable for survival, owing to compensation by other CDKs. That plasticity obscured a requirement for Cdk2 activity in proliferation of human cells, which we uncovered by replacement of wild-type Cdk2 with a mutant version sensitized to inhibition by bulky adenine analogs. Here we show that transient, selective inhibition of analog-sensitive (AS Cdk2 after exposure to ionizing radiation (IR enhances cell-killing. In extracts supplemented with an ATP analog used preferentially by AS kinases, Cdk2(as phosphorylated the Nijmegen Breakage Syndrome gene product Nbs1-a component of the conserved Mre11-Rad50-Nbs1 complex required for normal DNA damage repair and checkpoint signaling-dependent on a consensus CDK recognition site at Ser432. In vivo, selective inhibition of Cdk2 delayed and diminished Nbs1-Ser432 phosphorylation during S phase, and mutation of Ser432 to Ala or Asp increased IR-sensitivity. Therefore, by chemical genetics, we uncovered both a non-redundant requirement for Cdk2 activity in response to DNA damage and a specific target of Cdk2 within the DNA repair machinery.

  16. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.

    Science.gov (United States)

    Guillonneau, Maëva; Paris, François; Dutoit, Soizic; Estephan, Hala; Bénéteau, Elise; Huot, Jacques; Corre, Isabelle

    2016-08-01

    Oxidative stress is a leading cause of endothelial dysfunction. The p38 MAPK pathway plays a determinant role in allowing cells to cope with oxidative stress and is tightly regulated by a balanced interaction between p38 protein and its interacting partners. By using a proteomic approach, we identified nucleophosmin (NPM) as a new partner of p38 in HUVECs. Coimmunoprecipitation and microscopic analyses confirmed the existence of a cytosolic nucleophosmin (NPM)/p38 interaction in basal condition. Oxidative stress, which was generated by exposure to 500 µM H2O2, induces a rapid dephosphorylation of NPM at T199 that depends on phosphatase PP2A, another partner of the NPM/p38 complex. Blocking PP2A activity leads to accumulation of NPM-pT199 and to an increased association of NPM with p38. Concomitantly to its dephosphorylation, oxidative stress promotes translocation of NPM to the nucleus to affect the DNA damage response. Dephosphorylated NPM impairs the signaling of oxidative stress-induced DNA damage via inhibition of the phosphorylation of ataxia-telangiectasia mutated and DNA-dependent protein kinase catalytic subunit. Overall, these results suggest that the p38/NPM/PP2A complex acts as a dynamic sensor, allowing endothelial cells to react rapidly to acute oxidative stress.-Guillonneau, M., Paris, F., Dutoit, S., Estephan, H., Bénéteau, E., Huot, J., Corre, I. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response. PMID:27142525

  17. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    International Nuclear Information System (INIS)

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts

  18. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.; Bond, V.P. [Washington State Univ., Richland, WA (United States); Sondhaus, C.A. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Radiology and Radiation Control Office; Altman, K.I. [Univ. of Rochester Medical Center, NY (United States). Dept. of Biochemistry and Biophysics

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.

  19. MiR-34a is up-regulated in response to low dose, low energy X-ray induced DNA damage in breast cells

    International Nuclear Information System (INIS)

    MicroRNAs are non-coding RNAs involved in the regulation of gene expression including DNA damage responses. Low doses of low energy X-ray radiation, similar to those used in mammographic exams, has been described to be genotoxic. In the present work we investigated the expression of miR-34a; a well described p53-regulated miRNA implicated in cell responses to X-ray irradiation at low doses. Non-cancerous breast cell line MCF-10A and cancerous T-47D and MCF-7 cell lines were submitted to a low-energy X-ray irradiation (ranging from 28–30 Kv) using a dose of 5 Gy. The expression level of miR-34a, let-7a and miR-21 was assessed by qRT-PCR at 4 and 24 hours post-irradiation. DNA damage was then measured by comet assay and micronuclei estimation in MCF-10A and MCF-7 cell lines, where an increase of miR-34a levels could be observed after irradiation. The rate of apoptotic cells was estimated by nuclear staining and fluorescence microscopy. These experiments were also performed at low doses (3; 12 and 48 mGy) in MCF-10A and MCF-7 cell lines. We have observed an increase in miR-34a expression 4 hours post-irradiation at 5 Gy in MCF-10A and MCF-7 cell lines while its level did not change in T-47D, a breast cancer cell line bearing non-functional p53. At low doses, miR-34a was up-regulated in non-tumoral MCF-10A to a higher extent as compared to MCF-7. MiR-34a levels decreased 24 hours post-irradiation. We have also observed DNA damage and apoptosis at low-energy X-ray irradiation at low doses and the high dose in MCF-10A and MCF-7 4 and 24 hours post-irradiation relative to the mock control. Low energy X-ray is able to promote DNA strand breaks and miR-34a might be involved in cell responses to low energy X-ray DNA damage. MiR-34a expression correlates with X-ray dose, time after irradiation and cell type. The present study reinforces the need of investigating consequences of low dose X-ray irradiation of breast cells

  20. Phosphorylation of MCT-1 by p44/42 MAPK is required for its stabilization in response to DNA damage

    DEFF Research Database (Denmark)

    Nandi, S; Reinert, Line; Hachem, A; Mazan-Mamczarz, K; Hagner, P; He, H; Gartenhaus, RB

    2007-01-01

    We discovered a novel oncogene in a T-cell lymphoma cell line, multiple copies in T-cell lymphoma-1 (MCT-1), that has been shown to decrease cell-doubling time, shorten the duration of G(1) transit time and/or G(1)-S transition, and transform NIH3T3 fibroblasts. We subsequently demonstrated that...... there were significantly increased levels of MCT-1 protein in a subset of primary diffuse large B-cell lymphomas. Levels of MCT-1 protein were shown to be increased after exposure to DNA damaging agents. This increase did not require new protein synthesis, suggesting that post-translational mechanisms...... of cell growth and proliferation through phosphorylation-dependent regulation of several substrates. The MCT-1 protein is predicted to have numerous putative phosphorylation sites. Using a combination of genetic and pharmacological approaches, we established that phosphorylation of MCT-1 protein by p...

  1. Metabolic consequences of DNA damage: The role of poly (ADP-ribose) polymerase as mediator of the suicide response

    International Nuclear Information System (INIS)

    Recent studies show that DNA damage can produce rapid alterations in steady state levels of deoxynucleoside triphosphate pools, for example, MNNG or uv-irradiation cause rapid increases in dATP and dTTP pools without significant changes in dGTP or dCTP pools. In vitro, studies with purified eukaryotic DNA polymerases show that the frequency of nucleotide misincorporation was affected by alterations in relative concentrations of the deoxynucleoside triphosphates. Thus the alterations in dNTP pool sizes that occur consequent to DNA damage may contribute to an increased mutagenic frequency. Poly(ADP-ribose) polymerase mediated suicide mechanism may participate in the toxicity of adenosine deaminase deficiency and severe combined immune deficiency disease in humans. Individuals with this disease suffer severe lymphopenia due to the toxic effects of deoxyadenosine. The lymphocytotoxic effect of adenosine deaminase deficiency can be simulated in lymphocyte cell lines from normal individuals by incubating them with the adenosine deaminase inhibitor, deoxycoformycin. Incubation of such leukocytes with deoxycoformycin and deoxyadenosine results in the gradual accumulation of DNA strand breaks and the depletion of NAD+ leading to cell death over a period of several days. This depletion of NAD and loss of cell viability were effectively blocked by nicotinamide or 3-amino benzamide. Thus, persistent activation of poly(ADP-ribose) polymerase by unrepaired or recurrent DNA strand breaks may activate the suicide mechanism of cell death. This study provides a basis for the interesting suggestion that treatment with nicotinamide could block the persistent activity of poly(ADP-ribose) polymerase and may help preserve lymphocyte function in patients with adenosine deaminase deficiency. 16 refs., 3 figs., 2 tabs

  2. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair.

    Science.gov (United States)

    Ginjala, Vasudeva; Nacerddine, Karim; Kulkarni, Atul; Oza, Jay; Hill, Sarah J; Yao, Ming; Citterio, Elisabetta; van Lohuizen, Maarten; Ganesan, Shridar

    2011-05-01

    DNA damage activates signaling pathways that lead to modification of local chromatin and recruitment of DNA repair proteins. Multiple DNA repair proteins having ubiquitin ligase activity are recruited to sites of DNA damage, where they ubiquitinate histones and other substrates. This DNA damage-induced histone ubiquitination is thought to play a critical role in mediating the DNA damage response. We now report that the polycomb protein BMI1 is rapidly recruited to sites of DNA damage, where it persists for more than 8 h. The sustained localization of BMI1 to damage sites is dependent on intact ATM and ATR and requires H2AX phosphorylation and recruitment of RNF8. BMI1 is required for DNA damage-induced ubiquitination of histone H2A at lysine 119. Loss of BMI1 leads to impaired repair of DNA double-strand breaks by homologous recombination and the accumulation of cells in G(2)/M. These data support a crucial role for BMI1 in the cellular response to DNA damage. PMID:21383063

  3. MDM4/HIPK2/p53 cytoplasmic assembly uncovers coordinated repression of molecules with anti-apoptotic activity during early DNA damage response.

    Science.gov (United States)

    Mancini, F; Pieroni, L; Monteleone, V; Lucà, R; Fici, L; Luca, E; Urbani, A; Xiong, S; Soddu, S; Masetti, R; Lozano, G; Pontecorvi, A; Moretti, F

    2016-01-14

    The p53 inhibitor, MDM4 (MDMX) is a cytoplasmic protein with p53-activating function under DNA damage conditions. Particularly, MDM4 promotes phosphorylation of p53 at Ser46, a modification that precedes different p53 activities. We investigated the mechanism by which MDM4 promotes this p53 modification and its consequences in untransformed mammary epithelial cells and tissues. In response to severe DNA damage, MDM4 stimulates p53Ser46(P) by binding and stabilizing serine-threonine kinase HIPK2. Under these conditions, the p53-inhibitory complex, MDM4/MDM2, dissociates and this allows MDM4 to promote p53/HIPK2 functional interaction. Comparative proteomic analysis of DNA damage-treated cells versus -untreated cells evidenced a diffuse downregulation of proteins with anti-apoptotic activity, some of which were targets of p53Ser46(P)/HIPK2 repressive activity. Importantly, MDM4 depletion abolishes the downregulation of these proteins indicating the requirement of MDM4 to promote p53-mediated transcriptional repression. Consistently, MDM4-mediated HIPK2/p53 activation precedes HIPK2/p53 nuclear translocation and activity. Noteworthy, repression of these proteins was evident also in mammary glands of mice subjected to γ-irradiation and was significantly enhanced in transgenic mice overexpressing MDM4. This study evidences the flexibility of MDM2/MDM4 heterodimer, which allows the development of a positive activity of cytoplasmic MDM4 towards p53-mediated transcriptional function. Noteworthy, this activity uncovers coordinated repression of molecules with shared anti-apoptotic function which precedes active cell apoptosis and that are frequently overexpressed and/or markers of tumour phenotype in human cancer. PMID:25961923

  4. Hypoxia depresses CYP1A induction and enhances DNA damage, but has minimal effects on antioxidant responses in sheepshead minnow (Cyprinodon variegatus) larvae exposed to dispersed crude oil.

    Science.gov (United States)

    Dasgupta, Subham; DiGiulio, Richard T; Drollette, Brian D; L Plata, Desire; Brownawell, Bruce J; McElroy, Anne E

    2016-08-01

    The growing incidence of hypoxic regions in coastal areas receiving high volumes of anthropogenic discharges requires more focused risk assessment of multiple stressors. One area needing further study is the combined effect of hypoxia and oil exposure. This study examined the short-term sublethal effects of co-exposure to hypoxia and water accommodated fractions (WAF) and chemically enhanced WAFs (CEWAFs) of Southern Louisiana Crude oil on detoxification, antioxidant defenses and genotoxicity in early life stage sheepshead minnow (Cyprinodon variegatus). CYP1A induction (evaluated by measuring EROD activity), activity of a number of key antioxidant enzymes (GST, GR, GPx, SOD, CAT, and GCL), levels of antioxidants (tGSH, GSH, and GSSG), evidence of lipid peroxidation (evaluated using the TBARS assay), and DNA damage (evaluated using the comet assay) provided a broad assessment of responses. Contaminant detoxification pathways induced by oil exposure were inhibited by co-exposure to hypoxia, indicating a maladaptive response. The interactive effects of oil and hypoxia on antioxidant defenses were mixed, but generally indicated less pronounced alterations, with significant increases in lipid peroxidation not observed. Hypoxia significantly enhanced DNA damage induced by oil exposure indicating the potential for significant deleterious effects post exposure. This study demonstrates the importance of considering hypoxia as an enhanced risk factor in assessing the effects of contaminants in areas where seasonal hypoxia may be prevalent. PMID:27315012

  5. Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells.

    Science.gov (United States)

    Fang, Yi; Zhang, Qian; Wang, Xin; Yang, Xue; Wang, Xiangyu; Huang, Zhen; Jiao, Yuchen; Wang, Jing

    2016-03-01

    Around one sixth of breast cancer cases are classified as triple-negative breast cancer (TNBC), named after the absence of the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2); however, patients with TNBC suffer from poor clinical outcome and shortage of targeted therapy. Genistein, an estrogenic soy isoflavone, shows anticancer effects in TNBC cells such as inducing G2/M cell cycle arrest and apoptosis. However, the underlying mechanism of its anticancer effects is poorly understood and its elucidation can help the development of novel therapeutic strategies for TNBC. In this study, by combining isobaric tag-based TMT labeling with titanium dioxide-based phosphopeptide enrichment, we quantitated 5,445 phosphorylation sites on 2,008 phosphoproteins in the TNBC cell line MDA-MB-231, upon genistein treatment. Our analysis revealed 332 genistein-regulated phosphorylation sites on 226 proteins. Our data show that genistein can regulate several biological processes during the cell cycle, including DNA replication, cohesin complex cleavage, and kinetochore formation. Furthermore, genistein can also activate DNA damage response, including activation of ATR and BRCA1 complex. Overall, our study presents evidence at a phosphoproteomic level that genistein is able to inhibit TNBC cell growth by regulating the cell cycle and DNA damage response in a more complex manner. Our findings help elucidate the mechanisms through which genistein exerts its anticancer effects in TNBC cells. PMID:26783066

  6. Increased sister chromatid cohesion and DNA damage response factor localization at an enzyme-induced DNA double-strand break in vertebrate cells.

    LENUS (Irish Health Repository)

    Dodson, Helen

    2009-10-01

    The response to DNA damage in vertebrate cells involves successive recruitment of DNA signalling and repair factors. We used light microscopy to monitor the genetic dependencies of such localization to a single, induced DNA double strand break (DSB) in vertebrate cells. We used an inducible version of the rare-cutting I-SceI endonuclease to cut a chromosomally integrated I-SceI site beside a Tet operator array that was visualized by binding a Tet repressor-GFP fusion. Formation of gamma-H2AX foci at a single DSB was independent of ATM or Ku70. ATM-deficient cells showed normal kinetics of 53Bp1 recruitment to DSBs, but Rad51 localization was retarded. 53Bp1 and Rad51 foci formation at a single DSB was greatly reduced in H2AX-null DT40 cells. We also observed decreased inter-sister chromatid distances after DSB induction, suggesting that cohesin loading at DSBs causes elevated sister chromatid cohesion. Loss of ATM reduced DSB-induced cohesion, consistent with cohesin being an ATM target in the DSB response. These data show that the same genetic pathways control how cells respond to single DSBs and to multiple lesions induced by whole-cell DNA damage.

  7. The SFP1 gene product of Saccharomyces cerevisiae regulates G2/M transitions during the mitotic cell cycle and DNA-damage response

    International Nuclear Information System (INIS)

    In eukaryotic cells, checkpoint pathways arrest cell-cycle progression if a particular event has failed to complete appropriately or if an important intracellular structure is defective or damaged. Saccharomyces cerevisiae strains that lack the SFP1 gene fail to arrest at the G2 DNA-damage checkpoint in response to genomic injury, but maintain their ability to arrest at the replication and spindle-assembly checkpoints. sfp1D mutants are characterized by a premature entrance into mitosis during a normal (undamaged) cell cycle, while strains that overexpress Sfp1p exhibit delays in G2. Sfp1p therefore acts as a repressor of the G2/M transition, both in the normal cell cycle and in the G2 checkpoint pathway. Sfp1 is a nuclear protein with two Cys2His2 zinc-finger domains commonly found in transcription factors. We propose that Sfp1p regulates the expression of gene products involved in the G2/M transition during the mitotic cell cycle and the DNA-damage response. In support of this model, overexpression of Sfp1p induces the expression of the PDS1 gene, which is known to encode a protein that regulates the G2 checkpoint. (author)

  8. Mechanisms of dealing with DNA damage in terminally differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Fortini, P. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Dogliotti, E., E-mail: eugenia.dogliotti@iss.it [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)

    2010-03-01

    To protect genomic integrity living cells that are continuously exposed to DNA-damaging insults are equipped with an efficient defence mechanism termed the DNA damage response. Its function is to eliminate DNA damage through DNA repair and to remove damaged cells by apoptosis. The DNA damage response has been investigated mainly in proliferating cells, in which the cell cycle machinery is integrated with the DNA damage signalling. The current knowledge of the mechanisms of DNA repair, DNA damage signalling and cell death of post-mitotic cells that have undergone irreversible cell cycle withdrawal will be reviewed. Evidence will be provided that the protection of the genome integrity in terminally differentiated cells is achieved by different strategies than in proliferating cells.

  9. Development of Resistance to the Atypical Retinoid, ST1926, in the Lung Carcinoma Cell Line H460 Is Associated with Reduced Formation of DNA Strand Breaks and a Defective DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Valentina Zuco

    2005-07-01

    Full Text Available Atypical retinoids are potent inducers of apoptosis, but activation of the apoptotic pathway seems to be independent of retinoid receptors. Previous studies with a novel adamantyl retinoid, ST1926, have shown that apoptosis induction is associated with an early genotoxic stress. To better understand the relevance of these events, we have selected a subline of the H460 lung carcinoma cell line resistant to ST1926. Resistant cells exhibited cross-resistance to a related molecule, CD437, but not cross-resistance to agents with different mechanisms of action. In spite of a lack of defects in intracellular drug accumulation, induction of DNA strand breaks in resistant cells required exposure to a substantially higher concentration, which was consistent with the degree of resistance. At drug concentrations causing a similar antiproliferative effect (IC80 and a comparable extent of DNA lesions in sensitive and resistant cells, the apoptotic response was a delayed and less marked event in resistant cells, thus indicating a reduced susceptibility to apoptosis. In spite of recognition of DNA lesions in resistant cells, as supported by phosphorylation of p53 and histone MAX, resistant cells exhibited no activation of the mitochondrial pathways of apoptosis. Following exposure to equitoxic drug concentrations, only sensitive cells exhibited a typical stresslDNA damage response, with activation of the S-phase checkpoint. The cellular resistance to ST1926 reflects alterations responsible for a reduced generation of DNA lesions and for an enhanced tolerance of the genotoxic stress, resulting in lack of activation of the intrinsic pathway of apoptosis. The defective DNA damage response, accompanied by a reduced susceptibility to apoptosis in resistant cells, provides further support to the involvement of genotoxic stress as a critical event in mediating apoptosis induction by ST1926.

  10. DNA damage induced by radionuclide internal irradiation

    International Nuclear Information System (INIS)

    Objective: To study the DNA damage of peripheral blood mononuclear cell (PBMC) in rats exposed to radionuclide internal irradiation. Methods: The radionuclides were injected into the rats and single cell get electrophoresis (SCGE) was performed to detect the length of DNA migration in the rat PBMC. Results: DNA migration in the rat PBMC increased with accumulative dose or dose-rate. It showed good relationship of dose vs. response and of dose-rate vs. response, both relationship could be described as linear models. Conclusion: Radionuclide internal irradiation could cause DNA damage in rat PBMC. (authors)

  11. Disruption of B-myb in DT40 cells reveals novel function for B-Myb in the response to DNA-damage.

    Science.gov (United States)

    Ahlbory, Dörthe; Appl, Hartmut; Lang, Detlef; Klempnauer, Karl-Heinz

    2005-11-01

    B-Myb is a highly conserved vertebrate member of the Myb transcription factor family, which is expressed in virtually all proliferating cells. A large body of evidence suggests that B-Myb plays an important role in cell cycle regulation; however, the exact nature of its function has not yet been clarified. We have used gene targeting in chicken DT40 cells, a cell line exhibiting very high rates of homologous recombination, to create cells expressing endogenous B-myb in a doxycyclin-dependent manner. We find that the cells proliferate well in the absence of B-Myb, suggesting that B-Myb is not essential for cell proliferation per se. However, cells lacking B-Myb are more sensitive to DNA-damage induced by UV-irradiation and alkylation. Our work provides the first direct evidence for a novel function of B-Myb in the response to DNA-damage. The cells described here should be a useful model to characterize this function in more detail. PMID:16170378

  12. Plasmid linking number change induced by topoisomerase I-mediated DNA damage.

    OpenAIRE

    Duann, P; M. Sun; Lin, C T; Zhang, H.; Liu, L F

    1999-01-01

    The state of cellular chromatin in response to DNA damage has been examined by monitoring the change in the linking number of circular episomes. COS cells transfected with an SV40-based vector were treated with camptothecin (CPT), a eukaryotic DNA topoisomerase I (TOP1) poison which induces TOP1-mediated DNA damage. Within minutes, a large increase in the linking number (over 10 linking number) of a small fraction (5-15%) of the episomal DNA was observed. A similar CPT-induced increase in pla...

  13. Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response

    International Nuclear Information System (INIS)

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm2) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: → Arsenic transformation adapted to UV-induced apoptosis. → Arsenic transformation diminished oxidant response. → Arsenic transformation enhanced UV-induced DNA damage.

  14. Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Natkanska, Urszula; Kwiatkowska, Aleksandra; Rawska, Ewa; Potocki, Leszek; Kuna, Ewelina; Panek, Anita; Lewinska, Anna; Wnuk, Maciej

    2016-09-01

    The yeast strains of the Saccharomyces sensu stricto complex involved in beer production are a heterogeneous group whose genetic and genomic features are not adequately determined. Thus, the aim of the present study was to provide a genetic characterization of selected group of commercially available brewing yeasts both ale top-fermenting and lager bottom-fermenting strains. Molecular karyotyping revealed that the diversity of chromosome patterns and four strains with the most accented genetic variabilities were selected and subjected to genome-wide array-based comparative genomic hybridization (array-CGH) analysis. The differences in the gene copy number were found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity (p stress stimuli compared to other strains. We suggest that compromised stress response may not only promote oxidant-based changes in the nucleolus state that may affect fermentation performance but also provide novel directions for future strain improvement. PMID:27299603

  15. Investigation of DNA damage response and apoptotic gene methylation pattern in sporadic breast tumors using high throughput quantitative DNA methylation analysis technology

    Directory of Open Access Journals (Sweden)

    Prakash Neeraj

    2010-11-01

    Full Text Available Abstract Background- Sporadic breast cancer like many other cancers is proposed to be a manifestation of abnormal genetic and epigenetic changes. For the past decade our laboratory has identified genes involved in DNA damage response (DDR, apoptosis and immunesurvelliance pathways to influence sporadic breast cancer risk in north Indian population. Further to enhance our knowledge at the epigenetic level, we performed DNA methylation study involving 17 gene promoter regions belonging to DNA damage response (DDR and death receptor apoptotic pathway in 162 paired normal and cancerous breast tissues from 81 sporadic breast cancer patients, using a high throughput quantitative DNA methylation analysis technology. Results- The study identified five genes with statistically significant difference between normal and tumor tissues. Hypermethylation of DR5 (P = 0.001, DCR1 (P = 0.00001, DCR2 (P = 0.0000000005 and BRCA2 (P = 0.007 and hypomethylation of DR4 (P = 0.011 in sporadic breast tumor tissues suggested a weak/aberrant activation of the DDR/apoptotic pathway in breast tumorigenesis. Negative correlation was observed between methylation status and transcript expression levels for TRAIL, DR4, CASP8, ATM, CHEK2, BRCA1 and BRCA2 CpG sites. Categorization of the gene methylation with respect to the clinicopathological parameters showed an increase in aberrant methylation pattern in advanced tumors. These uncharacteristic methylation patterns corresponded with decreased death receptor apoptosis (P = 0.047 and DNA damage repair potential (P = 0.004 in advanced tumors. The observation of BRCA2 -26 G/A 5'UTR polymorphism concomitant with the presence of methylation in the promoter region was novel and emerged as a strong candidate for susceptibility to sporadic breast tumors. Conclusion- Our study indicates that methylation of DDR-apoptotic gene promoters in sporadic breast cancer is not a random phenomenon. Progressive epigenetic alterations in advancing

  16. Formation of clustered DNA damage after high-LET irradiation: a review.

    Science.gov (United States)

    Hada, Megumi; Georgakilas, Alexandros G

    2008-05-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki.(1)) These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to alpha-particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises of closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest an increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data. PMID:18413977

  17. Formation of Clustered DNA Damage after High-LET Irradiation: A Review

    Science.gov (United States)

    Hada, Megumi; Georgakilas, Alexandros G.

    2008-01-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.

  18. Formation of clustered DNA damage after high-LET irradiation. A review

    International Nuclear Information System (INIS)

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or γ-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to α-particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises of closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest an increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data. (author)

  19. DNA Repair by Reversal of DNA Damage

    OpenAIRE

    Yi, Chengqi; He, Chuan

    2013-01-01

    Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-,...

  20. Delayed chromosomal instability induced by DNA damage.

    OpenAIRE

    Marder, B A; Morgan, W. F.

    1993-01-01

    DNA damage induced by ionizing radiation can result in gene mutation, gene amplification, chromosome rearrangements, cellular transformation, and cell death. Although many of these changes may be induced directly by the radiation, there is accumulating evidence for delayed genomic instability following X-ray exposure. We have investigated this phenomenon by studying delayed chromosomal instability in a hamster-human hybrid cell line by means of fluorescence in situ hybridization. We examined ...

  1. Determining Omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: part A--radiomics.

    Science.gov (United States)

    Falk, Martin; Hausmann, Michael; Lukášová, Emílie; Biswas, Abin; Hildenbrand, Georg; Davídková, Marie; Krasavin, Evgeny; Kleibl, Zdeněk; Falková, Iva; Ježková, Lucie; Štefančíková, Lenka; Ševčík, Jan; Hofer, Michal; Bačíková, Alena; Matula, Pavel; Boreyko, Alla; Vachelová, Jana; Michaelidesová, Anna; Kozubek, Stanislav

    2014-01-01

    Recent ground-breaking developments in Omics have generated new hope for overcoming the complexity and variability of biological systems while simultaneously shedding more light on fundamental radiobiological questions that have remained unanswered for decades. In the era of Omics, our knowledge of how genes and proteins interact in the frame of complex networks to preserve genome integrity has been rapidly expanding. Nevertheless, these functional networks must be observed with strong correspondence to the cell nucleus, which is the main target of ionizing radiation. Nuclear architecture and nuclear processes, including DNA damage responses, are precisely organized in space and time. Information regarding these intricate processes cannot be achieved using high-throughput Omics approaches alone, but requires sophisticated structural probing and imaging. Based on the results obtained from studying the relationship between higher-order chromatin structure, DNA double-strand break induction and repair, and the formation of chromosomal translocations, we show the development of Omics solutions especially for radiation research (radiomics) (discussed in this article) and how confocal microscopy as well as novel approaches of molecular localization nanoscopy fill the gaps to successfully place the Omics data in the context of space and time (discussed in our other article in this issue, "Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part B--Structuromics"). Finally, we introduce a novel method of specific chromatin nanotargeting and speculate future perspectives, which may combine nanoprobing and structural nanoscopy to observe structure-function correlations in living cells in real time. Thus, the Omics networks obtained from function analyses may be enriched by real-time visualization of Structuromics. PMID:25072147

  2. The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses

    International Nuclear Information System (INIS)

    There is limited information on the impacts of present-day solar ultraviolet-B radiation (UV-B) on biomass and grain yield of field crops and on the mechanisms that confer tolerance to UV-B radiation under field conditions. We investigated the effects of solar UV-B on aspects of the biochemistry, growth and yield of barley crops using replicated field plots and two barley strains, a catalase (CAT)-deficient mutant (RPr 79/4) and its wild-type mother line (Maris Mink). Solar UV-B reduced biomass accumulation and grain yield in both strains. The effects on crop biomass accumulation tended to be more severe in RPr 79/4 (≈ 32% reduction) than in the mother line (≈ 20% reduction). Solar UV-B caused measurable DNA damage in leaf tissue, in spite of inducing a significant increase in UV-absorbing sunscreens in the two lines. Maris Mink responded to solar UV-B with increased CAT and ascorbate peroxidase (APx) activity. No effects of UV-B on total superoxide dismutase (SOD) activity were detected. Compared with the wild type, RPr 79/4 had lower CAT activity, as expected, but higher APx activity. Neither of these activities increased in response to UV-B in RPr 79/4. These results suggest that growth inhibition by solar UV-B involves DNA damage and oxidative stress, and that constitutive and UV-B-induced antioxidant capacity may play an important role in UV-B tolerance. (author)

  3. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    Science.gov (United States)

    2011-01-01

    Background 1-{4-[Bis(2-chloroethyl)amino]phenyl}-3-[2-methyl-5-(4-methylacridin-9-ylamino)phenyl]urea (BO-1051) is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. Methods The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3) following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. Results BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. Conclusions These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells. PMID:21244709

  4. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    Directory of Open Access Journals (Sweden)

    Chen Ming-Teh

    2011-01-01

    Full Text Available Abstract Background 1-{4-[Bis(2-chloroethylamino]phenyl}-3-[2-methyl-5-(4-methylacridin-9-ylaminophenyl]urea (BO-1051 is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. Methods The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3 following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. Results BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. Conclusions These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells.

  5. Differential response between the p53 ubiquitin-protein ligases Pirh2 and MdM2 following DNA damage in human cancer cells

    International Nuclear Information System (INIS)

    Pirh2, a recently identified ubiquitin-protein ligase, has been reported to promote p53 degradation. Pirh2 physically interacts with p53 and promotes ubiquitination of p53 independently of MDM2. Like MDM2, Pirh2 is thought to participate in an autoregulatory feedback loop that controls p53 function. We have previously reported that Pirh2 was overexpressed in human and murine lung cancers as compared to uninvolved lung tissue. Pirh2 increase could potentially cause degradation of wildtype p53 and reduce its tumor suppression function in the lung tumor cells. Since Pirh2 has been reported to be transactivated by p53, however, the mechanisms by which a high level of Pirh2 expression is maintained in tumor cells despite low level of wildtype p53 protein are unclear. In order to evaluate p53 involvement in the transactivation of Pirh2, we evaluated Pirh2, MDM2, p53 and p21 expression with Western blot analysis and real time PCR after γ irradiation or cisplatin DNA damage treatment using human cancer cell lines containing wildtype (A549, MCF-7), mutant (H719) and null (H1299) p53. Surprisingly, Pirh2 expression was not affected by the presence of wildtype p53 in the cancer cells. In contrast, MDM2 was upregulated by wildtype p53 in A549 and MCF-7 cells and was absent from the H1299 and the H719 cells. We conclude that Pirh2 operates in a distinct manner from MDM2 in response to DNA damage in cancer cells. Pirh2 elevation in p53 null cells indicates the existence of additional molecular mechanisms for Pirh2 upregulation and suggests that p53 is not the sole target of Pirh2 ubiquitin ligase activity

  6. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    International Nuclear Information System (INIS)

    1-{4-[Bis(2-chloroethyl)amino]phenyl}-3-[2-methyl-5- (4-methylacridin-9-ylamino)phenyl]urea (BO-1051) is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3) following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells

  7. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration.

    Science.gov (United States)

    Hall, A E; Lu, W-T; Godfrey, J D; Antonov, A V; Paicu, C; Moxon, S; Dalmay, T; Wilczynska, A; Muller, P A J; Bushell, M

    2016-01-01

    The integrity of the genome is maintained by a host of surveillance and repair mechanisms that are pivotal for cellular function. The tumour suppressor protein p53 is a major component of the DNA damage response pathway and plays a vital role in the maintenance of cell-cycle checkpoints. Here we show that a microRNA, miR-486, and its host gene ankyrin-1 (ANK1) are induced by p53 following DNA damage. Strikingly, the cytoskeleton adaptor protein ankyrin-1 was induced over 80-fold following DNA damage. ANK1 is upregulated in response to a variety of DNA damage agents in a range of cell types. We demonstrate that miR-486-5p is involved in controlling G1/S transition following DNA damage, whereas the induction of the ankyrin-1 protein alters the structure of the actin cytoskeleton and sustains limited cell migration during DNA damage. Importantly, we found that higher ANK1 expression correlates with decreased survival in cancer patients. Thus, these observations highlight ANK1 as an important effector downstream of the p53 pathway. PMID:27054339

  8. Mitochondrial and Nuclear DNA Damage and Repair in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2013-01-01

    Full Text Available Aging and oxidative stress seem to be the most important factors in the pathogenesis of age-related macular degeneration (AMD, a condition affecting many elderly people in the developed world. However, aging is associated with the accumulation of oxidative damage in many biomolecules, including DNA. Furthermore, mitochondria may be especially important in this process because the reactive oxygen species produced in their electron transport chain can damage cellular components. Therefore, the cellular response to DNA damage, expressed mainly through DNA repair, may play an important role in AMD etiology. In several studies the increase in mitochondrial DNA (mtDNA damage and mutations, and the decrease in the efficacy of DNA repair have been correlated with the occurrence and the stage of AMD. It has also been shown that mitochondrial DNA accumulates more DNA lesions than nuclear DNA in AMD. However, the DNA damage response in mitochondria is executed by nucleus-encoded proteins, and thus mutagenesis in nuclear DNA (nDNA may affect the ability to respond to mutagenesis in its mitochondrial counterpart. We reported that lymphocytes from AMD patients displayed a higher amount of total endogenous basal and oxidative DNA damage, exhibited a higher sensitivity to hydrogen peroxide and UV radiation, and repaired the lesions induced by these factors less effectively than did cells from control individuals. We postulate that poor efficacy of DNA repair (i.e., is impaired above average for a particular age when combined with the enhanced sensitivity of retinal pigment epithelium cells to environmental stress factors, contributes to the pathogenesis of AMD. Collectively, these data suggest that the cellular response to both mitochondrial and nuclear DNA damage may play an important role in AMD pathogenesis.

  9. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  10. DNA damage in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  11. Maintaining Genome Stability in Defiance of Mitotic DNA Damage

    Science.gov (United States)

    Ferrari, Stefano; Gentili, Christian

    2016-01-01

    The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy. PMID:27493659

  12. BMI1 Is Recruited to DNA Breaks and Contributes to DNA Damage-Induced H2A Ubiquitination and Repair ▿ †

    Science.gov (United States)

    Ginjala, Vasudeva; Nacerddine, Karim; Kulkarni, Atul; Oza, Jay; Hill, Sarah J.; Yao, Ming; Citterio, Elisabetta; van Lohuizen, Maarten; Ganesan, Shridar

    2011-01-01

    DNA damage activates signaling pathways that lead to modification of local chromatin and recruitment of DNA repair proteins. Multiple DNA repair proteins having ubiquitin ligase activity are recruited to sites of DNA damage, where they ubiquitinate histones and other substrates. This DNA damage-induced histone ubiquitination is thought to play a critical role in mediating the DNA damage response. We now report that the polycomb protein BMI1 is rapidly recruited to sites of DNA damage, where it persists for more than 8 h. The sustained localization of BMI1 to damage sites is dependent on intact ATM and ATR and requires H2AX phosphorylation and recruitment of RNF8. BMI1 is required for DNA damage-induced ubiquitination of histone H2A at lysine 119. Loss of BMI1 leads to impaired repair of DNA double-strand breaks by homologous recombination and the accumulation of cells in G2/M. These data support a crucial role for BMI1 in the cellular response to DNA damage. PMID:21383063

  13. Evaluation of the Comet Assay for Assessing the Dose-Response Relationship of DNA Damage Induced by Ionizing Radiation

    OpenAIRE

    Qiang Liu; Bing Wang; Takanori Katsube; Sai Jun Fan; Fei-Yue Fan; Hui Zhao; Xu Su; Jian Xiang Liu; Jia Cao; Li Qing Du; Chang Xu; Yan Wang

    2013-01-01

    Dose- and time-response curves were combined to assess the potential of the comet assay in radiation biodosimetry. The neutral comet assay was used to detect DNA double-strand breaks in lymphocytes caused by γ-ray irradiation. A clear dose-response relationship with DNA double-strand breaks using the comet assay was found at different times after irradiation (p < 0.001). A time-response relationship was also found within 72 h after irradiation (p < 0.001). The curves for DNA double-strand bre...

  14. The DNA-Damage Response to γ-Radiation Is Affected by miR-27a in A549 Cells

    Directory of Open Access Journals (Sweden)

    Lucia Celotti

    2013-09-01

    Full Text Available Perturbations during the cell DNA-Damage Response (DDR can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs, small non-coding RNAs that act as post-transcriptional regulators of gene expression. The oncogenic miR-27a is over-expressed in several tumors and, in the present study, we investigated its interaction with ATM, the gene coding for the main kinase of DDR pathway. Experimental validation to confirm miR-27a as a direct regulator of ATM was performed by site-direct mutagenesis of the luciferase reporter vector containing the 3'UTR of ATM gene, and by miRNA oligonucleotide mimics. We then explored the functional miR-27a/ATM interaction under biological conditions, i.e., during the response of A549 cells to ionizing radiation (IR exposure. To evaluate if miR-27a over-expression affects IR-induced DDR activation in A549 cells we determined cell survival, cell cycle progression and DNA double-strand break (DSB repair. Our results show that up-regulation of miR-27a promotes cell proliferation of non-irradiated and irradiated cells. Moreover, increased expression of endogenous mature miR-27a in A549 cells affects DBS rejoining kinetics early after irradiation.

  15. The SUMO-targeted ubiquitin ligase RNF4 localizes to etoposide-exposed mitotic chromosomes: implication for a novel DNA damage response during mitosis.

    Science.gov (United States)

    Saito, Masayuki; Fujimitsu, Yuka; Sasano, Takeshi; Yoshikai, Yushi; Ban-Ishihara, Reiko; Nariai, Yuko; Urano, Takeshi; Saitoh, Hisato

    2014-04-25

    RNF4, a SUMO-targeted ubiquitin ligase (STUbL), localizes to the nucleus and functions in the DNA damage response during interphase of the cell cycle. RNF4 also exists in cells undergoing mitosis, where its regulation and function remain poorly understood. Here we showed that administration of etoposide, an anticancer DNA topoisomerase II poison, to mitotic human cervical cancer HeLa cells induced SUMO-2/3-dependent localization of RNF4 to chromosomes. The FK2 antibody signals, indicative of poly/multi-ubiquitin assembly, were detected on etoposide-exposed mitotic chromosomes, whereas the signals were negligible in cells depleted for RNF4 by RNA interference. This suggests that RNF4 functions as a STUbL in the etoposide-induced damage response during mitosis. Indeed, RNF4-depletion sensitized mitotic HeLa cells to etoposide and increased cells with micronuclei. These results indicate the importance of the RNF4-mediated STUbL pathway during mitosis for the maintenance of chromosome integrity and further implicate RNF4 as a target for topo II poison-based therapy for cancer patients. PMID:24695317

  16. Evaluation of the Comet Assay for Assessing the Dose-Response Relationship of DNA Damage Induced by Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2013-11-01

    Full Text Available Dose- and time-response curves were combined to assess the potential of the comet assay in radiation biodosimetry. The neutral comet assay was used to detect DNA double-strand breaks in lymphocytes caused by γ-ray irradiation. A clear dose-response relationship with DNA double-strand breaks using the comet assay was found at different times after irradiation (p < 0.001. A time-response relationship was also found within 72 h after irradiation (p < 0.001. The curves for DNA double-strand breaks and DNA repair in vitro of human lymphocytes presented a nice model, and a smooth, three-dimensional plane model was obtained when the two curves were combined.

  17. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches.

    Directory of Open Access Journals (Sweden)

    Alba Martínez

    Full Text Available Phosphorylation of the eukaryotic translation initiation factor eIF4E is associated with malignant progression and poor cancer prognosis. Accordingly, here we have analyzed the association between eIF4E phosphorylation and cellular resistance to oxidative stress, starvation, and DNA-damaging agents in vitro. Using immortalized and cancer cell lines, retroviral expression of a phosphomimetic (S209D form of eIF4E, but not phospho-dead (S209A eIF4E or GFP control, significantly increased cellular resistance to stress induced by DNA-damaging agents (cisplatin, starvation (glucose+glutamine withdrawal, and oxidative stress (arsenite. De novo accumulation of eIF4E-containing cytoplasmic bodies colocalizing with the eIF4E-binding protein 4E-T was observed after expression of phosphomimetic S209D, but not S209A or wild-type eIF4E. Increased resistance to cellular stress induced by eIF4E-S209D was lost upon knockdown of endogenous 4E-T or use of an eIF4E-W73A-S209D mutant unable to bind 4E-T. Cancer cells treated with the Mnk1/2 inhibitor CGP57380 to prevent eIF4E phosphorylation and mouse embryonic fibroblasts derived from Mnk1/2 knockout mice were also more sensitive to arsenite and cisplatin treatment. Polysome analysis revealed an 80S peak 2 hours after arsenite treatment in cells overexpressing phosphomimetic eIF4E, indicating translational stalling. Nonetheless, a selective increase was observed in the synthesis of some proteins (cyclin D1, HuR, and Mcl-1. We conclude that phosphorylation of eIF4E confers resistance to various cell stressors and that a direct interaction or regulation of 4E-T by eIF4E is required. Further delineation of this process may identify novel therapeutic avenues for cancer treatment, and these results support the use of modern Mnk1/2 inhibitors in conjunction with standard therapy.

  18. EBV-LMP1 suppresses the DNA damage response through DNA-PK/AMPK signaling to promote radioresistance in nasopharyngeal carcinoma.

    Science.gov (United States)

    Lu, Jingchen; Tang, Min; Li, Hongde; Xu, Zhijie; Weng, Xinxian; Li, Jiangjiang; Yu, Xinfang; Zhao, Luqing; Liu, Hongwei; Hu, Yongbin; Tan, Zheqiong; Yang, Lifang; Zhong, Meizuo; Zhou, Jian; Fan, Jia; Bode, Ann M; Yi, Wei; Gao, Jinghe; Sun, Lunquan; Cao, Ya

    2016-09-28

    We conducted this research to explore the role of latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus (EBV) in modulating the DNA damage response (DDR) and its regulatory mechanisms in radioresistance. Our results revealed that LMP1 repressed the repair of DNA double strand breaks (DSBs) by inhibiting DNA-dependent protein kinase (DNA-PK) phosphorylation and activity. Moreover, LMP1 reduced the phosphorylation of AMP-activated protein kinase (AMPK) and changed its subcellular location after irradiation, which appeared to occur through a disruption of the physical interaction between AMPK and DNA-PK. The decrease in AMPK activity was associated with LMP1-mediated glycolysis and resistance to apoptosis induced by irradiation. The reactivation of AMPK significantly promoted radiosensitivity both in vivo and in vitro. The AMPKα (Thr172) reduction was associated with a poorer clinical outcome of radiation therapy in NPC patients. Our data revealed a new mechanism of LMP1-mediated radioresistance and provided a mechanistic rationale in support of the use of AMPK activators for facilitating NPC radiotherapy. PMID:27255972

  19. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence.

    Science.gov (United States)

    Cekan, Pavol; Hasegawa, Keisuke; Pan, Yu; Tubman, Emily; Odde, David; Chen, Jin-Qiu; Herrmann, Michelle A; Kumar, Sheetal; Kalab, Petr

    2016-04-15

    The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase-regulated nuclear-cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage-induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β-dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP-regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage. PMID:26864624

  20. Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage

    International Nuclear Information System (INIS)

    Background and purpose: Patients with human papillomavirus related (HPV+) head and neck cancers (HNCs) demonstrate improved clinical outcomes compared to traditional HPV negative (HPV−) HNC patients. We have recently shown that HPV+ HNC cells are more sensitive to radiation than HPV− HNC cells. However, roles of HPV oncogenes in regulating the response of DNA damage repair remain unknown. Material and methods: Using immortalized normal oral epithelial cell lines, HPV+ HNC derived cell lines, and HPV16 E7-transgenic mice we assessed the repair of DNA damage using γ-H2AX foci, single and split dose clonogenic survival assays, and immunoblot. The ability of E7 to modulate expression of proteins associated with DNA repair pathways was assessed by immunoblot. Results: HPV16 E7 increased retention of γ-H2AX nuclear foci and significantly decreased sublethal DNA damage repair. While phospho-ATM, phospho-ATR, Ku70, and Ku80 expressions were not altered by E7, Rad51 was induced by E7. Correspondingly, HPV+ HNC cell lines showed retention of Rad51 after γ-radiation. Conclusions: Our findings provide further understanding as to how HPV16 E7 manipulates cellular DNA damage responses that may underlie its oncogenic potential and influence the altered sensitivity to radiation seen in HPV+ HNC as compared to HPV− HNC

  1. Quantifying murine bone marrow and blood radiation dose response following {sup 18}F-FDG PET with DNA damage biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Grainne [Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom); Taylor, Kristina [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON (Canada); Finnon, Paul [Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom); Lemon, Jennifer A.; Boreham, Douglas R. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON (Canada); Badie, Christophe, E-mail: christophe.badie@phe.gov.uk [Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom)

    2014-12-15

    Highlights: • Mice received either a range of {sup 18}F-FDG activities or whole body X-ray doses. • Blood samples were collected at 24 and 43 h for MN-RET and QPCR analysis. • Regression analysis showed that both types of exposure produced a linear response. • BM doses of 33 mGy ({sup 18}F-FDG) and 25 mGy X-rays were significantly higher than controls. • No significant difference between internal ({sup 18}F-FDG) and external (X-ray) was found. - Abstract: The purpose of this study was to quantify the poorly understood radiation doses to murine bone marrow and blood from whole-body fluorine 18 ({sup 18}F)-fluorodeoxyglucose (FDG) positron emission tomography (PET), by using specific biomarkers and comparing with whole body external low dose exposures. Groups of 3–5 mice were randomly assigned to 10 groups, each receiving either a different activity of {sup 18}F-FDG: 0–37 MBq or whole body irradiated with corresponding doses of 0–300 mGy X-rays. Blood samples were collected at 24 h and at 43 h for reticulocyte micronucleus assays and QPCR analysis of gene expression in peripheral blood leukocytes. Blood and bone marrow dose estimates were calculated from injected activities of {sup 18}F-FDG and were based on a recommended ICRP model. Doses to the bone marrow corresponding to 33.43 mGy and above for internal {sup 18}F-FDG exposure and to 25 mGy and above for external X-ray exposure, showed significant increases in radiation-induced MN-RET formation relative to controls (P < 0.05). Regression analysis showed that both types of exposure produced a linear response with linear regression analysis giving R{sup 2} of 0.992 and 0.999 for respectively internal and external exposure. No significant difference between the two data sets was found with a P-value of 0.493. In vivo gene expression dose–responses at 24 h for Bbc3 and Cdkn1 were similar for {sup 18}F-FDG and X-ray exposures, with significant modifications occurring for doses over 300 mGy for Bbc3

  2. Quantifying murine bone marrow and blood radiation dose response following 18F-FDG PET with DNA damage biomarkers

    International Nuclear Information System (INIS)

    Highlights: • Mice received either a range of 18F-FDG activities or whole body X-ray doses. • Blood samples were collected at 24 and 43 h for MN-RET and QPCR analysis. • Regression analysis showed that both types of exposure produced a linear response. • BM doses of 33 mGy (18F-FDG) and 25 mGy X-rays were significantly higher than controls. • No significant difference between internal (18F-FDG) and external (X-ray) was found. - Abstract: The purpose of this study was to quantify the poorly understood radiation doses to murine bone marrow and blood from whole-body fluorine 18 (18F)-fluorodeoxyglucose (FDG) positron emission tomography (PET), by using specific biomarkers and comparing with whole body external low dose exposures. Groups of 3–5 mice were randomly assigned to 10 groups, each receiving either a different activity of 18F-FDG: 0–37 MBq or whole body irradiated with corresponding doses of 0–300 mGy X-rays. Blood samples were collected at 24 h and at 43 h for reticulocyte micronucleus assays and QPCR analysis of gene expression in peripheral blood leukocytes. Blood and bone marrow dose estimates were calculated from injected activities of 18F-FDG and were based on a recommended ICRP model. Doses to the bone marrow corresponding to 33.43 mGy and above for internal 18F-FDG exposure and to 25 mGy and above for external X-ray exposure, showed significant increases in radiation-induced MN-RET formation relative to controls (P < 0.05). Regression analysis showed that both types of exposure produced a linear response with linear regression analysis giving R2 of 0.992 and 0.999 for respectively internal and external exposure. No significant difference between the two data sets was found with a P-value of 0.493. In vivo gene expression dose–responses at 24 h for Bbc3 and Cdkn1 were similar for 18F-FDG and X-ray exposures, with significant modifications occurring for doses over 300 mGy for Bbc3 and at the lower dose of 150 mGy for Cdkn1a. Both

  3. DNA damage checkpoint recovery and cancer development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiyong [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Zhang, Xiaoshan [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States); Teng, Lisong, E-mail: lsteng@zju.edu.cn [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Legerski, Randy J., E-mail: rlegersk@mdanderson.org [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States)

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  4. DNA damage checkpoint recovery and cancer development

    International Nuclear Information System (INIS)

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  5. Molecular mechanisms of H2AX phosphorylation and dephosphorylation and its regulation of DNA damage repair response%H2AX磷酸化与去磷酸化的分子机制及其对DNA损伤修复反应的调节作用

    Institute of Scientific and Technical Information of China (English)

    李俊英; 张士猛; 周平坤

    2013-01-01

    γH2AX即第139位丝氨酸(set)磷酸化的组蛋白H2AX已经被普遍认为是DNA双链断裂的分子标志,是目前国内外研究DNA损伤反应机制的焦点之一.γH2AX作为DNA双链断裂损伤感应的起始信号分子,将一系列DNA损伤反应蛋白募集到DNA损伤位点,形成DNA损伤反应功能复合物,启动激活DNA修复、细胞周期检查点等细胞DNA损伤反应.在DNA损伤修复结束后,γH2AX的及时去磷酸化,对于修复蛋白复合物从所结合的DNA上解离和细胞周期检查点的释放,都是至关重要的.这些发现促使研究人员不断地探索γH2AX的动力学变化机制及其与DNA损伤修复的深刻关系.本文将对PI3K家族催化H2AX的磷酸化及PP2A,PP4,PP6,Wip1等蛋白磷酸酶对其去磷酸化的分子机制,及其在DNA损伤修复中发挥作用的最新研究进展,作综述讨论.%γH2AX, a phosphorylated histon variant H2AX at serinel39, is widely believed to be a molecular marker for DNA double-stranded break ( DSB) , and is one of the research hot spots of DNA damage response mechanisms. As a sensor of DNA damage signaling, γH2AX plays an important role in recruiting the DNA damage response ( DDR) proteins to the DNA lesion sites and initiating the DDR including DNA repair and cell cycle checkpoints. At the end of DNA damage repair process, timely dephosphorylation of γH2AX is critical to the dissociation of the repair proteins and release of the cells from cell cycle checkpoints. These findings prompted researchers to explore the dynamic mechanism of γH2AX in response to DNA damage and its profound relationship with DNA damage repair. Here we reviewed and discussed the recent progress in the mechanisms of the phosphorylation of H2AX by PI3K family and dephosphorylation of γH2AX by a series of protein phosphatases in the cellular process of DNA damage repair. The role of γH2AX in DNA damage repair has also been addressed.

  6. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Svetlana Kostyuk

    2015-01-01

    Full Text Available Background. Cell free DNA (cfDNA circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci. As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR, PCNA (FACS and antiapoptotic genes (BCL2 (RT-PCR and FACS, BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR. Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs. Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR, in the level of fatty acid binding protein FABP4 (FACS analysis and in the level of fat (Oil Red O. Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.

  7. DNA damage evaluated by the comet assay on children form areas affected by the Chernobyl accident

    International Nuclear Information System (INIS)

    Full text: The health effects of the Chernobyl accident and particularly the long-term effects continue to be interesting and significant for the international scientific community. The DNA damages caused by radiation exposure are considered responsible for the effects at cellular level and in the whole organism. The comet assay is one of the current tools with greatest application and sensitivity to evaluate DNA damages, particularly in chronic exposures. The preliminary results with the application of the comet assay to blood lymphocytes of 30 Ukrainian children from territories affected by the Chernobyl accident are shown in our study. The children were in Cuba at the moment of the study. 137Cs internal contamination was measured in a whole body counter and correlated with DNA damages, children blood was taken by fingerprick. Factors like illnesses, medical treatments, or the external doses by surface contamination were also considered in the study. Until the present the radiological factor has not shown influence in the levels of observed DNA damages. (orig.)

  8. DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks

    DEFF Research Database (Denmark)

    Mosbech, Anna; Gibbs-Seymour, Ian; Kagias, Konstantinos;

    2012-01-01

    Ubiquitin-mediated processes orchestrate critical DNA-damage signaling and repair pathways. We identify human DVC1 (C1orf124; Spartan) as a cell cycle-regulated anaphase-promoting complex (APC) substrate that accumulates at stalled replication forks. DVC1 recruitment to sites of replication stress...

  9. DNA damage and carcinogenesis

    International Nuclear Information System (INIS)

    Although cancer may arise as a result of many different types of molecular changes, there is little reason to doubt that changes to DNA are one of the more important ones in cancer initiation. Although DNA repair mechanisms seem able to eliminate a very large fraction of deleterious changes to DNA, we not only have little insight into the molecular mechanisms involved in such repair, but have a negligible amount of information to permit us to estimate the shape of dose response relations at low doses. The case of skin cancer is a special one, in that the average population is exposed to sufficient solar uv so that the effects of small increments in uv dose may be estimated. An approximate 85% reduction in DNA repair increases skin cancer incidence 104 fold

  10. Purine analog-like properties of bendamustine underlie rapid activation of DNA damage response and synergistic effects with pyrimidine analogues in lymphoid malignancies.

    Directory of Open Access Journals (Sweden)

    Nobuya Hiraoka

    Full Text Available Bendamustine has shown considerable clinical activity against indolent lymphoid malignancies as a single agent or in combination with rituximab, but combination with additional anti-cancer drugs may be required for refractory and/or relapsed cases as well as other intractable tumors. In this study, we attempted to determine suitable anti-cancer drugs to be combined with bendamustine for the treatment of mantle cell lymphoma, diffuse large B-cell lymphoma, aggressive lymphomas and multiple myeloma, all of which are relatively resistant to this drug, and investigated the mechanisms underlying synergism. Isobologram analysis revealed that bendamustine had synergistic effects with alkylating agents (4-hydroperoxy-cyclophosphamide, chlorambucil and melphalan and pyrimidine analogues (cytosine arabinoside, gemcitabine and decitabine in HBL-2, B104, Namalwa and U266 cell lines, which represent the above entities respectively. In cell cycle analysis, bendamustine induced late S-phase arrest, which was enhanced by 4-hydroperoxy-cyclophosphamide, and potentiated early S-phase arrest by cytosine arabinoside (Ara-C, followed by a robust increase in the size of sub-G1 fractions. Bendamustine was able to elicit DNA damage response and subsequent apoptosis faster and with shorter exposure than other alkylating agents due to rapid intracellular incorporation via equilibrative nucleoside transporters (ENTs. Furthermore, bendamustine increased the expression of ENT1 at both mRNA and protein levels and enhanced the uptake of Ara-C and subsequent increase in Ara-C triphosphate (Ara-CTP in HBL-2 cells to an extent comparable with the purine analog fludarabine. These purine analog-like properties of bendamustine may underlie favorable combinations with other alkylators and pyrimidine analogues. Our findings may provide a theoretical basis for the development of more effective bendamustine-based combination therapies.

  11. DNA-PKcs plays a dominant role in the regulation of H2AX phosphorylation in response to DNA damage and cell cycle progression

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2010-03-01

    Full Text Available Abstract Background When DNA double-strand breaks (DSB are induced by ionizing radiation (IR in cells, histone H2AX is quickly phosphorylated into γ-H2AX (p-S139 around the DSB site. The necessity of DNA-PKcs in regulating the phosphorylation of H2AX in response to DNA damage and cell cycle progression was investigated. Results The level of γH2AX in HeLa cells increased rapidly with a peak level at 0.25 - 1.0 h after 4 Gy γ irradiation. SiRNA-mediated depression of DNA-PKcs resulted in a strikingly decreased level of γH2AX. An increased γH2AX was also induced in the ATM deficient cell line AT5BIVA at 0.5 - 1.0 h after 4 Gy γ rays, and this IR-increased γH2AX in ATM deficient cells was dramatically abolished by the PIKK inhibitor wortmannin and the DNA-PKcs specific inhibitor NU7026. A high level of constitutive expression of γH2AX was observed in another ATM deficient cell line ATS4. The alteration of γH2AX level associated with cell cycle progression was also observed. HeLa cells with siRNA-depressed DNA-PKcs (HeLa-H1 or normal level DNA-PKcs (HeLa-NC were synchronized at the G1 phase with the thymidine double-blocking method. At ~5 h after the synchronized cells were released from the G1 block, the S phase cells were dominant (80% for both HeLa-H1 and HeLa-NC cells. At 8 - 9 h after the synchronized cells released from the G1 block, the proportion of G2/M population reached 56 - 60% for HeLa-NC cells, which was higher than that for HeLa H1 cells (33 - 40%. Consistently, the proportion of S phase for HeLa-NC cells decreased to ~15%; while a higher level (26 - 33% was still maintained for the DNA-PKcs depleted HeLa-H1 cells during this period. In HeLa-NC cells, the γH2AX level increased gradually as the cells were released from the G1 block and entered the G2/M phase. However, this γH2AX alteration associated with cell cycle progressing was remarkably suppressed in the DNA-PKcs depleted HeLa-H1 cells, while wortmannin and NU7026 could

  12. IL1-and TGF beta-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine 'Bystander senescence'

    Czech Academy of Sciences Publication Activity Database

    Hubáčková, Soňa; Krejčíková, Kateřina; Bartek, Jiří; Hodný, Zdeněk

    2012-01-01

    Roč. 4, č. 12 (2012), 932-951. ISSN 1945-4589 R&D Projects: GA ČR GA204/08/1418; GA ČR GAP301/10/1525 Institutional support: RVO:68378050 Keywords : senescence-associated secretome * DNA damage response * cytokines * JAK/STAT3 * TGF beta * NF kappa B * IL6 * IL beta * Nox4 * autocrine and paracrine signaling * tumor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.696, year: 2012

  13. Attenuation of the DNA Damage Response by Transforming Growth Factor-Beta Inhibitors Enhances Radiation Sensitivity of Non–Small-Cell Lung Cancer Cells In Vitro and In Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao; Pellicciotta, Ilenia; Bolourchi, Shiva [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Parry, Renate [Varian Medical Systems, Palo Alto, California (United States); Barcellos-Hoff, Mary Helen, E-mail: mhbarcellos-hoff@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2015-01-01

    Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation, or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.

  14. RNF8 Transduces the DNA-Damage Signal Via Histone Ubiquitylation And Checkpoint Protein Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Huen, M.S.Y.; Grant, R.; Manke, I.; Minn, K.; Yu, X.; Yaffe, M.B.; Chen, J.

    2009-06-01

    DNA-damage signaling utilizes a multitude of posttranslational modifiers as molecular switches to regulate cell-cycle checkpoints, DNA repair, cellular senescence, and apoptosis. Here we show that RNF8, a FHA/RING domain-containing protein, plays a critical role in the early DNA-damage response. We have solved the X-ray crystal structure of the FHA domain structure at 1.35 {angstrom}. We have shown that RNF8 facilitates the accumulation of checkpoint mediator proteins BRCA1 and 53BP1 to the damaged chromatin, on one hand through the phospho-dependent FHA domain-mediated binding of RNF8 to MDC1, on the other hand via its role in ubiquitylating H2AX and possibly other substrates at damage sites. Moreover, RNF8-depleted cells displayed a defective G2/M checkpoint and increased IR sensitivity. Together, our study implicates RNF8 as a novel DNA-damage-responsive protein that integrates protein phosphorylation and ubiquitylation signaling and plays a critical role in the cellular response to genotoxic stress.

  15. Sds22 participates in Glc7 mediated Rad53 dephosphorylation in MMS-induced DNA damage in Candida albicans.

    Science.gov (United States)

    Yao, Guangyin; Wan, Junhua; Mu, Chunhua; Liu, Qizheng; Wang, Yue; Sang, Jianli

    2016-08-01

    The protein kinase Rad53 and its orthologs play a fundamental role in regulating the DNA damage checkpoint in eukaryotes. Rad53 is activated by phosphorylation in response to DNA damage and deactivated by dephosphorylation after the damage is repaired. However, the phosphatases involved in Rad53 deactivation are not entirely understood. In this study, by investigating the consequences of overexpressing SDS22, a gene encoding a regulatory subunit of the PP1 phosphatase Glc7, in the human fungal pathogen Candida albicans, we discovered that Sds22 plays an important role in Rad53 dephosphorylation and thus the deactivation of the DNA damage checkpoint. Sds22 cellular levels increase when cells are exposed to DNA damaging agents and decrease after removing the genotoxins. Depletion of Glc7 has similar phenotypes. We provide evidence that Sds2 acts through inhibitory physical association with Glc7. Our findings provide novel insights into the mechanisms for the control of DNA damage checkpoint. Furthermore, SDS22 overexpression reduces C. albicans virulence in a mouse model of systemic infection, suggesting potential targets for developing antifungal drugs. PMID:27328280

  16. Synthetic lethal approaches exploiting DNA damage in aggressive myeloma

    Science.gov (United States)

    Cottini, Francesca; Hideshima, Teru; Suzuki, Rikio; Tai, Yu-Tzu; Bianchini, Giampaolo; Richardson, Paul G.; Anderson, Kenneth C.; Tonon, Giovanni

    2015-01-01

    Ongoing DNA damage is a common feature of epithelial cancers. Here we show that tumor cells derived from multiple myeloma (MM), a disease of clonal plasma cells, demonstrate DNA replicative stress leading to DNA damage. We identified a poor prognosis subset of MM with extensive chromosomal instability and replicative stress which rely on ATR to compensate for DNA replicative stress; conversely, silencing of ATR or treatment with a specific ATR inhibitor triggers MM cell apoptosis. We show that oncogenes such as MYC induce DNA damage in MM cells not only by increased replicative stress, but also via increased oxidative stress, and that ROS-inducer piperlongumine triggers further DNA damage and apoptosis. Importantly, ATR inhibition combined with piperlongumine triggers synergistic MM cytotoxicity. This synthetic lethal approach, enhancing oxidative stress while concomitantly blocking replicative stress response, provides a novel combination targeted therapy to address an unmet medical need in this subset of MM. PMID:26080835

  17. Novel bisbenzimidazole a potential radioprotector mitigates DNA damage in radiotherapy

    International Nuclear Information System (INIS)

    Ionizing radiations cause radiolysis of cellular water, generating reactive oxygen species (ROS), causing DNA damage. Radioprotectors protect the normal cells from the unwanted radiation damage. Since the beginning of the nuclear era, despite extensive research on the development of radioprotectors from natural and synthetic compounds, success has been limited. We have developed a cytoprotective radioprotector DMA, having a bisbenzimidazole nucleus. It has been observed 51% radioprotection in untreated cells that attenuated to 17% in siRNA NIK treated U87 cells at 24h. In addition the work has studied the effects of DMA on the radiation and transcriptional response of HEK293 cell lines also. The results suggested that the treatment of DMA increased the level of phosphorylated AKT in HEK cells in presence of radiation, and this was consistent with the alteration of DNA-PKcs

  18. Cell cycle control after DNA damage: arrest, recovery and adaptation

    International Nuclear Information System (INIS)

    DNA damage triggers surveillance mechanisms, the DNA checkpoints, that control the genome integrity. The DNA checkpoints induce several responses, either cellular or transcriptional, that favor DNA repair. In particular, activation of the DNA checkpoints inhibits cell cycle progression in all phases, depending on the stage when lesions occur. These arrests are generally transient and cells ultimately reenter the cell division cycle whether lesions have been repaired (this process is termed 'recovery') or have proved un-repairable (this option is called 'adaptation'). The mechanisms controlling cell cycle arrests, recovery and adaptation are largely conserved among eukaryotes, and much information is now available for the yeast Saccharomyces cerevisiae, that is used as a model organism in these studies. (author)

  19. Mechanism of DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xin; Bi

    2015-01-01

    DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance(DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis(TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching(TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.

  20. ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model

    Energy Technology Data Exchange (ETDEWEB)

    Heravi, Mitra [Department of Human Genetics, McGill University, Montreal (Canada); Department of Radiation Oncology, McGill University, Montreal (Canada); Segal Cancer Center, Jewish General Hospital, Montreal (Canada); Kumala, Slawomir [Department of Radiation Oncology, McGill University, Montreal (Canada); Segal Cancer Center, Jewish General Hospital, Montreal (Canada); Rachid, Zakaria; Jean-Claude, Bertrand J. [Cancer Drug Research Laboratory, McGill University Health Center, Montreal (Canada); Radzioch, Danuta [Department of Human Genetics, McGill University, Montreal (Canada); Muanza, Thierry M., E-mail: tmuanza@yahoo.com [Department of Radiation Oncology, McGill University, Montreal (Canada); Segal Cancer Center, Jewish General Hospital, Montreal (Canada)

    2015-06-01

    Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Western blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.

  1. ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model

    International Nuclear Information System (INIS)

    Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Western blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings

  2. Associations between DNA methylation in DNA damage response-related genes and cytokinesis-block micronucleus cytome index in diesel engine exhaust-exposed workers.

    Science.gov (United States)

    Zhang, Xiao; Li, Jie; He, Zhini; Duan, Huawei; Gao, Weimin; Wang, Haisheng; Yu, Shanfa; Chen, Wen; Zheng, Yuxin

    2016-08-01

    Recently, diesel engine exhaust (DEE) was reclassified as a known carcinogen to humans. DNA methylation alterations in DNA damage response (DDR)-related genes have the potential to affect DEE exposure-related cancer risk. However, the evidence regarding the association between DEE exposure and methylation alterations in DDR-related genes is limited. In 117 DEE-exposed workers and 112 non-DEE-exposed workers, we measured urinary concentrations of six mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs). We also determined the methylation levels of three DDR-related genes (p16, RASSF1A, and MGMT) and LINE-1 by bisulfite-pyrosequencing assay. We found that DEE-exposed workers exhibited significantly lower mean promoter methylation levels of p16, RASSF1A, and MGMT than non-DEE-exposed workers (all p < 0.001). In all study subjects and non-smoking workers, increasing quartiles of urinary summed OH-PAHs was associated with hypomethylation of p16, RASSF1A, and MGMT (all p < 0.05). In non-smoking workers, methylation in p16, RASSF1A, and MGMT decreased by 0.36 % [95 % confidential interval (CI): -0.60, -0.11 %], 0.46 % (95 % CI: -0.79, -0.14 %), and 0.55 % (95 % CI: -0.95, -0.15 %), respectively, in association with highest versus lowest quartile of urinary summed OH-PAHs. In addition, p16, RASSF1A, MGMT, and LINE-1 methylation levels showed negative correlations with cytokinesis-block micronucleus cytome index which was previously measured in the same workers (all p < 0.05). In conclusion, our results clearly indicated that DEE exposure and increased genetic damage were associated with hypomethylation of p16, RASSF1A, and MGMT. Future studies with larger sample size are needed to confirm these associations. PMID:26410583

  3. DNA damage-induced translocation of S100A11 into the nucleus regulates cell proliferation

    Directory of Open Access Journals (Sweden)

    Ulbricht Tobias

    2010-12-01

    Full Text Available Abstract Background Proteins are able to react in response to distinct stress stimuli by alteration of their subcellular distribution. The stress-responsive protein S100A11 belongs to the family of multifunctional S100 proteins which have been implicated in several key biological processes. Previously, we have shown that S100A11 is directly involved in DNA repair processes at damaged chromatin in the nucleus. To gain further insight into the underlying mechanism subcellular trafficking of S100A11 in response to DNA damage was analyzed. Results We show that DNA damage induces a nucleolin-mediated translocation of S100A11 from the cytoplasm into the nucleus. This translocation is impeded by inhibition of the phosphorylation activity of PKCα. Translocation of S100A11 into the nucleus correlates with an increased cellular p21 protein level. Depletion of nucleolin by siRNA severely impairs translocation of S100A11 into the nucleus resulting in a decreased p21 protein level. Additionally, cells lacking nucleolin showed a reduced colony forming capacity. Conclusions These observations suggest that regulation of the subcellular distribution of S100A11 plays an important role in the DNA damage response and p21-mediated cell cycle control.

  4. DNA Damage and Repair in Vascular Disease.

    Science.gov (United States)

    Uryga, Anna; Gray, Kelly; Bennett, Martin

    2016-01-01

    DNA damage affecting both genomic and mitochondrial DNA is present in a variety of both inherited and acquired vascular diseases. Multiple cell types show persistent DNA damage and a range of lesions. In turn, DNA damage activates a variety of DNA repair mechanisms, many of which are activated in vascular disease. Such DNA repair mechanisms either stall the cell cycle to allow repair to occur or trigger apoptosis or cell senescence to prevent propagation of damaged DNA. Recent evidence has indicated that DNA damage occurs early, is progressive, and is sufficient to impair function of cells composing the vascular wall. The consequences of persistent genomic and mitochondrial DNA damage, including inflammation, cell senescence, and apoptosis, are present in vascular disease. DNA damage can thus directly cause vascular disease, opening up new possibilities for both prevention and treatment. We review the evidence for and the causes, types, and consequences of DNA damage in vascular disease. PMID:26442438

  5. Cross talk of tyrosine kinases with the DNA damage signaling pathways.

    Science.gov (United States)

    Mahajan, Kiran; Mahajan, Nupam P

    2015-12-15

    Tyrosine kinases respond to extracellular and intracellular cues by activating specific cellular signaling cascades to regulate cell cycle, growth, proliferation, differentiation and survival. Likewise, DNA damage response proteins (DDR) activated by DNA lesions or chromatin alterations recruit the DNA repair and cell cycle checkpoint machinery to restore genome integrity and cellular homeostasis. Several new examples have been uncovered in recent studies which reveal novel epigenetic and non-epigenetic mechanisms by which tyrosine kinases interact with DDR proteins to dictate cell fate, i.e. survival or apoptosis, following DNA damage. These studies reveal the ability of tyrosine kinases to directly regulate the activity of DNA repair and cell cycle check point proteins by tyrosine phosphorylation. In addition, tyrosine kinases epigenetically regulate DNA damage signaling pathways by modifying the core histones as well as chromatin modifiers at critical tyrosine residues. Thus, deregulated tyrosine kinase driven epigenomic alterations have profound implications in cancer, aging and genetic disorders. Consequently, targeting oncogenic tyrosine kinase induced epigenetic alterations has gained significant traction in overcoming cancer cell resistance to various therapies. This review discusses mechanisms by which tyrosine kinases interact with DDR pathways to regulate processes critical for maintaining genome integrity as well as clinical strategies for targeted cancer therapies. PMID:26546517

  6. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage

    OpenAIRE

    Rolletschek Alexandra; Solozobova Valeriya; Blattner Christine

    2009-01-01

    Abstract Background P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. Results In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells...

  7. Chromatin structure and DNA damage

    International Nuclear Information System (INIS)

    This dissertation examines the structure and structural transitions of chromatin in relation to DNA damage. The ability of intact and histone H1 depleted chromatin fibers to fold into higher ordered structures in vitro was examined following DNA photodamage introduced by two different agents. (1) 254-nm UV radiation and (2) trimethylpsoralen (plus near-UV radiation). Both agents are highly specific for DNA and form adducts predicted to cause different degrees of distortion in the DNA helix. The salt-induced structural transitions of intact and histone H1 depleted chromatin fibers were monitored by both analytical ultracentrifugation and light scattering. Our results show that even in the presence of extremely large, nonphysiological amounts of photodamage by either agent the ability of chromatin to fold into higher ordered structures is not affected. The compact, 30 nm fiber must therefore be able to accommodate a large amount of DNA damage without any measurable changes in the overall size or degree of compaction of this structure. The distribution of pyrimidine dimers was mapped at the single nucleotide level in nucleosome core DNA from UV-irradiated mononucleosomes, chromatin fibers, and human cells in culture using the 3' → 5' exonuclease activity of T4 DNA polymerase

  8. Effect of passage number on cellular response to DNA-damaging agents: Cell survival and gene expression

    International Nuclear Information System (INIS)

    The effect of different passage numbers on plating efficiency, doubling time, cell growth, and radiation sensitivity was assessed in Syrian hamster embryo (SHE) cells. Changes in gene expression after UV or γ-ray irradiation at different passage numbers were also examined. The SHE cells were maintained in culture medium for up to 64 passages. Cells were exposed to 60Co γ rays or 254-nm UV radiation. Differential display of cDNAs and northern blots were used for the study of gene expression. With increasing passage number, SHE cells demonstrated decreased doubling time, increased plating efficiency, and a decreased yield in the number of cells per plate. Between passages 41 and 48 a crisis period was evident during which time cell growth in high serum was no longer optimal, and serum concentrations were reduced to maintain cell growth. Sensitivity to ionizing radiation was no different between early- and intermediate-passage cells. However, after UV exposure at low passages (passage 3), confluent cells were more sensitive to the killing effects of UV than were log-phase cells. At intermediate passages (passages 43, 48), confluent cells were slightly more radioresistant than were log-phase cells. By passage 64, however, both confluent and log-phase cells showed similar patterns of UV sensitivity. Expression of γ-actin, PCNA, and p53 transcripts did not change following UV exposure. p53 mRNA was induced following γ-ray exposure of the intermediate (passage 45) epithelial cells. The observed differences in radiation sensitivity associated with increasing passage number may be influenced by radiation-induced gene expression. The authors are conducted experiments to identify these genes

  9. DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks.

    Science.gov (United States)

    Mosbech, Anna; Gibbs-Seymour, Ian; Kagias, Konstantinos; Thorslund, Tina; Beli, Petra; Povlsen, Lou; Nielsen, Sofie Vincents; Smedegaard, Stine; Sedgwick, Garry; Lukas, Claudia; Hartmann-Petersen, Rasmus; Lukas, Jiri; Choudhary, Chunaram; Pocock, Roger; Bekker-Jensen, Simon; Mailand, Niels

    2012-11-01

    Ubiquitin-mediated processes orchestrate critical DNA-damage signaling and repair pathways. We identify human DVC1 (C1orf124; Spartan) as a cell cycle-regulated anaphase-promoting complex (APC) substrate that accumulates at stalled replication forks. DVC1 recruitment to sites of replication stress requires its ubiquitin-binding UBZ domain and PCNA-binding PIP box motif but is independent of RAD18-mediated PCNA monoubiquitylation. Via a conserved SHP box, DVC1 recruits the ubiquitin-selective chaperone p97 to blocked replication forks, which may facilitate p97-dependent removal of translesion synthesis (TLS) DNA polymerase η (Pol η) from monoubiquitylated PCNA. DVC1 knockdown enhances UV light-induced mutagenesis, and depletion of human DVC1 or the Caenorhabditis elegans ortholog DVC-1 causes hypersensitivity to replication stress-inducing agents. Our findings establish DVC1 as a DNA damage-targeting p97 adaptor that protects cells from deleterious consequences of replication blocks and suggest an important role of p97 in ubiquitin-dependent regulation of TLS. PMID:23042605

  10. Double-strand break induction and DNA damage response after 12C ion and photon radiation in U87 glioblastoma cells

    International Nuclear Information System (INIS)

    Heavy ion radiation has greater biological effectiveness than the same physical dose of photon radiation. In this work the underlying reasons in the DNA damage response were analyzed in U87 glioblastoma cells. DNA double-strand breaks (DSBs) are the decicive lesions for the effectiveness of ionizing radiation. Their induction and repair was measured in the context of the cell cycle based on the DSB marker γH2AX (the phosphorylated form of the histone variant H2AX). Further, radiation-specific differences in choice of the DSB repair pathway was analyzed, as well as the consequences of repair failure. The results showed that in contrast to photons, 12C ion radiation produces more severe DSBs that are repaired delayed and with slower kinetics. Accordingly, stronger and longer lasting cell cycle delays, predominantly at the G2/M border, and a higher rate of apoptosis was detected for 12C ion radiation. Autophagy, an alternative mechanism of programmed cell death, was not relevant for neither of the two types of radiation. The effect of 12C ion radiation was less dependent on the cell cycle stage than for photon radiation. This became particularly evident in the DSB repair velocities during S- and G2-phase. After 12C ion radiation, cells were more dependent on homologous recombination repair (HRR) compared to photon radiation. The reason therefore that in contrast to photons, 12C ion radiation induced graver DSBs that were repaired slower and more dependent on HRR, was most probably enhanced clustering of DSBs due to the higher ionization density of 12C ion radiation. Microscopic inspection of immunofluorently stained γH2AX revealed that 12C ion radiation induced bigger DSB repair foci containing more γH2AX molecules (higher fluorescence intensity), although their initial number was smaller. Besides the foci, a weaker pan-nuclear γH2AX staining was observed that increased in a dose-dependent manner and was more pronounced for 12C ion compared to photon radiation

  11. DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age

    OpenAIRE

    Marangos, P; Stevense, M.; Niaka, K.; Lagoudaki, M.; Nabti, I.; Jessberger, R.; Carroll, J.

    2015-01-01

    In mammalian oocytes DNA damage can cause chromosomal abnormalities that potentially lead to infertility and developmental disorders. However, there is little known about the response of oocytes to DNA damage. Here we find that oocytes with DNA damage arrest at metaphase of the first meiosis (MI). The MI arrest is induced by the spindle assembly checkpoint (SAC) because inhibiting the SAC overrides the DNA damage-induced MI arrest. Furthermore, this MI checkpoint is compromised in oocytes fro...

  12. Influence of occupational exposure to pesticides on the level of DNA damage induced in human lymphocytes (Polish group) by UV-C and X-rays

    International Nuclear Information System (INIS)

    The aim of this study was to find out whether occupational exposure to pesticides might affect the individual susceptibility of various donors to the induction of DNA damage by genotoxic agents (UV-C, X-rays) and the efficiency of cellular repair. Previously cryo preserved lymphocytes were defrosted, and DNA damage in the lymphocytes prior to any in vitro studies was investigated with the application of the Comet assay. In order to evaluate the susceptibilities of human lymphocytes to genotoxic agents and the variability of repair capacities, the DNA migrations were estimated immediately after exposure to UV-C light or X-rays and after two hours. On average, the DNA damage detected in untreated lymphocytes was significantly higher in the group exposed to pesticides than in reference group. UV-C treated lymphocytes from group exposed to pesticides shows a greater statistically significant level of DNA migration compared to the reference group, detected after 2 hours incubation in the absence of PHA. Significantly lower responses to X-rays and higher levels of residual DNA damage were detected in the lymphocytes of donors from the group exposed to pesticides compared with the reference group. In conclusion, our results suggest that occupational exposure to pesticides influences the level of induced DNA damage, and the cellular capabilities of repair. (author)

  13. Post-irradiation chemical processing of DNA damage generates double-strand breaks in cells already engaged in repair

    OpenAIRE

    Satyendra K Singh; Wang, Minli; Staudt, Christian; Iliakis, George

    2011-01-01

    In cells exposed to ionizing radiation (IR), double-strand breaks (DSBs) form within clustered-damage sites from lesions disrupting the DNA sugar–phosphate backbone. It is commonly assumed that these DSBs form promptly and are immediately detected and processed by the cellular DNA damage response (DDR) apparatus. This assumption is questioned by the observation that after irradiation of naked DNA, a fraction of DSBs forms minutes to hours after exposure as a result of temperature dependent, c...

  14. Using DNA damage to monitor water environment

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    DNA damage of aquatic organisms living in polluted environments can be used as a biomarker of the genotoxicity of toxic agents to organisms. This technique has been playing an important role in ecotoxicological study and environmental risk assessment. In this article, main types of DNA damage caused by pollutants in water environments were reviewed; methods of detecting DNA damage were also documented for water environmental monitoring.

  15. BMI1 Is Recruited to DNA Breaks and Contributes to DNA Damage-Induced H2A Ubiquitination and Repair ▿ †

    OpenAIRE

    Ginjala, Vasudeva; Nacerddine, Karim; Kulkarni, Atul; Oza, Jay; Hill, Sarah J.; Yao, Ming; Citterio, Elisabetta; van Lohuizen, Maarten; Ganesan, Shridar

    2011-01-01

    DNA damage activates signaling pathways that lead to modification of local chromatin and recruitment of DNA repair proteins. Multiple DNA repair proteins having ubiquitin ligase activity are recruited to sites of DNA damage, where they ubiquitinate histones and other substrates. This DNA damage-induced histone ubiquitination is thought to play a critical role in mediating the DNA damage response. We now report that the polycomb protein BMI1 is rapidly recruited to sites of DNA damage, where i...

  16. DNA damage and repair in plants

    International Nuclear Information System (INIS)

    The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned frommicrobes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products. (author)

  17. Bisphenol A-Induced Ovotoxicity Involves DNA Damage Induction to Which the Ovary Mounts a Protective Response Indicated by Increased Expression of Proteins Involved in DNA Repair and Xenobiotic Biotransformation.

    Science.gov (United States)

    Ganesan, Shanthi; Keating, Aileen F

    2016-07-01

    Bisphenol A (BPA) is an endocrine disrupting chemical with ubiquitous human exposure. BPA causes primordial follicle loss and DNA damage in germ cells, thus we hypothesized that BPA induces ovarian DNA damage, thereby precipitating follicle loss. We also anticipated that the ovary activates DNA repair and xenobiotic biotransformation to minimize oocyte damage and/or, activate cell death signaling to deplete follicles. Postnatal day 4 F344 rat ovaries were cultured in medium containing vehicle control (1% dimethylsulfoxide [DMSO]) ± BPA (440 µM) for 2-8 days. BPA reduced (P telangiectasia mutated (ATM), markers of DNA double-strand breaks, were increased (P < .05) in abundance prior to observed follicle loss. DNA repair genes (Atm, Prkdc, Xrcc6, Brca1, Mre11a, Rad50, and Smc1a) were increased (P < .05) after 1 day of BPA exposure. mRNA encoding Meh, Gstm, c-kit, Kitlg, and Akt were increased (P < .05), as was MEH, AKT, pAKT, Jun N-terminal kinase, and P53 protein abundance, while GST isoforms pi and Nuclear factor erythroid-related factor 2 proteins were decreased (P < .05) by BPA exposure. These data demonstrate the dynamic ovarian response to BPA exposure, which indicates that BPA, via biotransformation, may be converted to a DNA alkylating agent, causing ovarian DNA damage, to which the ovary mounts a protective response and further our knowledge on the biological impacts of BPA on the female germline. PMID:27208089

  18. Structural and functional analysis of the Crb2–BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair

    OpenAIRE

    Kilkenny, Mairi L.; Doré, Andrew S.; Roe, S. Mark; Nestoras, Konstantinos; Ho, Jenny C. Y.; Watts, Felicity Z.; Pearl, Laurence H.

    2008-01-01

    Schizosaccharomyces pombe Crb2 is a checkpoint mediator required for the cellular response to DNA damage. Like human 53BP1 and Saccharomyces cerevisiae Rad9 it contains Tudor2 and BRCT2 domains. Crb2-Tudor2 domain interacts with methylated H4K20 and is required for recruitment to DNA dsDNA breaks. The BRCT2 domain is required for dimerization, but its precise role in DNA damage repair and checkpoint signaling is unclear. The crystal structure of the Crb2–BRCT2 domain, alone and in complex wit...

  19. Protection of DNA damage by radiation exposure

    International Nuclear Information System (INIS)

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents

  20. Protection of DNA damage by radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Lee, Kang Suk; Kim, Kug Chan; Oh, Tae Jung

    1998-12-01

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents.

  1. Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes

    Directory of Open Access Journals (Sweden)

    Hirai Toshiro

    2011-01-01

    Full Text Available Abstract Background Clarifying the physicochemical properties of nanomaterials is crucial for hazard assessment and the safe application of these substances. With this in mind, we analyzed the relationship between particle size and the in vitro effect of amorphous nanosilica (nSP. Specifically, we evaluated the relationship between particle size of nSP and the in vitro biological effects using human keratinocyte cells (HaCaT. Results Our results indicate that exposure to nSP of 70 nm diameter (nSP70 induced an elevated level of reactive oxygen species (ROS, leading to DNA damage. A markedly reduced response was observed using submicron-sized silica particles of 300 and 1000 nm diameter. In addition, cytochalasin D-treatment reduced nSP70-mediated ROS generation and DNA damage, suggesting that endocytosis is involved in nSP70-mediated cellular effects. Conclusions Thus, particle size affects amorphous silica-induced ROS generation and DNA damage of HaCaT cells. We believe clarification of the endocytosis pathway of nSP will provide useful information for hazard assessment as well as the design of safer forms of nSPs.

  2. Pre-apoptotic response to therapeutic DNA damage involves protein modulation of Mcl-1, Hdm2 and Flt3 in acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Hovland Randi

    2007-05-01

    Full Text Available Abstract Background Acute myeloid leukemia (AML cells are characterized by non-mutated TP53, high levels of Hdm2, and frequent mutation of the Flt3 receptor tyrosine kinase. The juxtamembrane mutation of FLT3 is the strongest independent marker for disease relapse and is associated with elevated Bcl-2 protein and p53 hyper-phosphorylation in AML. DNA damage forms the basic mechanism of cancer cell eradication in current therapy of AML. Hdm2 and pro-apoptotic Bcl-2 members are among the most intensely induced genes immediately after chemotherapy and Hdm2 is proposed a role in receptor tyrosine kinase regulation. Thus we examined the DNA damage related modulation of these proteins in relation to FLT3 mutational status and induction of apoptosis. Results Within one hour after exposure to ionizing radiation (IR, the AML cells (NB4, MV4-11, HL-60, primary AML cells showed an increase in Flt3 protein independent of mRNA levels, while the Hdm2 protein decreased. The FLT3 mutant MV4-11 cells were resistant to IR accompanied by presence of both Mcl-1 and Hdm2 protein three hours after IR. In contrast, the FLT3 wild type NB4 cells responded to IR with apoptosis and pre-apoptotic Mcl-1 down regulation. Daunorubicin (DNR induced continuing down regulation of Hdm2 and Mcl-1 in both cell lines followed by apoptosis. Conclusion Both IR and DNR treatment resulted in concerted protein modulations of Mcl-1, Hdm2 and Flt3. Cell death induction was associated with persistent attenuation of Mcl-1 and Hdm2. These observations suggest that defining the pathway(s modulating Flt3, Hdm2 and Mcl-1 may propose new strategies to optimize therapy for the relapse prone FLT3 mutated AML patients.

  3. The PARP1/ARTD1-Mediated Poly-ADP-Ribosylation and DNA Damage Repair in B Cell Diversification

    Directory of Open Access Journals (Sweden)

    Jackline J.M. Lasola

    2014-01-01

    Full Text Available ADP-ribosylation is an essential post-translational modification, mediated by a family of proteins named poly-ADP-ribose polymerases/Diphtheria toxin-like ADP-ribosyltransferases (PARPs/ARTDs, that functions to assist in cellular homeostasis through an array of mechanisms. Although the function of PARP1/ARTD1-mediated poly-ADP-ribosylation (PARylation in response to environmental genotoxic stressors has been extensively studied, its role in the regulation and maintenance of cellular events under times of programmed DNA damage and repair remains to be elucidated. In the case of B cell maturation and differentiation, processes such as V(DJ recombination, somatic hypermutation, and class switch recombination, require the induction of DNA strand breaks for the generation of a varied immunoglobulin repertoire and, thus, serve as a model system to explore the function of PARylation in immunological processes. In this review, we summarize the current understanding of ADP-ribosylation and the PARPs/ARTDs family proteins, in particular PARP1/ARTD1-conferred PARylation, in B cells. Following an overview of PARylation in cellular responses to environmental and spontaneous DNA damage, we discuss the emerging function of PARP1/ARTD1 and PARylation in DNA damage-induced nuclear factor kappaB (NF-κB signaling and B cell maturation and differentiation. Finally, we conclude by underlining further efforts that are needed to understand how the PARPs/ARTDs family proteins and ADP-ribosylation control the development and function of B cells.

  4. DNA damage caused by UV- and near UV-irradiation

    International Nuclear Information System (INIS)

    Much work with mutants deficient in DNA repair has been performed concerning UV-induced DNA damage under the condition where there is no artificial stimulation. In an attempt to infer the effects of solar wavelengths, the outcome of the work is discussed in terms of cellular radiation sensitivity, unscheduled DNA synthesis, and mutation induction, leading to the conclusion that some DNA damage occurs even by irradiation of the shorter wavelength light (270 - 315 nm) and is repaired by excision repair. It has been thought to date that pyrimidine dimer (PD) plays the most important role in UV-induced DNA damage, followed by (6 - 4) photoproducts. As for DNA damage induced by near UV irradiation, the yield of DNA single-strand breaks and of DNA-protein crosslinking, other than PD, is considered. The DNA-protein crosslinking has proved to be induced by irradiation at any wavelength of UV ranging from 260 to 425 nm. Near UV irradiation causes the inhibition of cell proliferation to take place. (Namekawa, K.)

  5. Linking abnormal mitosis to the acquisition of DNA damage

    OpenAIRE

    Ganem, Neil J.; Pellman, David

    2012-01-01

    Cellular defects that impair the fidelity of mitosis promote chromosome missegregation and aneuploidy. Increasing evidence reveals that errors in mitosis can also promote the direct and indirect acquisition of DNA damage and chromosome breaks. Consequently, deregulated cell division can devastate the integrity of the normal genome and unleash a variety of oncogenic stimuli that may promote transformation. Recent work has shed light on the mechanisms that link abnormal mitosis with the develop...

  6. Phase resetting of the mammalian circadian clock by DNA damage

    NARCIS (Netherlands)

    Oklejewicz, Malgorzata; Destici, Eugin; Tamanini, Filippo; Hut, Roelof A.; Janssens, Roel; van der Horst, Gijsbertus T. J.

    2008-01-01

    To anticipate the momentum of the day, most organisms have developed an internal clock that drives circadian rhythms in metabolism, physiology, and behavior [1]. Recent studies indicate that cell-cycle progression and DNA-damage-response pathways are under circadian control [2-4]. Because circadian

  7. Similarity in the acute cytotoxic response of mammalian cells to mercury (II) and x-rays: DNA damage and glutathione depletion

    International Nuclear Information System (INIS)

    Pronounced strand breakage of DNA analyzed elution techniques was produced in intact Chinese hamster ovary cells by 25 μM HgCl2 within 1 hr or 100 μM HgCl2 within 15 min. HgCl2-induced strand breakage was directly proportional to concentration up to 100 μM and to time within 1 hr. Levels of reduced glutathione decreased following HgCl2 in parallel with the induction of DNA strand breakage. Evidence is presented that this rapid and pronounced induction of DNA strand breaks and other cytotoxic responses following acute exposure to HgCl2 resembles the cellular effects of X-rays

  8. The Seckel syndrome and centrosomal protein Ninein localizes asymmetrically to stem cell centrosomes but is not required for normal development, behavior, or DNA damage response in Drosophila.

    Science.gov (United States)

    Zheng, Yiming; Mennella, Vito; Marks, Steven; Wildonger, Jill; Elnagdi, Esraa; Agard, David; Megraw, Timothy L

    2016-06-01

    Ninein (Nin) is a centrosomal protein whose gene is mutated in Seckel syndrome (SCKL, MIM 210600), an inherited recessive disease that results in primordial dwarfism, cognitive deficiencies, and increased sensitivity to genotoxic stress. Nin regulates neural stem cell self-renewal, interkinetic nuclear migration, and microtubule assembly in mammals. Nin is evolutionarily conserved, yet its role in cell division and development has not been investigated in a model organism. Here we characterize the single Nin orthologue in Drosophila Drosophila Nin localizes to the periphery of the centrosome but not at centriolar structures as in mammals. However, Nin shares the property of its mammalian orthologue of promoting microtubule assembly. In neural and germline stem cells, Nin localizes asymmetrically to the younger (daughter) centrosome, yet it is not required for the asymmetric division of stem cells. In wing epithelia and muscle, Nin localizes to noncentrosomal microtubule-organizing centers. Surprisingly, loss of nin expression from a nin mutant does not significantly affect embryonic and brain development, fertility, or locomotor performance of mutant flies or their survival upon exposure to DNA-damaging agents. Although it is not essential, our data suggest that Nin plays a supportive role in centrosomal and extracentrosomal microtubule organization and asymmetric stem cell division. PMID:27053665

  9. DNA damages induced in human lymphocytes by UV or X-rays and repair capacities of healthy donors and skin cancer patients

    International Nuclear Information System (INIS)

    The aim of this study was to compare variation in the individual susceptibility of various donors to the induction of the DNA damage by genotoxic agents and their cellular capabilities to repair induced damage. DNA damages induced by UV or X-rays in lymphocytes and cellular repair capability of healthy donors and persons bearing various categories of skin cancer cells were investigated. Fresh blood was collected by venipuncture from 35 individuals (including nine prior to skin cancer treatment). All cancer patients were nonsmoking males, however 42.3 % of them were former smokers. All healthy donors were also males, an average age was 38.6 y and among them 68% were recent or former smokers. Immediately after collecting samples, lymphocytes were isolated and stored at -70oC for further studies in vitro. Previously cryopreserved lymphocytes were defrosted and viability of the cells was investigated. The single cell gel electrophoresis assay (SCGE), known as a Comet assay, was performed in defrozen lymphocytes to evaluate individual DNA damage levels presented in lymphocytes at the time of sample's collection. To compare individual susceptibility to the induction of DNA damage by UV and ionizing radiation, lymphocytes were exposed to dose of 6 J/m2 of UV or 2 Gy of X-rays and DNA damages were detected again with an application of the Comet assay. Additionally, to study variation in the individuals cellular capability to repair damages induced, prior to the DNA damage analysis an incubation of cells exposed was also done in presence or absence of phytohemagglutinin (cell divisions processes starting agent). Results showed in untreated lymphocytes of skin cancer patients significantly higher than in the reference group levels of the DNA damages. Significantly different responses to UV and significantly lower capabilities to repair UV induced damage in skin cancer patients were observed. On the average, no differences between reference group and skin cancer patients were

  10. The PERK/ATF4/LAMP3-arm of the unfolded protein response affects radioresistance by interfering with the DNA damage response

    NARCIS (Netherlands)

    Nagelkerke, A.; Bussink, J.; Kogel, A.J. van der; Sweep, F.C.; Span, P.N.

    2013-01-01

    BACKGROUND AND PURPOSE: Lysosome-associated membrane protein 3 (LAMP3) is induced by the PKR-like ER kinase (PERK)/activating transcription factor 4 (ATF4)-arm of the unfolded protein response (UPR) during hypoxia. LAMP3 has prognostic value in breast cancer patients treated with radiotherapy. Here,

  11. Expression of DNA Damage Response Molecules PARP1, γH2AX, BRCA1, and BRCA2 Predicts Poor Survival of Breast Carcinoma Patients

    Directory of Open Access Journals (Sweden)

    See-Hyoung Park

    2015-08-01

    Full Text Available BACKGROUND: Poly(ADP-ribose polymerase 1 (PARP1, γH2AX, BRCA1, and BRCA2 are conventional molecular indicators of DNA damage in cells and are often overexpressed in various cancers. In this study, we aimed, using immunohistochemical detection, whether the co-expression of PARP1, γH2AX, BRCA1, and BRCA2 in breast carcinoma (BCA tissue can provide more reliable prediction of survival of BCA patients. MATERIALS AND METHODS: We investigated immunohistochemical expression and prognostic significance of the expression of PARP1, γH2AX, BRCA1, and BRCA2 in 192 cases of BCAs. RESULTS: The expression of these four molecules predicted earlier distant metastatic relapse, shorter overall survival (OS, and relapse-free survival (RFS by univariate analysis. Multivariate analysis revealed the expression of PARP1, γH2AX, and BRCA2 as independent poor prognostic indicators of OS and RFS. In addition, the combined expressional pattern of BRCA1, BRCA2, PARP1, and γH2AX (CSbbph was an additional independent prognostic predictor for OS (P < .001 and RFS (P < .001. The 10-year OS rate was 95% in the CSbbph-low (CSbbph scores 0 and 1 subgroup, but that was only 35% in the CSbbph-high (CSbbph score 4 subgroup. CONCLUSION: This study has demonstrated that the individual and combined expression patterns of PARP1, γH2AX, BRCA1, and BRCA2 could be helpful in determining an accurate prognosis for BCA patients and for the selection of BCA patients who could potentially benefit from anti-PARP1 therapy with a combination of genotoxic chemotherapeutic agents.

  12. DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age.

    Science.gov (United States)

    Marangos, Petros; Stevense, Michelle; Niaka, Konstantina; Lagoudaki, Michaela; Nabti, Ibtissem; Jessberger, Rolf; Carroll, John

    2015-01-01

    In mammalian oocytes DNA damage can cause chromosomal abnormalities that potentially lead to infertility and developmental disorders. However, there is little known about the response of oocytes to DNA damage. Here we find that oocytes with DNA damage arrest at metaphase of the first meiosis (MI). The MI arrest is induced by the spindle assembly checkpoint (SAC) because inhibiting the SAC overrides the DNA damage-induced MI arrest. Furthermore, this MI checkpoint is compromised in oocytes from aged mice. These data lead us to propose that the SAC is a major gatekeeper preventing the progression of oocytes harbouring DNA damage. The SAC therefore acts to integrate protection against both aneuploidy and DNA damage by preventing production of abnormal mature oocytes and subsequent embryos. Finally, we suggest escaping this DNA damage checkpoint in maternal ageing may be one of the causes of increased chromosome anomalies in oocytes and embryos from older mothers. PMID:26522734

  13. Simulated Microgravity Promotes Cell Apoptosis Through Suppressing Uev1A/TICAM/TRAF/NF-κB-Regulated Anti-Apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-Controlled DNA-Damage Response Pathways.

    Science.gov (United States)

    Zhao, Tuo; Tang, Xin; Umeshappa, Channakeshava Sokke; Ma, Hong; Gao, Haijun; Deng, Yulin; Freywald, Andrew; Xiang, Jim

    2016-09-01

    Microgravity has been known to induce cell death. However, its underlying mechanism is less studied. In this study, BL6-10 melanoma cells were cultured in flasks under simulated microgravity (SMG). We examined cell apoptosis, and assessed expression of genes associated with apoptosis and genes regulating apoptosis in cells under SMG. We demonstrate that SMG induces cell morphological changes and microtubule alterations by confocal microscopy, and enhances apoptosis by flow cytometry, which was associated with up- and down-regulation of pro-apoptotic and anti-apoptotic genes, respectively. Moreover, up- and down-regulation of pro-apoptotic (Caspases 3, 7, 8) and anti-apoptotic (Bcl2 and Bnip3) molecules was confirmed by Western blotting analysis. Western blot analysis also indicates that SMG causes inhibition of an apoptosis suppressor, pNF-κB-p65, which is complemented by the predominant localization of NF-κB-p65 in the cytoplasm. SMG also reduces expression of molecules regulating the NF-κB pathway including Uev1A, TICAM, TRAF2, and TRAF6. Interestingly, 10 DNA repair genes are down-regulated in cells exposed to SMG, among which down-regulation of Parp, Ercc8, Rad23, Rad51, and Ku70 was confirmed by Western blotting analysis. In addition, we demonstrate a significant inhibition of molecules involved in the DNA-damage response, such as p53, PCNA, ATM/ATR, and Chk1/2. Taken together, our work reveals that SMG promotes the apoptotic response through a combined modulation of the Uev1A/TICAM/TRAF/NF-κB-regulated apoptosis and the p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-damage response pathways. Thus, our investigation provides novel information, which may help us to determine the cause of negative alterations in human physiology occurring at spaceflight environment. J. Cell. Biochem. 117: 2138-2148, 2016. © 2016 Wiley Periodicals, Inc. PMID:26887372

  14. WDR76 Co-Localizes with Heterochromatin Related Proteins and Rapidly Responds to DNA Damage

    Science.gov (United States)

    Gilmore, Joshua M.; Sardiu, Mihaela E.; Groppe, Brad D.; Thornton, Janet L.; Liu, Xingyu; Dayebgadoh, Gerald; Banks, Charles A.; Slaughter, Brian D.; Unruh, Jay R.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2016-01-01

    Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes. Through a quantitative proteomic analysis of affinity purifications here we show that the human homologue of this protein, WDR76, shares multiple protein associations with the histones H2A, H2B, and H4. Furthermore, our quantitative proteomic analysis of WDR76 associated proteins demonstrated links to proteins in the DNA damage response like PARP1 and XRCC5 and heterochromatin related proteins like CBX1, CBX3, and CBX5. Co-immunoprecipitation studies validated these interactions. Next, quantitative imaging studies demonstrated that WDR76 was recruited to laser induced DNA damage immediately after induction, and we compared the recruitment of WDR76 to laser induced DNA damage to known DNA damage proteins like PARP1, XRCC5, and RPA1. In addition, WDR76 co-localizes to puncta with the heterochromatin proteins CBX1 and CBX5, which are also recruited to DNA damage but much less intensely than WDR76. This work demonstrates the chromatin and DNA damage protein associations of WDR76 and demonstrates the rapid response of WDR76 to laser induced DNA damage. PMID:27248496

  15. Apoptosis and DNA damage in human spermatozoa

    Institute of Scientific and Technical Information of China (English)

    R John Aitken; Adam J Koppers

    2011-01-01

    DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis,resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apoptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy.

  16. All-Trans Retinoic Acid Modulates DNA Damage Response and the Expression of the VEGF-A and MKI67 Genes in ARPE-19 Cells Subjected to Oxidative Stress.

    Science.gov (United States)

    Tokarz, Paulina; Piastowska-Ciesielska, Agnieszka Wanda; Kaarniranta, Kai; Blasiak, Janusz

    2016-01-01

    Age-related macular degeneration (AMD) is characterized by the progressive degradation of photoreceptors and retinal pigment epithelium (RPE) cells. ARPE-19 is an RPE cell line established as an in vitro model for the study of AMD pathogenesis. Oxidative stress is an AMD pathogenesis factor that induces DNA damage. Thus, the oxidative stress-mediated DNA damage response (DDR) of ARPE-19 cells can be important in AMD pathogenesis. The metabolism of retinoids-which regulates cell proliferation, differentiation, and the visual cycle in the retina-was reported to be disturbed in AMD patients. In the present work, we studied the effect of all-trans retinoic acid (ATRA, a retinoid) on DDR in ARPE-19 cells subjected to oxidative stress. We observed that ATRA increased the level of reactive oxygen species (ROS), alkali-labile sites in DNA, DNA single-strand breaks, and cell death evoked by oxidative stress. ATRA did not modulate DNA repair or the distribution of cells in cell cycle in the response of ARPE-19 cells to oxidative stress. ATRA induced autophagy in the absence of oxidative stress, but had no effect on this process in the stress. ATRA induced over-expression of proliferation marker MKI67 and neovascularization marker VEGF-A. In conclusion, ATRA increased oxidative stress in ARPE-19 cells, resulting in more lesions to their DNA and cell death. Moreover, ATRA can modulate some properties of these cells, including neovascularization, which is associated with the exudative form of AMD. Therefore, ATRA can be important in the prevention, diagnosis, and therapy of AMD. PMID:27314326

  17. Comprehensive Profiling of Radiosensitive Human Cell Lines with DNA Damage Response Assays Identifies the Neutral Comet Assay as a Potential Surrogate for Clonogenic Survival

    OpenAIRE

    Nahas, Shareef A.; Davies, Robert; Fike, Francesca; Nakamura, Kotoka; Du, Liutao; Kayali, Refik; Martin, Nathan T.; Concannon, Patrick; Gatti, Richard A.

    2011-01-01

    In an effort to explore the possible causes of human radiosensitivity and identify more rapid assays for cellular radiosensitivity, we interrogated a set of assays that evaluate cellular functions involved in recognition and repair of DNA double-strand breaks: (1) neutral comet assay, (2) radiation-induced γ-H2AX focus formation, (3) the temporal kinetics of structural maintenance of chromosomes 1 phosphorylation, (4) intra-S-phase checkpoint integrity, and (5) mitochondrial respiration. We c...

  18. Growth arrest-specific transcript 5 associated snoRNA levels are related to p53 expression and DNA damage in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Jonathan Krell

    Full Text Available The growth arrest-specific transcript 5 gene (GAS5 encodes a long noncoding RNA (lncRNA and hosts a number of small nucleolar RNAs (snoRNAs that have recently been implicated in multiple cellular processes and cancer. Here, we investigate the relationship between DNA damage, p53, and the GAS5 snoRNAs to gain further insight into the potential role of this locus in cell survival and oncogenesis both in vivo and in vitro.We used quantitative techniques to analyse the effect of DNA damage on GAS5 snoRNA expression and to assess the relationship between p53 and the GAS5 snoRNAs in cancer cell lines and in normal, pre-malignant, and malignant human colorectal tissue and used biological techniques to suggest potential roles for these snoRNAs in the DNA damage response.GAS5-derived snoRNA expression was induced by DNA damage in a p53-dependent manner in colorectal cancer cell lines and their levels were not affected by DICER. Furthermore, p53 levels strongly correlated with GAS5-derived snoRNA expression in colorectal tissue.In aggregate, these data suggest that the GAS5-derived snoRNAs are under control of p53 and that they have an important role in mediating the p53 response to DNA damage, which may not relate to their function in the ribosome. We suggest that these snoRNAs are not processed by DICER to form smaller snoRNA-derived RNAs with microRNA (miRNA-like functions, but their precise role requires further evaluation. Furthermore, since GAS5 host snoRNAs are often used as endogenous controls in qPCR quantifications we show that their use as housekeeping genes in DNA damage experiments can lead to inaccurate results.

  19. Cellular and molecular response to irradiation in ataxia telangiectasia and in Fanconi's anemia

    International Nuclear Information System (INIS)

    Ataxia telangiectasia (AT) and Fanconi anemia (FA) are recessive genetic diseases featuring chromosomal instability, increased predisposition to cancer and in vitro hypersensitivity to ionizing radiation (AT) or DNA cross-linking agents (FA). Moreover, an in vivo hypersensitivity to γ-rays exposure was reported in both syndromes. Cellular response to irradiation includes growth arrest (cell cycle modification) and cell death (by apoptosis or necrosis). Since it is generally accepted that apoptosis modulates cellular sensitivity to genotoxic stress, it was of interest to investigate the contribution of apoptosis in determining FA and AT responses to DNA Damaging Agents. The results support the contention that the in vivo hypersensitivity to radiation in these syndromes is not related to a higher rate of apoptotic cells but could be to a higher necrotic response triggering inflammatory reactions in the patients affected by this syndromes. (authors)

  20. p53-dependent activation of microRNA-34a in response to etoposide-induced DNA damage in osteosarcoma cell lines not impaired by dominant negative p53 expression.

    Directory of Open Access Journals (Sweden)

    Chiara Novello

    Full Text Available Osteosarcoma (OS is the most common primary malignant bone tumor and prevalently occurs in the second decade of life. Etoposide, a chemotherapeutic agent used in combined treatments of recurrent human OS, belongs to the topoisomerase inhibitor family and causes DNA breakage. In this study we evaluated the cascade of events determined by etoposide-induced DNA damage in OS cell lines with different p53 status focusing on methylation status and expression of miR-34a that modulate tumor cell growth and cell cycle progression. Wild-type p53 U2-OS cells and U2-OS cells expressing dominant-negative form of p53 (U2- OS175 were more sensitive to etoposide than p53-deficient MG63 and Saos-2 cells, showing increased levels of unmethylated miR-34a, reduced expression of CDK4 and cell cycle arrest in G1 phase. In contrast, MG63 and Saos-2 cell lines presented aberrant methylation of miR-34a promoter gene with no miR-34a induction after etoposide treatment, underlining the close connection between p53 expression and miR-34a methylation status. Consistently, in p53siRNA transfected U2-OS cells we observed loss of miR-34a induction after etoposide exposure associated with a partial gain of gene methylation and cell cycle progress towards G2/M phase. Our results suggest that the open and unmethylated conformation of the miR-34a gene may be regulated by p53 able to bind the gene promoter. In conclusion, cell response to etoposide-induced DNA damage was not compromised in cells with dominant-negative p53 expression.

  1. Imaging of the DNA damage-induced dynamics of nuclear proteins via nonlinear photoperturbation.

    Science.gov (United States)

    Tomas, Martin; Blumhardt, Philipp; Deutzmann, Anja; Schwarz, Tobias; Kromm, Dimitri; Leitenstorfer, Alfred; Ferrando-May, Elisa

    2013-08-01

    Understanding the cellular response to DNA strand breaks is crucial to decipher the mechanisms maintaining the integrity of our genome. We present a novel method to visualize how the mobility of nuclear proteins changes in response to localized DNA damage. DNA strand breaks are induced via nonlinear excitation with femtosecond laser pulses at λ = 1050 nm in a 3D-confined subnuclear volume. After a time delay of choice, protein mobility within this volume is analysed by two-photon photoactivation of PA-GFP fusion proteins at λ = 775 nm. By changing the position of the photoactivation spot with respect to the zone of lesion the influence of chromatin structure and of the distance from damage are investigated. As first applications we demonstrate a locally confined, time-dependent mobility increase of histone H1.2, and a progressive retardation of the DNA repair factor XRCC1 at damaged sites. This assay can be used to map the response of nuclear proteins to DNA damage in time and space. PMID:23420601

  2. DNA Damage: A Main Determinant of Vascular Aging.

    Science.gov (United States)

    Bautista-Niño, Paula K; Portilla-Fernandez, Eliana; Vaughan, Douglas E; Danser, A H Jan; Roks, Anton J M

    2016-01-01

    Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (c

  3. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  4. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    International Nuclear Information System (INIS)

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo

  5. Correlation of DNA damage in type 2 diabetes to glycemic control

    Directory of Open Access Journals (Sweden)

    Sohair I Salem, Safinaz E El-Toukhy, Gamila S M El-Saeed, Maha El-

    2012-07-01

    Full Text Available Background: Diabetes is associated with excessive production of reactive oxygen species (ROS which can damage cellular macromolecules. The aim of the study was to detect oxidative DNA damage in type 2 diabetic patients and to correlate it with glycemic control.Aim of work: to assess the percentage of DNA damage in patients with type 2 diabetes and the relation with glycemic control and lipid profile.Patients and methods: The present work included 28 diabetic patients as well as 25 age and sex matched healthy volunteers served as control. Single cell gel electrophoresis (SCGE was used to assess DNA damage in 28 patients with type 2 diabetes and 25 age and sex matched healthy controls. Moreover, glycemic as well as lipid profiles were also estimated in those subjects.Results: The percent of DNA damage of peripheral blood mononuclear cells was higher in diabetic patients (45.1±9.2 compared to healthy controls (3.70± 0.85 (p<0.001. The percent of DNA damage correlated positively with BMI, fasting blood glucose, HbA1C, serum cholesterol, serum triglycerides, HDL cholesterol and LDL cholesterol (p<0.001 . However, there was no significant difference in percent of DNA damage between hypertensive patients (36.2 ±4.6 and non hypertensive patients (37.2±4.6. Pearson correlation analysis showed a significant positive correlation between DNA damage and body mass index, glycated hemoglobin, total cholesterol, triglycerides and low density lipoprotein cholesterol.Conclusion: Type 2 diabetic patients have more oxidative DNA damage than normal controls and this damage increase with poor diabetic control, obesity and hyperlipidemia. Thus, DNA damage in the peripheral blood of diabetic patients assessed by comet assay can be applied as a new and non expensive technique for monitoring patients with type-2 diabetes.

  6. DNA damage-induced cell death: lessons from the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Helena Lobo Borges; Rafael Linden; Jean YJ Wang

    2008-01-01

    DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.

  7. Immune cellular response to HPV: current concepts

    Directory of Open Access Journals (Sweden)

    Maria Alice Guimarães Gonçalves

    2004-02-01

    Full Text Available Although cellular immunity is essential for the elimination of human papillomavirus (HPV, the mechanisms involved are still poorly understood. We summarize the main mechanisms involved in cellular immune response to infections caused by HPV. Immunotherapies for HPV-related cancers require the disruption of T-cell response control mechanisms, associated with the stimulation of the Th1 cytokine response.

  8. Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    Fan Zhao; Qing-Jun Ma; Hui Zhong; Ning-Bo Hou; Xiao-Li Yang; Xiang He; Yu Liu; Yan-Hong Zhang; Cong-Wen Wei; Ting Song; Li Li

    2008-01-01

    AIM: To explore whether acute cellular DNA damage response is induced upon hepatitis B virus (HBV) infection and the effects of the HBV infection. METHODS: We incubated HL7702 hepatocytes with HBV-positive serum, mimicking a natural HBV infection process. We used immunoblotting to evaluate protein expression levels in HBV-infected cells or in non-infected cells; immunofluorescence to show ATR foci ands Chk1 phosphorylation loci formation; flow cytometry to analyze the cell cycle and apoptosis; ultraviolet (UV) radiation and ionizing radiation (IR)-treated cells to mimic DNA damage; and Trypan blue staining to count the viable cells.RESULTS: We found that HBV infection induced an increased steady state of ATR protein and increased phosphorylation of multiple downstream targets including Chkl, p53 and H2AX. In contrast to ATR and its target, the phosphorylated form of ATM at Ser-1981 and its downstream substrate Chk2 phosphorylation at Thr-68 did not visibly increase upon infection. However, the level of Mre11 and p21 were reduced beginning at 0.5 h after HBV-positive serum addition. Also, HBV infection led to transient cell cycle arrest in the S and the G2 phases without accompanying increased apoptosis. Research on cell survival changes upon radiation following HBV infection showed that survival of UV-treated host cells was greatly increased by HBV infection, owing to the reduced apoptosis. Meanwhile, survival of IR-treated host cells was reduced by HBV infection. CONCLUSION: HBV infection activates ATR DNA damage response to replication stress and abrogates the checkpoint signaling controlled by DNA damage response.

  9. Deregulation upon DNA damage revealed by joint analysis of context-specific perturbation data

    Directory of Open Access Journals (Sweden)

    Biecek Przemysław

    2011-06-01

    Full Text Available Abstract Background Deregulation between two different cell populations manifests itself in changing gene expression patterns and changing regulatory interactions. Accumulating knowledge about biological networks creates an opportunity to study these changes in their cellular context. Results We analyze re-wiring of regulatory networks based on cell population-specific perturbation data and knowledge about signaling pathways and their target genes. We quantify deregulation by merging regulatory signal from the two cell populations into one score. This joint approach, called JODA, proves advantageous over separate analysis of the cell populations and analysis without incorporation of knowledge. JODA is implemented and freely available in a Bioconductor package 'joda'. Conclusions Using JODA, we show wide-spread re-wiring of gene regulatory networks upon neocarzinostatin-induced DNA damage in Human cells. We recover 645 deregulated genes in thirteen functional clusters performing the rich program of response to damage. We find that the clusters contain many previously characterized neocarzinostatin target genes. We investigate connectivity between those genes, explaining their cooperation in performing the common functions. We review genes with the most extreme deregulation scores, reporting their involvement in response to DNA damage. Finally, we investigate the indirect impact of the ATM pathway on the deregulated genes, and build a hypothetical hierarchy of direct regulation. These results prove that JODA is a step forward to a systems level, mechanistic understanding of changes in gene regulation between different cell populations.

  10. Visualization of DNA damage in individual cells

    International Nuclear Information System (INIS)

    A simple technique of micro-agarose gel electrophoresis has been developed to permit an evaluation of DNA damage in individual cells. Cells are embeded in agarose gel on microscope slides, lysed by detergents and then electrophoresed for a short time. In damaged cells, DNA migrated from the nuclei toward the anode, displaying 'comets' visualized by staining with a DNA-specific fluorochrome, acridine orange. The technique was applicable to quantifying DNA damage in individual cells exposed to Gy level of reactor radiation. (author)

  11. Integrated Molecular Analysis Indicates Undetectable Change in DNA Damage in Mice after Continuous Irradiation at ~ 400-fold Natural Background Radiation

    OpenAIRE

    Olipitz, Werner; Wiktor-Brown, Dominika; Shuga, Joe; Pang, Bo; McFaline, Jose; Lonkar, Pallavi; Thomas, Aline; Mutamba, James T; Greenberger, Joel S.; Samson, Leona D.; Dedon, Peter C; Yanch, Jacquelyn C.; Engelward, Bevin P.

    2012-01-01

    Background: In the event of a nuclear accident, people are exposed to elevated levels of continuous low dose-rate radiation. Nevertheless, most of the literature describes the biological effects of acute radiation. Objectives: DNA damage and mutations are well established for their carcinogenic effects. We assessed several key markers of DNA damage and DNA damage responses in mice exposed to low dose-rate radiation to reveal potential genotoxic effects associated with low dose-rate radiation....

  12. Induction of beta-polymerase mRNA by DNA-damaging agents in Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Only a few of the genes involved in DNA repair in mammalian cells have been isolated, and induction of a DNA repair gene in response to DNA damage has not yet been established. DNA polymerase beta (beta-polymerase) appears to have a synthetic role in DNA repair after certain types of DNA damage. Here we show that the level of beta-polymerase mRNA is increased in CHO cells after treatment with several DNA-damaging agents

  13. The E3 ubiquitin ligase EDD regulates S-phase and G(2)/M DNA damage checkpoints.

    Science.gov (United States)

    Munoz, Marcia A; Saunders, Darren N; Henderson, Michelle J; Clancy, Jennifer L; Russell, Amanda J; Lehrbach, Gillian; Musgrove, Elizabeth A; Watts, Colin K W; Sutherland, Robert L

    2007-12-15

    The cellular response to DNA damage is critical for maintenance of genomic integrity and inhibition of tumorigenesis. Mutations or aberrant expression of the E3 ubiquitin ligase EDD have been observed in a number of carcinomas and we recently reported that EDD modulates activity of the DNA damage checkpoint kinase, CHK2. Here, we demonstrate that EDD is necessary for G(1)/S and intra S phase DNA damage checkpoint activation and for the maintenance of G(2)/M arrest after double strand DNA breaks. Defective checkpoint activation in EDD-depleted cells led to radio-resistant DNA synthesis, premature entry into mitosis, accumulation of polyploid cells, and cell death via mitotic catastrophe. In addition to decreased CHK2 activation in EDD-depleted cells, the expression of several key cell cycle mediators including Cdc25A/C and E2F1 was altered, suggesting that these checkpoint defects may be both CHK2-dependent and -independent. These data support a role for EDD in the maintenance of genomic stability, emphasising the potential importance of dysregulated EDD expression and/or function in the evolution of cancer. PMID:18073532

  14. PGC-1α Modulates Telomere Function and DNA Damage in Protecting against Aging-Related Chronic Diseases.

    Science.gov (United States)

    Xiong, Shiqin; Patrushev, Nikolay; Forouzandeh, Farshad; Hilenski, Lula; Alexander, R Wayne

    2015-09-01

    Cellular senescence and organismal aging predispose age-related chronic diseases, such as neurodegenerative, metabolic, and cardiovascular disorders. These diseases emerge coincidently from elevated oxidative/electrophilic stress, inflammation, mitochondrial dysfunction, DNA damage, and telomere dysfunction and shortening. Mechanistic linkages are incompletely understood. Here, we show that ablation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) accelerates vascular aging and atherosclerosis, coinciding with telomere dysfunction and shortening and DNA damage. PGC-1α deletion reduces expression and activity of telomerase reverse transcriptase (TERT) and increases p53 levels. Ectopic expression of PGC-1α coactivates TERT transcription and reverses telomere malfunction and DNA damage. Furthermore, alpha lipoic acid (ALA), a non-dispensable mitochondrial cofactor, upregulates PGC-1α-dependent TERT and the cytoprotective Nrf-2-mediated antioxidant/electrophile-responsive element (ARE/ERE) signaling cascades, and counteracts high-fat-diet-induced, age-dependent arteriopathy. These results illustrate the pivotal importance of PGC-1α in ameliorating senescence, aging, and associated chronic diseases, and may inform novel therapeutic approaches involving electrophilic specificity. PMID:26299964

  15. Methacryloxylethyl Cetyl Ammonium Chloride Induces DNA Damage and Apoptosis in Human Dental Pulp Cells via Generation of Oxidative Stress.

    Science.gov (United States)

    Jiao, Yang; Ma, Sai; Wang, Yirong; Li, Jing; Shan, Lequn; Sun, Jinlong; Chen, Jihua

    2016-01-01

    The polymerizable antibacterial monomer methacryloxylethyl cetyl ammonium chloride (DMAE-CB) has provided an effective strategy to combat dental caries. However, the application of such material raises the question about the biological safety and the question remains open. The mechanism of this toxic action, however, is not yet clearly understood. The present study aims at providing novel insight into the possible causal link between cellular oxidative stress and DNA damage, as well as apoptosis in human dental pulp cells exposed to DMAE-CB. The enhanced formation of reactive oxygen species and depletion of glutathione, as well as differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase in DMAE-CB-treated cells indicated oxidative stress. By using substances that can alter GSH synthesis, we found that GSH was the key component in the regulation of cell response towards oxidative stress induced by DMAE-CB. The increase in oxidative stress-sensitive 8-Oxo-2'-deoxyguanosine (8-OHdG) content, formation of γ-H2AX and cell cycle G1 phase arrest indicated that DNA damage occurred as a result of the interaction between DNA base and ROS beyond the capacities of antioxidant mechanisms in cells exposed to DMAE-CB. Such oxidative DNA damage thus triggers the activation of ataxia telangiectasia-mutated (ATM) signaling, the intrinsic apoptotic pathway, and destruction of mitochondrial morphology and function. PMID:27143955

  16. Methacryloxylethyl Cetyl Ammonium Chloride Induces DNA Damage and Apoptosis in Human Dental Pulp Cells via Generation of Oxidative Stress

    Science.gov (United States)

    Jiao, Yang; Ma, Sai; Wang, Yirong; Li, Jing; Shan, Lequn; Sun, Jinlong; Chen, Jihua

    2016-01-01

    The polymerizable antibacterial monomer methacryloxylethyl cetyl ammonium chloride (DMAE-CB) has provided an effective strategy to combat dental caries. However, the application of such material raises the question about the biological safety and the question remains open. The mechanism of this toxic action, however, is not yet clearly understood. The present study aims at providing novel insight into the possible causal link between cellular oxidative stress and DNA damage, as well as apoptosis in human dental pulp cells exposed to DMAE-CB. The enhanced formation of reactive oxygen species and depletion of glutathione, as well as differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase in DMAE-CB-treated cells indicated oxidative stress. By using substances that can alter GSH synthesis, we found that GSH was the key component in the regulation of cell response towards oxidative stress induced by DMAE-CB. The increase in oxidative stress-sensitive 8-Oxo-2'-deoxyguanosine (8-OHdG) content, formation of γ-H2AX and cell cycle G1 phase arrest indicated that DNA damage occurred as a result of the interaction between DNA base and ROS beyond the capacities of antioxidant mechanisms in cells exposed to DMAE-CB. Such oxidative DNA damage thus triggers the activation of ataxia telangiectasia-mutated (ATM) signaling, the intrinsic apoptotic pathway, and destruction of mitochondrial morphology and function.

  17. PGC-1α Modulates Telomere Function and DNA Damage in Protecting against Aging-Related Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Shiqin Xiong

    2015-09-01

    Full Text Available Cellular senescence and organismal aging predispose age-related chronic diseases, such as neurodegenerative, metabolic, and cardiovascular disorders. These diseases emerge coincidently from elevated oxidative/electrophilic stress, inflammation, mitochondrial dysfunction, DNA damage, and telomere dysfunction and shortening. Mechanistic linkages are incompletely understood. Here, we show that ablation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α accelerates vascular aging and atherosclerosis, coinciding with telomere dysfunction and shortening and DNA damage. PGC-1α deletion reduces expression and activity of telomerase reverse transcriptase (TERT and increases p53 levels. Ectopic expression of PGC-1α coactivates TERT transcription and reverses telomere malfunction and DNA damage. Furthermore, alpha lipoic acid (ALA, a non-dispensable mitochondrial cofactor, upregulates PGC-1α-dependent TERT and the cytoprotective Nrf-2-mediated antioxidant/electrophile-responsive element (ARE/ERE signaling cascades, and counteracts high-fat-diet-induced, age-dependent arteriopathy. These results illustrate the pivotal importance of PGC-1α in ameliorating senescence, aging, and associated chronic diseases, and may inform novel therapeutic approaches involving electrophilic specificity.

  18. Essential Function of Dicer in Resolving DNA Damage in the Rapidly Dividing Cells of the Developing and Malignant Cerebellum

    Directory of Open Access Journals (Sweden)

    Vijay Swahari

    2016-01-01

    Full Text Available Maintenance of genomic integrity is critical during neurodevelopment, particularly in rapidly dividing cerebellar granule neuronal precursors that experience constitutive replication-associated DNA damage. As Dicer was recently recognized to have an unexpected function in the DNA damage response, we examined whether Dicer was important for preserving genomic integrity in the developing brain. We report that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration, which was rescued with p53 deficiency; deletion of DGCR8 also resulted in similar DNA damage and cerebellar degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in a mouse model of medulloblastoma. Together, these results identify an essential function of Dicer in resolving the spontaneous DNA damage that occurs during the rapid proliferation of developmental progenitors and malignant cells.

  19. The association of DNA damage to concentrations of mercury and radiocesium in largemouth bass

    International Nuclear Information System (INIS)

    Largemouth bass from five lakes were examined to determine levels of contamination by mercury and radiocesium and amounts of DNA damage. Concentrations of these toxicants and an index of body condition were regressed against overall DNA damage and DNA damage in individual tissues (liver, gills, and red blood cells) as indicated by the alkaline unwinding method. Sample sites showed considerable heterogeneity in concentrations of mercury and radiocesium, as well as numbers of DNA strand breaks. Generally, increased concentrations of toxicants were related to increased DNA damage. Tissues may have responded to contaminants in different manners; red blood cells generally showed the greatest DNA damage while liver tissue showed the least. Although body condition was related to DNA damage, it is unclear whether it has a direct effect or whether it is a correlated response to contamination by mercury and radiocesium. The potential for repair of DNA strand breaks and cell turnover rates may play an important role in determining the ultimate amount of DNA damage in contaminated organisms

  20. Biological effects of clustered DNA damage produced by heavy ion beams with its complexity

    International Nuclear Information System (INIS)

    Heavy ion beams produce denser ionized region around their track, and cause accumulated damage cluster in the target DNA molecule, termed ''clustered DNA damage.'' Although any ionizing radiations can generate clustered DNA damage with respective degree, heavy ion beam might very effectively produce clustered DNA damage for a reason as mentioned thereinbefore. However, we have less knowledge about molecular mechanism how clustered DNA damage is involved in the degree of biological consequence, and relationship between the species of ionizing radiation and the result. Our previous in vitro study showed that the yields of clustered DNA damage in the target DNA was in inverse proportion to the linear energy transfer (LET) of irradiated radiation (J. Radiat. Res., 49; 133-146, 2008). This result suggests that the yield is not simply responsible to the biological consequence. Therefore, we focused on the structure of clustered DNA damage induced by heavy ion beams in this study. We evaluated the number of damaged site in the designed target oligonucleotides irradiated by gamma-rays, carbon ions and iron ions beams. Also, we estimated the intracellular yields of clustered DNA damage consisted of oxidative base lesions (clustered base damage), because we investigated only DSB not clustered base damage in the previous study. (author)

  1. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Attia, Sabry M. [Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Siddiqui, Maqsood A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Aboul-Soud, Mourad A.M. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza (Egypt); Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Giesy, John P. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada S7N 5B3 (Canada); Zoology Department and Center for Integrative Toxicology, Michigan State University, East Lansing 48824 (United States); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh (India)

    2012-02-15

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G{sub 2}/M arrest and appearance of a distinctive SubG{sub 1} peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced

  2. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    International Nuclear Information System (INIS)

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G2/M arrest and appearance of a distinctive SubG1 peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced activities of

  3. Targeting DNA Damage and Repair by Curcumin

    OpenAIRE

    Ji, Zhenyu

    2010-01-01

    Curcumin is a compound with anti-tumor effects in a tolerable dose. A recent paper by Rowe et al described that curcumin induced DNA damage in triple negative breast cancer cells and regulated BRCA1 protein expression and modification.1 Related research and potential use of curcumin will be discussed in this article.

  4. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    Science.gov (United States)

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  5. Metastasis suppressor NM23-H1 promotes repair of UV-induced DNA damage and suppresses UV-induced melanomagenesis

    OpenAIRE

    Jarrett, Stuart G; Novak, Marian; Dabernat, Sandrine; Daniel, Jean-Yves; Mellon, Isabel; Zhang, Qingbei; Harris, Nathan; Ciesielski, Michael J.; Fenstermaker, Robert A.; Kovacic, Diane; Slominski, Andrzej; Kaetzel, David M.

    2011-01-01

    Reduced expression of the metastasis suppressor NM23-H1 is associated with aggressive forms of multiple cancers. Here, we establish that NM23-H1 (termed H1 isoform in human, M1 in mouse) and two of its attendant enzymatic activities, the 3′-5′ exonuclease and nucleoside diphosphate kinase, are novel participants in the cellular response to UV radiation (UVR)-induced DNA damage. NM23-H1 deficiency compromised the kinetics of repair for total DNA polymerase-blocking lesions and nucleotide excis...

  6. Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies.

    Science.gov (United States)

    Mantso, Theodora; Goussetis, George; Franco, Rodrigo; Botaitis, Sotiris; Pappa, Aglaia; Panayiotidis, Mihalis

    2016-06-01

    Utilization of thermal therapy (hyperthermia) is defined as the application of exogenous heat induction and represents a concept that is far from new as it goes back to ancient times when heat was used for treating various diseases, including malignancies. Such therapeutic strategy has gained even more popularity (over the last few decades) since various studies have shed light into understanding hyperthermia's underlying molecular mechanism(s) of action. In general, hyperthermia is applied as complementary (adjuvant) means in therapeutic protocols combining chemotherapy and/or irradiation both of which can induce irreversible cellular DNA damage. Furthermore, according to a number of in vitro, in vivo and clinical studies, hyperthermia has been shown to enhance the beneficial effects of DNA targeting therapeutic strategies by interfering with DNA repair response cascades. Therefore, the continuously growing evidence supporting hyperthermia's beneficial role in cancer treatment can also encourage its application as a DNA repair mitigation strategy. In this review article, we aim to provide detailed information on how hyperthermia acts on DNA damage and repair pathways and thus potentially contributing to various adjuvant therapeutic protocols relevant to more efficient cancer treatment strategies. PMID:27025900

  7. Synergic Effect of Genistein and Daidzein on UVB-Induced DNA Damage: An Effective Photoprotective Combination

    Directory of Open Access Journals (Sweden)

    Barbara Iovine

    2011-01-01

    Full Text Available The anti-inflammatory effects and antioxidant activities of individual isoflavones are well established although little is known about the photoprotective effect of their combination. The aim of this study was to investigate the photoprotective effects of different concentrations of genistein and daidzein individually or combined. We measured the expression levels of the cyclo-oxygenase-2 (COX-2 and growth arrest and DNA-damage inducible (Gadd45 genes, which are involved in inflammation and DNA repair, respectively, in BJ-5ta human skin fibroblasts irradiated with 60 mJ/cm2 UVB. We also determined the cellular response to UVB-induced DNA damage by Comet assay. We report that genistein and daidzein when administered combined, and at a specific concentration and ratio, exerted a synergistic photoprotective effect that was greater than the effect obtained with each isoflavone alone. The results reported herein suggest that low concentrations of genistein and daidzein combined may be good candidate ingredients for protective agents against UV-induced photodamage.

  8. Synergic Effect of Genistein and Daidzein on UVB-Induced DNA Damage: An Effective Photoprotective Combination.

    Science.gov (United States)

    Iovine, Barbara; Iannella, Maria Luigia; Gasparri, Franco; Monfrecola, Giuseppe; Bevilacqua, Maria Assunta

    2011-01-01

    The anti-inflammatory effects and antioxidant activities of individual isoflavones are well established although little is known about the photoprotective effect of their combination. The aim of this study was to investigate the photoprotective effects of different concentrations of genistein and daidzein individually or combined. We measured the expression levels of the cyclo-oxygenase-2 (COX-2) and growth arrest and DNA-damage inducible (Gadd45) genes, which are involved in inflammation and DNA repair, respectively, in BJ-5ta human skin fibroblasts irradiated with 60 mJ/cm(2) UVB. We also determined the cellular response to UVB-induced DNA damage by Comet assay. We report that genistein and daidzein when administered combined, and at a specific concentration and ratio, exerted a synergistic photoprotective effect that was greater than the effect obtained with each isoflavone alone. The results reported herein suggest that low concentrations of genistein and daidzein combined may be good candidate ingredients for protective agents against UV-induced photodamage. PMID:21785564

  9. The effect of heavy ion on DNA damage checkpoint, and the discovery of its sensitizing compounds

    International Nuclear Information System (INIS)

    In the present study, we demonstrated that a persimmon leaf extract (PLE) promoted cytotoxic effect of cancer cells by chemotherapeutic agents inhibiting the DNA checkpoint activity. Therefore, PLE is a strong possibility of sensitizing agents for heavy ion cancer therapy. Herein, we investigate the mechanism of cellular responses to DNA damage induced by heavy ion radiation with PLE. Human adenocarcinoma A549 cells were pre-incubated with PLE (0, 1, 10, 30 μg/mL) at one hour. After pre-incubation, the cells were irradiated with carbon-ion beams [135C (linear energy transfer (LET) 70 Kev/um)]. The phosphorylation of p53, Chk1 and SMC1 was increased by 2.5 Gy heavy ion exposure. PLE decreased the phosphorylation of p53, Chk1 and SMC1 in cells damaged by heavy ion with PLE dose-dependent manner. G2/M checkpoint was investigated in percentage of mitotic cell. The percentage of mitotic cell decreased in heavy ion beam treatment. Interestingly, heavy ion with PLE treatment was significantly increased. The result indicated that PLE treatment disrupted the G2/M checkpoint activated by heavy ion. These results indicated that DNA damage checkpoint system in heavy ion exposed cells were abrogated by PLE treatment through the inhibition of ataxia telangiectasia mutated (ATM) and/or AT and Rad3 related (ATR)-dependent signaling pathway. (author)

  10. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study

    International Nuclear Information System (INIS)

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers and applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects

  11. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    Science.gov (United States)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  12. Bisbenzimidazole - DMA: a potential radioprotector mitigates DNA damage in radiotherapy

    International Nuclear Information System (INIS)

    Ionizing radiation causes radiolysis of cellular water, generating reactive oxygen species (ROS), causing DNA damage. Radioprotectors protect the normal cells from the unwanted radiation damage. Since the beginning of the nuclear era, despite extensive research on the development of radioprotectors from natural and synthetic compounds, success has been limited. The only clinically acceptable radioprotector, amifostine, has inherent dose-limiting toxicities and has therefore stimulated extensive search for nontoxic, effective, and alternative radioprotectors. We have developed a cytoprotective radioprotector DMA, having a bisbenzimidazole nucleus. Relative quantitation of gene expression of the identified proteins and their interacting partners led to the identification of MAP3K14 (NFB inducing kinase) as one of the plausible target. Subsequently, over expression and knock down of MAP3K14 suggested that DMA affects NFB inducing kinase mediated phosphorylation of IKKα and IKK both alone and in the presence of ionizing radiation. Our results demonstrated 3.62 fold increase in NFB activation in DMA treated cells as compared to control cells. This activation was further increased by 5.8 fold in drug + radiation (50 μM + 8.5 Gy) treated cells in comparison to control. We observed 51% radioprotection in untreated cells that attenuated to 17% in siRNA NIK treated U87 cells at 24h. In addition we studied the effects of DMA on the radiation and transcriptional response of HEK293 cell lines also. Our results, suggested that the treatment of DMA increased the level of phosphorylated AKT in HEK cells in presence of radiation, and this was consistent with the alteration of DNA-PKcs. Our findings were further confirmed by the increased phosphorylation levels of GSK3, a substrate of activated AKT in DMA treated cells. (author)

  13. Ochratoxin A: induction of (oxidative) DNA damage, cytotoxicity and apoptosis in mammalian cell lines and primary cells

    International Nuclear Information System (INIS)

    Ochratoxin A (OTA) is a nephrotoxic/-carcinogenic mycotoxin, produced by several Aspergillus- and Penicillium-strains. Humans are exposed to OTA via food contamination, a causal relationship of OTA to human endemic Balkan nephropathy is still under debate. Since DNA-adducts of OTA or its metabolites could not be identified unambiguously, its carcinogenic effectiveness might be related to secondary effects, such as oxidative cell damage or cell proliferation. In this study, OTA mediated induction of (oxidative) DNA damage, cytotoxicity (necrosis, growth inhibition, apoptosis) and modulation of glutathione were investigated in cell lines (V79, CV-1) and primary rat kidney cells. After 24 h incubation, viability of V79 cells was strongly decreased by OTA concentrations >2.5 μmol/L, whereas CV-1 cells were clearly less sensitive. Strong growth inhibition occurred in both cell lines (IC50 ∼2 μmol/L). Apoptosis, detected with an immunochemical test and with flow cytometry, was induced by >1 μmol/L OTA. Oxidative DNA damage, detected by comet assay after additional treatment with repair enzymes, was induced in all cell systems already at five-fold lower concentrations. Glutathione in CV-1 cells was depleted after 1 h incubation (>100 μmol/L). In contrast, an increase was measured after 24 h incubation (>0.5 μmol/L). In conclusion, OTA induces oxidative DNA damage at low, not yet cytotoxic concentrations. Oxidative DNA damage might initiate cell transformation eventually in connection with proliferative response following cytotoxic cell death. Both events might represent pivotal factors in the chain of cellular events leading into nephro-carcinogenicity of OTA

  14. New insights into the cellular response to radiation using microbeams

    Science.gov (United States)

    Folkard, Melvyn; Prise, Kevin; Schettino, Giuseppe; Shao, Chunlin; Gilchrist, Stuart; Vojnovic, Boris

    2005-04-01

    Micro-irradiation techniques continue to be highly relevant to a number of radiobiological studies, due to their ability to deliver precise doses of radiation to selected individual cells (or sub-cellular targets) in vitro. The Gray cancer institute (GCI) ion microbeam uses a 1 μm diameter bore glass capillary to vertically collimate protons, or helium ions accelerated by a 4 MV Van de Graaff. Using 3He2+ ions, 99% of cells are targeted with an accuracy of ±2 μm, and with a particle counting accuracy >99%. Using automated cell finding and irradiation procedures, up to 10,000 cells per hour can be individually irradiated. Microbeams are now being used to study a number of novel 'non-targeted' responses that do not follow the standard radiation model based on direct DNA damage and are now known to occur when living cells and tissues are irradiated. One such response is the so-called 'bystander effect' where unirradiated cells are damaged through signalling pathways initiated by a nearby irradiated cell. This effect predominates at low doses and profoundly challenges our understanding of environmental radiation risk. Furthermore, we now have evidence that simple molecules (such as nitric oxide) are involved in the signalling process, such that it may be possible to chemically influence the bystander response. If so, then this could eventually lead to improvements in the treatment of cancer by radiotherapy. Other studies have shown that the bystander effect is induced with equal effectiveness if either the nucleus or the cytoplasm of a cell is targeted.

  15. Inhibition of the mitochondrial respiratory chain function abrogates quartz induced DNA damage in lung epithelial cells

    International Nuclear Information System (INIS)

    Respirable quartz dust has been classified as a human carcinogen by the International Agency for Research on Cancer. The aim of our study was to investigate the mechanisms of DNA damage by DQ12 quartz in RLE-6TN rat lung epithelial type II cells (RLE). Transmission electron microscopy and flow-cytometry analysis showed a rapid particle uptake (30 min to 4 h) of quartz by the RLE cells, but particles were not found within the cell nuclei. This suggests that DNA strand breakage and induction of 8-hydroxydeoxyguanosine - as also observed in these cells during these treatment intervals - did not result from direct physical interactions between particles and DNA, or from short-lived particle surface-derived reactive oxygen species. DNA damage by quartz was significantly reduced in the presence of the mitochondrial inhibitors rotenone and antimycin-A. In the absence of quartz, these inhibitors did not affect DNA damage, but they reduced cellular oxygen consumption. No signs of apoptosis were observed by quartz. Flow-cytometry analysis indicated that the reduced DNA damage by rotenone was not due to a possible mitochondria-mediated reduction of particle uptake by the RLE cells. Further proof of concept for the role of mitochondria was shown by the failure of quartz to elicit DNA damage in mitochondria-depleted 143B (rho-0) osteosarcoma cells, at concentrations where it elicited DNA damage in the parental 143B cell line. In conclusion, our data show that respirable quartz particles can elicit oxidative DNA damage in vitro without entering the nuclei of type II cells, which are considered to be important target cells in quartz carcinogenesis. Furthermore, our observations indicate that such indirect DNA damage involves the mitochondrial electron transport chain function, by an as-yet-to-be elucidated mechanism

  16. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability

    Science.gov (United States)

    Feringa, Femke M.; Krenning, Lenno; Koch, André; van den Berg, Jeroen; van den Broek, Bram; Jalink, Kees; Medema, René H.

    2016-01-01

    Activation of the DNA-damage response can lead to the induction of an arrest at various stages in the cell cycle. These arrests are reversible in nature, unless the damage is too excessive. Here we find that checkpoint reversibility is lost in cells that are in very late G2, but not yet fully committed to enter mitosis (antephase). We show that antephase cells exit the cell cycle and enter senescence at levels of DNA damage that induce a reversible arrest in early G2. We show that checkpoint reversibility critically depends on the presence of the APC/C inhibitor Emi1, which is degraded just before mitosis. Importantly, ablation of the cell cycle withdrawal mechanism in antephase promotes cell division in the presence of broken chromosomes. Thus, our data uncover a novel, but irreversible, DNA-damage response in antephase that is required to prevent the propagation of DNA damage during cell division. PMID:27561326

  17. The use of transformed IMR90 cell model to identify the potential extra-telomeric effects of hTERT in cell migration and DNA damage response

    OpenAIRE

    Cao, Xu; Kong, Chiou Mee; Mathi, Kanchi Madhu; Lim, Yoon Pin; Cacheux-Rataboul, Valere; Wang, Xueying

    2014-01-01

    Background Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomesase, is responsible for telomere maintenance and its reactivation is implicated in almost 90% human cancers. Recent evidences show that hTERT is essential for neoplastic transformation independent of its canonical function. However, the roles of hTERT in the process remain elusive. In the current work, we explore the extra-telomeric role of hTERT in the neoplastic transformation of fibroblast IMR90. Res...

  18. Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies

    Science.gov (United States)

    Fandy, Tamer E.; Herman, James G.; Kerns, Patrick; Jiemjit, Anchalee; Sugar, Elizabeth A.; Choi, Si-Ho; Yang, Allen S.; Aucott, Timothy; Dauses, Tianna; Odchimar-Reissig, Rosalie; Licht, Jonathan; McConnell, Melanie J.; Nasrallah, Chris; Kim, Marianne K. H.; Zhang, Weijia; Sun, Yezou; Murgo, Anthony; Espinoza-Delgado, Igor; Oteiza, Katharine; Owoeye, Ibitayo; Silverman, Lewis R.; Carraway, Hetty E.

    2009-01-01

    Sequential administration of DNA methyltransferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors has demonstrated clinical efficacy in patients with hematologic malignancies. However, the mechanism behind their clinical efficacy remains controversial. In this study, the methylation dynamics of 4 TSGs (p15INK4B, CDH-1, DAPK-1, and SOCS-1) were studied in sequential bone marrow samples from 30 patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) who completed a minimum of 4 cycles of therapy with 5-azacytidine and entinostat. Reversal of promoter methylation after therapy was observed in both clinical responders and nonresponders across all genes. There was no association between clinical response and either baseline methylation or methylation reversal in the bone marrow or purified CD34+ population, nor was there an association with change in gene expression. Transient global hypomethylation was observed in samples after treatment but was not associated with clinical response. Induction of histone H3/H4 acetylation and the DNA damage–associated variant histone γ-H2AX was observed in peripheral blood samples across all dose cohorts. In conclusion, methylation reversal of candidate TSGs during cycle 1 of therapy was not predictive of clinical response to combination “epigenetic” therapy. This trial is registered with http://www.clinicaltrials.gov under NCT00101179. PMID:19546476

  19. Cytometric Assessment of DNA Damage by Exogenous and Endogenous Oxidants Reports Aging-related Processes

    OpenAIRE

    Zhao, Hong; Tanaka, Toshiki; Halicka, H. Dorota; Traganos, Frank; Zarebski, Miroslaw; Dobrucki, Jurek; Darzynkiewicz, Zbigniew

    2007-01-01

    The ongoing DNA damage caused by reactive oxygen species generated during oxidative metabolism is considered a key factor contributing to cell aging as well as preconditioning cells to neoplastic transformation. We postulated before that a significant fraction of constitutive histone H2AX phosphorylation (CHP) and constitutive activation of ATM (CAA) seen in untreated normal and tumor cells occurs in response to such DNA damage. In the present study, we provide further evidence in support of ...

  20. Dose-response relationship of induction kinetics of In vivo DNA damage and repair in mouse leukocytes exposed to gamma radiation

    International Nuclear Information System (INIS)

    The Unicellular electrophoresis in gel technique is a useful tool in the determination of simple ruptures and labile sites to the alkali in DNA of eucariontes cells. The determination of the induction kinetics of damage and repair of DNA can give more information. The objective of this work was to determine whether the analysis of the area under the damage/repair induction kinetics curve in comets percent or the comets frequency in the two peaks of maximum induction is adequate for determining the dose-response relationship. The mice were exposed at the doses of 0.5, 1.0, 2.0 Gy. (Author)

  1. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.

    Science.gov (United States)

    Waterworth, Wanda M; Footitt, Steven; Bray, Clifford M; Finch-Savage, William E; West, Christopher E

    2016-08-23

    Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production. PMID:27503884

  2. Cellular host responses to gliomas.

    Directory of Open Access Journals (Sweden)

    Joseph Najbauer

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites. METHODOLOGY/PRINCIPAL FINDINGS: Human glioma cell lines and glioma spheroid orthotopic implants were used in rodents. In both models, the xenografts recruited large numbers of host nestin-expressing cells, which formed a 'network' with glioma. The host nestin-expressing cells appeared to originate in the subventricular zone ipsilateral to the tumor, and were clearly distinguishable from pericytes that expressed smooth muscle actin. These distinct cell populations established close physical contact in a 'pair-wise' manner and migrated together to the deeper layers of tumor satellites and gave rise to tumor vasculature. The GBM biopsy xenografts displayed two different phenotypes: (a low-generation tumors (first in vivo passage in rats were highly invasive and non-angiogenic, and host nestin-positive cells that infiltrated into these tumors displayed astrocytic or elongated bipolar morphology; (b high-generation xenografts (fifth passage had pronounced cellularity, were angiogenic with 'glomerulus-like' microvascular proliferations that contained host nestin-positive cells. Stromal cell-derived factor-1 and its receptor CXCR4 were highly expressed in and around glioma xenografts, suggesting their role in glioma progression and invasion. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a robust migration of nestin-expressing host cells to glioma, which

  3. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    Energy Technology Data Exchange (ETDEWEB)

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  4. The CXXC finger 5 protein is required for DNA damage-induced p53 activation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The tumor suppressor p53 is a critical component of the DNA damage response pathway that induces a set of genes responsible for cell cycle arrest,senescence,apoptosis,and DNA repair.The ataxia te-langiectasia mutated protein kinase(ATM) responds to DNA-damage stimuli and signals p53 stabiliza-tion and activation,thereby facilitating transactivation of p53 inducible genes and maintainence of genome integrity.In this study,we identified a CXXC zinc finger domain containing protein termed CF5 as a critical component in the DNA damage signaling pathway.CF5 induces p53 transcriptional activity and apoptosis in cells expressing wild type p53 but not in p53-deficient cells.Knockdown of CF5 in-hibits DNA damage-induced p53 activation as well as cell cycle arrest.Furthermore,CF5 physically interacts with ATM and is required for DNA damage-induced ATM phosphorylation but not its recruitment to chromatin.These findings suggest that CF5 plays a crucial role in ATM-p53 signaling in response to DNA damage.

  5. Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase

    International Nuclear Information System (INIS)

    Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Δ2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Δ2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Δ2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain

  6. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  7. Cyclooxygenase- and Lipoxygenase-Mediated DNA Damage

    OpenAIRE

    Speed, N; Blair, I. A.

    2011-01-01

    Cancer is a disease of aging and so with the increasing age of the US population, the incidence of cancer is also increasing. Furthermore the global burden of cancer continues to increase largely because of aging and growth of the world population together with increasing smoking rates in economically developing countries. Tumor formation is critically dependent upon two processes – initiation and progression. The initiation step is mediated by DNA damage, which causes activating mutations in...

  8. Replication licensing and the DNA damage checkpoint

    OpenAIRE

    Cook, Jeanette Gowen

    2009-01-01

    Accurate and timely duplication of chromosomal DNA requires that replication be coordinated with processes that ensure genome integrity. Significant advances in determining how the earliest steps in DNA replication are affected by DNA damage have highlighted some of the mechanisms to establish that coordination. Recent insights have expanded the relationship between the ATM and ATR-dependent checkpoint pathways and the proteins that bind and function at replication origins. These findings sug...

  9. UV-induced DNA damage in humans

    OpenAIRE

    Bykov, Vladimir J.

    1999-01-01

    Ultraviolet radiation is considered to be the most harmful part of solar energy affecting man. The depletion of the ozone layer around the Earth increases the total exposure to UV-light. The incidence of skin cancer in man has been shown to be associated with exposure to solar radiation, especially to UV-light. UV is capable of initiating skin carcinogenesis through DNA damage, particularly by formation of DNA photoproducts. The major products formed by UV irradiation are di...

  10. Determination of the Action Spectrum of UVR-Induced Mitochondrial DNA Damage in Human Skin Cells.

    Science.gov (United States)

    Latimer, Jennifer A; Lloyd, James J; Diffey, Brian L; Matts, Paul J; Birch-Machin, Mark A

    2015-10-01

    Biological responses of human skin to UVR including cancer and aging are largely wavelength-dependent, as shown by the action spectra of UVR-induced erythema and nuclear DNA (nDNA) damage. A molecular dosimeter of UVR exposure is therefore required. Although mitochondrial DNA (mtDNA) damage has been shown to be a reliable and sensitive biomarker of UVR exposure in human skin, its wavelength dependency is unknown. The current study solves this problem by determining the action spectrum of UVR-induced mtDNA damage in human skin. Human neonatal dermal fibroblasts and primary human adult keratinocyte cells were irradiated with increasing doses of UVR. Dose-response curves of mtDNA damage were produced for each of the UVR sources and cell types, and an action spectrum for each cell type was determined by mathematical induction. Similarities between these mtDNA damage action spectra and previously determined nDNA damage were observed, with the most detrimental effects occurring over the shorter UVR wavelengths. Notably, a statistically significant (P300 nm, possibly indicating a wider picture of depth dependence in sensitivity. This finding has implications for disease/photodamage mechanisms and interventions. PMID:26030182

  11. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  12. Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sujoy Dutta

    Full Text Available Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive "niches". Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7, representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs. Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment.

  13. Histone modifications in response to DNA damage

    International Nuclear Information System (INIS)

    The packaging of the eukaryotic genome into highly condensed chromatin makes it inaccessible to the factors required for gene transcription, DNA replication, recombination and repair. Eukaryotes have developed intricate mechanisms to overcome this repressive barrier imposed by chromatin. Histone modifying enzymes and ATP-dependent chromatin remodeling complexes play key roles here as they regulate many nuclear processes by altering the chromatin structure. Significantly, these activities are integral to the process of DNA repair where histone modifications act as signals and landing platforms for various repair proteins. This review summarizes the recent developments in our understanding of histone modifications and their role in the maintenance of genome integrity

  14. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation

    OpenAIRE

    Shrivastav, Nidhi; Li, Deyu; Essigmann, John M.

    2009-01-01

    The reaction of DNA-damaging agents with the genome results in a plethora of lesions, commonly referred to as adducts. Adducts may cause DNA to mutate, they may represent the chemical precursors of lethal events and they can disrupt expression of genes. Determination of which adduct is responsible for each of these biological endpoints is difficult, but this task has been accomplished for some carcinogenic DNA-damaging agents. Here, we describe the respective contributions of specific DNA les...

  15. WORTMANNIN affect cellular response by radiation

    International Nuclear Information System (INIS)

    Objective: To observe radiation Response of cells by WORTMANNIN (WT), which is inhibitor for Phosphatidylinositol-3 Kinase (PI-3K). Methods: LP3 cells are prepared with different concentration of WT for 1 hour and receive different dose γ irradiation. To continue the cell for clone culture, and get the production of dose-survival curve. 1800 pulsed-field gel electrophoresis is used to detect DNA double-strand breaks after the 20 Gy γ irradiation. Continue to use the mobility shift assays (Electrophoresis Mobility Shift Assay, EMSA) to observe NF-kB transcription factor of the corresponding changes. Result: WT can be found to increase the radiation sensitivity of SP3 cells, the best sensitizer concentration in 20 μmol /L or more, obvious sensitizing effect within 6 h time; the electrophoresis experiments showed that after irradiation with time, by 50 μmol /L WT group DNA the gel is higher than that of the simple exposure group; transcription factor NF-kB binding activity in the 6 hours after exposure experiences a low-rise and then the process of rising with its the peak of the change reaching after about 3 hours after irradiation. Conclusion: It suggests the existence of PI-3K-mediated radiation sensitizer pathways. Ionizing radiation may activate NF-kB, which caused some DNA damage repair and other defense mechanisms and cell-related gene activity in order to reduce radiation damage. WT may block this process through the early stages of radiation-sensitizing effect. (authors)

  16. DNA damage and repair in human skin in situ

    International Nuclear Information System (INIS)

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for anal