WorldWideScience

Sample records for cellular adaptive responses

  1. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents

    OpenAIRE

    Hilliard, Massimo A.; Apicella, Alfonso J.; Kerr, Rex; Suzuki, Hiroshi; Bazzicalupo, Paolo; Schafer, William R

    2004-01-01

    ASH sensory neurons are required in Caenorhabditis elegans for a wide range of avoidance behaviors in response to chemical repellents, high osmotic solutions and nose touch. The ASH neurons are therefore hypothesized to be polymodal nociceptive neurons. To understand the nature of polymodal sensory response and adaptation at the cellular level, we expressed the calcium indicator protein cameleon in ASH and analyzed intracellular Ca2+ responses following stimulation with chemical repellents, o...

  2. Genetic screening of new genes responsible for cellular adaptation to hypoxia using a genome-wide shRNA library.

    Science.gov (United States)

    Yoshino, Seiko; Hara, Toshiro; Weng, Jane S; Takahashi, Yuka; Seiki, Motoharu; Sakamoto, Takeharu

    2012-01-01

    Oxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited. To identify new genes involved in the response to hypoxic stress, we have performed a genome-wide gene knockdown analysis in human lung carcinoma PC8 cells using an shRNA library carried by a lentiviral vector. The knockdown analysis was performed under both normoxic and hypoxic conditions to identify shRNA sequences enriched or lost in the resulting selected cell populations. Consequently, we identified 56 candidate genes that might contribute to the cellular response to hypoxia. Subsequent individual knockdown of each gene demonstrated that 13 of these have a significant effect upon oxygen-sensitive cell growth. The identification of BCL2L1, which encodes a Bcl-2 family protein that plays a role in cell survival by preventing apoptosis, validates the successful design of our screen. The other selected genes have not previously been directly implicated in the cellular response to hypoxia. Interestingly, hypoxia did not directly enhance the expression of any of the identified genes, suggesting that we have identified a new class of genes that have been missed by conventional gene expression analyses to identify hypoxia response genes. Thus, our genetic screening method using a genome-wide shRNA library and the newly-identified genes represent useful tools to analyze the cellular systems that respond to hypoxic stress.

  3. Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation.

    Science.gov (United States)

    Santander, Ricardo D; Oliver, James D; Biosca, Elena G

    2014-05-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants distributed worldwide. This bacterium is a nonobligate pathogen able to survive outside the host under starvation conditions, allowing its spread by various means such as rainwater. We studied E. amylovora responses to starvation using water microcosms to mimic natural oligotrophy. Initially, survivability under optimal (28 °C) and suboptimal (20 °C) growth temperatures was compared. Starvation induced a loss of culturability much more pronounced at 28 °C than at 20 °C. Natural water microcosms at 20 °C were then used to characterize cellular, physiological, and molecular starvation responses of E. amylovora. Challenged cells developed starvation-survival and viable but nonculturable responses, reduced their size, acquired rounded shapes and developed surface vesicles. Starved cells lost motility in a few days, but a fraction retained flagella. The expression of genes related to starvation, oxidative stress, motility, pathogenicity, and virulence was detected during the entire experimental period with different regulation patterns observed during the first 24 h. Further, starved cells remained as virulent as nonstressed cells. Overall, these results provide new knowledge on the biology of E. amylovora under conditions prevailing in nature, which could contribute to a better understanding of the life cycle of this pathogen.

  4. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  5. Algal Production of Extra- and Intra-Cellular Polysaccharides as an Adaptive Response to the Toxin Crude Extract of Microcystis Aeruginosa

    Directory of Open Access Journals (Sweden)

    Mostafa Mohamed El-Sheekh

    2012-11-01

    Full Text Available This is an investigation concerned with studying the possible adaptive response of four different unicellular algae, Anabaena PCC 7120, Oscillatoria angustissima, Scendesmus obliquus and Chlorella vulgaris, to the toxin of Microcystis aeruginosa (Kützing. Theeffects of four different concentrations, 25, 50, 100 and 200 μg mL-1 of microcystins crude extract of M. aeruginosa, on both intra and extra-cellular polysaccharide levels, in log phase,of the four tested algae were studied. The obtained results showed differential increase in the production levels for both intra and extra-cellular polysaccharides by the tested algae,compared with the control. S. obliquus and C. vulgaris showed a resistance to crude toxinhigher than Anabaena PCC 7120 and O. angustissima. The highly production of polysaccharides by green algal species under this toxic stress indicated the involvement of these polysaccharides in protecting the algal cells against toxic species and, reflect thebiological behavior of particular algal species to the environmental stresses.

  6. Algal production of extra and intra-cellular polysaccharides as an adaptive response to the toxin crude extract of Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    El-Sheekh Mostafa

    2012-11-01

    Full Text Available Abstract This is an investigation concerned with studying the possible adaptive response of four different unicellular algae, Anabaena PCC 7120, Oscillatoria angustissima, Scendesmus obliquus and Chlorella vulgaris, to the toxin of Microcystis aeruginosa (Kützing. The effects of four different concentrations, 25, 50, 100 and 200 μg mL-1 of microcystins crude extract of M. aeruginosa, on both intra and extra-cellular polysaccharide levels, in log phase, of the four tested algae were studied. The obtained results showed differential increase in the production levels for both intra and extra-cellular polysaccharides by the tested algae, compared with the control. S. obliquus and C. vulgaris showed a resistance to crude toxin higher than Anabaena PCC 7120 and O. angustissima. The highly production of polysaccharides by green algal species under this toxic stress indicated the involvement of these polysaccharides in protecting the algal cells against toxic species and, reflect the biological behavior of particular algal species to the environmental stresses.

  7. Hormesis and adaptive cellular control systems

    Science.gov (United States)

    Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...

  8. Cellular immune responses to HIV

    Science.gov (United States)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  9. The insect cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Michael R. Strand

    2008-01-01

    The innate immune system of insects is divided into humoral defenses that include the production of soluble effector molecules and cellular defenses like phagocytosis and encapsulation that are mediated by hemocytes. This review summarizes current understanding of the cellular immune response. Insects produce several terminally differentiated types of hemocytes that are distinguished by morphology, molecular and antigenic markers, and function. The differentiated hemocytes that circulate in larval or nymphal stage insects arise from two sources: progenitor cells produced during embryogenesis and mesodermally derived hematopoietic organs. Regulation of hematopoiesis and hemocyte differentiation also involves several different signaling pathways. Phagocytosis and encapsulation require that hemocytes first recognize a given target as foreign followed by activation of downstream signaling and effector responses. A number of humoral and cellular receptors have been identified that recognize different microbes and multicellular parasites. In turn, activation of these receptors stimulates a number of signaling pathways that regulate different hemocyte functions. Recent studies also identify hemocytes as important sources of a number of humoral effector molecules required for killing different foreign invaders.

  10. Complex cellular responses to reactive oxygen species.

    Science.gov (United States)

    Temple, Mark D; Perrone, Gabriel G; Dawes, Ian W

    2005-06-01

    Genome-wide analyses of yeast provide insight into cellular responses to reactive oxygen species (ROS). Many deletion mutants are sensitive to at least one ROS, but no one oxidant is representative of 'oxidative stress' despite the widespread use of a single compound such as H(2)O(2). This has major implications for studies of pathological situations. Cells have a range of mechanisms for maintaining resistance that involves either induction or repression of many genes and extensive remodeling of the transcriptome. Cells have constitutive defense systems that are largely unique to each oxidant, but overlapping, inducible repair systems. The pattern of the transcriptional response to a particular ROS depends on its concentration, and 'classical' antioxidant systems that are induced by high concentrations of ROS can be repressed when cells adapt to low concentrations of ROS.

  11. Mechanisms of cellular adaptation to quantum dots--the role of glutathione and transcription factor EB.

    Science.gov (United States)

    Neibert, Kevin D; Maysinger, Dusica

    2012-05-01

    Cellular adaptation is the dynamic response of a cell to adverse changes in its intra/extra cellular environment. The aims of this study were to investigate the role of: (i) the glutathione antioxidant system, and (ii) the transcription factor EB (TFEB), a newly revealed master regulator of lysosome biogenesis, in cellular adaptation to nanoparticle-induced oxidative stress. Intracellular concentrations of glutathione species and activation of TFEB were assessed in rat pheochromocytoma (PC12) cells following treatment with uncapped CdTe quantum dots (QDs), using biochemical, live cell fluorescence and immunocytochemical techniques. Exposure to toxic concentrations of QDs resulted in a significant enhancement of intracellular glutathione concentrations, redistribution of glutathione species and a progressive translocation and activation of TFEB. These changes were associated with an enlargement of the cellular lysosomal compartment. Together, these processes appear to have an adaptive character, and thereby participate in the adaptive cellular response to toxic nanoparticles.

  12. Cellular and molecular aspects of plant adaptation to microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator

  13. Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses

    Directory of Open Access Journals (Sweden)

    Sorribas Albert

    2009-11-01

    Full Text Available Abstract Background Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA representation. The optimization task is posed as a nonconvex nonlinear programming (NLP problem that is solved by an outer-approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion Our results

  14. Insights Into Quantitative Biology: analysis of cellular adaptation

    OpenAIRE

    Agoni, Valentina

    2013-01-01

    In the last years many powerful techniques have emerged to measure protein interactions as well as gene expression. Many progresses have been done since the introduction of these techniques but not toward quantitative analysis of data. In this paper we show how to study cellular adaptation and how to detect cellular subpopulations. Moreover we go deeper in analyzing signal transduction pathways dynamics.

  15. A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia.

    Science.gov (United States)

    Bouquet, Fanny; Ousset, Marielle; Biard, Denis; Fallone, Frédérique; Dauvillier, Stéphanie; Frit, Philippe; Salles, Bernard; Muller, Catherine

    2011-06-01

    DNA-dependent protein kinase (DNA-PK) is involved in DNA double-strand break (DSB) signalling and repair. We report that DNA-PK is activated by mild hypoxia conditions (0.1-1% O₂) as shown by (1) its autophosphorylation on Ser2056, and (2) its mobilisation from a soluble nucleoplasmic compartment to a less extractable nuclear fraction. The recruitment of DNA-PK was not followed by activation and recruitment of the XRCC4-DNA-ligase-IV complex, suggesting that DSBs are not responsible for activation of DNA-PK. To unravel the mechanism of DNA-PK activation, we show that exposure of cells to trichostatin A, a histone deacetylase inhibitor, leads to DNA-PK autophosphorylation and relocalisation to DNA. Histone acetylation (mainly H3K14) is increased in hypoxic cells and treatment with anacardic acid, an inhibitor of histone acetyl transferase, prevented both histone modifications and DNA-PK activation in hypoxic conditions. Importantly, in using either silenced DNA-PK cells or cells exposed to a specific DNA-PK inhibitor (NU7026), we demonstrated that hypoxic DNA-PK activation positively regulates the key transcription factor HIF-1 and one subsequent target gene, GLUT1. Our results show that hypoxia initiates chromatin modification and consequently DNA-PK activation, which positively regulate cellular oxygen-sensing and oxygen-signalling pathways.

  16. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  17. Characterizing heterogeneous cellular responses to perturbations.

    Science.gov (United States)

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-01

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  18. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  19. Cellular and developmental adaptations to hypoxia: a Drosophila perspective.

    Science.gov (United States)

    Romero, Nuria Magdalena; Dekanty, Andrés; Wappner, Pablo

    2007-01-01

    The fruit fly Drosophila melanogaster, a widely utilized genetic model, is highly resistant to oxygen starvation and is beginning to be used for studying physiological, developmental, and cellular adaptations to hypoxia. The Drosophila respiratory (tracheal) system has features in common with the mammalian circulatory system so that an angiogenesis-like response occurs upon exposure of Drosophila larvae to hypoxia. A hypoxia-responsive system homologous to mammalian hypoxia-inducible factor (HIF) has been described in the fruit fly, where Fatiga is a Drosophila oxygen-dependent HIF prolyl hydroxylase, and the basic helix-loop-helix Per/ARNT/Sim (bHLH-PAS) proteins Sima and Tango are, respectively, the Drosophila homologues of mammalian HIF-alpha (alpha) and HIF-beta (beta). Tango is constitutively expressed regardless of oxygen tension and, like in mammalian cells, Sima is controlled at the level of protein degradation and subcellular localization. Sima is critically required for development in hypoxia, but, unlike mammalian model systems, it is dispensable for development in normoxia. In contrast, fatiga mutant alleles are all lethal; however, strikingly, viability to adulthood is restored in fatiga sima double mutants, although these double mutants are not entirely normal, suggesting that Fatiga has Sima-independent functions in fly development. Studies in cell culture and in vivo have revealed that Sima is activated by the insulin receptor (InR) and target-of-rapamycin (TOR) pathways. Paradoxically, Sima is a negative regulator of growth. This suggests that Sima is engaged in a negative feedback loop that limits growth upon stimulation of InR/TOR pathways.

  20. Adaptive immune responses to Candida albicans infection.

    Science.gov (United States)

    Richardson, Jonathan P; Moyes, David L

    2015-01-01

    Fungal infections are becoming increasingly prevalent in the human population and contribute to morbidity and mortality in healthy and immunocompromised individuals respectively. Candida albicans is the most commonly encountered fungal pathogen of humans, and is frequently found on the mucosal surfaces of the body. Host defense against C. albicans is dependent upon a finely tuned implementation of innate and adaptive immune responses, enabling the host to neutralise the invading fungus. Central to this protection are the adaptive Th1 and Th17 cellular responses, which are considered paramount to successful immune defense against C. albicans infections, and enable tissue homeostasis to be maintained in the presence of colonising fungi. This review will highlight the recent advances in our understanding of adaptive immunity to Candida albicans infections.

  1. Kinetic Adaptations of Myosins for Their Diverse Cellular Functions.

    Science.gov (United States)

    Heissler, Sarah M; Sellers, James R

    2016-08-01

    Members of the myosin superfamily are involved in all aspects of eukaryotic life. Their function ranges from the transport of organelles and cargos to the generation of membrane tension, and the contraction of muscle. The diversity of physiological functions is remarkable, given that all enzymatically active myosins follow a conserved mechanoenzymatic cycle in which the hydrolysis of ATP to ADP and inorganic phosphate is coupled to either actin-based transport or tethering of actin to defined cellular compartments. Kinetic capacities and limitations of a myosin are determined by the extent to which actin can accelerate the hydrolysis of ATP and the release of the hydrolysis products and are indispensably linked to its physiological tasks. This review focuses on kinetic competencies that - together with structural adaptations - result in myosins with unique mechanoenzymatic properties targeted to their diverse cellular functions.

  2. Dynamics of active cellular response under stress

    Science.gov (United States)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  3. Endothelial Cellular Responses to Biodegradable Metal Zinc.

    Science.gov (United States)

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    Biodegradable zinc (Zn) metals, a new generation of biomaterials, have attracted much attention due to their excellent biodegradability, bioabsorbability, and adaptability to tissue regeneration. Compared with magnesium (Mg) and iron (Fe), Zn exhibits better corrosion and mechanical behaviors in orthopedic and stent applications. After implantation, Zn containing material will slowly degrade, and Zn ions (Zn(2+)) will be released to the surrounding tissue. For stent applications, the local Zn(2+)concentration near endothelial tissue/cells could be high. However, it is unclear how endothelia will respond to such high concentrations of Zn(2+), which is pivotal to vascular remodeling and regeneration. Here, we evaluated the short-term cellular behaviors of primary human coronary artery endothelial cells (HCECs) exposed to a concentration gradient (0-140 μM) of extracellular Zn(2+). Zn(2+) had an interesting biphasic effect on cell viability, proliferation, spreading, and migration. Generally, low concentrations of Zn(2+) promoted viability, proliferation, adhesion, and migration, while high concentrations of Zn(2+) had opposite effects. For gene expression profiles, the most affected functional genes were related to cell adhesion, cell injury, cell growth, angiogenesis, inflammation, vessel tone, and coagulation. These results provide helpful information and guidance for Zn-based alloy design as well as the controlled release of Zn(2+)in stent and other related medical applications.

  4. Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.

    Directory of Open Access Journals (Sweden)

    Yair Katzir

    Full Text Available The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is

  5. The role of time delay in adaptive cellular negative feedback systems.

    Science.gov (United States)

    Lapytsko, Anastasiya; Schaber, Jörg

    2016-06-07

    Adaptation in cellular systems is often mediated by negative feedbacks, which usually come with certain time delays causing several characteristic response patterns including an overdamped response, damped or sustained oscillations. Here, we analyse generic two-dimensional delay differential equations with delayed negative feedback describing the dynamics of biochemical adaptive signal-response networks. We derive explicit thresholds and boundaries showing how time delay determines characteristic response patterns of these networks. Applying our theoretical analyses to concrete data we show that adaptation to osmotic stress in yeast is optimal in the sense of minimizing adaptation time without causing oscillatory behaviour, i.e., a critically damped response. In addition, our framework demonstrates that a slight increase of time delay in the NF-κB system might induce a switch from damped to sustained oscillatory behaviour. Thus, we demonstrate how delay differential equations can be used to explicitly study the delay in biochemical negative feedback systems. Our analysis also provides insight into how time delay may tune biological signal-response patterns and control the systems behaviour.

  6. Cellular immune responses towards regulatory cells.

    Science.gov (United States)

    Larsen, Stine Kiær

    2016-01-01

    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  7. Adaptive translation as a mechanism of stress response and adaptation

    OpenAIRE

    Pan, Tao

    2013-01-01

    The composition of the cellular proteome is commonly thought to strictly adhere to the genetic code. However, accumulating evidence indicates that cells also regulate the synthesis of mutant protein molecules that deviate from the genetic code. Production of mutant proteins varies in amounts and specificity and generally occurs when cells are stressed or undergo environmental adaptation. The deliberate synthesis of protein mutants suggests that some of these proteins can be useful in cellular...

  8. Mechano-biological Coupling of Cellular Responses to Microgravity

    Science.gov (United States)

    Long, Mian; Wang, Yuren; Zheng, Huiqiong; Shang, Peng; Duan, Enkui; Lü, Dongyuan

    2015-11-01

    Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions.

  9. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system.

    Science.gov (United States)

    Lee, Jaewon; Jo, Dong-Gyu; Park, Daeui; Chung, Hae Young; Mattson, Mark P

    2014-07-01

    During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.

  10. Plant Cell Adaptive Responses to Microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    simulated microgravity and temperature elevation have different effects on the small HSP genes belonging to subfamilies with different subcellular localization: cytosol/nucleus - PsHSP17.1-СІІ and PsHSP18.1-СІ, cloroplasts - PsHSP26.2-Cl, endoplasmatic reticulum - PsHSP22.7-ER and mitochondria - PsHSP22.9-M: unlike high temperature, clinorotation does not cause denaturation of cell proteins, that confirms the sHSP chaperone function. Dynamics of investigated gene expression in pea seedlings growing 5 days after seed germination under clinorotation was similar to that in the stationary control. Similar patterns in dynamics of sHSP gene expression in the stationary control and under clinorotation may be one of mechanisms providing plant adaptation to simulated microgravity. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in cell organelle functional load. Thus, next certain changes in the structure and function of plant cells may be considered as adaptive: 1) an increase in the unsaturated fatty acid content in the plasmalemma, 2) rearrangements of organelle ultrastructure and an increase in their functional load, 3) an increase in cortical F-actin under destabilization of tubulin microtubules, 4) the level of gene expression and synthesis of heat shock proteins, 5) alterations of the enzyme and antioxidant system activity. The dynamics of these patterns demonstrated that the adaptation occurs on the principle of self-regulating systems in the limits of physiological norm reaction. The very importance of changed expression of genes involved in different cellular processes, especially HSP genes, in cell adaptation to altered gravity is discussed.

  11. Thermal adaptation of cellular membranes in natural populations of Drosophila melanogaster.

    Science.gov (United States)

    Cooper, Brandon S; Hammad, Loubna A; Montooth, Kristi L

    2014-08-01

    Changes in temperature disrupt the fluidity of cellular membranes, which can negatively impact membrane integrity and cellular processes. Many ectotherms, including Drosophila melanogaster (Meigen), adjust the glycerophospholipid composition of their membranes to restore optimal fluidity when temperatures change, a type of trait plasticity termed homeoviscous adaptation.Existing data suggest that plasticity in the relative abundances of the glycerophospholipids phosphatidylethanolamine (PE) and phosphatidylcholine (PC) underlies cellular adaptation to temporal variability in the thermal environment. For example, laboratory populations of D. melanogaster evolved in the presence of temporally variable temperatures have greater developmental plasticity of the ratio of PE to PC (PE/PC) and greater fecundity than do populations evolved at constant temperatures.Here, we extend this work to natural populations of D. melanogaster by evaluating thermal plasticity of glycerophospholipid composition at different life stages, in genotypes isolated from Vermont, Indiana and North Carolina, USA. We also quantify the covariance between developmental and adult (reversible) plasticity, and between adult responses of the membrane to cool and warm thermal shifts.As predicted by physiological models of homeoviscous adaptation, flies from all populations decrease PE/PC and the degree of lipid unsaturation in response to warm temperatures. Furthermore, these populations have diverged in their degree of membrane plasticity. Flies from the most variable thermal environment (Vermont, USA) decrease PE/PC to a greater extent than do other populations when developed at a warm temperature, a pattern that matches our previous observation in laboratory-evolved populations. We also find that developmental plasticity and adult plasticity of PE/PC covary across genotypes, but that adult responses to cool and warm thermal shifts do not.When combined with our previous observations of laboratory

  12. Heterogeneity-mediated cellular adaptation and its trade-off: searching for the general principles of diseases.

    Science.gov (United States)

    Heng, Henry H

    2016-07-15

    Big-data-omics have promised the success of precision medicine. However, most common diseases belong to adaptive systems where the precision is all but difficult to achieve. In this commentary, I propose a heterogeneity-mediated cellular adaptive model to search for the general model of diseases, which also illustrates why in most non-infectious non-Mendelian diseases the involvement of cellular evolution is less predictable when gene profiles are used. This synthesis is based on the following new observations/concepts: 1) the gene only codes "parts inheritance" while the genome codes "system inheritance" or the entire blueprint; 2) the nature of somatic genetic coding is fuzzy rather than precise, and genetic alterations are not just the results of genetic error but are in fact generated from internal adaptive mechanisms in response to environmental dynamics; 3) stress-response is less specific within cellular evolutionary context when compared to known biochemical specificities; and 4) most medical interventions have their unavoidable uncertainties and often can function as negative harmful stresses as trade-offs. The acknowledgment of diseases as adaptive systems calls for the action to integrate genome- (not simply individual gene-) mediated cellular evolution into molecular medicine.

  13. [Adaptive immune response of people living near chemically hazardous object].

    Science.gov (United States)

    Petlenko, S V; Ivanov, M B; Goverdovskiĭ, Iu B; Bogdanova, E G; Golubkov, A V

    2011-10-01

    The article presents data dynamics of adaptive immune responses of people for a long time living in adverse environmental conditions caused by pollution of the environment by industrial toxic waste. It is shown that in the process of adaptation to adverse environmental factors, changes in the immune system are in the phase fluctuations of immunological parameters that are accompanied by changes in the structure of immunodependent pathology. Most sensitive to prolonged exposure to toxic compounds are the cellular mechanisms of immune protection. Violations of the structural and quantitative and functional parameters of the link of the immune system are leading to the formation of immunopathological processes.

  14. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  15. Cellular adaptation to biomechanical stress across length scales in tissue homeostasis and disease.

    Science.gov (United States)

    Gilbert, Penney M; Weaver, Valerie M

    2016-09-15

    Human tissues are remarkably adaptable and robust, harboring the collective ability to detect and respond to external stresses while maintaining tissue integrity. Following injury, many tissues have the capacity to repair the damage - and restore form and function - by deploying cellular and molecular mechanisms reminiscent of developmental programs. Indeed, it is increasingly clear that cancer and chronic conditions that develop with age arise as a result of cells and tissues re-implementing and deregulating a selection of developmental programs. Therefore, understanding the fundamental molecular mechanisms that drive cell and tissue responses is a necessity when designing therapies to treat human conditions. Extracellular matrix stiffness synergizes with chemical cues to drive single cell and collective cell behavior in culture and acts to establish and maintain tissue homeostasis in the body. This review will highlight recent advances that elucidate the impact of matrix mechanics on cell behavior and fate across these length scales during times of homeostasis and in disease states.

  16. Functional and cellular adaptations of rodent skeletal muscle to weightlessness

    Science.gov (United States)

    Caiozzo, Vincent J.; Haddad, Fadia; Baker, Michael J.; Baldwin, Kenneth M.

    1995-01-01

    This paper describes the affects of microgravity upon three key cellular levels (functional, protein, and mRNA) that are linked to one another. It is clear that at each of these levels, microgravity produces rapid and substantial alterations. One of the key challenges facing the life science community is the development of effective countermeasures that prevent the loss of muscle function as described in this paper. The development of optimal countermeasures, however, awaits a clearer understanding of events occurring at the levels of transcription, translation, and degradation.

  17. Response-Adaptive Allocation for Circular Data.

    Science.gov (United States)

    Biswas, Atanu; Dutta, Somak; Laha, Arnab Kumar; Bakshi, Partho K

    2015-01-01

    Response-adaptive designs are used in phase III clinical trials to allocate a larger proportion of patients to the better treatment. Circular data is a natural outcome in many clinical trial setup, e.g., some measurements in opthalmologic studies, degrees of rotation of hand or waist, etc. There is no available work on response-adaptive designs for circular data. With reference to a dataset on cataract surgery we provide some response-adaptive designs where the responses are of circular nature and propose some test statistics for treatment comparison under adaptive data allocation procedure. Detailed simulation study and the analysis of the dataset, including redesigning the cataract surgery data, are carried out.

  18. Monitoring adaptive genetic responses to environmental change

    DEFF Research Database (Denmark)

    Hansen, M.M.; Olivieri, I.; Waller, D.M.

    2012-01-01

    Widespread environmental changes including climate change, selective harvesting and landscape alterations now greatly affect selection regimes for most organisms. How animals and plants can adapt to these altered environments via contemporary evolution is thus of strong interest. We discuss how...... for selection and establishing clear links between genetic and environmental change. We then review a few exemplary studies that explore adaptive responses to climate change in Drosophila, selective responses to hunting and fishing, and contemporary evolution in Daphnia using resurrected resting eggs. We...

  19. Short- and long-term biomarkers for bacterial robustness: a framework for quantifying correlations between cellular indicators and adaptive behavior.

    Directory of Open Access Journals (Sweden)

    Heidy M W den Besten

    Full Text Available The ability of microorganisms to adapt to changing environments challenges the prediction of their history-dependent behavior. Cellular biomarkers that are quantitatively correlated to stress adaptive behavior will facilitate our ability to predict the impact of these adaptive traits. Here, we present a framework for identifying cellular biomarkers for mild stress induced enhanced microbial robustness towards lethal stresses. Several candidate-biomarkers were selected by comparing the genome-wide transcriptome profiles of our model-organism Bacillus cereus upon exposure to four mild stress conditions (mild heat, acid, salt and oxidative stress. These candidate-biomarkers--a transcriptional regulator (activating general stress responses, enzymes (removing reactive oxygen species, and chaperones and proteases (maintaining protein quality--were quantitatively determined at transcript, protein and/or activity level upon exposure to mild heat, acid, salt and oxidative stress for various time intervals. Both unstressed and mild stress treated cells were also exposed to lethal stress conditions (severe heat, acid and oxidative stress to quantify the robustness advantage provided by mild stress pretreatment. To evaluate whether the candidate-biomarkers could predict the robustness enhancement towards lethal stress elicited by mild stress pretreatment, the biomarker responses upon mild stress treatment were correlated to mild stress induced robustness towards lethal stress. Both short- and long-term biomarkers could be identified of which their induction levels were correlated to mild stress induced enhanced robustness towards lethal heat, acid and/or oxidative stress, respectively, and are therefore predictive cellular indicators for mild stress induced enhanced robustness. The identified biomarkers are among the most consistently induced cellular components in stress responses and ubiquitous in biology, supporting extrapolation to other microorganisms

  20. Modeling In Vitro Cellular Responses to Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Dwaipayan Mukherjee

    2014-01-01

    Full Text Available Engineered nanoparticles (NPs have been widely demonstrated to induce toxic effects to various cell types. In vitro cell exposure systems have high potential for reliable, high throughput screening of nanoparticle toxicity, allowing focusing on particular pathways while excluding unwanted effects due to other cells or tissue dosimetry. The work presented here involves a detailed biologically based computational model of cellular interactions with NPs; it utilizes measurements performed in human cell culture systems in vitro, to develop a mechanistic mathematical model that can support analysis and prediction of in vivo effects of NPs. The model considers basic cellular mechanisms including proliferation, apoptosis, and production of cytokines in response to NPs. This new model is implemented for macrophages and parameterized using in vitro measurements of changes in cellular viability and mRNA levels of cytokines: TNF, IL-1b, IL-6, IL-8, and IL-10. The model includes in vitro cellular dosimetry due to nanoparticle transport and transformation. Furthermore, the model developed here optimizes the essential cellular parameters based on in vitro measurements, and provides a “stepping stone” for the development of more advanced in vivo models that will incorporate additional cellular and NP interactions.

  1. Cellular response of Campylobacter jejuni to trisodium phosphate

    DEFF Research Database (Denmark)

    Riedel, Charlotte Tandrup; Cohn, M. T.; Stabler, R. A.

    2012-01-01

    The highly alkaline compound trisodium phosphate (TSP) is used as an intervention to reduce the load of Campylobacter on poultry meat in U.S. poultry slaughter plants. The aim of the present study was to investigate the cellular responses of Campylobacter jejuni NCTC11168 when exposed to sublethal...

  2. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    Science.gov (United States)

    With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate t...

  3. Functional and cellular adaptation to weightlessness in primates

    Science.gov (United States)

    Bodine-Fowler, Sue C.; Pierotti, David J.; Talmadge, Robert J.

    1995-01-01

    Considerable data has been collected on the response of hindlimb muscles to unloading due to both spaceflight and hindlimb suspension. One generalized response to a reduction in load is muscle fiber atrophy, although not all muscles respond the same. Our understanding of how muscles respond to microgravity, however, has come primarily from the examination of hindlimb muscles in the unrestrained rate in space. The non-human primate spaceflight paradigm differs considerably from the rodent paradigm in that the monkeys are restrained, usually in a sitting position, while in space. Recently, we examined the effects of microgravity on muscles of the Rhesus monkey by taking biopsies of selected hindlimb muscles prior to and following spaceflights of 14 and 12 day durations (Cosmos 2044 and 2229). Our results revealed that the monkey's response to microgravity differs from that of the rat. The apparent differences in the atrophic response of the hindlimb muscles of the monkey and rat to spaceflight may be attributed to the following: (1) a species difference; (2) a difference in the manner in which the animals were maintained during the flight (i.e., chair restraint or 'free-floating'); and/or (3) an ability of the monkeys to counteract the effects of spaceflight with resistive exercise.

  4. Joint Tilt Angle Adaptation and Beamforming in Multicell Multiuser Cellular Networks

    OpenAIRE

    Moghaddam, Soheil Khavari; Razavizadeh, S. Mohammad

    2017-01-01

    3D beamforming is a promising approach for interference coordination in cellular networks which brings significant improvements in comparison with conventional 2D beamforming techniques. This paper investigates the problem of joint beamforming design and tilt angle adaptation of the BS antenna array for maximizing energy efficiency (EE) in downlink of multi-cell multi-user coordinated cellular networks. An iterative algorithm based on fractional programming approach is introduced to solve the...

  5. Adaptive Modeling for Security Infrastructure Fault Response

    Institute of Scientific and Technical Information of China (English)

    CUI Zhong-jie; YAO Shu-ping; HU Chang-zhen

    2008-01-01

    Based on the analysis of inherent limitations in existing security response decision-making systems, a dynamic adaptive model of fault response is presented. Several security fault levels were founded, which comprise the basic level, equipment level and mechanism level. Fault damage cost is calculated using the analytic hierarchy process. Meanwhile, the model evaluates the impact of different responses upon fault repair and normal operation. Response operation cost and response negative cost are introduced through quantitative calculation. This model adopts a comprehensive response decision of security fault in three principles-the maximum and minimum principle, timeliness principle, acquiescence principle, which assure optimal response countermeasure is selected for different situations. Experimental results show that the proposed model has good self-adaptation ability, timeliness and cost-sensitiveness.

  6. FDG-PET response-adapted therapy

    DEFF Research Database (Denmark)

    Hutchings, Martin

    2014-01-01

    , response-adapted treatment. Several ongoing or recently completed trials have investigated the use of FDG-PET/CT for early response-adapted HL therapy. The results are encouraging, but the data are immature, and PET response-adapted HL therapy is discouraged outside the setting of clinical trials. PET......Fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is the most accurate tool for staging, treatment monitoring, and response evaluation in Hodgkin lymphoma (HL). Early determination of treatment sensitivity by FDG-PET is the best tool to guide individualized....../CT looks promising for selection of therapy in relapsed and refractory disease, but the role in this setting is still unclear....

  7. Neuroendocrine system response modulates oxidative cellular damage in burn patients.

    Science.gov (United States)

    Xie, Xiao-Qi; Shinozawa, Yotaro; Sasaki, Junichi; Takuma, Kiyotsugu; Akaishi, Satoshi; Yamanouchi, Satoshi; Endo, Tomoyuki; Nomura, Ryosuke; Kobayashi, Michio; Kudo, Daisuke; Hojo, Nobuko

    2007-02-01

    Oxygen-derived free radicals play important roles in pathophysiological processes in critically ill patients, but the data characterizing relationships between radicals and neuroendocrine system response are sparse. To search the cue to reduce the oxidative cellular damage from the point of view of neuroendocrine system response, we studied the indicators of neuroendocrine and inflammatory responses excreted in urine in 14 burn patients (42.3 +/- 31.4 years old, and 32.3 +/- 27.6% burn of total body surface area [%TBSA]) during the first seven days post burn. The daily mean amounts of urinary excretion of 8-hydroxy-2'-deoxy-guanosine (8-OHdG), a marker of oxidative cellular damage, were above the upper limit of the standard value during the studied period. The total amount of urinary excretion of 8-OHdG in the first day post burn correlated with burn severity indices: %TBSA (r = 0.63, p = 0.021) and burn index (r = 0.70, p = 0.008). The daily urinary excretion of 8-OHdG correlated with the daily urinary excretion of norepinephrine and nitrite plus nitrate (NOx) during the studied period except day 2 post burn, and correlated with the daily urinary excretion of 17-hydroxycorticosteriod (17-OHCS) in days 2, 3, and 7 post burn. These data suggest that oxidative cellular damage correlates with burn severity and neuroendocrine system response modulates inflammation and oxidative cellular damage. Modulation of neuroendocrine system response and inflammation in the treatment in the early phase of burn may be useful to reduce the oxidative cellular damage and to prevent multiple organ failures in patients with extensive burn.

  8. Cellular adaptation to hypoxia and p53 transcription regulation

    Institute of Scientific and Technical Information of China (English)

    Yang ZHAO; Xue-qun CHEN; Ji-zeng DU

    2009-01-01

    Tumor suppressor p53 is the most frequently mutated gene in human tumors. Meanwhile, under stress conditions, p53 also acts as a transcription factor, regulating the expression of a series of target genes to maintain the integrity of genome. The target genes of p53 can be classified into genes regulating cell cycle arrest, genes involved in apoptosis, and genes inhibiting angiogenesis. p53 protein contains a transactivation domain, a sequence-specific DNA binding domain, a tetramerization domain, a non-specific DNA binding domain that recognizes damaged DNA, and a later identified proline-rich domain. Under stress, p53 proteins accumulate and are activated through two mechanisms. One, involving ataxia telangiectasia-mutated protein (ATM), is that the interaction between p53 and its down-regulation factor murine double minute 2 (MDM2) decreases, leading to p53 phosphorylation on Ser15, as determined by the post-translational mechanism; the other holds that p53 increases and is activated through the binding of ribosomal protein L26 (RPL26) or nucleolin to p53 mRNA 5' untranslated region (UTR), regulating p53 translation. Under hypoxia, p53 decreases transactivation and increases transrepression. The mutations outside the DNA binding domain of p53 also contribute to tumor progress, so further studies on p53 should also be focused on this direction. The subterranean blind mole rat Spalax in Israel is a good model for hypoxia-adaptation. The p53 of Spalax mutated in residue 172 and residue 207 from arginine to lysine, conferring it the ability to survive hypoxic conditions. This model indicates that p53 acts as a master gene of diversity formation during evolution.

  9. When genome integrity and cell cycle decisions collide: roles of polo kinases in cellular adaptation to DNA damage.

    Science.gov (United States)

    Serrano, Diego; D'Amours, Damien

    2014-09-01

    The drive to proliferate and the need to maintain genome integrity are two of the most powerful forces acting on biological systems. When these forces enter in conflict, such as in the case of cells experiencing DNA damage, feedback mechanisms are activated to ensure that cellular proliferation is stopped and no further damage is introduced while cells repair their chromosomal lesions. In this circumstance, the DNA damage response dominates over the biological drive to proliferate, and may even result in programmed cell death if the damage cannot be repaired efficiently. Interestingly, the drive to proliferate can under specific conditions overcome the DNA damage response and lead to a reactivation of the proliferative program in checkpoint-arrested cells. This phenomenon is known as adaptation to DNA damage and is observed in all eukaryotic species where the process has been studied, including normal and cancer cells in humans. Polo-like kinases (PLKs) are critical regulators of the adaptation response to DNA damage and they play key roles at the interface of cell cycle and checkpoint-related decisions in cells. Here, we review recent progress in defining the specific roles of PLKs in the adaptation process and how this conserved family of eukaryotic kinases can integrate the fundamental need to preserve genomic integrity with effective cellular proliferation.

  10. Dynamical theory of active cellular response to external stress.

    Science.gov (United States)

    De, Rumi; Safran, Samuel A

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  11. Dynamical theory of active cellular response to external stress

    Science.gov (United States)

    de, Rumi; Safran, Samuel A.

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  12. Dynamic modeling of cellular response to DNA damage based on p53 stress response networks

    Institute of Scientific and Technical Information of China (English)

    Jinpeng Qi; Yongsheng Ding; Shihuang Shao

    2009-01-01

    Under acute perturbations from the outside, cells can trigger self-defensive mechanisms to fight against genome stress. To investigate the cellular response to continuous ion radiation (IR), a dynamic model for p53 stress response networks at the cellular level is proposed. The model can successfully be used to simulate the dynamic processes of double-strand breaks (DSBs) generation and their repair, switch-like ataxia telangiectasia mutated (ATM) activation, oscillations occurring in the p53-MDM2 feedback loop, as well as toxins elimination triggered by p53 stress response networks. Especially, the model can predict the plausible outcomes of cellular response under different IR dose regimes.

  13. The cellular and genetic basis of olfactory responses in Caenorhabditis elegans.

    Science.gov (United States)

    Sengupta, P; Colbert, H A; Kimmel, B E; Dwyer, N; Bargmann, C I

    1993-01-01

    The small soil nematode Caenorhabditis elegans has only 302 neurons in its entire nervous system, so it is possible to analyse the functions of individual neurons in the animal's behaviour. We are using behavioural, cellular and genetic analyses of chemotactic responses to find out how olfactory behaviour patterns are generated and regulated. Single chemosensory neurons in C. elegans can recognize several different attractive odorants that are distinguished by the animal. Distinct sets of chemosensory neurons detect high and low concentrations of a single odorant. Odorant responses adapt after prolonged exposure to an odorant; this adaptation is odorant specific and reversible. Mutants with defects in odorant responses have been identified. Some genes appear to be necessary for the development or function of particular kinds of sensory neurons. Other genes have effects that suggest that they participate in odorant reception or signal transduction.

  14. Adaptive Response Surface Techniques in Reliability Estimation

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Faber, M. H.; Sørensen, John Dalsgaard

    1993-01-01

    Problems in connection with estimation of the reliability of a component modelled by a limit state function including noise or first order discontinuitics are considered. A gradient free adaptive response surface algorithm is developed. The algorithm applies second order polynomial surfaces deter...

  15. Innate Cellular Immune Responses in Aedes caspius (Diptera: Culicidae) Mosquitoes.

    Science.gov (United States)

    Soliman, D E; Farid, H A; Hammad, R E; Gad, A M; Bartholomay, L C

    2016-03-01

    Mosquitoes transmit a variety of pathogens that have devastating consequences for global public and veterinary health. Despite their capacity to serve as vectors, these insects have a robust capacity to respond to invading organisms with strong cellular and humoral immune responses. In Egypt, Aedes caspius (Pallas, 1771) has been suspected to act as a bridge vector of Rift Valley Fever virus between animals and humans. Microscopic analysis of Ae. caspius hemolymph revealed the presence of phagocytic cells called granulocytes. We further evaluated cellular immune responses produced by Ae. caspius as a result of exposure to a Gram-negative, and Gram-positive bacterium, and to latex beads. After challenge, a rapid and strong phagocytic response against either a natural or synthetic invader was evident. Hemocyte integrity in bacteria-inoculated mosquitoes was not morphologically affected. The number of circulating granulocytes decreased with age, reducing the overall phagocytic capacity of mosquitoes over time. The magnitude and speed of the phagocytic response suggested that granulocytes act as an important force in the battle against foreign invaders, as has been characterized in other important mosquito vector species.

  16. Antioxidant responses and cellular adjustments to oxidative stress.

    Science.gov (United States)

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-12-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases.

  17. Antioxidant responses and cellular adjustments to oxidative stress

    Science.gov (United States)

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-01-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. PMID:26233704

  18. ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 (HIF-1) expression.

    Science.gov (United States)

    Fallone, F; Britton, S; Nieto, L; Salles, B; Muller, C

    2013-09-12

    Tumor cells adaptation to severe oxygen deprivation (hypoxia) plays a major role in tumor progression. The transcription factor HIF-1 (hypoxia-inducible factor 1), whose α-subunit is stabilized under hypoxic conditions is a key component of this process. Recent studies showed that two members of the phosphoinositide 3-kinase-related kinases (PIKKs) family, ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent protein kinase), regulate the hypoxic-dependent accumulation of HIF-1. These proteins initiate cellular stress responses when DNA damage occurs. In addition, it has been demonstrated that extreme hypoxia induces a replicative stress resulting in regions of single-stranded DNA at stalled replication forks and the activation of ATR (ataxia telangiectasia and Rad3 related protein), another member of the PIKKs family. Here, we show that even less severe hypoxia (0.1% O2) also induces activation of ATR through replicative stress. Importantly, in using either transiently silenced ATR cells, cells expressing an inactive form of ATR or cells exposed to an ATR inhibitor (CGK733), we demonstrate that hypoxic ATR activation positively regulates the key transcription factor HIF-1 independently of the checkpoint kinase Chk1. We show that ATR kinase activity regulates HIF-1α at the translational level and we find that the elements necessary for the regulation of HIF-1α translation are located within the coding region of HIF-1α mRNA. Finally, by using three independent cellular models, we clearly show that the loss of ATR expression and/or kinase activity results in the decrease of HIF-1 DNA binding under hypoxia and consequently affects protein expression levels of two HIF-1 target genes, GLUT-1 and CAIX. Taken together, our data show a new function for ATR in cellular adaptation to hypoxia through regulation of HIF-1α translation. Our work offers new prospect for cancer therapy using ATR inhibitors with the potential to decrease cellular adaptation in hypoxic

  19. Target Response Adaptation for Correlation Filter Tracking

    KAUST Repository

    Bibi, Adel Aamer

    2016-09-16

    Most correlation filter (CF) based trackers utilize the circulant structure of the training data to learn a linear filter that best regresses this data to a hand-crafted target response. These circularly shifted patches are only approximations to actual translations in the image, which become unreliable in many realistic tracking scenarios including fast motion, occlusion, etc. In these cases, the traditional use of a single centered Gaussian as the target response impedes tracker performance and can lead to unrecoverable drift. To circumvent this major drawback, we propose a generic framework that can adaptively change the target response from frame to frame, so that the tracker is less sensitive to the cases where circular shifts do not reliably approximate translations. To do that, we reformulate the underlying optimization to solve for both the filter and target response jointly, where the latter is regularized by measurements made using actual translations. This joint problem has a closed form solution and thus allows for multiple templates, kernels, and multi-dimensional features. Extensive experiments on the popular OTB100 benchmark show that our target adaptive framework can be combined with many CF trackers to realize significant overall performance improvement (ranging from 3 %-13.5% in precision and 3.2 %-13% in accuracy), especially in categories where this adaptation is necessary (e.g. fast motion, motion blur, etc.). © Springer International Publishing AG 2016.

  20. Intraspecific variation in cellular and biochemical heat response strategies of Mediterranean Xeropicta derbentina [Pulmonata, Hygromiidae].

    Directory of Open Access Journals (Sweden)

    Sandra Troschinski

    Full Text Available Dry and hot environments challenge the survival of terrestrial snails. To minimize overheating and desiccation, physiological and biochemical adaptations are of high importance for these animals. In the present study, seven populations of the Mediterranean land snail species Xeropicta derbentina were sampled from their natural habitat in order to investigate the intraspecific variation of cellular and biochemical mechanisms, which are assigned to contribute to heat resistance. Furthermore, we tested whether genetic parameters are correlated with these physiological heat stress response patterns. Specimens of each population were individually exposed to elevated temperatures (25 to 52°C for 8 h in the laboratory. After exposure, the health condition of the snails' hepatopancreas was examined by means of qualitative description and semi-quantitative assessment of histopathological effects. In addition, the heat-shock protein 70 level (Hsp70 was determined. Generally, calcium cells of the hepatopancreas were more heat resistant than digestive cells - this phenomenon was associated with elevated Hsp70 levels at 40°C.We observed considerable variation in the snails' heat response strategy: Individuals from three populations invested much energy in producing a highly elevated Hsp70 level, whereas three other populations invested energy in moderate stress protein levels - both strategies were in association with cellular functionality. Furthermore, one population kept cellular condition stable despite a low Hsp70 level until 40°C exposure, whereas prominent cellular reactions were observed above this thermal limit. Genetic diversity (mitochondrial cytochrome c oxidase subunit I gene within populations was low. Nevertheless, when using genetic indices as explanatory variables in a multivariate regression tree (MRT analysis, population structure explained mean differences in cellular and biochemical heat stress responses, especially in the group

  1. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system was designed. Simulation results show that the algorithm can control the power not only quickly but also precisely with a time change. The method is useful for increasing system capacity.

  2. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  3. Cellular Adaptation: Culture conditions of R. opacus and bioflotation of apatite and quartz

    Directory of Open Access Journals (Sweden)

    Antonio Gutiérrez Merma

    Full Text Available Abstract It is well known that the culture conditions of microorganisms may affect their surface properties, zeta potential and hydrophobicity via the modification of the cell wall functional groups or metabolic products. The R. opacus bacteria strain was separately adapted to the presence of apatite and quartz, after which a cellular adaptation procedure was developed by repeated sub-culturing with a successive increase in the mineral content. Zeta potential, surface tension, FTIR and microflotation studies were used to evaluate the behavior of the cells that were developed under defined culture conditions. The cellular adaptation induced a modification of the bacterial surface charge. The FTIR results showed a modification of its functional groups. The surface tension results suggested that longer growing time promoted a higher production of metabolites. The use of mineral-adapted cells promoted an improvement in the flotability of both minerals, but it was more significant for apatite flotation. Additionally, the mineral flotability remained unchanged when the cells developed under a longer culture time. Nevertheless, there was a reduction in the surface tension.

  4. Cellular responses and cytokine profiles in Ascaris lumbricoides and Trichuris trichiura infected patients.

    Science.gov (United States)

    Geiger, Stefan M; Massara, Cristiano L; Bethony, Jeffrey; Soboslay, Peter T; Carvalho, Omar S; Corrêa-Oliveira, Rodrigo

    2002-01-01

    The impact of intestinal helminth infection, i.e. Ascaris lumbricoides and Trichuris trichiura, on cellular responsiveness and cytokine production was investigated in young adults. Ascaris-specific cellular responsiveness was higher in parasite-free endemic controls than in patients infected with T. trichiura, or A. lumbricoides, or patients co-infected with both parasites. Also, mitogen-induced tumour necrosis factor (TNF)-alpha, interleukin (IL)-12 and interferon (IFN)-gamma secretion by peripheral blood mononuclear cells (PBMC) was higher in negative endemic controls than in infected individuals. Ascaris antigen-specific production of TNF-alpha, IL-12 and IFN-gamma was low in singly Ascaris as well as in co-infected patients, whereas secretion of IL-10 and IL-13 was elevated and similarly high in all patient groups. The detection of Trichuris-specific and Ascaris-specific IgG4 revealed significantly higher serum antibody levels in Trichuris or Ascaris patients when compared to endemic controls (P Trichuris patients with a high parasite load presented reduced cellular reactivity and lower type 1 TNF-alpha, IFN-gamma and IL-12 responses when compared with endemic controls, whereas type 2 IL-10 and IL-13 productions were similar in all groups from the endemic area. The former may support parasite persistence, whereas substantial type 2 cytokine release may promote protective immunity, suggesting an adaptation of the host to control the parasite burden while minimizing immune-mediated host self-damage.

  5. Cellular pulse-coupled neural network with adaptive weights for image segmentation and its VLSI implementation

    Science.gov (United States)

    Schreiter, Juerg; Ramacher, Ulrich; Heittmann, Arne; Matolin, Daniel; Schuffny, Rene

    2004-05-01

    We present a cellular pulse coupled neural network with adaptive weights and its analog VLSI implementation. The neural network operates on a scalar image feature, such as grey scale or the output of a spatial filter. It detects segments and marks them with synchronous pulses of the corresponding neurons. The network consists of integrate-and-fire neurons, which are coupled to their nearest neighbors via adaptive synaptic weights. Adaptation follows either one of two empirical rules. Both rules lead to spike grouping in wave like patterns. This synchronous activity binds groups of neurons and labels the corresponding image segments. Applications of the network also include feature preserving noise removal, image smoothing, and detection of bright and dark spots. The adaptation rules are insensitive for parameter deviations, mismatch and non-ideal approximation of the implied functions. That makes an analog VLSI implementation feasible. Simulations showed no significant differences in the synchronization properties between networks using the ideal adaptation rules and networks resembling implementation properties such as randomly distributed parameters and roughly implemented adaptation functions. A prototype is currently being designed and fabricated using an Infineon 130nm technology. It comprises a 128 × 128 neuron array, analog image memory, and an address event representation pulse output.

  6. Molecular and cellular bases of adaptation to a changing environment in microorganisms.

    Science.gov (United States)

    Bleuven, Clara; Landry, Christian R

    2016-10-26

    Environmental heterogeneity constitutes an evolutionary challenge for organisms. While evolutionary dynamics under variable conditions has been explored for decades, we still know relatively little about the cellular and molecular mechanisms involved. It is of paramount importance to examine these molecular bases because they may play an important role in shaping the course of evolution. In this review, we examine the diversity of adaptive mechanisms in the face of environmental changes. We exploit the recent literature on microbial systems because those have benefited the most from the recent emergence of genetic engineering and experimental evolution followed by genome sequencing. We identify four emerging trends: (i) an adaptive molecular change in a pathway often results in fitness trade-off in alternative environments but the effects are dependent on a mutation's genetic background; (ii) adaptive changes often modify transcriptional and signalling pathways; (iii) several adaptive changes may occur within the same molecular pathway but be associated with pleiotropy of different signs across environments; (iv) because of their large associated costs, macromolecular changes such as gene amplification and aneuploidy may be a rapid mechanism of adaptation in the short-term only. The course of adaptation in a variable environment, therefore, depends on the complexity of the environment but also on the molecular relationships among the genes involved and between the genes and the phenotypes under selection.

  7. Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms.

    Directory of Open Access Journals (Sweden)

    Kelly L Robertson

    Full Text Available Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS, increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and

  8. The cellular bases of antibody responses during dengue virus infection

    Directory of Open Access Journals (Sweden)

    Juan Carlos Yam-Puc

    2016-06-01

    Full Text Available Dengue virus (DENV is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell dependent processes, we know rather little about the (acute, chronic or memory B cell responses and the complex cellular mechanisms generating these Abs during DENV infections.This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events like the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation and germinal centers (GCs formation (the source of affinity-matured class-switched memory Abs, till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated.

  9. Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles

    Directory of Open Access Journals (Sweden)

    Shah Imran

    2011-07-01

    Full Text Available Abstract Background With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data. Results We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature. Conclusion A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our

  10. The DNA damage response in viral-induced cellular transformation.

    Science.gov (United States)

    Nikitin, P A; Luftig, M A

    2012-01-31

    The DNA damage response (DDR) has emerged as a critical tumour suppressor pathway responding to cellular DNA replicative stress downstream of aberrant oncogene over-expression. Recent studies have now implicated the DDR as a sensor of oncogenic virus infection. In this review, we discuss the mechanisms by which tumour viruses activate and also suppress the host DDR. The mechanism of tumour virus induction of the DDR is intrinsically linked to the need for these viruses to promote an S-phase environment to replicate their nucleic acid during infection. However, inappropriate expression of viral oncoproteins can also activate the DDR through various mechanisms including replicative stress, direct interaction with DDR components and induction of reactive oxygen species. Given the growth-suppressive consequences of activating the DDR, tumour viruses have also evolved mechanisms to attenuate these pathways. Aberrant expression of viral oncoproteins may therefore promote tumourigenesis through increased somatic mutation and aneuploidy due to DDR inactivation. This review will focus on the interplay between oncogenic viruses and the DDR with respect to cellular checkpoint control and transformation.

  11. Humoral and Cellular Immune Response in Canine Hypothyroidism.

    Science.gov (United States)

    Miller, J; Popiel, J; Chełmońska-Soyta, A

    2015-07-01

    Hypothyroidism is one of the most common endocrine diseases in dogs and is generally considered to be autoimmune in nature. In human hypothyroidism, the thyroid gland is destroyed by both cellular (i.e. autoreactive helper and cytotoxic T lymphocytes) and humoral (i.e. autoantibodies specific for thyroglobulin, thyroxine and triiodothyronine) effector mechanisms. Other suggested factors include impaired peripheral immune suppression (i.e. the malfunction of regulatory T cells) or an additional pro-inflammatory effect of T helper 17 lymphocytes. The aim of this study was to evaluate immunological changes in canine hypothyroidism. Twenty-eight clinically healthy dogs, 25 hypothyroid dogs without thyroglobulin antibodies and eight hypothyroid dogs with these autoantibodies were enrolled into the study. There were alterations in serum proteins in hypothyroid dogs compared with healthy controls (i.e. raised concentrations of α-globulins, β2- and γ-globulins) as well as higher concentration of acute phase proteins and circulating immune complexes. Hypothyroid animals had a lower CD4:CD8 ratio in peripheral blood compared with control dogs and diseased dogs also had higher expression of interferon γ (gene and protein expression) and CD28 (gene expression). Similar findings were found in both groups of hypothyroid dogs. Canine hypothyroidism is therefore characterized by systemic inflammation with dominance of a cellular immune response.

  12. MOF maintains transcriptional programs regulating cellular stress response.

    Science.gov (United States)

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-05-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.

  13. Biophysical responses upon the interaction of nanomaterials with cellular interfaces.

    Science.gov (United States)

    Wu, Yun-Long; Putcha, Nirupama; Ng, Kee Woei; Leong, David Tai; Lim, Chwee Teck; Loo, Say Chye Joachim; Chen, Xiaodong

    2013-03-19

    The explosion of study of nanomaterials in biological applications (the nano-bio interface) can be ascribed to nanomaterials' growing importance in diagnostics, therapeutics, theranostics (therapeutic diagnostics), and targeted modulation of cellular processes. However, a growing number of critics have raised concerns over the potential risks of nanomaterials to human health and safety. It is essential to understand nanomaterials' potential toxicity before they are tested in humans. These risks are complicated to unravel, however, because of the complexity of cells and their nanoscale macromolecular components, which enable cells to sense and respond to environmental cues, including nanomaterials. In this Account, we explore these risks from the perspective of the biophysical interactions between nanomaterials and cells. Biophysical responses to the uptake of nanomaterials can include conformational changes in biomolecules like DNA and proteins, and changes to the cellular membrane and the cytoskeleton. Changes to the latter two, in particular, can induce changes in cell elasticity, morphology, motility, adhesion, and invasion. This Account reviews what is known about cells' biophysical responses to the uptake of the most widely studied and used nanoparticles, such as carbon-based, metal, metal-oxide, and semiconductor nanomaterials. We postulate that the biophysical structure impairment induced by nanomaterials is one of the key causes of nanotoxicity. The disruption of cellular structures is affected by the size, shape, and chemical composition of nanomaterials, which are also determining factors of nanotoxicity. Currently, popular nanotoxicity characterizations, such as the MTT and lactate dehydrogenase (LDH) assays, only provide end-point results through chemical reactions. Focusing on biophysical structural changes induced by nanomaterials, possibly in real-time, could deepen our understanding of the normal and altered states of subcellular structures and

  14. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress.

    Science.gov (United States)

    Raben, Nina; Puertollano, Rosa

    2016-10-06

    In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.

  15. Robust network topologies for generating switch-like cellular responses.

    Directory of Open Access Journals (Sweden)

    Najaf A Shah

    2011-06-01

    Full Text Available Signaling networks that convert graded stimuli into binary, all-or-none cellular responses are critical in processes ranging from cell-cycle control to lineage commitment. To exhaustively enumerate topologies that exhibit this switch-like behavior, we simulated all possible two- and three-component networks on random parameter sets, and assessed the resulting response profiles for both steepness (ultrasensitivity and extent of memory (bistability. Simulations were used to study purely enzymatic networks, purely transcriptional networks, and hybrid enzymatic/transcriptional networks, and the topologies in each class were rank ordered by parametric robustness (i.e., the percentage of applied parameter sets exhibiting ultrasensitivity or bistability. Results reveal that the distribution of network robustness is highly skewed, with the most robust topologies clustering into a small number of motifs. Hybrid networks are the most robust in generating ultrasensitivity (up to 28% and bistability (up to 18%; strikingly, a purely transcriptional framework is the most fragile in generating either ultrasensitive (up to 3% or bistable (up to 1% responses. The disparity in robustness among the network classes is due in part to zero-order ultrasensitivity, an enzyme-specific phenomenon, which repeatedly emerges as a particularly robust mechanism for generating nonlinearity and can act as a building block for switch-like responses. We also highlight experimentally studied examples of topologies enabling switching behavior, in both native and synthetic systems, that rank highly in our simulations. This unbiased approach for identifying topologies capable of a given response may be useful in discovering new natural motifs and in designing robust synthetic gene networks.

  16. Ethanol cellular defense induce unfolded protein response in yeast

    Directory of Open Access Journals (Sweden)

    Elisabet eNavarro-Tapia

    2016-02-01

    Full Text Available Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two Saccharomyces cerevisiae strains, CECT10094 and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus

  17. Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovic, Ana [Institut fuer Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Woelfl, Stefan [Institut fuer Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany)]. E-mail: wolfl@uni-hd.de

    2006-02-22

    Response to DNA damage, lack of nutrients and other stress conditions is an essential property of living systems. The coordinate response includes DNA damage repair, activation of alternate biochemical pathways, adjustment of cellular proliferation and cell cycle progression as well as drastic measures like cellular suicide which prevents proliferation of severely damaged cells. Investigating the transcriptional response of Saccharomyces cerevisiae to low doses of the alkylating agent methylmethane sulfonate (MMS) we observed induction of genes involved in glucose metabolism. RT-PCR analysis showed that the expression of the key enzyme in gluconeogenesis fructose-1,6-bisphosphatase (FBP1) was clearly up-regulated by MMS in glucose-rich medium. Interestingly, deletion of FBP1 led to reduced sensitivity to MMS, but not to other DNA-damaging agents, such as 4-NQO or phleomycin. Reintroduction of FBP1 in the knockout restored the wild-type phenotype while overexpression increased MMS sensitivity of wild-type, shortened life span and increased induction of RNR2 after treatment with MMS. Deletion of FBP1 reduced production of reactive oxygen species (ROS) in response to MMS treatment and in untreated aged cells, and increased the amount of cells able to propagate and to form colonies, but had no influence on the genotoxic effect of MMS. Our results indicate that FBP1 influences the connection between DNA damage, aging and oxidative stress through either direct signalling or an intricate adaptation in energy metabolism.0.

  18. SELF-ADAPTIVE CONTROLS OF A COMPLEX CELLULAR SIGNALING TRANSDUCTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LI Hong; ZHOU Zhiyuan; DAI Rongyang; LUO Bo; ZHENG Xiaoli; YANG Wenli; HE Tao; WU Minglu

    2004-01-01

    In cells, the interactions of distinct signaling transduction pathways originating from cross-talkings between signaling molecules give rise to the formation of signaling transduction networks, which contributes to the changes (emergency) of kinetic behaviors of signaling system compared with single molecule or pathway. Depending on the known experimental data, we have constructed a model for complex cellular signaling transduction system, which is derived from signaling transduction of epidermal growth factor receptor in neuron. By the computational simulating methods, the self-adaptive controls of this system have been investigated. We find that this model exhibits a relatively stable selfadaptive system, especially to over-stimulation of agonist, and the amplitude and duration of signaling intermediates in it could be controlled by multiple self-adaptive effects, such as "signal scattering", "positive feedback", "negative feedback" and "B-Raf shunt". Our results provide an approach to understanding the dynamic behaviors of complex biological systems.

  19. Semantic annotation of biological concepts interplaying microbial cellular responses

    Directory of Open Access Journals (Sweden)

    Carreira Rafael

    2011-11-01

    Full Text Available Abstract Background Automated extraction systems have become a time saving necessity in Systems Biology. Considerable human effort is needed to model, analyse and simulate biological networks. Thus, one of the challenges posed to Biomedical Text Mining tools is that of learning to recognise a wide variety of biological concepts with different functional roles to assist in these processes. Results Here, we present a novel corpus concerning the integrated cellular responses to nutrient starvation in the model-organism Escherichia coli. Our corpus is a unique resource in that it annotates biomedical concepts that play a functional role in expression, regulation and metabolism. Namely, it includes annotations for genetic information carriers (genes and DNA, RNA molecules, proteins (transcription factors, enzymes and transporters, small metabolites, physiological states and laboratory techniques. The corpus consists of 130 full-text papers with a total of 59043 annotations for 3649 different biomedical concepts; the two dominant classes are genes (highest number of unique concepts and compounds (most frequently annotated concepts, whereas other important cellular concepts such as proteins account for no more than 10% of the annotated concepts. Conclusions To the best of our knowledge, a corpus that details such a wide range of biological concepts has never been presented to the text mining community. The inter-annotator agreement statistics provide evidence of the importance of a consolidated background when dealing with such complex descriptions, the ambiguities naturally arising from the terminology and their impact for modelling purposes. Availability is granted for the full-text corpora of 130 freely accessible documents, the annotation scheme and the annotation guidelines. Also, we include a corpus of 340 abstracts.

  20. Radio-Adaptive Responses of Mouse Myocardiocytes

    Science.gov (United States)

    Seawright, John W.; Westby, Christian M.

    2011-01-01

    One of the most significant occupational hazards to an astronaut is the frequent exposure to radiation. Commonly associated with increased risk for cancer related morbidity and mortality, radiation is also known to increase the risk for cardiovascular related disorders including: pericarditis, hypertension, and heart failure. It is believed that these radiation-induced disorders are a result of abnormal tissue remodeling. It is unknown whether radiation exposure promotes remodeling through fibrotic changes alone or in combination with programmed cell death. Furthermore, it is not known whether it is possible to mitigate the hazardous effects of radiation exposure. As such, we assessed the expression and mechanisms of radiation-induced tissue remodeling and potential radio-adaptive responses of p53-mediated apoptosis and fibrosis pathways along with markers for oxidative stress and inflammation in mice myocardium. 7 week old, male, C57Bl/6 mice were exposed to 6Gy (H) or 5cGy followed 24hr later with 6Gy (LH) Cs-137 gamma radiation. Mice were sacrificed and their hearts extirpated 4, 24, or 72hr after final irradiation. Real Time - Polymerase Chain Reaction was used to evaluate target genes. Pro-apoptotic genes Bad and Bax, pro-cell survival genes Bcl2 and Bcl2l2, fibrosis gene Vegfa, and oxidative stress genes Sod2 and GPx4 showed a reduced fold regulation change (Bad,-6.18; Bax,-6.94; Bcl2,-5.09; Bcl2l2,-4.03; Vegfa, -11.84; Sod2,-5.97; GPx4*,-28.72; * = Bonferroni adjusted p-value . 0.003) 4hr after H, but not after 4hr LH when compared to control. Other p53-mediated apoptosis genes Casp3, Casp9, Trp53, and Myc exhibited down-regulation but did not achieve a notable level of significance 4hr after H. 24hr after H, genetic down-regulation was no longer present compared to 24hr control. These data suggest a general reduction in genetic expression 4hrs after a high dose of gamma radiation. However, pre-exposure to 5cGy gamma radiation appears to facilitate a radio-adaptive

  1. Cellular basis for the olfactory response to nicotine.

    Science.gov (United States)

    Bryant, Bruce; Xu, Jiang; Audige, Valery; Lischka, Fritz W; Rawson, Nancy E

    2010-03-17

    Smokers regulate their smoking behavior on the basis of sensory stimuli independently of the pharmacological effects of nicotine (Rose J. E., et al. (1993) Pharmacol., Biochem. Behav.44 (4), 891-900). A better understanding of sensory mechanisms underlying smoking behavior may help to develop more effective smoking alternatives. Olfactory stimulation by nicotine makes up a considerable part of the flavor of tobacco smoke, yet our understanding of the cellular mechanisms responsible for olfactory detection of nicotine remains incomplete. We used biophysical methods to characterize the nicotine sensitivity and response mechanisms of neurons from olfactory epithelium. In view of substantial differences in the olfactory receptor repertoire between rodent and human (Mombaerts P. (1999) Annu. Rev. Neurosci.22, 487-509), we studied biopsied human olfactory sensory neurons (OSNs), cultured human olfactory cells (Gomez G., et al. (2000) J. Neurosci. Res.62 (5), 737-749), and rat olfactory neurons. Rat and human OSNs responded to S(-)-nicotine with a concentration dependent influx of calcium and activation of adenylate cyclase. Some rat OSNs displayed some stereoselectivity, with neurons responding to either enantiomer alone or to both. Freshly biopsied and primary cultured human olfactory neurons were less stereoselective. Nicotinic cholinergic antagonists had no effect on the responses of rat or human OSNs to nicotine. Patch clamp recording of rat OSNs revealed a nicotine-activated, calcium-sensitive nonspecific cation channel. These results indicate that nicotine activates a canonical olfactory receptor pathway rather than nicotinic cholinergic receptors on OSNs. Further, because the nicotine-sensitive mechanisms of rodents appear generally similar to those of humans, this animal model is an appropriate one for studies of nicotine sensation.

  2. Microtubule modification influences cellular response to amyloid-β exposure

    Directory of Open Access Journals (Sweden)

    Nicole Shamitko-Klingensmith

    2016-05-01

    Full Text Available During the normal aging process, cytoskeletal changes such as a reduction in density or disruption of cytoskeletal components occur that can affect neuronal function. As aging is the biggest risk factor for Alzheimer's disease (AD, this study sought to determine how microtubule (MT modification influences cellular response upon exposure to β-amyloid1-42 (Aβ1-42, which is implicated in AD. The MT networks of hypothalamic GT1-7 neurons were modified by common disrupting or stabilizing drugs, and then the physical and mechanical properties of the modified neurons were determined. The MT modified neurons were then exposed to Aβ1-42 and the ability of the neurons to cope with this exposure was determined by a variety of biochemical assays. Flow cytometry studies indicated that MT disruption reduced the binding of Aβ1-42 to the plasma membrane by 45% per cell compared to neurons with stabilized or unaltered MTs. Although the cells with disrupted MTs experienced less peptide-membrane binding, they experienced similar or increased levels of cytotoxicity caused by the Aβ1-42 exposure. In contrast, MT stabilization delayed toxicity caused by Aβ1-42. These results demonstrate that MT modification significantly influences the ability of neurons to cope with toxicity induced by Aβ1-42.

  3. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    Science.gov (United States)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  4. The cellular immune response plays an important role in protecting against dengue virus in the mouse encephalitis model.

    Science.gov (United States)

    Gil, Lázaro; López, Carlos; Blanco, Aracelys; Lazo, Laura; Martín, Jorge; Valdés, Iris; Romero, Yaremis; Figueroa, Yassel; Guillén, Gerardo; Hermida, Lisset

    2009-02-01

    For several years, researchers have known that the generation of neutralizing antibodies is a prerequisite for attaining adequate protection against dengue virus. Nevertheless, the cellular immune response is the principal arm of the adaptive immune system against non-cytopathic viruses such as dengue, as once the virus enters into the cell it is necessary to destroy it to eliminate the virus. To define the role of the cellular immune response in the protection against dengue, we selected the mouse encephalitis model. Mice were immunized with a single dose of infective dengue 2 virus and different markers of both branches of the induced adaptive immunity were measured. Animals elicited a broad antibody response against the four dengue virus serotypes, but neutralizing activity was only detected against the homologous serotype. On the other hand, the splenocytes of the infected animals strongly proliferated after in vitro stimulation with the homologous virus, and specifically the CD8 T-cell subset was responsible for the secretion of the cytokine IFN-gamma. Finally, to define the role of T cells in in vivo protection, groups of animals were inoculated with the depleting monoclonal antibodies anti-CD4 or anti-CD8. Only depletion with anti-CD8 decreased to 50% the level of protection reached in the non-depleted mice. The present work constitutes the first report defining the role of the cellular immune response in protection against dengue virus in the mouse model.

  5. Thioredoxin-dependent Redox Regulation of Cellular Signaling and Stress Response through Reversible Oxidation of Methionines

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, Diana J.; Squier, Thomas C.

    2011-06-01

    Generation of reactive oxygen species (ROS) is a common feature of many forms of stress to which plants are exposed. Successful adaptation to changing environmental conditions requires sensitive sensors of ROS such as protein-bound methionines that are converted to their corresponding methionine sulfoxides, which in turn can influence cellular signaling pathways. Such a signaling protein is calmodulin, which represents an early and central point in calcium signaling pathways important to stress response in plants. We describe recent work elucidating fundamental mechanisms of reversible methionine oxidation within calmodulin, including the sensitivity of individual methionines within plant and animal calmodulin to ROS, the structural and functional consequences of their oxidation, and the interactions of oxidized calmodulin with methionine sulfoxide reductase enzymes.

  6. AN EFFICIENT RADIO RESOURCE MANAGEMENT STRATEGY FOR ADAPTIVE OFDM CELLULAR SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Yu Guanding; Zhang Zhaoyang; Qiu Peiliang

    2006-01-01

    This paper presents an efficient Radio Resource Management (RRM) strategy for adaptive Orthogonal Frequency Division Multiplexing (OFDM) cellular systems. In the proposed strategy, only those users who have the same distance from their base stations can reuse a same subcarrier. This can guarantee the received Carrier-to-Interference ratio (C/I) of each subcarrier to be acceptable as required by system planning. Then by employing different modulation scheme on each subcarrier according to its received C/I, system spectral efficiency can be gracefully increased. Analytical and simulation results show that the spectral efficiency is improved by 40% without sacrificing the Bit Error Rate (BER) performance and call blocking probability and system capacity of the proposed strategy is better than conventional systems.

  7. Proteomic and cellular views of Arthrospira sp. PCC 8005 adaptation to nitrogen depletion.

    Science.gov (United States)

    Deschoenmaeker, Frédéric; Facchini, Raphaël; Leroy, Baptiste; Badri, Hanène; Zhang, C-C; Wattiez, Ruddy

    2014-06-01

    Cyanobacteria are photosynthetic prokaryotes that play a crucial role in the Earth's nitrogen and carbon cycles. Nitrogen availability is one of the most important factors in cyanobacterial growth. Interestingly, filamentous non-diazotrophic cyanobacteria, such as Arthrospira sp. PCC 8005, have developed survival strategies that enable them to adapt to nitrogen deprivation. Metabolic studies recently demonstrated a substantial synthesis and accumulation of glycogen derived from amino acids during nitrogen starvation. Nevertheless, the regulatory mechanism of this adaptation is poorly understood. To the best of our knowledge, this study is the first proteomic and cellular analysis of Arthrospira sp. PCC 8005 under nitrogen depletion. Label-free differential proteomic analysis indicated the global carbon and nitrogen reprogramming of the cells during nitrogen depletion as characterized by an upregulation of glycogen synthesis and the use of endogenous nitrogen sources. The degradation of proteins and cyanophycin provided endogenous nitrogen when exogenous nitrogen was limited. Moreover, formamides, cyanates and urea were also potential endogenous nitrogen sources. The transporters of some amino acids and alternative nitrogen sources such as ammonium permease 1 were induced under nitrogen depletion. Intriguingly, although Arthrospira is a non-diazotrophic cyanobacterium, we observed the upregulation of HetR and HglK proteins, which are involved in heterocyst differentiation. Moreover, after a long period without nitrate, only a few highly fluorescent cells in each trichome were observed, and they might be involved in the long-term survival mechanism of this non-diazotrophic cyanobacterium under nitrogen deprivation.

  8. 7th International Workshop on Microbeam Probes of Cellular Radiation Response

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, David J.

    2009-07-21

    The extended abstracts that follow present a summary of the Proceedings of the 7th International Workshop: Microbeam Probes of Cellular Radiation Response, held at Columbia University’s Kellogg Center in New York City on March 15–17, 2006. These International Workshops on Microbeam Probes of Cellular Radiation Response have been held regularly since 1993 (1–5). Since the first workshop, there has been a rapid growth (see Fig. 1) in the number of centers developing microbeams for radiobiological research, and worldwide there are currently about 30 microbeams in operation or under development. Single-cell/single-particle microbeam systems can deliver beams of different ionizing radiations with a spatial resolution of a few micrometers down to a few tenths of a micrometer. Microbeams can be used to addressquestions relating to the effects of low doses of radiation (a single radiation track traversing a cell or group of cells), to probe subcellular targets (e.g. nucleus or cytoplasm), and to address questions regarding the propagation of information about DNA damage (for example, the radiation-induced bystander effect). Much of the recent research using microbeams has been to study low-dose effects and ‘‘non-targeted’’ responses such as bystander effects, genomic instability and adaptive responses. This Workshop provided a forum to assess the current state of microbeam technology and current biological applications and to discuss future directions for development, both technological and biological. Over 100 participants reviewed the current state of microbeam research worldwide and reported on new technological developments in the fields of both physics and biology.

  9. How Language Supports Adaptive Teaching through a Responsive Learning Culture

    Science.gov (United States)

    Johnston, Peter; Dozier, Cheryl; Smit, Julie

    2016-01-01

    For students to learn optimally, teachers must design classrooms that are responsive to the full range of student development. The teacher must be adaptive, but so must each student and the learning culture itself. In other words, adaptive teaching means constructing a responsive learning culture that accommodates and even capitalizes on diversity…

  10. Adaptive Queue Management with Restraint on Non-Responsive Flows

    Directory of Open Access Journals (Sweden)

    Lan Li

    2003-12-01

    Full Text Available This paper proposes an adaptive queue management scheme (adaptive RED to improve Random Early Detection (RED on restraining non-responsive flows. Due to a lack of flow control mechanism, non-responsive flows can starve responsive flows for buffer and bandwidth at the gateway. In order to solve the disproportionate resource problem, RED framework is modified in this way: on detecting when the non-responsive flows starve the queue, packet-drop intensity (Max_p in RED can be adaptively adjusted to curb non-responsive flows for resource fair-sharing, such as buffer and bandwidth fair-sharing. Based on detection of traffic behaviors, intentionally restraining nonresponsive flows is to increase the throughput and decrease the drop rate of responsive flows. Our experimental results based on adaptive RED shows that the enhancement of responsive traffic and the better sharing of buffer and bandwidth can be achieved under a variety of traffic scenarios.

  11. Low-Dose UVA Radiation-Induced Adaptive Response in Cultured Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Zhongrong Liu

    2012-01-01

    Full Text Available Objective. To investigate the mechanism of the adaptive response induced by low-dose ultraviolet A (UVA radiation. Methods. Cultured dermal fibroblasts were irradiated by a lethal dose of UVA (86.4 J/cm2 with preirradiation of single or repetitive low dose of UVA (7.2 J/cm2. Alterations of cellular morphology were observed by light microscope and electron microscope. Cell cycle and cellular apoptosis were assayed by flow cytometer. The extent of DNA damage was determined by single-cell gel electrophoresis (SCGE. Results. The cultured dermal fibroblasts, with pretreatment of single or repetitive irradiation of 7.2 J/cm2 UVA relieved toxic reaction of cellular morphology and arrest of cell cycle, decreased apoptosis ratio, reduced DNA chain breakage, and accelerated DNA repair caused by subsequent 86.4 J/cm2 UVA irradiation. Compared with nonpretreatment groups, all those differences were significant (P<0.01 or P<0.05. Conclusions. The adaptation reaction might depend on the accumulated dose of low-dose UVA irradiation. Low-dose UVA radiation might induce adaptive response that may protect cultured dermal fibroblasts from the subsequent challenged dose of UVA damage. The duration and protective capability of the adaptive reaction might be related to the accumulated dose of low-dose UVA Irradiation.

  12. Adaptive Filtering for Aeroservoelastic Response Suppression Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CSA Engineering proposes the design of an adaptive aeroelastic mode suppression for advanced fly-by-wire aircraft, which will partition the modal suppression...

  13. Adaptive Response in Animals Exposed to Non-Ionizing Radiofrequency Fields: Some Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Yi Cao

    2014-04-01

    Full Text Available During the last few years, our research group has been investigating the phenomenon of adaptive response in animals exposed to non-ionizing radiofrequency fields. The results from several separate studies indicated a significant increase in survival, decreases in genetic damage as well as oxidative damage and, alterations in several cellular processes in mice pre-exposed to radiofrequency fields and subsequently subjected to sub-lethal or lethal doses of γ-radiation or injected with bleomycin, a radiomimetic chemical mutagen. These observations indicated the induction of adaptive response providing the animals the ability to resist subsequent damage. Similar studies conducted by independent researchers in mice and rats have supported our observation on increased survival. In this paper, we have presented a brief review of all of our own and other independent investigations on radiofrequency fields-induced adaptive response and some underlying mechanisms discussed.

  14. Effect of Gold Nanorod Surface Chemistry on Cellular Response

    Science.gov (United States)

    2011-03-15

    Recombi - nation DNA Repair Network for Targeted Cancer Therapy. World J. Clin. Oncol. 2011, 2, 73–79. 36. Higashi, H.; Vallb€ohmer, D.; Warnecke-Eberz, U...cellular morphology, mitochondrial function, mitochondrial membrane potential (MMP), intracellular calcium levels, DNA damage-related gene expression, and of...observed in the MMP and Ca++ levels, up or down regulation of DNA damage related gene expression suggested a differential cell death mechanism based on

  15. Epigenetic memory for stress response and adaptation in plants.

    Science.gov (United States)

    Kinoshita, Tetsu; Seki, Motoaki

    2014-11-01

    In contrast to the majority of animal species, plants are sessile organisms and are, therefore, constantly challenged by environmental perturbations. Over the past few decades, our knowledge of how plants perceive environmental stimuli has increased considerably, e.g. the mechanisms for transducing environmental stress stimuli into cellular signaling cascades and gene transcription networks. In addition, it has recently been shown that plants can remember past environmental events and can use these memories to aid responses when these events recur. In this mini review, we focus on recent progress in determination of the epigenetic mechanisms used by plants under various environmental stresses. Epigenetic mechanisms are now known to play a vital role in the control of gene expression through small RNAs, histone modifications and DNA methylation. These are inherited through mitotic cell divisions and, in some cases, can be transmitted to the next generation. They therefore offer a possible mechanism for stress memories in plants. Recent studies have yielded evidence indicating that epigenetic mechanisms are indeed essential for stress memories and adaptation in plants.

  16. PACS—Realization of an adaptive concept using pressure actuated cellular structures

    Science.gov (United States)

    Gramüller, B.; Boblenz, J.; Hühne, C.

    2014-10-01

    A biologically inspired concept is investigated which can be utilized to develop energy efficient, lightweight and applicational flexible adaptive structures. Building a real life morphing unit is an ambitious task as the numerous works in the particular field show. Summarizing fundamental demands and barriers regarding shape changing structures, the basic challenges of designing morphing structures are listed. The concept of Pressure Actuated Cellular Structures (PACS) is arranged within the recent morphing activities and it is shown that it complies with the underlying demands. Systematically divided into energy-related and structural subcomponents the working principle is illuminated and relationships between basic design parameters are expressed. The analytical background describing the physical mechanisms of PACS is presented in concentrated manner. This work focuses on the procedure of dimensioning, realizing and experimental testing of a single cell and a single row cantilever made of PACS. The experimental outcomes as well as the results from the FEM computations are used for evaluating the analytical methods. The functionality of the basic principle is thus validated and open issues are determined pointing the way ahead.

  17. Functional adaptation and phenotypic plasticity at the cellular and whole plant level

    Indian Academy of Sciences (India)

    Karl J Niklas

    2009-10-01

    The ability to adaptively alter morphological, anatomical, or physiological functional traits to local environmental variations using external environmental cues is especially well expressed by all terrestrial and most aquatic plants. A ubiquitous cue eliciting these plastic phenotypic responses is mechanical perturbation (MP), which can evoke dramatic differences in the size, shape, or mechanical properties of conspecifics. Current thinking posits that MP is part of a very ancient ``stress-perception response system” that involves receptors located at the cell membrane/cell wall interface capable of responding to a broad spectrum of stress-inducing factors. This hypothesis is explored here from the perspective of cell wall evolution and the control of cell wall architecture by unicellular and multicellular plants. Among the conclusions that emerge from this exploration is the perspective that the plant cell is phenotypically plastic.

  18. Human papillomavirus (HPV upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response.

    Directory of Open Access Journals (Sweden)

    Rezaul Karim

    Full Text Available Persistent infection of basal keratinocytes with high-risk human papillomavirus (hrHPV may cause cancer. Keratinocytes are equipped with different pattern recognition receptors (PRRs but hrHPV has developed ways to dampen their signals resulting in minimal inflammation and evasion of host immunity for sustained periods of time. To understand the mechanisms underlying hrHPV's capacity to evade immunity, we studied PRR signaling in non, newly, and persistently hrHPV-infected keratinocytes. We found that active infection with hrHPV hampered the relay of signals downstream of the PRRs to the nucleus, thereby affecting the production of type-I interferon and pro-inflammatory cytokines and chemokines. This suppression was shown to depend on hrHPV-induced expression of the cellular protein ubiquitin carboxyl-terminal hydrolase L1 (UCHL1 in keratinocytes. UCHL1 accomplished this by inhibiting tumor necrosis factor receptor-associated factor 3 (TRAF3 K63 poly-ubiquitination which lead to lower levels of TRAF3 bound to TANK-binding kinase 1 and a reduced phosphorylation of interferon regulatory factor 3. Furthermore, UCHL1 mediated the degradation of the NF-kappa-B essential modulator with as result the suppression of p65 phosphorylation and canonical NF-κB signaling. We conclude that hrHPV exploits the cellular protein UCHL1 to evade host innate immunity by suppressing PRR-induced keratinocyte-mediated production of interferons, cytokines and chemokines, which normally results in the attraction and activation of an adaptive immune response. This identifies UCHL1 as a negative regulator of PRR-induced immune responses and consequently its virus-increased expression as a strategy for hrHPV to persist.

  19. Marine molluscs in environmental monitoring. I. Cellular and molecular responses

    Science.gov (United States)

    Bresler, Vladimir; Abelson, Avigdor; Fishelson, Lev; Feldstein, Tamar; Rosenfeld, Michael; Mokady, Ofer

    2003-10-01

    The study reported here is part of an ongoing effort to establish sensitive and reliable biomonitoring markers for probing the coastal marine environment. Here, we report comparative measurements of a range of histological, cellular and sub-cellular parameters in molluscs sampled in polluted and reference sites along the Mediterranean coast of Israel and in the northern tip of the Gulf of Aqaba, Red Sea. Available species enabled an examination of conditions in two environmental 'compartments': benthic (Donax trunculus) and intertidal (Brachidontes pharaonis, Patella caerulea) in the Mediterranean; pelagic (Pteria aegyptia) and intertidal (Cellana rota) in the Red Sea. The methodology used provides rapid results by combining specialized fluorescent probes and contact microscopy, by which all parameters are measured in unprocessed animal tissue. The research focused on three interconnected levels. First, antixenobiotic defence mechanisms aimed at keeping hazardous agents outside the cell. Paracellular permeability was 70-100% higher in polluted sites, and membrane pumps (MXRtr and SATOA) activity was up to 65% higher in polluted compared to reference sites. Second, intracellular defence mechanisms that act to minimize potential damage by agents having penetrated the first line of defence. Metallothionein expression and EROD activity were 160-520% higher in polluted sites, and lysosomal functional activity (as measured by neutral red accumulation) was 25-50% lower. Third, damage caused by agents not sufficiently eliminated by the above mechanisms (e.g. single-stranded DNA breaks, chromosome damage and other pathological alterations). At this level, the most striking differences were observed in the rate of micronuclei formation and DNA breaks (up to 150% and 400% higher in polluted sites, respectively). The different mollusc species used feature very similar trends between polluted and reference sites in all measured parameters. Concentrating on relatively basic

  20. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    Science.gov (United States)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  1. Interactions between HIF-1α and AMPK in the regulation of cellular hypoxia adaptation in chronic kidney disease.

    Science.gov (United States)

    Li, Hui; Satriano, Joseph; Thomas, Joanna L; Miyamoto, Satoshi; Sharma, Kumar; Pastor-Soler, Núria M; Hallows, Kenneth R; Singh, Prabhleen

    2015-09-01

    Renal hypoxia contributes to chronic kidney disease (CKD) progression, as validated in experimental and human CKD. In the early stages, increased oxygen consumption causes oxygen demand/supply mismatch, leading to hypoxia. Hence, early targeting of the determinants and regulators of oxygen consumption in CKD may alter the disease course before permanent damage ensues. Here, we focus on hypoxia inducible factor-1α (HIF-1α) and AMP-activated protein kinase (AMPK) and on the mechanisms by which they may facilitate cellular hypoxia adaptation. We found that HIF-1α activation in the subtotal nephrectomy (STN) model of CKD limits protein synthesis, inhibits apoptosis, and activates autophagy, presumably for improved cell survival. AMPK activation was diminished in the STN kidney and was remarkably restored by HIF-1α activation, demonstrating a novel role for HIF-1α in the regulation of AMPK activity. We also investigated the independent and combined effects of HIF-1α and AMPK on cell survival and death pathways by utilizing pharmacological and knockdown approaches in cell culture models. We found that the effect of HIF-1α activation on autophagy is independent of AMPK, but on apoptosis it is partially AMPK dependent. The effects of HIF-1α and AMPK activation on inhibiting protein synthesis via the mTOR pathway appear to be additive. These various effects were also observed under hypoxic conditions. In conclusion, HIF-1α and AMPK appear to be linked at a molecular level and may act as components of a concerted cellular response to hypoxic stress in the pathophysiology of CKD.

  2. Towards Trustworthy Adaptive Case Management with Dynamic Condition Response Graphs

    DEFF Research Database (Denmark)

    Mukkamala, Raghava Rao; Hildebrandt, Thomas; Slaats, Tijs

    2013-01-01

    We describe how the declarative Dynamic Condition Response (DCR) Graphs process model can be used for trustworthy adaptive case management by leveraging the flexible execution, dynamic composition and adaptation supported by DCR Graphs. The dynamically composed and adapted graphs are verified...... for deadlock freedom and liveness in the SPIN model checker by utilizing a mapping from DCR Graphs to PROMELA code. We exemplify the approach by a small workflow extracted from a field study at a danish hospital....

  3. Genome-wide transcriptional responses to a lipid hydroperoxide: adaptation occurs without induction of oxidant defenses.

    Science.gov (United States)

    Alic, Nazif; Felder, Thomas; Temple, Mark D; Gloeckner, Christian; Higgins, Vincent J; Briza, Peter; Dawes, Ian W

    2004-07-01

    Free radicals can initiate the oxidation of polyunsaturated fatty acids in cells through the process of lipid peroxidation. The genome-wide transcriptional changes in Saccharomyces cerevisiae after treatment with the toxic lipid peroxidation product linoleic acid hydroperoxide (LoaOOH) were identified. High-dose treatment led to a switch in transcription from biosynthetic to protective functions. This response encompassed a set of genes stimulated predominantly by LoaOOH, and not by other oxidants or heat shock, which contained components of the pleiotropic drug resistance system. The dose dependence of the transcriptional response revealed that large and widespread changes occur only in response to higher doses. Pretreatment of cells with sublethal doses of LoaOOH induces resistance to an otherwise lethal dose through the process of adaptation. Adaptive doses elicited a more subtle transcriptional response affecting metabolic functions, including an increase in the capacity for detoxification and downregulation of the rate of protein synthesis. Surprisingly, the cellular response to adaptive doses did not include induction of oxidative-stress defense enzymes nor of transcripts involved in general cellular defense systems.

  4. Evolutionary principles underlying structure and response dynamics of cellular networks.

    Science.gov (United States)

    Steinacher, Arno; Soyer, Orkun S

    2012-01-01

    The network view in systems biology, in conjunction with the continuing development of experimental technologies, is providing us with the key structural and dynamical features of both cell-wide and pathway-level regulatory, signaling and metabolic systems. These include for example modularity and presence of hub proteins at the structural level and ultrasensitivity and feedback control at the level of dynamics. The uncovering of such features, and the seeming commonality of some of them, makes many systems biologists believe that these could represent design principles that underpin cellular systems across organisms. Here, we argue that such claims on any observed feature requires an understanding of how it has emerged in evolution and how it can shape subsequent evolution. We review recent and past studies that aim to achieve such evolutionary understanding for observed features of cellular networks. We argue that this evolutionary framework could lead to deciphering evolutionary origin and relevance of proposed design principles, thereby allowing to predict their presence or absence in an organism based on its environment and biochemistry and their effect on its future evolution.

  5. Cellular Responses to the Metal-Binding Properties of Metformin

    Science.gov (United States)

    Logie, Lisa; Harthill, Jean; Patel, Kashyap; Bacon, Sandra; Hamilton, D. Lee; Macrae, Katherine; McDougall, Gordon; Wang, Huan-Huan; Xue, Lin; Jiang, Hua; Sakamoto, Kei; Prescott, Alan R.; Rena, Graham

    2012-01-01

    In recent decades, the antihyperglycemic biguanide metformin has been used extensively in the treatment of type 2 diabetes, despite continuing uncertainty over its direct target. In this article, using two independent approaches, we demonstrate that cellular actions of metformin are disrupted by interference with its metal-binding properties, which have been known for over a century but little studied by biologists. We demonstrate that copper sequestration opposes known actions of metformin not only on AMP-activated protein kinase (AMPK)-dependent signaling, but also on S6 protein phosphorylation. Biguanide/metal interactions are stabilized by extensive π-electron delocalization and by investigating analogs of metformin; we provide evidence that this intrinsic property enables biguanides to regulate AMPK, glucose production, gluconeogenic gene expression, mitochondrial respiration, and mitochondrial copper binding. In contrast, regulation of S6 phosphorylation is prevented only by direct modification of the metal-liganding groups of the biguanide structure, supporting recent data that AMPK and S6 phosphorylation are regulated independently by biguanides. Additional studies with pioglitazone suggest that mitochondrial copper is targeted by both of these clinically important drugs. Together, these results suggest that cellular effects of biguanides depend on their metal-binding properties. This link may illuminate a better understanding of the molecular mechanisms enabling antihyperglycemic drug action. PMID:22492524

  6. Adaptive cellular structures and devices with internal features for enhanced structural performance

    Science.gov (United States)

    Pontecorvo, Michael Eugene

    This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement

  7. Stimuli for municipal responses to climate adaptation: insights from Philadelphia – an early adapter

    NARCIS (Netherlands)

    Uittenbroek, C.J.; Janssen-Jansen, Leonie; Runhaar, H.A.C.

    2016-01-01

    An in-depth understanding of these stimuli is currently lacking in literature as most research has focussed on overcoming barriers to climate adaptation. The aim of this paper is to identify stimuli for municipal responses to climate adaptation and examine how they influence the governance approach

  8. Responsibility for private sector adaptation to climate change

    Directory of Open Access Journals (Sweden)

    Tina Schneider

    2014-06-01

    Full Text Available The Intergovernmental Panel on Climate Change (2007 indicates that vulnerable industries should adapt to the increasing likelihood of extreme weather events along with slowly shifting mean annual temperatures and precipitation patterns, to prevent major damages or periods of inoperability in the future. Most articles in the literature on business management frame organizational adaptation to climate change as a private action. This makes adaptation the sole responsibility of a company, for its sole benefit, and overlooks the fact that some companies provide critical goods and services such a food, water, electricity, and medical care, that are so vital to society that even a short-term setback in operations could put public security at risk. This raises the following questions: (1 Who is responsible for climate change adaptation by private-sector suppliers of critical infrastructure? (2 How can those who are identified to be responsible, actually be held to assume their responsibility for adapting to climate change? These questions will be addressed through a comprehensive review of the literature on business management, complemented by a review of specialized literature on public management. This review leads to several conclusions. Even though tasks that formerly belonged to the state have been taken over by private companies, the state still holds ultimate responsibility in the event of failure of private-sector owned utilities, insofar as they are "critical infrastructure." Therefore, it remains the state's responsibility to foster adaptation to climate change with appropriate action. In theory, effective ways of assuming this responsibility, while enabling critical infrastructure providers the flexibility adapt to climate change, would be to delegate adaptation to an agency, or to conduct negotiations with stakeholders. In view of this theory, Germany will be used as a case study to demonstrate how private-sector critical infrastructure

  9. Using response times for item selection in adaptive testing

    NARCIS (Netherlands)

    Linden, van der Wim J.

    2008-01-01

    Response times on items can be used to improve item selection in adaptive testing provided that a probabilistic model for their distribution is available. In this research, the author used a hierarchical modeling framework with separate first-level models for the responses and response times and a s

  10. Development of second generation peptides modulating cellular adiponectin receptor responses

    Science.gov (United States)

    Otvos, Laszlo; Knappe, Daniel; Hoffmann, Ralf; Kovalszky, Ilona; Olah, Julia; Hewitson, Tim; Stawikowska, Roma; Stawikowski, Maciej; Cudic, Predrag; Lin, Feng; Wade, John; Surmacz, Eva; Lovas, Sandor

    2014-10-01

    The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions.

  11. Development of second generation peptides modulating cellular adiponectin receptor responses

    Directory of Open Access Journals (Sweden)

    Laszlo eOtvos

    2014-10-01

    Full Text Available The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC. In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399. The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400 was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400 at similar concentrations will be an important target validation tool to study adiponectin functions.

  12. A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis

    DEFF Research Database (Denmark)

    Villumsen, Bine H; Danielsen, Jannie R; Povlsen, Lou;

    2013-01-01

    Centriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock...

  13. Acute, regional inflammatory response after traumatic brain injury: Implications for cellular therapy

    OpenAIRE

    Harting, Matthew T.; jimenez, fernando; Adams, Sasha D.; Mercer, David W.; Cox, Charles S.

    2008-01-01

    While cellular therapy has shown promise in the management of traumatic brain injury (TBI), microenvironment interactions between the intracerebral milieu and therapeutic stem cells are poorly understood. We sought to characterize the acute, regional inflammatory response after TBI.

  14. Adaptive workflow simulation of emergency response

    NARCIS (Netherlands)

    Bruinsma, Guido Wybe Jan

    2010-01-01

    Recent incidents and major training exercises in and outside the Netherlands have persistently shown that not having or not sharing information during emergency response are major sources of emergency response inefficiency and error, and affect incident mitigation outcomes through workflow planning

  15. Plant Responses to Salt Stress: Adaptive Mechanisms

    Directory of Open Access Journals (Sweden)

    Jose Ramón Acosta-Motos

    2017-02-01

    Full Text Available This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.

  16. fMRI study of the role of glutamate NMDA receptor in the olfactory adaptation in rats: Insights into cellular and molecular mechanisms of olfactory adaptation.

    Science.gov (United States)

    Zhao, Fuqiang; Wang, Xiaohai; Zariwala, Hatim A; Uslaner, Jason M; Houghton, Andrea K; Evelhoch, Jeffrey L; Hostetler, Eric; Winkelmann, Christopher T; Hines, Catherine D G

    2017-02-03

    Olfactory adaptation, characterized by attenuation of response to repeated odor stimulations or continuous odor exposure, is an intrinsic feature of olfactory processing. Adaptation can be induced by either "synaptic depression" due to depletion of neurotransmitters, or "enhanced inhibition" onto principle neurons by local inhibitory interneurons in olfactory structures. It is not clear which mechanism plays a major role in olfactory adaptation. More importantly, molecular sources of enhanced inhibition have not been identified. In this study, olfactory responses to either repeated 40-s stimulations with interstimulus intervals (ISI) of 140-s or 30-min, or a single prolonged 200-s stimulus were measured by fMRI in different naïve rats. Olfactory adaptations in the olfactory bulb (OB), anterior olfactory nucleus (AON), and piriform cortex (PC) were observed only with repeated 40-s odor stimulations, and no olfactory adaptations were detected during the prolonged 200-s stimulation. Interestingly, in responses to repeated 40-s odor stimulations in the PC, the first odor stimulation induced positive activations, and odor stimulations under adapted condition induced negative activations. The negative activations suggest that "sparse coding" and "global inhibition" are the characteristics of olfactory processing in PC, and the global inhibition manifests only under an adapted condition, not a naïve condition. Further, we found that these adaptations were NMDA receptor dependent; an NMDA receptor antagonist (MK801) blocked the adaptations. Based on the mechanism that glutamate NMDA receptor plays a role in the inhibition onto principle neurons by interneurons, our data suggest that the olfactory adaptations are caused by enhanced inhibition from interneurons. Combined with the necessity of the interruption of odor stimulation to observe the adaptations, the molecular source for the enhanced inhibition is most likely an increased glutamate release from presynaptic

  17. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  18. Cellular Stress Response Gene Expression During Upper and Lower Body High Intensity Exercises

    Science.gov (United States)

    Kochanowicz, Andrzej; Sawczyn, Stanisław; Niespodziński, Bartłomiej; Mieszkowski, Jan; Kochanowicz, Kazimierz

    2017-01-01

    Objectives The aim was to compare the effect of upper and lower body high-intensity exercise on chosen genes expression in athletes and non-athletes. Method Fourteen elite male artistic gymnasts (EAG) aged 20.6 ± 3.3 years and 14 physically active men (PAM) aged 19.9 ± 1.0 years performed lower and upper body 30 s Wingate Tests. Blood samples were collected before, 5 and 30 minutes after each effort to assess gene expression via PCR. Results Significantly higher mechanical parameters after lower body exercise was observed in both groups, for relative power (8.7 ± 1.2 W/kg in gymnasts, 7.2 ± 1.2 W/kg in controls, p = 0.01) and mean power (6.7 ± 0.7 W/kg in gymnasts, 5.4 ± 0.8 W/kg in controls, p = 0.01). No differences in lower versus upper body gene expression were detected for all tested genes as well as between gymnasts and physical active man. For IL-6 m-RNA time-dependent effect was observed. Conclusions Because of no significant differences in expression of genes associated with cellular stress response the similar adaptive effect to exercise may be obtained so by lower and upper body exercise. PMID:28141870

  19. Modeling light adaptation in circadian clock: prediction of the response that stabilizes entrainment.

    Science.gov (United States)

    Tsumoto, Kunichika; Kurosawa, Gen; Yoshinaga, Tetsuya; Aihara, Kazuyuki

    2011-01-01

    Periods of biological clocks are close to but often different from the rotation period of the earth. Thus, the clocks of organisms must be adjusted to synchronize with day-night cycles. The primary signal that adjusts the clocks is light. In Neurospora, light transiently up-regulates the expression of specific clock genes. This molecular response to light is called light adaptation. Does light adaptation occur in other organisms? Using published experimental data, we first estimated the time course of the up-regulation rate of gene expression by light. Intriguingly, the estimated up-regulation rate was transient during light period in mice as well as Neurospora. Next, we constructed a computational model to consider how light adaptation had an effect on the entrainment of circadian oscillation to 24-h light-dark cycles. We found that cellular oscillations are more likely to be destabilized without light adaption especially when light intensity is very high. From the present results, we predict that the instability of circadian oscillations under 24-h light-dark cycles can be experimentally observed if light adaptation is altered. We conclude that the functional consequence of light adaptation is to increase the adjustability to 24-h light-dark cycles and then adapt to fluctuating environments in nature.

  20. Modeling light adaptation in circadian clock: prediction of the response that stabilizes entrainment.

    Directory of Open Access Journals (Sweden)

    Kunichika Tsumoto

    Full Text Available Periods of biological clocks are close to but often different from the rotation period of the earth. Thus, the clocks of organisms must be adjusted to synchronize with day-night cycles. The primary signal that adjusts the clocks is light. In Neurospora, light transiently up-regulates the expression of specific clock genes. This molecular response to light is called light adaptation. Does light adaptation occur in other organisms? Using published experimental data, we first estimated the time course of the up-regulation rate of gene expression by light. Intriguingly, the estimated up-regulation rate was transient during light period in mice as well as Neurospora. Next, we constructed a computational model to consider how light adaptation had an effect on the entrainment of circadian oscillation to 24-h light-dark cycles. We found that cellular oscillations are more likely to be destabilized without light adaption especially when light intensity is very high. From the present results, we predict that the instability of circadian oscillations under 24-h light-dark cycles can be experimentally observed if light adaptation is altered. We conclude that the functional consequence of light adaptation is to increase the adjustability to 24-h light-dark cycles and then adapt to fluctuating environments in nature.

  1. Incorporating adaptive responses into future projections of coral bleaching.

    Science.gov (United States)

    Logan, Cheryl A; Dunne, John P; Eakin, C Mark; Donner, Simon D

    2014-01-01

    Climate warming threatens to increase mass coral bleaching events, and several studies have projected the demise of tropical coral reefs this century. However, recent evidence indicates corals may be able to respond to thermal stress though adaptive processes (e.g., genetic adaptation, acclimatization, and symbiont shuffling). How these mechanisms might influence warming-induced bleaching remains largely unknown. This study compared how different adaptive processes could affect coral bleaching projections. We used the latest bias-corrected global sea surface temperature (SST) output from the NOAA/GFDL Earth System Model 2 (ESM2M) for the preindustrial period through 2100 to project coral bleaching trajectories. Initial results showed that, in the absence of adaptive processes, application of a preindustrial climatology to the NOAA Coral Reef Watch bleaching prediction method overpredicts the present-day bleaching frequency. This suggests that corals may have already responded adaptively to some warming over the industrial period. We then modified the prediction method so that the bleaching threshold either permanently increased in response to thermal history (e.g., simulating directional genetic selection) or temporarily increased for 2-10 years in response to a bleaching event (e.g., simulating symbiont shuffling). A bleaching threshold that changes relative to the preceding 60 years of thermal history reduced the frequency of mass bleaching events by 20-80% compared with the 'no adaptive response' prediction model by 2100, depending on the emissions scenario. When both types of adaptive responses were applied, up to 14% more reef cells avoided high-frequency bleaching by 2100. However, temporary increases in bleaching thresholds alone only delayed the occurrence of high-frequency bleaching by ca. 10 years in all but the lowest emissions scenario. Future research should test the rate and limit of different adaptive responses for coral species across latitudes and

  2. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  3. The cellular response to curvature-induced stress

    Science.gov (United States)

    Biton, Y. Y.; Safran, S. A.

    2009-12-01

    We present a theoretical model to explain recent observations of the orientational response of cells to unidirectional curvature. Experiments show that some cell types when plated on a rigid cylindrical surface tend to reorient their shape and stress fibers along the axis of the cylinder, while others align their stress fibers perpendicular to that axis. Our model focuses on the competition of the shear stress—that results from cell adhesion and active contractility—and the anisotropic bending stiffness of the stress fibers. We predict the cell orientation angle that results from the balance of these two forces in a mechanical equilibrium. The conditions under which the different experimental observations can be obtained are discussed in terms of the theory.

  4. Transcriptomic analysis reveals adaptive responses of an Enterobacteriaceae strain LSJC7 to arsenic exposure

    Directory of Open Access Journals (Sweden)

    Yingjiao eZhang

    2016-05-01

    Full Text Available Arsenic (As resistance determinant ars operon is present in many bacteria and has been demonstrated to enhance As(V resistance of bacteria. However, whole molecular mechanism adaptations of bacteria in response to As(V stress remain largely unknown. In this study, transcriptional profiles of Enterobacteriaceae strain LSJC7 responding to As(V stress were analyzed using RNA-seq and qRT-PCR. As expected, genes involved in As(V uptake were down-regulated, those involved in As(V reduction and As(III efflux were up-regulated, which avoided cellular As accumulation. Reactive oxygen species and nitric oxide (NO were induced, which caused cellular damages including DNA, proteins, and Fe-S clusters damages in LSJC7. The expression of specific genes encoding transcriptional regulators, such as nsrR and soxRS were also induced. NsrR and SoxRS modulated many critical metabolic activities in As(V stressed LSJC7 cells, including reactive species scavenging and repairing the damages of DNA, proteins, and Fe-S clusters. Therefore, besides As uptake, reduction, and efflux, oxidative stress defense and damage repair were the main cellular adaptive responses of LSJC7 to As(V stress.

  5. Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to Arsenic Exposure.

    Science.gov (United States)

    Zhang, Yingjiao; Chen, Songcan; Hao, Xiuli; Su, Jian-Qiang; Xue, Ximei; Yan, Yu; Zhu, Yong-Guan; Ye, Jun

    2016-01-01

    Arsenic (As) resistance determinant ars operon is present in many bacteria and has been demonstrated to enhance As(V) resistance of bacteria. However, whole molecular mechanism adaptations of bacteria in response to As(V) stress remain largely unknown. In this study, transcriptional profiles of Enterobacteriaceae strain LSJC7 responding to As(V) stress were analyzed using RNA-seq and qRT-PCR. As expected, genes involved in As(V) uptake were down-regulated, those involved in As(V) reduction and As(III) efflux were up-regulated, which avoided cellular As accumulation. Reactive oxygen species and nitric oxide (NO) were induced, which caused cellular damages including DNA, protein, and Fe-S cluster damage in LSJC7. The expression of specific genes encoding transcriptional regulators, such as nsrR and soxRS were also induced. NsrR and SoxRS modulated many critical metabolic activities in As(V) stressed LSJC7 cells, including reactive species scavenging and repairing damaged DNA, proteins, and Fe-S clusters. Therefore, besides As uptake, reduction, and efflux; oxidative stress defense and damage repair were the main cellular adaptive responses of LSJC7 to As(V) stress.

  6. Space experiment "Cellular Responses to Radiation in Space (CellRad)": Hardware and biological system tests.

    Science.gov (United States)

    Hellweg, Christine E; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CellRad, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CellRad in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  7. Space experiment "Cellular Responses to Radiation in Space (CELLRAD)": Hardware and biological system tests

    Science.gov (United States)

    Hellweg, Christine E.; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F.; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CELLRAD, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CELLRAD in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  8. Durum Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and Sucrose

    Science.gov (United States)

    Annunziata, Maria Grazia; Ciarmiello, Loredana F.; Woodrow, Pasqualina; Maximova, Eugenia; Fuggi, Amodio; Carillo, Petronia

    2017-01-01

    Plants are currently experiencing increasing salinity problems due to irrigation with brackish water. Moreover, in fields, roots can grow in soils which show spatial variation in water content and salt concentration, also because of the type of irrigation. Salinity impairs crop growth and productivity by inhibiting many physiological and metabolic processes, in particular nitrate uptake, translocation, and assimilation. Salinity determines an increase of sap osmolality from about 305 mOsmol kg−1 in control roots to about 530 mOsmol kg−1 in roots under salinity. Root cells adapt to salinity by sequestering sodium in the vacuole, as a cheap osmoticum, and showing a rearrangement of few nitrogen-containing metabolites and sucrose in the cytosol, both for osmotic adjustment and oxidative stress protection, thus providing plant viability even at low nitrate levels. Mainly glycine betaine and sucrose at low nitrate concentration, and glycine betaine, asparagine and proline at high nitrate levels can be assumed responsible for the osmotic adjustment of the cytosol, the assimilation of the excess of ammonium and the scavenging of ROS under salinity. High nitrate plants with half of the root system under salinity accumulate proline and glutamine in both control and salt stressed split roots, revealing that osmotic adjustment is not a regional effect in plants. The expression level and enzymatic activities of asparagine synthetase and Δ1-pyrroline-5-carboxylate synthetase, as well as other enzymatic activities of nitrogen and carbon metabolism, are analyzed. PMID:28119716

  9. Innate and adaptive immune responses in allergic contact dermatitis and autoimmune skin diseases.

    Science.gov (United States)

    Edele, Fanny; Esser, Philipp R; Lass, Christian; Laszczyk, Melanie N; Oswald, Eva; Strüh, Christian M; Rensing-Ehl, Anne; Martin, Stefan F

    2007-12-01

    Allergic contact dermatitis is induced by chemicals or metal ions. A hallmark of this T cell mediated skin disease is the activation of the innate immune system by contact allergens. This immune response results in inflammation and is a prerequisite for the activation of the adaptive immune system with tissue-specific migration of effector and regulatory T cells. Recent studies have begun to address in detail the innate immune cells as well as the innate receptors on these cells and the associated signaling pathways which lead to skin inflammation. We review here recent findings regarding innate and adaptive immune responses and immune regulation of contact dermatitis and other skin diseases as well as recent developments towards an in vitro assessment of the allergenic potential of chemicals. The elucidation of the innate inflammatory pathways, cellular components and mediators will help to identify new drug targets for more efficient treatment of allergic contact dermatitis and hopefully also for its prevention.

  10. Adaptive response in frogs chronically exposed to low doses of ionizing radiation in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Audette-Stuart, M., E-mail: stuartm@aecl.ca [Environmental Technologies Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1P0 (Canada); Kim, S.B.; McMullin, D.; Festarini, A.; Yankovich, T.L.; Carr, J.; Mulpuru, S. [Environmental Technologies Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1P0 (Canada)

    2011-06-15

    Using the micronucleus assay, decreased levels of DNA damage were found after high dose ionizing radiation exposure of liver cells taken from frogs inhabiting a natural environment with above-background levels of ionizing radiation, compared to cells taken from frogs inhabiting background areas. The data obtained from a small number of animals suggest that stress present in the above-background environment could induce an adaptive response to ionizing radiation. This study did not reveal harmful effects of exposure to low levels of radioactivity. On the contrary, stress present in the above-background area may serve to enhance cellular defense mechanisms. - Highlights: > Frogs were collected from background and higher tritium level habitats. > The micronucleus assay was conducted on liver cells obtained from the frogs. > No detrimental effects were noted in frogs exposed to elevated tritium. > Adaptive responses were observed in frogs exposed to elevated tritium.

  11. Readapting the adaptive immune response - therapeutic strategies for atherosclerosis.

    Science.gov (United States)

    Sage, Andrew P; Mallat, Ziad

    2017-01-04

    Cardiovascular diseases remain a major global health issue, with the development of atherosclerosis as a major underlying cause. Our treatment of cardiovascular disease has improved greatly over the past three decades, but much remains to be done reduce disease burden. Current priorities include reducing atherosclerosis advancement to clinically significant stages and preventing plaque rupture or erosion. Inflammation and involvement of the adaptive immune system influences all these aspects and therefore is one focus for future therapeutic development. The atherosclerotic vascular wall is now recognized to be invaded from both sides (arterial lumen and adventitia), for better or worse, by the adaptive immune system. Atherosclerosis is also affected at several stages by adaptive immune responses, overall providing many opportunities to target these responses and to reduce disease progression. Protective influences that may be defective in diseased individuals include humoral responses to modified LDL and regulatory T cell responses. There are many strategies in development to boost these pathways in humans, including vaccine-based therapies. The effects of various existing adaptive immune targeting therapies, such as blocking critical co-stimulatory pathways or B cell depletion, on cardiovascular disease are beginning to emerge with important consequences for both autoimmune disease patients and the potential for wider use of such therapies. Entering the translation phase for adaptive immune targeting therapies is an exciting and promising prospect.

  12. Adaptation responses of crops to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Seino, Hiroshi [National Inst. of Agro-Environmental Sciences, Tsukuba, Ibaraki (Japan)

    1993-12-31

    Appreciable global climatic responses to increasing levels of atmospheric CO{sub 2} and other trace gases are expected to take place over the next 50 to 80 years. Increasing atmospheric concentrations of carbon dioxide and other greenhouse gases are producing or will produce changes in the climate of the Earth. In particular, numerous efforts of climate modeling project very substantial increase of surface air temperature. In addition to a general warming of the atmosphere, the possibility of increased summer dryness in the continental mid-latitudes has been suggested on the basis of both historical analogues and some General Circulation Model (GCM) studies. There are three types of effect of climatic change on agriculture: (1) the physiological (direct) effect of elevated levels of atmospheric CO{sub 2} on crop plants and weeds, (2) the effect of changes in parameters of climate (e.g., temperature, precipitation, and solar radiation) on plants and animals, and (3) the effects of climate-related rises in sea-level on land use. The direct effects of elevated CO{sub 2} are on photosynthesis and respiration and thereby on growth, and there are additional effects of increased CO{sub 2} on development, yield quality and stomatal aperture and water use. A doubling of CO{sub 2} increases the instantaneous photosynthetic rate by 30% to 100%, depending on the other environmental conditions, and reduce water requirements of plants by reducing transpiration (per unit leaf area) through reductions in stomatal aperture. A doubling of CO{sub 2} causes partial stomatal closure on both C{sub 3} and C{sub 4} plants (approximately a 40% decrease in aperture). In many experiments this results in reductions of transpiration of about 23% to 46%. However. there is considerable uncertainty over the magnitude of this in natural conditions.

  13. Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells

    Science.gov (United States)

    Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu

    2016-05-01

    This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials.

  14. Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus.

    Science.gov (United States)

    Ferguson, K A; Njap, F; Nicola, W; Skinner, F K; Campbell, S A

    2015-12-01

    Determining the biological details and mechanisms that are essential for the generation of population rhythms in the mammalian brain is a challenging problem. This problem cannot be addressed either by experimental or computational studies in isolation. Here we show that computational models that are carefully linked with experiment provide insight into this problem. Using the experimental context of a whole hippocampus preparation in vitro that spontaneously expresses theta frequency (3-12 Hz) population bursts in the CA1 region, we create excitatory network models to examine whether cellular adaptation bursting mechanisms could critically contribute to the generation of this rhythm. We use biologically-based cellular models of CA1 pyramidal cells and network sizes and connectivities that correspond to the experimental context. By expanding our mean field analyses to networks with heterogeneity and non all-to-all coupling, we allow closer correspondence with experiment, and use these analyses to greatly extend the range of parameter values that are explored. We find that our model excitatory networks can produce theta frequency population bursts in a robust fashion.Thus, even though our networks are limited by not including inhibition at present, our results indicate that cellular adaptation in pyramidal cells could be an important aspect for the occurrence of theta frequency population bursting in the hippocampus. These models serve as a starting framework for the inclusion of inhibitory cells and for the consideration of additional experimental features not captured in our present network models.

  15. Adaptation responses to climate change differ between global megacities

    Science.gov (United States)

    Georgeson, Lucien; Maslin, Mark; Poessinouw, Martyn; Howard, Steve

    2016-06-01

    Urban areas are increasingly at risk from climate change, with negative impacts predicted for human health, the economy and ecosystems. These risks require responses from cities to improve their resilience. Policymakers need to understand current adaptation spend to plan comprehensively and effectively. Through the measurement of spend in the newly defined `adaptation economy', we analyse current climate change adaptation efforts in ten megacities. In all cases, the adaptation economy remains a small part of the overall economy, representing a maximum of 0.33% of a city's gross domestic product (here referred to as GDPc). Differences in total spend are significant between cities in developed, emerging and developing countries, ranging from #15 million to #1,600 million. Comparing key subsectors, we demonstrate the differences in adaptation profiles. Developing cities have higher proportional spend on health and agriculture, whereas developed cities have higher spend on energy and water. Spend per capita and percentage of GDPc comparisons more clearly show disparities between cities. Developing country cities spend half the proportion of GDPc and significantly less per capita, suggesting that adaptation spend is driven by wealth rather than the number of vulnerable people. This indicates that current adaptation activities are insufficient in major population centres in developing and emerging economies.

  16. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress.

    Science.gov (United States)

    Naudi, Alba; Jove, Mariona; Ayala, Victoria; Cassanye, Anna; Serrano, Jose; Gonzalo, Hugo; Boada, Jordi; Prat, Joan; Portero-Otin, Manuel; Pamplona, Reinald

    2012-01-01

    Oxidative stress has been implicated in diabetes long-term complications. In this paper, we summarize the growing evidence suggesting that hyperglycemia-induced overproduction of superoxide by mitochondrial electron transport chain triggers a maladaptive response by affecting several metabolic and signaling pathways involved in the pathophysiology of cellular dysfunction and diabetic complications. In particular, it is our goal to describe physiological mechanisms underlying the mitochondrial free radical production and regulation to explain the oxidative stress derived from a high intracellular glucose concentration and the resulting maladaptive response that leads to a cellular dysfunction and pathological state. Finally, we outline potential therapies for diabetes focused to the prevention of mitochondrial oxidative damage.

  17. The Yin-Yang of DNA Damage Response: Roles in Tumorigenesis and Cellular Senescence

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    2013-01-01

    Full Text Available Senescent cells are relatively stable, lacking proliferation capacity yet retaining metabolic activity. In contrast, cancer cells are rather invasive and devastating, with uncontrolled proliferative capacity and resistance to cell death signals. Although tumorigenesis and cellular senescence are seemingly opposite pathological events, they are actually driven by a unified mechanism: DNA damage. Integrity of the DNA damage response (DDR network can impose a tumorigenesis barrier by navigating abnormal cells to cellular senescence. Compromise of DDR, possibly due to the inactivation of DDR components, may prevent cellular senescence but at the expense of tumor formation. Here we provide an overview of the fundamental role of DDR in tumorigenesis and cellular senescence, under the light of the Yin-Yang concept of Chinese philosophy. Emphasis is placed on discussing DDR outcome in the light of in vivo models. This information is critical as it can help make better decisions for clinical treatments of cancer patients.

  18. The Pupillary Orienting Response Predicts Adaptive Behavioral Adjustment after Errors.

    Directory of Open Access Journals (Sweden)

    Peter R Murphy

    Full Text Available Reaction time (RT is commonly observed to slow down after an error. This post-error slowing (PES has been thought to arise from the strategic adoption of a more cautious response mode following deployment of cognitive control. Recently, an alternative account has suggested that PES results from interference due to an error-evoked orienting response. We investigated whether error-related orienting may in fact be a pre-cursor to adaptive post-error behavioral adjustment when the orienting response resolves before subsequent trial onset. We measured pupil dilation, a prototypical measure of autonomic orienting, during performance of a choice RT task with long inter-stimulus intervals, and found that the trial-by-trial magnitude of the error-evoked pupil response positively predicted both PES magnitude and the likelihood that the following response would be correct. These combined findings suggest that the magnitude of the error-related orienting response predicts an adaptive change of response strategy following errors, and thereby promote a reconciliation of the orienting and adaptive control accounts of PES.

  19. Beyond Adapting to Climate Change: Embedding Adaptation in Responses to Multiple Threats and Stresses

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, Thomas J [ORNL; Kates, Dr. Robert W. [Independent Scholar, Bangor, Maine

    2010-01-01

    Climate change impacts are already being experienced in every region of the United States and every part of the world most severely in Arctic regions and adaptation is needed now. Although climate change adaptation research is still in its infancy, significant adaptation planning in the United States has already begun in a number of localities. This article seeks to broaden the adaptation effort by integrating it with broader frameworks of hazards research, sustainability science, and community and regional resilience. To extend the range of experience, we draw from ongoing case studies in the Southeastern United States and the environmental history of New Orleans to consider the multiple threats and stresses that all communities and regions experience. Embedding climate adaptation in responses to multiple threats and stresses helps us to understand climate change impacts, themselves often products of multiple stresses, to achieve community acceptance of needed adaptations as co-benefits of addressing multiple threats, and to mainstream the process of climate adaptation through the larger envelope of social relationships, communication channels, and broad-based awareness of needs for risk management that accompany community resilience.

  20. A Framework to Formulate Adaptivity for Adaptive e-Learning System Using User Response Theory

    Directory of Open Access Journals (Sweden)

    Maria Dominic

    2015-01-01

    Full Text Available These days different e-learning architecture provide different kinds of e-learning experiences due to “one size fits for all” concept. This is no way better than the traditional learning and does not exploit the technological advances. Thus the e-learning system began to evolve to adaptable e-learning systems which adapts or personalizes the learning experience of the learners. Systems infer the characteristics of the learners and identify the preferences of the learners and automatically generate personalized learning path and customize learning contents to the individuals needs. This process is known as adaptation and systems which adapt are known are adaptive systems. So the main objective of this research was to provide an adaptive e-learning system framework which personalizes the learning experience in an efficient way. In this paper a framework for adaptive e-learning system using user response theory is proposed to meet the research objectives identified in section 1.D.

  1. Dynamics of cellular immune responses in the acute phase of dengue virus infection.

    Science.gov (United States)

    Yoshida, Tomoyuki; Omatsu, Tsutomu; Saito, Akatsuki; Katakai, Yuko; Iwasaki, Yuki; Kurosawa, Terue; Hamano, Masataka; Higashino, Atsunori; Nakamura, Shinichiro; Takasaki, Tomohiko; Yasutomi, Yasuhiro; Kurane, Ichiro; Akari, Hirofumi

    2013-06-01

    In this study, we examined the dynamics of cellular immune responses in the acute phase of dengue virus (DENV) infection in a marmoset model. Here, we found that DENV infection in marmosets greatly induced responses of CD4/CD8 central memory T and NKT cells. Interestingly, the strength of the immune response was greater in animals infected with a dengue fever strain than in those infected with a dengue hemorrhagic fever strain of DENV. In contrast, when animals were re-challenged with the same DENV strain used for primary infection, the neutralizing antibody induced appeared to play a critical role in sterilizing inhibition against viral replication, resulting in strong but delayed responses of CD4/CD8 central memory T and NKT cells. The results in this study may help to better understand the dynamics of cellular and humoral immune responses in the control of DENV infection.

  2. The cellular response of Saccharomyces cerevisiae to multi-walled carbon nanotubes (MWCNTs

    Directory of Open Access Journals (Sweden)

    Chantelle L. Phillips

    2015-03-01

    Full Text Available Nanoparticles (NPs especially those of carbon nanotubes (CNTs have remarkable properties that are very desirable in various biological and biomedical applications. This has necessitated the rapid study of CNT toxicities, to augment their safe use, particularly, in yeast cells. The yeast cell; Saccharomyces cerevisiae is a widely used industrial and biological organism with very limited data regarding their cellular behaviour in NPs. The current study examines the cellular response of S. cerevisiae to MWCNTs. The CNTs were produced by the swirled floating catalytic chemical vapour deposition (SFCCVD method and covalently functionalised using 1,3-dipolar cycloaddition. The CNT properties such as size, surface area, quality and surface vibrations were characterized using TEM, SEM, BET, TGA and Raman spectroscopy, respectively. The cellular uptake was confirmed with a FITC functionalised MWCNTs using 1H NMR, SEM and TEM. The CNT concentrations of 2–40 μg/ml were used to determine the cellular response through cell growth phases and cell viability characteristics. The TEM and SEM analyses showed the production of MWCNTs with an average diameter of 53 ± 12 nm and a length of 2.5 ± 0.5 μm. The cellular uptake of FITC-MWCNTs showed 100% internalisation in the yeast cells. The growth curve responses to the MWCNT doses showed no significant differences at P > 0.05 on the growth rate and viability of the S. cerevisiae cells.

  3. Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution

    DEFF Research Database (Denmark)

    Utrilla, José; O'Brien, Edward J.; Chen, Ke

    2016-01-01

    Pleiotropic regulatory mutations affect diverse cellular processes, posing a challenge to our understanding of genotype-phenotype relationships across multiple biological scales. Adaptive laboratory evolution (ALE) allows for such mutations to be found and characterized in the context of clear...... selection pressures. Here, several ALE-selected single-mutation variants in RNA polymerase (RNAP) of Escherichia coli are detailed using an integrated multi-scale experimental and computational approach. While these mutations increase cellular growth rates in steady environments, they reduce tolerance...... to stress and environmental fluctuations. We detail structural changes in the RNAP that rewire the transcriptional machinery to rebalance proteome and energy allocation toward growth and away from several hedging and stress functions. We find that while these mutations occur in diverse locations in the RNAP...

  4. Cellular adaptation to nutrient deprivation: crosstalk between the mTORC1 and eIF2α signaling pathways and implications for autophagy.

    Science.gov (United States)

    Wengrod, Jordan C; Gardner, Lawrence B

    2015-01-01

    The hostile tumor microenvironment results in the generation of intracellular stresses including hypoxia and nutrient deprivation. In order to adapt to such conditions, the cell utilizes several stress-response mechanisms, including the attenuation of protein synthesis, the inhibition of cellular proliferation, and induction of autophagy. Autophagy leads to the degradation of cellular contents, including damaged organelles and mutant proteins, which the cell can then use as an alternate energy source. Two integral changes to the signaling milieu to promote such a response include inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and phosphorylation of eIF2α. This review will describe how conditions found in the tumor microenvironment regulate mTORC1 as well as eIF2α, the downstream impact of these modifications, and the implications in tumorigenesis. We will then discuss the remarkable similarities and overlapping function of these 2 signaling pathways, focusing on the response to amino acid deprivation, and present a new model involving crosstalk between them based on our recent work.

  5. Adaptive Patterns of Stress Responsivity: A Preliminary Investigation

    Science.gov (United States)

    Del Giudice, Marco; Hinnant, J. Benjamin; Ellis, Bruce J.; El-Sheikh, Mona

    2012-01-01

    The adaptive calibration model (ACM) is an evolutionary-developmental theory of individual differences in stress responsivity. In this article, we tested some key predictions of the ACM in a middle childhood sample (N = 256). Measures of autonomic nervous system activity across the sympathetic and parasympathetic branches validated the 4-pattern…

  6. Innate, adaptive and regulatory responses in schistosomiasis: Relationship to allergy

    NARCIS (Netherlands)

    Hartgers, F.C.; Smits, H.H.; Kleij, D. van der; Yazdanbakhsh, M.

    2006-01-01

    Helminth infections have profound effects on the immune system. Here, recent insights in the molecular interactions between schistosomes and the host are described with respect to adaptive but also with respect to innate immune responses. Furthermore, the different mechanisms of immune hyporesponsiv

  7. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi

    NARCIS (Netherlands)

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G.; Joosten, Leo A. B.

    2016-01-01

    Inhibition of autophagy increases the severity of murine Lyme arthritis and human adaptive immune responses against B. burgdorferi. We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known regardi

  8. Compensatory structural adaptive modifications of vagina in response to functional demand in goat.

    Science.gov (United States)

    Hussin, Amer M; Zaid, Nazih W; Hussain, S O

    2014-01-01

    Vaginal biopsies and smears were collected from ten adult local healthy goats. Routine histological methods were carried out on vaginal biopsies and then stained with PAS stain. The smears were stained with Methylene blue. All samples were inspected under light microscope. The present study found that many constituents of the wall of the vagina, which have an important functional role, were absent; among these were the vaginal glands, goblet cells, muscularis mucosa, and lymphatic nodules. On the other hand, vagina showed special compensatory histological mechanisms, namely, the deep epithelial folds, the well-developed germinated stratum basale, the apparent basement membrane, and the profuse defensive cells, such as neutrophils, macrophages, lymphocytes, plasma cells, and mast cells. The general stains of this study could not recognize dendritic cells although they play an important functional role. Moreover, the herein study declared also that the vaginal smears showing many adaptive cellular mechanisms among these were, the keratinization, the process of sheet formation that lines the vaginal lumen, the process of metachromasia which is related to the cellular activity in protein synthesis, keratin, and finally the presence of endogenous microorganisms. It was concluded that all the above cellular compensatory adaptive mechanisms may compensate the lacking vaginal constituents and act to raise the immune response of the vagina.

  9. A mathematical model representing cellular immune development and response to Salmonella of chicken intestinal tissue

    NARCIS (Netherlands)

    Schokker, D.; Bannink, A.; Smits, M.A.; Rebel, J.M.J.

    2013-01-01

    The aim of this study was to create a dynamic mathematical model of the development of the cellular branch of the intestinal immune system of poultry during the first 42 days of life and of its response towards an oral infection with Salmonella enterica serovar Enteritidis. The system elements were

  10. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust

    NARCIS (Netherlands)

    Zarcone, M.C.; Duistermaat, E.; Schadewijk, A. van; Jedynksa, A.D.; Hiemstra, P.S.; Kooter, I.M.

    2016-01-01

    Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust. Am J Physiol Lung Cell Mol Physiol 311: L111–L123, 2016. First published May 17, 2016; doi:10.1152/ajplung.00064.2016.—Diesel emissions are the main source of air pollution in urban areas, and diese

  11. Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells.

    Science.gov (United States)

    Park, Eun-Jung; Lee, Ah Young; Chang, Seung-Hee; Yu, Kyeong-Nam; Kim, Jae-Ho; Cho, Myung-Haing

    2014-01-03

    Abnormal accumulation of fatty acids triggers the harmful cellular response called lipotoxicity. In this study, we investigated the cellular response following accumulation of oleic acid (OA), a monounsaturated fatty acid, in human Chang liver cells. OA droplets were distributed freely in the cytoplasm and/or degraded within lysosomes. OA exposure increased ATP production and concomitantly dilated mitochondria. At 24h after OA exposure, cell viability decreased slightly and was coupled with a reduction in mitochondrial Ca(2+) concentration, the alteration in cell viability was also associated with the generation of reactive oxygen species and changes in the cell cycle. Moreover, OA treatment increased the expression of autophagy- and apoptotic cell death-related proteins in a dose-dependent manner. Furthermore, we investigated the role of p53, a tumor suppressor protein, in the cellular response elicited by OA accumulation. OA-induced changes in cell viability and ATP production were rescued to control levels when cells were pretreated with pifithrin-alpha (PTA), a p53 inhibitor. By contrast, the expressions of LC3-II and perilipin, proteins required for lipophagy, were down-regulated by PTA pretreatment. Taken together, our results suggest that p53 plays a key role in the cellular response elicited by OA accumulation in Chang liver cells.

  12. Cellular and humoral local immune responses in sheep experimentally infected with Oestrus ovis (Diptera: Oestridae).

    Science.gov (United States)

    Tabouret, Guillaume; Lacroux, Caroline; Andreoletti, Olivier; Bergeaud, Jean Paul; Hailu-Tolosa, Yacob; Hoste, Hervé; Prevot, Françoise; Grisez, Christelle; Dorchies, Philippe; Jacquiet, Philippe

    2003-01-01

    Cellular and humoral local responses were investigated following repetitive artificial Oestrus ovis infections in lambs. The presence of larvae induced a huge local recruitment of either leucocytes (T and B lymphocytes, macrophages) or granulocytes (eosinophils, mast cells and globule leucocytes). This cellular response was more pronounced in the ethmoid and sinus (development sites of second and third instar larvae) than in the septum or turbinates where first instar larvae migrate. Infected lambs produced Oestrus ovis specific IgG and IgA antibodies in their mucus. This local humoral response was mainly directed against larval salivary gland antigens and not against larval digestive tract antigens. Compared to the control animals, the sinusal mucosa of infected animals was extremely thickened and the epithelium exhibited hyperplasia, metaplasia and eosinophilic exocytosis. The possible roles of these local immune responses in the regulation of O. ovis larvae populations in sheep are discussed.

  13. Frequency Response Adaptive Control of a Refrigeration Cycle

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1989-01-01

    Full Text Available A technique for the adaptation of controller parameters in a single control loop based upon the estimation of frequency response parameters has been presented in an earlier paper. This paper contains an extension and a generalization of the first method and results in a more versatile solution which is applicable to a wider range of process characteristics. The application of this adaptive control technique is illustrated by a laboratory refrigeration cycle in which the evaporator pressure controls the speed of the compressor.

  14. Involvement of Noxa in mediating cellular ER stress responses to lytic virus infection

    OpenAIRE

    2011-01-01

    Noxa is a Bcl-2 homology domain-containing pro-apoptotic mitochondrial protein. Noxa mRNA and protein expression are upregulated by dsRNA or virus, and ectopic Noxa expression enhances cellular sensitivity to virus or dsRNA-induced apoptosis. Here we demonstrate that Noxa null baby mouse kidney (BMK) cells are deficient in normal cytopathic response to lytic viruses, and that reconstitution of the knockout cells with wild type Noxa restored normal cytopathic responses. Noxa regulation by viru...

  15. Global functional analyses of cellular responses to pore-forming toxins.

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Kao

    2011-03-01

    Full Text Available Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs. PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK pathways, one (p38 studied in detail and the other (JNK not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.

  16. Adaptive optics and phase diversity imaging for responsive space applications.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mark William; Wick, David Victor

    2004-11-01

    The combination of phase diversity and adaptive optics offers great flexibility. Phase diverse images can be used to diagnose aberrations and then provide feedback control to the optics to correct the aberrations. Alternatively, phase diversity can be used to partially compensate for aberrations during post-detection image processing. The adaptive optic can produce simple defocus or more complex types of phase diversity. This report presents an analysis, based on numerical simulations, of the efficiency of different modes of phase diversity with respect to compensating for specific aberrations during post-processing. It also comments on the efficiency of post-processing versus direct aberration correction. The construction of a bench top optical system that uses a membrane mirror as an active optic is described. The results of characterization tests performed on the bench top optical system are presented. The work described in this report was conducted to explore the use of adaptive optics and phase diversity imaging for responsive space applications.

  17. Cellular localization and adaptive changes of the cardiac delta opioid receptor system in an experimental model of heart failure in rats.

    Science.gov (United States)

    Treskatsch, Sascha; Feldheiser, Aarne; Shaqura, Mohammed; Dehe, Lukas; Habazettl, Helmut; Röpke, Torsten K; Shakibaei, Mehdi; Schäfer, Michael; Spies, Claudia D; Mousa, Shaaban A

    2016-02-01

    The role of the cardiac opioid system in congestive heart failure (CHF) is not fully understood. Therefore, this project investigated the cellular localization of delta opioid receptors (DOR) in left ventricle (LV) myocardium and adaptive changes in DOR and its endogenous ligand, the precursor peptide proenkephalin (PENK), during CHF. Following IRB approval, DOR localization was determined by radioligand binding using [H(3)]Naltrindole and by double immunofluorescence confocal analysis in the LV of male Wistar rats. Additionally, 28 days following an infrarenal aortocaval fistula (ACF) the extent of CHF and adaptions in left ventricular DOR and PENK expression were examined by hemodynamic measurements, RT-PCR, and Western blot. DOR specific membrane binding sites were identified in LV myocardium. DOR were colocalized with L-type Ca(2+)-channels (Cav1.2) as well as with intracellular ryanodine receptors (RyR) of the sarcoplasmatic reticulum. Following ACF severe congestive heart failure developed in all rats and was accompanied by up-regulation of DOR and PENK on mRNA as well as receptor proteins representing consecutive adaptations. These findings might suggest that the cardiac delta opioid system possesses the ability to play a regulatory role in the cardiomyocyte calcium homeostasis, especially in response to heart failure.

  18. Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation

    Science.gov (United States)

    2012-01-01

    Background Biogeochemical elemental cycling is driven by primary production of biomass via phototrophic phytoplankton growth, with 40% of marine productivity being assigned to diatoms. Phytoplankton growth is widely limited by the availability of iron, an essential component of the photosynthetic apparatus. The oceanic diatom Thalassiosira oceanica shows a remarkable tolerance to low-iron conditions and was chosen as a model for deciphering the cellular response upon shortage of this essential micronutrient. Results The combined efforts in genomics, transcriptomics and proteomics reveal an unexpected metabolic flexibility in response to iron availability for T. oceanica CCMP1005. The complex response comprises cellular retrenchment as well as remodeling of bioenergetic pathways, where the abundance of iron-rich photosynthetic proteins is lowered, whereas iron-rich mitochondrial proteins are preserved. As a consequence of iron deprivation, the photosynthetic machinery undergoes a remodeling to adjust the light energy utilization with the overall decrease in photosynthetic electron transfer complexes. Conclusions Beneficial adaptations to low-iron environments include strategies to lower the cellular iron requirements and to enhance iron uptake. A novel contribution enhancing iron economy of phototrophic growth is observed with the iron-regulated substitution of three metal-containing fructose-bisphosphate aldolases involved in metabolic conversion of carbohydrates for enzymes that do not contain metals. Further, our data identify candidate components of a high-affinity iron-uptake system, with several of the involved genes and domains originating from duplication events. A high genomic plasticity, as seen from the fraction of genes acquired through horizontal gene transfer, provides the platform for these complex adaptations to a low-iron world. PMID:22835381

  19. The adaptive response of jaw muscles to varying functional demands.

    Science.gov (United States)

    Grünheid, Thorsten; Langenbach, Geerling E J; Korfage, Joannes A M; Zentner, Andrej; van Eijden, Theo M G J

    2009-12-01

    Jaw muscles are versatile entities that are able to adapt their anatomical characteristics, such as size, cross-sectional area, and fibre properties, to altered functional demands. The dynamic nature of muscle fibres allows them to change their phenotype to optimize the required contractile function while minimizing energy use. Changes in these anatomical parameters are associated with changes in neuromuscular activity as the pattern of muscle activation by the central nervous system plays an important role in the modulation of muscle properties. This review summarizes the adaptive response of jaw muscles to various stimuli or perturbations in the orofacial system and addresses general changes in muscles as they adapt, specific adaptive changes in jaw muscles under various physiologic and pathologic conditions, and their adaptive response to non-surgical and surgical therapeutic interventions. Although the jaw muscles are used concertedly in the masticatory system, their adaptive changes are not always uniform and vary with the nature, intensity, and duration of the stimulus. In general, stretch, increases neuromuscular activity, and resistance training result in hypertrophy, elicits increases in mitochondrial content and cross-sectional area of the fibres, and may change the fibre-type composition of the muscle towards a larger percentage of slow-type fibres. In contrast, changes in the opposite direction occur when neuromuscular activity is reduced, the muscle is immobilized in a shortened position, or paralysed. The broad range of stimuli that affect the properties of jaw muscles might help explain the large variability in the anatomical and physiological characteristics found among individuals, muscles, and muscle portions.

  20. Adaptive thermoregulation in endotherms may alter responses to climate change.

    Science.gov (United States)

    Boyles, Justin G; Seebacher, Frank; Smit, Ben; McKechnie, Andrew E

    2011-11-01

    Climate change is one of the major issues facing natural populations and thus a focus of recent research has been to predict the responses of organisms to these changes. Models are becoming more complex and now commonly include physiological traits of the organisms of interest. However, endothermic species have received less attention than have ectotherms in these mechanistic models. Further, it is not clear whether responses of endotherms to climate change are modified by variation in thermoregulatory characteristics associated with phenotypic plasticity and/or adaptation to past selective pressures. Here, we review the empirical data on thermal adaptation and acclimatization in endotherms and discuss how those factors may be important in models of responses to climate change. We begin with a discussion of why thermoregulation and thermal sensitivity at high body temperatures should be co-adapted. Importantly, we show that there is, in fact, considerable variation in the ability of endotherms to tolerate high body temperatures and/or high environmental temperatures, but a better understanding of this variation will likely be critical for predicting responses to future climatic scenarios. Next, we discuss why variation in thermoregulatory characteristics should be considered when modeling the effects of climate change on heterothermic endotherms. Finally, we review some biophysical and biochemical factors that will limit adaptation and acclimation in endotherms. We consider both long-term, directional climate change and short-term (but increasingly common) anomalies in climate such as extreme heat waves and we suggest areas of important future research relating to both our basic understanding of endothermic thermoregulation and the responses of endotherms to climate change.

  1. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-09-01

    Full Text Available Silver nanoparticles (AgNPs have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with

  2. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

    Science.gov (United States)

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives

  3. Immunologic Monitoring of Cellular Responses by Dendritic/Tumor Cell Fusion Vaccines

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    2011-01-01

    Full Text Available Although dendritic cell (DC- based cancer vaccines induce effective antitumor activities in murine models, only limited therapeutic results have been obtained in clinical trials. As cancer vaccines induce antitumor activities by eliciting or modifying immune responses in patients with cancer, the Response Evaluation Criteria in Solid Tumors (RECIST and WHO criteria, designed to detect early effects of cytotoxic chemotherapy in solid tumors, may not provide a complete assessment of cancer vaccines. The problem may, in part, be resolved by carrying out immunologic cellular monitoring, which is one prerequisite for rational development of cancer vaccines. In this review, we will discuss immunologic monitoring of cellular responses for the evaluation of cancer vaccines including fusions of DC and whole tumor cell.

  4. The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking

    DEFF Research Database (Denmark)

    Francavilla, Chiara; Cattaneo, Paola; Berezin, Vladimir

    2009-01-01

    different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various...... effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting...... in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor...

  5. Function of Membrane Rafts in Viral Lifecycles and Host Cellular Response

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    2011-01-01

    Full Text Available Membrane rafts are small (10–200 nm sterol- and sphingolipid-enriched domains that compartmentalize cellular processes. Membrane rafts play an important role in viral infection cycles and viral virulence. Viruses are divided into four main classes, enveloped DNA virus, enveloped RNA virus, nonenveloped DNA virus, and nonenveloped RNA virus. General virus infection cycle is also classified into two sections, the early stage (entry process and the late stage (assembly, budding, and release processes of virus particles. In the viral cycle, membrane rafts act as a scaffold of many cellular signal transductions, which are associated with symptoms caused by viral infections. In this paper, we describe the functions of membrane rafts in viral lifecycles and host cellular response according to each virus classification, each stage of the virus lifecycle, and each virus-induced signal transduction.

  6. Landowner response to wildfire risk: Adaptation, mitigation or doing nothing.

    Science.gov (United States)

    Gan, Jianbang; Jarrett, Adam; Johnson Gaither, Cassandra

    2015-08-15

    Wildfire has brought about ecological, economic, and social consequences that engender human responses in many parts of the world. How to respond to wildfire risk is a common challenge across the globe particularly in areas where lands are controlled by many small private owners because effective wildfire prevention and protection require coordinated efforts of neighboring stakeholders. We explore (i) wildfire response strategies adopted by family forestland owners in the southern United States, one of the most important and productive forest regions in the world, through a landowner survey; and (ii) linkages between the responses of these landowners and their characteristics via multinomial logistic regression. We find that landowners used diverse strategies to respond to wildfire risk, with the most popular responses being "doing nothing" and combined adaptation and mitigation, followed by adaptation or mitigation alone. Landowners who had lost properties to wildfire, lived on their forestlands, had a forest management plan, and were better educated were more likely to proactively respond to wildfire risk. Our results indicate the possibility to enhance the effectiveness of collective action of wildfire risk response by private forestland owners and to coordinate wildfire response with forest conservation and certification efforts. These findings shed new light on engaging private landowners in wildfire management in the study region and beyond.

  7. Bioanalytical evidence that chemicals in tattoo ink can induce adaptive stress responses.

    Science.gov (United States)

    Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2015-10-15

    Tattooing is becoming increasingly popular, particularly amongst young people. However, tattoo inks contain a complex mixture of chemical impurities that may pose a long-term risk for human health. As a first step towards the risk assessment of these complex mixtures we propose to assess the toxicological hazard potential of tattoo ink chemicals with cell-based bioassays. Targeted modes of toxic action and cellular endpoints included cytotoxicity, genotoxicity and adaptive stress response pathways. The studied tattoo inks, which were extracted with hexane as a proxy for the bioavailable fraction, caused effects in all bioassays, with the red and yellow tattoo inks having the greatest response, particularly inducing genotoxicity and oxidative stress response endpoints. Chemical analysis revealed the presence of polycyclic aromatic hydrocarbons in the tested black tattoo ink at concentrations twice the recommended level. The detected polycyclic aromatic hydrocarbons only explained 0.06% of the oxidative stress response of the black tattoo ink, thus the majority of the effect was caused by unidentified components. The study indicates that currently available tattoo inks contain components that induce adaptive stress response pathways, but to evaluate the risk to human health further work is required to understand the toxicokinetics of tattoo ink chemicals in the body.

  8. Sequential monitoring of response-adaptive randomized clinical trials

    CERN Document Server

    Zhu, Hongjian; 10.1214/10-AOS796

    2010-01-01

    Clinical trials are complex and usually involve multiple objectives such as controlling type I error rate, increasing power to detect treatment difference, assigning more patients to better treatment, and more. In literature, both response-adaptive randomization (RAR) procedures (by changing randomization procedure sequentially) and sequential monitoring (by changing analysis procedure sequentially) have been proposed to achieve these objectives to some degree. In this paper, we propose to sequentially monitor response-adaptive randomized clinical trial and study it's properties. We prove that the sequential test statistics of the new procedure converge to a Brownian motion in distribution. Further, we show that the sequential test statistics asymptotically satisfy the canonical joint distribution defined in Jennison and Turnbull (\\citeyearJT00). Therefore, type I error and other objectives can be achieved theoretically by selecting appropriate boundaries. These results open a door to sequentially monitor res...

  9. Ultra-Reliable Link Adaptation for Downlink MISO Transmission in 5G Cellular Networks

    Directory of Open Access Journals (Sweden)

    Udesh Oruthota

    2016-03-01

    Full Text Available This paper discusses robust link adaptation for a downlink precoded multiple input single output system, for guaranteeing ultra-reliable (99.999% transmissions to mobile users (e.g., slowly moving machines in a factory served by a small cell network. The proposed technique compensates the effect of inaccurate channel state information (CSI caused by user mobility, as well as the variation of precoders in the interfering cells. Both of these impairments translate into instability of the received signal-to-noise plus interference ratios (SINRs, and may lead to CSI mispredictions and potentially erroneous transmissions. We show that, by knowing the statistics of the propagation channels and the precoders variations, it is possible to compute a backoff that guarantees robust link adaptation. The backoff value is based on the statistics of realized SINR, and is consequently used to adapt the transmissions according to current channel state. Theoretical analysis accompanied by simulation results show that the proposed approach is suitable for attaining 5G ultra-reliability targets in realistic settings.

  10. Biological Bases for Radiation Adaptive Responses in the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby R. [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Lin, Yong [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Wilder, Julie [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Belinsky, Steven [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States)

    2015-03-01

    Our main research objective was to determine the biological bases for low-dose, radiation-induced adaptive responses in the lung and use the knowledge gained to produce an improved risk model for radiation-induced lung cancer that accounts for activated natural protection, genetic influences, and the role of epigenetic regulation (epiregulation). Currently, low-dose radiation risk assessment is based on the linear-no-threshold hypothesis which now is known to be unsupported by a large volume of data.

  11. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    Energy Technology Data Exchange (ETDEWEB)

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  12. Innate and adaptive cellular immunity in flavivirus-naïve human recipients of a live-attenuated dengue serotype 3 vaccine produced in Vero cells (VDV3).

    Science.gov (United States)

    Sanchez, Violette; Gimenez, Sophie; Tomlinson, Brian; Chan, Paul K S; Thomas, G Neil; Forrat, Remi; Chambonneau, Laurent; Deauvieau, Florence; Lang, Jean; Guy, Bruno

    2006-06-05

    VDV3, a clonal derivative of the Mahidol live-attenuated dengue 3 vaccine was prepared in Vero cells. Despite satisfactory preclinical evaluation, VDV3 was reactogenic in humans. We explored whether immunological mechanisms contributed to this outcome by monitoring innate and adaptive cellular immune responses for 28 days after vaccination. While no variations were seen in serum IL12 or TNFalpha levels, a high IFNgamma secretion was detected from Day 8, concomitant to IFNalpha, followed by IL10. Specific Th1 and CD8 responses were detected on Day 28, with high IFNgamma/TNFalpha ratios. Vaccinees exhibited very homogeneous class I HLA profiles, and a new HLA B60-restricted CD8 epitope was identified in NS3. We propose that, among other factors, adaptive immunity may have contributed to reactogenicity, even after this primary vaccination. In addition, the unexpected discordance observed between preclinical results and clinical outcome in humans led us to reconsider some of our preclinical acceptance criteria. Lessons learned from these results will help us to pursue the development of safe and immunogenic vaccines.

  13. The involvement of XPC protein in the cisplatin DNA damaging treatment-mediated cellular response

    Institute of Scientific and Technical Information of China (English)

    Gan WANG; Alan DOMBKOWSKI; Lynn CHUANG; Xiao Xin S XU

    2004-01-01

    Recognition of DNA damage is a critical step for DNA damage-mediated cellular response. XPC is an important DNA damage recognition protein involved in nucleotide excision repair (NER). We have studied the XPC protein in cisplatin DNA damaging treatment-mediated cellular response. Comparison of the microarray data from both normal and XPCdefective human fibroblasts identified 861 XPC-responsive genes in the cisplatin treatment (with minimum fold change≥1.5).The cell cycle and cell proliferation-related genes are the most affected genes by the XPC defect in the treatment. Many other cellular function genes, especially the DNA repair and signal transduction-related genes, were also affected by the XPC defect in the treatment. To validate the microarray data, the transcription levels of some microarray-identified genes were also determined by an RT-PCR based real time PCR assay. The real time PCR results are consistent with the microarray data for most of the tested genes, indicating the reliability of the microarray data. To further validate the microarray data, the cisplatin treatment-mediated caspase-3 activation was also determined. The Western blot hybridization results indicate that the XPC defect greatly attenuates the cisplatin treatment-mediated Caspase-3 activation. We elucidated the role of p53 protein in the XPC protein DNA damage recognition-mediated signaling process. The XPC defect reduces the cisplatin treatment-mediated p53 response. These results suggest that the XPC protein plays an important role in the cisplatin treatment-mediated cellular response. It may also suggest a possible mechanism of cancer cell drug resistance.

  14. Adaptive immune response during hepatitis C virus infection.

    Science.gov (United States)

    Larrubia, Juan Ramón; Moreno-Cubero, Elia; Lokhande, Megha Uttam; García-Garzón, Silvia; Lázaro, Alicia; Miquel, Joaquín; Perna, Cristian; Sanz-de-Villalobos, Eduardo

    2014-04-07

    Hepatitis C virus (HCV) infection affects about 170 million people worldwide and it is a major cause of liver cirrhosis and hepatocellular carcinoma. HCV is a hepatotropic non-cytopathic virus able to persist in a great percentage of infected hosts due to its ability to escape from the immune control. Liver damage and disease progression during HCV infection are driven by both viral and host factors. Specifically, adaptive immune response carries out an essential task in controlling non-cytopathic viruses because of its ability to recognize infected cells and to destroy them by cytopathic mechanisms and to eliminate the virus by non-cytolytic machinery. HCV is able to impair this response by several means such as developing escape mutations in neutralizing antibodies and in T cell receptor viral epitope recognition sites and inducing HCV-specific cytotoxic T cell anergy and deletion. To impair HCV-specific T cell reactivity, HCV affects effector T cell regulation by modulating T helper and Treg response and by impairing the balance between positive and negative co-stimulatory molecules and between pro- and anti-apoptotic proteins. In this review, the role of adaptive immune response in controlling HCV infection and the HCV mechanisms to evade this response are reviewed.

  15. Adaptive call admission control and resource allocation in multi server wireless/cellular network

    Science.gov (United States)

    Jain, Madhu; Mittal, Ragini

    2016-11-01

    The ever increasing demand of the subscribers has put pressure on the capacity of wireless networks around the world. To utilize the scare resources, in the present paper we propose an optimal allocation scheme for an integrated wireless/cellular model with handoff priority and handoff guarantee services. The suggested algorithm optimally allocates the resources in each cell and dynamically adjust threshold to control the admission. To give the priority to handoff calls over the new calls, the provision of guard channels and subrating scheme is taken into consideration. The handoff voice call may balk and renege from the system while waiting in the buffer. An iterative algorithm is implemented to generate the arrival rate of the handoff calls in each cell. Various performance indices are established in term of steady state probabilities. The sensitivity analysis has also been carried out to examine the tractability of algorithms and to explore the effects of system descriptors on the performance indices.

  16. Cellular resolution volumetric in vivo retinal imaging with adaptive optics–optical coherence tomography◊

    Science.gov (United States)

    Zawadzki, Robert J.; Choi, Stacey S.; Fuller, Alfred R.; Evans, Julia W.; Hamann, Bernd; Werner, John S.

    2009-01-01

    Ultrahigh-resolution adaptive optics–optical coherence tomography (UHR-AO-OCT) instrumentation allowing monochromatic and chromatic aberration correction was used for volumetric in vivo retinal imaging of various retinal structures including the macula and optic nerve head (ONH). Novel visualization methods that simplify AO-OCT data viewing are presented, and include co-registration of AO-OCT volumes with fundus photography and stitching of multiple AO-OCT sub-volumes to create a large field of view (FOV) high-resolution volume. Additionally, we explored the utility of Interactive Science Publishing by linking all presented AO-OCT datasets with the OSA ISP software. PMID:19259248

  17. Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography.

    Science.gov (United States)

    Zawadzki, Robert J; Choi, Stacey S; Fuller, Alfred R; Evans, Julia W; Hamann, Bernd; Werner, John S

    2009-03-02

    Ultrahigh-resolution adaptive optics-optical coherence tomography (UHR-AO-OCT) instrumentation allowing monochromatic and chromatic aberration correction was used for volumetric in vivo retinal imaging of various retinal structures including the macula and optic nerve head (ONH). Novel visualization methods that simplify AO-OCT data viewing are presented, and include co-registration of AO-OCT volumes with fundus photography and stitching of multiple AO-OCT sub-volumes to create a large field of view (FOV) high-resolution volume. Additionally, we explored the utility of Interactive Science Publishing by linking all presented AO-OCT datasets with the OSA ISP software.

  18. A cellular automaton model adapted to sandboxes to simulate the transport of solutes

    Science.gov (United States)

    Lora, Boris; Donado, Leonardo; Castro, Eduardo; Bayuelo, Alfredo

    2016-04-01

    The increasingly use of groundwater sources for human consumption and the growth of the levels of these hydric sources contamination make imperative to reach a deeper understanding how the contaminants are transported by the water, in particular through a heterogeneous porous medium. Accordingly, the present research aims to design a model, which simulates the transport of solutes through a heterogeneous porous medium, using cellular automata. Cellular automata (CA) are a class of spatially (pixels) and temporally discrete mathematical systems characterized by local interaction (neighborhoods). The pixel size and the CA neighborhood were determined in order to reproduce accurately the solute behavior (Ilachinski, 2001). For the design and corresponding validation of the CA model were developed different conservative tracer tests using a sandbox packed heterogeneously with a coarse sand (size # 20 grain diameter 0,85 to 0,6 mm) and clay. We use Uranine and a saline solution with NaCl as a tracer which were measured taking snapshots each 20 seconds. A calibration curve (pixel intensity Vs Concentration) was used to obtain concentration maps. The sandbox was constructed of acrylic (caliber 0,8 cms) with 70 x 45 x 4 cms of dimensions. The "sandbox" had a grid of 35 transversal holes with a diameter of 4 mm each and an uniform separation from one to another of 10 cms. To validate the CA-model it was used a metric consisting in rating the number of correctly predicted pixels over the total per image throughout the entire test run. The CA-model shows that calibrations of pixels and neighborhoods allow reaching results over the 60 % of correctly predictions usually. This makes possible to think that the application of the CA- model could be useful in further researches regarding the transport of contaminants in hydrogeology.

  19. Innate and adaptive immune responses in HCV infections.

    Science.gov (United States)

    Heim, Markus H; Thimme, Robert

    2014-11-01

    Hepatitis C virus has been identified a quarter of a decade ago as a leading cause of chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma. Only a minority of patients can clear the virus spontaneously during acute infection. Elimination of HCV during acute infection correlates with a rapid induction of innate, especially interferon (IFN) induced genes, and a delayed induction of adaptive immune responses. However, the majority of patients is unable to clear the virus and develops viral persistence in face of an ongoing innate and adaptive immune response. The virus has developed several strategies to escape these immune responses. For example, to escape innate immunity, the HCV NS3/4A protease can efficiently cleave and inactivate two important signalling molecules in the sensory pathways that react to HCV pathogen-associated molecular patterns (PAMPs) to induce IFNs, i.e., the mitochondrial anti-viral signalling protein (MAVS) and the Toll-IL-1 receptor-domain-containing adaptor-inducing IFN-β (TRIF). Despite these escape mechanisms, IFN-stimulated genes (ISGs) are induced in a large proportion of patients with chronic infection. Of note, chronically HCV infected patients with constitutive IFN-stimulated gene (ISG) expression have a poor response to treatment with pegylated IFN-α (PegIFN-α) and ribavirin. The mechanisms that protect HCV from IFN-mediated innate immune reactions are not entirely understood, but might involve blockade of ISG protein translation at the ribosome, localization of viral replication to cell compartments that are not accessible to anti-viral IFN-stimulated effector systems, or direct antagonism of effector systems by viral proteins. Escape from adaptive immune responses can be achieved by emergence of viral escape mutations that avoid recognition by antibodies and T cells. In addition, chronic infection is characterized by the presence of functionally and phenotypically altered NK and T cell responses that

  20. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection.

    Science.gov (United States)

    Yang, Hairu; Kronhamn, Jesper; Ekström, Jens-Ola; Korkut, Gül Gizem; Hultmark, Dan

    2015-12-01

    The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection.

  1. Review on Impedance Detection of Cellular Responses in Micro/Nano Environment

    Directory of Open Access Journals (Sweden)

    Kin Fong Lei

    2014-01-01

    Full Text Available In general, cell culture-based assays, investigations of cell number, viability, and metabolic activities during culture periods, are commonly performed to study the cellular responses under various culture conditions explored. Quantification of cell numbers can provide the information of cell proliferation. Cell viability study can understand the percentage of cell death under a specific tested substance. Monitoring of the metabolic activities is an important index for the study of cell physiology. Based on the development of microfluidic technology, microfluidic systems incorporated with impedance measurement technique, have been reported as a new analytical approach for cell culture-based assays. The aim of this article is to review recent developments on the impedance detection of cellular responses in micro/nano environment. These techniques provide an effective and efficient technique for cell culture-based assays.

  2. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    Directory of Open Access Journals (Sweden)

    Lingling Zhang

    Full Text Available Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  3. Establishing cellular stress response profiles as biomarkers of homeodynamics, health, and hormesis

    OpenAIRE

    Demirovic, Dino; Rattan, Suresh

    2013-01-01

    Aging is the progressive shrinkage of the homeodynamic space. A crucial component of the homeodynamic space is the stress response (SR), by virtue of which a living system senses disturbance and initiates a series of events for maintenance, repair, adaptation, remodeling and survival. Here we discuss the main intracellular SR pathways in human cells, and argue for the need to define and establish the immediate and delayed stress response profiles (SRP) during aging. Such SRP are required to b...

  4. Cytokine, antibody and proliferative cellular responses elicited by Taenia solium calreticulin upon experimental infection in hamsters.

    Science.gov (United States)

    Mendlovic, Fela; Cruz-Rivera, Mayra; Ávila, Guillermina; Vaughan, Gilberto; Flisser, Ana

    2015-01-01

    Taenia solium causes two diseases in humans, cysticercosis and taeniosis. Tapeworm carriers are the main risk factor for neurocysticercosis. Limited information is available about the immune response elicited by the adult parasite, particularly the induction of Th2 responses, frequently associated to helminth infections. Calreticulin is a ubiquitous, multifunctional protein involved in cellular calcium homeostasis, which has been suggested to play a role in the regulation of immune responses. In this work, we assessed the effect of recombinant T. solium calreticulin (rTsCRT) on the cytokine, humoral and cellular responses upon experimental infection in Syrian Golden hamsters (Mesocricetus auratus). Animals were infected with T. solium cysticerci and euthanized at different times after infection. Specific serum antibodies, proliferative responses in mesenteric lymph nodes and spleen cells, as well as cytokines messenger RNA (mRNA) were analyzed. The results showed that one third of the infected animals elicited anti-rTsCRT IgG antibodies. Interestingly, mesenteric lymph node (MLN) cells from either infected or non-infected animals did not proliferate upon in vitro stimulation with rTsCRT. Additionally, stimulation with a tapeworm crude extract resulted in increased expression of IL-4 and IL-5 mRNA. Upon stimulation, rTsCRT increased the expression levels of IL-10 in spleen and MLN cells from uninfected and infected hamsters. The results showed that rTsCRT favors a Th2-biased immune response characterized by the induction of IL-10 in mucosal and systemic lymphoid organs. Here we provide the first data on the cytokine, antibody and cellular responses to rTsCRT upon in vitro stimulation during taeniasis.

  5. Cytokine, antibody and proliferative cellular responses elicited by Taenia solium calreticulin upon experimental infection in hamsters.

    Directory of Open Access Journals (Sweden)

    Fela Mendlovic

    Full Text Available Taenia solium causes two diseases in humans, cysticercosis and taeniosis. Tapeworm carriers are the main risk factor for neurocysticercosis. Limited information is available about the immune response elicited by the adult parasite, particularly the induction of Th2 responses, frequently associated to helminth infections. Calreticulin is a ubiquitous, multifunctional protein involved in cellular calcium homeostasis, which has been suggested to play a role in the regulation of immune responses. In this work, we assessed the effect of recombinant T. solium calreticulin (rTsCRT on the cytokine, humoral and cellular responses upon experimental infection in Syrian Golden hamsters (Mesocricetus auratus. Animals were infected with T. solium cysticerci and euthanized at different times after infection. Specific serum antibodies, proliferative responses in mesenteric lymph nodes and spleen cells, as well as cytokines messenger RNA (mRNA were analyzed. The results showed that one third of the infected animals elicited anti-rTsCRT IgG antibodies. Interestingly, mesenteric lymph node (MLN cells from either infected or non-infected animals did not proliferate upon in vitro stimulation with rTsCRT. Additionally, stimulation with a tapeworm crude extract resulted in increased expression of IL-4 and IL-5 mRNA. Upon stimulation, rTsCRT increased the expression levels of IL-10 in spleen and MLN cells from uninfected and infected hamsters. The results showed that rTsCRT favors a Th2-biased immune response characterized by the induction of IL-10 in mucosal and systemic lymphoid organs. Here we provide the first data on the cytokine, antibody and cellular responses to rTsCRT upon in vitro stimulation during taeniasis.

  6. Opt2 mediates the exposure of phospholipids during cellular adaptation to altered lipid asymmetry.

    Science.gov (United States)

    Yamauchi, Saori; Obara, Keisuke; Uchibori, Kenya; Kamimura, Akiko; Azumi, Kaoru; Kihara, Akio

    2015-01-01

    Plasma membrane lipid asymmetry is important for various membrane-associated functions and is regulated by membrane proteins termed flippases and floppases. The Rim101 pathway senses altered lipid asymmetry in the yeast plasma membrane. The mutant lem3Δ cells, in which lipid asymmetry is disturbed owing to the inactivation of the plasma membrane flippases, showed a severe growth defect when the Rim101 pathway was impaired. To identify factors involved in the Rim101-pathway-dependent adaptation to altered lipid asymmetry, we performed DNA microarray analysis and found that Opt2 induced by the Rim101 pathway plays an important role in the adaptation to altered lipid asymmetry. Biochemical investigation of Opt2 revealed its localization to the plasma membrane and the Golgi, and provided several lines of evidence for the Opt2-mediated exposure of phospholipids. In addition, Opt2 was found to be required for the maintenance of vacuolar morphology and polarized cell growth. These results suggest that Opt2 is a novel factor involved in cell homeostasis by regulating lipid asymmetry.

  7. Bayesian response-adaptive designs for basket trials.

    Science.gov (United States)

    Ventz, Steffen; Barry, William T; Parmigiani, Giovanni; Trippa, Lorenzo

    2017-02-17

    We develop a general class of response-adaptive Bayesian designs using hierarchical models, and provide open source software to implement them. Our work is motivated by recent master protocols in oncology, where several treatments are investigated simultaneously in one or multiple disease types, and treatment efficacy is expected to vary across biomarker-defined subpopulations. Adaptive trials such as I-SPY-2 (Barker et al., 2009) and BATTLE (Zhou et al., 2008) are special cases within our framework. We discuss the application of our adaptive scheme to two distinct research goals. The first is to identify a biomarker subpopulation for which a therapy shows evidence of treatment efficacy, and to exclude other subpopulations for which such evidence does not exist. This leads to a subpopulation-finding design. The second is to identify, within biomarker-defined subpopulations, a set of cancer types for which an experimental therapy is superior to the standard-of-care. This goal leads to a subpopulation-stratified design. Using simulations constructed to faithfully represent ongoing cancer sequencing projects, we quantify the potential gains of our proposed designs relative to conventional non-adaptive designs.

  8. Metal oxide nanoparticles interact with immune cells and activate different cellular responses

    OpenAIRE

    Simón-Vázquez R; Lozano-Fernández T; Dávila-Grana A; González-Fernández A

    2016-01-01

    Rosana Simón-Vázquez, Tamara Lozano-Fernández, Angela Dávila-Grana, Africa González-Fernández Immunology Laboratory, Biomedical Research Center (CINBIO) and Institute of Biomedical Research of Ourense-Pontevedra-Vigo (IBI), University of Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra, Spain Abstract: Besides cell death, nanoparticles (Nps) can induce other cellular responses such as inflammation. The potential immune respon...

  9. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    OpenAIRE

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested o...

  10. Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain

    OpenAIRE

    Martin, David A.; Nichols, Charles D.

    2016-01-01

    There has recently been a resurgence of interest in psychedelics, substances that profoundly alter perception and cognition and have recently demonstrated therapeutic efficacy to treat anxiety, depression, and addiction in the clinic. The receptor mechanisms that drive their molecular and behavioral effects involve activation of cortical serotonin 5-HT2A receptors, but the responses of specific cellular populations remain unknown. Here, we provide evidence that a small subset of 5-HT2A-expres...

  11. A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection

    Science.gov (United States)

    Korpusik, Adam

    2017-02-01

    We present a nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. The main advantage of this approach is that it preserves the essential qualitative features of the original continuous model (non-negativity and boundedness of the solution, equilibria and their stability conditions), while being easy to implement. All of the qualitative features are preserved independently of the chosen step-size. Numerical simulations of our approach and comparison with other conventional simulation methods are presented.

  12. BYSTANDERS, ADAPTIVE RESPONSES AND GENOMIC INSTABILITY - POTENTIAL MODIFIERS OF LOW-DOSE CANCER RESPONSES.

    Science.gov (United States)

    Bystanders, Adaptive Responses and Genomic Instability -Potential Modifiers ofLow-DoseCancer Responses.There has been a concerted effort in the field of radiation biology to better understand cellularresponses that could have an impact on the estin1ation of cancer...

  13. In vivo and in vitro cellular response to PEG-based hydrogels for wound repair

    Science.gov (United States)

    Waldeck, Heather

    Biomaterials are continuously being explored as a means to support, improve, or influence wound healing processes. Understanding the determining factors controlling the host response to biomaterials is crucial in developing strategies to employ materials for biomedical uses. In order to evaluate the host response to poly(ethylene glycol) (PEG)-based hydrogels, both in vivo and in vitro studies were performed to determine its efficacy as a dermal wound treatment and to investigate the mechanisms controlling cell-material interaction, respectively. The results of an in vivo study using a full thickness wound in a rat model demonstrated that both soluble and immobilized bioactive factors could be incorporated into a PEG-based semi-interpenetrating network (sIPN) to enhance the rate and the quality of dermal wound healing. To gain a better understanding of the results observed in vivo, in vitro studies were then conducted to examine the dynamics and mechanisms of the cell-material interaction. Degradation of the sIPN was explored as an influential factor in both mediating cellular response and controlling solute transport from the material. As degradation through gelatin dissolution could be influenced by simple alterations to the material formulation, these results provide facile guidelines to control the delivery of high molecular weight compounds. Further investigation of the cellular response to PEG-based biomaterials focused on key factors influencing cell-material interaction. Specifically, the role of the beta1 integrin subunit and several serum proteins (TGF-aalpha, IL-1beta and PDGF-BB) in mediating cellular response was explored. As cell-material interactions are based on commonly occurring interfaces between cells and molecules of the native extracellular environment, these studies provided insight into the mechanisms controlling the observed cellular response. Finally, the inflammatory response of primary monocytes to biomaterials was examined. Monocytes

  14. Various eicosanoids modulate the cellular and humoral immune responses of the beet armyworm, Spodoptera exigua.

    Science.gov (United States)

    Shrestha, Sony; Kim, Yonggyun

    2009-09-01

    Cyclooxygenase (COX) and lipoxygenase (LOX) can catalyze the oxidation of C20 fatty acids to produce certain eicosanoids, which play roles in mediating immune responses in insects. Despite their critical role in insect immunity, there have been few studies of the unique effects of different eicosanoids on immune responses. This study analyzed cellular and humoral immune responses of the beet armyworm, Spodoptera exigua, using seven eicosanoids selected from two major eicosanoid subgroups: prostaglandin (PG) and leukotriene (LT), derived from catalytic activities of COX and LOX respectively. Upon bacterial challenge, all seven eicosanoids (PGA(1), PGB(2), PGD(2), PGE(1), PGE(2), PGF(1alpha), and LTB(4)) significantly induced hemocyte nodulation and phagocytosis in the presence of dexamethasone, an eicosanoid biosynthesis inhibitor. However, only PGs induced cell lysis of oenocytoids to release prophenoloxidase, which resulted in an increase in phenoloxidase activity. These seven eicosanoids also induced expression of humoral immune-associated genes, including prophenoloxidase, serpin, dopa decarboxylase, cecropin, and lysozyme, in which PGB(2) and PGE(1) did not induce gene expression of prophenoloxidase. To understand the interactions between different eicosanoids, mixture effects of these eicosanoids were compared with their individual eicosanoid effects on mediating nodule formation in response to bacterial challenge. All six single PGs showed increases in nodule formation in a dose-dependent manner without significant difference among the different types. LTB(4) was more potent than the tested PGs in mediating the cellular immune response. At low doses, all combinations of two eicosanoids showed significant additive effects on nodule formation. These results indicate that immune target cells, such as hemocyte and fat body, of S. exigua can respond to different COX and LOX products to express cellular and humoral immune responses, and their overlapping, additive

  15. Imbalanced adaptive responses associated with microsatellite instability in cholangiocarcinoma

    Science.gov (United States)

    Loilome, Watcharin; Kadsanit, Sasithorn; Muisook, Kanha; Yongvanit, Puangrat; Namwat, Nisana; Techasen, Anchalee; Puapairoj, Anucha; Khuntikeo, Narong; Phonjit, Pichai

    2017-01-01

    The adaptive response of the genome protection mechanism occurs in cells when exposed to genotoxic stress due to the overproduction of free radicals via inflammation and infection. In such circumstances, cells attempt to maintain health via several genome protection mechanisms. However, evidence is increasing that this adaptive response may have deleterious effect; a reduction of antioxidant enzymes and/or imbalance in the DNA repair system generates microsatellite instability (MSI), which has procarcinogenic implications. Therefore, the present study hypothesized that MSI caused by imbalanced responses of antioxidant enzymes and/or DNA repair enzymes as a result of oxidative/nitrative stress arising from the inflammatory response is involved in liver fluke-associated cholangiocarcinogenesis. The present study investigated this hypothesis by identifying the expression patterns of antioxidant enzymes, including superoxide dismutase 2 (SOD2) and catalase (CAT), and DNA repair enzymes, including alkyladenine DNA glycosylase (AAG), apurinic endonuclease (APE) and DNA polymerase β (DNA pol β). In addition, the activities of the antioxidant enzymes, SOD2 and CAT, were examined in human cholangiocarcinoma (CCA) tissues using immunohistochemical staining. MSI was also analyzed in human CCA tissues. The resulting data demonstrated that the expression levels of the SOD2 and CAT enzymes decreased. The activities of SOD2 and CAT decreased significantly in the CCA tissues, compared with the hepatic tissue of cadaveric donors. In the DNA repairing enzymes, it was found that the expression levels of AAG and DNA pol β enzymes increased, whereas the expression of APE decreased. In addition, it was found that MSI-high was present in 69% of patients, whereas MSI-low was present in 31% of patients, with no patients classified as having microsatellite stability. In the patients, a MSI-high was correlated with poor prognosis, indicated by a shorter survival rate. These results

  16. Knowledge-Based Intelligent Software Support of Cellular Adaptation to Microgravity Investigations

    Science.gov (United States)

    Groleau, Nick; Grymes, Rosalind A.; Alizadeh, Babak; Friedland, Peter (Technical Monitor)

    1994-01-01

    One of the most significant new opportunities that the Space Station affords cell biologists is the ability to do long-term cultivation of cells in the space environment. This facility is essential for investigations that are primarily focused on effects requiring a longer timeline of observation than that provided by the STS (Space Transportation System) platform. Such work requires both very strong laboratory skills to properly and quickly interact with the hardware hosting the culture and deep knowledge of the cell biology domain in order to optimally react to unanticipated scientific developments. Such work can be enabled by advanced automation techniques that have recently been used in the STS-based Spacelab, and that are being readied for the Space Station. In this paper, we describe the adaptation of PI-in-a-Box, the first interactive space science assistant system, to the study of the effects of space flight on cell cycle progression and proliferation.

  17. Clearance of low levels of HCV viremia in the absence of a strong adaptive immune response

    Directory of Open Access Journals (Sweden)

    Manns Michael P

    2007-06-01

    Full Text Available Abstract Spontaneous clearance of hepatitis C virus (HCV has frequently been associated with the presence of HCV-specific cellular immunity. However, there had been also reports in chimpanzees demonstrating clearance of HCV-viremia in the absence of significant levels of detectable HCV-specific cellular immune responses. We here report seven asymptomatic acute hepatitis C cases with peak HCV-RNA levels between 300 and 100.000 copies/ml who all cleared HCV-RNA spontaneously. Patients were identified by a systematic screening of 1176 consecutive new incoming offenders in a German young offender institution. Four of the seven patients never developed anti-HCV antibodies and had normal ALT levels throughout follow-up. Transient weak HCV-specific CD4+ T cell responses were detectable in five individuals which did not differ in strength and breadth from age- and sex-matched patients with chronic hepatitis C and long-term recovered patients. In contrast, HCV-specific MHC-class-I-tetramer-positive cells were found in 3 of 4 HLA-A2-positive patients. Thus, these cases highlight that clearance of low levels of HCV viremia is possible in the absence of a strong adaptive immune response which might explain the low seroconversion rate after occupational exposure to HCV.

  18. Complex dynamics of selection and cellular memory in adaptation to a changing environment

    Science.gov (United States)

    Kussell, Edo; Lin, Wei-Hsiang

    We study a synthetic evolutionary system in bacteria in which an antibiotic resistance gene is controlled by a stochastic on/off switching promoter. At the population level, this system displays all the basic ingredients for evolutionary selection, including diversity, fitness differences, and heritability. At the single cell level, physiological processes can modulate the ability of selection to act. We expose the stochastic switching strains to pulses of antibiotics of different durations in periodically changing environments using microfluidics. Small populations are tracked over a large number of periods at single cell resolution, allowing the visualization and quantification of selective sweeps and counter-sweeps at the population level, as well as detailed single cell analysis. A simple model is introduced to predict long-term population growth rates from single cell measurements, and reveals unexpected aspects of population dynamics, including cellular memory that acts on a fast timescale to modulate growth rates. This work is supported by NIH Grant No. R01-GM097356.

  19. Central adaptation of pain perception in response to rehabilitation of musculoskeletal pain

    DEFF Research Database (Denmark)

    Andersen, Lars L; Andersen, Christoffer H; Sundstrup, Emil

    2012-01-01

    Understanding the mechanisms of long-standing musculoskeletal pain and adaptations in response to physical rehabilitation is important for developing optimal treatment strategies. The influence of central adaptations of pain perception in response to rehabilitation of musculoskeletal pain remains...

  20. The CK1 family: contribution to cellular stress response and its role in carcinogenesis

    Directory of Open Access Journals (Sweden)

    Uwe eKnippschild

    2014-05-01

    Full Text Available Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key regulatory proteins and signal integration molecules and is tightly connected to the regulation of β-catenin, p53- and MDM2-specific functions and degradation. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, effort has enormously increased (i to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review we summarize the current knowledge regarding the regulation, functions, and interactions of CK1 family members with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.

  1. STRUCTURAL ADAPTATIONS OF CELLULAR WALLS OF AQUATIC PLANTS TO THE ACTION OF IONS OF ZINC AND LEAD

    Directory of Open Access Journals (Sweden)

    Grubinko V.V.

    2012-11-01

    Full Text Available Main specific and nonspecific cells responses and membrane structures participation in formation of cells resistance in stress conditions, caused by heavy metals (chlorella, waterweed, duckweed in toxic concentrations are analyzed. The cell membranes participation in adaptation to toxicants (formation of growths, multiplication, fluidization, forming of aquaporin, apoptosis, which are first exposed to stressors, is discussed. Found specific and nonspecific reactions in membrane formation are proposed to use as biomarkers of toxicity.

  2. scFv from Antibody That Mimics gp43 Modulates the Cellular and Humoral Immune Responses during Experimental Paracoccidioidomycosis.

    Science.gov (United States)

    Jannuzzi, Grasielle Pereira; Tavares, Aldo Henrique F P; Kaihami, Gilberto Hideo; de Almeida, José Roberto Fogaça; de Almeida, Sandro Rogério; Ferreira, Karen Spadari

    2015-01-01

    Paracoccidioidomycosis (PCM), caused by Paracoccidioides species is a prevalent systemic and progressive mycosis that occurs in Latin America. It is caused by Paracoccidioides species. Immunization with dendritic cells transfected with a plasmid encoding the scFv (pMAC/PS-scFv) that mimics the main antigen of P. brasiliensis (gp43) confers protection in experimental PCM. DCs link innate and adaptive immunity by recognizing invading pathogens and selecting the type of effector T cell to mediate the immune response. Here, we showed that DC-pMAC/PS-scFv induces the activation of CD4+ and CD8+ T cells. Moreover, our results demonstrated that BALB/c mice infected with P. brasiliensis and treated with DC-pMAC/PS-scFv showed the induction of specific IgG production against gp43 and IFN-γ, IL-12 and IL-4 cytokines. Analysis of regional lymph nodes revealed increases in the expression of clec7a, myd88, tlr2, gata3 and tbx21, which are involved in the immune response. Taken together, our results indicate that the scFv modulates the humoral and cellular immune responses and presents epitopes to CD4+ and CD8+ T cells.

  3. scFv from Antibody That Mimics gp43 Modulates the Cellular and Humoral Immune Responses during Experimental Paracoccidioidomycosis.

    Directory of Open Access Journals (Sweden)

    Grasielle Pereira Jannuzzi

    Full Text Available Paracoccidioidomycosis (PCM, caused by Paracoccidioides species is a prevalent systemic and progressive mycosis that occurs in Latin America. It is caused by Paracoccidioides species. Immunization with dendritic cells transfected with a plasmid encoding the scFv (pMAC/PS-scFv that mimics the main antigen of P. brasiliensis (gp43 confers protection in experimental PCM. DCs link innate and adaptive immunity by recognizing invading pathogens and selecting the type of effector T cell to mediate the immune response. Here, we showed that DC-pMAC/PS-scFv induces the activation of CD4+ and CD8+ T cells. Moreover, our results demonstrated that BALB/c mice infected with P. brasiliensis and treated with DC-pMAC/PS-scFv showed the induction of specific IgG production against gp43 and IFN-γ, IL-12 and IL-4 cytokines. Analysis of regional lymph nodes revealed increases in the expression of clec7a, myd88, tlr2, gata3 and tbx21, which are involved in the immune response. Taken together, our results indicate that the scFv modulates the humoral and cellular immune responses and presents epitopes to CD4+ and CD8+ T cells.

  4. The X-files of inflammation: cellular mosaicism of X-linked polymorphic genes and the female advantage in the host response to injury and infection.

    Science.gov (United States)

    Spolarics, Zoltán

    2007-06-01

    Females as compared with males display better general health status, longevity, and improved clinical course after injury and infection. It is generally believed that the female advantage is associated with the effects of sex hormones. This review argues that the sex benefit of females during the host response is associated with polymorphism of X-linked genes and cellular mosaicism for X-linked parental alleles. Cells from females carry both parental X chromosomes (maternal, Xm; or paternal, Xp), whereas males carry only one (Xm). Because of dosage compensation and random X inactivation, half of the cells from females express either Xm or Xp. Therefore, females are cellular mosaics for their X-linked polymorphic genes. This cellular mosaicism in females represents a more adaptive and balanced cellular machinery that is advantageous during the innate immune response. Several genes encoding key metabolic and regulatory proteins reside on the X chromosome, including members of the apoptotic cascade, hormone homeostasis, glucose metabolic enzymes, superoxide-producing machinery, and the toll-like receptor/nuclear factor kappaB/c-Jun N-terminal kinase signaling pathway. Polymorphic forms of these X-linked proteins are likely to manifest in phenotypic differences in the mosaic cell populations in females and may contribute to sex-related differences in the host response to injury and infection. The unique inheritance pattern of X-linked polymorphisms and their potential confounding effects in clinical trials are also discussed; furthermore, we present potential biomarkers for studying mosaic cell populations of innate immunity.

  5. Plant adaptation to low atmospheric pressures: potential molecular responses

    Science.gov (United States)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  6. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong (Yale); (VA); (UCSD)

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  7. Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section

    Science.gov (United States)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat

    2016-01-01

    The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.

  8. Interactions between glucocorticoid treatment and cis-regulatory polymorphisms contribute to cellular response phenotypes.

    Directory of Open Access Journals (Sweden)

    Joseph C Maranville

    2011-07-01

    Full Text Available Glucocorticoids (GCs mediate physiological responses to environmental stress and are commonly used as pharmaceuticals. GCs act primarily through the GC receptor (GR, a transcription factor. Despite their clear biomedical importance, little is known about the genetic architecture of variation in GC response. Here we provide an initial assessment of variability in the cellular response to GC treatment by profiling gene expression and protein secretion in 114 EBV-transformed B lymphocytes of African and European ancestry. We found that genetic variation affects the response of nearby genes and exhibits distinctive patterns of genotype-treatment interactions, with genotypic effects evident in either only GC-treated or only control-treated conditions. Using a novel statistical framework, we identified interactions that influence the expression of 26 genes known to play central roles in GC-related pathways (e.g. NQO1, AIRE, and SGK1 and that influence the secretion of IL6.

  9. A Review on Hemeoxygenase-2: Focus on Cellular Protection and Oxygen Response

    Directory of Open Access Journals (Sweden)

    Jorge Muñoz-Sánchez

    2014-01-01

    Full Text Available Hemeoxygenase (HO system is responsible for cellular heme degradation to biliverdin, iron, and carbon monoxide. Two isoforms have been reported to date. Homologous HO-1 and HO-2 are microsomal proteins with more than 45% residue identity, share a similar fold and catalyze the same reaction. However, important differences between isoforms also exist. HO-1 isoform has been extensively studied mainly by its ability to respond to cellular stresses such as hemin, nitric oxide donors, oxidative damage, hypoxia, hyperthermia, and heavy metals, between others. On the contrary, due to its apparently constitutive nature, HO-2 has been less studied. Nevertheless, its abundance in tissues such as testis, endothelial cells, and particularly in brain, has pointed the relevance of HO-2 function. HO-2 presents particular characteristics that made it a unique protein in the HO system. Since attractive results on HO-2 have been arisen in later years, we focused this review in the second isoform. We summarize information on gene description, protein structure, and catalytic activity of HO-2 and particular facts such as its cellular impact and activity regulation. Finally, we call attention on the role of HO-2 in oxygen sensing, discussing proposed hypothesis on heme binding motifs and redox/thiol switches that participate in oxygen sensing as well as evidences of HO-2 response to hypoxia.

  10. [Regulatory role of mechanical stress response in cellular function: development of new drugs and tissue engineering].

    Science.gov (United States)

    Momose, Kazutaka; Matsuda, Takehisa; Oike, Masahiro; Obara, Kazuo; Laher, Ismail; Sugiura, Seiryo; Ohata, Hisayuki; Nakayama, Koichi

    2003-02-01

    The investigation of mechanotransduction in the cardiovascular system is essentially important for elucidating the cellular and molecular mechanisms involved in not only the maintenance of hemodynamic homeostasis but also etiology of cardiovascular diseases including arteriosclerosis. The present review summarizes the latest research performed by six academic groups, and presented at the 75th Annual Meeting of the Japanese Pharmacological Society. Technology of cellular biomechanics is also required for research and clinical application of a vascular hybrid tissue responding to pulsatile stress. 1) Vascular tissue engineering: Design of pulsatile stress-responsive scaffold and in vivo vascular wall reconstruction (T. Matsuda); 2) Cellular mechanisms of mechanosensitive calcium transients in vascular endothelium (M. Oike et al.); 3) Cross-talk of stimulation with fluid flow and lysophosphatidic acid in vascular endothelial cells (K. Momose et al.); 4) Mechanotransduction of vascular smooth muscles: Rate-dependent stretch-induced protein phosphorylations and contractile activation (K. Obara et al.); 5) Lipid mediators in vascular myogenic tone (I. Laher et al.); and 6) Caldiomyocyte regulates its mechanical output in response to mechanical load (S. Sugiura et al.).

  11. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles

    Science.gov (United States)

    Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.

    2017-01-01

    The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility.

  12. Biological and Theoretical Studies of Adaptive Networks: The Conditioned Response.

    Science.gov (United States)

    1992-06-30

    Eichenbaum , H. and Butter, C.M., The role of frontalcortex-reticular interactions in performance and extinction of Recordings of multiple-unit activity in...such a way that they are appropriate to the ’task demands’ imposed by training parameters (Levey and Martin , 1968). The main evidence for this adaptive...8217 Science 237, 1445-1452. 12. Levey, A. B. and Martin , I. (1968) ’Shape of the conditioned eyelid response,’ Psychological Review 75, 398-408. 13. Millenson

  13. Modeling of time-dose-LET effects in the cellular response to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Lisa Antje

    2015-07-20

    This work is dedicated to the elucidation of time-dose- and if applicable linear energy transfer (LET) effects in the cellular response to ion or photon radiation. In particular, the common concept of the Local Effect Model (LEM) and the Giant Loop Binary Lesion (GLOBLE) model, which explains cell survival probabilities on the hand of clustering of double-strand breaks (DSB) in micrometer-sized sub-structural units of the DNA, was investigated with regard to temporal aspects. In previous studies with the LEM and GLOBLE model, it has been demonstrated that the definition of two lesion classes, characterized by single or multiple DSB in a DNA giant loop, with two repair fidelities is adequate to comprehensively describe the dose dependence of the cellular response to instantaneous photon irradiation or ion irradiation with varying LET. Furthermore, with the GLOBLE model for photon radiation, it has been shown that the assignment of two repair time scales to the two lesion classes allows to adequately reproduce time-dose effects after photon irradiation with an arbitrary constant dose-rate. In this work, the results of four projects that strengthen the mechanistic consistency and the practical applicability of the LEM and GLOBLE model will be presented. First, it was found that the GLOBLE model is applicable to describe time-dose effects in the cellular response to two split photon doses and in the occurrence of deterministic radiation effects. Second, in a comparison of ten models for the temporal course of DSB rejoining, it was revealed that a bi-exponential approach, as suggested by the LEM and GLOBLE model, finds a relatively large support by 61 experimental data sets. Third, in a comparison of four kinetic photon cell survival models that was based on fits to 13 dose-rate experiments, it was shown that the GLOBLE model performs well with respect to e.g. accuracy, parsimony, reliability and other factors that characterize a good approach. Last but not least, the

  14. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures

    Science.gov (United States)

    Karamooz Ravari, M. R.; Nasr Esfahani, S.; Taheri Andani, M.; Kadkhodaei, M.; Ghaei, A.; Karaca, H.; Elahinia, M.

    2016-02-01

    Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress-strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure.

  15. Immune responses in human infections with Brugia malayi: specific cellular unresponsiveness to filarial antigens.

    Science.gov (United States)

    Piessens, W F; McGreevy, P B; Piessens, P W; McGreevy, M; Koiman, I; Saroso, J S; Dennis, D T

    1980-01-01

    We evaluated the cellular immune competence of 101 subjects living in an area of South Kalimantan (Borneo) where Malayan filariasis is endemic. All patients with elephantiasis but none with other clinical stages of filariasis reacted with adult worm antigens. The majority of subjects without clinical or parasitological evidence of filariasis and approximately one-half of those with amicrofilaremic filariasis reacted with microfilarial antigens. In contrast, most patients with patent microfilaremia did not respond to microfilarial antigens. The in vitro reactivity of all patient categories to nonparasite antigens was similar to that of the distant control group. These results indicate that patent microfilaremia is associated with a state of specific cellular immune unresponsiveness and are consistent with the current hypothesis that the various clinical manifestations of filariasis result from different types of immune responses to distinct antigens associated with different developmental stages of filarial worms. PMID:7350196

  16. Signaling pathways implicated in the cellular innate immune responses of Drosophila

    Directory of Open Access Journals (Sweden)

    AJ Nappi

    2004-06-01

    Full Text Available The phylogenetically conserved innate immune systems of insects and other invertebrates employblood cells (hemocytes that are functionally reminiscent of vertebrate macrophages, attesting to theimportance of phagocytosis and other cell-mediated responses in eliminating various pathogens. Receptorligandbinding activates signaling cascades that promote collaborative cellular interactions and theproduction of pathogen-specific cytotoxic responses. Numerous comparative genetic and molecularstudies have shown the cytotoxic effector responses made by cells of the innate immune system to beevolutionarily conserved. Comparative analyses of genomic sequences provide convincing evidence thatmany of the biochemical processes manifested by immune-activated hemocytes are similar to thosemade by activated vertebrate macrophages. Included in this genomic repertoire are enzymes associatedwith reactive intermediates of oxygen and nitrogen, cellular redox homeostasis, and apoptosis, thesynthesis of extracellular matrix, cell adhesion and pattern recognition molecules. Surprisingly, little isknown of the types of cytotoxic molecules produced by invertebrate hemocytes, and the signaling andtranscriptional events associated with their collaborative interactions when engaging pathogens andparasites. This review examines certain aspects of the blood cell-mediated defense responses ofDrosophila, and some of the signaling pathways that have been implicated in hemocyte activation,differentiation, and the regulation of hematopoiesis.

  17. Transition between immune and disease states in a cellular automaton model of clonal immune response

    CERN Document Server

    Bezzi, M; Ruffo, S; Seiden, P E; Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-01-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infectious virus and cytotoxic T lymphocytes (cellular response). The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connect...

  18. Distinctive behavioral and cellular responses to fluoxetine in the mouse model for Fragile X syndrome

    Directory of Open Access Journals (Sweden)

    Marko eUutela

    2014-05-01

    Full Text Available Fluoxetine is used as a therapeutic agent for autism spectrum disorder (ASD, including Fragile X syndrome (FXS. The treatment often associates with disruptive behaviors such as agitation and disinhibited behaviors in FXS. To identify mechanisms that increase the risk to poor treatment outcome, we investigated the behavioral and cellular effects of fluoxetine on adult Fmr1 knockout (KO mice, a mouse model for FXS. We found that fluoxetine reduced anxiety-like behavior of both wild type and Fmr1 KO mice seen as shortened latency to enter the center area in the open field test. In Fmr1 KO mice, fluoxetine normalized locomotor hyperactivity but abnormally increased exploratory activity. Reduced Brain-derived neurotrophic factor (BDNF and increased TrkB receptor expression levels in the hippocampus of Fmr1 KO mice associated with inappropriate coping responses under stressful condition and abolished antidepressant activity of fluoxetine. Fluoxetine response in the cell proliferation was also missing in the hippocampus of Fmr1 KO mice when compared with wild type controls. The postnatal expression of serotonin transporter was reduced in the thalamic nuclei of Fmr1 KO mice during the time of transient innervation of somatosensory neurons suggesting that developmental changes of serotonin transporter (SERT expression were involved in the differential cellular and behavioral responses to fluoxetine in wild type and Fmr1 mice. The results indicate that changes of BDNF/TrkB signaling contribute to differential behavioral responses to fluoxetine among individuals with ASD.

  19. Electrolyte effects on the surface chemistry and cellular response of anodized titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsu, Naofumi, E-mail: nohtsu@mail.kitami-it.ac.jp [Instrumental Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Kozuka, Taro; Hirano, Mitsuhiro [Instrumental Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Arai, Hirofumi [Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan)

    2015-09-15

    Highlights: • Ti samples were anodized using various electrolytes. • Anodization decreased carbon adsorption, improving hydrophilicity. • Improved hydrophilicity led to improved cellular attachment. • Only one electrolyte showed any heteroatom incorporation into the TiO{sub 2} layer. • Choice of electrolyte played no role on the effects of anodization. - Abstract: Anodic oxidation of titanium (Ti) material is used to enhance biocompatibility, yet the effects of various electrolytes on surface characteristics and cellular behavior have not been completely elucidated. To investigate this topic, oxide layers were produced on Ti substrates by anodizing them in aqueous electrolytes of (NH{sub 4}){sub 2}O·5B{sub 2}O{sub 3}, (NH{sub 4}){sub 2}SO{sub 4}, or (NH{sub 4}){sub 3}PO{sub 4}, after which their surface characteristics and cellular responses were examined. Overall, no surface differences between the electrolytes were visually observed. X-ray photoelectron spectroscopy (XPS) revealed that the anodized surfaces are composed of titanium dioxide (TiO{sub 2}), while incorporation from electrolyte was only observed for (NH{sub 4}){sub 3}PO{sub 4}. Surface adsorption of carbon contaminants during sterilization was suppressed by anodization, leading to lower water contact angles. The attachment of MC3T3-E1 osteoblast-like cells was also improved by anodization, as evidenced by visibly enlarged pseudopods. This improved attachment performance is likely due to TiO{sub 2} formation. Overall, electrolyte selection showed no effect on either surface chemistry or cellular response of Ti materials.

  20. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis).

    Science.gov (United States)

    Kapila, Neha; Sharma, Ankita; Kishore, Amit; Sodhi, Monika; Tripathi, Pawan K; Mohanty, Ashok K; Mukesh, Manishi

    The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs). The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h) along with control samples (un-stressed). In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis) and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1), apoptotic (Bax and Bcl2), immune (IL6, TNFα and NF-kβ) and oxidative

  1. A candidate DNA vaccine elicits HCV specific humoral and cellular immune responses

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Zhu; Jing Liu; Ye Ye; You-Hua Xie; Yu-Ying Kong; Guang-Di Li; Yuan Wang

    2004-01-01

    AIM: To investigate the immunogenicity of candidate DNA vaccine against hepatitis C virus (HCV) delivered by two plasmids expressing HCV envelope protein 1 (E1) and envelope protein 2 (E2) antigens respectively and to study the effect of CpG adjuvant on this candidate vaccine.METHODS: Recombinant plasmids expressing HCV E1 and E2 antigens respectively were used to simultaneously inoculate mice with or without CpG adjuvant. Antisera were then collected and titers of anti-HCV antibodies were analyzed by ELISA. One month after the last injection, animals were sacrificed to prepare single-cell suspension of splenocytes.These cells were subjected to HCVantigen specific proliferation assays and cytokine secretion assays to evaluate the cellular immune responses of the vaccinated animals.RESULTS: Antibody responses to HCV E1 and E2 antigens were detected in vaccinated animals. Animals receiving CpG adjuvant had slightly lower titers of anti-HCV antibodies in the sera, while the splenocytes from these animals showed higher HCV-antigen specific proliferation. Analysis of cytokine secretion from the splenocytes was consistent with the above results. While no antigen-specific IL-4 secretion was detected for all vaccinated animals, HCV antigen-specific INF-γ secretion was detected for the splenocytes of vaccinated animals. CpG adjuvant enhanced the secretion of INF-γ but did not change the profile of IL-4 secretion.CONCLUSION: Vaccination of mice with plasmids encoding HCV E1 and E2 antigens induces humoral and cellular immune responses. CpG adjuvant significantly enhances the cellular immune response.

  2. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response

    Directory of Open Access Journals (Sweden)

    Renata eToth

    2015-10-01

    Full Text Available Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as C. parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response towards this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi’s virulence by detecting altered innate cellular responses.In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host pathogen interactions.

  3. The p53 Codon 72 Polymorphism Modifies the Cellular Response to Inflammatory Challenge in the Liver.

    Science.gov (United States)

    Leu, Julia I-Ju; Murphy, Maureen E; George, Donna L

    2013-01-01

    The p53 protein is a critical stress-response mediator and signal coordinator in cellular metabolism and environmental exposure to deleterious agents. In human populations, the p53 gene contains a common single nucleotide polymorphism (SNP) affecting codon 72 that determines whether a proline (P72) or an arginine (R72) is present at this amino acid position of the polypeptide. Previous studies carried out using human populations, mouse models, and cell culture analyses have provided evidence that this amino acid difference can alter p53 functional activities, and potentially also can affect clinical presentation of disease. The clinical presentation associated with many forms of liver disease is variable, but few of the responsible underlying genetic factors or molecular pathways have been identified. The aim of the present study was to investigate whether the p53 codon 72 polymorphism influences the cellular response to hepatic stresses. A humanized p53 knock-in (Hupki) mouse model was used to address this issue. Mice expressing either the P72 or R72 normal variation of p53 were given an acute-, intermittent- or a chronic challenge, associated with exposure to lipopolysaccharide, D-galactosamine, or a high-fat diet. The results reveal that the livers of the P72 and R72 mice exhibit notable differences in inflammatory and apoptotic response to these distinct forms of stress. Interestingly the influence of this polymorphism on the response to stress is context dependent, with P72 showing increased response to liver toxins (lipopolysaccharide and D-galactosamine), but R72 showing increased response to metabolic stress (high fat diet). When taken together, these data point to the p53 codon 72 polymorphism as an important molecular mediator of events contributing to hepatic inflammation and metabolic homeostasis.

  4. Temporal and spatial adaptation of transient responses to local features

    Directory of Open Access Journals (Sweden)

    David C O'Carroll

    2012-10-01

    Full Text Available Interpreting visual motion within the natural environment is a challenging task, particularly considering that natural scenes vary enormously in brightness, contrast and spatial structure. Current models for the detection of self-generated optic flow depend heavily on these very parameters, but despite this, animals manage to successfully navigate within a broad range of scenes. Within global scenes local areas with more salient features are common. Recent work has highlighted the influence that local, salient features have on the encoding of optic flow, but it has been difficult to quantify how local transient responses affect responses to subsequent features and thus contribute to the global neural response. To investigate this in more detail we used experimenter-designed stimuli and recorded intracellularly from motion-sensitive neurons. We limited the stimulus to a small vertically elongated strip, to investigate local and global neural responses to pairs of local ‘doublet’ features that were designed to interact with each other in the temporal and spatial domain. We show that the passage of a high contrast doublet feature produces a complex transient response from local motion detectors consistent with predictions of a simple computational model. In the neuron, the passage of a high-contrast feature induces a local reduction in responses to subsequent low contrast features. However, this neural contrast gain reduction appears to be recruited only when features stretch vertically (i.e. orthogonal to the direction of motion across at least several aligned neighbouring ommatidia. Horizontal displacement of the components of elongated features abolishes the local adaptation effect. It is thus likely that features in natural scenes with vertically aligned edges, such as tree trunks, would be expected to recruit the greatest amount of response suppression, which could emphasize the local responses to such features vs those in nearby texture

  5. Expression patterns and action analysis of genes associated with physiological responses during rat liver regeneration: Cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Lian-Xing Zhang; Li-Feng Zhao; An-Shi Zhang; Xiao-Guang Chen; Cun-Shuan Xu

    2006-01-01

    AIM: To study the cellular immune response during rat liver regeneration (LR) at a transcriptional level.METHODS: Genes associated with the cellular immune response were obtained by collecting the data from databases and retrieving articles. Gene expression changes during LR were detected by rat genome 230 2.0 array.RESULTS: A total of 127 genes were found to be associated with LR. The number of initially and totally expressing genes in the initial phase of LR [0.5-4 h after partial hepatectomy (PH)], transition from G0-G1(4-6 h after PH), cell proliferation (6-66 h after PH),cell differentiation and structure-function reconstruction (66-168 h after PH) was 54, 11, 34, 3 and 54, 49, 70, 49 respectively, illustrating that the associated genes were mainly triggered at the initiation of LR, and worked at different phases. According to their expression similarity,these genes were classified into 41 up-regulated, 21 predominantly up-regulated, 41 down-regulated, 14 predominantly down-regulated, 10 similarly up-regulated and down-regulated genes, respectively. The total upand down-regulated expression times were 419 and 274,respectively, demonstrating that the expression of most genes was increased while the expression of a small number of genes was decreased. Their time relevance was classified into 14 groups, showing that the cellular physiological and biochemical activities were staggered during LR. According to the gene expression patterns,they were classified into 21 types, showing the activities were diverse and complicated during LR.CONCLUSION: Antigen processing and presentation are enhanced mainly in the forepart, prophase and anaphase of LR. T-cell activation and antigen elimination are enhanced mainly in the forepart and prophase of LR. A total of 127 genes associated with LR play an important role in cellular immunity.

  6. Capturing the dynamic nascent transcriptome during acute cellular responses: The serum response

    Directory of Open Access Journals (Sweden)

    Killeen S. Kirkconnell

    2016-06-01

    Full Text Available Dynamic regulation of gene expression via signal transduction pathways is of fundamental importance during many biological processes such as cell state transitioning, cell cycle progression and stress responses. In this study we used serum stimulation as a cell response paradigm to apply the nascent RNA Bru-seq technique in order to capture early dynamic changes in the nascent transcriptome. Our data provides an unprecedented view of the dynamics of genome-wide transcription during the first two hours of serum stimulation in human fibroblasts. While some genes showed sustained induction or repression, other genes showed transient or delayed responses. Surprisingly, the dynamic patterns of induction and suppression of response genes showed a high degree of similarity, suggesting that these opposite outcomes are triggered by a common set of signals. As expected, early response genes such as those encoding components of the AP-1 transcription factor and those involved in the circadian clock were immediately but transiently induced. Surprisingly, transcription of important DNA damage response genes and histone genes were rapidly repressed. We also show that RNA polymerase II accelerates as it transcribes large genes and this was independent of whether the gene was induced or not. These results provide a unique genome-wide depiction of dynamic patterns of transcription of serum response genes and demonstrate the utility of Bru-seq to comprehensively capture rapid and dynamic changes of the nascent transcriptome.

  7. Heat shock response and mammal adaptation to high elevation (hypoxia)

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaolin; XU Cunshuan; WANG Xiujie; WANG Dongjie; WANG Qingshang; ZHANG Baochen

    2006-01-01

    The mammal's high elevation (hypoxia) adaptation was studied by using the immunological and the molecular biological methods to understand the significance of Hsp (hypoxia) adaptation in the organic high elevation, through the mammal heat shock response. (1) From high elevation to low elevation (natural hypoxia): Western blot and conventional RT-PCR and real-time fluorescence quota PCR were adopted. Expression difference of heat shock protein of 70 (Hsp70) and natural expression of brain tissue of Hsp70 gene was determined in the cardiac muscle tissue among the different elevation mammals (yak). (2)From low elevation to high elevation (hypoxia induction):The mammals (domestic rabbits) from the low elevation were sent directly to the areas with different high elevations like 2300, 3300 and 5000 m above sea level to be raised for a period of 3 weeks before being slaughtered and the genetic inductive expression of the brain tissue of Hsp70 was determined with RT-PCR. The result indicated that all of the mammals at different elevations possessed their heat shock response gene. Hsp70 of the high elevation mammal rose abruptly under stress and might be induced to come into being by high elevation (hypoxia). The speedy synthesis of Hsp70 in the process of heat shock response is suitable to maintain the cells' normal physiological functions under stress. The Hsp70 has its threshold value. The altitude of 5000 m above sea level is the best condition for the heat shock response, and it starts to reduce when the altitude is over 6000 m above sea level. The Hsp70 production quantity and the cell hypoxia bearing capacity have their direct ratio.

  8. Cellular immune response of humans to the circumsporozoite protein of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Mauricio M. Rodrigues

    1991-06-01

    Full Text Available The cellular immune response to the circumsporozoite (CS protein of plasmodium vivax of individuals from malaria-endemic areas of Brazil was studied. We examined the in vitro proliferative response of the peripheral blood mononuclear cells (PBMC of 22 individuals when stimulated with a CS recombinant protein (rPvCS-2 and two other synthetic peptides based on the sequenceof the P. vivax CS protein. Seven of the individuals from malaria-endemic area displayed an antigen specific in vitro proliferative responseto the recombinant protein PvCS-2 and one out of 6, proliferative response to the peptide 308-320. In contrast, none of the individuals displayed a proliferative reponse when stimulated with the D/A peptide which represent some of the repeated units present in this CS protein. Our study, therefore, provides evidence for the presence, withinthe major surface antigen of P. vivax sporozoites, of epitopes capble to induce proliferation of human PBMC.

  9. Distinctive adaptive response to repeated exposure to hydrogen peroxide associated with upregulation of DNA repair genes and cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Gloria A. Santa-Gonzalez

    2016-10-01

    Full Text Available Many environmental and physiological stresses are chronic. Thus, cells are constantly exposed to diverse types of genotoxic insults that challenge genome stability, including those that induce oxidative DNA damage. However, most in vitro studies that model cellular response to oxidative stressors employ short exposures and/or acute stress models. In this study, we tested the hypothesis that chronic and repeated exposure to a micromolar concentration of hydrogen peroxide (H2O2 could activate DNA damage responses, resulting in cellular adaptations. For this purpose, we developed an in vitro model in which we incubated mouse myoblast cells with a steady concentration of ~50 μM H2O2 for one hour daily for seven days, followed by a final challenge of a 10 or 20X higher dose of H2O2 (0.5 or 1 mM. We report that intermittent long-term exposure to this oxidative stimulus nearly eliminated cell toxicity and significantly decreased genotoxicity (in particular, a >5-fold decreased in double-strand breaks resulting from subsequent acute exposure to oxidative stress. This protection was associated with cell cycle arrest in G2/M and induction of expression of nine DNA repair genes. Together, this evidence supports an adaptive response to chronic, low-level oxidative stress that results in genomic protection and up-regulated maintenance of cellular homeostasis.

  10. Cellular and biomolecular responses of human ovarian cancer cells to cytostatic dinuclear platinum(II) complexes.

    Science.gov (United States)

    Lin, Miaoxin; Wang, Xiaoyong; Zhu, Jianhui; Fan, Damin; Zhang, Yangmiao; Zhang, Junfeng; Guo, Zijian

    2011-03-01

    Polynuclear platinum(II) complexes represent a class of potential anticancer agents that have shown promising pharmacological properties in preclinical studies. The nature of cellular responses induced by these complexes, however, is poorly understood. In this research, the cellular responses of human ovarian cancer COC1 cells to dinuclear platinum(II) complexes {[cis-Pt(NH₃)₂Cl]₂L¹}(NO₃)₂ (1) and {[cis-Pt(NH₃)₂Cl]₂L²}(NO₃)₂ (2) (L¹ = α,α'-diamino-p-xylene, L² = 4,4'-methylenedianiline) has been studied using cisplatin as a reference. The effect of platinum complexes on the proliferation, death mode, mitochondrial membrane potential, and cell cycle progression has been examined by MTT assay and flow cytometry. The activation of cell cycle checkpoint kinases (CHK1/2), extracellular signal-regulated kinases (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) of the cells by the complexes has also been analyzed using phospho-specific flow cytometry. Complex 1 is more cytotoxic than complex 2 and cisplatin at most concentrations; complex 2 and cisplatin are comparably cytotoxic. These complexes kill the cells through an apoptotic or apoptosis-like pathway characterized by exposure of phosphatidylserine and dissipation of mitochondrial membrane potential. Complex 1 shows the strongest inductive effect on the morphological changes of the cells, followed by cisplatin and complex 2. Complexes 1 and 2 arrest the cell cycle in G2 or M phase, while cisplatin arrests the cell cycle in S phase. The influence of these complexes on CHK1/2, ERK1/2, and p38 MAPK varies with the dose of the drugs or reaction time. Activation of phospho-ERK1/2 and phospho-p38 MAPK by these complexes is closely related to the cytostatic activity. The results demonstrate that dinuclear platinum(II) complexes can induce some cellular responses different from those caused by cisplatin.

  11. Differential Cellular Responses to Hedgehog Signalling in Vertebrates—What is the Role of Competence?

    Directory of Open Access Journals (Sweden)

    Clemens Kiecker

    2016-12-01

    Full Text Available A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal—a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms. We discuss the upstream signals and mechanisms that may establish differential competence for HHs in a range of different tissues. We argue that the changing competence for HH signalling provides a four-dimensional framework for the interpretation of the signal that is essential for the emergence of functional anatomy. A number of diseases—including several types of cancer—are caused by malfunctions of the HH pathway. A better understanding of what provides differential competence for this signal may reveal HH-related disease mechanisms and equip us with more specific tools to manipulate HH signalling in the clinic.

  12. Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain.

    Science.gov (United States)

    Martin, David A; Nichols, Charles D

    2016-09-01

    There has recently been a resurgence of interest in psychedelics, substances that profoundly alter perception and cognition and have recently demonstrated therapeutic efficacy to treat anxiety, depression, and addiction in the clinic. The receptor mechanisms that drive their molecular and behavioral effects involve activation of cortical serotonin 5-HT2A receptors, but the responses of specific cellular populations remain unknown. Here, we provide evidence that a small subset of 5-HT2A-expressing excitatory neurons is directly activated by psychedelics and subsequently recruits other select cell types including subpopulations of inhibitory somatostatin and parvalbumin GABAergic interneurons, as well as astrocytes, to produce distinct and regional responses. To gather data regarding the response of specific neuronal populations, we developed methodology for fluorescence-activated cell sorting (FACS) to segregate and enrich specific cellular subtypes in the brain. These methods allow for robust neuronal sorting based on cytoplasmic epitopes followed by downstream nucleic acid analysis, expanding the utility of FACS in neuroscience research.

  13. Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain

    Directory of Open Access Journals (Sweden)

    David A. Martin

    2016-09-01

    Full Text Available There has recently been a resurgence of interest in psychedelics, substances that profoundly alter perception and cognition and have recently demonstrated therapeutic efficacy to treat anxiety, depression, and addiction in the clinic. The receptor mechanisms that drive their molecular and behavioral effects involve activation of cortical serotonin 5-HT2A receptors, but the responses of specific cellular populations remain unknown. Here, we provide evidence that a small subset of 5-HT2A-expressing excitatory neurons is directly activated by psychedelics and subsequently recruits other select cell types including subpopulations of inhibitory somatostatin and parvalbumin GABAergic interneurons, as well as astrocytes, to produce distinct and regional responses. To gather data regarding the response of specific neuronal populations, we developed methodology for fluorescence-activated cell sorting (FACS to segregate and enrich specific cellular subtypes in the brain. These methods allow for robust neuronal sorting based on cytoplasmic epitopes followed by downstream nucleic acid analysis, expanding the utility of FACS in neuroscience research.

  14. Interactions of the p53 protein family in cellular stress response in gastrointestinal tumors.

    Science.gov (United States)

    Vilgelm, Anna E; Washington, Mary K; Wei, Jinxiong; Chen, Heidi; Prassolov, Vladimir S; Zaika, Alexander I

    2010-03-01

    p53, p63, and p73 are members of the p53 protein family involved in regulation of cell cycle, apoptosis, differentiation, and other critical cellular processes. Here, we investigated the contribution of the entire p53 family in chemotherapeutic drug response in gastrointestinal tumors. Real-time PCR and immunohistochemistry revealed complexity and variability of expression profiles of the p53 protein family. Using colon and esophageal cancer cells, we found that the integral transcription activity of the entire p53 family, as measured by the reporter analysis, associated with response to drug treatment in studied cells. We also found that p53 and p73, as well as p63 and p73, bind simultaneously to the promoters of p53 target genes. Taken together, our results support the view that the p53 protein family functions as an interacting network of proteins and show that cellular responses to chemotherapeutic drug treatment are determined by the total activity of the entire p53 family rather than p53 alone.

  15. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4.

    Science.gov (United States)

    Huggins, Christopher J; Mayekar, Manasi K; Martin, Nancy; Saylor, Karen L; Gonit, Mesfin; Jailwala, Parthav; Kasoji, Manjula; Haines, Diana C; Quiñones, Octavio A; Johnson, Peter F

    2015-12-14

    The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg(-/-) mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg(-/-) mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg(-/-) mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells.

  16. Oxidized DNA induces an adaptive response in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V., E-mail: svet.kostyuk@gmail.com [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Tabakov, Viacheslav J.; Chestkov, Valerij V.; Konkova, Marina S.; Glebova, Kristina V.; Baydakova, Galina V.; Ershova, Elizaveta S.; Izhevskaya, Vera L. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha, E-mail: abaranov@gmu.edu [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2013-07-15

    Highlights: • We describe the effects of gDNAOX on human fibroblasts cultivated in serum withdrawal conditions. • gDNAOX evokes an adaptive response in human fibroblasts. • gDNAOX increases the survival rates in serum starving cell populations. • gDNAOX enhances the survival rates in cell populations irradiated at 1.2 Gy dose. • gDNAOX up-regulates NRF2 and inhibits NF-kappaB-signaling. - Abstract: Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA{sup OX}. The levels of cfDNA{sup OX} are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by H{sub 2}O{sub 2}in vitro (gDNA{sup OX}) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA{sup OX} on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA{sup OX} evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2 Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA{sup OX} leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of PSNA, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA{sup OX} and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA{sup OX} inhibits NF-κB signaling. gDNA{sup OX} is a model for oxidized cfDNA{sup OX} that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA

  17. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, M P; Guo, S; Kalinin, S V; Jesse, S [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 (United States); Reukov, V V; Thompson, G L; Vertegel, A A, E-mail: sergei2@ornl.go [Department of Bioengineering, Clemson University, Clemson, SC 29634 (United States)

    2009-10-07

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  18. Response of pulmonary rapidly adapting receptors during lung inflation.

    Science.gov (United States)

    Pack, A I; DeLaney, R G

    1983-09-01

    Studies were conducted to establish the factors that determine the response of canine pulmonary rapidly adapting receptors (RAR) during lung inflation. Inflations of the lung were performed at several constant rates during which the activity of individual RAR was counted. At each rate of inflation tested multiple identical tests were performed. The volume of each test inflation was controlled. Data obtained in all tests at each flow rate were averaged to give the mean response of the receptor at that rate of inflation. These studies indicate the major response characteristics of RAR during lung inflation in conditions of relatively constant lung mechanics. First, at a constant rate of inflation, the activity of RAR augments increasingly as the lung is expanded. Second, their activity is influenced markedly by the rate of inflation. However, this sensitivity is nonlinear. Specifically, at low rates of inflation increases in flow rate produce more marked augmentation of RAR firing than do identical increases in flow at higher rates of inflation. The major difference between receptors is in their threshold; however, this too is a function of flow rate. With increasing flow rate the threshold, whether measured as the inflation volume or transpulmonary pressure at which receptors begin to fire, declines. The response of receptors, however, with thresholds over the entire range show the major features discussed above. The present results provide quantitative information which are necessary to begin to eludicate the transduction properties of this receptor type.

  19. Naturalistic Stress and Cortisol Response to Awakening: Adaptation to Seafaring

    Science.gov (United States)

    Liberzon, Jonathan; Abelson, James L.; King, Anthony; Liberzon, Israel

    2008-01-01

    Study of the hypothalmic-pituitary adrenal (HPA) axis has been critical to advancing our understanding of human adaptation to stress. The cortisol response to awakening (CRA) is a potentially useful measure for understanding group and individual differences in HPA axis regulation. In this study, the CRA was examined in the context of a naturalistic stressor – a six-week voyage of work and study aboard an oceangoing ship, including both experienced and novice sailors. Thirty-one subjects provided weekday and weekend baseline CRA data onshore prior to boarding, followed by three CRAs at sea and one shore leave CRA. Subjective measures of sleep, stress and control were also collected. Results suggest that novice sailors' cortisol response to awakening was elevated at sea relative to both a shoreside weekend and a shore leave during the voyage, but the most striking elevation was found during a workday onshore. Inexperienced students' profiles changed differently over the course of the voyage from those of professional crew. CRAs were not affected by sleep variables and were not predicted by subjective ratings. These data support the value of the cortisol response to awakening as a neuroendocrine marker of HPA regulatory responses to a naturalistic stressor, influenced by changes in work and living environment, and perhaps prior experience with the stressor. PMID:18657911

  20. Do responses of galliform birds vary adaptively with predator size?

    Science.gov (United States)

    Palleroni, Alberto; Hauser, Marc; Marler, Peter

    2005-07-01

    Past studies of galliform anti-predator behavior show that they discriminate between aerial and ground predators, producing distinctive, functionally referential vocalizations to each class. Within the category of aerial predators, however, studies using overhead models, video images and observations of natural encounters with birds of prey report little evidence that galliforms discriminate between different raptor species. This pattern suggests that the aerial alarm response may be triggered by general features of objects moving in the air. To test whether these birds are also sensitive to more detailed differences between raptor species, adult chickens with young were presented with variously sized trained raptors (small, intermediate, large) under controlled conditions. In response to the small hawk, there was a decline in anti-predator aggression and in aerial alarm calling as the young grew older and less vulnerable to attack by a hawk of this size. During the same developmental period, responses to the largest hawk, which posed the smallest threat to the young at all stages, did not change; there were intermediate changes at this time in response to the middle-sized hawk. Thus the anti-predator behavior of the adult birds varied in an adaptive fashion, changing as a function of both chick age and risk. We discuss these results in light of current issues concerning the cognitive mechanisms underlying alarm calling behavior in animals.

  1. PD-1 blockade induces responses by inhibiting adaptive immune resistance

    Science.gov (United States)

    Tumeh, Paul C.; Harview, Christina L.; Yearley, Jennifer H.; Shintaku, I. Peter; Taylor, Emma J. M.; Robert, Lidia; Chmielowski, Bartosz; Spasic, Marko; Henry, Gina; Ciobanu, Voicu; West, Alisha N.; Carmona, Manuel; Kivork, Christine; Seja, Elizabeth; Cherry, Grace; Gutierrez, Antonio; Grogan, Tristan R.; Mateus, Christine; Tomasic, Gorana; Glaspy, John A.; Emerson, Ryan O.; Robins, Harlan; Pierce, Robert H.; Elashoff, David A.; Robert, Caroline; Ribas, Antoni

    2014-01-01

    Therapies that target the programmed death-1 (PD-1) receptor have shown unprecedented rates of durable clinical responses in patients with various cancer types.1–5 One mechanism by which cancer tissues limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1 on antigen-specific CD8 T-cells (termed adaptive immune resistance).6,7 Here we show that pre-existing CD8 T-cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy. We analyzed samples from 46 patients with metastatic melanoma obtained before and during anti-PD1 therapy (pembrolizumab) using quantitative immunohistochemistry, quantitative multiplex immunofluorescence, and next generation sequencing for T-cell receptors (TCR). In serially sampled tumours, responding patients showed proliferation of intratumoural CD8+ T-cells that directly correlated with radiographic reduction in tumour size. Pre-treatment samples obtained from responding patients showed higher numbers of CD8, PD1, and PD-L1 expressing cells at the invasive tumour margin and inside tumours, with close proximity between PD-1 and PD-L1, and a more clonal TCR repertoire. Using multivariate analysis, we established a predictive model based on CD8 expression at the invasive margin and validated the model in an independent cohort of 15 patients. Our findings indicate that tumour regression following therapeutic PD-1 blockade requires pre-existing CD8+ T cells that are negatively regulated by PD-1/PD-L1 mediated adaptive immune resistance. PMID:25428505

  2. Cellular and humoral immune responses to Borrelia burgdorferi antigens in patients with culture-positive early Lyme disease.

    Science.gov (United States)

    Vaz, A; Glickstein, L; Field, J A; McHugh, G; Sikand, V K; Damle, N; Steere, A C

    2001-12-01

    We determined cellular and humoral immune responses to Borrelia burgdorferi lysate and to recombinant flagellin (FlaB), OspC, and OspA in acute- and convalescent-phase samples from 39 culture-positive patients with erythema migrans and in 20 healthy control subjects. During the acute illness, a median of 4 days after the onset of erythema migrans, 51% of the patients had proliferative cellular responses and 72% had antibody responses to at least one of the borrelial antigens tested. During convalescence, at the conclusion of antibiotic therapy, 64% of the patients had proliferative cellular reactivity and 95% had antibody reactivity with at least one of the spirochetal antigens tested. In both acute- and convalescent-phase samples, cellular immune responses were found as frequently to OspA as to OspC and FlaB. Although antibody responses were also frequently seen to OspC and FlaB, only a few patients had marginal antibody reactivity with OspA. The percentage of patients with proliferative responses was similar in those with clinical evidence of localized or disseminated infection, whereas humoral reactivity was found more often in those with disseminated disease. We conclude that cellular and humoral responses to B. burgdorferi antigens are often found among patients with early Lyme disease. In contrast with the other antigens tested, cellular but not humoral reactivity was often found with OspA.

  3. Adaptive multi-channel downlink assignment for overloaded spectrum-shared multi-antenna overlaid cellular networks

    KAUST Repository

    Radaydeh, Redha Mahmoud

    2012-10-19

    Overlaid cellular technology has been considered as a promising candidate to enhance the capacity and extend the coverage of cellular networks, particularly indoors. The deployment of small cells (e.g. femtocells and/or picocells) in an overlaid setup is expected to reduce the operational power and to function satisfactorily with the existing cellular architecture. Among the possible deployments of small-cell access points is to manage many of them to serve specific spatial locations, while reusing the available spectrum universally. This contribution considers the aforementioned scenario with the objective to serve as many active users as possible when the available downlink spectrum is overloaded. The case study is motivated by the importance of realizing universal resource sharing in overlaid networks, while reducing the load of distributing available resources, satisfying downlink multi-channel assignment, controlling the aggregate level of interference, and maintaining desired design/operation requirements. These objectives need to be achieved in distributed manner in each spatial space with as low processing load as possible when the feedback links are capacity-limited, multiple small-cell access points can be shared, and data exchange between access points can not be coordinated. This contribution is summarized as follows. An adaptive downlink multi-channel assignment scheme when multiple co-channel and shared small-cell access points are allocated to serve active users is proposed. It is assumed that the deployed access points employ isotropic antenna arrays of arbitrary sizes, operate using the open-access strategy, and transmit on shared physical channels simultaneously. Moreover, each active user can be served by a single transmit channel per each access point at a time, and can sense the concurrent interference level associated with each transmit antenna channel non-coherently. The proposed scheme aims to identify a suitable subset of transmit channels

  4. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Maryam Yazdanian

    2015-01-01

    Conclusion: Fusion of HBsAg to HCVcp in the context of a DNA vaccine modality could augment Th1-oriented cellular and CTL responses toward a protective epitope, comparable to that of HCVcp (subunit HCV vaccine immunization.

  5. Multiple-objective response-adaptive repeated measurement designs in clinical trials for binary responses.

    Science.gov (United States)

    Liang, Yuanyuan; Li, Yin; Wang, Jing; Carriere, Keumhee C

    2014-02-20

    A multiple-objective allocation strategy was recently proposed for constructing response-adaptive repeated measurement designs for continuous responses. We extend the allocation strategy to constructing response-adaptive repeated measurement designs for binary responses. The approach with binary responses is quite different from the continuous case, as the information matrix is a function of responses, and it involves nonlinear modeling. To deal with these problems, we first build the design on the basis of success probabilities. Then we illustrate how various models can accommodate carryover effects on the basis of logits of response profiles as well as any correlation structure. Through computer simulations, we find that the allocation strategy developed for continuous responses also works well for binary responses. As expected, design efficiency in terms of mean squared error drops sharply, as more emphasis is placed on increasing treatment benefit than estimation precision. However, we find that it can successfully allocate more patients to better treatment sequences without sacrificing much estimation precision.

  6. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity.

    Science.gov (United States)

    Calabrese, Vittorio; Cornelius, Carolin; Cuzzocrea, Salvatore; Iavicoli, Ivo; Rizzarelli, Enrico; Calabrese, Edward J

    2011-08-01

    Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by co-ordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as carnosine, carnitines or polyphenols, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. In this review we discuss the most current and up to date

  7. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    Science.gov (United States)

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  8. DNA-encapsulated magnesium phosphate nanoparticles elicit both humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Gajadhar Bhakta

    2014-01-01

    Full Text Available The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein-encapsulated PEGylated (meaning polyethylene glycol coated magnesium phosphate nanoparticles (referred to as MgPi-pEGFP nanoparticles for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as increased IFN-γ and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP. Thus the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation.

  9. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses.

    Science.gov (United States)

    Barth, Kenneth; Genco, Caroline Attardo

    2016-10-04

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses.

  10. Development and Standardization of the Diagnostic Adaptive Behavior Scale: Application of Item Response Theory to the Assessment of Adaptive Behavior

    Science.gov (United States)

    Tassé, Marc J.; Schalock, Robert L.; Thissen, David; Balboni, Giulia; Bersani, Henry, Jr.; Borthwick-Duffy, Sharon A.; Spreat, Scott; Widaman, Keith F.; Zhang, Dalun; Navas, Patricia

    2016-01-01

    The Diagnostic Adaptive Behavior Scale (DABS) was developed using item response theory (IRT) methods and was constructed to provide the most precise and valid adaptive behavior information at or near the cutoff point of making a decision regarding a diagnosis of intellectual disability. The DABS initial item pool consisted of 260 items. Using IRT…

  11. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers.

    Science.gov (United States)

    Krifka, Stephanie; Spagnuolo, Gianrico; Schmalz, Gottfried; Schweikl, Helmut

    2013-06-01

    Dental composite resins are biomaterials commonly used to aesthetically restore the structure and function of teeth impaired by caries, erosion, or fracture. Residual monomers released from resin restorations as a result of incomplete polymerization processes interact with living oral tissues. Monomers like triethylene glycol dimethacrylate (TEGDMA) or 2-hydroxylethyl methacrylate (HEMA) are cytotoxic via apoptosis, induce genotoxic effects, and delay the cell cycle. Monomers also influence the response of cells of the innate immune system, inhibit specific odontoblast cell functions, or delay the odontogenic differentiation and mineralization processes in pulp-derived cells including stem cells. These observations indicate that resin monomers act as environmental stressors which inevitably disturb regulatory cellular networks through interference with signal transduction pathways. We hypothesize that an understanding of the cellular mechanisms underlying these phenomena will provide a better estimation of the consequences associated with dental therapy using composite materials, and lead to innovative therapeutic strategies and improved materials being used at tissue interfaces within the oral cavity. Current findings strongly suggest that monomers enhance the formation of reactive oxygen species (ROS), which is most likely the cause of biological reactions activated by dental composites and resin monomers. The aim of the present review manuscript is to discuss adaptive cell responses to oxidative stress caused by monomers. The particular significance of a tightly controlled network of non-enzymatic as well as enzymatic antioxidants for the regulation of cellular redox homeostasis and antioxidant defense in monomer-exposed cells will be addressed. The expression of ROS-metabolizing antioxidant enzymes like superoxide dismutase (SOD1), glutathione peroxidase (GPx1/2), and catalase in cells exposed to monomers will be discussed with particular emphasis on the role

  12. Expression and cellular distribution of ubiquitin in response to injury in the developing spinal cord of Monodelphis domestica

    DEFF Research Database (Denmark)

    Noor, Natassya M; Møllgård, Kjeld; Wheaton, Benjamin J;

    2013-01-01

    Ubiquitin, an 8.5 kDa protein associated with the proteasome degradation pathway has been recently identified as differentially expressed in segment of cord caudal to site of injury in developing spinal cord. Here we describe ubiquitin expression and cellular distribution in spinal cord up to pos...... changes in ubiquitin expression and cellular distribution in development and response to spinal injury suggest an intricate regulatory system that modulates these responses which, when better understood, may lead to potential therapeutic targets....

  13. Biosorption and biodegradation of pyrene by Brevibacillus brevis and cellular responses to pyrene treatment.

    Science.gov (United States)

    Liao, Liping; Chen, Shuona; Peng, Hui; Yin, Hua; Ye, Jinshao; Liu, Zehua; Dang, Zhi; Liu, Zhichen

    2015-05-01

    Biodegradation has been proposed as an effective approach to remove pyrene, however, the information regarding cellular responses to pyrene treatment is limited thus far. In this study, the biodegradation and biosorption of pyrene by Brevibacillus brevis, along with cellular responses caused by pollutant were investigated by means of flow cytometry assay and scanning electron microscopy. The experimental results showed that pyrene was initially adsorbed by B. brevis and subsequently transported and intracellularly degraded. During this process, pyrene removal was primarily dependent on biodegradation. Cell invagination and cell surface corrugation occurred due to pyrene exposure. Nevertheless, cell regrowth after 96h treatment was observed, and the proportion of necrotic cell was only 2.8% after pyrene exposure for 120h, confirming that B. brevis could utilize pyrene as a sole carbon source for growth. The removal and biodegradation amount of pyrene (1mg/L) at 168h were 0.75 and 0.69mg/L, respectively, and the biosorption amount by inactivated cells was 0.41mg/L at this time.

  14. Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state.

    Science.gov (United States)

    Calabrese, Vittorio; Giordano, James; Crupi, Rosalia; Di Paola, Rosanna; Ruggieri, Martino; Bianchini, Rio; Ontario, Maria Laura; Cuzzocrea, Salvatore; Calabrese, Edward J

    2017-05-01

    Abnormal redox homeostasis and oxidative stress have been proposed to play a role in the etiology of several neuropsychiatric spectrum disorders. Emerging interest has recently focused on markers of oxidative stress and neuroinflammation in schizophrenic spectrum disorders, at least in particular subgroups of patients. Altered expression of genes related to oxidative stress, oxidative damage to DNA, protein and lipids, as well as reduced glutathione levels in central and peripheral tissues could act synergistically, and contribute to the course of the disease.  Herein, we discuss cellular mechanisms that may be operative in neuroinflammation and contributory to schizophrenia. We address modulation of endogenous cellular defense mechanisms as a potentially innovative approach to therapeutics for schizophrenia, and other neuropsychiatric conditions that are associated with neuroinflammation. Specifically, we discuss the emerging role of heme oxygenase as prominent member of neuroprotective network in redox stress responsive mechanisms, as well as the importance of glutathione relevant in schizophrenia pathophysiology. Finally we introduce the hormetic dose response concept as relevant and important to neuroprotection, and review hormetic mechanisms as possible approaches to manipulation of neuroinflammatory targets that may be viable for treating schizophrenia spectrum disorders. © 2016 Wiley Periodicals, Inc.

  15. Molecular targets in cellular response to ionizing radiation and implications in space radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Belli, M.; Tabocchini, M.A. [Istituto Superiore di Sanita, Rome (Italy). Physics Lab.; Sapora, O. [Istituto Superiore di Sanita, Rome (Italy). Comparative Toxicology Lab.

    2002-12-01

    DNA repair systems and cell cycle checkpoints closely co-operate in the attempt of maintaining the genomic integrity of cells damaged by ionizing radiation. DNA double-strand breaks (DSB) are considered as the most biologically important radiation-induced damage. Their spatial distribution and association with other types of damage depend on radiation quality. It is believed these features affect damage reparability, thus explaining the higher efficiency for cellular effects of densely ionizing radiation with respect to {gamma}-rays. DSB repair systems identified in mammalian cells are homologous recombination (HR), single-strand annealing (SSA) and non-homologous end-joining (NHEJ). Some enzymes may participate in more than one of these repair systems. DNA damage also triggers biochemical signals activating checkpoints responsible for delay in cell cycle progression that allows more time for repair. Those at G1/S and S phases prevent replication of damaged DNA and those at G2/M phase prevent segregation of changed chromosomes. Individuals with lack or alterations of genes involved in DNA DSB repair and cell cycle checkpoints exhibit syndromes characterized by genome instability and predisposition to cancer. Information reviewed in this paper on the basic mechanisms of cellular response to ionizing radiation indicates their importance for a number of issues relevant to protection of astronauts from space radiation. (author)

  16. More Than a Pore: The Cellular Response to Cholesterol-Dependent Cytolysins

    Directory of Open Access Journals (Sweden)

    Sara K. B. Cassidy

    2013-04-01

    Full Text Available Targeted disruption of the plasma membrane is a ubiquitous form of attack used in all three domains of life. Many bacteria secrete pore-forming proteins during infection with broad implications for pathogenesis. The cholesterol-dependent cytolysins (CDC are a family of pore-forming toxins expressed predominately by Gram-positive bacterial pathogens. The structure and assembly of some of these oligomeric toxins on the host membrane have been described, but how the targeted cell responds to intoxication by the CDCs is not as clearly understood. Many CDCs induce lysis of their target cell and can activate apoptotic cascades to promote cell death. However, the extent to which intoxication causes cell death is both CDC- and host cell-dependent, and at lower concentrations of toxin, survival of intoxicated host cells is well documented. Additionally, the effect of CDCs can be seen beyond the plasma membrane, and it is becoming increasingly clear that these toxins are potent regulators of signaling and immunity, beyond their role in intoxication. In this review, we discuss the cellular response to CDC intoxication with emphasis on the effects of pore formation on the host cell plasma membrane and subcellular organelles and whether subsequent cellular responses contribute to the survival of the affected cell.

  17. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise.

    Science.gov (United States)

    Hyldahl, Robert D; Hubal, Monica J

    2014-02-01

    The response of skeletal muscle to unaccustomed eccentric exercise has been studied widely, yet it is incompletely understood. This review is intended to provide an up-to-date overview of our understanding of how skeletal muscle responds to eccentric actions, with particular emphasis on the underlying molecular and cellular mechanisms of damage and recovery. This review begins by addressing the question of whether eccentric actions result in physical damage to muscle fibers and/or connective tissue. We next review the symptomatic manifestations of eccentric exercise (i.e., indirect damage markers, such as delayed onset muscle soreness), with emphasis on their relatively poorly understood molecular underpinnings. We then highlight factors that potentially modify the muscle damage response following eccentric exercise. Finally, we explore the utility of using eccentric training to improve muscle function in populations of healthy and aging individuals, as well as those living with neuromuscular disorders.

  18. Unraveling the cellular response to oxidative stress in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Hansen, Henning Gram

    , disulfide bonds are predominantly generated by the two isoforms of the ER oxidoreductin-1 (Ero1) family: Ero1α and Ero1β. Both enzymes oxidize the active-site cysteines in protein disulfide isomerases (PDIs), which in turn introduce disulfide bonds into newly synthesized proteins. Ero1 is re......-oxidized by molecular oxygen and this step generates hydrogen peroxide: a reactive oxygen species. Intramolecular disulfide bonds tightly regulate the oxidase activity of Ero1α. Whereas the regulatory mechanisms that regulate Ero1α activity are well understood, the overall cellular response to oxidative stress...... generated by Ero1α in the lumen of the mammalian ER is poorly characterized. The work presented here shows that overexpression of a hyperactive mutant (C104A/C131A) of Ero1α leads to hyperoxidation of the ER oxidoreductase ERp57 and induces the unfolded protein response (UPR). These effects are likely...

  19. The Intrinsic Cause-Effect Power of Discrete Dynamical Systems—From Elementary Cellular Automata to Adapting Animats

    Directory of Open Access Journals (Sweden)

    Larissa Albantakis

    2015-07-01

    Full Text Available Current approaches to characterize the complexity of dynamical systems usually rely on state-space trajectories. In this article instead we focus on causal structure, treating discrete dynamical systems as directed causal graphs—systems of elements implementing local update functions. This allows us to characterize the system’s intrinsic cause-effect structure by applying the mathematical and conceptual tools developed within the framework of integrated information theory (IIT. In particular, we assess the number of irreducible mechanisms (concepts and the total amount of integrated conceptual information Φ specified by a system. We analyze: (i elementary cellular automata (ECA; and (ii small, adaptive logic-gate networks (“animats”, similar to ECA in structure but evolving by interacting with an environment. We show that, in general, an integrated cause-effect structure with many concepts and high Φ is likely to have high dynamical complexity. Importantly, while a dynamical analysis describes what is “happening” in a system from the extrinsic perspective of an observer, the analysis of its cause-effect structure reveals what a system “is” from its own intrinsic perspective, exposing its dynamical and evolutionary potential under many different scenarios.

  20. Impaired cellular immune response to tetanus toxoid but not to cytomegalovirus in effectively HAART-treated HIV-infected children.

    Science.gov (United States)

    Alsina, Laia; Noguera-Julian, Antoni; Fortuny, Clàudia

    2013-05-07

    Despite of highly active antiretroviral therapy, the response to vaccines in HIV-infected children is poor and short-lived, probably due to a defect in cellular immune responses. We compared the cellular immune response (assessed in terms of IFN-γ production) to tetanus toxoid and to cytomegalovirus in a series of 13 HIV-perinatally-infected children and adolescents with optimal immunovirological response to first line antiretroviral therapy, implemented during chronic infection. A stronger cellular response to cytomegalovirus (11 out of 13 patients) was observed, as compared to tetanus toxoid (1 out of 13; p=0.003). These results suggest that the repeated exposition to CMV, as opposed to the past exposition to TT, is able to maintain an effective antigen-specific immune response in stable HIV-infected pediatric patients and strengthen current recommendations on immunization practices in these children.

  1. Investigating the Cellular and Metabolic Responses of World-Class Canoeists Training: A Sportomics Approach

    Directory of Open Access Journals (Sweden)

    Wagner Santos Coelho

    2016-11-01

    Full Text Available (1 Background: We have been using the Sportomics approach to evaluate biochemical and hematological changes in response to exercise. The aim of this study was to evaluate the metabolic and hematologic responses of world-class canoeists during a training session; (2 Methods: Blood samples were taken at different points and analyzed for their hematological properties, activities of selected enzymes, hormones, and metabolites; (3 Results: Muscle stress biomarkers were elevated in response to exercise which correlated with modifications in the profile of white blood cells, where a leukocyte rise was observed after the canoe session. These results were accompanied by an increase in other exercise intensity parameters such as lactatemia and ammonemia. Adrenocorticotropic hormone and cortisol increased during the exercise sessions. The acute rise in both erythrocytes and white blood profile were probably due to muscle cell damage, rather than hepatocyte integrity impairment; (4 Conclusion: The cellular and metabolic responses found here, together with effective nutrition support, are crucial to understanding the effects of exercise in order to assist in the creation of new training and recovery planning. Also we show that Sportomics is a primal tool for training management and performance improvement, as well as to the understanding of metabolic response to exercise.

  2. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    Science.gov (United States)

    Ortiz-Sánchez, Juan P.; Cabrera-Chávez, Francisco; Calderón de la Barca, Ana M.

    2013-01-01

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet. PMID:24152750

  3. Investigating the Cellular and Metabolic Responses of World-Class Canoeists Training: A Sportomics Approach

    Science.gov (United States)

    Coelho, Wagner Santos; Viveiros de Castro, Luis; Deane, Elizabeth; Magno-França, Alexandre; Bassini, Adriana; Cameron, Luiz-Claudio

    2016-01-01

    (1) Background: We have been using the Sportomics approach to evaluate biochemical and hematological changes in response to exercise. The aim of this study was to evaluate the metabolic and hematologic responses of world-class canoeists during a training session; (2) Methods: Blood samples were taken at different points and analyzed for their hematological properties, activities of selected enzymes, hormones, and metabolites; (3) Results: Muscle stress biomarkers were elevated in response to exercise which correlated with modifications in the profile of white blood cells, where a leukocyte rise was observed after the canoe session. These results were accompanied by an increase in other exercise intensity parameters such as lactatemia and ammonemia. Adrenocorticotropic hormone and cortisol increased during the exercise sessions. The acute rise in both erythrocytes and white blood profile were probably due to muscle cell damage, rather than hepatocyte integrity impairment; (4) Conclusion: The cellular and metabolic responses found here, together with effective nutrition support, are crucial to understanding the effects of exercise in order to assist in the creation of new training and recovery planning. Also we show that Sportomics is a primal tool for training management and performance improvement, as well as to the understanding of metabolic response to exercise. PMID:27845704

  4. Gain of cellular adaptation due to prolonged p53 impairment leads to functional switchover from p53 to p73 during DNA damage in acute myeloid leukemia cells.

    Science.gov (United States)

    Chakraborty, Juni; Banerjee, Shuvomoy; Ray, Pallab; Hossain, Dewan Md Sakib; Bhattacharyya, Sankar; Adhikary, Arghya; Chattopadhyay, Sreya; Das, Tanya; Sa, Gaurisankar

    2010-10-22

    Tumor suppressor p53 plays the central role in regulating apoptosis in response to genotoxic stress. From an evolutionary perspective, the activity of p53 has to be backed up by other protein(s) in case of any functional impairment of this protein, to trigger DNA damage-induced apoptosis in cancer cells. We adopted multiple experimental approaches to demonstrate that in p53-impaired cancer cells, DNA damage caused accumulation of p53 paralogue p73 via Chk-1 that strongly impacted Bax expression and p53-independent apoptosis. On the contrary, when p53 function was restored by ectopic expression, Chk-2 induced p53 accumulation that in turn overshadowed p73 activity, suggesting an antagonistic interaction between p53 family members. To understand such interaction better, p53-expressing cells were impaired differentially for p53 activity. In wild-type p53-expressing cancer cells that were silenced for p53 for several generations, p73 was activated, whereas no such trend was observed when p53 was transiently silenced. Prolonged p53 interference, even in functional p53 settings, therefore, leads to the "gain of cellular adaptation" in a way that alters the cellular microenvironment in favor of p73 activation by altering p73-regulatory proteins, e.g. Chk1 activation and dominant negative p73 down-regulation. These findings not only unveil a hitherto unexplained mechanism underlying the functional switchover from p53 to p73, but also validate p73 as a promising and potential target for cancer therapy in the absence of functional p53.

  5. Optimization of biguanide derivatives as selective antitumor agents blocking adaptive stress responses in the tumor microenvironment.

    Science.gov (United States)

    Narise, Kosuke; Okuda, Kensuke; Enomoto, Yukihiro; Hirayama, Tasuku; Nagasawa, Hideko

    2014-01-01

    Adaptive cellular responses resulting from multiple microenvironmental stresses, such as hypoxia and nutrient deprivation, are potential novel drug targets for cancer treatment. Accordingly, we focused on developing anticancer agents targeting the tumor microenvironment (TME). In this study, to search for selective antitumor agents blocking adaptive responses in the TME, thirteen new compounds, designed and synthesized on the basis of the arylmethylbiguanide scaffold of phenformin, were used in structure activity relationship studies of inhibition of hypoxia inducible factor (HIF)-1 and unfolded protein response (UPR) activation and of selective cytotoxicity under glucose-deprived stress conditions, using HT29 cells. We conducted luciferase reporter assays using stable cell lines expressing either an HIF-1-responsive reporter gene or a glucose-regulated protein 78 promoter-reporter gene, which were induced by hypoxia and glucose deprivation stress, respectively, to screen for TME-targeting antitumor drugs. The guanidine analog (compound 2), obtained by bioisosteric replacement of the biguanide group, had activities comparable with those of phenformin (compound 1). Introduction of various substituents on the phenyl ring significantly affected the activities. In particular, the o-methylphenyl analog compound 7 and the o-chlorophenyl analog compound 12 showed considerably more potent inhibitory effects on HIF-1 and UPR activation than did phenformin, and excellent selective cytotoxicity under glucose deprivation. These compounds, therefore, represent an improvement over phenformin. They also suppressed HIF-1- and UPR-related protein expression and secretion of vascular endothelial growth factor-A. Moreover, these compounds exhibited significant antiangiogenic effects in the chick chorioallantoic membrane assay. Our structural development studies of biguanide derivatives provided promising candidates for a novel anticancer agent targeting the TME for selective cancer

  6. Cellular immune responses and occult infection in seronegative heterosexual partners of chronic hepatitis C patients.

    Science.gov (United States)

    Roque-Cuéllar, M C; Sánchez, B; García-Lozano, J R; Praena-Fernández, J M; Núñez-Roldán, A; Aguilar-Reina, J

    2011-10-01

    It is unknown whether hepatitis C virus (HCV)-specific cellular immune responses can develop in seronegative sexual partners of chronically HCV-infected patients and whether they have occult infection. Thirty-one heterosexual partners of patients with chronic HCV were studied, fifteen of them with HCV transmission risks. Ten healthy individuals and 17 anti-HCV seropositive patients, without viremia, were used as controls. Virus-specific CD4+ and CD8+ T-cell responses were measured by flow cytometry against six HCV peptides, situated within the nonstructural (NS) proteins NS3, NS4 and NS5, through intracellular detection of gamma interferon (IFN-γ) or interleukin 4 (IL-4) production and CD69 expression. Sexual partners had a higher production of IFN-γ and IL-4 by CD4+ cells against NS3-p124 (P = 0.003), NS5b-p257 (P = 0.005) and NS5b-p294 (P = 0.012), and CD8+ cells against NS3-p124 (P = 0.002), NS4b-p177 (P = 0.001) and NS3-p294 (P = 0.004) as compared with healthy controls. We observed elevated IFN-γ production by CD4+ T cells against NS5b-p257 (P = 0.042) and NS5b-p294 (P = 0.009) in the sexual partners with HCV transmission risks (sexual, professional and familial altogether) than in those without risks. RNA was extracted from peripheral blood mononuclear cells (PBMC), and detection of HCV-RNA positive and replicative (negative) strands was performed by strand-specific real-time PCR. In four sexual partners, the presence of positive and negative HCV- RNA strands in PBMC was confirmed. Hence, we found an HCV-specific cellular immune response as well as occult HCV infection in seronegative and aviremic sexual partners of chronically HCV-infected patients.

  7. Control of the adaptive immune response by tumor vasculature

    Directory of Open Access Journals (Sweden)

    Laetitia eMauge

    2014-03-01

    Full Text Available The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by abnormal vessel structure and permeability, and by specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intratumoral immune responses and contribute to the development of intratumoral immunosuppression, which is a major mechanism for promoting the development, progression and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of antitumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.

  8. The microglial "activation" continuum: from innate to adaptive responses

    Directory of Open Access Journals (Sweden)

    Nikolic Veljko

    2005-10-01

    Full Text Available Abstract Microglia are innate immune cells of myeloid origin that take up residence in the central nervous system (CNS during embryogenesis. While classically regarded as macrophage-like cells, it is becoming increasingly clear that reactive microglia play more diverse roles in the CNS. Microglial "activation" is often used to refer to a single phenotype; however, in this review we consider that a continuum of microglial activation exists, with phagocytic response (innate activation at one end and antigen presenting cell function (adaptive activation at the other. Where activated microglia fall in this spectrum seems to be highly dependent on the type of stimulation provided. We begin by addressing the classical roles of peripheral innate immune cells including macrophages and dendritic cells, which seem to define the edges of this continuum. We then discuss various types of microglial stimulation, including Toll-like receptor engagement by pathogen-associated molecular patterns, microglial challenge with myelin epitopes or Alzheimer's β-amyloid in the presence or absence of CD40L co-stimulation, and Alzheimer disease "immunotherapy". Based on the wide spectrum of stimulus-specific microglial responses, we interpret these cells as immune cells that demonstrate remarkable plasticity following activation. This interpretation has relevance for neurodegenerative/neuroinflammatory diseases where reactive microglia play an etiological role; in particular viral/bacterial encephalitis, multiple sclerosis and Alzheimer disease.

  9. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Zhang Quanfu

    2011-06-01

    Full Text Available Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV, has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated. Results By optimizing the expression plasmids, recombinant VLPs of four antigenically different DENV serotypes DENV1-4 were successfully produced in 293T cells. The vaccination effect of dengue VLPs in mice showed that monovalent VLPs of each serotype stimulated specific IgG responses and potent neutralizing antibodies against homotypic virus. Tetravalent VLPs efficiently enhanced specific IgG and neutralizing antibodies against all four serotypes of DENV. Moreover, vaccination with monovalent or tetravalent VLPs resulted in the induction of specific cytotoxic T cell responses. Conclusions Mammalian cell expressed dengue VLPs are capable to induce VLP-specific humoral and cellular immune responses in mice, and being a promising subunit vaccine candidate for prevention of dengue virus infection.

  10. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  11. Adaptation of the immune system as a response to pregnancy

    Directory of Open Access Journals (Sweden)

    Milašinović Ljubomir

    2002-01-01

    Full Text Available Introduction Pregnancy is an intriguing immunologic phenomenon. In spite of genetic differences, maternal and fetal cells are in close contact over the whole course of pregnancy with no evidence of either humoral and/or cellular immunologic response of mother to fetus as an allotransplant. The general opinion is that the fundamental protective mechanism must be located locally at the contact-plate, between the maternal and fetal tissues. Immunologic investigations proved the presence of specific systems which block the function of antipaternal maternal antibodies, as well as formation of cytotoxic maternal T-cells to paternal antigens. The system preventing rejection of graft during pregnancy is functioning at the level of maternal and fetal tissues. The protective mechanisms are coded by genes of MCH region, locus HLA-G. Protective mechanisms in the placenta The placenta protects itself against antibody-mediated damage. A high level of complement-regulatory proteins (CD46, CD55 and CD59, being the response to the synthesis of complement-fixing maternal antibodies to paternal antigens and regulation of the placental HLA expression as a preventive reaction of the feto-placental unit to the influence of maternal CTL, are the most important protective mechanisms of placenta. Protective mechanisms shared by the placenta and uterus Protective mechanisms common both for placenta and uterus are as follows: expressions of Fas ligand prevention of infiltration of activated immune cells, regulation of immunosuppression which prevents proliferation of immune cells and high natural immunity (Na cells and macrophages of the decidua.

  12. Comparison of cellular responses induced by low level light in different cell types

    Science.gov (United States)

    Huang, Ying-Ying; Chen, Aaron C.-H.; Sharma, Sulbha K.; Wu, Qiuhe; Hamblin, Michael R.

    2010-02-01

    Discoveries are rapidly being made in multiple laboratories that shed "light" on the fundamental molecular and cellular mechanisms underlying the use of low level light therapy (LLLT) in vitro, in animal models and in clinical practice. Increases in cellular levels of respiration, in cytochrome c oxidase activity, in ATP levels and in cyclic AMP have been found. Increased expression of reactive oxygen species and release of nitric oxide have also been shown. In order for these molecular changes to have a major effect on cell behavior, it is likely that various transcription factors will be activated, possibly via different signal transduction pathways. In this report we compare and contrast the effects of LLLT in vitro on murine embryonic fibroblasts, primary cortical neurons, cardiomyocytes and bone-marrow derived dendritic cells. We also examined two human cell lines, HeLa cancer cells and HaCaT keratinocytes. The effects of 810-nm near-infra-red light delivered at low and high fluences were addressed. Reactive oxygen species generation, transcription factor activation and ATP increases are reported. The data has led to the hypothesis that cells with a high level of mitochondrial activity (mitochondrial membrane potential) have a higher response to light than cells with low mitochondrial activity.

  13. Metabolic Discrimination of Select List Agents by Monitoring Cellular Responses in a Multianalyte Microphysiometer

    Directory of Open Access Journals (Sweden)

    John Wikswo

    2009-03-01

    Full Text Available Harnessing the potential of cells as complex biosensors promises the potential to create sensitive and selective detectors for discrimination of biodefense agents. Here we present toxin detection and suggest discrimination using cells in a multianalyte microphysiometer (MMP that is capable of simultaneously measuring flux changes in four extracellular analytes (acidification rate, glucose uptake, oxygen uptake, and lactate production in real-time. Differential short-term cellular responses were observed between botulinum neurotoxin A and ricin toxin with neuroblastoma cells, alamethicin and anthrax protective antigen with RAW macrophages, and cholera toxin, muscarine, 2,4-dinitro-phenol, and NaF with CHO cells. These results and the post exposure dynamics and metabolic recovery observed in each case suggest the usefulness of cell-based detectors to discriminate between specific analytes and classes of compounds in a complex matrix, and furthermore to make metabolic inferences on the cellular effects of the agents. This may be particularly valuable for classifying unknown toxins.

  14. Transcriptome analysis of adaptive heat shock response of Streptococcus thermophilus.

    Directory of Open Access Journals (Sweden)

    Jin-song Li

    Full Text Available Streptococcus thermophilus, a gram-positive facultative anaerobe, is one of the most important lactic acid bacteria widely used in the dairy fermentation industry. In this study, we have analyzed the global transcriptional profiling of S. thermophilus upon temperature change. During a temperature shift from 42°C to 50°C, it is found that 196 (10.4% genes show differential expression with 102 up-regulated and 94 down-regulated at 50°C. In particular, 1 Heat shock genes, such as DnaK, GroESL and clpL, are identified to be elevated at 50°C; 2 Transcriptional regulators, such as HrcA, CtsR, Fur, MarR and MerR family, are differentially expressed, indicating the complex molecular mechanisms of S. thermophilus adapting to heat shock; 3 Genes associated with signal transduction, cell wall genes, iron homeostasis, ABC transporters and restriction-modification system were induced; 4 A large number of the differentially expressed genes are hypothetical genes of unknown function, indicating that much remains to be investigated about the heat shock response of S. thermophilus. Experimental investigation of selected heat shock gene ClpL shows that it plays an important role in the physiology of S. thermophilus at high temperature and meanwhile we confirmed ClpL as a member of the CtsR regulon. Overall, this study has contributed to the underlying adaptive molecular mechanisms of S. thermophilus upon temperature change and provides a basis for future in-depth functional studies.

  15. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial.

    Science.gov (United States)

    Paulsen, Gøran; Cumming, Kristoffer T; Holden, Geir; Hallén, Jostein; Rønnestad, Bent Ronny; Sveen, Ole; Skaug, Arne; Paur, Ingvild; Bastani, Nasser E; Østgaard, Hege Nymo; Buer, Charlotte; Midttun, Magnus; Freuchen, Fredrik; Wiig, Havard; Ulseth, Elisabeth Tallaksen; Garthe, Ina; Blomhoff, Rune; Benestad, Haakon B; Raastad, Truls

    2014-04-15

    In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high-intensity interval sessions [4-6 × 4-6 min; >90% of maximal heart rate (HRmax)] and steady state continuous sessions (30-60 min; 70-90% of HRmax). Maximal oxygen uptake (VO2 max ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their VO2 max (mean ± s.d.: 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ± s.d.: 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: -13 ± 54%; PGC-1α: -13 ± 29%; P ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in VO2 max and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests

  16. Cellular Responses Evoked by Different Surface Characteristics of Intraosseous Titanium Implants

    Directory of Open Access Journals (Sweden)

    Liviu Feller

    2015-01-01

    Full Text Available The properties of biomaterials, including their surface microstructural topography and their surface chemistry or surface energy/wettability, affect cellular responses such as cell adhesion, proliferation, and migration. The nanotopography of moderately rough implant surfaces enhances the production of biological mediators in the peri-implant microenvironment with consequent recruitment of differentiating osteogenic cells to the implant surface and stimulates osteogenic maturation. Implant surfaces with moderately rough topography and with high surface energy promote osteogenesis, increase the ratio of bone-to-implant contact, and increase the bonding strength of the bone to the implant at the interface. Certain features of implant surface chemistry are also important in enhancing peri-implant bone wound healing. It is the purpose of this paper to review some of the more important features of titanium implant surfaces which have an impact on osseointegration.

  17. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization.

    Science.gov (United States)

    Maier, Patrick; Hartmann, Linda; Wenz, Frederik; Herskind, Carsten

    2016-01-14

    During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization.

  18. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization

    Directory of Open Access Journals (Sweden)

    Patrick Maier

    2016-01-01

    Full Text Available During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization.

  19. Cellular Responses of Resistant and Susceptible Soybean Genotypes Infected with Meloidogyne arenaria Races 1 and 2.

    Science.gov (United States)

    Pedrosa, E M; Hussey, R S; Boerma, H R

    1996-06-01

    The cellular responses induced by Meloidogyne arenaria races 1 and 2 in three soybean genotypes, susceptible CNS, resistant Jackson, and resistant PI 200538, were examined by light microscopy 20 days after inoculation. Differences in giant-cell development were greater between races than among the soybean genotypes. M. arenaria race 1 stimulated small, poorly formed giant-cells in contrast with M. arenaria race 2, which induced well-developed, thick-walled, multinucleate giant-cells. The number of nuclei per giant-celt was variable, but fewer nuclei were usually present in giant-cells induced by race 1 (mean 16 nuclei) than in giant-cells induced by race 2 (mean 41 nuclei). Differences observed in giant-cell development were related to differences in growth and maturation of M. arenaria races 1 and 2 and host suitability of the soybean genotypes.

  20. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche

    Science.gov (United States)

    Van Doorslaer, Koenraad; DeSalle, Rob; Einstein, Mark H.; Burk, Robert D.

    2015-01-01

    In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential) is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution. PMID:26086730

  1. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche.

    Directory of Open Access Journals (Sweden)

    Koenraad Van Doorslaer

    2015-06-01

    Full Text Available In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution.

  2. Degradation of Human PDZ-Proteins by Human Alphapapillomaviruses Represents an Evolutionary Adaptation to a Novel Cellular Niche.

    Science.gov (United States)

    Van Doorslaer, Koenraad; DeSalle, Rob; Einstein, Mark H; Burk, Robert D

    2015-06-01

    In order to complete their life cycle, papillomaviruses have evolved to manipulate a plethora of cellular pathways. The products of the human Alphapapillomavirus E6 proteins specifically interact with and target PDZ containing proteins for degradation. This viral phenotype has been suggested to play a role in viral oncogenesis. To analyze the association of HPV E6 mediated PDZ-protein degradation with cervical oncogenesis, a high-throughput cell culture assay was developed. Degradation of an epitope tagged human MAGI1 isoform was visualized by immunoblot. The correlation between HPV E6-induced degradation of hMAGI1 and epidemiologically determined HPV oncogenicity was evaluated using a Bayesian approach within a phylogenetic context. All tested oncogenic types degraded the PDZ-containing protein hMAGI1d; however, E6 proteins isolated from several related albeit non-oncogenic viral types were equally efficient at degrading hMAGI1. The relationship between both traits (oncogenicity and PDZ degradation potential) is best explained by a model in which the potential to degrade PDZ proteins was acquired prior to the oncogenic phenotype. This analysis provides evidence that the ancestor of both oncogenic and non-oncogenic HPVs acquired the potential to degrade human PDZ-containing proteins. This suggests that HPV E6 directed degradation of PDZ-proteins represents an ancient ecological niche adaptation. Phylogenetic modeling indicates that this phenotype is not specifically correlated with oncogenic risk, but may act as an enabling phenotype. The role of PDZ protein degradation in HPV fitness and oncogenesis needs to be interpreted in the context of Alphapapillomavirus evolution.

  3. Monitoring cellular stress responses to nanoparticles using a lab-on-a-chip.

    Science.gov (United States)

    Richter, Lukas; Charwat, Verena; Jungreuthmayer, Christian; Bellutti, Florian; Brueckl, Hubert; Ertl, Peter

    2011-08-07

    As nanotechnology moves towards widespread commercialization, new technologies are needed to adequately address the potential health impact of nanoparticles (NPs). Assessing the safety of over 30,000 NPs through animal testing would not only be expensive, but it would also raise a number of ethical considerations. Furthermore, existing in vitro cell-based assays are not sufficient in scope to adequately address the complexity of cell-nanoparticle interactions including NP translocation, accumulation and co-transport of e.g. allergens. In particular, classical optical/fluorescent endpoint detection methods are known to provide irreproducible, inaccurate and unreliable results since these labels can directly react with the highly catalytic surfaces of NP. To bridge this technological gap we have developed a lab-on-a-chip capable of continuously and non-invasively monitoring the collagen production of primary human fibroblast cells (NHDF) using contactless dielectric microsensors. Human dermal fibroblast cells are responsible for the maintenance of soft tissue integrity, are found throughout the human body and their primary function is collagen expression. We show that cellular collagen production can be readily detected and used to assess cellular stress responses to a variety of external stimuli, including exposure to nanoparticles. Results of the study showed a 20% and 95% reduction of collagen production following 4 hour exposure to 10 μg mL(-1) gold and silver nanoparticles (dia.10 nm), respectively. Furthermore a prolonged perfusion of sub-toxic concentrations (0.1 μg mL(-1)) of silver NP reduced NHDF collagen production by 40% after 10 h indicating increased NP take up and accumulation. We demonstrate that the application of microfluidics for the tailored administration of different NP treatments constitutes a powerful new tool to study cell-nanoparticle interactions and nanoparticle accumulation effects in small cell populations.

  4. Cellular and molecular responses of E. fetida coelomocytes exposed to TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bigorgne, Emilie, E-mail: emilie.bigorgne@univ-lorraine.fr; Foucaud, Laurent [Universite de Lorraine-Laboratoire des Interactions Ecotoxicologique Biodiversite Ecosystemes (LIEBE) (France); Caillet, Celine [Universite de Lorraine-Laboratoire Environnement et Mineralurgie (LEM) CNRS UMR7569 (France); Giamberini, Laure; Nahmani, Johanne [Universite de Lorraine-Laboratoire des Interactions Ecotoxicologique Biodiversite Ecosystemes (LIEBE) (France); Thomas, Fabien [Universite de Lorraine-Laboratoire Environnement et Mineralurgie (LEM) CNRS UMR7569 (France); Rodius, Francois [Universite de Lorraine-Laboratoire des Interactions Ecotoxicologique Biodiversite Ecosystemes (LIEBE) (France)

    2012-07-15

    An in vitro approach using coelomocytes of Eisenia fetida was investigated to evaluate toxicity of TiO{sub 2} nanoparticles. Coelomocytes were exposed to well-dispersed suspension of small aggregates (130 nm) of TiO{sub 2} nanoparticles (1-25 {mu}g/ml) during 4, 12 and 24 h. Intracellular localisation suggested that the main route of uptake was endocytosis. Cellular responses showed that TiO{sub 2} nanoparticles were not cytotoxic and had no effect on phagocytosis at any of the four concentrations for each time tested. Concerning molecular responses, an increase of fetidin and metallothionein mRNA expression was observed starting from 4 h of exposure. In contrast, expression of coelomic cytolytic factor mRNA decreased for 10 and 25 {mu}g/ml after 4 h. Superoxide dismutase, catalase and glutathione-S-transferase expression were not modified suggesting that oxidative stress was not induced by TiO{sub 2} in our experimental conditions. This in vitro approach showed that TiO{sub 2} nanoparticles were taken up by coelomocytes and they could modify the molecular response of immune and detoxification system.

  5. Development of cross-protective influenza A vaccines based on cellular responses

    Directory of Open Access Journals (Sweden)

    Peter Christiaan Soema

    2015-05-01

    Full Text Available Seasonal influenza vaccines provide protection against matching influenza A virus (IAV strains mainly through the induction of neutralizing serum IgG antibodies. However, these antibodies fail to confer a protective effect against mismatched IAV. This lack of efficacy against heterologous influenza strains has spurred the vaccine development community to look for other influenza vaccine concepts, which have the ability to elicit cross-protective immune responses.One of the concepts that is currently been worked on are influenza vaccines inducing influenza-specific T cell responses. T cells are able to lyse infected host cells, thereby clearing the virus. More interestingly, these T cells can recognize highly conserved epitopes of internal influenza proteins, making cellular responses less vulnerable to antigenic variability. T cells are therefore cross-reactive against many influenza strains, and thus are a promising concept for future influenza vaccines. Despite their potential, there are currently no T cell based IAV vaccines on the market. Selection of the proper antigen, appropriate vaccine formulation and evaluation of the efficacy of T cell vaccines remains challenging, both in preclinical and clinical settings.In this review, we will discuss the current developments in influenza T cell vaccines, focusing on existing protein-based and novel peptide-based vaccine formulations. Furthermore, we will discuss the feasibility of influenza T cell vaccines and their possible use in the future.

  6. Time-lapse analysis of potential cellular responsiveness to Johrei, a Japanese healing technique

    Directory of Open Access Journals (Sweden)

    Moore Dan

    2005-01-01

    Full Text Available Abstract Background Johrei is an alternative healing practice which involves the channeling of a purported universal healing energy to influence the health of another person. Despite little evidence to support the efficacy of such practices the use of such treatments is on the rise. Methods We assessed cultured human cancer cells for potential responsiveness to Johrei treatment from a short distance. Johrei treatment was delivered by practitioners who participated in teams of two, alternating every half hour for a total of four hours of treatment. The practitioners followed a defined set of mental procedures to minimize variability in mental states between experiments. An environmental chamber maintained optimal growth conditions for cells throughout the experiments. Computerized time-lapse microscopy allowed documentation of cancer cell proliferation and cell death before, during and after Johrei treatments. Results Comparing eight control experiments with eight Johrei intervention experiments, we found no evidence of a reproducible cellular response to Johrei treatment. Conclusion Cell death and proliferation rates of cultured human cancer cells do not appear responsive to Johrei treatment from a short distance.

  7. Involvement of Noxa in mediating cellular ER stress responses to lytic virus infection.

    Science.gov (United States)

    Rosebeck, Shaun; Sudini, Kuladeep; Chen, Tiannan; Leaman, Douglas W

    2011-09-01

    Noxa is a Bcl-2 homology domain-containing pro-apoptotic mitochondrial protein. Noxa mRNA and protein expression are upregulated by dsRNA or virus, and ectopic Noxa expression enhances cellular sensitivity to virus or dsRNA-induced apoptosis. Here we demonstrate that Noxa null baby mouse kidney (BMK) cells are deficient in normal cytopathic response to lytic viruses, and that reconstitution of the knockout cells with wild-type Noxa restored normal cytopathic responses. Noxa regulation by virus mirrored its regulation by proteasome inhibitors or ER stress inducers and the ER stress response inhibitor salubrinal protected cells against viral cytopathic effects. Noxa mRNA and protein were synergistically upregulated by IFN or dsRNA when combined with ER stress inducers, leading to Noxa/Mcl-1 interaction, activation of Bax and pro-apoptotic caspases, degradation of Mcl-1, loss of mitochondrial membrane potential and initiation of apoptosis. These data highlight the importance of ER stress in augmenting the expression of Noxa following viral infection.

  8. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Peng Chen, Koki Kanehira and Akiyoshi Taniguchi

    2013-01-01

    Full Text Available Innate immune response is believed to be among the earliest provisional cellular responses, and mediates the interactions between microbes and cells. Toll-like receptors (TLRs are critical to these interactions. We hypothesize that TLRs also play an important role in interactions between nanoparticles (NPs and cells, although little information has been reported concerning such an interaction. In this study, we investigated the role of TLR3, TLR4 and TLR7 in cellular uptake of titanium dioxide NP (TiO2 NP agglomerates and the resulting inflammatory responses to these NPs. Our data indicate that TLR4 is involved in the uptake of TiO2 NPs and promotes the associated inflammatory responses. The data also suggest that TLR3, which has a subcellular location distinct from that of TLR4, inhibits the denaturation of cellular protein caused by TiO2 NPs. In contrast, the unique cellular localization of TLR7 has middle-ground functional roles in cellular response after TiO2 NP exposure. These findings are important for understanding the molecular interaction mechanisms between NPs and cells.

  9. Cellular responses in the Malpighian tubules of Scaptotrigona postica (Latreille, 1807) exposed to low doses of fipronil and boric acid.

    Science.gov (United States)

    Ferreira, Rafael Alexandre Costa; Silva Zacarin, Elaine Cristina Mathias; Malaspina, Osmar; Bueno, Odair Correa; Tomotake, Maria Eliza Miyoko; Pereira, Andrigo Monroe

    2013-03-01

    Studies of sub-lethal effects of pesticide residues on stingless bees are scarce and morphological analysis of organs would add information to toxicological analysis in order to clarify the continuous exposure of Scaptotrigona postica to insecticides. The aim of this study was to evaluate the morphology and histochemistry of the Malpighian tubules (excretory organ) of S. postica exposed to fipronil or boric acid to detect cellular responses that indicate toxicity or adaptative mechanisms to stress induced by exposure of worker bees to low doses of these chemical compounds. Newly emerged bees were submitted to toxicological bioassays and morphological analyses by optical microscopy and Transmission Electron Microscopy, as well as histochemical methods, were performed to detect proteins and glycoconjugates. Additionally, immunohistochemical detection of DNA fragmentation and HSP70 (70-kDa Heat shock protein) were performed to detect cell death and stress response, respectively. Statistical analysis, for the bioassays conducted with ingestion of contaminated diet with boric acid at 0.75% (w/w) or with fipronil at 0.1μg/kg of food, showed that the survival of bees that ingested the contaminated diets were significantly different to the survival rate presented by the control group (P<0.0001). Although some characteristics indicative of initiation of cell death were observed, the cells remained metabolically active in the processes of excretion and inactivation of chemical compounds. The data from this study reinforce the importance of research on sublethal effects of low doses of pesticides on bees in an attempt to assess a possible realistic dose and evaluate the risk assessment of stingless bee S. postica foraging in the vicinity of cultivated fields and/or in green urban areas.

  10. Adaptation responses in C4 photosynthesis of maize under salinity.

    Science.gov (United States)

    Omoto, Eiji; Taniguchi, Mitsutaka; Miyake, Hiroshi

    2012-03-15

    The effect of salinity on C(4) photosynthesis was examined in leaves of maize, a NADP-malic enzyme (NADP-ME) type C(4) species. Potted plants with the fourth leaf blade fully developed were treated with 3% NaCl solution for 5d. Under salt treatment, the activities of pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPCase), NADP-dependent malate dehydrogenase (NADP-MDH) and NAD-dependent malate dehydrogenase (NAD-MDH), which are derived mainly from mesophyll cells, increased, whereas those of NADP-ME and ribulose-1,5-bisphosphate carboxylase, which are derived mainly from bundle sheath cells (BSCs), decreased. Immunocytochemical studies by electron microscopy revealed that PPDK protein increased, while the content of ribulose-1,5-bisphosphate carboxylase/oxygenase protein decreased under salinity. In salt-treated plants, the photosynthetic metabolites malate, pyruvate and starch decreased by 40, 89 and 81%, respectively. Gas-exchange analysis revealed that the net photosynthetic rate, the transpiration rate, stomatal conductance (g(s)) and the intercellular CO(2) concentration decreased strongly in salt-treated plants. The carbon isotope ratio (δ(13)C) in these plants was significantly lower than that in control. These findings suggest that the decrease in photosynthetic metabolites under salinity was induced by a reduction in gas-exchange. Moreover, in addition to the decrease in g(s), the decrease in enzyme activities in BSCs was responsible for the decline of C(4) photosynthesis. The increase of PPDK, PEPCase, NADP-MDH, and NAD-MDH activities and the decrease of NADP-ME activity are interpreted as adaptation responses to salinity.

  11. Distributed adaptive diagnosis of sensor faults using structural response data

    Science.gov (United States)

    Dragos, Kosmas; Smarsly, Kay

    2016-10-01

    The reliability and consistency of wireless structural health monitoring (SHM) systems can be compromised by sensor faults, leading to miscalibrations, corrupted data, or even data loss. Several research approaches towards fault diagnosis, referred to as ‘analytical redundancy’, have been proposed that analyze the correlations between different sensor outputs. In wireless SHM, most analytical redundancy approaches require centralized data storage on a server for data analysis, while other approaches exploit the on-board computing capabilities of wireless sensor nodes, analyzing the raw sensor data directly on board. However, using raw sensor data poses an operational constraint due to the limited power resources of wireless sensor nodes. In this paper, a new distributed autonomous approach towards sensor fault diagnosis based on processed structural response data is presented. The inherent correlations among Fourier amplitudes of acceleration response data, at peaks corresponding to the eigenfrequencies of the structure, are used for diagnosis of abnormal sensor outputs at a given structural condition. Representing an entirely data-driven analytical redundancy approach that does not require any a priori knowledge of the monitored structure or of the SHM system, artificial neural networks (ANN) are embedded into the sensor nodes enabling cooperative fault diagnosis in a fully decentralized manner. The distributed analytical redundancy approach is implemented into a wireless SHM system and validated in laboratory experiments, demonstrating the ability of wireless sensor nodes to self-diagnose sensor faults accurately and efficiently with minimal data traffic. Besides enabling distributed autonomous fault diagnosis, the embedded ANNs are able to adapt to the actual condition of the structure, thus ensuring accurate and efficient fault diagnosis even in case of structural changes.

  12. REM SLEEP REBOUND AS AN ADAPTIVE RESPONSE TO STRESSFUL SITUATIONS

    Directory of Open Access Journals (Sweden)

    Deborah eSuchecki

    2012-04-01

    Full Text Available Stress and sleep are related to each other in a bidirectional way. If on one hand poor or inadequate sleep exacerbates emotional, behavioral and stress-related responses, on the other hand acute stress induces sleep rebound, most likely as a form to cope with the adverse stimuli. Chronic stress, conversely, has been claimed to be one of the triggering factors of emotional-related sleep disorders, such as insomnia, depressive- and anxiety-disorders. These outcomes are dependent on individual psychobiological characteristics, which confer more complexity to the stress-sleep relationship. Its neurobiology has only recently begun to be explored, through animal models, which are also valuable for the development of potential therapeutic agents and preventive actions. This review seeks to present data on the effects of stress on sleep and the different approaches used to study this relationship as well as possible neurobiological underpinnings and mechanisms involved. The results of numerous studies in humans and animals indicate that increased sleep, especially the REM phase, following a stressful situation is an important adaptive behavior for recovery. However, this endogenous advantage appears to be impaired in human beings and rodent strains that exhibit high levels of anxiety and anxiety-like behavior.

  13. Distributed reinforcement learning for adaptive and robust network intrusion response

    Science.gov (United States)

    Malialis, Kleanthis; Devlin, Sam; Kudenko, Daniel

    2015-07-01

    Distributed denial of service (DDoS) attacks constitute a rapidly evolving threat in the current Internet. Multiagent Router Throttling is a novel approach to defend against DDoS attacks where multiple reinforcement learning agents are installed on a set of routers and learn to rate-limit or throttle traffic towards a victim server. The focus of this paper is on online learning and scalability. We propose an approach that incorporates task decomposition, team rewards and a form of reward shaping called difference rewards. One of the novel characteristics of the proposed system is that it provides a decentralised coordinated response to the DDoS problem, thus being resilient to DDoS attacks themselves. The proposed system learns remarkably fast, thus being suitable for online learning. Furthermore, its scalability is successfully demonstrated in experiments involving 1000 learning agents. We compare our approach against a baseline and a popular state-of-the-art throttling technique from the network security literature and show that the proposed approach is more effective, adaptive to sophisticated attack rate dynamics and robust to agent failures.

  14. Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors.

    Directory of Open Access Journals (Sweden)

    Laura D Mydlarz

    Full Text Available BACKGROUND: Climate warming is causing environmental change making both marine and terrestrial organisms, and even humans, more susceptible to emerging diseases. Coral reefs are among the most impacted ecosystems by climate stress, and immunity of corals, the most ancient of metazoans, is poorly known. Although coral mortality due to infectious diseases and temperature-related stress is on the rise, the immune effector mechanisms that contribute to the resistance of corals to such events remain elusive. In the Caribbean sea fan corals (Anthozoa, Alcyonacea: Gorgoniidae, the cell-based immune defenses are granular acidophilic amoebocytes, which are known to be involved in wound repair and histocompatibility. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate for the first time in corals that these cells are involved in the organismal response to pathogenic and temperature stress. In sea fans with both naturally occurring infections and experimental inoculations with the fungal pathogen Aspergillus sydowii, an inflammatory response, characterized by a massive increase of amoebocytes, was evident near infections. Melanosomes were detected in amoebocytes adjacent to protective melanin bands in infected sea fans; neither was present in uninfected fans. In naturally infected sea fans a concurrent increase in prophenoloxidase activity was detected in infected tissues with dense amoebocytes. Sea fans sampled in the field during the 2005 Caribbean Bleaching Event (a once-in-hundred-year climate event responded to heat stress with a systemic increase in amoebocytes and amoebocyte densities were also increased by elevated temperature stress in lab experiments. CONCLUSIONS/SIGNIFICANCE: The observed amoebocyte responses indicate that sea fan corals use cellular defenses to combat fungal infection and temperature stress. The ability to mount an inflammatory response may be a contributing factor that allowed the survival of even infected sea fan corals during a

  15. Identification of feedback loops embedded in cellular circuits by investigating non-causal impulse response components.

    Science.gov (United States)

    Dong, Chao-Yi; Yoon, Tae-Woong; Bates, Declan G; Cho, Kwang-Hyun

    2010-02-01

    Feedback circuits are crucial dynamic motifs which occur in many biomolecular regulatory networks. They play a pivotal role in the regulation and control of many important cellular processes such as gene transcription, signal transduction, and metabolism. In this study, we develop a novel computationally efficient method to identify feedback loops embedded in intracellular networks, which uses only time-series experimental data and requires no knowledge of the network structure. In the proposed approach, a non-parametric system identification technique, as well as a spectral factor analysis, is applied to derive a graphical criterion based on non-causal components of the system's impulse response. The appearance of non-causal components in the impulse response sequences arising from stochastic output perturbations is shown to imply the presence of underlying feedback connections within a linear network. In order to extend the approach to nonlinear networks, we linearize the intracellular networks about an equilibrium point, and then choose the magnitude of the output perturbations sufficiently small so that the resulting time-series responses remain close to the chosen equilibrium point. In this way, the impulse response sequences of the linearized system can be used to determine the presence or absence of feedback loops in the corresponding nonlinear network. The proposed method utilizes the time profile data from intracellular perturbation experiments and only requires the perturbability of output nodes. Most importantly, the method does not require any a priori knowledge of the system structure. For these reasons, the proposed approach is very well suited to identifying feedback loops in large-scale biomolecular networks. The effectiveness of the proposed method is illustrated via two examples: a synthetic network model with a negative feedback loop and a nonlinear caspase function model of apoptosis with a positive feedback loop.

  16. DNA-damage response network at the crossroads of cell-cycle checkpoints,cellular senescence and apoptosis

    Institute of Scientific and Technical Information of China (English)

    SCHMITT Estelle; PAQUET Claudie; BEAUCHEMIN Myriam; BERTRAND Richard

    2007-01-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation,cellular senescence and cell death.Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities.Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms.Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death.The intimate link between the cell cycle,cellular senescence,apoptosis regulation,cancer development and tumor responses to cancer treatment has become eminently apparent.Extensive research on tumor suppressor genes,oncogenes,the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways,referred to as the DNA-damage response network,are tied to cell proliferation,cell-cycle arrest,cellular senescence and apoptosis.DNA-damage responses are complex,involving "sensor" proteins that sense the damage,and transmit signals to "transducer" proteins,which,in turn,convey the signals to numerous "effector" proteins implicated in specific cellular pathways,including DNA repair mechanisms,cell-cycle checkpoints,cellular senescence and apoptosis.The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation.In addition,several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle,DNA repair/recombination and cellular senescence,effects that are generally distinct from their function in apoptosis.In this review,we report progress in understanding the molecular networks that regulate cell-cycle checkpoints,cellular senescence and apoptosis after DNA damage,and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.

  17. Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors.

    Directory of Open Access Journals (Sweden)

    Balaji Balakrishnan

    Full Text Available The unfolded protein response (UPR is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER. In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold and PERK (up to 8 fold genes 12-48 hours after infection with self-complementary (scAAV2 but less prominent with single-stranded (ssAAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold while AAV6 vectors induced a significant increase on all the three major UPR pathways [6-16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5-2 fold in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively. However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer.

  18. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Directory of Open Access Journals (Sweden)

    Xingsheng Hou

    Full Text Available FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7 and a flcA deletion mutant (Sp7-flcAΔ revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot. The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase, nitrogen metabolism (Glutamine synthetase and nitric oxide synthase, stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit and morphological transformation (transducer coupling protein. The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  19. Signaling beyond Punching Holes: Modulation of Cellular Responses by Vibrio cholerae Cytolysin

    Directory of Open Access Journals (Sweden)

    Barkha Khilwani

    2015-08-01

    Full Text Available Pore-forming toxins (PFTs are a distinct class of membrane-damaging cytolytic proteins that contribute significantly towards the virulence processes employed by various pathogenic bacteria. Vibrio cholerae cytolysin (VCC is a prominent member of the beta-barrel PFT (beta-PFT family. It is secreted by most of the pathogenic strains of the intestinal pathogen V. cholerae. Owing to its potent membrane-damaging cell-killing activity, VCC is believed to play critical roles in V. cholerae pathogenesis, particularly in those strains that lack the cholera toxin. Large numbers of studies have explored the mechanistic basis of the cell-killing activity of VCC. Consistent with the beta-PFT mode of action, VCC has been shown to act on the target cells by forming transmembrane oligomeric beta-barrel pores, thereby leading to permeabilization of the target cell membranes. Apart from the pore-formation-induced direct cell-killing action, VCC exhibits the potential to initiate a plethora of signal transduction pathways that may lead to apoptosis, or may act to enhance the cell survival/activation responses, depending on the type of target cells. In this review, we will present a concise view of our current understanding regarding the multiple aspects of these cellular responses, and their underlying signaling mechanisms, evoked by VCC.

  20. The adaptor protein FHL2 enhances the cellular innate immune response to influenza A virus infection.

    Science.gov (United States)

    Nordhoff, Carolin; Hillesheim, Andrea; Walter, Beate M; Haasbach, Emanuel; Planz, Oliver; Ehrhardt, Christina; Ludwig, Stephan; Wixler, Viktor

    2012-07-01

    The innate immune response of influenza A virus-infected cells is predominantly mediated by type I interferon-induced proteins. Expression of the interferon β (IFNβ) itself is initiated by accumulating viral RNA and is transmitted by different signalling cascades that feed into activation of the three transcriptional elements located in the IFNβ promoter, AP-1, IRF-3 and NF-κB. FHL2 (four-and-a-half LIM domain protein 2) is an adaptor molecule that shuttles between membrane and nucleus regulating signalling cascades and gene transcription. Here we describe FHL2 as a novel regulator of influenza A virus propagation. Using mouse FHL2 wild-type, knockout and rescued cells and human epithelial cells with different expression levels of FHL2 we showed that FHL2 decreases influenza A virus propagation by regulating the intrinsic cellular antiviral immune response. On virus infection FHL2 translocates into the nucleus, potentiating the IRF-3-dependent transcription of the IFNβ gene.

  1. Cellular and humoral antibody responses of normal pastel and sapphire mink to goat erythrocytes.

    Science.gov (United States)

    Lodmell, D L; Bergman, R K; Hadlow, W J; Munoz, J J

    1971-02-01

    This study was undertaken to determine whether normal sapphire and royal pastel mink differ immunologically at the cellular and humoral levels. Two days after primary intraperitoneal (ip) inoculation of goat erythrocytes (GE), essentially no 19 or 7S plaque-forming cells (PFC) per 10(6) cells were detected in spleen or in abdominal and peripheral lymph nodes of either color phase. On the 4th day, more 19S PFC were detected in pastel than in sapphire tissues; pastel tissues also contained 7S PFC, whereas essentially none was present in sapphires until the 6th day. After an ip booster inoculation, the number of PFC was markedly different between the two color phases. These differences were most apparent in spleen and peripheral lymph nodes. In parallel with differences observed in PFC responses between the color phases, total hemolysin and 2-mercaptoethanol-resistant hemolysin titers of pastels exceeded those of sapphires in all but one interval after the primary, and at every interval after the booster, inoculation. These data indicate that sapphire mink are not immunological cripples, nor are they immunologically hyperactive, but that differences do exist between sapphire and royal pastel mink, especially in the response to booster injections of GE.

  2. Metal oxide nanoparticles interact with immune cells and activate different cellular responses

    Directory of Open Access Journals (Sweden)

    Simón-Vázquez R

    2016-09-01

    Full Text Available Rosana Simón-Vázquez, Tamara Lozano-Fernández, Angela Dávila-Grana, Africa González-Fernández Immunology Laboratory, Biomedical Research Center (CINBIO and Institute of Biomedical Research of Ourense-Pontevedra-Vigo (IBI, University of Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra, Spain Abstract: Besides cell death, nanoparticles (Nps can induce other cellular responses such as inflammation. The potential immune response mediated by the exposure of human lymphoid cells to metal oxide Nps (moNps was characterized using four different moNps (CeO2, TiO2, Al2O3, and ZnO to study the three most relevant mitogen-activated protein kinase subfamilies and the nuclear factor kappa-light-chain-enhancer of the activated B-cell inhibitor, IκBα, as well as the expression of several genes by immune cells incubated with these Nps. The moNps activated different signaling pathways and altered the gene expression in human lymphocyte cells. The ZnO Nps were the most active and the release of Zn2+ ions was the main mechanism of toxicity. CeO2 Nps induced the smallest changes in gene expression and in the IκBα protein. The effects of the particles were strongly dependent on the type and concentration of the Nps and on the cell activation status prior to Np exposure. Keywords: Jurkat, MAPK, NFκB, qPCR, inflammation, metabolism

  3. Microfluidic chips for in vivo imaging of cellular responses to neural injury in Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Mostafa Ghannad-Rezaie

    Full Text Available With powerful genetics and a translucent cuticle, the Drosophila larva is an ideal model system for live imaging studies of neuronal cell biology and function. Here, we present an easy-to-use approach for high resolution live imaging in Drosophila using microfluidic chips. Two different designs allow for non-invasive and chemical-free immobilization of 3(rd instar larvae over short (up to 1 hour and long (up to 10 hours time periods. We utilized these 'larva chips' to characterize several sub-cellular responses to axotomy which occur over a range of time scales in intact, unanaesthetized animals. These include waves of calcium which are induced within seconds of axotomy, and the intracellular transport of vesicles whose rate and flux within axons changes dramatically within 3 hours of axotomy. Axonal transport halts throughout the entire distal stump, but increases in the proximal stump. These responses precede the degeneration of the distal stump and regenerative sprouting of the proximal stump, which is initiated after a 7 hour period of dormancy and is associated with a dramatic increase in F-actin dynamics. In addition to allowing for the study of axonal regeneration in vivo, the larva chips can be utilized for a wide variety of in vivo imaging applications in Drosophila.

  4. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses

    Energy Technology Data Exchange (ETDEWEB)

    Haase, A; Tentschert, J; Jungnickel, H; Goetz, M E; Luch, A [BfR - Federal Institute for Risk Assessment, Department of Product Safety, Thielallee 88-92, 14195 Berlin (Germany); Graf, P [University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056 Basel (Switzerland); Mantion, A; Thuenemann, A F [BAM - Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin (Germany); Draude, F; Galla, S; Arlinghaus, H F [University of Muenster, Institute of Physics, Wilhelm Klemm Strasse 10, 48149 Muenster (Germany); Plendl, J [Free University of Berlin, Department of Veterinary Medicine, Institute of Veterinary Anatomy, Koserstrasse 20, 14195 Berlin (Germany); Masic, A; Taubert, A, E-mail: andrea.haase@bfr.bund.de, E-mail: alexandre.mantion@bam.de [University of Potsdam, Institute of Chemistry, Karl- Liebknecht- Strasse 24-25, 14476 Potsdam-Golm (Germany)

    2011-07-06

    Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages.

  5. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Science.gov (United States)

    Hou, Xingsheng; McMillan, Mary; Coumans, Joëlle V F; Poljak, Anne; Raftery, Mark J; Pereg, Lily

    2014-01-01

    FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  6. Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis.

    Science.gov (United States)

    Park, Sang-Wook; Li, Wei; Viehhauser, Andrea; He, Bin; Kim, Soonok; Nilsson, Anders K; Andersson, Mats X; Kittle, Joshua D; Ambavaram, Madana M R; Luan, Sheng; Esker, Alan R; Tholl, Dorothea; Cimini, Daniela; Ellerström, Mats; Coaker, Gitta; Mitchell, Thomas K; Pereira, Andy; Dietz, Karl-Josef; Lawrence, Christopher B

    2013-06-04

    The jasmonate family of phytohormones plays central roles in plant development and stress acclimation. However, the architecture of their signaling circuits remains largely unknown. Here we describe a jasmonate family binding protein, cyclophilin 20-3 (CYP20-3), which regulates stress-responsive cellular redox homeostasis. (+)-12-Oxo-phytodienoic acid (OPDA) binding promotes CYP20-3 to form a complex with serine acetyltransferase 1, which triggers the formation of a hetero-oligomeric cysteine synthase complex with O-acetylserine(thiol)lyase B in chloroplasts. The cysteine synthase complex formation then activates sulfur assimilation that leads to increased levels of thiol metabolites and the buildup of cellular reduction potential. The enhanced redox capacity in turn coordinates the expression of a subset of OPDA-responsive genes. Thus, we conclude that CYP20-3 is a key effector protein that links OPDA signaling to amino acid biosynthesis and cellular redox homeostasis in stress responses.

  7. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket.

    Science.gov (United States)

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  8. Cellular stress response in Eca-109 cells inhibits apoptosis during early exposure to isorhamnetin.

    Science.gov (United States)

    Shi, C; Fan, L Y; Cai, Z; Liu, Y Y; Yang, C L

    2012-01-01

    The flavonol aglycone isorhamnetin shows anti-proliferative activity in a variety of cancer cells. Previous work, from our laboratory showed that isorhamnetin inhibits the proliferation of human esophageal squamous carcinoma Eca-109 cells in vitro, but only after 72 h of exposure. This led us to propose that isorhamnetin exposure induces a cellular stress response that inhibits the antiproliferative and apoptotic effects of the compound during early exposure. To test this hypothesis, the present study examined the effects of isorhamnetin on Eca-109 cells during the first 72 h of exposure. Cell growth was assessed using the trypan blue exclusion assay, and expression of IκBα, NF-κB/p65, NF-κB/p50, phospho-Akt, Bcl-2, COX-2, Mcl-1, Bax, p53 and Id-1 were analyzed by Western blot. During the first 72 h of exposure, NF-κB/p65 and NF-κB/p50 accumulated in nuclei and expression of COX-2, Bcl-2 and Mcl-1 increased. In contrast, expression of IκBα and Bax fell initially but later increased. Expression of phospho-Akt and p53 showed no detectable change during the first 48 h. Pretreatment with the NF-κB inhibitor MG132 before exposure to isorhamnetin blocked the nuclear accumulation of p50 and p65, thereby inhibiting cell proliferation. These results show that during early exposure of Eca-109 cells to isorhamnetin, the NF-κB signaling pathway is activated and COX-2 expression increases, and this increase in expression partially inhibits isorhamnetin-induced apoptosis. Beyond 72 h of exposure, however, the apoptotic effect of isorhamnetin dominates, leading to inhibition of the NF-κB pathway and of cellular proliferation. These results will need to be taken into account when exploring the use of isorhamnetin against cancer in vivo.

  9. Expression of cellular components in granulomatous inflammatory response in Piaractus mesopotamicus model.

    Directory of Open Access Journals (Sweden)

    Wilson Gómez Manrique

    Full Text Available The present study aimed to describe and characterize the cellular components during the evolution of chronic granulomatous inflammation in the teleost fish pacus (P. mesopotamicus induced by Bacillus Calmette-Guerin (BCG, using S-100, iNOS and cytokeratin antibodies. 50 fish (120±5.0 g were anesthetized and 45 inoculated with 20 μL (40 mg/mL (2.0 x 10(6 CFU/mg and five inoculated with saline (0,65% into muscle tissue in the laterodorsal region. To evaluate the inflammatory process, nine fish inoculated with BCG and one control were sampled in five periods: 3rd, 7th, 14th, 21st and 33rd days post-inoculation (DPI. Immunohistochemical examination showed that the marking with anti-S-100 protein and anti-iNOS antibodies was weak, with a diffuse pattern, between the third and seventh DPI. From the 14th to the 33rd day, the marking became stronger and marked the cytoplasm of the macrophages. Positivity for cytokeratin was initially observed in the 14th DPI, and the stronger immunostaining in the 33rd day, period in which the epithelioid cells were more evident and the granuloma was fully formed. Also after the 14th day, a certain degree of cellular organization was observed, due to the arrangement of the macrophages around the inoculated material, with little evidence of edema. The arrangement of the macrophages around the inoculum, the fibroblasts, the lymphocytes and, in most cases, the presence of melanomacrophages formed the granuloma and kept the inoculum isolated in the 33rd DPI. The present study suggested that the granulomatous experimental model using teleost fish P. mesopotamicus presented a similar response to those observed in mammals, confirming its importance for studies of chronic inflammatory reaction.

  10. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration.

    Science.gov (United States)

    Reale, Marcella; Kamal, Mohammad A; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1 mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2(-), which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  11. Design of artificial genetic regulatory networks with multiple delayed adaptive responses

    CERN Document Server

    Kaluza, Pablo

    2016-01-01

    Genetic regulatory networks with adaptive responses are widely studied in biology. Usually, models consisting only of a few nodes have been considered. They present one input receptor for activation and one output node where the adaptive response is computed. In this work, we design genetic regulatory networks with many receptors and many output nodes able to produce delayed adaptive responses. This design is performed by using an evolutionary algorithm of mutations and selections that minimizes an error function defined by the adaptive response in signal shapes. We present several examples of network constructions with a predefined required set of adaptive delayed responses. We show that an output node can have different kinds of responses as a function of the activated receptor. Additionally, complex network structures are presented since processing nodes can be involved in several input-output pathways.

  12. MULTISTAGE ADAPTIVE HIGHER-ORDER NONLINEAR FINITE IMPULSE RESPONSE FILTERS FOR CHAOTIC TIME SERIES PREDICTIONS

    Institute of Scientific and Technical Information of China (English)

    ZHANG JIA-SHU; XIAO XIAN-CI

    2001-01-01

    A multistage adaptive higher-order nonlinear finite impulse response (MAHONFIR) filter is proposed to predict chaotic time series. Using this approach, we may readily derive the decoupled parallel algorithm for the adaptation of the coefficients of the MAHONFIR filter, to guarantee a more rapid convergence of the adaptive weights to their optimal values. Numerical simulation results show that the MAHONFIR filters proposed here illustrate a very good performance for making an adaptive prediction of chaotic time series.

  13. Establishing cellular stress response profiles as biomarkers of homeodynamics, health, and hormesis

    DEFF Research Database (Denmark)

    Demirovic, Dino; Rattan, Suresh

    2013-01-01

    Aging is the progressive shrinkage of the homeodynamic space. A crucial component of the homeodynamic space is the stress response (SR), by virtue of which a living system senses disturbance and initiates a series of events for maintenance, repair, adaptation, remodeling and survival. Here we...... and the health status of cells and organisms. SRP can also be useful for testing potential protectors and stimulators of homeodynamics, and can be a standard for monitoring the efficacy of potential pro-survival, health-promoting and aging-modulating conditions, food components and other compounds. An effective...... strategy, which makes use of SRP for achieving healthy aging and extending the healthspan, is that of strengthening the homeodynamics through repeated mild stress-induced hormesis by physical, biological and nutritional hormetins. Furthermore, SRP can also be the basis for defining health as a state...

  14. NR4A2 is regulated by gastrin and influences cellular responses of gastric adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Kristine Misund

    Full Text Available The peptide hormone gastrin is known to play a role in differentiation, growth and apoptosis of cells in the gastric mucosa. In this study we demonstrate that gastrin induces Nuclear Receptor 4A2 (NR4A2 expression in the adenocarcinoma cell lines AR42J and AGS-GR, which both possess the gastrin/CCK2 receptor. In vivo, NR4A2 is strongly expressed in the gastrin responsive neuroendocrine ECL cells in normal mucosa, whereas gastric adenocarcinoma tissue reveals a more diffuse and variable expression in tumor cells. We show that NR4A2 is a primary early transient gastrin induced gene in adenocarcinoma cell lines, and that NR4A2 expression is negatively regulated by inducible cAMP early repressor (ICER and zinc finger protein 36, C3H1 type-like 1 (Zfp36l1, suggesting that these gastrin regulated proteins exert a negative feedback control of NR4A2 activated responses. FRAP analyses indicate that gastrin also modifies the nucleus-cytosol shuttling of NR4A2, with more NR4A2 localized to cytoplasm upon gastrin treatment. Knock-down experiments with siRNA targeting NR4A2 increase migration of gastrin treated adenocarcinoma AGS-GR cells, while ectopically expressed NR4A2 increases apoptosis and hampers gastrin induced invasion, indicating a tumor suppressor function of NR4A2. Collectively, our results uncover a role of NR4A2 in gastric adenocarcinoma cells, and suggest that both the level and the localization of NR4A2 protein are of importance regarding the cellular responses of these cells.

  15. Assessment of the cellular and electrophysiological response of cardiomyocytes to radiation

    Science.gov (United States)

    Helm, Alexander; Ritter, Sylvia; Durante, Marco; Friess, Johannes; Thielemann, Christiane; Mr; Frank, Simon

    Cardiac disease is considered as a late effect resulting from an exposure during long-term space missions. Yet, the underlying mechanisms and the impact of radiation quality and dose are not well understood. To address this topic, we used cardiomyocytes derived from mouse embryonic stem cells (mESC) as a model system. This model has already been successfully used for cardiotoxicity screening of new drugs. Both, the cellular and electrophysiological response to X-ray irradiation were examined. Cellular endpoints such as the induction of micronuclei, apoptosis, number of binucleated cells and expression of connexin43 (Cx 43) were analyzed by standard techniques. For electrophysiological studies a microelectrode array (MEA) was used allowing non-invasive recordings of electrical signals such as signal amplitude and shape, beat rate and conduction velocity. Data analysis was performed using the MATLAB based software DrCell. As a first approach, cardiomyocytes were generated by differentiation of mESC via the formation of embryoid bodies. However, the system proved to be unsuitable due to large intra- and inter-sample variations. In consecutive experiments we used commercially available Cor.At cells, i.e. a pure culture of mESC derived cardiomyocytes. For the analysis of cellular and electrophysiological endpoints Cor.At cells were seeded onto chamber slides or MEA chips, respectively. Irradiation with 0.5 and 2 Gy X-rays (250 kV, 16 mA) was performed two days after seeding. At that time cardiomyocytes are electrically coupled through gap junctions and form a spontaneously beating network. Samples were examined up to four days after exposure. Analysis of the electrophysiological data revealed only minor differences between controls and X-irradiated samples indicating the functionality of cardiomyocytes is not within the dose range examined. Currently, further experiments are performed to statistically verify this finding. Additionally, the expression of Cx 43, a major

  16. The molecular and cellular response of normal and progressed human bronchial epithelial cells to HZE particles

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Larsen, Jill

    We have used a model of non-oncogenically immortalized normal human bronchial epithelial cells to determine the response of such cells to particles found outside the protection of the earth’s electromagnetic field. We have identified an enhanced frequency of cellular transformation, as measured by growth in soft agar, for both 56Fe and 28Si (1 GeV/n) that is maximal (4-6 fold) at 0.25 Gy and 0.40 Gy, respectively. At 4 months post-irradiation 38 individual soft agar clones were isolated. These clones were characterized extensively for cellular and molecular changes. Gene expression analysis suggested that these clones had down-regulated several genes associated with anti-oxidant pathways including GLS2, GPX1 and 4, SOD2, PIG3, and NQO1 amongst others. As a result, many of these transformed clones were exposed to high levels of intracellular radical oxygen species (ROS), although there appeared not to be any enhanced mitochondrial ROS. DNA repair pathways associated with ATM/ATR signaling were also upregulated. However, these transformants do not develop into tumors when injected into immune-compromised mice, suggesting that they have not progressed sufficiently to become oncogenic. Therefore we chose 6 soft agar clones for continuous culture for an additional 14 months. Amongst the 6 clones, only one clone showed any significant change in phenotype. Clone 3kt-ff.2a, propagated for 18 months, were 2-fold more radioresistant, had a shortened doubling time and the background rate of transformation more than doubled. Furthermore, the morphology of transformed clones changed. Clones from this culture are being compared to the original clone as well as the parental HBEC3KT and will be injected into immune-compromised mice for oncogenic potential. Oncogenically progressed HBECs, HBEC3KT cells that overexpress a mutant RAS gene and where p53 has been knocked down, designated HBEC3KTR53, responded quite differently to HZE particle exposure. First, these cells are more

  17. Pilot Study: Unique Response of Bone Tissue During an Investigation of Radio-Adaptive Effects in Mice

    Science.gov (United States)

    Sibonga, J. D.; Iwaniec, U.; Wu, H.

    2011-01-01

    PURPOSE: We obtained bone tissue to evaluate the collateral effects of experiments designed to investigate molecular mechanisms of radio-adaptation in a mouse model. Radio-adaptation describes a process by which the prior exposure to low dose radiation can protect against the toxic effect of a subsequent high dose exposure. In the radio-adaptation experiments, C57Bl/6 mice were exposed to either a Sham or a priming Low Dose (5 cGy) of Cs-137 gamma rays before being exposed to either a Sham or High Dose (6 Gy) 24 hours later. ANALYSIS: Bone tissue were obtained from two experiments where mice were sacrificed at 3 days (n=3/group, 12 total) and at 14 days (n=6/group, 24 total) following high dose exposure. Tissues were analyzed to 1) evaluate a radio-adaptive response in bone tissue and 2) describe cellular and microstructural effects for two skeletal sites with different rates of bone turnover. One tibia and one lumbar vertebrae (LV2), collected at the 3-day time-point, were analyzed by bone histomorphometry and micro-CT to evaluate the cellular response and any evidence of microarchitectural impact. Likewise, tibia and LV2, collected at the 14-day time-point, were analyzed by micro-CT alone to evaluate resulting changes to bone structure and microarchitecture. The data were analyzed by 2-way ANOVA to evaluate the effects of the priming low dose radiation, of the high dose radiation, and of any interaction between the priming low and high doses of radiation. Bone histomorphometry was performed in the cancellous bone (aka trabecular bone) compartments of the proximal tibial metaphysis and of LV2. RESULTS: Cellular Response @ 3 Days The priming Low Dose radiation decreased osteoblast-covered bone perimeter in the proximal tibia and the total cell density in the bone marrow in the LV2. High Dose radiation, regardless of prior exposure to priming dose, dramatically reduced total cell density in bone marrow of both the long bone and vertebra. However, in the proximal

  18. Plasmid DNA Vaccine Co-Immunisation Modulates Cellular and Humoral Immune Responses Induced by Intranasal Inoculation in Mice.

    Directory of Open Access Journals (Sweden)

    Deborah F L King

    Full Text Available An effective HIV vaccine will likely require induction of both mucosal and systemic cellular and humoral immune responses. We investigated whether intramuscular (IM delivery of electroporated plasmid DNA vaccine and simultaneous protein vaccinations by intranasal (IN and IM routes could be combined to induce mucosal and systemic cellular and humoral immune responses to a model HIV-1 CN54 gp140 antigen in mice.Co-immunisation of DNA with intranasal protein successfully elicited both serum and vaginal IgG and IgA responses, whereas DNA and IM protein co-delivery did not induce systemic or mucosal IgA responses. Cellular IFNγ responses were preserved in co-immunisation protocols compared to protein-only vaccination groups. The addition of DNA to IN protein vaccination reduced the strong Th2 bias observed with IN protein vaccination alone. Luminex analysis also revealed that co-immunisation with DNA and IN protein induced expression of cytokines that promote B-cell function, generation of TFH cells and CCR5 ligands that can reduce HIV infectivity.These data suggest that while IN inoculation alone elicits both cellular and humoral responses, co-administration with homologous DNA vaccination can tailor these towards a more balanced Th1/Th2 phenotype modulating the cellular cytokine profile while eliciting high-levels of antigen-specific antibody. This work provides insights on how to generate differential immune responses within the same vaccination visit, and supports co-immunisation with DNA and protein by a mucosal route as a potential delivery strategy for HIV vaccines.

  19. Responsible Climate Change Adaptation : Exploring, analysing and evaluating public and private responsibilities for urban adaptation to climate change

    NARCIS (Netherlands)

    Mees, Heleen

    2014-01-01

    Cities are vulnerable to climate change. To deal with climate change, city governments and private actors such as businesses and citizens need to adapt to its effects, such as sea level rise, storm surges, intense rainfall and heatwaves. However, adaptation planning and action is often hampered when

  20. A cellular and molecular model of response kinetics and adaptation in primate cones and horizontal cells

    NARCIS (Netherlands)

    Hateren, Hans van

    2005-01-01

    A model for the sensitivity regulation in the primate outer retina is developed and validated using horizontal cell measurements from the literature. The main conclusion is that the phototransduction of the cones is the key factor regulating sensitivity. The model consists of a nonlinearity cascaded

  1. Dynamic Condition Response Graphs for Trustworthy Adaptive Case Management

    DEFF Research Database (Denmark)

    Mukkamala, Raghava Rao; Hildebrandt, Thomas; Slaats, Tijs

    2013-01-01

    By trustworthy adaptive case management we mean that it should be possible to adapt processes and goals at runtime while guaranteeing that no deadlocks and livelocks are introduced. We propose to support this by applying a formal declarative process model, DCR Graphs, and exemplify its operational...... specified either as linear time logic (LTL) or DCR Graphs, extend the language with time and data and offer extended support for cross-organizational case management systems....

  2. Establishing cellular stress response profiles as biomarkers of homeodynamics, health and hormesis.

    Science.gov (United States)

    Demirovic, Dino; Rattan, Suresh I S

    2013-01-01

    Aging is the progressive shrinkage of the homeodynamic space. A crucial component of the homeodynamic space is the stress response (SR), by virtue of which a living system senses disturbance and initiates a series of events for maintenance, repair, adaptation, remodeling and survival. Here we discuss the main intracellular SR pathways in human cells, and argue for the need to define and establish the immediate and delayed stress response profiles (SRP) during aging. Such SRP are required to be established at several age-points, which can be the molecular biomarkers of homeodynamic space and the health status of cells and organisms. SRP can also be useful for testing potential protectors and stimulators of homeodynamics, and can be a standard for monitoring the efficacy of potential pro-survival, health-promoting and aging-modulating conditions, food components and other compounds. An effective strategy, which makes use of SRP for achieving healthy aging and extending the healthspan, is that of strengthening the homeodynamics through repeated mild stress-induced hormesis by physical, biological and nutritional hormetins. Furthermore, SRP can also be the basis for defining health as a state of having adequate physical and mental independence of activities of daily living, by identifying a set of measurable parameters at the most fundamental level of biological organization.

  3. CELLULAR RESPONSES TO DNA DAMAGE AND ONCOGENESIS BY THE p53 AND pRb/E2F PATHWAYS

    Directory of Open Access Journals (Sweden)

    Elza Ibrahim Auerkari

    2015-07-01

    Full Text Available Cellular responses to stress including DNA damage, show multiple options involving the mechanisms of growth arrest. DNA repair and programmed cell death or apoptosis. Failures in these mechanisms can result in oncogenesis or accelerated senescence. Much of the response is coordinated by p53, a nuclear phosphoprotein with a central role in the defences against physical, chemical and pathogenic agents which challenge the DNA integrity. The p53 pathways for mobilising the cellular defences are linked to the pRB/E2D pathways regulating the cell cycle progression. This paper aims to review the current understanding on the networks and main molecular machinery of these processes. In addition, the implications on cellular decision making for the defences as well as revolutionary aspects of these mechanisms are discussed in brief.

  4. Bacterial formyl peptides affect the innate cellular antimicrobial responses of larval Galleria mellonella (Insecta: Lepidoptera).

    Science.gov (United States)

    Alavo, Thiery B C; Dunphy, Gary B

    2004-04-01

    The non-self cellular (hemocytic) responses of Galleria mellonella larvae, including the attachment to slides and the removal of the bacteria Xenorhabdus nematophila and Bacillus subtilis from the hemolymph, were affected by N-formyl peptides. Both N-formyl methionyl-leucyl-phenylalanine (fMLF) and the ester derivative decreased hemocyte adhesion in vitro, and both elevated hemocyte counts and suppressed the removal of both X. nematophila and B. subtilis from the hemolymph in vivo. The amide derivative and the antagonist tertiary-butoxy-carbonyl-methionyl-leucyl-phenylalanine (tBOC) increased hemocyte attachment to glass. The fMLF suppressed protein discharge from monolayers of granular cells with and without bacterial stimulation, while tBOC stimulated protein discharge. The peptide tBOC offset the effects of fMLF in vitro and in vivo. This is the first report implying the existence of formyl peptide receptors on insect hemocytes in which the compounds fMLF and tBOC inhibited and activated hemocyte activity, respectively.

  5. Temporal regulation of cerebellar EGL migration through a switch in cellular responsiveness to the meninges.

    Science.gov (United States)

    Zhu, Yan; Yu, Tao; Rao, Yi

    2004-03-01

    We have studied the temporal and spatial control of cell migration from the external germinal layer (EGL) in the mammalian cerebellum as a model for cortical migration. Our results have demonstrated that embryonic EGL cells do not migrate into internal layers because they respond to a diffusible attractant in the meninges, the nonneural tissues covering the nervous system, and to a repellent in the neuroepithelium. Two developmental changes are important for postnatal EGL migration: the disappearance of the repellent in the inner layers and a switch in cellular responsiveness of EGL cells so that the postnatal EGL cells respond to the repellent, but not the attractant in the meninges. Besides revealing the signaling role of meninges in cortical development, our study suggests that an active mechanism is required to prevent cell migration, and that mechanisms of cell migration should be studied even in the absence of apparent changes in cell positions. We propose a model for the developmental control of neuronal migration in the cerebellar cortex.

  6. Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses.

    Science.gov (United States)

    Shrestha, Roshan P; Hildebrand, Mark

    2015-01-01

    The utilization of silicon by diatoms has both global and small-scale implications, from oceanic primary productivity to nanotechnological applications of their silica cell walls. The sensing and transport of silicic acid are key aspects of understanding diatom silicon utilization. At low silicic acid concentrations (silicon starvation. SIT1 and SIT2 were localized in the plasma membrane, and protein levels were generally inversely correlated with cellular silicon needs, with a distinct response being found when the two SITs were compared. We developed highly effective approaches for RNA interference and antisense knockdowns, the first such approaches developed for a centric diatom. SIT knockdown differentially affected the uptake of silicon and the incorporation of silicic acid and resulted in the induction of lipid accumulation under silicon starvation conditions far earlier than in the wild-type cells, suggesting that the cells were artificially sensing silicon limitation. The data suggest that the transport role of the SITs is relatively minor under conditions with sufficient silicic acid. Their primary role is to sense silicic acid levels to evaluate whether the cell can proceed with its cell wall formation and division processes.

  7. Cellular Response of the Amoeba Acanthamoeba castellanii to Chlorine, Chlorine Dioxide, and Monochloramine Treatments ▿

    Science.gov (United States)

    Mogoa, Emerancienne; Bodet, Charles; Morel, Franck; Rodier, Marie-Hélène; Legube, Bernard; Héchard, Yann

    2011-01-01

    Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii. PMID:21602398

  8. Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2

    Energy Technology Data Exchange (ETDEWEB)

    Salaita, Khalid; Nair, Pradeep M; Petit, Rebecca S; Neve, Richard M; Das, Debopriya; Gray, Joe W; Groves, Jay T

    2009-09-09

    Activation of the EphA2 receptor tyrosine kinase by ephrin-A1 ligands presented on apposed cell surfaces plays important roles in development and exhibits poorly understood functional alterations in cancer. We reconstituted this intermembrane signaling geometry between live EphA2-expressing human breast cancer cells and supported membranes displaying laterally mobile ephrin-A1. Receptor-ligand binding, clustering, and subsequent lateral transport within this junction were observed. EphA2 transport can be blocked by physical barriers nanofabricated onto the underlying substrate. This physical reorganization of EphA2 alters the cellular response to ephrin-A1, as observed by changes in cytoskeleton morphology and recruitment of a disintegrin and metalloprotease 10. Quantitative analysis of receptor-ligand spatial organization across a library of 26 mammary epithelial cell lines reveals characteristic differences that strongly correlate with invasion potential. These observations reveal a mechanism for spatio-mechanical regulation of EphA2 signaling pathways.

  9. No Evidence for a Low Linear Energy Transfer Adaptive Response in Irradiated RKO Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Marianne B.; Goetz, Wilfried; Baulch, Janet E.; Lewis, Adam J.; Morgan, William F.

    2011-01-06

    It has become increasingly evident from reports in the literature that there are many confounding factors that are capable of modulating radiation induced non-targeted responses such as the bystander effect and the adaptive response. In this paper we examine recent data that suggest that the observation of non-targeted responses may not be universally observable for differing radiation qualities. We have conducted a study of the adaptive response following low LET exposures for human colon carcinoma cells and failed to observe adaption for the endpoints of clonogenic survival or micronucleus formation.

  10. Effect of MWCNT surface and chemical modification on in vitro cellular response

    Energy Technology Data Exchange (ETDEWEB)

    Fraczek-Szczypta, Aneta; Menaszek, Elzbieta [AGH-University of Science and Technology, Department of Biomaterials, Faculty of Materials Science and Ceramics (Poland); Syeda, Tahmina Bahar; Misra, Anil; Alavijeh, Mohammad [Pharmidex Pharmaceutical Services (United Kingdom); Adu, Jimi [University of Brighton, School of Pharmacy and Biomolecular Sciences (United Kingdom); Blazewicz, Stanislaw, E-mail: blazew@agh.edu.pl [AGH-University of Science and Technology, Department of Biomaterials, Faculty of Materials Science and Ceramics (Poland)

    2012-10-15

    The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs with diameter in the range of 10-30 nm) before and after chemical surface functionalisation on macrophages response. The study has shown that the detailed analysis of the physicochemical properties of this particular form of carbon nanomaterial is a crucial issue to interpret properly its impact on the cellular response. Effects of carbon nanotubes (CNTs) characteristics, including purity, dispersity, chemistry and dimension upon the nature of the cell environment-material interaction were investigated. Various techniques involving electron microscopy (SEM, TEM), infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy have been employed to evaluate the physicochemical properties of the materials. The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell-nanotube interaction. Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process. The results indicate that MWCNT-F in macrophages may decrease the cell proliferation process by interfering with the mitotic apparatus without negative consequences on cell viability. On the contrary, the as-prepared MWCNTs, without any surface treatment produce the least reduction in cell proliferation with reference to control, and the viability of cells exposed to this sample was substantially reduced with respect to control. A possible explanation of such a phenomenon is the presence of MWCNT's agglomerates surrounded by numerous cells releasing toxic substances.

  11. Coordination between p21 and DDB2 in the cellular response to UV radiation.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available The tumor suppressor p53 guides the cellular response to DNA damage mainly by regulating expression of target genes. The cyclin-dependent kinase inhibitor p21, which is induced by p53, can both arrest the cell cycle and inhibit apoptosis. Interestingly, p53-inducible DDB2 (damaged-DNA binding protein 2 promotes apoptosis by mediating p21 degradation after ultraviolet (UV-induced DNA damage. Here, we developed an integrated model of the p53 network to explore how the UV-irradiated cell makes a decision between survival and death and how the activities of p21 and DDB2 are modulated. By numerical simulations, we found that p53 is activated progressively and the promoter selectivity of p53 depends on its concentration. For minor DNA damage, p53 settles at an intermediate level. p21 is induced by p53 to arrest the cell cycle via inhibiting E2F1 activity, allowing for DNA repair. The proapoptotic genes are expressed at low levels. For severe DNA damage, p53 undergoes a two-phase behavior and accumulates to high levels in the second phase. Consequently, those proapoptotic proteins accumulate remarkably. Bax activates the release of cytochrome c, while DDB2 promotes the degradation of p21, which leads to activation of E2F1 and induction of Apaf-1. Finally, the caspase cascade is activated to trigger apoptosis. We revealed that the downregulation of p21 is necessary for apoptosis induction and PTEN promotes apoptosis by amplifying p53 activation. This work demonstrates that how the dynamics of the p53 network can be finely regulated through feed-forward and feedback loops within the network and emphasizes the importance of p21 regulation in the DNA damage response.

  12. A new in vitro model to study cellular responses after thermomechanical damage in monolayer cultures.

    Directory of Open Access Journals (Sweden)

    Alice Hettler

    Full Text Available Although electrosurgical instruments are widely used in surgery to cut tissue layers or to achieve hemostasis by coagulation (electrocautery, only little information is available concerning the inflammatory or immune response towards the debris generated. Given the elevated local temperatures required for successful electrocautery, the remaining debris is likely to contain a plethora of compounds entirely novel to the intracorporal setting. A very common in vitro method to study cell migration after mechanical damage is the scratch assay, however, there is no established model for thermomechanical damage to characterise cellular reactions. In this study, we established a new in vitro model to investigate exposure to high temperature in a carefully controlled cell culture system. Heatable thermostat-controlled aluminium stamps were developed to induce local damage in primary human umbilical vein endothelial cells (HUVEC. The thermomechanical damage invoked is reproducibly locally confined, therefore allowing studies, under the same experimental conditions, of cells affected to various degrees as well as of unaffected cells. We show that the unaffected cells surrounding the thermomechanical damage zone are able to migrate into the damaged area, resulting in a complete closure of the 'wound' within 48 h. Initial studies have shown that there are significant morphological and biological differences in endothelial cells after thermomechanical damage compared to the mechanical damage inflicted by using the unheated stamp as a control. Accordingly, after thermomechanical damage, cell death as well as cell protection programs were activated. Mononuclear cells adhered in the area adjacent to thermomechanical damage, but not to the zone of mechanical damage. Therefore, our model can help to understand the differences in wound healing during the early phase of regeneration after thermomechanical vs. mechanical damage. Furthermore, this model lends itself

  13. Knowledge-based matrix factorization temporally resolves the cellular responses to IL-6 stimulation

    Directory of Open Access Journals (Sweden)

    Gretz Norbert

    2010-11-01

    Full Text Available Abstract Background External stimulations of cells by hormones, cytokines or growth factors activate signal transduction pathways that subsequently induce a re-arrangement of cellular gene expression. The analysis of such changes is complicated, as they consist of multi-layered temporal responses. While classical analyses based on clustering or gene set enrichment only partly reveal this information, matrix factorization techniques are well suited for a detailed temporal analysis. In signal processing, factorization techniques incorporating data properties like spatial and temporal correlation structure have shown to be robust and computationally efficient. However, such correlation-based methods have so far not be applied in bioinformatics, because large scale biological data rarely imply a natural order that allows the definition of a delayed correlation function. Results We therefore develop the concept of graph-decorrelation. We encode prior knowledge like transcriptional regulation, protein interactions or metabolic pathways in a weighted directed graph. By linking features along this underlying graph, we introduce a partial ordering of the features (e.g. genes and are thus able to define a graph-delayed correlation function. Using this framework as constraint to the matrix factorization task allows us to set up the fast and robust graph-decorrelation algorithm (GraDe. To analyze alterations in the gene response in IL-6 stimulated primary mouse hepatocytes, we performed a time-course microarray experiment and applied GraDe. In contrast to standard techniques, the extracted time-resolved gene expression profiles showed that IL-6 activates genes involved in cell cycle progression and cell division. Genes linked to metabolic and apoptotic processes are down-regulated indicating that IL-6 mediated priming renders hepatocytes more responsive towards cell proliferation and reduces expenditures for the energy metabolism. Conclusions GraDe provides

  14. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket

    Directory of Open Access Journals (Sweden)

    Nishida E

    2016-05-01

    Full Text Available Erika Nishida,1 Hirofumi Miyaji,1 Akihito Kato,1 Hiroko Takita,2 Toshihiko Iwanaga,3 Takehito Momose,1 Kosuke Ogawa,1 Shusuke Murakami,1 Tsutomu Sugaya,1 Masamitsu Kawanami11Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan; 2Support Section for Education and Research, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan; 3Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Sapporo, JapanAbstract: Graphene oxide (GO consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM, physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1

  15. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Marcella Reale

    Full Text Available Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD, have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1 mT; frequency, 50-Hz on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2(-, which were countered by compensatory changes in antioxidant catylase (CAT activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a

  16. FORMATION OF INNATE AND ADAPTIVE IMMUNE RESPONSE UNDER THE INFLUENCE OF DIFFERENT FLAVIVIRUS VACCINES

    Directory of Open Access Journals (Sweden)

    N. V. Krylova

    2015-01-01

    Full Text Available The review examines in a comparative perspective the key moments of formation of innate and adaptive immune responses to different types of current flavivirus vaccines: live attenuated against yellow fever virus and inactivated whole virus against tick-borne encephalitis virus. Particular attention is paid to the ability of these different vaccines, containing exogenous pathogen-associated molecular structures, to stimulate innate immunity. Live attenuated vaccine by infecting several subtypes of dendritic cells activates them through various pattern-recognition receptors, such as Tolland RIG-I-like receptors, which leads to significant production of proinflammatory cytokines, including interferon-α primary mediator of innate antiviral immunity. By simulating natural viral infection, this vaccine quickly spreads over the vascular network, and the dendritic cells, activated by it, migrate to the draining lymph nodes and trigger multiple foci of Tand B-cell activation. Inactivated vaccine stimulates the innate immunity predominantly at the injection site, and for the sufficient activation requires the presence in its composition of an adjuvant (aluminum hydroxide, which effects the formation and activation of inflammasomes, ensuring the formation and secretion of IL-1β and IL-18 that, in turn, trigger a cascade of cellular and humoral innate immune responses. We demonstrated the possibility of involvement in the induction of innate immunity, mediated by the inactivated vaccine, endogenous pathogenassociated molecular patterns (uric acid and host cell DNA, forming at the vaccine injection site. We discuss the triggering of Band T-cell responses by flavivirus vaccines that determine various duration of protection against various pathogens. A single injection of the live vaccine against yellow fever virus induces polyvalent adaptive immune response, including the production of cytotoxic T-lymphocytes, Th1and Th2-cells and neutralizing antibodies

  17. The jejunal cellular responses in chickens infected with a single dose of Ascaridia galli eggs

    DEFF Research Database (Denmark)

    Luna Olivares, Luz Adilia; Kyvsgaard, Niels Christian; Ferdushy, Tania;

    2015-01-01

    This histopathological study was carried out in order to investigate the cellular response in the jejunum to Ascaridia galli during the first 7 weeks of infection. Fourty-two ISA Brown chickens (7 weeks old) were infected orally with 500 embryonated A. galli eggs each while 28 chickens were left ...

  18. Cellular and humoral immune responses in a population from the Baringo District, Kenya to Leishmania promastigote lipophosphoglycan

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Hey, A S; Theander, T G

    1992-01-01

    In a cross-sectional house-to-house study in a leishmaniasis-endemic area in Kenya, the cellular and humoral immune response to Leishmania lipophosphoglycan (LPG) was determined. Clinical data, peripheral blood mononuclear cells, and plasma were obtained from 50 individuals over the age of eight...

  19. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques.

    Science.gov (United States)

    Valentin, Antonio; McKinnon, Katherine; Li, Jinyao; Rosati, Margherita; Kulkarni, Viraj; Pilkington, Guy R; Bear, Jenifer; Alicea, Candido; Vargas-Inchaustegui, Diego A; Jean Patterson, L; Pegu, Poonam; Liyanage, Namal P M; Gordon, Shari N; Vaccari, Monica; Wang, Yichuan; Hogg, Alison E; Frey, Blake; Sui, Yongjun; Reed, Steven G; Sardesai, Niranjan Y; Berzofsky, Jay A; Franchini, Genoveffa; Robert-Guroff, Marjorie; Felber, Barbara K; Pavlakis, George N

    2014-11-01

    To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.

  20. ADAPTATION OF AQUIFER MICROBIAL COMMUNITIES TO THE BIODEGRADATION OF XENOBIOTIC COMPOUNDS: INFLUENCE OF SUBSTRATE CONCENTRATION AND PREEXPOSURE

    Science.gov (United States)

    Studies were conducted to examine the adaptation response of aquifer microbial communities to xenobiotic compounds and the influence of chemical preexposure in the laboratory and in situ on adaptation. Adaptation and biodegradation were assessed as mineralization and cellular inc...

  1. Absolute quantification of acetylation and phosphorylation of the histone variant H2AX upon ionizing radiation reveals distinct cellular responses in two cancer cell lines.

    Science.gov (United States)

    Matsuda, Shun; Furuya, Kanji; Ikura, Masae; Matsuda, Tomonari; Ikura, Tsuyoshi

    2015-11-01

    Histone modifications change upon the cellular response to ionizing radiation, and their cellular amounts could reflect the DNA damage response activity. We previously reported a sensitive and reliable method for the absolute quantification of γH2AX within cells, using liquid chromatography-tandem mass spectrometry (LC/MS/MS). The technique has broad adaptability to a variety of biological systems and can quantitate different modifications of histones. In this study, we applied it to quantitate the levels of γH2AX and K5-acetylated H2AX, and to compare the radiation responses between two cancer cell lines: HeLa and U-2 OS. The two cell lines have distinct properties in terms of their H2AX modifications. HeLa cells have relatively high γH2AX (3.1 %) against the total H2AX even in un-irradiated cells, while U-2 OS cells have an essentially undetectable level (nearly 0 %) of γH2AX. In contrast, the amounts of acetylated histones are lower in HeLa cells (9.3 %) and higher in U-2 OS cells (24.2 %) under un-irradiated conditions. Furthermore, after ionizing radiation exposure, the time-dependent increases and decreases in the amounts of histone modifications differed between the two cell lines, especially at the early time points. These results suggest that each biological system has distinct kinase/phosphatase and/or acetylase/deacetylase activities. In conclusion, for the first time, we have succeeded in simultaneously monitoring the absolute amounts of phosphorylated and acetylated cellular H2AX after ionizing radiation exposure. This multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems.

  2. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    Directory of Open Access Journals (Sweden)

    Daniel A. Rappolee

    2012-12-01

    Full Text Available Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  3. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development.

    Science.gov (United States)

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-01-01

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  4. Cyclic variations in incubation conditions induce adaptive responses to later heat exposure in chickens: a review.

    Science.gov (United States)

    Loyau, T; Bedrani, L; Berri, C; Métayer-Coustard, S; Praud, C; Coustham, V; Mignon-Grasteau, S; Duclos, M J; Tesseraud, S; Rideau, N; Hennequet-Antier, C; Everaert, N; Yahav, S; Collin, A

    2015-01-01

    Selection programs have enabled broiler chickens to gain muscle mass without similar enlargement of the cardiovascular and respiratory systems that are essential for thermoregulatory efficiency. Meat-type chickens cope with high ambient temperature by reducing feed intake and growth during chronic and moderate heat exposure. In case of acute heat exposure, a dramatic increase in morbidity and mortality can occur. In order to alleviate heat stress in the long term, research has recently focused on early thermal manipulation. Aimed at stimulation of long-term thermotolerance, the thermal manipulation of embryos is a method based on fine tuning of incubation conditions, taking into account the level and duration of increases in temperature and relative humidity during a critical period of embryogenesis. The consequences of thermal manipulation on the performance and meat quality of broiler chickens have been explored to ensure the potential application of this strategy. The physiological basis of the method is the induction of epigenetic and metabolic mechanisms that control body temperature in the long term. Early thermal manipulation can enhance poultry resistance to environmental changes without much effect on growth performance. This review presents the main strategies of early heat exposure and the physiological concepts on which these methods were based. The cellular mechanisms potentially underlying the adaptive response are discussed as well as the potential interest of thermal manipulation of embryos for poultry production.

  5. Negative Regulation of IRF7 Activation by ATF4 Suggests a Cross Regulation Between the Interferon Responses and the Cellular Integrated Stress Responses

    OpenAIRE

    Liang, Qiming; Deng, Hongying; Sun, Chiao-Wang; Tim M. Townes; Zhu, Fanxiu

    2010-01-01

    Cells react to viral infection by exhibiting interferon (IFN)-based innate immune responses and integrated stress responses, but little is known about the interrelationships between the two. We here report a linkage between these two host protective cellular mechanisms. We found that IRF7, the master regulator of type I IFN gene expression, interacts with ATF4, a key component of the integrated stress responses whose translation is induced by viral infection and various stresses. We have demo...

  6. Using Randomization Tests to Preserve Type I Error With Response-Adaptive and Covariate-Adaptive Randomization.

    Science.gov (United States)

    Simon, Richard; Simon, Noah Robin

    2011-07-01

    We demonstrate that clinical trials using response adaptive randomized treatment assignment rules are subject to substantial bias if there are time trends in unknown prognostic factors and standard methods of analysis are used. We develop a general class of randomization tests based on generating the null distribution of a general test statistic by repeating the adaptive randomized treatment assignment rule holding fixed the sequence of outcome values and covariate vectors actually observed in the trial. We develop broad conditions on the adaptive randomization method and the stochastic mechanism by which outcomes and covariate vectors are sampled that ensure that the type I error is controlled at the level of the randomization test. These conditions ensure that the use of the randomization test protects the type I error against time trends that are independent of the treatment assignments. Under some conditions in which the prognosis of future patients is determined by knowledge of the current randomization weights, the type I error is not strictly protected. We show that response-adaptive randomization can result in substantial reduction in statistical power when the type I error is preserved. Our results also ensure that type I error is controlled at the level of the randomization test for adaptive stratification designs used for balancing covariates.

  7. Comparison of Cellular Uptake and Inflammatory Response via Toll-Like Receptor 4 to Lipopolysaccharide and Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Akiyoshi Taniguchi

    2013-06-01

    Full Text Available The innate immune response is the earliest cellular response to infectious agents and mediates the interactions between microbes and cells. Toll-like receptors (TLRs play an important role in these interactions. We have already shown that TLRs are involved with the uptake of titanium dioxide nanoparticles (TiO2 NPs and promote inflammatory responses. In this paper, we compared role of cellular uptake and inflammatory response via TLR 4 to lipopolysaccharide (LPS and TiO2 NPs. In the case of LPS, LPS binds to LPS binding protein (LBP and CD 14, and then this complex binds to TLR 4. In the case of TiO2 NPs, the necessity of LBP and CD 14 to induce the inflammatory response and for uptake by cells was investigated using over-expression, antibody blocking, and siRNA knockdown experiments. Our results suggested that for cellular uptake of TiO2 NPs, TLR 4 did not form a complex with LBP and CD 14. In the TiO2 NP-mediated inflammatory response, TLR 4 acted as the signaling receptor without protein complex of LPS, LBP and CD 14. The results suggested that character of TiO2 NPs might be similar to the complex of LPS, LBP and CD 14. These results are important for development of safer nanomaterials.

  8. Mimicking Exercise in Three-Dimensional Bioengineered Skeletal Muscle to Investigate Cellular and Molecular Mechanisms of Physiological Adaptation.

    Science.gov (United States)

    Kasper, Andreas M; Turner, Daniel C; Martin, Neil R W; Sharples, Adam P

    2017-02-03

    Bioengineering of skeletal muscle in-vitro in order to produce highly aligned myofibres in relevant three dimensional (3D) matrices have allowed scientists to model the in-vivo skeletal muscle niche. This review discusses essential experimental considerations for developing bioengineered muscle in order to investigate exercise mimicking stimuli. We identify current knowledge in the use of electrical stimulation and co-culture with motor neurons to enhance skeletal muscle maturation and contractile function in bioengineered systems in-vitro. Importantly, we provide a current opinion on the use of acute and chronic exercise mimicking stimuli (electrical stimulation and mechanical overload) and the subsequent mechanisms underlying physiological adaptation in 3D bioengineered muscle. We also identify that future studies using the latest bioreactor technology, providing simultaneous electrical and mechanical loading and flow perfusion in-vitro, may provide the basis for advancing knowledge in the future. We also envisage, that more studies using genetic, pharmacological and hormonal modifications applied in human 3D bioengineered skeletal muscle may allow for an enhanced discovery of the in-depth mechanisms underlying the response to exercise in relevant human testing systems. Finally, 3D bioengineered skeletal muscle may provide an opportunity to be used as a pre-clinical in-vitro test-bed to investigate the mechanisms underlying catabolic disease, whilst modelling disease itself via the use of cells derived from human patients without exposing animals or humans (in phase I trials) to the side effects of potential therapies. This article is protected by copyright. All rights reserved.

  9. Dispersal, behavioral responses and thermal adaptation in Musca domestica

    DEFF Research Database (Denmark)

    Kjaersgaard, Anders; Blackenhorn, Wolf U.; Pertoldi, Cino

    were obtained with flies held for several generations in a laboratory common garden setting, therefore we suggest that exposure to and avoidance of high temperatures under natural conditions has been an important selective agent causing the suggested adaptive differentiation between the populations.......Behavioral traits can have great impact on an organism’s ability to cope with or avoidance of thermal stress, and are therefore of evolutionary importance for thermal adaptation. We compared the morphology, heat resistance, locomotor (walking and flying) activity and flight performance of three...

  10. Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems

    Science.gov (United States)

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-12-01

    In this paper, we investigate the problem of low probability of intercept (LPI)-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems, where the radar system optimizes the transmitted waveform such that the interference caused to the cellular communication systems is strictly controlled. Assuming that the precise knowledge of the target spectra, the power spectral densities (PSDs) of signal-dependent clutters, the propagation losses of corresponding channels and the communication signals is known by the radar, three different LPI based criteria for radar waveform optimization are proposed to minimize the total transmitted power of the radar system by optimizing the multicarrier radar waveform with a predefined signal-to-interference-plus-noise ratio (SINR) constraint and a minimum required capacity for the cellular communication systems. These criteria differ in the way the communication signals scattered off the target are considered in the radar waveform design: (1) as useful energy, (2) as interference or (3) ignored altogether. The resulting problems are solved analytically and their solutions represent the optimum power allocation for each subcarrier in the multicarrier radar waveform. We show with numerical results that the LPI performance of the radar system can be significantly improved by exploiting the scattered echoes off the target due to cellular communication signals received at the radar receiver.

  11. Cellular responses to modified Plasmodium falciparum MSP119 antigens in individuals previously exposed to natural malaria infection

    Directory of Open Access Journals (Sweden)

    Awobode Henrietta O

    2009-11-01

    Full Text Available Abstract Background MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the Plasmodium falciparum merozoite surface protein 1 (MSP119, inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP119 had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP119 would affect critical T-cell responses to epitopes in this antigen. Methods The cellular responses to wild-type MSP119 and a panel of modified MSP119 antigens were measured using an in-vitro assay for two groups of individuals: the first were malaria-naïve and the second had been naturally exposed to Plasmodium falciparum infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults. Results Interestingly, stimulation indices (SI for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP119. A protein with four amino acid substitutions (Glu27→Tyr, Leu31→Arg, Tyr34→Ser and Glu43→Leu had the highest stimulation index (SI up to 360 and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins. Conclusion This study suggests that specific MSP119 variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.

  12. Influence of Dose Rate on the Cellular Response to Low- and High-LET Radiations.

    Science.gov (United States)

    Wozny, Anne-Sophie; Alphonse, Gersende; Battiston-Montagne, Priscillia; Simonet, Stéphanie; Poncet, Delphine; Testa, Etienne; Guy, Jean-Baptiste; Rancoule, Chloé; Magné, Nicolas; Beuve, Michael; Rodriguez-Lafrasse, Claire

    2016-01-01

    Nowadays, head and neck squamous cell carcinoma (HNSCC) treatment failure is mostly explained by locoregional progression or intrinsic radioresistance. Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a dose rate variation during conventional RT or carbon ion hadrontherapy treatment in order to improve the therapeutic care of patient. In this regard, two HNSCC cell lines were irradiated with photons or 72 MeV/n carbon ions at a dose rate of 0.5, 2, or 10 Gy/min. For both radiosensitive and radioresistant cells, the change in dose rate significantly affected cell survival in response to photon exposure. This variation of radiosensitivity was associated with the number of initial and residual DNA double-strand breaks (DSBs). By contrast, the dose rate change did not affect neither cell survival nor the residual DNA DSBs after carbon ion irradiation. As a result, the relative biological efficiency at 10% survival increased when the dose rate decreased. In conclusion, in the RT treatment of HNSCC, it is advised to remain very careful when modifying the classical schemes toward altered fractionation. At the opposite, as the dose rate does not seem to have any effects after carbon ion exposure, there is less need to adapt hadrontherapy treatment planning during active system irradiation.

  13. INFLUENCE OF DOSE RATE ON THE CELLULAR RESPONSE TO LOW- AND HIGH-LET RADIATIONS

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eWozny

    2016-03-01

    Full Text Available Nowadays, head and neck squamous cell carcinoma (HNSCC treatment failure is mostly explained by loco-regional progression or intrinsic radioresistance. Radiotherapy has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy which modify the dose-rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a dose rate variation during conventional radiotherapy or carbon ion hadrontherapy treatment in order to improve the therapeutic care of patient. In this regard, two HNSCC cell lines were irradiated with photons or 72MeV/n carbon ions at a dose rate of 0.5, 2 or 10Gy/min.For both radiosensitive and radioresistant cells, the change in dose rate significantly affected cell survival in response to photon exposure, this variation of radiosensitivity was associated to the number of initial and residual DNA double-strand breaks. By contrast, the dose rate change did not affect neither cell survival nor the residual DNA double-strand breaks after carbon ion irradiation. As a result, the Relative Biological Efficiency at 10% survival increased when the dose rate decreased.In conclusion, in the radiotherapy treatment of HNSCC, it is advised to remain very careful when modifying the classical schemes towards altered-fractionation. At the opposite, as the dose rate does not seem to have any effects after carbon ion exposure, there is less need to adapt hadrontherapy treatment planning during active system irradiation

  14. The nucleotidohydrolases DCTPP1 and dUTPase are involved in the cellular response to decitabine.

    Science.gov (United States)

    Requena, Cristina E; Pérez-Moreno, Guiomar; Horváth, András; Vértessy, Beáta G; Ruiz-Pérez, Luis M; González-Pacanowska, Dolores; Vidal, Antonio E

    2016-09-01

    Decitabine (5-aza-2'-deoxycytidine, aza-dCyd) is an anti-cancer drug used clinically for the treatment of myelodysplastic syndromes and acute myeloid leukaemia that can act as a DNA-demethylating or genotoxic agent in a dose-dependent manner. On the other hand, DCTPP1 (dCTP pyrophosphatase 1) and dUTPase are two 'house-cleaning' nucleotidohydrolases involved in the elimination of non-canonical nucleotides. In the present study, we show that exposure of HeLa cells to decitabine up-regulates the expression of several pyrimidine metabolic enzymes including DCTPP1, dUTPase, dCMP deaminase and thymidylate synthase, thus suggesting their contribution to the cellular response to this anti-cancer nucleoside. We present several lines of evidence supporting that, in addition to the formation of aza-dCTP (5-aza-2'-deoxycytidine-5'-triphosphate), an alternative cytotoxic mechanism for decitabine may involve the formation of aza-dUMP, a potential thymidylate synthase inhibitor. Indeed, dUTPase or DCTPP1 down-regulation enhanced the cytotoxic effect of decitabine producing an accumulation of nucleoside triphosphates containing uracil as well as uracil misincorporation and double-strand breaks in genomic DNA. Moreover, DCTPP1 hydrolyses the triphosphate form of decitabine with similar kinetic efficiency to its natural substrate dCTP and prevents decitabine-induced global DNA demethylation. The data suggest that the nucleotidohydrolases DCTPP1 and dUTPase are factors involved in the mode of action of decitabine with potential value as enzymatic targets to improve decitabine-based chemotherapy.

  15. Genetic erosion impedes adaptive responses to stressful environments

    NARCIS (Netherlands)

    Bijlsma, R.; Loeschcke, Volker

    2012-01-01

    Biodiversity is increasingly subjected to human-induced changes of the environment. To persist, populations continually have to adapt to these often stressful changes including pollution and climate change. Genetic erosion in small populations, owing to fragmentation of natural habitats, is expected

  16. The adaptative response of jaw muscles to varying functional demands

    NARCIS (Netherlands)

    Grünheid, T.; Langenbach, G.E.J.; Korfage, J.A.M.; Zentner, A.; van Eijden, T.M.G.J.

    2009-01-01

    Jaw muscles are versatile entities that are able to adapt their anatomical characteristics, such as size, cross-sectional area, and fibre properties, to altered functional demands. The dynamic nature of muscle fibres allows them to change their phenotype to optimize the required contractile function

  17. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  18. New features on the environmental regulation of metabolism revealed by modeling the cellular proteomic adaptations induced by light, carbon and inorganic nitrogen in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Stéphanie Gérin

    2016-08-01

    Full Text Available Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate and inorganic nitrogen concentrations (nitrate and ammonium in the culture medium. Statistical design of experiments (DOE enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE. Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle and protein metabolism. The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview

  19. Activation of WIP1 phosphatase by HTLV-1 Tax mitigates the cellular response to DNA damage.

    Directory of Open Access Journals (Sweden)

    Tajhal Dayaram

    Full Text Available Genomic instability stemming from dysregulation of cell cycle checkpoints and DNA damage response (DDR is a common feature of many cancers. The cancer adult T cell leukemia (ATL can occur in individuals infected with human T cell leukemia virus type 1 (HTLV-1, and ATL cells contain extensive chromosomal abnormalities, suggesting that they have defects in the recognition or repair of DNA damage. Since Tax is the transforming protein encoded by HTLV-1, we asked whether Tax can affect cell cycle checkpoints and the DDR. Using a combination of flow cytometry and DNA repair assays we showed that Tax-expressing cells exit G(1 phase and initiate DNA replication prematurely following damage. Reduced phosphorylation of H2AX (γH2AX and RPA2, phosphoproteins that are essential to properly initiate the DDR, was also observed in Tax-expressing cells. To determine the cause of decreased DDR protein phosphorylation in Tax-expressing cells, we examined the cellular phosphatase, WIP1, which is known to dephosphorylate γH2AX. We found that Tax can interact with Wip1 in vivo and in vitro, and that Tax-expressing cells display elevated levels of Wip1 mRNA. In vitro phosphatase assays showed that Tax can enhance Wip1 activity on a γH2AX peptide target by 2-fold. Thus, loss of γH2AX in vivo could be due, in part, to increased expression and activity of WIP1 in the presence of Tax. siRNA knockdown of WIP1 in Tax-expressing cells rescued γH2AX in response to damage, confirming the role of WIP1 in the DDR. These studies demonstrate that Tax can disengage the G(1/S checkpoint by enhancing WIP1 activity, resulting in reduced DDR. Premature G(1 exit of Tax-expressing cells in the presence of DNA lesions creates an environment that tolerates incorporation of random mutations into the host genome.

  20. Effects of levamisole hydrochloride on cellular immune response and flock performance of commercial broilers

    Directory of Open Access Journals (Sweden)

    OA Oladele

    2012-12-01

    Full Text Available Levamisole hydrochloride (Lev.HCl has been acclaimed to boost immune response particularly in immunocompromised state. Its routine use as an immunomodulator in poultry production is yet to be well embraced, thus its effects of on cellular immunity and flock performance of commercial broilers were evaluated. One hundred and fifty Anak broiler chicks were separated into two groups of 75 each. Broilers in group 1 were sensitized with 150µg of Staphylococcus aureus antigen each at 4 and 5 weeks, while those in group 2 were not sensitized. Each group was further divided into subgroups A, B, and C. Levamisole hydrochloride (40 mg/kg was administered orally to 1A and 2A at 45 and 46 days of age and to 1B and 2B at 47 and 48 days of age, while 1C and 2C were not treated. At 47 days of age, 12 broilers from all subgroups were challenged with 75µg of S. aureus antigen each at the right wattle. Wattle thickness was measured till 72 hours post challenge (pc and delayed wattle reaction (DWR was determined. Tissues were harvested at 72 hours pc for histopathology. Morbidity, mortality and live weights at 8 weeks of age were recorded. DWR peaked at 4 hours pc in 1A (2.22 ± 0.21 mm and 1B (2.96 ± 0.21 mm and 24 hours pc in 1C (3.39 ± 0.34 mm, the difference being significant (p<0.05. Inflammatory lesions were observed in wattles of sensitized subgroups and were more severe in 1C. Mortality rates were 4.17% and 29.17% in 1A and 1C respectively. Mean live weights in A and B i.e. 1.57± 0.06 kg and 1.56 ± 0.06 kg respectively, were significantly higher (p<0.0 than 1.43 ± 0.08 kg in C. Levamisole enhanced DTH via an early response, improved broiler liveability, and its anti-inflammatory property was confirmed.

  1. Clinical significance of variations in levels of Epstein-Barr Virus (EBV) antigen and adaptive immune response during chronic active EBV infection in children.

    Science.gov (United States)

    Xing, Yan; Song, Hong Mei; Wei, Min; Liu, Yu; Zhang, Yu Hua; Gao, Li

    2013-01-01

    Pediatric patients were recruited to analyze differences in Epstein-Barr virus (EBV) copy numbers and adaptive immune reactions in children with chronic active vs acute EBV infection (CAEBVI vs AEBVI), as well as to examine the relationship between these parameters and the pathogenesis of CAEBVI. Fluorescent qPCR was used to assess EBV-DNA levels, while ELISA, antibody affinity, flow cytometry, and heterophil agglutination (HA) assays were used to evaluate patient EBV-adaptive humoral and cellular immunity. Lastly, ELISPOT was employed to assess interferon (IFN)-γ secretory functions of EBV-specific cytotoxic T-lymphocytes (CTL) as a marker of subject EBV-specific adaptive cellular immunity. The results indicated that, compared with AEBVI patients or normal children, there was a dramatic elevation in viral copy levels, viral capsid antigen (VCA)-IgA, early antigen (EA)-IgA, and EA-IgG, but a lack of EBV nuclear antigen (EBNA)-IgG and a negative HA in CAEBVI patients (p EBV-specific CTL function compared with normal children (p EBV antigen availability and in both the adaptive humoral and cellular immune responses in patients with CAEBVI, and that these outcomes may be associated with the chronic active re-infection process itself associated with CAEBVI.

  2. Mitochondrial DNA response to high altitude: a new perspective on high-altitude adaptation.

    Science.gov (United States)

    Luo, Yongjun; Yang, Xiaohong; Gao, Yuqi

    2013-08-01

    Mitochondria are the energy metabolism centers of the cell. More than 95% of cellular energy is produced by mitochondrial oxidative phosphorylation. Hypoxia affects a wide range of energy generation and consumption processes in animals. The most important mechanisms limiting ATP consumption increase the efficiency of ATP production and accommodate the reduced production of ATP by the body. All of these mechanisms relate to changes in mitochondrial function. Mitochondrial function can be affected by variations in mitochondrial DNA, including polymorphisms, content changes, and deletions. These variations play an important role in acclimatization or adaptation to hypoxia. In this paper, the association between mitochondrial genome sequences and high-altitude adaptation is reviewed.

  3. Interleukin-27 inhibits vaccine-enhanced pulmonary disease following respiratory syncytial virus infection by regulating cellular memory responses.

    Science.gov (United States)

    Zeng, Ruihong; Zhang, Huixian; Hai, Yan; Cui, Yuxiu; Wei, Lin; Li, Na; Liu, Jianxun; Li, Caixia; Liu, Ying

    2012-04-01

    Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract disease in young children. In the 1960s, infants vaccinated with formalin-inactivated RSV developed a more severe disease characterized by excessive inflammatory immunopathology in lungs upon natural RSV infection. The fear of causing the vaccine-enhanced disease (VED) is an important obstacle for development of safe and effective RSV vaccines. The recombinant vaccine candidate G1F/M2 immunization also led to VED. It has been proved that cellular memory induced by RSV vaccines contributed to VED. Interleukin-27 (IL-27) and IL-23 regulate Th1, Th17, and/or Th2 cellular immune responses. In this study, mice coimmunized with pcDNA3-IL-27 and G1F/M2 were fully protected and, importantly, did not develop vaccine-enhanced inflammatory responses and immunopathology in lungs after RSV challenge, which was correlated with moderate Th1-, suppressed Th2-, and Th17-like memory responses activated by RSV. In contrast, G1F/M2- or pcDNA3-IL-23+G1F/M2-immunized mice, in which robust Th2- and Th17-like memory responses were induced, developed enhanced pulmonary inflammation and severe immunopathology. Mice coimmunized with G1F/M2 and the two cytokine plasmids exhibited mild inflammatory responses as well as remarkable Th1-, suppressed Th2-, and Th17-like memory responses. These results suggested that Th1-, Th2-, and Th17-like memory responses and, in particular, excessive Th2- and Th17-like memory responses were closely associated with VED; IL-27 may inhibit VED following respiratory syncytial virus infection by regulating cellular memory responses.

  4. Dynamic lipidomic insights into the adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.

    Science.gov (United States)

    Zhou, Xiao; Zhou, Jian; Tian, Hongchi; Yuan, Yingjin

    2010-10-01

    Vacuum fermentation is utilized in a wide range of life science industries and biomedical R&D. Little is known, however, on the effects of the vacuum on the yeast, and in particular, on the yeast lipidome that plays a central role in maintaining cell membrane and other vital (yeast) cell functions. The present study evaluated the adaptive responses of Saccharomyces cerevisiae to repeated vacuum fermentation by lipidomic analysis. We employed gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI/MS(n)) to quantify a total of 13 intermediate sterols and 139 phospholipid species of yeast cells. Principal components analysis found that the PI (phosphatidylinositol) 26:0, PI 28:0, PE (phosphatidylethanolamine) 32:1, and PE 34:1 were potential biomarkers to distinguish the vacuum fermentation process. Quantitative analysis showed that vacuum fermentation increased the synthesis of PI and the PC (phosphatidylcholine) species with short saturated acyl chains. The synthesis of PC via CDP-choline and turnover of PC were enhanced, instead of formation via methylation of PE. Additionally, increased PI at the expense of PE and PG (phosphatidylglycerol) was associated with enhancement of ethanol productivity. Vacuum fermentation caused eburicol accumulation, suggesting that vacuum can activate the branch of the ergosterol biosynthesis pathway. Eburicol decrease and PI increase contributed to recovery of cellular activities with oxygenating treatment. Ethanol productivity was increased by sixfold in vacuum-treated cells. These observations may allow the development of future mechanistic approaches to optimization of yeast fermentation under vacuum for bioindustry and life science applications. In particular, our findings on changes in lipid molecular species and the ergosterol biosynthesis pathway elucidate the defense responses of yeast cell membranes during the repeated

  5. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance.

    Science.gov (United States)

    Raefsky, Sophia M; Mattson, Mark P

    2017-01-01

    An important concept in neurobiology is "neurons that fire together, wire together" which means that the formation and maintenance of synapses is promoted by activation of those synapses. Very similar to the effects of the stress of exercise on muscle cells, emerging findings suggest that neurons respond to activity by activating signaling pathways (e.g., Ca(2+), CREB, PGC-1α, NF-κB) that stimulate mitochondrial biogenesis and cellular stress resistance. These pathways are also activated by aerobic exercise and food deprivation, two bioenergetic challenges of fundamental importance in the evolution of the brains of all mammals, including humans. The metabolic 'switch' in fuel source from liver glycogen store-derived glucose to adipose cell-derived fatty acids and their ketone metabolites during fasting and sustained exercise, appears to be a pivotal trigger of both brain-intrinsic and peripheral organ-derived signals that enhance learning and memory and underlying synaptic plasticity and neurogenesis. Brain-intrinsic extracellular signals include the excitatory neurotransmitter glutamate and the neurotrophic factor BDNF, and peripheral signals may include the liver-derived ketone 3-hydroxybutyrate and the muscle cell-derived protein irisin. Emerging findings suggest that fasting, exercise and an intellectually challenging lifestyle can protect neurons against the dysfunction and degeneration that they would otherwise suffer in acute brain injuries (stroke and head trauma) and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease. Among the prominent intracellular responses of neurons to these bioenergetic challenges are up-regulation of antioxidant defenses, autophagy/mitophagy and DNA repair. A better understanding of such fundamental hormesis-based adaptive neuronal response mechanisms is expected to result in the development and implementation of novel interventions to promote optimal brain function and healthy brain aging.

  6. Adaptive stress response in segmental progeria resembles long-lived dwarfism and calorie restriction in mice.

    Directory of Open Access Journals (Sweden)

    Marieke van de Ven

    2006-12-01

    Full Text Available How congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a likely contributing mechanism. Contrary to expectations, neither accelerated senescence nor acute oxidative stress hypersensitivity was detected in primary fibroblast or erythroblast cultures from multiple progeroid mouse models for defects in the nucleotide excision DNA repair pathway, which share premature aging features including postnatal growth retardation, cerebellar ataxia, and death before weaning. Instead, we report a prominent phenotypic overlap with long-lived dwarfism and calorie restriction during postnatal development (2 wk of age, including reduced size, reduced body temperature, hypoglycemia, and perturbation of the growth hormone/insulin-like growth factor 1 neuroendocrine axis. These symptoms were also present at 2 wk of age in a novel progeroid nucleotide excision repair-deficient mouse model (XPD(G602D/R722W/XPA(-/- that survived weaning with high penetrance. However, despite persistent cachectic dwarfism, blood glucose and serum insulin-like growth factor 1 levels returned to normal by 10 wk, with hypoglycemia reappearing near premature death at 5 mo of age. These data strongly suggest changes in energy metabolism as part of an adaptive response during the stressful period of postnatal growth. Interestingly, a similar perturbation of the postnatal growth axis was not detected in another progeroid mouse model, the double-strand DNA break repair deficient Ku80(-/- mouse. Specific (but not all types of genome instability may thus engage a conserved response to stress that evolved to cope with environmental pressures such as food shortage.

  7. The interplay among chromatin dynamics, cell cycle checkpoints and repair mechanisms modulates the cellular response to DNA damage.

    Science.gov (United States)

    Lazzaro, Federico; Giannattasio, Michele; Muzi-Falconi, Marco; Plevani, Paolo

    2007-06-01

    Cells are continuously under the assault of endogenous and exogenous genotoxic stress that challenges the integrity of DNA. To cope with such a formidable task cells have evolved surveillance mechanisms, known as checkpoints, and a variety of DNA repair systems responding to different types of DNA lesions. These lesions occur in the context of the chromatin structure and, as expected for all DNA transactions, the cellular response to DNA damage is going to be influenced by the chromatin enviroment. In this review, we will discuss recent studies implicating chromatin remodelling factors and histone modifications in the response to DNA double-strand breaks (DSBs) and in checkpoint activation in response to UV lesions.

  8. Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change.

    Science.gov (United States)

    Pratt, Jessica D; Mooney, Kailen A

    2013-08-01

    Local adaptation and plasticity pose significant obstacles to predicting plant responses to future climates. Although local adaptation and plasticity in plant functional traits have been documented for many species, less is known about population-level variation in plasticity and whether such variation is driven by adaptation to environmental variation. We examined clinal variation in traits and performance - and plastic responses to environmental change - for the shrub Artemisia californica along a 700 km gradient characterized (from south to north) by a fourfold increase in precipitation and a 61% decrease in interannual precipitation variation. Plants cloned from five populations along this gradient were grown for 3 years in treatments approximating the precipitation regimes of the north and south range margins. Most traits varying among populations did so clinally; northern populations (vs. southern) had higher water-use efficiencies and lower growth rates, C : N ratios and terpene concentrations. Notably, there was variation in plasticity for plant performance that was strongly correlated with source site interannual precipitation variability. The high-precipitation treatment (vs. low) increased growth and flower production more for plants from southern populations (181% and 279%, respectively) than northern populations (47% and 20%, respectively). Overall, precipitation variability at population source sites predicted 86% and 99% of variation in plasticity in growth and flowering, respectively. These striking, clinal patterns in plant traits and plasticity are indicative of adaptation to both the mean and variability of environmental conditions. Furthermore, our analysis of long-term coastal climate data in turn indicates an increase in interannual precipitation variation consistent with most global change models and, unexpectedly, this increased variation is especially pronounced at historically stable, northern sites. Our findings demonstrate the

  9. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities.

    Science.gov (United States)

    Lim, Seong-Rin; Schoenung, Julie M

    2010-01-01

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones.

  10. Nitric oxide and TNFα are critical regulators of reversible lymph node vascular remodeling and adaptive immune response.

    Directory of Open Access Journals (Sweden)

    Stephanie L Sellers

    Full Text Available Lymph node (LN vascular growth, at the level of the main arteriole, was recently characterized for the first time during infection. Arteriole diameter was shown to increase for at least seven days and to occur via a CD4(+ T cell dependent mechanism, with vascular expansion playing a critical role in regulating induction of adaptive immune response. Here, using intravital microscopy of the inguinal LN during herpes simplex type II (HSV-2 infection, the data provides the first studies that demonstrate arteriole expansion during infection is a reversible vascular event that occurs via eutrophic outward remodeling. Furthermore, using genetic ablation models, and pharmacological blockade, we reveal arteriole remodeling and LN hypertrophy to be dependent upon both endothelial nitric oxide synthase (eNOS and TNFα expression. Additionally, we reveal transient changes in nitric oxide (NO levels to be a notable feature of response to viral infection and LN vascular remodeling and provide evidence that mast cells are the critical source of TNFα required to drive arteriole remodeling. Overall, this study is the first to fully characterize LN arteriole vascular changes throughout the course of infection. It effectively reveals a novel role for NO and TNFα in LN cellularity and changes in LN vascularity, which represent key advances in understanding LN vascular physiology and adaptive immune response.

  11. Cellular responses to tritium exposure in rainbow trout: HTO- and OBT-spiked feed exposure experiments

    Energy Technology Data Exchange (ETDEWEB)

    Festarini, A.; Shultz, C.; Stuart, M.; Kim, S.B., E-mail: amy.festarini@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Ferreri, C. [National Research Council of Italy, Dept. of Chemical Sciences and Materials Technologies, Bologna (Italy)

    2016-06-15

    Biological effects were evaluated in rainbow trout (Oncorhynchus mykiss) exposed to tritiated water (HTO) or food spiked with organically bound tritium (OBT). An HTO exposure study was conducted using a tritium activity concentration of 7000 Bq/L, and an OBT exposure study was conducted using a tritium activity concentration of 30 000 Bq/L. Following 140 days of in vivo HTO exposure, liver, heart, spleen, kidney, and brain cells did not show statistically significant differences in viability; kidney, liver, and spleen cells did not show significant differences in DNA double-strand break repair activity compared with control cells. Membrane fatty acid composition analysis was conducted on liver cells and no effects of HTO exposure could be detected. Following 140 days of in vivo OBT exposure, viability and DNA double-strand break repair activity were not statistically different from controls in liver, heart, spleen, kidney, and brain cells. Changes, however, were noted in the fatty acid composition of liver and muscle tissues. For both studies, all measurements were performed on each tissue and on a fraction of the same tissue that was exposed to a gamma 4 Gy dose in vitro to test for adaptive responses, and no effects were observed except for fatty acid composition. The findings demonstrated that membrane fatty acid composition is a sensitive marker and that microscopic evaluation of gamma-H2AX foci is more sensitive than the flow cytometric approach. These studies are the first to correlate uptake and depuration with biological health indicators in edible fish for tritium exposures within worldwide drinking water guidelines. (author)

  12. Cellular responses of eastern oysters, Crassostrea virginica, to titanium dioxide nanoparticles.

    Science.gov (United States)

    Johnson, Brian D; Gilbert, Samantha L; Khan, Bushra; Carroll, David L; Ringwood, Amy H

    2015-10-01

    Because of the continued development and production of a variety of nanomaterials and nanoparticles, their uptake and effects on the biota of marine ecosystems must be investigated. Filter feeding bivalve molluscs are highly adapted for capturing particles from the external environment and readily internalize nano- and micro-sized particles through endocytosis, so they are commonly used as valuable indicator species for nanoparticle studies. In these studies, adult eastern oysters, Crassostrea virginica, were exposed to a range of titanium dioxide nanoparticle (TiO2-NP) concentrations (5, 50, 500, and 5000 μg/L) in conjunction with natural sunlight. Isolated hepatopancreas tissues were also exposed to the same TiO2-NP concentrations using particles exposed to similar light and dark conditions. Dose-dependent decreases in lysosomal stability were observed in the adult oyster studies as well as in the isolated tissues, at exposures as low as 50 μg/L. Titanium accumulation in isolated hepatopancreas tissue studies was directly correlated to lysosomal destabilization. Based on measurements of lipid peroxidation as an indicator of oxidative stress, TiO2-NPs toxicity was not related to increased ROS production over the short-term course of these exposures. Analysis of particle size using dynamic light scattering (DLS) indicated that concentration had a significant impact on agglomeration rates, and the small agglomerates as well as individual particles are readily processed by oysters. Overall, this study illustrates that low concentrations of TiO2-NPs may cause sublethal toxicity on oysters, which might be enhanced under natural sunlight conditions. In estuarine environments, where these nanomaterials are likely to accumulate, agglomeration rates, interaction with organics, and responses to sunlight are critical in determining the extent of their bioreactivity and biological impacts.

  13. Broad-spectrum anti-biofilm peptide that targets a cellular stress response.

    Directory of Open Access Journals (Sweden)

    César de la Fuente-Núñez

    2014-05-01

    Full Text Available Bacteria form multicellular communities known as biofilms that cause two thirds of all infections and demonstrate a 10 to 1000 fold increase in adaptive resistance to conventional antibiotics. Currently, there are no approved drugs that specifically target bacterial biofilms. Here we identified a potent anti-biofilm peptide 1018 that worked by blocking (pppGpp, an important signal in biofilm development. At concentrations that did not affect planktonic growth, peptide treatment completely prevented biofilm formation and led to the eradication of mature biofilms in representative strains of both Gram-negative and Gram-positive bacterial pathogens including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, methicillin resistant Staphylococcus aureus, Salmonella Typhimurium and Burkholderia cenocepacia. Low levels of the peptide led to biofilm dispersal, while higher doses triggered biofilm cell death. We hypothesized that the peptide acted to inhibit a common stress response in target species, and that the stringent response, mediating (pppGpp synthesis through the enzymes RelA and SpoT, was targeted. Consistent with this, increasing (pppGpp synthesis by addition of serine hydroxamate or over-expression of relA led to reduced susceptibility to the peptide. Furthermore, relA and spoT mutations blocking production of (pppGpp replicated the effects of the peptide, leading to a reduction of biofilm formation in the four tested target species. Also, eliminating (pppGpp expression after two days of biofilm growth by removal of arabinose from a strain expressing relA behind an arabinose-inducible promoter, reciprocated the effect of peptide added at the same time, leading to loss of biofilm. NMR and chromatography studies showed that the peptide acted on cells to cause degradation of (pppGpp within 30 minutes, and in vitro directly interacted with ppGpp. We thus propose that 1018 targets (pppGpp and marks it for

  14. Regulation of Cellular Response Pattern to Phosphorus Ion is a New Target for the Design of Tissue-Engineered Blood Vessel.

    Science.gov (United States)

    Chen, Wen; Wang, Fangjuan; Zeng, Wen; Sun, Jun; Li, Li; Yang, Mingcan; Sun, Jiansen; Wu, Yangxiao; Zhao, Xiaohui; Zhu, Chuhong

    2015-05-01

    Regulation of cellular response pattern to phosphorus ion (PI) is a new target for the design of tissue-engineered materials. Changing cellular response pattern to high PI can maintain monocyte/macrophage survival in TEBV and the signal of increasing PI can be converted by klotho to the adenosine signals through the regulation of energy metabolism in monocytes/macrophages.

  15. SINGLE-CELL LEVEL INVESTIGATION OF CYTOSKELETAL/CELLULAR RESPONSE TO EXTERNAL STIMULI

    Energy Technology Data Exchange (ETDEWEB)

    Hiddessen, A L

    2007-02-26

    A detailed understanding of the molecular mechanisms by which chemical signals control cell behavior is needed if the complex biological processes of embryogenesis, development, health and disease are to be completely understood. Yet, if we are to fully understand the molecular mechanisms controlling cell behavior, measurements at the single cell level are needed to supplement information gained from population level studies. One of the major challenges to accomplishing studies at the single cell level has been a lack of physical tools to complement the powerful molecular biological assays which have provided much of what we currently know about cell behavior. The goal of this exploratory project is the development of an experimental platform that facilitates integrated observation, tracking and analysis of the responses of many individual cells to controlled environmental factors (e.g. extracellular signals). Toward this goal, we developed chemically-patterned microarrays of both adherent and suspension mammalian cell types. A novel chemical patterning methodology, based on photocatalytic lithography, was developed to construct biomolecule and cell arrays that facilitate analysis of biological function. Our patterning techniques rely on inexpensive stamp materials and visible light, and do not necessitate mass transport or specified substrates. Patterned silicon and glass substrates are modified such that there is a non-biofouling polymer matrix surrounding the adhesive regions that target biomolecules and cells. Fluorescence and reflectance microscopy reveal successful patterning of proteins and single to small clusters of mammalian cells. In vitro assays conducted upon cells on the patterned arrays demonstrate the viability of cells interfacing with this synthetic system. Hence, we have successfully established a versatile cell measurement platform which can be used to characterize the molecular regulators of cellular behavior in a variety of important

  16. A cellular stress response (CSR) that interacts with NADPH-P450 reductase (NPR) is a new regulator of hypoxic response.

    Science.gov (United States)

    Oguro, Ami; Koyama, Chika; Xu, Jing; Imaoka, Susumu

    2014-02-28

    NADPH-P450 reductase (NPR) was previously found to contribute to the hypoxic response of cells, but the mechanism was not clarified. In this study, we identified a cellular stress response (CSR) as a new factor interacting with NPR by a yeast two-hybrid system. Overexpression of CSR enhanced the induction of erythropoietin and hypoxia response element (HRE) activity under hypoxia in human hepatocarcinoma cell lines (Hep3B), while knockdown of CSR suppressed them. This new finding regarding the interaction of NPR with CSR provides insight into the function of NPR in hypoxic response.

  17. The ‘Goldilocks Zone’ from a redox perspective - Adaptive versus deleterious responses to oxidative stress in striated muscle

    Directory of Open Access Journals (Sweden)

    Rick J Alleman

    2014-09-01

    Full Text Available Consequences of oxidative stress may be beneficial or detrimental in physiological systems. An organ system’s position on the ‘hormetic curve’ is governed by the source and temporality of reactive oxygen species (ROS production, proximity of ROS to moieties most susceptible to damage, and the capacity of the endogenous cellular ROS scavenging mechanisms. Most importantly, the resilience of the tissue (the capacity to recover from damage is a decisive factor, and this is reflected in the disparate response to ROS in cardiac and skeletal muscle. In myocytes, a high oxidative capacity invariably results in a significant ROS burden which in homeostasis, is rapidly neutralized by the robust antioxidant network. The up-regulation of key pathways in the antioxidant network is a central component of the hormetic response to ROS. Despite such adaptations, persistent oxidative stress over an extended time-frame (e.g. months to years inevitably leads to cumulative damages, maladaptation and ultimately the pathogenesis of chronic diseases. Indeed, persistent oxidative stress in heart and skeletal muscle has been repeatedly demonstrated to have causal roles in the etiology of heart disease and insulin resistance, respectively. Deciphering the mechanisms that underlie the divergence between adaptive and maladaptive responses to oxidative stress remains an active area of research for basic scientists and clinicians alike, as this would undoubtedly lead to novel therapeutic approaches. Here, we provide an overview of major types of ROS in striated muscle and the divergent adaptations that occur in response to them. Emphasis is placed on highlighting newly uncovered areas of research on this topic, with particular focus on the mitochondria, and the diverging roles that ROS play in muscle health (e.g., exercise or preconditioning and disease (e.g., cardiomyopathy, ischemia, metabolic syndrome.

  18. Increased cellular proliferation in rat skeletal muscle and tendon in response to exercise

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Bayer, Monika L; Mackey, Abigail

    2010-01-01

    PURPOSE: The purpose of this study is to investigate exercise-induced cellular proliferation in rat skeletal muscle/tendon with the use of 3'-[F-18]fluoro-3'deoxythymidine (FLT) and to quantitatively study concomitant changes in the proliferation-associated factor, Ki67. PROCEDURES: Wistar rats (......-derived results were supported by a correlation in calf muscle to Ki67 (protein and mRNA level), while this coherence was not found in tendon. CONCLUSION: FLT-PET seems to be a promising tool for imaging of exercise-induced cellular proliferation in musculo-tendinous tissue....

  19. Environmental Stress Response and Adaptation Mechanisms in Rhizobia

    Directory of Open Access Journals (Sweden)

    Sanja Kajić

    2016-11-01

    Full Text Available Rhizobia are bacteria that can fixate atmospheric nitrogen in association within the root or the stem nodules of legume plants and transform atmospheric nitrogen to ammonia. Soil environmental conditions are critical factors for the persistence and survival of rhizobia in the soil. The changes in the rhizosphere environment can affect both growth and saprophytic competence, which will influence competitiveness and persistence. Environmental stress imposes a major threat to symbiotic nitrogen fixation and agriculture that can be limited by soil and climatic factors such as salinity, drought, temperature, acidity/alkalinity and heavy metals. In this review we present several different mechanisms in rhizobia adaptation under stress factors.

  20. Length adaptation of smooth muscle contractile filaments in response to sustained activation.

    Science.gov (United States)

    Stålhand, Jonas; Holzapfel, Gerhard A

    2016-05-21

    Airway and bladder smooth muscles are known to undergo length adaptation under sustained contraction. This adaptation process entails a remodelling of the intracellular actin and myosin filaments which shifts the peak of the active force-length curve towards the current length. Smooth muscles are therefore able to generate the maximum force over a wide range of lengths. In contrast, length adaptation of vascular smooth muscle has attracted very little attention and only a handful of studies have been reported. Although their results are conflicting on the existence of a length adaptation process in vascular smooth muscle, it seems that, at least, peripheral arteries and arterioles undergo such adaptation. This is of interest since peripheral vessels are responsible for pressure regulation, and a length adaptation will affect the function of the cardiovascular system. It has, e.g., been suggested that the inward remodelling of resistance vessels associated with hypertension disorders may be related to smooth muscle adaptation. In this study we develop a continuum mechanical model for vascular smooth muscle length adaptation by assuming that the muscle cells remodel the actomyosin network such that the peak of the active stress-stretch curve is shifted towards the operating point. The model is specialised to hamster cheek pouch arterioles and the simulated response to stepwise length changes under contraction. The results show that the model is able to recover the salient features of length adaptation reported in the literature.

  1. Inherited adaptation of genome-rewired cells in response to a challenging environment

    Science.gov (United States)

    David, Lior; Stolovicki, Elad; Haziz, Efrat; Braun, Erez

    2010-01-01

    Despite their evolutionary significance, little is known about the adaptation dynamics of genomically rewired cells in evolution. We have confronted yeast cells carrying a rewired regulatory circuit with a severe and unforeseen challenge. The essential HIS3 gene from the histidine biosynthesis pathway was placed under the exclusive regulation of the galactose utilization system. Glucose containing medium strongly represses the GAL genes including HIS3 and these rewired cells are required to operate this essential gene. We show here that although there were no adapted cells prior to the encounter with glucose, a large fraction of cells adapted to grow in this medium and this adaptation was stably inherited. The adaptation relied on individual cells that switched into an adapted state and, thus, the adaptation was due to a response of many individual cells to the change in environment and not due to selection of rare advantageous phenotypes. The adaptation of numerous individual cells by heritable phenotypic switching in response to a challenge extends the common evolutionary framework and attests to the adaptive potential of regulatory circuits. PMID:20811567

  2. Familial Parkinson's disease iPSCs show cellular deficits in mitochondrial responses that can be pharmacologically rescued

    Science.gov (United States)

    Cooper, Oliver; Seo, Hyemyung; Andrabi, Shaida; Guardia-Laguarta, Cristina; Graziotto, John; Sundberg, Maria; McLean, Jesse R.; Carrillo-Reid, Luis; Xie, Zhong; Osborn, Teresia; Hargus, Gunnar; Deleidi, Michela; Lawson, Tristan; Bogetofte, Helle; Perez-Torres, Eduardo; Clark, Lorraine; Moskowitz, Carol; Mazzulli, Joseph; Chen, Li; Volpicelli-Daley, Laura; Romero, Norma; Jiang, Houbo; Uitti, Ryan J.; Huang, Zhigao; Opala, Grzegorz; Scarffe, Leslie A.; Dawson, Valina L.; Klein, Christine; Feng, Jian; Ross, Owen A.; Trojanowski, John Q.; Lee, Virginia M.-Y.; Marder, Karen; Surmeier, D. James; Wszolek, Zbigniew K.; Przedborski, Serge; Krainc, Dimitri; Dawson, Ted M.; Isacson, Ole

    2012-01-01

    Parkinson's disease (PD) is a common neurodegenerative disease caused by genetic and environmental factors. We analyzed induced pluripotent stem cell (iPSC)-derived neural cells from PD patients and presymptomatic individuals carrying mutations in the PINK1 and LRRK2 genes, and healthy control subjects. We measured several aspects of mitochondrial responses in the iPSC-derived neural cells including production of reactive oxygen species, mitochondrial respiration, proton leakage and intraneuronal movement of mitochondria. Cellular vulnerability associated with mitochondrial function in iPSC-derived neural cells from PD patients and at-risk individuals could be rescued with coenzyme Q10, rapamycin or the LRRK2 kinase inhibitor GW5074. Analysis of mitochondrial responses in iPSC-derived neural cells from PD patients carrying different mutations provides insights into convergence of cellular disease mechanisms between different familial forms of PD and highlights the importance of oxidative stress and mitochondrial dysfunction in PD. PMID:22764206

  3. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae

    Science.gov (United States)

    López, Javier Hernández; Krainer, Sophie; Engert, Antonia; Schuehly, Wolfgang; Riessberger-Gallé, Ulrike; Crailsheim, Karl

    2017-01-01

    Disclosing interactions between pesticides and bee infections is of most interest to understand challenges that pollinators are facing and to which extent bee health is compromised. Here, we address the individual and combined effect that three different pesticides (dimethoate, clothianidin and fluvalinate) and an American foulbrood (AFB) infection have on mortality and the cellular immune response of honeybee larvae. We demonstrate for the first time a synergistic interaction when larvae are exposed to sublethal doses of dimethoate or clothianidin in combination with Paenibacillus larvae, the causative agent of AFB. A significantly higher mortality than the expected sum of the effects of each individual stressor was observed in co-exposed larvae, which was in parallel with a drastic reduction of the total and differential hemocyte counts. Our results underline that characterizing the cellular response of larvae to individual and combined stressors allows unmasking previously undetected sublethal effects of pesticides in colony health. PMID:28145462

  4. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae

    Science.gov (United States)

    López, Javier Hernández; Krainer, Sophie; Engert, Antonia; Schuehly, Wolfgang; Riessberger-Gallé, Ulrike; Crailsheim, Karl

    2017-02-01

    Disclosing interactions between pesticides and bee infections is of most interest to understand challenges that pollinators are facing and to which extent bee health is compromised. Here, we address the individual and combined effect that three different pesticides (dimethoate, clothianidin and fluvalinate) and an American foulbrood (AFB) infection have on mortality and the cellular immune response of honeybee larvae. We demonstrate for the first time a synergistic interaction when larvae are exposed to sublethal doses of dimethoate or clothianidin in combination with Paenibacillus larvae, the causative agent of AFB. A significantly higher mortality than the expected sum of the effects of each individual stressor was observed in co-exposed larvae, which was in parallel with a drastic reduction of the total and differential hemocyte counts. Our results underline that characterizing the cellular response of larvae to individual and combined stressors allows unmasking previously undetected sublethal effects of pesticides in colony health.

  5. Development of mechano-responsive polymeric scaffolds using functionalized silica nano-fillers for the control of cellular functions.

    Science.gov (United States)

    Griffin, Michelle; Nayyer, Leila; Butler, Peter E; Palgrave, Robert G; Seifalian, Alexander M; Kalaskar, Deepak M

    2016-08-01

    We demonstrate an efficient method to produce mechano-responsive polymeric scaffolds which can alter cellular functions using two different functionalized (OH and NH2) silica nano-fillers. Fumed silica-hydroxyl and fumed silica-amine nano-fillers were mixed with a biocompatible polymer (POSS-PCU) at various wt% to produce scaffolds. XPS and mechanical testing demonstrate that bulk mechanical properties are modified without changing the scaffold's surface chemistry. Mechanical testing showed significant change in bulk properties of POSS-PCU scaffolds with an addition of silica nanofillers as low as 1% (PScaffolds modified with NH2 silica showed significantly higher bulk mechanical properties compared to the one modified with the OH group. Enhanced cell adhesion, proliferation and collagen production over 14days were observed on scaffolds with higher bulk mechanical properties (NH2) compared to those with lower ones (unmodified and OH modified) (Ppolymeric scaffolds, which can help to customize cellular responses for biomaterial applications.

  6. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells.

    Science.gov (United States)

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru; Murakami, Yasufumi; Baiseitov, Diaz; Berikkhanova, Kulzhan; Zhumadilov, Zhaxybay; Imahori, Yoshio; Itami, Jun; Ono, Koji; Masunaga, Shinichiro; Masutani, Mitsuko

    2015-12-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(-) conditions. BNCR mainly induced typical apoptosis in SAS cells 24h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR.

  7. Activation of autophagy via Ca(2+)-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress.

    Science.gov (United States)

    Jiang, Li-Bo; Cao, Lu; Yin, Xiao-Fan; Yasen, Miersalijiang; Yishake, Mumingjiang; Dong, Jian; Li, Xi-Lei

    2015-01-01

    Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelles. Here, we explored whether autophagy is a cellular adaptation in rat notochordal cells under hyperosmotic stress. Hyperosmotic stress was found to activate autophagy in a dose- and time-dependent manner. SQSTM1/P62 expression was decreased as the autophagy level increased. Transient Ca(2+) influx from intracellular stores and extracellular space was stimulated by hyperosmotic stress. Activation of AMPK and inhibition of p70S6K were observed under hyperosmotic conditions. However, intercellular Ca(2+) chelation inhibited the increase of LC3-II and partly reversed the decrease of p70S6K. Hyperosmotic stress decreased cell viability and promoted apoptosis. Inhibition of autophagy led to SQSTM1/P62 accumulation, reduced cell viability, and accelerated apoptosis in notochordal cells under this condition. These evidences suggest that autophagy induction via the Ca(2+)-dependent AMPK/mTOR pathway might occur as an adaptation mechanism for notochordal cells under hyperosmotic stress. Thus, activating autophagy might be a promising approach to improve viability of notochordal cells in intervertebral discs.

  8. A new family of covariate-adjusted response adaptive designs and their properties

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Xin; HU Fei-fang

    2009-01-01

    It is often important to incorporate covariate information in the design of clinical trials. In literature there are many designs of using stratification and covariate-adaptive randomization to balance certain known covaxiate. Recently, some covariate-adjusted response-adaptive (CARA) designs have been proposed and their asymptotic properties have been studied (Ann.Statist. 2007). However, these CARA designs usually have high variabilities. In this paper, a new family of covariate-adjusted response-adaptive (CARA) designs is presented. It is shown that the new designs have less variables and therefore are more efficient.

  9. Influence of stimulus and oral adaptation temperature on gustatory responses in central taste-sensitive neurons.

    Science.gov (United States)

    Li, Jinrong; Lemon, Christian H

    2015-04-01

    The temperature of taste stimuli can modulate gustatory processing. Perceptual data indicate that the adapted temperature of oral epithelia also influences gustation, although little is known about the neural basis of this effect. Here, we electrophysiologically recorded orosensory responses (spikes) to 25°C (cool) and 35°C (warm) solutions of sucrose (0.1 and 0.3 M), NaCl (0.004, 0.1, and 0.3 M), and water from taste-sensitive neurons in the nucleus of the solitary tract in mice under varied thermal adaptation of oral epithelia. Conditions included presentation of taste stimuli isothermal to adaptation temperatures of 25°C (constant cooling) and 35°C (constant warming), delivery of 25°C stimuli following 35°C adaptation (relative cooling), and presentation of 35°C stimuli following 25°C adaptation (relative warming). Responses to sucrose in sucrose-oriented cells (n = 15) were enhanced under the constant and relative warming conditions compared with constant cooling, where contiguous cooling across adaptation and stimulus periods induced the lowest and longest latency responses to sucrose. Yet compared with constant warming, cooling sucrose following warm adaptation (relative cooling) only marginally reduced activity to 0.1 M sucrose and did not alter responses to 0.3 M sucrose. Thus, warmth adaptation counteracted the attenuation in sucrose activity associated with stimulus cooling. Analysis of sodium-oriented (n = 25) neurons revealed adaptation to cool water, and cooling taste solutions enhanced unit firing to 0.004 M (perithreshold) NaCl, whereas warmth adaptation and stimulus warming could facilitate activity to 0.3 M NaCl. The concentration dependence of this thermal effect may reflect a dual effect of temperature on the sodium reception mechanism that drives sodium-oriented cells.

  10. Epitope-based vaccines with the Anaplasma marginale MSP1a functional motif induce a balanced humoral and cellular immune response in mice.

    Directory of Open Access Journals (Sweden)

    Paula S Santos

    Full Text Available Bovine anaplasmosis is a hemoparasitic disease that causes considerable economic loss to the dairy and beef industries. Cattle immunized with the Anaplasma marginale MSP1 outer membrane protein complex presents a protective humoral immune response; however, its efficacy is variable. Immunodominant epitopes seem to be a key-limiting factor for the adaptive immunity. We have successfully demonstrated that critical motifs of the MSP1a functional epitope are essential for antibody recognition of infected animal sera, but its protective immunity is yet to be tested. We have evaluated two synthetic vaccine formulations against A. marginale, using epitope-based approach in mice. Mice infection with bovine anaplasmosis was demonstrated by qPCR analysis of erythrocytes after 15-day exposure. A proof-of-concept was obtained in this murine model, in which peptides conjugated to bovine serum albumin were used for immunization in three 15-day intervals by intraperitoneal injections before challenging with live bacteria. Blood samples were analyzed for the presence of specific IgG2a and IgG1 antibodies, as well as for the rickettsemia analysis. A panel containing the cytokines' transcriptional profile for innate and adaptive immune responses was carried out through qPCR. Immunized BALB/c mice challenged with A. marginale presented stable body weight, reduced number of infected erythrocytes, and no mortality; and among control groups mortality rates ranged from 15% to 29%. Additionally, vaccines have significantly induced higher IgG2a than IgG1 response, followed by increased expression of pro-inflammatory cytokines. This is a successful demonstration of epitope-based vaccines, and protection against anaplasmosis may be associated with elicitation of effector functions of humoral and cellular immune responses in murine model.

  11. Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition

    Directory of Open Access Journals (Sweden)

    Sara Landeras-Bueno

    2016-04-01

    Full Text Available Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection.

  12. IFI16, an amplifier of DNA-damage response: Role in cellular senescence and aging-associated inflammatory diseases.

    Science.gov (United States)

    Choubey, Divaker; Panchanathan, Ravichandran

    2016-07-01

    DNA-damage induces a DNA-damage response (DDR) in mammalian cells. The response, depending upon the cell-type and the extent of DNA-damage, ultimately results in cell death or cellular senescence. DDR-induced signaling in cells activates the ATM-p53 and ATM-IKKα/β-interferon (IFN)-β signaling pathways, thus leading to an induction of the p53 and IFN-inducible IFI16 gene. Further, upon DNA-damage, DNA accumulates in the cytoplasm, thereby inducing the IFI16 protein and STING-dependent IFN-β production and activation of the IFI16 inflammasome, resulting in the production of proinflammatory cytokines (e.g., IL-1β and IL-18). Increased expression of IFI16 protein in a variety of cell-types promotes cellular senescence. However, reduced expression of IFI16 in cells promotes cell proliferation. Because expression of the IFI16 gene is induced by activation of DNA-damage response in cells and increased levels of IFI16 protein in cells potentiate the p53-mediated transcriptional activation of genes and p53 and pRb-mediated cell cycle arrest, we discuss how an improved understanding of the role of IFI16 protein in cellular senescence and associated inflammatory secretory phenotype is likely to identify the molecular mechanisms that contribute to the development of aging-associated human inflammatory diseases and a failure to cancer therapy.

  13. Adult neurogenesis and the unfolded protein response; new cellular and molecular avenues in sleep research

    NARCIS (Netherlands)

    Lucassen, P.J.; Scheper, W.; van Someren, E.J.W.

    2009-01-01

    Two recent publications in this journal highlight the impact of new developments for our understanding of the mechanisms underlying the consequences of sleep disturbance and sleep loss. Meerlo et al. discuss effects of sleep disturbance at the cellular level, focusing mainly on adult neurogenesis an

  14. Airway cellular response to two different immunosuppressive regimens in lung transplant recipients

    NARCIS (Netherlands)

    Slebos, DJ; Kauffman, HF; Koeter, GH; Verschuuren, EAM; van der Bij, W; Postma, DS

    2005-01-01

    A number of new immunosuppressive drugs have become available in transplant medicine. We investigated the effects of two different immunosuppressive protocols on bronchoalveolar lavage fluid cellular characteristics in 34 lung transplant recipients who were treated with anti-thymocyte globulin induc

  15. Nanoparticles for nasal delivery of vaccines : monitoring adaptive immune responses

    NARCIS (Netherlands)

    Keijzer, C.

    2013-01-01

    The continuous emergence of new pathogens and growing drug resistance of microorganisms asks for innovative vaccination strategies. An alternative to conventional multiple injection vaccines is the nasal route of vaccine delivery. The immune response induced following nasal antigen delivery depends

  16. Identification of genes that regulate multiple cellular processes/responses in the context of lipotoxicity to hepatoma cells

    Directory of Open Access Journals (Sweden)

    Yedwabnick Matthew

    2007-10-01

    Full Text Available Abstract Background In order to devise efficient treatments for complex, multi-factorial diseases, it is important to identify the genes which regulate multiple cellular processes. Exposure to elevated levels of free fatty acids (FFAs and tumor necrosis factor alpha (TNF-α alters multiple cellular processes, causing lipotoxicity. Intracellular lipid accumulation has been shown to reduce the lipotoxicity of saturated FFA. We hypothesized that the genes which simultaneously regulate lipid accumulation as well as cytotoxicity may provide better targets to counter lipotoxicity of saturated FFA. Results As a model system to test this hypothesis, human hepatoblastoma cells (HepG2 were exposed to elevated physiological levels of FFAs and TNF-α. Triglyceride (TG accumulation, toxicity and the genomic responses to the treatments were measured. Here, we present a framework to identify such genes in the context of lipotoxicity. The aim of the current study is to identify the genes that could be altered to treat or ameliorate the cellular responses affected by a complex disease rather than to identify the causal genes. Genes that regulate the TG accumulation, cytotoxicity or both were identified by a modified genetic algorithm partial least squares (GA/PLS analysis. The analyses identified NADH dehydrogenase and mitogen activated protein kinases (MAPKs as important regulators of both cytotoxicity and lipid accumulation in response to FFA and TNF-α exposure. In agreement with the predictions, inhibiting NADH dehydrogenase and c-Jun N-terminal kinase (JNK reduced cytotoxicity significantly and increased intracellular TG accumulation. Inhibiting another MAPK pathway, the extracellular signal regulated kinase (ERK, on the other hand, improved the cytotoxicity without changing TG accumulation. Much greater reduction in the toxicity was observed upon inhibiting the NADH dehydrogenase and MAPK (which were identified by the dual-response analysis, than for the

  17. Biological and Theoretical Studies of Adaptive Networks: The Conditioned Response

    Science.gov (United States)

    1991-06-28

    stimulation of the red nucleus produces EPSPs in contralateral AAN neurons at mono- synaptic latencies 26 Holstege and Tan "’ report that with...Consistent with these anatomical data. intermediate facial nucleus neurons respond with EPSPs at monosynaptic latencies to red nucleus stimulation...responses. SpoV cells could project to red nucleus intrinsic inhibitory intemneurons. If these interneurons fired in 276 response to movement

  18. Vascular adaptive responses to physical exercise and to stress are affected differently by nandrolone administration

    Directory of Open Access Journals (Sweden)

    T. Bruder-Nascimento

    2011-04-01

    Full Text Available Androgenic anabolic steroid, physical exercise and stress induce cardiovascular adaptations including increased endothelial function. The present study investigated the effects of these conditions alone and in combination on the vascular responses of male Wistar rats. Exercise was started at 8 weeks of life (60-min swimming sessions 5 days per week for 8 weeks, while carrying a 5% body-weight load. One group received nandrolone (5 mg/kg, twice per week for 8 weeks, im. Acute immobilization stress (2 h was induced immediately before the experimental protocol. Curves for noradrenaline were obtained for thoracic aorta, with and without endothelium from sedentary and trained rats, submitted or not to stress, treated or not with nandrolone. None of the procedures altered the vascular reactivity to noradrenaline in denuded aorta. In intact aorta, stress and exercise produced vascular adaptive responses characterized by endothelium-dependent hyporeactivity to noradrenaline. These conditions in combination did not potentiate the vascular adaptive response. Exercise-induced vascular adaptive response was abolished by nandrolone. In contrast, the aortal reactivity to noradrenaline of sedentary rats and the vascular adaptive response to stress of sedentary and trained rats were not affected by nandrolone. Maximum response for 7-10 rats/group (g: sedentary 3.8 ± 0.2 vs trained 3.0 ± 0.2*; sedentary/stress 2.7 ± 0.2 vs trained/stress 3.1 ± 0.1*; sedentary/nandrolone 3.6 ± 0.1 vs trained/nandrolone 3.8 ± 0.1; sedentary/stress/nandrolone 3.2 ± 0.1 vs trained/stress/nandrolone 2.5 ± 0.1*; *P < 0.05 compared to its respective control. Stress and physical exercise determine similar vascular adaptive response involving distinct mechanisms as indicated by the observation that only the physical exercise-induced adaptive response was abolished by nandrolone.

  19. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants

    Directory of Open Access Journals (Sweden)

    Zhenzhu eXu

    2015-09-01

    Full Text Available It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development.

  20. Skeletal muscle adaptation in response to exercise(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Ping Li; Zhen Yan

    2004-01-01

    @@ MITOCHONDRIAL BIOGENESIS AND SLOW MUSCLE GENE EXPRESSION Recent findings in proxisome proliferators-activated recep tor γ (PPARγ) coactivator-1α (PGC-1α) gene regulation and function have led to the consideration of PGC-1α as a key regulator in regulating important features of skeletal muscle adaptation.PGC-1α is a transcriptional coactivator cloned originally by a yeast-two-hybrid screen from a differentiated brown fat cell line using PPARγ as bait[80]. PGC-1α mRNA and protein are highly expressed in slow,oxidative fibers compared to the fast, glycolytic fibers[81-82],consistent with the function of a gene involved in fiber type specialization. The functional importance of PGC-1α in striated muscles has been suggested by several different models [83-84].

  1. Changes in Stoichiometry, Cellular RNA, and Alkaline Phosphatase Activity of Chlamydomonas in Response to Temperature and Nutrients

    Science.gov (United States)

    Hessen, Dag O.; Hafslund, Ola T.; Andersen, Tom; Broch, Catharina; Shala, Nita K.; Wojewodzic, Marcin W.

    2017-01-01

    Phytoplankton may respond both to elevated temperatures and reduced nutrients by changing their cellular stoichiometry and cell sizes. Since increased temperatures often cause increased thermal stratification and reduced vertical flux of nutrients into the mixed zone, it is difficult to disentangle these drivers in nature. In this study, we used a factorial design with high and low levels of phosphorus (P) and high and low temperature to assess responses in cellular stoichiometry, levels of RNA, and alkaline phosphatase activity (APA) in the chlorophyte Chlamydomonas reinhardtii. Growth rate, C:P, C:N, N:P, RNA, and APA all responded primarily to P treatment, but except for N:P and APA, also temperature contributed significantly. For RNA, the contribution from temperature was particularly strong with higher cellular levels of RNA at low temperatures, suggesting a compensatory allocation to ribosomes to maintain protein synthesis and growth. These experiments suggest that although P-limitation is the major determinant of growth rate and cellular stoichiometry, there are pronounced effects of temperature also via interaction with P. At the ecosystem level, nutrients and temperature will thus interact, but temperatures would likely exert a stronger impact on these phytoplankton traits indirectly via its force on stratification regimes and vertical nutrient fluxes. PMID:28167934

  2. Proteomic analysis of cellular response induced by multi-walled carbon nanotubes exposure in A549 cells.

    Directory of Open Access Journals (Sweden)

    Li Ju

    Full Text Available The wide application of multi-walled carbon nanotubes (MWCNT has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml and short time period (24 h, MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS.

  3. Cellular biomarker responses of limpets (Mollusca as measure of sensitivity to cadmiumcontamination

    Directory of Open Access Journals (Sweden)

    Koot Reinecke

    2008-09-01

    Full Text Available Due to the availability and chemical nature of some heavy metals, sub-lethal toxicant levels may persist in the ocean waters and may cause physiological problems and toxicity in invertebrates and other marine organisms. Although studies of metal concentrations in False Bay showed relatively low mean concentrations of Cd, invertebrates such as molluscs, crustaceans and many other groups are able to accumulate high levels of heavy metals in their tissues and still survive in the heaviest polluted areas. They can accumulate numerous pollutants from natural waters in quantities that are many orders of magnitude higher than background levels. Bioaccumulation ofcadmium in intertidal species could cause stress which may be measurable at the cellular level. A variety of limpet species that may serve as suitable ecotoxicological monitoring species occur in abundance on rocky shores along the South African coastline. The aim of this study was to obtain sensitivity data which could contribute to the selection of a suitable monitoring species and the eventual establishment of a species sensitivity distribution model (SSD with a biomarker responseas endpoint. The limpets Cymbula oculus, Scutellastra longicosta, Cymbula granatina and Scutellastragranularis as well as water samples were collected at two localities in False Bay, South Africa. Analysis of water and biological samples were done by atomic absorption spectrometry. Exposures were done to three different sublethal concentrations of cadmium in the laboratory in static flow tanks over three days. There was a moderate increase in cadmium body concentrations over time. Results obtained at three exposure concentrations showed no significant differences in metal concentrations between the different C. oculus samples. Significant differences were obtained between the control and the exposure groups for each exposure time except between the control and the 1mg/L CdCl2 exposure group after 24 and 72 hours of

  4. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging.

    Science.gov (United States)

    Zawadzki, Robert J; Jones, Steven M; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S; Werner, John S

    2011-06-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented.

  5. Design of artificial genetic regulatory networks with multiple delayed adaptive responses*

    Science.gov (United States)

    Kaluza, Pablo; Inoue, Masayo

    2016-06-01

    Genetic regulatory networks with adaptive responses are widely studied in biology. Usually, models consisting only of a few nodes have been considered. They present one input receptor for activation and one output node where the adaptive response is computed. In this work, we design genetic regulatory networks with many receptors and many output nodes able to produce delayed adaptive responses. This design is performed by using an evolutionary algorithm of mutations and selections that minimizes an error function defined by the adaptive response in signal shapes. We present several examples of network constructions with a predefined required set of adaptive delayed responses. We show that an output node can have different kinds of responses as a function of the activated receptor. Additionally, complex network structures are presented since processing nodes can be involved in several input-output pathways. Supplementary material in the form of one nets file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-70172-9

  6. Minimization of biosynthetic costs in adaptive gene expression responses of yeast to environmental changes.

    Directory of Open Access Journals (Sweden)

    Ester Vilaprinyo

    2010-02-01

    Full Text Available Yeast successfully adapts to an environmental stress by altering physiology and fine-tuning metabolism. This fine-tuning is achieved through regulation of both gene expression and protein activity, and it is shaped by various physiological requirements. Such requirements impose a sustained evolutionary pressure that ultimately selects a specific gene expression profile, generating a suitable adaptive response to each environmental change. Although some of the requirements are stress specific, it is likely that others are common to various situations. We hypothesize that an evolutionary pressure for minimizing biosynthetic costs might have left signatures in the physicochemical properties of proteins whose gene expression is fine-tuned during adaptive responses. To test this hypothesis we analyze existing yeast transcriptomic data for such responses and investigate how several properties of proteins correlate to changes in gene expression. Our results reveal signatures that are consistent with a selective pressure for economy in protein synthesis during adaptive response of yeast to various types of stress. These signatures differentiate two groups of adaptive responses with respect to how cells manage expenditure in protein biosynthesis. In one group, significant trends towards downregulation of large proteins and upregulation of small ones are observed. In the other group we find no such trends. These results are consistent with resource limitation being important in the evolution of the first group of stress responses.

  7. Space Mapping With Adaptive Response Correction for Microwave Design Optimization

    DEFF Research Database (Denmark)

    Koziel, S.; Bandler, J.W.; Madsen, Kaj

    2009-01-01

    in the microwave area where the typical model response (e.g., vertical bar S-21 vertical bar) is a highly nonlinear function of the free parameter (e.g., frequency), the output space-mapping correction term may actually increase the mismatch between the surrogate and fine models for points other than the one...

  8. Interaction of cellular-localized signature modules in response to prostate cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Rapid progress in high-throughput biotechnologies (e. g. microarrays) and exponential accumulation of gene functional knowledge makes it promising for systematic understanding of complex human diseases at the functional modules level. Current modular categorizations can be defined and selected more specifically and precisely in terms of both biological processes and cellular locations, aiming at uncovering the modular molecular networks highly relevant to cancers. Based on Gene Ontology, we identifed the functional modules enriched with differentially expressed genes and characterized by biological processes and specific cellular locations. Then, according to the ranking of the disease discriminating abilities of the pre-selected functional modules, we further defined and filtered signature modules which have higher relevance to the cancer under study. Applications of the proposed method to the analysis of a prostate cancer dataset revealed insightful biological modules.

  9. Discovering the cellular-localized functional modules and modular interactions in response to liver cancer

    Institute of Scientific and Technical Information of China (English)

    Zhu Jing; Guo Zheng; Yang Da; Zhang Min; Wang Jing; Wang Chenguang

    2008-01-01

    In this paper, we firstly identify the functional modules enriched with differentially expressed genes (DEGs) and characterized by biological processes in specific cellular locations, based on gene ontology (GO) and microarray data. Then, we further define and filter disease relevant signature modules according to the ranking of the disease discriminating abilities of the pre-selected functional modules. At last, we analyze the potential way by which they cooperate towards human disease. Application of the proposed method to the analysis of a liver cancer dataset shows that, using the same false discovery rate (FDR) threshold, we can find more biologically meaningful and detailed processes by using the cellular localization information. Some biological evidences support the relevancy of our biological modules to the disease mechanism.

  10. Impaired cellular immune response to diphtheria and tetanus vaccines in children after thoracic transplantation.

    Science.gov (United States)

    Urschel, Simon; Rieck, Birgit D; Birnbaum, Julia; Dalla Pozza, Robert; Rieber, Nikolaus; Januszewska, Katarzyna; Fuchs, Alexandra; West, Lori J; Netz, Heinrich; Belohradsky, Bernd H

    2011-05-01

    Safety and immunogenicity of diphtheria and tetanus booster vaccination were evaluated in 28 children after thoracic transplantation. Adverse events were documented in a patient diary. Blood was collected prior to and four wk after vaccination. Specific antibody concentrations were measured by ELISA. Lymphocytes were investigated for expression of activation markers (CD25, HLA-DR) by flow cytometry and proliferation assays with and without stimulation. Post-vaccination antibody titers were higher than prevaccination (p antibody levels against diphtheria (p antibodies was negatively correlated with tacrolimus dose, and impaired cellular immunity was associated with higher tacrolimus dose and steroid use. Adverse events were similar to the general population; serious adverse events and rejection did not occur. Vaccination with inactivated vaccines can be performed safely in immunosuppressed children after thoracic transplantation and induces protective antibody levels in the majority of patients. Impaired induction of specific cellular immunity is correlated with intensity of immunosuppression and may explain reduced sustainability of antibodies.

  11. The innate and adaptive immune response to avian influenza virus infections and vaccines

    Science.gov (United States)

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  12. Response of cellular stoichiometry and phosphorus storage of the cyanobacteria Aphanizomenon flos-aquae to small-scale turbulence

    Science.gov (United States)

    Li, Zhe; Xiao, Yan; Yang, Jixiang; Li, Chao; Gao, Xia; Guo, Jinsong

    2017-01-01

    Turbulent mixing, in particular on a small scale, affects the growth of microalgae by changing diffusive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under different turbulent mixing conditions. Aphanizomenon flos-aquae were cultivated in different stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s3 to 0.050 58 m2/s3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory effect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum effective quantum yield of PSII (the ratio of F v/F m) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the diffusive sublayer, regulating the nutrient flux of cells.

  13. Cell-directed assembly on an integrated nanoelectronic/nanophotonic device for probing cellular responses on the nanoscale.

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C. Jeffrey; Dunphy, Darren Robert; Ashley, Carlee E. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Lopez, DeAnna (University of New Mexico, Albuquerque, NM); Simpson, Regina Lynn; Tallant, David Robert; Burckel, David Bruce; Baca, Helen Kennicott (University of New Mexico, Albuquerque, NM); Carnes, Eric C. (University of New Mexico, Albuquerque, NM); Singh, Seema

    2006-01-01

    Our discovery that the introduction of living cells (Saccharomyces cerevisiae) alters dramatically the evaporation driven self-assembly of lipid-silica nanostructures suggested the formation of novel bio/nano interfaces useful for cellular interrogation at the nanoscale. This one year ''out of the box'' LDRD focused on the localization of metallic and semi-conducting nanocrystals at the fluid, lipid-rich interface between S. cerevisiae and the surrounding phospholipid-templated silica nanostructure with the primary goal of creating Surface Enhanced Raman Spectroscopy (SERS)-active nanostructures and platforms for cellular integration into electrode arrays. Such structures are of interest for probing cellular responses to the onset of disease, understanding of cell-cell communication, and the development of cell-based bio-sensors. As SERS is known to be sensitive to the size and shape of metallic (principally gold and silver) nanocrystals, various sizes and shapes of nanocrystals were synthesized, functionalized and localized at the cellular surface by our ''cell-directed assembly'' approach. Laser scanning confocal microscopy, SEM, and in situ grazing incidence small angle x-ray scattering (GISAXS) experiments were performed to study metallic nanocrystal localization. Preliminary Raman spectroscopy studies were conducted to test for SERS activity. Interferometric lithography was used to construct high aspect ratio cylindrical holes on patterned gold substrates and electro-deposition experiments were performed in a preliminary attempt to create electrode arrays. A new printing procedure was also developed for cellular integration into nanostructured platforms that avoids solvent exposure and may mitigate osmotic stress. Using a different approach, substrates comprised of self-assembled nanoparticles in a phospholipid templated silica film were also developed. When printed on top of these substrates, the cells integrate

  14. FDG-PET/CT based response-adapted treatment

    DEFF Research Database (Denmark)

    de Geus-Oei, Lioe-Fee; Vriens, Dennis; Arens, Anne I J

    2012-01-01

    and adenocarcinoma of the esophagogastric junction, in order to investigate whether the use of PET-guided treatment individualization results in a survival benefit. In Hodgkin lymphoma and aggressive non-Hodgkin lymphoma, several trials are ongoing. Some studies aim to investigate the use of PET in early...... identification of metabolic non-responders in order to intensify treatment to improve survival. Other studies aim at reducing toxicity without adversely affecting cure rates by safely de-escalating therapy in metabolic responders. In solid tumors the first PET response-adjusted treatment trials have been...... realized in adenocarcinoma of the esophagogastric junction. These trials showed that patients with an early metabolic response to neoadjuvant chemotherapy benefit from this treatment, whereas metabolic non-responders should switch early to surgery, thus reducing the risk of tumor progression during...

  15. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    Science.gov (United States)

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.

  16. Gender differences in farmers' responses to climate change adaptation in Yongqiao District, China.

    Science.gov (United States)

    Jin, Jianjun; Wang, Xiaomin; Gao, Yiwei

    2015-12-15

    This study examines the gender differences in farmers' responses to climate change adaption in Yongqiao District, China. A random sampling technique was used to select 220 household heads, while descriptive statistics and binary logit models were used to analyze the data obtained from the households. We determine that male and female respondents are not significantly different in their knowledge and perceptions of climate change, but there is a gender difference in adopting climate change adaptation measures. Male-headed households are more likely to adopt new technology for water conservation and to increase investment in irrigation infrastructure. The research also indicates that the adaptation decisions of male and female heads are influenced by different sets of factors. The findings of this research help to elucidate the determinants of climate change adaptation decisions for male and female-headed households and the strategic interventions necessary for effective adaptation.

  17. Enhanced cellular responses and distinct gene profiles in human fetoplacental artery endothelial cells under chronic low oxygen.

    Science.gov (United States)

    Jiang, Yi-Zhou; Wang, Kai; Li, Yan; Dai, Cai-Feng; Wang, Ping; Kendziorski, Christina; Chen, Dong-Bao; Zheng, Jing

    2013-12-01

    Fetoplacental endothelial cells are exposed to oxygen levels ranging from 2% to 8% in vivo. However, little is known regarding endothelial function within this range of oxygen because most laboratories use ambient air (21% O2) as a standard culture condition (SCN). We asked whether human umbilical artery endothelial cells (HUAECs) that were steadily exposed to the physiological chronic normoxia (PCN, 3% O2) for ∼20-25 days differed in their proliferative and migratory responses to FGF2 and VEGFA as well as in their global gene expression compared with those in the SCN. We observed that PCN enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. In oxygen reversal experiments (i.e., when PCN cells were exposed to SCN for 24 h and vice versa), we found that preexposure to 21% O2 decreased the migratory ability, but not the proliferative ability, of the PCN-HUAECs in response to FGF2 and VEGFA. These PCN-enhanced cellular responses were associated with increased protein levels of HIF1A and NOS3, but not FGFR1, VEGFR1, and VEGFR2. Microarray analysis demonstrated that PCN up-regulated 74 genes and down-regulated 86, 14 of which were directly regulated by hypoxia-inducible factors as evaluated using in silico analysis. Gene function analysis further indicated that the PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from our functional assays. Given that PCN significantly alters cellular responses to FGF2 and VEGFA as well as transcription in HUAECs, it is likely that we may need to reexamine the current cellular and molecular mechanisms controlling fetoplacental endothelial functions, which were largely derived from endothelial models established under ambient O2.

  18. Synergistic and additive effects of cimetidine and levamisole on cellular immune responses to hepatitis B virus DNA vaccine in mice.

    Science.gov (United States)

    Niu, X; Yang, Y; Wang, J

    2013-02-01

    We and others have previously shown that both cimetidine (CIM) and levamisole (LMS) enhance humoral and cellular responses to DNA vaccines via different mechanisms. In this study, we investigated the synergistic and additive effects of CIM and LMS on the potency of antigen-specific immunities generated by a DNA vaccine encoding the hepatitis B surface antigen (HBsAg, pVax-S2). Compared with CIM or LMS alone, the combination of CIM and LMS elicited a robust HBsAg-specific cellular response that was characterized by higher IgG2a, but did not further increase HBsAg-specific antibody IgG and IgG1 production. Consistent with these results, the combination of CIM and LMS produced the highest level of IL-2 and IFN-γ in antigen-specific CD4(+) T cells, whereas the combination of CIM and LMS did not further increase IL-4 production. Significantly, a robust HBsAg-specific cytotoxic response was also observed in the animals immunized with pVax-S2 in the presence of the combination of CIM and LMS. Further mechanistic studies demonstrated that the combination of CIM and LMS promoted dendritic cell (DC) activation and blocked anti-inflammatory cytokine IL-10 and TGF-β production in CD4(+) CD25(+) T cells. These findings suggest that CIM and LMS have the synergistic and additive ability to enhance cellular response to hepatitis B virus DNA vaccine, which may be mediated by DC activation and inhibition of anti-inflammatory cytokine expression. Thus, the combination of cimetidine and levamisole may be useful as an effective adjuvant in DNA vaccinations for chronic hepatitis B virus infection.

  19. Characterisation of the p53-mediated cellular responses evoked in primary mouse cells following exposure to ultraviolet radiation.

    Directory of Open Access Journals (Sweden)

    Gillian D McFeat

    Full Text Available Exposure to ultraviolet (UV light can cause significant damage to mammalian cells and, although the spectrum of damage produced varies with the wavelength of UV, all parts of the UV spectrum are recognised as being detrimental to human health. Characterising the cellular response to different wavelengths of UV therefore remains an important aim so that risks and their moderation can be evaluated, in particular in relation to the initiation of skin cancer. The p53 tumour suppressor protein is central to the cellular response that protects the genome from damage by external agents such as UV, thus reducing the risk of tumorigenesis. In response to a variety of DNA damaging agents including UV light, wild-type p53 plays a role in mediating cell-cycle arrest, facilitating apoptosis and stimulating repair processes, all of which prevent the propagation of potentially mutagenic defects. In this study we examined the induction of p53 protein and its influence on the survival of primary mouse fibroblasts exposed to different wavelengths of UV light. UVC was found to elevate p53 protein and its sequence specific DNA binding capacity. Unexpectedly, UVA treatment failed to induce p53 protein accumulation or sequence specific DNA binding. Despite this, UVA exposure of wild-type cells induced a p53 dependent G1 cell cycle arrest followed by a wave of p53 dependent apoptosis, peaking 12 hours post-insult. Thus, it is demonstrated that the elements of the p53 cellular response evoked by exposure to UV radiation are wavelength dependent. Furthermore, the interrelationship between various endpoints is complex and not easily predictable. This has important implications not only for understanding the mode of action of p53 but also for the use of molecular endpoints in quantifying exposure to different wavelengths of UV in the context of human health protection.

  20. Prism adaptation magnitude has differential influences on perceptual versus manual responses.

    Science.gov (United States)

    Striemer, Christopher L; Russell, Karyn; Nath, Priya

    2016-10-01

    Previous research has indicated that rightward prism adaptation can reduce symptoms of spatial neglect following right brain damage. In addition, leftward prism adaptation can create "neglect-like" patterns of performance in healthy adults on tasks that measure attention and spatial biases. Although a great deal of research has focused on which behaviors are influenced by prism adaptation, very few studies have focused directly on how the magnitude of visual shift induced by prisms might be related to the observed aftereffects, or the effects of prisms on measures of attentional and spatial biases. In the current study, we examined these questions by having groups of healthy adult participants complete manual line bisection and landmark tasks prior to and following adaptation to either 8.5° (15 diopter; n = 22) or 17° (30 diopter; n = 25) leftward shifting prisms. Our results demonstrated a significantly larger rightward shift in straight-ahead pointing (a measure of prism aftereffect) following adaptation to 17°, compared to 8.5° leftward shifting prisms. In addition, only 17° leftward shifting prisms resulted in a significant rightward shift in line bisection following adaptation. However, there was a significant change in performance on the landmark task pre- versus post-adaptation in both the 8.5° and 17° leftward shifting prism groups. Interestingly, correlation analyses indicated that changes in straight-ahead pointing pre- versus post-adaptation were positively correlated with changes in performance on the manual line bisection task, but not the landmark task. These data suggest that larger magnitudes of prism adaptation seem to have a greater influence on tasks that require a response with the adapted hand (i.e., line bisection), compared to tasks that only require a perceptual judgment (i.e., the landmark task). In addition, these data provide further evidence that the effects of prisms on manual and perceptual responses are not related to one

  1. Specific cellular stimulation in the primary immune response: experimental test of a quantized model.

    OpenAIRE

    Dintzis, R Z; Vogelstein, B; Dintzis, H M

    1982-01-01

    Dose-response and dose-suppression curves have been measured for the primary immune response in mice, in vivo and in vitro, by using size-fractionated linear polymers of acrylamide substituted with hapten. The results are in general agreement with a simple theory based on the premise that the specific primary immunological response is quantized at some fundamental and limiting step, requiring a minimum number of linked antigen receptors for response.

  2. Pancreatic β- and α-cell adaptation in response to metabolic changes

    OpenAIRE

    Ellenbroek, Johanne Hendrike (Rianne)

    2015-01-01

    Insulin-producing pancreatic β-cells are essential to maintain blood glucose levels within a narrow range. β-cells can adapt to an increased insulin demand by enhancing insulin secretion via increased β-cell function and/or increased β-cell mass. Inadequate β-cell adaptation leads to hyperglycemia and eventually diabetes mellitus. Therefore, it is critical to understand how the β-cell mass is regulated. We investigated β- and α-cell adaptation in response to different metabolic changes. We fo...

  3. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    DEFF Research Database (Denmark)

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben;

    2013-01-01

    evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae...... of positive selection were significantly stronger in LTI trees after the rice and Pooideae split but before the Brachypodium divergence (P ... evidence for a link between adaptation to cold habitats and adaptive evolution of LTI stress responses in early Pooideae evolution and shed light on a poorly understood chapter in the evolutionary history of some of the world's most important temperate crops...

  4. Quantifying rates of evolutionary adaptation in response to ocean acidification.

    Science.gov (United States)

    Sunday, Jennifer M; Crim, Ryan N; Harley, Christopher D G; Hart, Michael W

    2011-01-01

    The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO(2) conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO(2) conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species.

  5. Cellular and molecular immune responses of the sea bass (Dicentrarchus labrax) experimentally infected with betanodavirus

    DEFF Research Database (Denmark)

    Scapigliati, G.; Buonocore, F.; Randelli, E.;

    2010-01-01

    Naïve sea bass juveniles (38.4 ± 4.5 g) were intramuscularly infected with a sublethal dose of betanodavirus isolate 378/I03, followed after 43 days by a similar boosting. This infection resulted in an overall mortality of 7.6%. At various intervals, sampling of fish tissues was performed to inve...... was also observed, while the other tested genes did not show any significant variations with respect to mock-treated fish. Overall, our work represents a first comprehensive analysis of cellular and molecular immune parameters in a fish species exposed to a pathogenic virus....

  6. Gene Expression Profile Changes and Cellular Responses to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Kidane, Yared; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Rohde, Larry; Wu, Honglu

    2016-01-01

    Living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. In addition, DNA in space can be damaged by toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage affects the accuracy of the radiation risk assessment for astronauts and the mutation rate in microorganisms. Although possible synergistic effects of space radiation and microgravity have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate the effects of spaceflight on cellular responses to DNA damage, confluent human fibroblast cells (AG1522) flown on the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB). Damages in the DNA were quantified by immunofluorescence staining for ?-H2AX, which showed similar percentages of different types of stained cells between flight and ground. However, there was a slight shift in the distribution of the ?-H2AX foci number in the flown cells with countable foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. A microarray analysis of gene expressions in response to bleomycin treatment was also performed. Comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. Similar responses at the RNA level between different gravity conditions were also observed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly

  7. Effects of local adaptation and interspecific competition on species' responses to climate change.

    Science.gov (United States)

    Bocedi, Greta; Atkins, Katherine E; Liao, Jishan; Henry, Roslyn C; Travis, Justin M J; Hellmann, Jessica J

    2013-09-01

    Local adaptation and species interactions have been shown to affect geographic ranges; therefore, we need models of climate impact that include both factors. To identify possible dynamics of species when including these factors, we ran simulations of two competing species using an individual-based, coupled map-lattice model using a linear climatic gradient that varies across latitude and is warmed over time. Reproductive success is governed by an individual's adaptation to local climate as well as its location relative to global constraints. In exploratory experiments varying the strength of adaptation and competition, competition reduces genetic diversity and slows range change, although the two species can coexist in the absence of climate change and shift in the absence of competitors. We also found that one species can drive the other to extinction, sometimes long after climate change ends. Weak selection on local adaptation and poor dispersal ability also caused surfing of cooler-adapted phenotypes from the expanding margin backwards, causing loss of warmer-adapted phenotypes. Finally, geographic ranges can become disjointed, losing centrally-adapted genotypes. These initial results suggest that the interplay between local adaptation and interspecific competition can significantly influence species' responses to climate change, in a way that demands future research.

  8. Inhibiting the NF-kappaB pathway to assess its function in the cellular response to space radiation

    Science.gov (United States)

    Koch, Kristina; Baumstark-Khan, Christa; Hellweg, Christine; Testard, Isabelle; Reitz, Guenther

    2012-07-01

    Radiation is regarded as one of the limiting factors for space missions. Therefore the cellular radiation response needs to be studied in order to estimate risks and to develop appropriate countermeasures. Exposure of human cells to ionizing radiation can provoke cell cycle arrest, leading to cellular senescence or premature differentiation, and different types of cell death. Previous heavy ion experiments have shown that the Nuclear Factor κB (NF-κB) pathway is activated by fluences that can be reached during long-term missions and thereby NF-κB was identified as an important modulating factor in the cellular radiation response. It could improve cellular survival after exposure to high radiation doses and influence the cancer risk of astronauts. The classical and the genotoxic stress induced NF-κB pathway result in nuclear translocation of the p65/p50 dimer. Both pathways might contribute to the cellular radiation response. Chemical inhibitors were tested to suppress the NF-κB pathway in recombinant HEK-pNF-κB-d2EGFP/Neo cells. The efficacy and cytotoxicity of the inhibitors targeting different elements of the NF-κB pathway were analyzed and found mostly inappropriate as inhibitors were partly cytotoxic or unspecific. Alternatively a functional knock-out of RelA (p65) was used to identify the contribution of the NF-κB pathway to different cellular outcomes. Small hairpin RNA constructs (shRNA) were transfected into the HEK-pNF-κB-d2EGFP/Neo cell line. Their functionality was assessed by quantitative Reverse Transcriptase real-time PCR (qRT-PCR) to verify that the RelA mRNA amount was reduced by more than 80% in the knock-down cells The original cell line had been stably transfected with a reporter system to monitor NF-κB activation by measuring destabilized Enhanced Green Fluorescent Protein (d2EGFP)-expression. It was shown that after 18 hours d2EGFP reaches its highest expression level after activation of NF-κB and can be measured by FACS analysis

  9. High content analysis at single cell level identifies different cellular responses dependent on nanomaterial concentrations

    Science.gov (United States)

    Manshian, Bella B.; Munck, Sebastian; Agostinis, Patrizia; Himmelreich, Uwe; Soenen, Stefaan J.

    2015-09-01

    A mechanistic understanding of nanomaterial (NM) interaction with biological environments is pivotal for the safe transition from basic science to applied nanomedicine. NM exposure results in varying levels of internalized NM in different neighboring cells, due to variances in cell size, cell cycle phase and NM agglomeration. Using high-content analysis, we investigated the cytotoxic effects of fluorescent quantum dots on cultured cells, where all effects were correlated with the concentration of NMs at the single cell level. Upon binning the single cell data into different categories related to NM concentration, this study demonstrates, for the first time, that quantum dots activate both cytoprotective and cytotoxic mechanisms, resulting in a zero net result on the overall cell population, yet with significant effects in cells with higher cellular NM levels. Our results suggest that future NM cytotoxicity studies should correlate NM toxicity with cellular NM numbers on the single cell level, as conflicting mechanisms in particular cell subpopulations are commonly overlooked using classical toxicological methods.

  10. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change.

    Science.gov (United States)

    Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A

    2014-01-01

    Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data.

  11. Effects of Spaceflight on Molecular and Cellular Responses to Bleomycin-Induced DNA Damages in Confluent Human Fibroblasts

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2016-01-01

    Spaceflights expose human beings to various risk factors. Among them are microgravity related physiological stresses in immune, cytoskeletal, and cardiovascular systems, and space radiation related elevation of cancer risk. Cosmic radiation consists of energetic protons and other heavier charged particles that induce DNA damages. Effective DNA damage response and repair mechanism is important to maintain genomic integrity and reduce cancer risk. There were studies on effects of spaceflight and microgravity on DNA damage response in cell and animal models, but the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on molecular and cellular responses to DNA damages, bleomycin, an anti-cancer drug and radiomimetic reagent, was used to induce DNA damages in confluent human fibroblasts flown to the International Space Station (ISS) and on ground. After exposure to 1.0 µg/ml bleomycin for 3 hours, cells were fixed for immunofluorescence assays and for RNA preparation. Extents of DNA damages were quantified by foci and pattern counting of phosphorylated histone protein H2AX (?-H2AX). The cells on the ISS showed modestly increased average foci counts per nucleus while the distribution of patterns was similar to that on the ground. PCR array analysis showed that expressions of several genes, including CDKN1A and PCNA, were significantly changed in response to DNA damages induced by bleomycin in both flight and ground control cells. However, there were no significant differences in the overall expression profile of DNA damage response genes between the flight and ground samples. Analysis of cellular proliferation status with Ki-67 staining showed a slightly higher proliferating population in cells on the ISS than those on ground. Our results suggested that the difference in ?-H2AX focus counts between flight and ground was due to the higher percentage of proliferating cells in space, but spaceflight did not significantly affect

  12. Mapping Variation in Cellular and Transcriptional Response to 1,25-Dihydroxyvitamin D3 in Peripheral Blood Mononuclear Cells.

    Directory of Open Access Journals (Sweden)

    Silvia N Kariuki

    Full Text Available The active hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D is an important modulator of the immune system, inhibiting cellular proliferation and regulating transcription of immune response genes. In order to characterize the genetic basis of variation in the immunomodulatory effects of 1,25D, we mapped quantitative traits of 1,25D response at both the cellular and the transcriptional level. We carried out a genome-wide association scan of percent inhibition of cell proliferation (Imax induced by 1,25D treatment of peripheral blood mononuclear cells from 88 healthy African-American individuals. Two genome-wide significant variants were identified: rs1893662 in a gene desert on chromosome 18 (p = 2.32 x 10-8 and rs6451692 on chromosome 5 (p = 2.55 x 10-8, which may influence the anti-proliferative activity of 1,25D by regulating the expression of nearby genes such as the chemokine gene, CCL28, and the translation initiation gene, PAIP1. We also identified 8 expression quantitative trait loci at a FDR<0.10 for transcriptional response to 1,25D treatment, which include the transcriptional regulator ets variant 3-like (ETV3L and EH-domain containing 4 (EHD4. In addition, we identified response eQTLs in vitamin D receptor binding sites near genes differentially expressed in response to 1,25D, such as FERM Domain Containing 6 (FRMD6, which plays a critical role in regulating both cell proliferation and apoptosis. Combining information from the GWAS of Imax and the response eQTL mapping enabled identification of putative Imax-associated candidate genes such as PAIP1 and the transcriptional repressor gene ZNF649. Overall, the variants identified in this study are strong candidates for immune traits and diseases linked to vitamin D, such as multiple sclerosis.

  13. Novel metastasis-related gene CIM functions in the regulation of multiple cellular stress-response pathways.

    Science.gov (United States)

    Yanagisawa, Kiyoshi; Konishi, Hiroyuki; Arima, Chinatsu; Tomida, Shuta; Takeuchi, Toshiyuki; Shimada, Yukako; Yatabe, Yasushi; Mitsudomi, Tetsuya; Osada, Hirotaka; Takahashi, Takashi

    2010-12-01

    Various stresses of the tumor microenvironment produced by insufficient nutrients, pH, and oxygen can contribute to the generation of altered metabolic and proliferative states that promote the survival of metastatic cells. Among many cellular stress-response pathways activated under such conditions are the hypoxia-inducible factor (HIF) pathway and the unfolded protein response (UPR), which is elicited as a response to endoplasmic reticulum (ER) stress. In this study, we report the identification of a novel cancer invasion and metastasis-related gene (hereafter referred to as CIM, also called ERLEC1), which influences both of these stress-response pathways to promote metastasis. CIM was identified by comparing the gene expression profile of a highly metastatic human lung cancer cell line with its weakly metastatic parental clone. We showed that CIM is critical for metastatic properties in this system. Proteomic approaches combined with bioinformatic analyses revealed that CIM has multifaceted roles in controlling the response to hypoxia and ER stress. Specifically, CIM sequestered OS-9 from the HIF-1α complex and PHD2, permitting HIF-1α accumulation by preventing its degradation. Ectopic expression of CIM in lung cancer cells increased their tolerance to hypoxia. CIM also modulated UPR through interaction with the key ER stress protein BiP, influencing cell proliferation under ER stress conditions. Our findings shed light on how tolerance to multiple cellular stresses at a metastatic site can be evoked by an integrated mechanism involving CIM, which can function to coordinate those responses in a manner that promotes metastatic cell survival.

  14. Immunosuppressive activity of Semen Persicae ethanol extract on specific antibody and cellular response to ovalbumin in mice.

    Science.gov (United States)

    Zhang, Yi-Bin; Qin, Feng; Sun, Hong-Xiang

    2006-09-01

    The immunosuppressive activity of the ethanol extract of Semen Persicae (EESP) was studied with respect to specific antibody and cellular response to ovalbumin (OVA) in mice. The effects of EESP on mice splenocyte proliferation in vitro were measured. EESP significantly suppressed concanavalin A (ConA)- and lipopolysaccharide (LPS)-stimulated splenocyte proliferation in vitro in a concentration-dependent manner. Furthermore, the effects of EESP at three dose levels on the humoral and cellular immune responses in the OVA-immunized mice were examined. ICR Mice were immunized subcutaneously with OVA on day 0 and 14. Starting on the day of immunization, the mice were administered intraperitoneally with EESP at a single dose of 0.25, 0.5, and 1.0 mg, and cyclosporin A (CsA, positive drug) at a single dose of 0.1 mg at intervals of 7 days. On day 28, mitogen- and OVA-induced splenocyte proliferation and OVA-specific antibody level in serum were measured. EESP significantly decreased ConA-, LPS-, and OVA-induced splenocyte proliferation in the OVA-immunized mice at the dose of 1.0 mg. Meanwhile, the OVA-specific serum IgG, IgG1, and IgG2b antibody levels in the OVA-immunized mice were markedly reduced by EESP in a dose-dependent manner. The results suggest that EESP could suppress the cellular and humoral immune response in mice, and deserve further research to be developed as immunosuppressant.

  15. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.; Zhou, A.; Baidoo, E.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C.L.; Huang, K.; Alm, E.J.; Fields, M.W.; Wall, J.; Stahl, D.; Hazen, T.C.; Keasling, J.D.; Arkin, A.P.; Zhou, J.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed. Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.

  16. Increased anterior cingulate cortex response precedes behavioural adaptation in anorexia nervosa

    Science.gov (United States)

    Geisler, Daniel; Ritschel, Franziska; King, Joseph A.; Bernardoni, Fabio; Seidel, Maria; Boehm, Ilka; Runge, Franziska; Goschke, Thomas; Roessner, Veit; Smolka, Michael N.; Ehrlich, Stefan

    2017-01-01

    Patients with anorexia nervosa (AN) are characterised by increased self-control, cognitive rigidity and impairments in set-shifting, but the underlying neural mechanisms are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to elucidate the neural correlates of behavioural adaptation to changes in reward contingencies in young acutely ill AN patients. Thirty-six adolescent/young adult, non-chronic female AN patients and 36 age-matched healthy females completed a well-established probabilistic reversal learning task during fMRI. We analysed hemodynamic responses in empirically-defined regions of interest during positive feedback and negative feedback not followed/followed by behavioural adaptation and conducted functional connectivity analyses. Although overall task performance was comparable between groups, AN showed increased shifting after receiving negative feedback (lose-shift behaviour) and altered dorsal anterior cingulate cortex (dACC) responses as a function of feedback. Specifically, patients had increased dACC responses (which correlated with perfectionism) and task-related coupling with amygdala preceding behavioural adaption. Given the generally preserved task performance in young AN, elevated dACC responses specifically during behavioural adaption is suggestive of increased monitoring for the need to adjust performance strategies. Higher dACC-amygdala coupling and increased adaptation after negative feedback underlines this interpretation and could be related to intolerance of uncertainty which has been suggested for AN. PMID:28198813

  17. Green propolis phenolic compounds act as vaccine adjuvants, improving humoral and cellular responses in mice inoculated with inactivated vaccines

    Directory of Open Access Journals (Sweden)

    Geferson Fischer

    2010-11-01

    Full Text Available Adjuvants play an important role in vaccine formulations by increasing their immunogenicity. In this study, the phenolic compound-rich J fraction (JFR of a Brazilian green propolis methanolic extract stimulated cellular and humoral immune responses when co-administered with an inactivated vaccine against swine herpesvirus type 1 (SuHV-1. When compared to control vaccines that used aluminium hydroxide as an adjuvant, the use of 10 mg/dose of JFR significantly increased (p < 0.05 neutralizing antibody titres against SuHV-1, as well as the percentage of protected animals following SuHV-1 challenge (p < 0.01. Furthermore, addition of phenolic compounds potentiated the performance of the control vaccine, leading to increased cellular and humoral immune responses and enhanced protection of animals after SuHV-1 challenge (p < 0.05. Prenylated compounds such as Artepillin C that are found in large quantities in JFR are likely to be the substances that are responsible for the adjuvant activity.

  18. Specific cellular stimulation in the primary immune response: a quantized model.

    OpenAIRE

    1982-01-01

    A general theory for the initial phase of T cell independent immune response is derived from elementary physical-chemical considerations and from the premise that response entails a quantized linkage of cell surface receptors. The theory leads to the construction of explicit antigen dose--response and antigen dose--suppression curves, to the calculation of intrinsic affinities for receptors, and to the deduction that receptors are divalent in character. The theory may be applicable to other c...

  19. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses.

    Science.gov (United States)

    Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender

    2016-05-01

    In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens.

  20. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  1. MECANISMOS CELULARES EN RESPUESTA AL ESTRÉS:: SIRTUINAS Cellular mechanisms in response to stress: sirtuin

    Directory of Open Access Journals (Sweden)

    Nancy Paola Echeverri-Ruíz

    2010-07-01

    Full Text Available Desde hace algún tiempo se conoce el papel de la restricción calórica sobre la longevidad y la prevención de enfermedades crónicas, pero hasta hace poco los mecanismos celulares involucrados comienzan a ser elucidados. El estrés celular se podría definir como el estado en el que la célula no presenta las condiciones óptimas de supervivencia, siendo el oxidativo un tipo de estrés en el que se generan radicales libres nocivos para las estructuras celulares. La restricción calórica podría incrementar la resistencia celular a diferentes formas de estrés. Las sirtuinas, proteínas deacetilasas de histonas tipo III, están involucradas en la relación entre balance energético y transcripción génica, permitiendo que la célula responda a la restricción calórica y sobreviva a situaciones de estrés oxidativo. En esta relación las sirtuinas regulan genes de la familia FOXO, cMYC, hTERT, p53, entre otros. La activación o silenciamiento de estos genes es importante en los procesos de apoptosis, reparación y muerte celular.The role of caloric restriction on longevity and prevention of chronic diseases has been known for some time; recently, cellular mechanisms involved are beginning to be elucidated. Cellular stress could be defined as the state in which the cell does not present optimal survival conditions; oxidative stress is a type of stress in which free radicals harmful cell structures. Caloric restriction might increase cellular resistance to various forms of stress. Sirtuins, histone deacetylases type III proteins are involved in the relationship between energy balance and gene transcription, allowing cell to respond to caloric restriction and to survive to oxidative stress. In this relationship, sirtuins regulate FOXO family genes, cMYC, hTERT, p53, among others. Activation or silencing of those genes is important in the process of apoptosis, repair and cell death

  2. Evolution of taxis responses in virtual bacteria: non-adaptive dynamics.

    Directory of Open Access Journals (Sweden)

    Richard A Goldstein

    2008-05-01

    Full Text Available Bacteria are able to sense and respond to a variety of external stimuli, with responses that vary from stimuli to stimuli and from species to species. The best-understood is chemotaxis in the model organism Escherichia coli, where the dynamics and the structure of the underlying pathway are well characterised. It is not clear, however, how well this detailed knowledge applies to mechanisms mediating responses to other stimuli or to pathways in other species. Furthermore, there is increasing experimental evidence that bacteria integrate responses from different stimuli to generate a coherent taxis response. We currently lack a full understanding of the different pathway structures and dynamics and how this integration is achieved. In order to explore different pathway structures and dynamics that can underlie taxis responses in bacteria, we perform a computational simulation of the evolution of taxis. This approach starts with a population of virtual bacteria that move in a virtual environment based on the dynamics of the simple biochemical pathways they harbour. As mutations lead to changes in pathway structure and dynamics, bacteria better able to localise with favourable conditions gain a selective advantage. We find that a certain dynamics evolves consistently under different model assumptions and environments. These dynamics, which we call non-adaptive dynamics, directly couple tumbling probability of the cell to increasing stimuli. Dynamics that are adaptive under a wide range of conditions, as seen in the chemotaxis pathway of E. coli, do not evolve in these evolutionary simulations. However, we find that stimulus scarcity and fluctuations during evolution results in complex pathway dynamics that result both in adaptive and non-adaptive dynamics depending on basal stimuli levels. Further analyses of evolved pathway structures show that effective taxis dynamics can be mediated with as few as two components. The non-adaptive dynamics

  3. Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30ºC

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Nielsen, Jens

    2016-01-01

    to grow at increased temperature, activated a constitutive heat stress response when grown at the optimal ancestral temperature, and that this is associated with a reduced growth rate. This preventive response was perfected by additional transcriptional changes activated when the cultivation temperature....... This demonstrates robustness of the yeast transcriptional program when exposed to heat, and that the thermotolerant strains streamlined their path to rapidly and optimally reach post-stress transcriptional and metabolic levels. Thus, long-term adaptation to heat improved yeasts ability to rapidly adapt to increased...

  4. RETRACTED: The Nonlinear Compressive Response and Deformation of an Auxetic Cellular Structure under In-Plane Loading

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-01-01

    Full Text Available At the request of the Author, the following article Zhang, W, Hou, W, Hu, Ping and Ma, Z (2014 The Nonlinear Compressive Response and Deformation of an Auxetic Cellular Structure under In-Plane Loading Advances in Mechanical Engineering published 17 November 2014. doi: 10.1155/2014/214681has been retracted due to errors discovered by the authors. On Page 3, the definition of component force in Equation 4 is incorrect. (2 On Page 4, the definition of component force in Equation 11 is incorrect. Moreover this equation should not have parameterM(length of cell wall, because a mistake was made in the process of calculation. Because of the above reasons, the conclusion obtained from the mechanical model is incorrect and should instead state that the Elastic Buckling and Plastic Collapse are both yield modes of this structure (3 On Page 5, the FEA model used in this article is not appropriate, because the deformation of single cell is not homogeneous, which means that the geometrical non-linear effect on single cell model is greater. So in the actual whole structure we may not obtain the results that were described in Page 6 Paragraph 2. (4 The data in figures 8 (page 6 and 9 (page 7 is incorrect and the values of effective Young’s modulus and plateau stress are much larger than reasonable values. The definition of effective stress is wrong in the FEA model, which means the effective stress should be calculated by the total width of cell instead of length of horizontal cell wall. For example, in Figure 8, the plateau stress can reach 140Mpa, this is not reasonable because there are many holes in this cellular structure, and its mechanical properties should be much lower than material properties of cell wall. The reasonable plateau stress should be around 2Mpa. The authors takes responsibility for these errors and regret the publication of invalid results. The nonlinear compressive response and deformation of an auxetic cellular structure that has

  5. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    Science.gov (United States)

    Ott, Lee W.; Resing, Katheryn A.; Sizemore, Alecia W.; Heyen, Joshua W.; Cocklin, Ross R.; Pedrick, Nathan M.; Woods, H. Cary; Chen, Jake Y.; Goebl, Mark G.; Witzmann, Frank A.; Harrington, Maureen A.

    2010-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFα and IL-1 regulate different processes. A large-scale proteomic analysis of TNFα- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFα and IL-1. When combined with genomic studies, our results indicate that TNFα, but not IL-1, mediates cell cycle arrest. PMID:17503796

  6. Tumor Necrosis Factor-alpha- and interleukin-1-induced cellular responses: coupling proteomic and genomic information.

    Science.gov (United States)

    Ott, Lee W; Resing, Katheryn A; Sizemore, Alecia W; Heyen, Joshua W; Cocklin, Ross R; Pedrick, Nathan M; Woods, H Cary; Chen, Jake Y; Goebl, Mark G; Witzmann, Frank A; Harrington, Maureen A

    2007-06-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFalpha) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFalpha- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFalpha and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFalpha and IL-1 regulate different processes. A large-scale proteomic analysis of TNFalpha- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFalpha and IL-1. When combined with genomic studies, our results indicate that TNFalpha, but not IL-1, mediates cell cycle arrest.

  7. Effect of tylosin tartrate (Tylan Soluble) on cellular immune responses in chickens.

    Science.gov (United States)

    Baba, T; Yamashita, N; Kodama, H; Mukamoto, M; Asada, M; Nakamoto, K; Nose, Y; McGruder, E D

    1998-09-01

    Although many antimicrobial agents have been reported to cause immunosuppression in animals, macrolide antibiotics enhance immune function. Tylosin is a macrolide antibiotic approved for the control of mycoplasmosis in poultry. The purpose of this investigation was to determine the effect of tylosin on cellular immune functions in chickens. There was no significant difference in adherent splenocyte chemotaxis between tylosin-treated and untreated (control) chickens. Tylosin increased splenocyte proliferation and splenocyte conditioned medium (CM) proliferative activity above control levels. Removal of adherent splenocytes before preparation of CM caused a reduction in CM proliferative activity. Tylosin also increased antitumor activity of splenocytes. These data are the first to suggest that the macrolide antibiotic, tylosin tartrate, has a modulatory effect in chickens on the immune parameters studied.

  8. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds

    Science.gov (United States)

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-09-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  9. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds.

    Science.gov (United States)

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-10-21

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  10. Polyacrylamide scaffolds for studying cellular response to substrate stiffness in three dimensions

    Science.gov (United States)

    Lin, Keng-Hui

    2013-03-01

    Recent developments in two-dimensional (2D) culture substrates with tunable stiffness and patterned adhesion ligands have demonstrated that biochemical and mechanical cues regulate the biological functions of living cells. We have extended these cell culture platforms into three dimensions (3D), as in complex biological systems, by producing highly ordered scaffolds of polyacrylamide coated with extracellular matrix proteins. We characterized parameters for the scaffold fabrication. We then grew individual fibroblasts in the identical pores of our scaffolds, examing cellular morphological, cytoskeletal, and adhesion properties. We have observed rich variety of morphologies and anchoring strategies assumed by cells growing on our tunable 3D polyacrylamide scaffolds to demonstrate the richness of cell-mciroenvironment interactions when cell adhesions are not confined to 2D surfaces.

  11. Molecular and cellular response of earthworm Eisenia andrei (Oligochaeta, Lumbricidae) to PCDD/Fs exposure.

    Science.gov (United States)

    Nusair, Shreen Deeb; Abu Zarour, Yousef Sa'id

    2017-01-01

    The acute toxicity of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) was investigated in the earthworm Eisenia andrei using filter paper toxicity test. Protein content, catalase (CAT) activity, and histology of intestinal wall (chloragogen cells and intestinal epithelium) were investigated in earthworms exposed for 48 h to 0 (control), 0.5, 1.0, and 1.5 ng/cm(2) PCDD/Fs. The results showed an increase in the total protein content 1.56- (p = 0.104), 1.66- (p = 0.042), and 2.26-fold (p biomarkers of E. andrei within 48 h, the cellular and molecular alterations resulted from the filter paper contact test could be utilized as a rapid toxicity assessment tool of environmental contamination with dioxins/furans and to assess consequent potential adverse effects on soil biota and other organisms in the ecosystem.

  12. Cell type-specific adaptation of cellular and nuclear volume in micro-engineered 3D environments.

    Science.gov (United States)

    Greiner, Alexandra M; Klein, Franziska; Gudzenko, Tetyana; Richter, Benjamin; Striebel, Thomas; Wundari, Bayu G; Autenrieth, Tatjana J; Wegener, Martin; Franz, Clemens M; Bastmeyer, Martin

    2015-11-01

    Bio-functionalized three-dimensional (3D) structures fabricated by direct laser writing (DLW) are structurally and mechanically well-defined and ideal for systematically investigating the influence of three-dimensionality and substrate stiffness on cell behavior. Here, we show that different fibroblast-like and epithelial cell lines maintain normal proliferation rates and form functional cell-matrix contacts in DLW-fabricated 3D scaffolds of different mechanics and geometry. Furthermore, the molecular composition of cell-matrix contacts forming in these 3D micro-environments and under conventional 2D culture conditions is identical, based on the analysis of several marker proteins (paxillin, phospho-paxillin, phospho-focal adhesion kinase, vinculin, β1-integrin). However, fibroblast-like and epithelial cells differ markedly in the way they adapt their total cell and nuclear volumes in 3D environments. While fibroblast-like cell lines display significantly increased cell and nuclear volumes in 3D substrates compared to 2D substrates, epithelial cells retain similar cell and nuclear volumes in 2D and 3D environments. Despite differential cell volume regulation between fibroblasts and epithelial cells in 3D environments, the nucleus-to-cell (N/C) volume ratios remain constant for all cell types and culture conditions. Thus, changes in cell and nuclear volume during the transition from 2D to 3D environments are strongly cell type-dependent, but independent of scaffold stiffness, while cells maintain the N/C ratio regardless of culture conditions.

  13. Modification to the capsid of the adenovirus vector that enhances dendritic cell infection and transgene-specific cellular immune responses.

    Science.gov (United States)

    Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L; Merritt, Robert; Hackett, Neil R; Rovelink, Peter W; Bruder, Joseph T; Wickham, Thomas J; Kovesdi, Imi; Crystal, Ronald G

    2004-03-01

    Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing beta-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the beta-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing beta-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to beta-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-beta-galactosidase antibody levels following vector administration. However, cellular responses to beta-galactosidase were significantly enhanced, with the frequency of CD4(+) as well as the CD8(+) beta-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing beta-galactosidase: BALB/c mice implanted with the CT26 syngeneic beta-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif

  14. Investigation of cellular and molecular responses to pulsed focused ultrasound in a mouse model.

    Directory of Open Access Journals (Sweden)

    Scott R Burks

    Full Text Available Continuous focused ultrasound (cFUS has been widely used for thermal ablation of tissues, relying on continuous exposures to generate temperatures necessary to induce coagulative necrosis. Pulsed FUS (pFUS employs non-continuous exposures that lower the rate of energy deposition and allow cooling to occur between pulses, thereby minimizing thermal effects and emphasizing effects created by non-thermal mechanisms of FUS (i.e., acoustic radiation forces and acoustic cavitation. pFUS has shown promise for a variety of applications including drug and nanoparticle delivery; however, little is understood about the effects these exposures have on tissue, especially with regard to cellular pro-homing factors (growth factors, cytokines, and cell adhesion molecules. We examined changes in murine hamstring muscle following pFUS or cFUS and demonstrate that pFUS, unlike cFUS, has little effect on the histological integrity of muscle and does not induce cell death. Infiltration of macrophages was observed 3 and 8 days following pFUS or cFUS exposures. pFUS increased expression of several cytokines (e.g., IL-1α, IL-1β, TNFα, INFγ, MIP-1α, MCP-1, and GMCSF creating a local cytokine gradient on days 0 and 1 post-pFUS that returns to baseline levels by day 3 post-pFUS. pFUS exposures induced upregulation of other signaling molecules (e.g., VEGF, FGF, PlGF, HGF, and SDF-1α and cell adhesion molecules (e.g., ICAM-1 and VCAM-1 on muscle vasculature. The observed molecular changes in muscle following pFUS may be utilized to target cellular therapies by increasing homing to areas of pathology.

  15. Redox regulation of human OGG1 activity in response to cellular oxidative stress.

    Science.gov (United States)

    Bravard, Anne; Vacher, Monique; Gouget, Barbara; Coutant, Alexandre; de Boisferon, Florence Hillairet; Marsin, Stéphanie; Chevillard, Sylvie; Radicella, J Pablo

    2006-10-01

    8-Oxoguanine (8-oxoG), a common and mutagenic form of oxidized guanine in DNA, is eliminated mainly through base excision repair. In human cells its repair is initiated by human OGG1 (hOGG1), an 8-oxoG DNA glycosylase. We investigated the effects of an acute cadmium exposure of human lymphoblastoid cells on the activity of hOGG1. We show that coinciding with alteration of the redox cellular status, the 8-oxoG DNA glycosylase activity of hOGG1 was nearly completely inhibited. However, the hOGG1 activity returned to normal levels once the redox cellular status was normalized. In vitro, the activity of purified hOGG1 was abolished by cadmium and could not be recovered by EDTA. In cells, however, the reversible inactivation of OGG1 activity by cadmium was strictly associated with reversible oxidation of the protein. Moreover, the 8-oxoG DNA glycosylase activity of purified OGG1 and that from crude extracts were modulated by cysteine-modifying agents. Oxidation of OGG1 by the thiol oxidant diamide led to inhibition of the activity and a protein migration pattern similar to that seen in cadmium-treated cells. These results suggest that cadmium inhibits hOGG1 activity mainly by indirect oxidation of critical cysteine residues and that excretion of the metal from the cells leads to normalization of the redox cell status and restoration of an active hOGG1. The results presented here unveil a novel redox-dependent mechanism for the regulation of OGG1 activity.

  16. Adaptive response and split-dose effect of radiation on the survival of mice

    Indian Academy of Sciences (India)

    Ashu Bhan Tiku; R K Kale

    2004-03-01

    Although the importance of radiation-induced adaptive response has been recognized in human health, risk assessment and clinical application, the phenomenon has not been understood well in terms of survival of animals. To examine this aspect Swiss albino mice were irradiated with different doses (2–10 Gy) at 0.015 Gy/s dose rate and observed on a regular basis for 30 days. Since almost 50% lethality was seen with 8 Gy, it was selected as the challenging dose for further studies. Irradiation of mice with conditioning doses (0.25 or 0.5 Gy) and subsequent exposure to 8 Gy caused significant increase in the survival of mice compared to irradiated control. The splitting of challenging dose did not influence the efficiency of conditioning doses (0.25 Gy and 0.5 Gy) to induce an adaptive response. However conditioning doses given in fractions (0.25 Gy + 0.25 Gy) or (0.5 Gy + 0.5 Gy) were able to modulate the response of challenging dose of 8 Gy. These results clearly showed the occurrence of adaptive response in terms of survival of animals. The conditioning dose given in small fractions seemed to be more effective. The findings have been discussed from a mechanistic point of view. The possible biological implications, potential medical benefits, uncertainties and controversies related to adaptive response have also been addressed.

  17. Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E.

    Science.gov (United States)

    Baumgarten, Thomas; Vazquez, José; Bastisch, Christian; Veron, Wilfried; Feuilloley, Marc G J; Nietzsche, Sandor; Wick, Lukas Y; Heipieper, Hermann J

    2012-01-01

    In order to cope with the toxicity imposed by the exposure to environmental hydrocarbons, many bacteria have developed specific adaptive responses such as modifications in the cell envelope. Here we compared the influence of n-alkanols and chlorophenols on the surface properties of the solvent-tolerant bacterium Pseudomonas putida DOT-T1E. In the presence of toxic concentrations of n-alkanols, this strain significantly increased its cell surface charge and hydrophobicity with changes depending on the chain length of the added n-alkanols. The adaptive response occurred within 10 min after the addition of the solvent and was demonstrated to be of physiological nature. Contrary to that, chlorophenols of similar hydrophobicity and potential toxicity as the corresponding alkanols caused only minor effects in the surface properties. To our knowledge, this is the first observation of differences in the cellular adaptive response of bacteria to compound classes of quasi equal hydrophobicity and toxicity. The observed adaptation of the physico-chemical surface properties of strain DOT-T1E to the presence of alkanols was reversible and correlated with changes in the composition of the lipopolysaccharide content of the cells. The reaction is explained by previously described reactions allowing the release of membrane vesicles that was demonstrated for cells affected by 1-octanol and heat shock, whereas no membrane vesicles were released after the addition of chlorophenols.

  18. Overproduction of a Model Sec- and Tat-Dependent Secretory Protein Elicits Different Cellular Responses in Streptomyces lividans.

    Science.gov (United States)

    Gullón, Sonia; Marín, Silvia; Mellado, Rafael P

    2015-01-01

    Streptomyces lividans is considered an efficient host for the secretory production of homologous and heterologous proteins. To identify possible bottlenecks in the protein production process, a comparative transcriptomic approach was adopted to study cellular responses during the overproduction of a Sec-dependent model protein (alpha-amylase) and a Tat-dependent model protein (agarase) in Streptomyces lividans. The overproduction of the model secretory proteins via the Sec or the Tat route in S. lividans does elicit a different major cell response in the bacterium. The stringent response is a bacterial response to nutrients' depletion, which naturally occurs at late times of the bacterial cell growth. While the induction of the stringent response at the exponential phase of growth may limit overall productivity in the case of the Tat route, the induction of that response does not take place in the case of the Sec route, which comparatively is an advantage in secretory protein production processes. Hence, this study identifies a potential major drawback in the secretory protein production process depending on the secretory route, and provides clues to improving S. lividans as a protein production host.

  19. Overproduction of a Model Sec- and Tat-Dependent Secretory Protein Elicits Different Cellular Responses in Streptomyces lividans

    Science.gov (United States)

    Gullón, Sonia; Marín, Silvia; Mellado, Rafael P.

    2015-01-01

    Streptomyces lividans is considered an efficient host for the secretory production of homologous and heterologous proteins. To identify possible bottlenecks in the protein production process, a comparative transcriptomic approach was adopted to study cellular responses during the overproduction of a Sec-dependent model protein (alpha-amylase) and a Tat-dependent model protein (agarase) in Streptomyces lividans. The overproduction of the model secretory proteins via the Sec or the Tat route in S. lividans does elicit a different major cell response in the bacterium. The stringent response is a bacterial response to nutrients’ depletion, which naturally occurs at late times of the bacterial cell growth. While the induction of the stringent response at the exponential phase of growth may limit overall productivity in the case of the Tat route, the induction of that response does not take place in the case of the Sec route, which comparatively is an advantage in secretory protein production processes. Hence, this study identifies a potential major drawback in the secretory protein production process depending on the secretory route, and provides clues to improving S. lividans as a protein production host. PMID:26200356

  20. Adaptive responses reveal contemporary and future ecotypes in a desert shrub.

    Science.gov (United States)

    Richardson, Bryce A; Kitchen, Stanley G; Pendleton, Rosemary L; Pendleton, Burton K; Germino, Matthew J; Rehfeldt, Gerald E; Meyer, Susan E

    2014-03-01

    Interacting threats to ecosystem function, including climate change, wildfire, and invasive species necessitate native plant restoration in desert ecosystems. However, native plant restoration efforts often remain unguided by ecological genetic information. Given that many ecosystems are in flux from climate change, restoration plans need to account for both contemporary and future climates when choosing seed sources. In this study we analyze vegetative responses, including mortality, growth, and carbon isotope ratios in two blackbrush (Coleogyne ramosissima) common gardens that included 26 populations from a range-wide collection. This shrub occupies ecotones between the warm and cold deserts of Mojave and Colorado Plateau ecoregions in western North America. The variation observed in the vegetative responses of blackbrush populations was principally explained by grouping populations by ecoregions and by regression with site-specific climate variables. Aridity weighted by winter minimum temperatures best explained vegetative responses; Colorado Plateau sites were usually colder and drier than Mojave sites. The relationship between climate and vegetative response was mapped within the boundaries of the species-climate space projected for the contemporary climate and for the decade surrounding 2060. The mapped ecological genetic pattern showed that genetic variation could be classified into cool-adapted and warm-adapted ecotypes, with populations often separated by steep dines. These transitions are predicted to occur in both the Mojave Desert and Colorado Plateau ecoregions. While under contemporary conditions the warm-adapted ecotype occupies the majority of climate space, climate projections predict that the cool-adapted ecotype could prevail as the dominant ecotype as the climate space of blackbrush expands into higher elevations and latitudes. This study provides the framework for delineating climate change-responsive seed transfer guidelines, which are needed

  1. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment.

    Science.gov (United States)

    Anschütz, Uta; Becker, Dirk; Shabala, Sergey

    2014-05-15

    Partially and fully completed plant genome sequencing projects in both lower and higher plants allow drawing a comprehensive picture of the molecular and structural diversities of plant potassium transporter genes and their encoded proteins. While the early focus of the research in this field was aimed on the structure-function studies and understanding of the molecular mechanisms underlying K(+) transport, availability of Arabidopsis thaliana mutant collections in combination with micro-array techniques have significantly advanced our understanding of K(+) channel physiology, providing novel insights into the transcriptional regulation of potassium homeostasis in plants. More recently, posttranslational regulation of potassium transport systems has moved into the center stage of potassium transport research. The current review is focused on the most exciting developments in this field. By summarizing recent work on potassium transporter regulation we show that potassium transport in general, and potassium channels in particular, represent important targets and are mediators of the cellular responses during different developmental stages in a plant's life cycle. We show that regulation of intracellular K(+) homeostasis is essential to mediate plant adaptive responses to a broad range of abiotic and biotic stresses including drought, salinity, and oxidative stress. We further link post-translational regulation of K(+) channels with programmed cell death and show that K(+) plays a critical role in controlling the latter process. Thus, is appears that K(+) is not just the essential nutrient required to support optimal plant growth and yield but is also an important signaling agent mediating a wide range of plant adaptive responses to environment.

  2. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    Science.gov (United States)

    Lasky, Jesse R; Des Marais, David L; Lowry, David B; Povolotskaya, Inna; McKay, John K; Richards, James H; Keitt, Timothy H; Juenger, Thomas E

    2014-09-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients.

  3. Skin Blood Perfusion and Cellular Response to Insertion of Insulin Pen Needles With Different Diameters

    DEFF Research Database (Denmark)

    Præstmark, Kezia Ann; Stallknecht, Bente Merete; Bo Jensen, Casper;

    2014-01-01

    Today most research on pen needle design revolves around pain perception statements through clinical trials, but these are both costly, timely, and require high sample sizes. The purpose of this study was to test if tissue damage, caused by different types of needles, can be assessed by evaluating...... skin blood perfusion response around needle insertion sites. Three common sized pen needles of 28G, 30G, and 32G as well as hooked 32G needles, were inserted into the neck skin of pigs and then removed. Laser Speckle Contrast Analysis was used to measure skin blood perfusion for 20 minutes after......, but there was a trend of an increased response with increasing needle diameter. Skin blood perfusion response to pen needle insertions rank according to needle diameter, and the tissue response caused by hooked 32G needles corresponds to that of 28G needles. The relation between needle diameter and trauma when...

  4. Transcriptomal profiling of the cellular response to DNA damage mediated by Slug (Snai2)

    OpenAIRE

    Pérez-Caro, M.; Bermejo-Rodríguez, C.; González-Herrero, I; Sánchez-Beato, M; Piris, M. A.; Sánchez-García, I

    2008-01-01

    Snai2-deficient cells are radiosensitive to DNA damage. The function of Snai2 in response to DNA damage seems to be critical for its function in normal development and cancer. Here, we applied a functional genomics approach that combined gene-expression profiling and computational molecular network analysis to obtain global dissection of the Snai2-dependent transcriptional response to DNA damage in primary mouse embryonic fibroblasts (MEFs), which undergo p53-dependent growth arrest in respon...

  5. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    OpenAIRE

    2007-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune...

  6. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Antony M.; Odell, Adam F. [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, Univer