WorldWideScience

Sample records for cellular adaptive immune

  1. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong (Yale); (VA); (UCSD)

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  2. Cellular adaptive immune response against porcine circovirus type 2 in subclinically infected pigs

    Directory of Open Access Journals (Sweden)

    Gerber Heidi

    2009-12-01

    Full Text Available Abstract Background Porcine circovirus type 2 (PCV2 is a dominant causative agent of postweaning multisystemic wasting syndrome (PMWS, a multifactorial disease complex with putative immunosuppressive characteristics. Little is known about adaptive PCV2-specific immune responses in infected pigs. Therefore, the T and B cell responses following PCV2 infection in 3-week old SPF piglets infected with PCV2 or PCV2 plus porcine parvovirus (PPV were studied. Results All animals were asymptomatically infected. At 7 days post infection (d p.i., B lymphocyte and T lymphocyte numbers decreased in the dual infected, but not in the single infected piglets. At this time point a transient PCV2 viraemia was noted in the PCV2 infected groups. Antibodies against the infecting virus were detectable at day 24-28 p.i. for anti-PCV2 antibodies and at day 10 p.i. for anti-PPV antibodies, with no apparent influence of PCV2 on the early PPV antibody development. In the animals infected with PPV alone, IFN-γ secreting cells (SC that were not specific for PCV2 were detected by ELISPOT assay at day 7 p.i. Interestingly, this response was absent in the PCV2/PPV dual infected animals. PCV2-specific IFN-γ SC were observed in the PCV2/PPV infected group at 7 d p.i. and in the PCV2 single infected group at 21 d p.i. A reduction in the numbers of IFN-γ SC was observed following anti-CD4 and anti-CD8 antibody treatment, suggesting roles for both CD4+ and CD8+ T cells in the response against PCV2 infection. This was supported by an observed increase in the percentage of IFN-γ positive CD8hi cytotoxic T cells as well as IFN-γ positive CD8-/low helper T cells after PCV2 in vitro re-stimulation. Conclusions Infection of weaned SPF piglets with PCV2 alone or combined with PPV does not induce disease and in both cases a relatively slow anti-PCV2 antibody response and weak T lymphocyte responses were found. Knowledge on such immunological characteristics is important for both PCV2

  3. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity. PMID:21395512

  4. The origins of vertebrate adaptive immunity

    OpenAIRE

    Litman, Gary W.; Rast, Jonathan P.; Fugmann, Sebastian D.

    2010-01-01

    Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been considered to occur by acquisition of novel molecular capabilities, a...

  5. Adaptive stochastic cellular automata: Applications

    Science.gov (United States)

    Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.

    1990-09-01

    The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.

  6. Immune cellular response to HPV: current concepts

    Directory of Open Access Journals (Sweden)

    Maria Alice Guimarães Gonçalves

    2004-02-01

    Full Text Available Although cellular immunity is essential for the elimination of human papillomavirus (HPV, the mechanisms involved are still poorly understood. We summarize the main mechanisms involved in cellular immune response to infections caused by HPV. Immunotherapies for HPV-related cancers require the disruption of T-cell response control mechanisms, associated with the stimulation of the Th1 cytokine response.

  7. Immunometabolism: Cellular Metabolism Turns Immune Regulator.

    Science.gov (United States)

    Loftus, Róisín M; Finlay, David K

    2016-01-01

    Immune cells are highly dynamic in terms of their growth, proliferation, and effector functions as they respond to immunological challenges. Different immune cells can adopt distinct metabolic configurations that allow the cell to balance its requirements for energy, molecular biosynthesis, and longevity. However, in addition to facilitating immune cell responses, it is now becoming clear that cellular metabolism has direct roles in regulating immune cell function. This review article describes the distinct metabolic signatures of key immune cells, explains how these metabolic setups facilitate immune function, and discusses the emerging evidence that intracellular metabolism has an integral role in controlling immune responses. PMID:26534957

  8. The origins of vertebrate adaptive immunity.

    Science.gov (United States)

    Litman, Gary W; Rast, Jonathan P; Fugmann, Sebastian D

    2010-08-01

    Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been thought to occur by the acquisition of novel molecular capabilities, an increasing amount of information from new model systems suggest that co-option and redirection of pre-existing systems are the main source of innovation. We combine evidence from a wide range of organisms to obtain an integrated view of the origins and patterns of divergence in adaptive immunity. PMID:20651744

  9. Brucella evasion of adaptive immunity.

    Science.gov (United States)

    Martirosyan, Anna; Gorvel, Jean-Pierre

    2013-02-01

    The complex immune system of mammals is the result of evolutionary forces that include battles against pathogens, as sensing and defeating intruders is a prerequisite to host survival. On the other hand, microorganisms have evolved multiple mechanisms to evade both arms of immunity: the innate and the adaptive immune systems. The successful pathogenic intracellular bacterium Brucella is not an exception to the rule: Brucella displays mechanisms that allow evasion of immune surveillance in order to establish persistent infections in mammals. In this review, we highlight some key mechanisms that pathogenic Brucella use to evade the adaptive immune system. PMID:23374122

  10. Cellular immune findings in Lyme disease.

    OpenAIRE

    Sigal, L. H.; Moffat, C. M.; Steere, A. C.; Dwyer, J. M.

    1984-01-01

    From 1981 through 1983, we did the first testing of cellular immunity in Lyme disease. Active established Lyme disease was often associated with lymphopenia, less spontaneous suppressor cell activity than normal, and a heightened response of lymphocytes to phytohemagglutinin and Lyme spirochetal antigens. Thus, a major feature of the immune response during active disease seems to be a lessening of suppression, but it is not yet known whether this response plays a role in the pathophysiology o...

  11. Alternative adaptive immunity in invertebrates

    DEFF Research Database (Denmark)

    Kurtz, Joachim; Armitage, Sophie Alice Octavia

    2006-01-01

    Vertebrate adaptive immunity is characterized by challenge-specific long-term protection. This specific memory is achieved through the vast diversity of somatically rearranged immunological receptors such as antibodies. Whether or not invertebrates are capable of a comparable phenotypic plasticit...... and memory has long been a matter of debate. A recent study on Anopheles gambiae mosquitoes now establishes Down syndrome cell adhesion molecule (Dscam) as a key immune surveillance factor with characteristics analogous to antibodies....

  12. Effect of cellular mobility on immune response

    Science.gov (United States)

    Pandey, R. B.; Mannion, R.; Ruskin, H. J.

    2000-08-01

    Mobility of cell types in our HIV immune response model is subject to an intrinsic mobility and an explicit directed mobility, which is governed by Pmob. We investigate how restricting the explicit mobility, while maintaining the innate mobility of a viral-infected cell, affects the model's results. We find that increasing the explicit mobility of the immune system cells leads to viral dominance for certain levels of viral mutation. We conclude that increasing immune system cellular mobility indirectly increases the virus’ inherent mobility.

  13. Phagocytosis, a cellular immune response in insects

    Directory of Open Access Journals (Sweden)

    C Rosales

    2011-06-01

    Full Text Available Insects like many other organisms are exposed to a wide range of infectious agents. Defense against these agents is provided by innate immune systems, which include physical barriers, humoral responses, and cellular responses. The humoral responses are characterized by the production of antimicrobial peptides, while the cellular defense responses include nodulation, encapsulation, melanization and phagocytosis. The phagocytic process, whereby cells ingest large particles, is of fundamental importance for insects’ development and survival. Phagocytic cells recognize foreign particles through a series of receptors on their cell membrane for pathogen-associated molecules. These receptors in turn initiate a series of signaling pathways that instruct the cell to ingest and eventually destroy the foreign particle. This review describes insect innate humoral and cellular immune functions with emphasis on phagocytosis. Recent advances in our understanding of the phagocytic cell types in various insect species; the receptors involved and the signaling pathways activated during phagocytosis are discussed.

  14. Humoral and cellular factors of maternal immunity in swine.

    Science.gov (United States)

    Salmon, Henri; Berri, Mustapha; Gerdts, Volker; Meurens, François

    2009-03-01

    Immunoglobulins cannot cross the placenta in pregnant sows. Neonatal pigs are therefore agammaglobulinemic at birth and, although immunocompetent, they cannot mount rapid immune responses at systemic and mucosal sites. Their survival depends directly on the acquisition of maternal immunity via colostrum and milk. Protection by maternal immunity is mediated by a number of factors, including specific systemic humoral immunity, involving mostly maternal IgG transferred from blood to colostrum and typically absorbed within the first 36 h of life. Passive mucosal immunity involves local humoral immunity, including the production of secretory IgA (sIgA), which is transferred principally via milk until weaning. The mammary gland (MG) produces sIgA, which is, then secreted into the milk via the poly-Ig receptor (pIgR) of epithelial cells. These antibodies are produced in response to intestinal and respiratory antigens, including pathogens and commensal organisms. Protection is also mediated by cellular immunity, which is transferred via maternal cells present in mammary secretions. The mechanisms underlying the various immunological links between MG and the mucosal surfaces involve hormonally regulated addressins and chemokines specific to these compartments. The enhancement of colostrogenic immunity depends on the stimulation of systemic immunity, whereas the enhancement of lactogenic immunity depends on appropriate stimulation at induction sites, an increase in cell trafficking from the gut and upper respiratory tract to the MG and, possibly, enhanced immunoglobulin production at the effector site and secretion in milk. In addition, mammary secretions provide factors other than immunoglobulins that protect the neonate and regulate the development of mucosal immunity--a key element of postnatal adaptation to environmental antigens. PMID:18761034

  15. Impaired nonspecific cellular immunity in experimental cholestasis.

    Science.gov (United States)

    Roughneen, P T; Drath, D B; Kulkarni, A D; Rowlands, B J

    1987-11-01

    The abilities of polymorphonuclear leukocytes (PMN) and pulmonary alveolar macrophages (PAM), to demonstrate chemotaxis, phagocytosis, and superoxide release after bile duct ligation in the rat were investigated to determine the effect of cholestasis on nonspecific cellular immune mechanisms. Chemotactic response to C5a and FMLP, phagocytosis of 14C labeled Staphylococcus aureus, and zymosan-induced superoxide release were evaluated 21 days after bile duct ligation (BDL), sham operation, or in normal controls. Serum total bilirubin level was elevated after BDL (p less than 0.01). Chemotactic ability was similar to each group. PMN phagocytic uptake of 14C labeled Staphylococcus aureus was depressed in BDL (p less than 0.05). BDL rats exhibited impaired PAM phagocytic indices and improved PMN superoxide release (p less than 0.03). PAM superoxide release was similar in each study group. Alterations in phagocytic function with cholestasis are important deficits in nonspecific cellular immunity that may contribute to the high incidence of infective complications associated with obstructive jaundice. PMID:2823730

  16. Blurring Borders: Innate Immunity with Adaptive Features

    Directory of Open Access Journals (Sweden)

    K. Kvell

    2007-01-01

    Full Text Available Adaptive immunity has often been considered the penultimate of immune capacities. That system is now being deconstructed to encompass less stringent rules that govern its initiation, actual effector activity, and ambivalent results. Expanding the repertoire of innate immunity found in all invertebrates has greatly facilitated the relaxation of convictions concerning what actually constitutes innate and adaptive immunity. Two animal models, incidentally not on the line of chordate evolution (C. elegans and Drosophila, have contributed enormously to defining homology. The characteristics of specificity and memory and whether the antigen is pathogenic or nonpathogenic reveal considerable information on homology, thus deconstructing the more fundamentalist view. Senescence, cancer, and immunosuppression often associated with mammals that possess both innate and adaptive immunity also exist in invertebrates that only possess innate immunity. Strict definitions become blurred casting skepticism on the utility of creating rigid definitions of what innate and adaptive immunity are without considering overlaps.

  17. Epigenetics and the Adaptive Immune Response

    OpenAIRE

    Kondilis-Mangum, Hrisavgi D.; Wade, Paul A.

    2012-01-01

    Cells of the adaptive immune response undergo dynamic epigenetic changes as they develop and respond to immune challenge. Plasticity is a necessary prerequisite for the chromosomal dynamics of lineage specification, development, and the immune effector function of the mature cell types. The alterations in DNA methylation and histone modification that characterize activation may be integral to the generation of immunologic memory, thereby providing an advantage on secondary exposure to pathoge...

  18. Adaptive Immune Evolutionary Algorithms Based on Immune Network Regulatory Mechanism

    Institute of Scientific and Technical Information of China (English)

    HE Hong; QIAN Feng

    2007-01-01

    Based on immune network regulatory mechanism, a new adaptive immune evolutionary algorithm (AIEA) is proposed to improve the performance of genetic algorithms (GA) in this paper. AIEA adopts novel selection operation according to the stimulation level of each antibody. A memory base for good antibodies is devised simultaneously to raise the convergent rapidity of the algorithm and adaptive adjusting strategy of antibody population is used for preventing the loss of the population adversity. The experiments show AIFA has better convergence performance than standard genetic algorithm and is capable of maintaining the adversity of the population and solving function optimization problems in an efficient and reliable way.

  19. Proteasome function shapes innate and adaptive immune responses.

    Science.gov (United States)

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  20. Aging of the Immune System: How Much Can the Adaptive Immune System Adapt?

    OpenAIRE

    Weng, Nan-ping

    2006-01-01

    The competency of the adaptive immune function decreases with age, primarily because of the decline in production of naïve lymphocytes in the bone marrow and thymus as well as the expansion of incompetent memory lymphocytes. Here I discuss the recent progress on age-associated changes in lymphocytes and their effect on the adaptive immune system.

  1. CRISPR adaptive immune systems of Archaea

    OpenAIRE

    Vestergaard, Gisle; Garrett, Roger A.; Shah, Shiraz A.

    2014-01-01

    CRISPR adaptive immune systems were analyzed for all available completed genomes of archaea, which included representatives of each of the main archaeal phyla. Initially, all proteins encoded within, and proximal to, CRISPR-cas loci were clustered and analyzed using a profile–profile approach. Then cas genes were assigned to gene cassettes and to functional modules for adaptation and interference. CRISPR systems were then classified primarily on the basis of their concatenated Cas protein seq...

  2. Modeling evolution and immune system by cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Bezzi, M. [Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy); Istituto Nazionale di Fisica della Materia, Florence (Italy)

    2001-07-01

    In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section.

  3. Modeling evolution and immune system by cellular automata

    International Nuclear Information System (INIS)

    In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section

  4. Polyomavirus specific cellular immunity: from BK-virus-specific cellular immunity to BK-virus-associated nephropathy ?

    Directory of Open Access Journals (Sweden)

    manon edekeyser

    2015-06-01

    Full Text Available In renal transplantation, BK-virus-associated nephropathy has emerged as a major complication, with a prevalence of 5–10% and graft loss in >50% of cases. BK-virus is a member of the Polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression, which suggests a critical role for virus-specific cellular immunity to control virus replication and prevent chronic disease. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BK-virus specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BK-virus-associated nephropathy.

  5. The aging of the adaptive immune system

    OpenAIRE

    Grubeck-Loebenstein, B.; Weinberger, B.; Herndler-Brandstetter, D.; Weiskopf, D.; Pfister, G.

    2011-01-01

    Adaptive immune responses are severely affected by the aging process as reflected by an increased morbidity and mortality from infectious diseases and a low efficacy of vaccination in elderly persons. Age-related changes within the bone marrow and thymus lead to an impaired generation of new T and B cells severely compromising the maintenance of a diverse and balanced T and B cell repertoire in old age. The maintenance of a balanced T cell repertoire is further challenged by latent persistent...

  6. Morphological and Cellular Features of Innate Immune Reaction in Helicobacter pylori Gastritis: A Brief Review.

    Science.gov (United States)

    Ieni, Antonio; Barresi, Valeria; Rigoli, Luciana; Fedele, Francesco; Tuccari, Giovanni; Caruso, Rosario Alberto

    2016-01-01

    Innate and adaptive immunity are both involved in acute and chronic inflammatory processes. The main cellular players in the innate immune system are macrophages, mast cells, dendritic cells, neutrophils, eosinophils, and natural killer (NK), which offer antigen-independent defense against infection. Helicobacter pylori (H. pylori) infection presents peculiar characteristics in gastric mucosa infrequently occurring in other organs; its gastric colonization determines a causal role in both gastric carcinomas and mucosa-associated lymphoid tissue lymphoma. In contrast, an active role for Epstein-Barr virus (EBV) has been identified only in 9% of gastric carcinomas. The aim of the present review is to discuss the role of cellular morphological effectors in innate immunity during H. pylori infection and gastric carcinogenesis. PMID:26784180

  7. Morphological and Cellular Features of Innate Immune Reaction in Helicobacter pylori Gastritis: A Brief Review

    Directory of Open Access Journals (Sweden)

    Antonio Ieni

    2016-01-01

    Full Text Available Innate and adaptive immunity are both involved in acute and chronic inflammatory processes. The main cellular players in the innate immune system are macrophages, mast cells, dendritic cells, neutrophils, eosinophils, and natural killer (NK, which offer antigen-independent defense against infection. Helicobacter pylori (H. pylori infection presents peculiar characteristics in gastric mucosa infrequently occurring in other organs; its gastric colonization determines a causal role in both gastric carcinomas and mucosa-associated lymphoid tissue lymphoma. In contrast, an active role for Epstein-Barr virus (EBV has been identified only in 9% of gastric carcinomas. The aim of the present review is to discuss the role of cellular morphological effectors in innate immunity during H. pylori infection and gastric carcinogenesis.

  8. Cellular immune activity biomarker neopterin is associated hyperlipidemia

    DEFF Research Database (Denmark)

    Chuang, Shu-Chun; Boeing, Heiner; Vollset, Stein Emil; Midttun, Øivind; Ueland, Per Magne; Bueno-de-Mesquita, Bas; Lajous, Martin; Fagherazzi, Guy; Boutron-Ruault, Marie-Christine; Kaaks, Rudolf; Küehn, Tilman; Pischon, Tobias; Drogan, Dagmar; Tjønneland, Anne; Overvad, Kim; Quirós, J Ramón; Agudo, Antonio; Molina-Montes, Esther; Dorronsoro, Miren; Huerta, José María; Barricarte, Aurelio; Khaw, Kay-Tee; Wareham, Nicholas J; Travis, Ruth C; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Masala, Giovanna; Agnoli, Claudia; Tumino, Rosario; Mattiello, Amalia; Peeters, Petra H; Weiderpass, Elisabete; Palmqvist, Richard; Ljuslinder, Ingrid; Gunter, Marc; Lu, Yunxia; Cross, Amanda J; Riboli, Elio; Vineis, Paolo; Aleksandrova, Krasimira

    2016-01-01

    BACKGROUND: Increased serum neopterin had been described in older age two decades ago. Neopterin is a biomarker of systemic adaptive immune activation that could be potentially implicated in metabolic syndrome (MetS). Measurements of waist circumference, triglycerides, high-density lipoprotein...

  9. TRAFFIC FLOW MODEL BASED ON CELLULAR AUTOMATION WITH ADAPTIVE DECELERATION

    OpenAIRE

    Shinkarev, A. A.

    2016-01-01

    This paper describes continuation of the authors’ work in the field of traffic flow mathematical models based on the cellular automata theory. The refactored representation of the multifactorial traffic flow model based on the cellular automata theory is used for a representation of an adaptive deceleration step implementation. The adaptive deceleration step in the case of a leader deceleration allows slowing down smoothly but not instantly. Concepts of the number of time steps without confli...

  10. Hormesis and adaptive cellular control systems

    Science.gov (United States)

    Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...

  11. Chronic infection and the origin of adaptive immune system

    OpenAIRE

    Usharauli, David

    2010-01-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario ...

  12. Role of Cellular Immunity in Cow’s Milk Allergy: Pathogenesis, Tolerance Induction, and Beyond

    Directory of Open Access Journals (Sweden)

    Juandy Jo

    2014-01-01

    Full Text Available Food allergy is an aberrant immune-mediated reaction against harmless food substances, such as cow’s milk proteins. Due to its very early introduction, cow’s milk allergy is one of the earliest and most common food allergies. For this reason cow’s milk allergy can be recognized as one of the first indications of an aberrant inflammatory response in early life. Classically, cow’s milk allergy, as is true for most other allergies as well, is primarily associated with abnormal humoral immune responses, that is, elevation of specific immunoglobulin E levels. There is growing evidence indicating that cellular components of both innate and adaptive immunity play significant roles during the pathogenesis of cow’s milk allergy. This is true for the initiation of the allergic phenotype (stimulation and skewing towards sensitization, development and outgrowth of the allergic disease. This review discusses findings pertaining to roles of cellular immunity in allergic inflammation, and tolerance induction against cow’s milk proteins. In addition, a possible interaction between immune mechanisms underlying cow’s milk allergy and other types of inflammation (infections and noncommunicable diseases is discussed.

  13. Adaptive immune responses of legumin nanoparticles.

    Science.gov (United States)

    Mirshahi, T; Irache, J M; Nicolas, C; Mirshahi, M; Faure, J P; Gueguen, J; Hecquet, C; Orecchioni, A M

    2002-12-01

    Legumin is one of the main storage proteins in the pea seeds (Pisum sativum L.) and the molecules of this protein have the capacity of binding together to form nanoparticles after aggregation and chemical cross-linkage with glutaraldehyde. The aim of this work was to study the adaptive immune response of legumin nanoparticles in rats. Following intradermal immunisation with the native protein legumin and legumin nanoparticles of about 250 nm, the humoral and cell-mediated immune responses were analysed in rats. The humoral responses against legumin and legumin nanoparticles were examined by western blot and ELISA analysis. Both techniques clearly showed that sera from rats immunised with legumin strongly expressed antibodies against this protein. On the contrary, serum samples from rats inoculated with legumin nanoparticles did not contain detectable amounts of antibodies. These results may be explained by a reduction on the antigenic epitopes of the protein induced by the glutaraldehyde used during the cross-linking step. Concerning the cell-mediated response, neither legumin nor legumin nanoparticles stimulated an immunogenic response. This absence of response of spleen lymphocytes for legumin and legumin nanoparticles may be explained by a cytostatic effect of legumin which was corroborated by the evaluation of the middle phase of cell apoptose. In fact, both legumin and legumin nanoparticles are potent inductors of a cytostatic phenomenon and showed a significant increase of the chromatin condensation (p < 0.05) as compared with control. PMID:12683667

  14. Innate Cellular Immune Responses in Aedes caspius (Diptera: Culicidae) Mosquitoes.

    Science.gov (United States)

    Soliman, D E; Farid, H A; Hammad, R E; Gad, A M; Bartholomay, L C

    2016-03-01

    Mosquitoes transmit a variety of pathogens that have devastating consequences for global public and veterinary health. Despite their capacity to serve as vectors, these insects have a robust capacity to respond to invading organisms with strong cellular and humoral immune responses. In Egypt, Aedes caspius (Pallas, 1771) has been suspected to act as a bridge vector of Rift Valley Fever virus between animals and humans. Microscopic analysis of Ae. caspius hemolymph revealed the presence of phagocytic cells called granulocytes. We further evaluated cellular immune responses produced by Ae. caspius as a result of exposure to a Gram-negative, and Gram-positive bacterium, and to latex beads. After challenge, a rapid and strong phagocytic response against either a natural or synthetic invader was evident. Hemocyte integrity in bacteria-inoculated mosquitoes was not morphologically affected. The number of circulating granulocytes decreased with age, reducing the overall phagocytic capacity of mosquitoes over time. The magnitude and speed of the phagocytic response suggested that granulocytes act as an important force in the battle against foreign invaders, as has been characterized in other important mosquito vector species. PMID:26792848

  15. Theoretical implications of cellular immune reactions against helper lymphocytes infected by an immune system retrovirus.

    Science.gov (United States)

    Reibnegger, G; Fuchs, D; Hausen, A; Werner, E R; Dierich, M P; Wachter, H

    1987-01-01

    The breakdown of the immune system induced by the human immunodeficiency virus might be due to the active immune destruction of human immunodeficiency virus-infected helper T lymphocytes expressing viral antigens. By numerical simulation, we have studied possible consequences that a hypothetical immunodeficiency virus (IDV) may have on the cellular immune response by using a mathematical model. In this model, IDV infects CD4+ (helper) T cells and is actively synthesized by the immunologically activated helper T cells. Infected helper T cells synthesizing IDV express antigenic determinants specific for IDV and trigger a cellular immune response against themselves that is mediated by cytotoxic T cells and cytotoxic macrophages. The dynamic evolution of the model in the case of mixed-type infections with IDV and with another pathogen that evokes a cell-mediated immune response shows strong interactions between both simultaneous infections. The model might be of value to elucidate the dynamics leading to opportunistic infections. Furthermore, a pivotal role for immunological stimulation in the progressive exacerbation of the disease can be demonstrated. PMID:2959958

  16. Toll-like receptors: cellular signal transducers for exogenous molecular patterns causing immune responses.

    Science.gov (United States)

    Kirschning, C J; Bauer, S

    2001-09-01

    Innate immunity initiates protection of the host organism against invasion and subsequent multiplication of microbes by specific recognition. Germ line-encoded receptors have been identified for microbial products such as mannan, lipopeptide, peptidoglycan (PGN), lipoteichoic acid (LTA), lipopolysaccharide (LPS), and CpG-DNA. The Drosophila Toll protein has been shown to be involved in innate immune response of the adult fruitfly. Members of the family of Toll-like receptors (TLRs) in vertebrates have been implicated as pattern recognition receptors (PRRs). Ten TLRs are known and six of these have been demonstrated to mediate cellular activation by distinct microbial products. TLR4 has been implicated as activator of adaptive immunity, and analysis of systemic LPS responses in mice led to the identification of LPS-resistant strains instrumental in its identification as a transmembrane LPS signal transducer. Structural similarities between TLRs and receptor molecules involved in immune responses such as CD14 and the IL-1 receptors (IL-1Rs), as well as functional analysis qualified TLR2 as candidate receptor for LPS and other microbial products. Targeted disruption of the TLR9 gene in mice led to identification of TLR9 as CpG-DNA signal transducer. Involvement of TLR5 in cell activation by bacterial flagellin has been demonstrated. Further understanding of recognition and cellular signaling activated through the ancient host defense system represented by Toll will eventually lead to means for its therapeutic modulation. PMID:11680785

  17. Regulation of the adaptive immune system by innate lymphoid cells

    OpenAIRE

    Hepworth, Matthew R.; Sonnenberg, Gregory F.

    2014-01-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that promote rapid cytokine-dependent innate immunity, inflammation and tissue repair. In addition, a growing body of evidence suggests ILCs can influence adaptive immune cell responses. During fetal development a subset of ILCs orchestrate the generation and maturation of secondary lymphoid tissues. Following birth, ILCs continue to modulate adaptive immune cell responses indirectly through interactions with stromal cells in lymphoid ti...

  18. Interferon-γ: biological function and application for study of cellular immune response

    Directory of Open Access Journals (Sweden)

    A. A. Lutckii

    2015-01-01

    Full Text Available Cellular immune response plays a central role in control of intracellular pathogens like viruses, some bacteria and parasites. Evaluation of presence, specificity and strength of cellular immune response can be done by investigation of reaction of immune cells to specific stimulus, like antigen. The major cellular reactions to antigen stimulation are production of cytokines, proliferation and cytotoxicity. This review is focused on interferon-gamma as one of the central Th1 cytokines: its biology, immunological role and application as marker of cellular immune response.

  19. Scale-free dynamics of somatic adaptability in immune system

    CERN Document Server

    Saito, Shiro

    2009-01-01

    The long-time dynamics of somatic adaptability in immune system is simulated by a simple physical model. The immune system described by the model exhibits a scale free behavior as is observed in living systems. The balance between the positive and negative feedbacks of the model leads to a robust immune system where the positive one corresponds to the formation of memory cells and the negative one to immunosuppression. Also the immunosenescence of the system is discussed based on the time-dependence of the epigenetic landscape of the adaptive immune cells in the shape space.

  20. Diversity of immune strategies explained by adaptation to pathogen statistics.

    Science.gov (United States)

    Mayer, Andreas; Mora, Thierry; Rivoire, Olivier; Walczak, Aleksandra M

    2016-08-01

    Biological organisms have evolved a wide range of immune mechanisms to defend themselves against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired, processed, and passed on to subsequent generations-differences that may be essential to long-term survival. Here, we introduce a mathematical framework to compare the long-term adaptation of populations as a function of the pathogen dynamics that they experience and of the immune strategy that they adopt. We find that the two key determinants of an optimal immune strategy are the frequency and the characteristic timescale of the pathogens. Depending on these two parameters, our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging, and CRISPR-like immunities, which recapitulate the diversity of natural immune systems. PMID:27432970

  1. Innate and adaptive immunity in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Britta Siegmund; Martin Zeitz

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a cross-regulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets.

  2. Innate and adaptive immunity in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    BrittaSiegmund; MartinZeitz

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a crossregulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets.

  3. From Space to the Septic Patient: Assessment of Cellular Immunity in Severely Immune Compromised Conditions

    Science.gov (United States)

    Sudhoff, Lars; Kaufmann, Ines; Feuerecker, Matthias; Crucian, Brian; Sams, Clarence; Mehta, Satish; Pierson, Duane; Schelling, Gustav; Chouker, Alexander

    2016-01-01

    Introduction: Immune dysfunctions and sepsis as a most severe condition immune dysfunction constitute the leading cause for death in critically ill patients and accounts for about as many annual deaths as acute myocardial infarction, making it an eminent health care issue. In progressed phases of sepsis, the cellular immune response is typically markedly dysfunctional. Space and Antarctic analogues of space have revealed states of major immune dysfunction. Due to various contributing stressors, such as physical stress and hypoxia, spaceflight can exerts strong modulatory and even depressive effects on the immune system, entailing a broad panel of studies on the topic. The aim of this study was to analyze the cellular immunity of septic patients in comparison to healthy controls, hereby translating the question from space to the patient and applying the newly developed and evolved DLR/ESA-NASA immune assays to the clinic accordingly. Methods: 76 patients were enrolled for blood withdrawal within 24 hours after the onset of severe sepsis or septic shock, as opposed to eleven healthy controls. Whole blood was stimulated with bacterial antigen mixture (containing diphteria-, tetanus- and pertussis-toxoid), fungal antigen mixture (containing candida-lysate and trichophyton-lysate), pokeweed mitogen (PWM), lipopolysaccharide (LPS), phorbol-myristate-acetate and anti-CD3/CD28, respectively. Subsequent to a 48-hour incubation period, supernatant cytokine concentrations were measured using Luminex xMAP technology (Bioplex). Non-normally distributed data is given as median [interquartile range (IQR)]. Results: In almost all of the multiple read-outs analyzed, marked immune dysfunction was present in the critically ill patient collective (median SAPS II (Simplified Acute Physiology Score): 67). As an exception, IL-10 release was scarcely impaired. Exemplarily, tumor necrosis factor alpha (TNF-alpha) was severely suppressed in the patient group in whole blood stimulated with

  4. SEX DIFFERENCES AND ESTROGEN MODULATION OF THE CELLULAR IMMUNE RESPONSE AFTER INJURY

    OpenAIRE

    Bird, Melanie D.; Karavitis, John; Kovacs, Elizabeth J

    2008-01-01

    Cell-mediated immunity is extremely important for resolution of infection and for proper healing from injury. However, the cellular immune response is dysregulated following injuries such as burn and hemorrhage. Sex hormones are known to regulate immunity, and a well-documented dichotomy exists in the immune response to injury between the sexes. This disparity is caused by differences in immune cell activation, infiltration, and cytokine production during and after injury. Estrogen and testos...

  5. CRISPR-Based Adaptive Immune Systems

    OpenAIRE

    Terns, Michael P.; Terns, Rebecca M.

    2011-01-01

    CRISPR-Cas systems are recently discovered, RNA-based immune systems that control invasions of viruses and plasmids in archaea and bacteria. Prokaryotes with CRISPR-Cas immune systems capture short invader sequences within the CRISPR loci in their genomes, and small RNAs produced from the CRISPR loci (CRISPR (cr)RNAs) guide Cas proteins to recognize and degrade (or otherwise silence) the invading nucleic acids. There are multiple variations of the pathway found among prokaryotes, each mediate...

  6. Phylogeny, longevity and evolution of adaptive immunity

    Czech Academy of Sciences Publication Activity Database

    Vinkler, Michal; Albrecht, Tomáš

    2011-01-01

    Roč. 60, č. 3 (2011), s. 277-282. ISSN 0139-7893 R&D Projects: GA ČR GA206/08/0640; GA ČR GA206/08/1281; GA ČR GAP505/10/1871 Institutional research plan: CEZ:AV0Z60930519 Keywords : acquired immunity * evolutionary immunology * immunological priming * innate immunity * invertebrates Subject RIV: EG - Zoology Impact factor: 0.554, year: 2011

  7. Cadmium and mercury effects on cellular immunity in terrestrial arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Warren, J.E.; Klaine, S.J. [Inst. of Wildlife and Environmental Toxicology, Pendleton, SC (United States). Dept. of Environmental Toxicology

    1995-12-31

    The field cricket, Acheta domesticus, was used as a test organism to determine the effects of heavy metal exposure on cellular immunity. Insects were separated by sex and exposed to cadmium chloride or mercuric chloride at concentrations of 0, 2.5, and 5.0 ug/g. Exposures consisted of injecting the chemicals into the hemocoel of each insect on days 0, 2, and 4. Hemolymph was collected on day 7 of the study to determine total hemocyte counts, protein levels, and phenoloxidase activity in individual insects. Cadmium chloride decreased the total number of hemocytes in male crickets at 2.5 and 5.0 ug/g and in female crickets at 5.0 ug/g. Protein levels increased in a dose dependent manner in the males but only slightly increased in the females. Mercuric chloride caused a dose-dependent increase in total hemocytes in both male and female crickets. In addition, mercuric chloride caused a dose-dependent increase in protein levels in males but not females.

  8. Transition between immune and disease states in a cellular automaton model of clonal immune response

    CERN Document Server

    Bezzi, M; Ruffo, S; Seiden, P E; Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-01-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infectious virus and cytotoxic T lymphocytes (cellular response). The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connect...

  9. Macrophages Subvert Adaptive Immunity to Urinary Tract Infection.

    Directory of Open Access Journals (Sweden)

    Gabriela Mora-Bau

    2015-07-01

    Full Text Available Urinary tract infection (UTI is one of the most common bacterial infections with frequent recurrence being a major medical challenge. Development of effective therapies has been impeded by the lack of knowledge of events leading to adaptive immunity. Here, we establish conclusive evidence that an adaptive immune response is generated during UTI, yet this response does not establish sterilizing immunity. To investigate the underlying deficiency, we delineated the naïve bladder immune cell compartment, identifying resident macrophages as the most populous immune cell. To evaluate their impact on the establishment of adaptive immune responses following infection, we measured bacterial clearance in mice depleted of either circulating monocytes, which give rise to macrophages, or bladder resident macrophages. Surprisingly, mice depleted of resident macrophages, prior to primary infection, exhibited a nearly 2-log reduction in bacterial burden following secondary challenge compared to untreated animals. This increased bacterial clearance, in the context of a challenge infection, was dependent on lymphocytes. Macrophages were the predominant antigen presenting cell to acquire bacteria post-infection and in their absence, bacterial uptake by dendritic cells was increased almost 2-fold. These data suggest that bacterial uptake by tissue macrophages impedes development of adaptive immune responses during UTI, revealing a novel target for enhancing host responses to bacterial infection of the bladder.

  10. INNATE, ADAPTIVE AND INTRINSIC IMMUNITY IN HUMAN IMMUNODEFICIENCY VIRUS INFECTION

    Directory of Open Access Journals (Sweden)

    Suneth S. Perera

    2012-01-01

    Full Text Available The first line of defence of the innate immune system functions by recognizing highly conserved sets of molecular structures specific to the microbes, termed pathogen-associated molecular patterns, or PAMPs via the germ line-encoded receptors Pattern-Recognition Receptors (PRRs. In addition to the innate immune system, the vertebrates have also evolved a second line of defence termed adaptive immune system, which uses a diverse set of somatically rearranged receptors T-Cell Receptors (TCRs and B Cell Receptors (BCRs, which have the inherent ability to effectively recognise diverse antigens. The innate and adaptive immune systems are functionally tied in with the intrinsic immunity, which comprises of endogenous antiviral factors. Thus, this effective response to diverse microbial infections, including HIV, requires a coordinated interaction at several functional levels between innate, adaptive and intrinsic immune systems. This review provides a snapshot of roles played by the innate, adaptive and the intrinsic immune systems during HIV-infection, along with discussing recent developments highlighting the genomic basis of these responses and their regulation by micro-RNA (miRNAs.

  11. Crosstalk between innate and adaptive immunity inhepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic toinfected hepatocytes; the clinical outcome of infectionresults from complicated interactions between the virusand the host immune system. In acute HBV infection,initiation of a broad, vigorous immune response is responsiblefor viral clearance and self-limited inflammatoryliver disease. Effective and coordinated innate andadaptive immune responses are critical for viral clearanceand the development of long-lasting immunity. Chronichepatitis B patients fail to mount efficient innate andadaptive immune responses to the virus. In particular,HBV-specific cytotoxic T cells, which are crucial for HBVclearance, are hyporesponsiveness to HBV infection.Accumulating experimental evidence obtained fromthe development of animal and cell line models hashighlighted the importance of innate immunity in theearly control of HBV spread. The virus has evolvedimmune escape strategies, with higher HBV loads andHBV protein concentrations associated with increasingimpairment of immune function. Therefore, treatmentof HBV infection requires inhibition of HBV replicationand protein expression to restore the suppressedhost immunity. Complicated interactions exist notonly between innate and adaptive responses, but alsoamong innate immune cells and different components ofadaptive responses. Improved insight into these complexinteractions are important in designing new therapeuticstrategies for the treatment HBV infection. In thisreview, we summarize the current knowledge regardingthe cross-talk between the innate and adaptive immuneresponses and among different immunocytes in HBVinfection.

  12. Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    Directory of Open Access Journals (Sweden)

    McTaggart Seanna J

    2012-05-01

    Full Text Available Abstract Background Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. Results In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing in the genes that show the greatest deviation from neutral evolution. Conclusions Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.

  13. Cellular and molecular aspects of plant adaptation to microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator

  14. DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death.

    Science.gov (United States)

    Zhang, Qiuhong; Kang, Rui; Zeh, Herbert J; Lotze, Michael T; Tang, Daolin

    2013-04-01

    Autophagy is a lysosome-mediated catabolic process involving the degradation of intracellular contents (e.g., proteins and organelles) as well as invading microbes (e.g., parasites, bacteria and viruses). Multiple forms of cellular stress can stimulate this pathway, including nutritional imbalances, oxygen deprivation, immunological response, genetic defects, chromosomal anomalies and cytotoxic stress. Damage-associated molecular pattern molecules (DAMPs) are released by stressed cells undergoing autophagy or injury, and act as endogenous danger signals to regulate the subsequent inflammatory and immune response. A complex relationship exists between DAMPs and autophagy in cellular adaption to injury and unscheduled cell death. Since both autophagy and DAMPs are important for pathogenesis of human disease, it is crucial to understand how they interplay to sustain homeostasis in stressful or dangerous environments. PMID:23388380

  15. Natural Products as Tools for Defining How Cellular Metabolism Influences Cellular Immune and Inflammatory Function during Chronic Infection

    Directory of Open Access Journals (Sweden)

    Erica S. Lovelace

    2015-11-01

    Full Text Available Chronic viral infections like those caused by hepatitis C virus (HCV and human immunodeficiency virus (HIV cause disease that establishes an ongoing state of chronic inflammation. While there have been tremendous improvements towards curing HCV with directly acting antiviral agents (DAA and keeping HIV viral loads below detection with antiretroviral therapy (ART, there is still a need to control inflammation in these diseases. Recent studies indicate that many natural products like curcumin, resveratrol and silymarin alter cellular metabolism and signal transduction pathways via enzymes such as adenosine monophosphate kinase (AMPK and mechanistic target of rapamycin (mTOR, and these pathways directly influence cellular inflammatory status (such as NF-κB and immune function. Natural products represent a vast toolkit to dissect and define how cellular metabolism controls cellular immune and inflammatory function.

  16. Use of genetically modified bacteria to modulate adaptive immunity.

    Science.gov (United States)

    Bueno, Susan M; González, Pablo A; Kalergis, Alexis M

    2009-06-01

    Infectious diseases caused by virulent bacteria are a significant cause of morbidity and mortality worldwide, especially in developing countries. However, attenuated strains derived from pathogenic bacteria, such as Salmonella, are highly immunogenic and can be used as vaccines to promote immunity against parental pathogenic bacteria strains. Further, they can be genetically manipulated to either express foreign antigens or deliver exogenous DNA, in order to induce immunity against other pathogens or antigens. Contrarily, specific structural modifications in attenuated Salmonella have allowed the generation of strains that can be well tolerated by the immune system and reduce inflammatory responses. It is thought that those strains could be considered as vectors to promote specific immune tolerance for certain auto-antigens or allergens and reduce unwanted or self-reactive immune responses. In addition, some structural features of Salmonella can contribute to defining the nature and type of polarization of the adaptive immune response induced after immunization, which can be considered as a tool to modulate antigen-specific immunity. In this article we discuss recent advances in the understanding of immune system modulation by molecular components of bacteria and their exploitation for the rational induction of pathogen immunity or antigen-specific tolerance. PMID:19519362

  17. Cellular and molecular aspects of plant adaptation to microgravity

    Science.gov (United States)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator

  18. Functional demonstration of adaptive immunity in zebrafish using DNA vaccination

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja; Rasmussen, Jesper Skou; Kjær, Torben Egil; Vesely, Thomas

    Due to the well characterized genome, overall highly synteny with the human genome and its suitability for functional genomics studies, the zebrafish is considered to be an ideal animal model for basic studies of mechanisms of diseases and immunity in vertebrates including humans. While several...... studies have documented existence of a classical innate immune response, there is mainly indirect evidence of functional adaptive immunity. To address this aspect, groups of zebrafish were vaccinated with DNA-vaccines against the rhabdoviruses VHSV, IHNV and SVCV. Seven weeks later, the fish were...... challenged with SVCV by immersion. Despite some variability between replicate aquaria, there was a protective effect of the homologous vaccine and no effect of the heterologous vaccines. The results therefore confirm the existence of not only a well developed but also a fully functional adaptive immune...

  19. Quantifying adaptive evolution in the Drosophila immune system.

    Directory of Open Access Journals (Sweden)

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  20. Adaptive social immunity in leaf-cutting ants

    OpenAIRE

    Walker, Tom N.; Hughes, William O. H.

    2009-01-01

    Social insects have evolved a suite of sophisticated defences against parasites. In addition to the individual physiological immune response, social insects also express ‘social immunity’ consisting of group-level defences and behaviours that include allogrooming. Here we investigate whether the social immune response of the leaf-cutting ant Acromyrmex echinatior reacts adaptively to the virulent fungal parasite, Metarhizium anisopliae. We ‘immunized’ mini-nests of the ants by exposing them t...

  1. Glucose supplement reverses the fasting-induced suppression of cellular immunity in Mongolian gerbils (Meriones unguiculatus).

    Science.gov (United States)

    Xu, De-Li; Wang, De-Hua

    2011-10-01

    Glucose plays an important role in immunity. Three day fasting will decrease cellular immunity and blood glucose levels in Mongolian gerbils (Meriones unguiculatus). In the present study, we tested the hypothesis that glucose supplement can reverse the fasting-induced suppression in cellular immunity in gerbils. Twenty-eight male gerbils were selected and randomly divided into fed and fasting groups. Half of the gerbils in each group were then provided with either 10% glucose water or pure water. After 66 h, each gerbil was injected with phytohaemagglutinin (PHA) solution to challenge cellular immunity. Results showed that glucose supplement restored blood glucose levels in fasted gerbils to those of the fed controls. It also recovered cellular immunity, body fat mass and serum leptin levels in fasted gerbils to the values of the fed controls. Blood glucose levels were positively correlated with body fat mass, leptin levels and cellular immune responses. Thymus and spleen masses, and white blood cells in fasted gerbils were not affected by glucose supplement. In general, our data demonstrate that glucose supplement could reverse fasting-induced suppression of cellular immunity in Mongolian gerbils. PMID:21885265

  2. Effect of surgery and/or radiotherapy on the cellular immune status in cancer patients

    International Nuclear Information System (INIS)

    Assessment of cellular immune status, as measured by E-rosette forming T-lymphocyctes, was done in 10 healthy controls and 30 cancer patients during and after therapy. Cancer patients were divided into 3 groups treated by different modalities, viz. surgery alone (group I), radio-therapy alone (group II) and combination therapy (group III). Pre-treatment T-lymphocyte number and percentage were significantly lower in cancer patients in comparison to the healthy controls. Group II and III patients revealed progressive impairment of cellular immune status till completion of therapy while in group I patients, the depression of cellular immune response was transient-recovering within one week. Thus, surgery alone produces less marked impairment of cellular immune response- a valuable defence mechanism, than radio-therapy/ combination therapy. (author)

  3. Reduced cellular immune reactivity in healthy individuals during the malaria transmission season

    DEFF Research Database (Denmark)

    Theander, T G; Hviid, L; Abu-Zeid, Y A; Abdulhadi, N H; Saeed, B O; Jakobsen, P H; Reimert, C M; Jepsen, S; Bayoumi, R A; Jensen, J B

    Antigen-induced cellular immune responses are suppressed during acute malaria. The present study engages the possibility that malaria-induced alterations in cellular immune reactivity extend beyond the clinical disease. Thus, lymphoproliferative responses of healthy individuals were diminished...... during the malaria transmission period in individuals living in an area of highly seasonal, unstable malaria transmission. This finding may have important implications for the design of studies of stimulatory properties of antigens using lymphocytes of endemic origin....

  4. Cellular immune response following pre-exposure and postexposure rabies vaccination by intradermal and intramuscular routes

    OpenAIRE

    Venkataswamy, Manjunatha Muniswamappa; Madhusudana, Shampur Narayan; Sanyal, Sampada Sudarshan; Taj, Shaheen; Belludi, Ashwin Yajaman; Mani, Reeta Subramaniam; Hazra, Nandita

    2015-01-01

    Purpose Immunization against rabies in humans induces protective neutralizing antibodies; however, the induction of type 1 or type 2 cytokine mediated cellular immune responses following rabies vaccination is not understood. Hence, the present study investigated cellular cytokine responses in vaccinated individuals. Materials and Methods The study groups included healthy rabies antigen naive controls (n=10), individuals who received intradermal primary (n=10) or booster pre-exposure vaccinati...

  5. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  6. Kicking off adaptive immunity: the discovery of dendritic cells

    OpenAIRE

    Katsnelson, Alla

    2006-01-01

    In 1973, Ralph Steinman and Zanvil Cohn discovered an unusual looking population of cells with an unprecedented ability to activate naive T cells. Dubbed “dendritic cells,” these cells are now known as the primary instigators of adaptive immunity.

  7. Adaptive immunity to rhinoviruses: sex and age matter

    Directory of Open Access Journals (Sweden)

    Pritchard Antonia L

    2010-12-01

    Full Text Available Abstract Background Rhinoviruses (RV are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age. Methods Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old. Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity. Results Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p 0.005. There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men. Conclusions This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.

  8. Nlrp3: an immune sensor of cellular stress and infection

    OpenAIRE

    Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi

    2010-01-01

    Innate immune cells rely on pathogen recognition receptors such as the nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family to mount an appropriate immune response against microbial threats. The NLR protein Nlrp3 senses microbial ligands, endogenous danger signals and crystalline substances in the cytosol to trigger the assembly of a large caspase-1-activating protein complex termed the Nlrp3 inflammasome. Autoproteolytic maturation of caspase-1 zymogens in the Nlrp3...

  9. Monocyte-derived dendritic cells in innate and adaptive immunity.

    Science.gov (United States)

    León, Beatriz; Ardavín, Carlos

    2008-01-01

    Monocytes have been classically considered essential elements in relation with innate immune responses against pathogens, and inflammatory processes caused by external aggressions, infection and autoimmune disease. However, although their potential to differentiate into dendritic cells (DCs) was discovered 14 years ago, their functional relevance with regard to adaptive immune responses has only been uncovered very recently. Studies performed over the last years have revealed that monocyte-derived DCs play an important role in innate and adaptive immunity, due to their microbicidal potential, capacity to stimulate CD4(+) and CD8(+) T-cell responses and ability to regulate Immunoglobulin production by B cells. In addition, monocyte-derived DCs not only constitute a subset of DCs formed at inflammatory foci, as previously thought, but also comprise different subsets of DCs located in antigen capture areas, such as the skin and the intestinal, respiratory and reproductive tracts. PMID:18362945

  10. A cascade reaction network mimicking the basic functional steps of adaptive immune response

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex ‘information-processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  11. Multifaceted interactions between adaptive immunity and the central nervous system.

    Science.gov (United States)

    Kipnis, Jonathan

    2016-08-19

    Neuroimmunologists seek to understand the interactions between the central nervous system (CNS) and the immune system, both under homeostatic conditions and in diseases. Unanswered questions include those relating to the diversity and specificity of the meningeal T cell repertoire; the routes taken by immune cells that patrol the meninges under healthy conditions and invade the parenchyma during pathology; the opposing effects (beneficial or detrimental) of these cells on CNS function; the role of immune cells after CNS injury; and the evolutionary link between the two systems, resulting in their tight interaction and interdependence. This Review summarizes the current standing of and challenging questions related to interactions between adaptive immunity and the CNS and considers the possible directions in which these aspects of neuroimmunology will be heading over the next decade. PMID:27540163

  12. The Adaptive Immune System of Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Lisa-Katharina Maier

    2015-02-01

    Full Text Available To fight off invading genetic elements, prokaryotes have developed an elaborate defence system that is both adaptable and heritable—the CRISPR-Cas system (CRISPR is short for: clustered regularly interspaced short palindromic repeats and Cas: CRISPR associated. Comprised of proteins and multiple small RNAs, this prokaryotic defence system is present in 90% of archaeal and 40% of bacterial species, and enables foreign intruders to be eliminated in a sequence-specific manner. There are three major types (I–III and at least 14 subtypes of this system, with only some of the subtypes having been analysed in detail, and many aspects of the defence reaction remaining to be elucidated. Few archaeal examples have so far been analysed. Here we summarize the characteristics of the CRISPR-Cas system of Haloferax volcanii, an extremely halophilic archaeon originally isolated from the Dead Sea. It carries a single CRISPR-Cas system of type I-B, with a Cascade like complex composed of Cas proteins Cas5, Cas6b and Cas7. Cas6b is essential for CRISPR RNA (crRNA maturation but is otherwise not required for the defence reaction. A systematic search revealed that six protospacer adjacent motif (PAM sequences are recognised by the Haloferax defence system. For successful invader recognition, a non-contiguous seed sequence of 10 base-pairs between the crRNA and the invader is required.

  13. Effect of centchroman on cellular and humoral immunity.

    Science.gov (United States)

    Thomas, Licto; Asad, Mohammad; Hrishikeshavan, Heremaglur Jagannath; Chandrakala, Gowda Kallenahalli

    2007-01-01

    Centchroman (Ormeloxifene) is a nonsteroidal selective estrogen receptor modulator that is used as once a week oral contraceptive agent. The effect of centchroman on the immune system was evaluated by using different experimental models such as carbon clearance test, cyclophosphamide induced neutropenia, neutrophil adhesion test, effect on serum immunoglobulins, mice lethality test and indirect haemagglutination test. The first three models namely carbon clearance test, cyclophosphamide induced neutropenia and neutrophil adhesion test were used to study cell mediated immunity while the latter three models were used to see the effect on humoral immunity. Centchroman was administered orally at a dose of 5 mg/kg and levamisole (2.5 mg/kg/ p.o) was used as standard drug. Centchroman significantly increased the levels of serum immunoglobulins and also prevented the mortality induced by bovine Pasteurella multocida in mice. It also increased significantly the circulating antibody litre in indirect haemagglunation test. However, it did not show any significant effect on phagocytic index in carbon clearance assay and nor did influence the adhesion of neutrophils in the neutrophil adhesion test. Centchroman was also not effective in preventing the cyclophosphamde induced neutropenia. Hence, it was concluded that centchroman increases humoral immunity with no significant effect on cell mediated immunity. PMID:18476393

  14. Cellular networks controlling Th2 polarization in allergy and immunity.

    Science.gov (United States)

    Kool, Mirjam; Hammad, Hamida; Lambrecht, Bart N

    2012-01-01

    In contrast to the development of Th1 (type 1 T helper cells), Th17 and Treg (regulatory T cells), little is known of the mechanisms governing Th2 development, which is important for immunity to helminths and for us to understand the pathogenesis of allergy. A picture is emerging in which mucosal epithelial cells instruct dendritic cells to promote Th2 responses in the absence of IL-12 (interleukin 12) production and provide instruction through thymic stromal lymphopoieitin (TSLP) or granulocyte-macrophage colony stimulating factor (GM-CSF). At the same time, allergens, helminths and chemical adjuvants elicit the response of innate immune cells like basophils, which provide more polarizing cytokines and IL-4 and reinforce Th2 immunity. This unique communication between cells will only be fully appreciated if we study Th2 immunity in vivo and in a tissue-specific context, and can only be fully understood if we compare several models of Th2 immune response induction. PMID:22403589

  15. The cellular composition of the human immune system is shaped by age and cohabitation.

    Science.gov (United States)

    Carr, Edward J; Dooley, James; Garcia-Perez, Josselyn E; Lagou, Vasiliki; Lee, James C; Wouters, Carine; Meyts, Isabelle; Goris, An; Boeckxstaens, Guy; Linterman, Michelle A; Liston, Adrian

    2016-04-01

    Detailed population-level description of the human immune system has recently become achievable. We used a 'systems-level' approach to establish a resource of cellular immune profiles of 670 healthy individuals. We report a high level of interindividual variation, with low longitudinal variation, at the level of cellular subset composition of the immune system. Despite the profound effects of antigen exposure on individual antigen-specific clones, the cellular subset structure proved highly elastic, with transient vaccination-induced changes followed by a return to the individual's unique baseline. Notably, the largest influence on immunological variation identified was cohabitation, with 50% less immunological variation between individuals who share an environment (as parents) than between people in the wider population. These results identify local environmental conditions as a key factor in shaping the human immune system. PMID:26878114

  16. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis. PMID:22962437

  17. 5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Hedi Harizi

    2004-01-01

    Full Text Available 5-lipoxygenase (5-LO pathway is the major source of potent proinflammatory leukotrienes (LTs issued from the metabolism of arachidonic acid (AA, and best known for their roles in the pathogenesis of asthma. These lipid mediators are mainly released from myeloid cells and may act as physiological autocrine and paracrine signalling molecules, and play a central role in regulating the interaction between innate and adaptive immunity. The biological actions of LTs including their immunoregulatory and proinflammatory effects are mediated through extracellular specific G-protein-coupled receptors. Despite their role in inflammatory cells, such as neutrophils and macrophages, LTs may have important effects on dendritic cells (DC-mediated adaptive immunity. Several lines of evidence show that DC not only are important source of LTs, but also become targets of their actions by producing other lipid mediators and proinflammatory molecules. This review focuses on advances in 5-LO pathway biology, the production of LTs from DC and their role on various cells of immune system and in adaptive immunity.

  18. Diverse Roles of Inhibitor of Differentiation 2 in Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Lucille Rankin

    2011-01-01

    Full Text Available The helix-loop-helix (HLH transcription factor inhibitor of DNA binding 2 (Id2 has been implicated as a regulator of hematopoiesis and embryonic development. While its role in early lymphopoiesis has been well characterized, new roles in adaptive immune responses have recently been uncovered opening exciting new directions for investigation. In the innate immune system, Id2 is required for the development of mature natural killer (NK cells, lymphoid tissue-inducer (LTi cells, and the recently identified interleukin (IL-22 secreting nonconventional innate lymphocytes found in the gut. In addition, Id2 has been implicated in the development of specific dendritic cell (DC subsets, decisions determining the formation of αβ and γδ T-cell development, NK T-cell behaviour, and in the maintenance of effector and memory CD8+ T cells in peripheral tissues. Here, we review the current understanding of the role of Id2 in lymphopoiesis and in the development of the adaptive immune response required for maintaining immune homeostasis and immune protection.

  19. Human neutrophil elastase inhibitors in innate and adaptive immunity.

    Science.gov (United States)

    Fitch, P M; Roghanian, A; Howie, S E M; Sallenave, J-M

    2006-04-01

    Recent evidence shows that human neutrophil elastase inhibitors can be synthesized locally at mucosal sites. In addition to efficiently targeting bacterial and host enzymes, they can be released in the interstitium and in the lumen of mucosa, where they have been shown to have antimicrobial activities, and to activate innate immune responses. This review will address more particularly the pleiotropic functions of low-molecular-mass neutrophil elastase inhibitors [SLPI (secretory leucocyte proteinase inhibitor) and elafin] and, more specifically, their role in the development of the adaptive immune response. PMID:16545094

  20. Control of the adaptive immune response by tumor vasculature

    Directory of Open Access Journals (Sweden)

    Laetitia eMauge

    2014-03-01

    Full Text Available The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by abnormal vessel structure and permeability, and by specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intratumoral immune responses and contribute to the development of intratumoral immunosuppression, which is a major mechanism for promoting the development, progression and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of antitumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.

  1. Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

    OpenAIRE

    Ariel D Weinberger; Wolf, Yuri I.; Lobkovsky, Alexander E; Gilmore, Michael S.; Eugene V Koonin

    2012-01-01

    ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunologi...

  2. Was the evolutionary road towards adaptive immunity paved with endothelium?

    OpenAIRE

    van Niekerk, Gustav; Davis, Tanja; Engelbrecht, Anna-Mart

    2015-01-01

    Background The characterization of a completely novel adaptive immune system (AIS) in jawless vertebrates (hagfish and lampreys) presents an excellent opportunity for exploring similarities and differences in design principles. It also highlights a somewhat neglected question: Why did vertebrates, representing only 5 % of all animals, evolve a system as complex as an AIS twice, whereas invertebrates failed to do so? A number of theories have been presented in answer to this question. However,...

  3. Kinetics of the excessive cellular innate immune response after injury

    OpenAIRE

    Hietbrink, F

    2008-01-01

    Organ failure is a severe complication frequently seen in injured patients, with mortality rates of up to 80%. Failure of function of one or more organs after trauma occurs during an early phase (0-3 days) and/or a late phase (>7 days). Neutrophils and monocytes (both leukocytes and important effector cells of the innate immune system) are essential in the pathophysiology of organ failure after trauma. It is thought that early phase organ failure is caused by the excessive activation of the a...

  4. Activation of the reward system boosts innate and adaptive immunity.

    Science.gov (United States)

    Ben-Shaanan, Tamar L; Azulay-Debby, Hilla; Dubovik, Tania; Starosvetsky, Elina; Korin, Ben; Schiller, Maya; Green, Nathaniel L; Admon, Yasmin; Hakim, Fahed; Shen-Orr, Shai S; Rolls, Asya

    2016-08-01

    Positive expectations contribute to the clinical benefits of the placebo effect. Such positive expectations are mediated by the brain's reward system; however, it remains unknown whether and how reward system activation affects the body's physiology and, specifically, immunity. Here we show that activation of the ventral tegmental area (VTA), a key component of the reward system, strengthens immunological host defense. We used 'designer receptors exclusively activated by designer drugs' (DREADDs) to directly activate dopaminergic neurons in the mouse VTA and characterized the subsequent immune response after exposure to bacteria (Escherichia coli), using time-of-flight mass cytometry (CyTOF) and functional assays. We found an increase in innate and adaptive immune responses that were manifested by enhanced antibacterial activity of monocytes and macrophages, reduced in vivo bacterial load and a heightened T cell response in the mouse model of delayed-type hypersensitivity. By chemically ablating the sympathetic nervous system (SNS), we showed that the reward system's effects on immunity are, at least partly, mediated by the SNS. Thus, our findings establish a causal relationship between the activity of the VTA and the immune response to bacterial infection. PMID:27376577

  5. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    Science.gov (United States)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  6. scFv from Antibody That Mimics gp43 Modulates the Cellular and Humoral Immune Responses during Experimental Paracoccidioidomycosis.

    Directory of Open Access Journals (Sweden)

    Grasielle Pereira Jannuzzi

    Full Text Available Paracoccidioidomycosis (PCM, caused by Paracoccidioides species is a prevalent systemic and progressive mycosis that occurs in Latin America. It is caused by Paracoccidioides species. Immunization with dendritic cells transfected with a plasmid encoding the scFv (pMAC/PS-scFv that mimics the main antigen of P. brasiliensis (gp43 confers protection in experimental PCM. DCs link innate and adaptive immunity by recognizing invading pathogens and selecting the type of effector T cell to mediate the immune response. Here, we showed that DC-pMAC/PS-scFv induces the activation of CD4+ and CD8+ T cells. Moreover, our results demonstrated that BALB/c mice infected with P. brasiliensis and treated with DC-pMAC/PS-scFv showed the induction of specific IgG production against gp43 and IFN-γ, IL-12 and IL-4 cytokines. Analysis of regional lymph nodes revealed increases in the expression of clec7a, myd88, tlr2, gata3 and tbx21, which are involved in the immune response. Taken together, our results indicate that the scFv modulates the humoral and cellular immune responses and presents epitopes to CD4+ and CD8+ T cells.

  7. Characterization of humoral and cellular immune responses in patients with human papilloma virus

    International Nuclear Information System (INIS)

    A descriptive and cross-sectional study was carried out in 30 females infected with the human papilloma virus, attended in the office of Immunology of the Specialty Polyclinic belonging to 'Saturnino Lora' Provincial Clinical Surgical Teaching Hospital in Santiago de Cuba, from June 2009 to June 2010, in order to characterize them according to immune response. To evaluate the humoral and cellular immune response rosetting assay and quantification of immunoglobulins were used respectively. Women between 25-36 years of age (40 %) infected with this virus, especially those coming from urban areas, prevailed in the series, and a significant decrease of the cellular response as compared to the humoral response was evidenced

  8. An analysis of the cellular and humoral immune responses of Galleria mellonella larvae

    OpenAIRE

    Browne, Niall

    2015-01-01

    The invertebrate immune system is composed of the intertwined cellular and humoral components which have similar structural and functional attributes to the mammalian innate immune system. For this reason insects have served as useful screening tools in academic and industry research for the assessment of pathogenicity of microorganisms or the antimicrobial efficacy of drugs. Due to the low cost, fast turnover of results and lack of ethical constrictions the insect screening model has been us...

  9. Humoral and Cellular Immune Responses to Yersinia pestis Infection in Long-Term Recovered Plague Patients

    OpenAIRE

    Li, Bei; Du, Chunhong; Zhou, Lei; Bi, Yujing; Wang, Xiaoyi; Wen, Li; Guo, Zhaobiao; Song, Zhizhong; Yang, Ruifu

    2012-01-01

    Plague is one of the most dangerous diseases and is caused by Yersinia pestis. Effective vaccine development requires understanding of immune protective mechanisms against the bacterium in humans. In this study, the humoral and memory cellular immune responses in plague patients (n = 65) recovered from Y. pestis infection during the past 16 years were investigated using a protein microarray and an enzyme-linked immunosorbent spot assay (ELISpot). The seroprevalence to the F1 antigen in all re...

  10. Effect of ionizing radiation on humoral and cellular immunity in pigs vaccinated against Aujeszky's disease

    International Nuclear Information System (INIS)

    An effect of ionizing radiation on the immune response in pigs of both sexes weighing 35 kg vaccinated with an attenuated Aujeszky's disease virus was investigated. Ionizing radiation in a dose of 200 or 400 r reduced the number of IgM and IgG antibodies produced in vaccinated pigs. Additionally, the 400 r dose delyed the cellular immune response. No effect of the radiation on a clinical course of postvaccinal reaction was found

  11. Gestational Zinc Deficiency Impairs Humoral and Cellular Immune Responses to Hepatitis B Vaccination in Offspring Mice

    OpenAIRE

    Ning Zhao; Xuelian Wang; Ying Zhang; Qiuhong Gu; Fen Huang; Wei Zheng; Zhiwei Li

    2013-01-01

    BACKGROUND: Gestational zinc deficiency has been confirmed to impair the infant immune function. However, knowledge about effects of maternal mild zinc deficiency during pregnancy on hepatitis B vaccine responsiveness in offspring is limited. In this report, we aimed to examine how maternal zinc deficiency during pregnancy influences humoral and cellular immune responses to hepatitis B vaccination in offspring of BALB/c mice. METHODOLOGY/PRINCIPAL FINDINGS: From day 1 of pregnancy upon delive...

  12. Modified cellular immune responses in dogs infected with Echinococcus multilocularis.

    Science.gov (United States)

    Kato, Naoko; Nonaka, Nariaki; Oku, Yuzaburo; Kamiya, Masao

    2005-03-01

    Parasite-specific antigen responses and lymphocyte blastogenesis in dogs orally inoculated with Echinococcus multilocuralis metacestodes were examined. Serum IgG1 (Th2-oriented) and IgG2 (Th 1-oriented) levels against somatic and excretory-secretory (ES) antigens of protoscoleces and adult worms increased from 7 days post-infection (DPI), with the highest responses against protoscolex excretory-secretory antigen (PES). Specific blastogenesis of peripheral blood mononuclear cells (PBMC) against the parasite antigens was not observed during the 21-day infection period, but Peyer's patches cells from one out of two dogs at 21 DPI showed blastogenesis against PES (stimulation index: 4.65). Interestingly, only at 7 DPI were concanavalin A (ConA)-induce proliferative responses of PBMC reduced. Moreover, ConA-induced proliferative responses of lymphocytes from various origins were suppressed by the addition of parasite antigens, especially with PES. These data suggest that although both Th1- and Th2-oriented humoral immune responses were observed in E. multilocularis infected dogs, the parasite antigens, especially PES, may have incompletely suppressed lymphocyte responses in these dogs. PMID:15719262

  13. Immune adaptive Gaussian mixture par ticle filter for state estimation

    Institute of Scientific and Technical Information of China (English)

    Wenlong Huang; Xiaodan Wang; Yi Wang; Guohong Li

    2015-01-01

    The particle filter (PF) is a flexible and powerful sequen-tial Monte Carlo (SMC) technique capable of modeling nonlinear, non-Gaussian, and nonstationary dynamical systems. However, the generic PF suffers from particle degeneracy and sample im-poverishment, which greatly affects its performance for nonlinear, non-Gaussian tracking problems. To deal with those issues, an improved PF is proposed. The algorithm consists of a PF that uses an immune adaptive Gaussian mixture model (IAGM) based immune algorithm to re-approximate the posterior density. At the same time, three immune antibody operators are embed in the new filter. Instead of using a resample strategy, the newest obser-vation and conditional likelihood are integrated into those immune antibody operators to update the particles, which can further im-prove the diversity of particles, and drive particles toward their close local maximum of the posterior probability. The improved PF algorithm can produce a closed-form expression for the posterior state distribution. Simulation results show the proposed algorithm can maintain the effectiveness and diversity of particles and avoid sample impoverishment, and its performance is superior to several PFs and Kalman filters.

  14. Policing of gut microbiota by the adaptive immune system.

    Science.gov (United States)

    Dollé, Laurent; Tran, Hao Q; Etienne-Mesmin, Lucie; Chassaing, Benoit

    2016-01-01

    The intestinal microbiota is a large and diverse microbial community that inhabits the intestine, containing about 100 trillion bacteria of 500-1000 distinct species that, collectively, provide benefits to the host. The human gut microbiota composition is determined by a myriad of factors, among them genetic and environmental, including diet and medication. The microbiota contributes to nutrient absorption and maturation of the immune system. As reciprocity, the host immune system plays a central role in shaping the composition and localization of the intestinal microbiota. Secretory immunoglobulins A (sIgAs), component of the adaptive immune system, are important player in the protection of epithelium, and are known to have an important impact on the regulation of microbiota composition. A recent study published in Immunity by Fransen and colleagues aimed to mechanistically decipher the interrelationship between sIgA and microbiota diversity/composition. This commentary will discuss these important new findings, as well as how future therapies can ultimately benefit from such discovery. PMID:26867587

  15. Clearance of low levels of HCV viremia in the absence of a strong adaptive immune response

    Directory of Open Access Journals (Sweden)

    Manns Michael P

    2007-06-01

    Full Text Available Abstract Spontaneous clearance of hepatitis C virus (HCV has frequently been associated with the presence of HCV-specific cellular immunity. However, there had been also reports in chimpanzees demonstrating clearance of HCV-viremia in the absence of significant levels of detectable HCV-specific cellular immune responses. We here report seven asymptomatic acute hepatitis C cases with peak HCV-RNA levels between 300 and 100.000 copies/ml who all cleared HCV-RNA spontaneously. Patients were identified by a systematic screening of 1176 consecutive new incoming offenders in a German young offender institution. Four of the seven patients never developed anti-HCV antibodies and had normal ALT levels throughout follow-up. Transient weak HCV-specific CD4+ T cell responses were detectable in five individuals which did not differ in strength and breadth from age- and sex-matched patients with chronic hepatitis C and long-term recovered patients. In contrast, HCV-specific MHC-class-I-tetramer-positive cells were found in 3 of 4 HLA-A2-positive patients. Thus, these cases highlight that clearance of low levels of HCV viremia is possible in the absence of a strong adaptive immune response which might explain the low seroconversion rate after occupational exposure to HCV.

  16. Dynamics of adaptive immunity against phage in bacterial populations

    CERN Document Server

    Bradde, Serena; Tesileanu, Tiberiu; Balasubramanian, Vijay

    2015-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a "winner-take-all" scenario, leading to a specialized spacer ...

  17. Adaptive scheduling in cellular access, wireless mesh and IP networks

    OpenAIRE

    Nieminen, Johanna

    2011-01-01

    Networking scenarios in the future will be complex and will include fixed networks and hybrid Fourth Generation (4G) networks, consisting of both infrastructure-based and infrastructureless, wireless parts. In such scenarios, adaptive provisioning and management of network resources becomes of critical importance. Adaptive mechanisms are desirable since they enable a self-configurable network that is able to adjust itself to varying traffic and channel conditions. The operation of adaptive me...

  18. Cellular Adaptation Facilitates Sparse and Reliable Coding in Sensory Pathways

    OpenAIRE

    Farkhooi, Farzad; Froese, Anja; Muller, Eilif; Menzel, Randolf; Nawrot, Martin P.

    2013-01-01

    Most neurons in peripheral sensory pathways initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. It is unclear how this phenomenon affects stimulus coding in the later stages of sensory processing. Here, we show that a temporally sparse and reliable stimulus representation develops naturally in sequential stages of a sensory network with adapting neurons. As a modeling framework we employ a mean-field approach together with an adaptive popul...

  19. Differential impact of ageing on cellular and humoral immunity to a persistent murine γ-herpesvirus

    Directory of Open Access Journals (Sweden)

    Burkum Claire E

    2010-02-01

    Full Text Available Abstract Background Oncogenic γ-herpesviruses establish life-long infections in their hosts and control of these latent infections is dependent on continual immune surveillance. Immune function declines with age, raising the possibility that immune control of γ-herpesvirus infection becomes compromised with increasing age, allowing viral reactivation and/or increased latent load, both of which are associated with the development of malignancies. Results In this study, we use the experimental mouse γ-herpesvirus model, γHV68, to investigate viral immunity in aged mice. We found no evidence of viral recrudescence or increased latent load in aged latently-infected mice, suggesting that effective immune control of γ-herpesvirus infection remains intact with ageing. As both cellular and humoral immunity have been implicated in host control of γHV68 latency, we independently examined the impact of ageing on γHV68-specific CD8 T cell function and antibody responses. Virus-specific CD8 T cell numbers and cytolytic function were not profoundly diminished with age. In contrast, whereas ELISA titers of virus-specific IgG were maintained over time, there was a progressive decline in neutralizing activity. In addition, although aged mice were able to control de novo acute infection with only slightly delayed viral clearance, serum titers of neutralizing antibody were reduced in aged mice as compared to young mice. Conclusion Although there is no obvious loss of immune control of latent virus, these data indicate that ageing has differential impacts on anti-viral cellular and humoral immune protection during persistent γHV68 infection. This observation has potential relevance for understanding γ-herpesvirus immune control during disease-associated or therapeutic immunosuppression.

  20. Complement Activation Pathways: A Bridge between Innate and Adaptive Immune Responses in Asthma

    OpenAIRE

    Wills-Karp, Marsha

    2007-01-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, ...

  1. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Berge-Hansen, Linda; Junker, Niels;

    2009-01-01

    BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune toleran...... the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro...

  2. Lentiviral vector encoding ubiquitinated hepatitis B core antigen induces potent cellular immune responses and therapeutic immunity in HBV transgenic mice.

    Science.gov (United States)

    Dai, Shenglan; Zhuo, Meng; Song, Linlin; Chen, Xiaohua; Yu, Yongsheng; Zang, Guoqing; Tang, Zhenghao

    2016-07-01

    Predominant T helper cell type 1 (Th1) immune responses accompanied by boosted HBV-specific cytotoxic T lymphocyte (CTL) activity are essential for the clearance of hepatitis B virus (HBV) in chronic hepatitis B (CHB) patients. Ubiquitin (Ub) serves as a signal for the target protein to be recognized and degraded through the ubiquitin-proteasome system (UPS). Ubiquitinated hepatitis B core antigen (Ub-HBcAg) has been proved to be efficiently degraded into the peptides, which can be presented by major histocompatibility complex (MHC) class I resulting in stimulating cell-mediated responses. In the present study, lentiviral vectors encoding Ub-HBcAg (LV-Ub-HBcAg) were designed and constructed as a therapeutic vaccine for immunotherapy. HBcAg-specific cellular immune responses and anti-viral effects induced by LV-Ub-HBcAg were evaluated in HBV transgenic mice. We demonstrated that immunization with LV-Ub-HBcAg promoted the secretion of cytokines interleukin-2 (IL-2), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), generated remarkably high percentages of IFN-γ-secreting CD8(+) T cells and CD4(+) T cells, and enhanced HBcAg-specific CTL activity in HBV transgenic mice. More importantly, vaccination with LV-Ub-HBcAg could efficiently decreased the levels of serum hepatitis B surface antigen (HBsAg), HBV DNA and the expression of HBsAg and HBcAg in liver tissues of HBV transgenic mice. In addition, LV-Ub-HBcAg could upregulate the expression of T cell-specific T-box transcription factor (T-bet) and downregulate the expression of GATA-binding protein 3 (GATA-3) in spleen T lymphocytes. The therapeutic vaccine LV-Ub-HBcAg could break immune tolerance, and induce potent HBcAg specific cellular immune responses and therapeutic effects in HBV transgenic mice. PMID:26874581

  3. Alterations of Cellular Immune Reactions in Crew Members Overwintering in the Antarctic Research Station Concordia

    Science.gov (United States)

    Crucian, Brian; Feuerecker, Matthias; Moreels, Marjan; Crucian, Brian; Kaufmann, Ines; Salam, Alex Paddy; Rybka, Alex; Ulrike, Thieme; Quintens, Roel; Sams, Clarence F.; Schelling, Gustav; Thiel, Manfred; Baatout, Sarah; Chouker, Alexander

    2012-01-01

    Background: Concordia Station is located inside Antarctica about 1000km from the coast at an altitude of 3200m (Dome C). Hence, individuals living in this harsh environment are exposed to two major conditions: 1.) hypobaric hypoxia and 2.) confinement and extreme isolation. Both hypoxia and confinement can affect human immunity and health, and are likely to be present during exploration class space missions. This study focused on immune alterations measured by a new global immunity test assay, similar to the phased out delayed type hypersensitivity (DTH) skin test. Methods: After informed written consent 14 healthy male subjects were included to the CHOICE-study (Consequences-of-longterm-Confinement-and-Hypobaric-HypOxia-on-Immunity-in-the Antarctic-Concordia-Environment). Data collection occurred during two winter-over periods lasting each one year. During the first campaign 6 healthy male were enrolled followed by a second campaign with 8 healthy males. Blood was drawn monthly and incubated for 48h with various bacterial, viral and fungal antigens followed by an analysis of plasma cytokine levels (TNF-alpha, IL2, IFN-gamma, IL10). As a control, blood was incubated without stimulation ("resting condition"). Goals: The scope of this study was to assess the consequences of hypoxia and confinement on cellular immunity as assessed by a new in vitro DTH-like test. Results: Initial results indicate that under resting conditions the in vitro DTH-like test showed low cytokine levels which remained almost unchanged during the entire observation period. However, cytokine responses to viral, bacterial and fungal antigens were remarkably reduced at the first month after arrival at Concordia when compared to levels measured in Europe prior to departure for Antarctica. With incrementing months of confinement this depressed DTH-like response tended to reverse, and in fact to show an "overshooting" immune reaction after stimulation. Conclusion: The reduced in vitro DTH-like test

  4. In Silico Modeling of the Immune System: Cellular and Molecular Scale Approaches

    Directory of Open Access Journals (Sweden)

    Mariagrazia Belfiore

    2014-01-01

    Full Text Available The revolutions in biotechnology and information technology have produced clinical data, which complement biological data. These data enable detailed descriptions of various healthy and diseased states and responses to therapies. For the investigation of the physiology and pathology of the immune responses, computer and mathematical models have been used in the last decades, enabling the representation of biological processes. In this modeling effort, a major issue is represented by the communication between models that work at cellular and molecular level, that is, multiscale representation. Here we sketch some attempts to model immune system dynamics at both levels.

  5. A Novel Chitosan CpG Nanoparticle Regulates Cellular and Humoral Immunity of Mice

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To develop a safe and novel immunoadjuvant to enhance the immunity and resistance of animals against E.coli infection. Methods An 88-base immunostimulatory oligodeoxynuleotide containing eleven CpG motifs (CpG ODN)was synthesized and amplified by PCR. The chitosan nanoparticle (CNP) was prepared by ion linking method to entrap the CpG ODN that significantly promotes the proliferation of lymphocytes of pig in vitro. Then the CpG- CNP was inoculated into 21-day old Kunming mice, which were orally challenged with virulent K88/K99 E. Coli 35 days after inoculation. Blood was collected from the tail vein of mice on days 0, 7, 14, 21, 28, 35, 42, and 49 after inoculation to detect the changes and content of immunoglobulins, cytokines and immune cells by ELISA, such as IgG, IgA, IgM, IL-2, IL-4, and IL-6. Results The CpG provoked remarkable proliferation of lymphocytes of pig in vitro in comparison with that of control group (P<0.05). The inoculation with CpG-CNP significantly raised the content of IgG, IgM, and IgA in the sera of immunized mice (P<0.05). The levels of IL-2, IL-4, and IL-6 in the mice significantly increased in comparison with those in controls (P<0.05), so was the number of white blood cells and lymphocytes in immunized mice. The humoral and cellular immunities were significantly enhanced in immunized mice, which resisted the infection of E. coli and survived, while the control mice manifested evident symptoms and lesions of infection. Conclusions CpG-CNP can significantly promote cellular and humoral immunity and resistance of mice against E. coli infection, and can be utilized as an effective adjuvant to improve the immunoprotection and resistance of porcine against infectious disease.

  6. Particular Characterisation of an In-Vitro-DTH Test to Monitor Cellular Immunity - Applications for Patient Care and Space Flight

    Science.gov (United States)

    Feurecker, M.; Mayer, W.; Gruber, M.; Muckenthaler, F.; Draenert, R.; Bogner, J.; Kaufmann, I.; Crucian, B.; Rykova, M.; Morukov, B.; Sams, C.; Chouker, A.

    2010-01-01

    Goal:i) Characterization of the role of the main immune reactive cell types contributing to the cellular immune response in the in-vitro DTH and ii) Validation of the in-vitro DTH under different clinical and field conditions. Methods:As positive control whole blood was incubated in the in-vitro DTH, supernatants were gathered after 12, 24 and 48h. Readout parameters of this test are cytokines in the assay's supernatant. To determine the role of T-cells, monocytes and natural killer (NK), these cell populations were depleted using magnetic beads prior to in-vitro-DTH incubation. Validation of the test has occurred under clinical (HIV-patients, ICU) and field-conditions (parabolic/space-flights, confinement). Results:T-cell depletion abandoned almost any IL-2 production and reduced IFN-gamma production irrespective of the type of antigen, whereas CD56 depleted cultures tended to lower IL-2 secretion and IFN-gamma and to parallel a IL-10-increase after viral challenge. This IL-10-increase was seen also in CD14-depleted setups. DTH read-out was significantly different under acute stress (parabolic flight) or chronic stress (ISS), respectively. Preliminary data of HIV infected patients demonstrate that this test can display the contemporary immune status during an antiviral therapy. Conclusion:The in-vitro DTH mirrors adaptive and innate immune activation and may serve as tool also for longitudinal follow up of Th1/Th2 weighed immune response under adverse life conditions on earth and in space. It is planned to implement the assay in the on the ISS (MoCISS).

  7. Achievement of Cellular Immunity and Discordant Xenogeneic Tolerance in Mice by Porcine Thymus Grafts

    Institute of Scientific and Technical Information of China (English)

    YongZhao; ZuyueSun; YiminSun; AlanN.Langnas

    2004-01-01

    Specific cellular immune tolerance may be essential for successful xenotransplantation in humans. Thymectomized (ATX), T and NK ceil-depleted immunocompetent mice grafted with xenogeneic fetal pig thymic and liver tissue (FP THY/LIV) result in efficient mouse thymopoiesis and peripheral repopulation of functional mouse CD4+ T cell.Very importantly, the reconstituted mouse T cells are specifically tolerant to pig donor antigens. Studies demonstrated that porcine MHCs mediated positive and negative selection of mouse thymocytes in FP THY grafts, whereas mouse MHCs were involved in negative selection in grafts. Therefore, T cell tolerance to xenogeneic donor antigens could be induced by grafting donor thymus tissue. Xenogeneic thymic replacement might have a potential role in the reconstitution of cellular immunity in patients with AIDS or other immunodeficiencies caused bv thvmus dvsfunction.

  8. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  9. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase.

    Directory of Open Access Journals (Sweden)

    Rikke Baek Sørensen

    Full Text Available BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. METHODS AND FINDINGS: The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T lymphocytes (CTL from the peripheral blood of cancer patients were cloned and expanded. The functional capacity of the established CTL clones was examined by chrome release assays. The study unveiled spontaneous cytotoxic T-cell reactivity against IDO in peripheral blood as well as in the tumor microenvironment of different cancer patients. We demonstrate that these IDO reactive T cells are indeed peptide specific, cytotoxic effector cells. Hence, IDO reactive T cells are able to recognize and kill tumor cells including directly isolated AML blasts as well as IDO-expressing dendritic cells, i.e. one of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general.

  10. Importance of persistent cellular and humoral immune changes before diabetes develops: prospective study of identical twins.

    OpenAIRE

    Tun, R. Y.; Peakman, M; Alviggi, L; Hussain, M J; Lo, S S; Shattock, M.; Pyke, D. A.; Bottazzo, G F; Vergani, D.; Leslie, R D

    1994-01-01

    OBJECTIVES--To determine the pattern of cellular and humoral immune changes associated with insulin dependent diabetes before diabetes develops. DESIGN--Prospective study over 10 years of 25 non-diabetic identical twins of patients with insulin dependent diabetes. The non-diabetic twins were followed up either till they developed diabetes or to the end of the study. SETTING--Teaching hospital. SUBJECTS--25 non-diabetic identical cotwins of patients with diabetes; 46 controls of the same sex a...

  11. Independence of Measles-Specific Humoral and Cellular Immune Responses to Vaccination

    OpenAIRE

    Jacobson, Robert M.; Ovsyannikova, Inna G.; Vierkant, Robert A.; Pankratz, V. Shane; Poland, Gregory A.

    2012-01-01

    With a larger, independent cohort and more sophisticated measures, we sought to confirm our work that indicated independence of humoral and cellular immunity following measles vaccination. We recruited an age-stratified random cohort of 764 healthy subjects from all socio-economic strata, all with medical-record documentation of two age-appropriate doses of measles-containing vaccine. We quantified measles-specific neutralizing antibody levels and assayed the IFN-γ ELISPOT response to measles...

  12. Trade-off between cellular immunity and life span in mealworm beetles Tenebrio molitor

    OpenAIRE

    Indrikis KRAMS, Janīna DAUKŠTE, Inese KIVLENIECE, Ants KAASIK, Tatjana KRAMA, Todd M. REEBERG, Markus J. RANTALA

    2013-01-01

    Encapsulation is a nonspecific, cellular response through which insects defend themselves against multicellular pathogens. During this immune reaction, haemocytes recognize an object as foreign and cause other haemocytes to aggregate and form a capsule around the object, often consisting of melanized cells. The process of melanisation is accompanied by the formation of potentially toxic reactive oxygen species, which can kill not only pathogens but also host cells. In this study we tested whe...

  13. Influence of Some Pesticides on Humoral and Cellular Immunity of Exposed Workers in Pesticides Industries

    International Nuclear Information System (INIS)

    Pesticide poisoning is a major public health problem in developing countries. In most of these countries organophosphate pesticides constitute the most widely used pesticides. The main toxicity of OPs is neurotoxicity, which is caused by the inhibition of acetylcholinesterase. OPs also affect the immune response, including effects on cellular and humoral immunity. Our study examined the effect of organophosphorus compounds on humoral and cellular immunity of exposed workers in pesticides industries. The study was conducted into 40 subjects. They were 2 groups; 20 exposed workers from Gharbeia and Kafr Elsheikh at 2008 and 2009 and 20 unexposed individuals as a control group at the same period of time. We examined some immune parameters; pseudocholinesterase, WBCs count, CD4%, CD8%, CD4/CD8, CD56%, Interleukin 2, IgG and IgM. Also we take history and clinical examination for them. We reported a highly significant decrease in pseudo cholinesterase level among the exposed group in comparison to the control group, highly significant increase in percentage of CD8 in the exposed group in comparison to control group, highly significant decrease in CD4 / CD8 ratio in the exposed group in comparison to control group, highly significant decrease in percentage of CD56 in the exposed group in comparison to control group and a highly significant increase in IgG level in the exposed group in comparison to control group. On the other hand, we reported no significant change in white blood cells count between the exposed and control groups, no significant change in percentage of CD4 among the exposed and control group, no significant change in Interleukin 2 level among the exposed and control group and no significant change in IgM level among the exposed and control group. We concluded that pesticides extensively affect the humoral and cellular immune system of occupationally exposed workers.

  14. Dynamics of adaptive immunity against phage in bacterial populations

    Science.gov (United States)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  15. Within-host co-evolution of chronic viruses and the adaptive immune system

    Science.gov (United States)

    Nourmohammad, Armita

    We normally think of evolution occurring in a population of organisms, in response to their external environment. Rapid evolution of cellular populations also occurs within our bodies, as the adaptive immune system works to eliminate infection. Some pathogens, such as HIV, are able to persist in a host for extended periods of time, during which they also evolve to evade the immune response. In this talk I will introduce an analytical framework for the rapid co-evolution of B-cell and viral populations, based on the molecular interactions between them. Since the co-evolution of antibodies and viruses is perpetually out of equilibrium, I will show how to quantify the amount of adaptation in each of the two populations by analysis of their co-evolutionary history. I will discuss the consequences of competition between lineages of antibodies, and characterize the fate of a given lineage dependent on the state of the antibody and viral populations. In particular, I will discuss the conditions for emergence of highly potent broadly neutralizing antibodies, which are now recognized as critical for designing an effective vaccine against HIV.

  16. Risk factors that may modify the innate and adaptive immune responses in periodontal diseases.

    Science.gov (United States)

    Knight, Ellie T; Liu, Jenny; Seymour, Gregory J; Faggion, Clovis M; Cullinan, Mary P

    2016-06-01

    Plaque-induced periodontal diseases occur in response to the accumulation of dental plaque. Disease manifestation and progression is determined by the nature of the immune response to the bacterial complexes in plaque. In general, predisposing factors for these periodontal diseases can be defined as those factors which retain or hinder the removal of plaque and, depending upon the nature of the immune response to this plaque, the disease will either remain stable and not progress or it may progress and result in chronic periodontitis. In contrast, modifying factors can be defined as those factors that alter the nature or course of the inflammatory lesion. These factors do not cause the disease but rather modify the chronic inflammatory response, which, in turn, is determined by the nature of the innate and adaptive immune responses and the local cytokine and inflammatory mediator networks. Chronic inflammation is characterized by vascular, cellular and repair responses within the tissues. This paper will focus on how common modifying factors, such as smoking, stress, hormonal changes, diabetes, metabolic syndrome and HIV/AIDS, influence each of these responses, together with treatment implications. As treatment planning in periodontics requires an understanding of the etiology and pathogenesis of the disease, it is important for all modifying factors to be taken into account. For some of these, such as smoking, stress and diabetic control, supportive health behavior advice within the dental setting should be an integral component for overall patient management. PMID:27045429

  17. Cellular immunity and pathogen strategies in combative interactions involving Drosophila hosts and their endoparasitic wasps

    Directory of Open Access Journals (Sweden)

    AJ Nappi

    2010-09-01

    Full Text Available Various cellular innate immune responses protect invertebrates from attack by eukaryotic pathogens. In insects, assessments of the factor(s causing, or contributing to, pathogen mortality have long considered as toxic components certain molecules associated with enzyme-mediated melanogenesis. In Drosophila hosts, observations that have prompted additional or alternative considerations are those that document either the survival of certain endoparasitic wasps despite melanotic encapsulation, or the destruction of the parasite with no evidence of this type of host response. Investigations of the production of some reactive intermediates of oxygen and nitrogen during infection provide a basis for proposing that these molecules constitute important elements of the immune arsenal of Drosophila. Studies of the target specificity of virulence factors injected by female wasps during infection that suppress the host immune response will likely facilitate identification of the toxic host molecules, and contribute to a more detailed understanding of the cell-signaling pathways that regulate their synthesis.

  18. The role of cellular immunity in Influenza H1N1 population dynamics

    Directory of Open Access Journals (Sweden)

    Duvvuri Venkata R

    2012-11-01

    Full Text Available Abstract Background Pre-existing cellular immunity has been recognized as one of the key factors in determining the outcome of influenza infection by reducing the likelihood of clinical disease and mitigates illness. Whether, and to what extent, the effect of this self-protective mechanism can be captured in the population dynamics of an influenza epidemic has not been addressed. Methods We applied previous findings regarding T-cell cross-reactivity between the 2009 pandemic H1N1 strain and seasonal H1N1 strains to investigate the possible changes in the magnitude and peak time of the epidemic. Continuous Monte-Carlo Markov Chain (MCMC model was employed to simulate the role of pre-existing immunity on the dynamical behavior of epidemic peak. Results From the MCMC model simulations, we observed that, as the size of subpopulation with partially effective pre-existing immunity increases, the mean magnitude of the epidemic peak decreases, while the mean time to reach the peak increases. However, the corresponding ranges of these variations are relatively small. Conclusions Our study concludes that the effective role of pre-existing immunity in alleviating disease outcomes (e.g., hospitalization of novel influenza virus remains largely undetectable in population dynamics of an epidemic. The model outcome suggests that rapid clinical investigations on T-cell assays remain crucial for determining the protection level conferred by pre-existing cellular responses in the face of an emerging influenza virus.

  19. Trade-off between cellular immunity and life span in mealworm beetles Tenebrio molitor

    Institute of Scientific and Technical Information of China (English)

    Indrikis KRAMS; Jan(i)na DAUK(S)TE; Inese KIVLENIECE; Ants KAASIK; Tatjana KRAMA; Todd M.FREEBERG; Markus J.RANTALA

    2013-01-01

    Encapsulation is a nonspecific,cellular response through which insects defend themselves against multicellular pathogens.During this immune reaction,haemocytes recognize an object as foreign and cause other haemocytes to aggregate and form a capsule around the object,often consisting of melanized cells.The process of melanisation is accompanied by the formation of potentially toxic reactive oxygen species,which can kill not only pathogens but also host cells.In this study we tested whether the encapsulation response is costly in mealworm beetles Tenebrio molitor.We found a negative relationship between the duration of implantation via a nylon monofilament and remaining life span.We also found a negative relationship between the strength of immune response and remaining life span,suggesting that cellular immunity is costly in T.molitor,and that there is a trade-off between immune response and remaining life span.However,this relationship disappeared at 31-32 hours of implantation at 25 ± 2℃.As the disappearance of a relationship between duration of implantation and lifespan coincided with the highest values of encapsulation response,we concluded that the beetles stopped investment in the production of melanotic cells,as the implant,a synthetic parasite,was fully isolated from the host's tissues.

  20. Trade-off between cellular immunity and life span in mealworm beetles Tenebrio molitor

    Directory of Open Access Journals (Sweden)

    Indrikis KRAMS, Janīna DAUKŠTE, Inese KIVLENIECE, Ants KAASIK, Tatjana KRAMA, Todd M. REEBERG, Markus J. RANTALA

    2013-06-01

    Full Text Available Encapsulation is a nonspecific, cellular response through which insects defend themselves against multicellular pathogens. During this immune reaction, haemocytes recognize an object as foreign and cause other haemocytes to aggregate and form a capsule around the object, often consisting of melanized cells. The process of melanisation is accompanied by the formation of potentially toxic reactive oxygen species, which can kill not only pathogens but also host cells. In this study we tested whether the encapsulation response is costly in mealworm beetles Tenebrio molitor. We found a negative relationship between the duration of implantation via a nylon monofilament and remaining life span. We also found a negative relationship between the strength of immune response and remaining life span, suggesting that cellular immunity is costly in T. molitor, and that there is a trade-off between immune response and remaining life span. However, this relationship disappeared at 31-32 hours of implantation at 25 ± 2℃. As the disappearance of a relationship between duration of implantation and lifespan coincided with the highest values of encapsulation response, we concluded that the beetles stopped investment in the production of melanotic cells, as the implant, a synthetic parasite, was fully isolated from the host’s tissues [Current Zoology 59 (3: 340–346, 2013].

  1. Cellular adaptation as an important response during chemical carcinogenesis

    International Nuclear Information System (INIS)

    Since disease processes are largely expressions of how living organisms react and respond to perturbations in the external and internal environments, adaptive or protective responses and their modulations and mechanisms are of the greatest concern in fundamental studies of disease pathogenesis. Such considerations are also of the greatest relevance in toxicology, including how living organisms respond to low levels of single and multiple xenobiotics and radiations. As the steps and mechanisms during cancer development are studied in greater depth, phenomena become apparent that suggest that adaptive reactions and responses may play important or even critical roles in the process of carcinogenesis. The question becomes whether the process of carcinogenesis is fundamentally an adversarial one (i.e., an abnormal cell in a vulnerable host), or is it more in the nature of a physiological selection or differentiation, which has survival value for the host as an adaptive phenomena? The very early initial interactions of mutagenic chemical carcinogens, radiations and viruses with DNA prejudice most to consider the adversarial 'abnormal' view as the appropriate one. Yet, the unusually common nature of the earliest altered rare cells that appear during carcinogenesis, their unusually bland nature, and their spontaneous differentiation to normal-appearing adult liver should be carefully considered

  2. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease.

    Science.gov (United States)

    Habecker, Beth A; Anderson, Mark E; Birren, Susan J; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B; Kanazawa, Hideaki; Paterson, David J; Ripplinger, Crystal M

    2016-07-15

    The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural-cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296

  3. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania.

    Science.gov (United States)

    Collin, Nicolas; Gomes, Regis; Teixeira, Clarissa; Cheng, Lily; Laughinghouse, Andre; Ward, Jerrold M; Elnaiem, Dia-Eldin; Fischer, Laurent; Valenzuela, Jesus G; Kamhawi, Shaden

    2009-05-01

    Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL) in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-gamma at the site of sand fly bites. To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease. Two of 35 salivary proteins from the vector sand fly Lutzomyia longipalpis, identified using a novel approach termed reverse antigen screening, elicited strong cellular immunity in dogs. Immunization with either molecule induced high IgG(2) antibody levels and significant IFN-gamma production following in vitro stimulation of PBMC with salivary gland homogenate (SGH). Upon challenge with uninfected or infected flies, immunized dogs developed a cellular response at the bite site characterized by lymphocytic infiltration and IFN-gamma and IL-12 expression. Additionally, SGH-stimulated lymphocytes from immunized dogs efficiently killed Leishmania infantum chagasi within autologous macrophages. Certain sand fly salivary proteins are potent immunogens obligatorily co-deposited with Leishmania parasites during transmission. Their inclusion in an anti-Leishmania vaccine would exploit anti-saliva immunity following an infective sand fly bite and set the stage for a protective anti-Leishmania immune response. PMID:19461875

  4. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania.

    Directory of Open Access Journals (Sweden)

    Nicolas Collin

    2009-05-01

    Full Text Available Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-gamma at the site of sand fly bites. To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease. Two of 35 salivary proteins from the vector sand fly Lutzomyia longipalpis, identified using a novel approach termed reverse antigen screening, elicited strong cellular immunity in dogs. Immunization with either molecule induced high IgG(2 antibody levels and significant IFN-gamma production following in vitro stimulation of PBMC with salivary gland homogenate (SGH. Upon challenge with uninfected or infected flies, immunized dogs developed a cellular response at the bite site characterized by lymphocytic infiltration and IFN-gamma and IL-12 expression. Additionally, SGH-stimulated lymphocytes from immunized dogs efficiently killed Leishmania infantum chagasi within autologous macrophages. Certain sand fly salivary proteins are potent immunogens obligatorily co-deposited with Leishmania parasites during transmission. Their inclusion in an anti-Leishmania vaccine would exploit anti-saliva immunity following an infective sand fly bite and set the stage for a protective anti-Leishmania immune response.

  5. Repeatedly administered antidepressant drugs modulate humoral and cellular immune response in mice through action on macrophages.

    Science.gov (United States)

    Nazimek, Katarzyna; Kozlowski, Michael; Bryniarski, Pawel; Strobel, Spencer; Bryk, Agata; Myszka, Michal; Tyszka, Anna; Kuszmiersz, Piotr; Nowakowski, Jaroslaw; Filipczak-Bryniarska, Iwona

    2016-08-01

    Depression is associated with an altered immune response, which could be normalized by antidepressant drugs. However, little is known about the influence of antidepressants on the peripheral immune response and function of macrophages in individuals not suffering from depression. Our studies were aimed at determining the influence of antidepressant drugs on the humoral and cellular immune response in mice. Mice were treated intraperitoneally with imipramine, fluoxetine, venlafaxine, or moclobemide and contact immunized with trinitrophenyl hapten followed by elicitation and measurement of contact sensitivity by ear swelling response. Peritoneal macrophages from drug-treated mice were either pulsed with sheep erythrocytes or conjugated with trinitrophenyl and transferred into naive recipients to induce humoral or contact sensitivity response, respectively. Secretion of reactive oxygen intermediates, nitric oxide, and cytokines by macrophages from drug-treated mice was assessed, respectively, in chemiluminometry, Griess-based colorimetry and enzyme-linked immunosorbent assay, and the expression of macrophage surface markers was analyzed cytometrically. Treatment of mice with fluoxetine, venlafaxine, and moclobemide results in suppression of humoral and cell-mediated immunity with a reduction of the release of macrophage proinflammatory mediators and the expression of antigen-presentation markers. In contrast, treatment with imipramine enhanced the humoral immune response and macrophage secretory activity but slightly suppressed active contact sensitivity. Our studies demonstrated that systemically delivered antidepressant drugs modulate the peripheral humoral and cell-mediated immune responses, mostly through their action on macrophages. Imipramine was rather proinflammatory, whereas other tested drugs expressed immunosuppressive potential. Current observations may be applied to new therapeutic strategies dedicated to various disorders associated with excessive

  6. Gestational zinc deficiency impairs humoral and cellular immune responses to hepatitis B vaccination in offspring mice.

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    Full Text Available BACKGROUND: Gestational zinc deficiency has been confirmed to impair the infant immune function. However, knowledge about effects of maternal mild zinc deficiency during pregnancy on hepatitis B vaccine responsiveness in offspring is limited. In this report, we aimed to examine how maternal zinc deficiency during pregnancy influences humoral and cellular immune responses to hepatitis B vaccination in offspring of BALB/c mice. METHODOLOGY/PRINCIPAL FINDINGS: From day 1 of pregnancy upon delivery, maternal mice were given a standard diet (30 mg/kg/day zinc, zinc deficient diet (8 mg/kg/day zinc, or combination of zinc deficient diet (8 mg/kg/day zinc in the first 2 weeks of gestation and zinc supplement diet (150 mg/kg/day zinc for the last week of pregnancy, respectively. Newborn pups of these maternal mice were immunized with hepatitis B vaccine at postnatal weeks 0, 2 and 4. Then, splenocytes and blood samples from the offspring mice were harvested for detection of serum zinc concentrations, humoral and cell-mediated immune responses, expression of cytokines using ELISA, CCK-8 and flow cytometric analysis. Results from the present study demonstrated that gestational zinc deficiency inhibited antibody responses, and decreased the proliferative capacity of T cells in offsprings immunized with hepatitis B vaccine. Additionally, HBsAg-specific cytokines analysis revealed that gestational zinc deficiency could inhibit secretion of IFN-γ from splenocytes, and decrease IFN-γ expression of CD4(+ and CD8(+ T cells. CONCLUSIONS/SIGNIFICANCE: Gestational zinc deficiency can weaken the humoral and cell-mediated immune responses to hepatitis B vaccine via decreasing B cell counts and hepatitis B virus-specific immunoglobulin G production, as well as reducing T cell proliferation, CD4(+/CD8(+ T cell ratio, and Th1-type immune responses.

  7. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host

    Directory of Open Access Journals (Sweden)

    Yingru eLiu

    2011-03-01

    Full Text Available It is well known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host’s immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory- immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine.

  8. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host.

    Science.gov (United States)

    Liu, Yingru; Feinen, Brandon; Russell, Michael W

    2011-01-01

    It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory-immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine. PMID:21833308

  9. Analytical tools for the study of cellular glycosylation in the immune system

    Directory of Open Access Journals (Sweden)

    Yvette eVan Kooyk

    2013-12-01

    Full Text Available It is becoming increasingly clear that glycosylation plays important role in intercellular communication within the immune system. Glycosylation-dependent interactions are crucial for the innate and adaptive immune system and regulate immune cell trafficking, synapse formation, activation, and survival. These functions take place by the cis or trans interaction of lectins with glycans. Classical immunological and biochemical methods have been used for the study of lectin function; however, the investigation of their counterparts, glycans, requires very specialized methodologies that have been extensively developed in the past decade within the Glycobiology scientific community. This Mini-Review intends to summarize the available technology for the study of glycan biosynthesis, its regulation and characterization for their application to the study of glycans in Immunology.

  10. An Act of Balance Between Adaptive and Maladaptive Immunity in Depression: a Role for T Lymphocytes.

    Science.gov (United States)

    Toben, Catherine; Baune, Bernhard T

    2015-12-01

    Historically the monoaminergic neurotransmitter system, in particular the serotonergic system, was seen as being responsible for the pathophysiology of major depressive disorder (MDD). With the advent of psychoneuroimmunology an important role of the immune system in the interface between the central nervous systems (CNS) and peripheral organ systems has emerged. In addition to the well-characterised neurobiological activities of cytokines, T cell function in the context of depression has been neglected so far. In this review we will investigate the biological roles of T cells in depression. Originally it was thought that the adaptive immune arm including T lymphocytes was excluded from the CNS. It is now clear that peripheral naïve T cells not only carry out continuous surveillance within the brain but also maintain neural plasticity. Furthermore animal studies demonstrate that regulatory T lymphocytes can provide protection against maladaptive behavioural responses associated with depression. Psychogenic stress as a major inducer of depression can lead to transient trafficking of T lymphocytes into the brain stimulating the secretion of certain neurotrophic factors and cytokines. The separate and combined mechanism of CD4 and CD8 T cell activation is likely to determine the response pattern of CNS specific neurokines and neurotrophins. Under chronic stress-induced neuroinflammatory conditions associated with depression, T cell responses may become maladaptive and can be involved in neurodegeneration. Additionally, intracellular adhesion and MHC molecule expression as well as glucocorticoid receptor expression within the brain may play a role in determining T lymphocyte functionality in depression. Taken together, T lymphocyte mechanisms, which confer susceptibility or resilience to MDD, are not yet fully understood. Further insight into the cellular and molecular mechanisms which balance the adaptive and maladaptive roles of T lymphocytes may provide a better

  11. Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses

    OpenAIRE

    Wilson, R; Cohen, J.M.; Jose, R J; Vogel, C; Baxendale, H.; Brown, J. S.

    2014-01-01

    Streptococcus pneumoniae is a common cause of pneumonia and infective exacerbations of chronic lung disease, yet there are few data on how adaptive immunity can specifically prevent S. pneumoniae lung infection. We have used a murine model of nasopharyngeal colonization by the serotype 19F S. pneumoniae strain EF3030 followed by lung infection to investigate whether colonization protects against subsequent lung infection and the mechanisms involved. EF3030 colonization induced systemic and lo...

  12. Hidden talents of natural killers: NK cells in innate and adaptive immunity

    OpenAIRE

    Cooper, Megan A.; Colonna, Marco; Yokoyama, Wayne M.

    2009-01-01

    Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells and producing immunoregulatory cytokines. Herein, we discuss recent studies that indicate that NK cells span the conventional boundaries between innate and adaptive immunity. For example, it was recently discovered that NK cells have the capacity for memory-like responses, a property that was previously thought to be limited to adaptive immunity. NK cells have also been identified in multiple tissues, and ...

  13. Plant sphingolipids: Their importance in cellular organization and adaption.

    Science.gov (United States)

    Michaelson, Louise V; Napier, Johnathan A; Molino, Diana; Faure, Jean-Denis

    2016-09-01

    Sphingolipids and their phosphorylated derivatives are ubiquitous bio-active components of cells. They are structural elements in the lipid bilayer and contribute to the dynamic nature of the membrane. They have been implicated in many cellular processes in yeast and animal cells, including aspects of signaling, apoptosis, and senescence. Although sphingolipids have a better defined role in animal systems, they have been shown to be central to many essential processes in plants including but not limited to, pollen development, signal transduction and in the response to biotic and abiotic stress. A fuller understanding of the roles of sphingolipids within plants has been facilitated by classical biochemical studies and the identification of mutants of model species. Recently the development of powerful mass spectrometry techniques hailed the advent of the emerging field of lipidomics enabling more accurate sphingolipid detection and quantitation. This review will consider plant sphingolipid biosynthesis and function in the context of these new developments. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27086144

  14. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity.

    Science.gov (United States)

    Kowalczyk, Aleksandra; Doener, Fatma; Zanzinger, Kai; Noth, Janine; Baumhof, Patrick; Fotin-Mleczek, Mariola; Heidenreich, Regina

    2016-07-19

    mRNA represents a new platform for the development of therapeutic and prophylactic vaccines with high flexibility with respect to production and application. We have previously shown that our two component self-adjuvanted mRNA-based vaccines (termed RNActive® vaccines) induce balanced immune responses comprising both humoral and cellular effector as well as memory responses. Here, we evaluated the early events upon intradermal application to gain more detailed insights into the underlying mode of action of our mRNA-based vaccine. We showed that the vaccine is taken up in the skin by both non-leukocytic and leukocytic cells, the latter being mostly represented by antigen presenting cells (APCs). mRNA was then transported to the draining lymph nodes (dLNs) by migratory dendritic cells. Moreover, the encoded protein was expressed and efficiently presented by APCs within the dLNs as shown by T cell proliferation and immune cell activation, followed by the induction of the adaptive immunity. Importantly, the immunostimulation was limited to the injection site and lymphoid organs as no proinflammatory cytokines were detected in the sera of the immunized mice indicating a favorable safety profile of the mRNA-based vaccines. Notably, a substantial boostability of the immune responses was observed, indicating that mRNA can be used effectively in repetitive immunization schedules. The evaluation of the immunostimulation following prime and boost vaccination revealed no signs of exhaustion as demonstrated by comparable levels of cytokine production at the injection site and immune cell activation within dLNs. In summary, our data provide mechanistic insight into the mode of action and a rational for the use of mRNA-based vaccines as a promising immunization platform. PMID:27269061

  15. Study on cellular survival adaptive response induced by low dose irradiation of 153Sm

    International Nuclear Information System (INIS)

    The present study engages in determining whether low dose irradiation of 153Sm could cut down the responsiveness of cellular survival to subsequent high dose exposure of 153Sm so as to make an inquiry into approach the protective action of adaptive response by second irradiation of 153Sm. Experimental results indicate that for inductive low dose of radionuclide 153Sm 3.7 kBq/ml irradiated beforehand to cells has obvious resistant effect in succession after high dose irradiation of 153Sm 3.7 x 102 kBq/ml was observed. Cells exposed to low dose irradiation of 153Sm become adapted and therefore the subsequent cellular survival rate induced by high dose of 153Sm is sufficiently higher than high dose of 153Sm merely. It is evident that cellular survival adaptive response could be induced by pure low dose irradiation of 153Sm only

  16. Two separate mechanisms of enforced viral replication balance innate and adaptive immune activation.

    Science.gov (United States)

    Shaabani, Namir; Khairnar, Vishal; Duhan, Vikas; Zhou, Fan; Tur, Rita Ferrer; Häussinger, Dieter; Recher, Mike; Tumanov, Alexei V; Hardt, Cornelia; Pinschewer, Daniel; Christen, Urs; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-02-01

    The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system. PMID:26553386

  17. Exposure to low infective doses of HCV induces cellular immune responses without consistently detectable viremia or seroconversion in chimpanzees

    International Nuclear Information System (INIS)

    In hepatitis C virus (HCV) infection, there is accumulating data suggesting the presence of cellular immune responses to HCV in exposed but seemingly uninfected populations. Some studies have suggested cross-reactive antigens rather than prior HCV exposure as the main reason for the immune responses. In this study we address this question by analyzing the immune response of chimpanzees that have been sequentially exposed to increasing doses of HCV virions. The level of viremia, as well as the immune responses to HCV at different times after virus inoculation, were examined. Our data indicate that HCV infective doses as low as 1-10 RNA (+) virions induce detectable cellular immune responses in chimpanzees without consistently detectable viremia or persistent seroconversion. However, increasing the infective doses of HCV to 100 RNA (+) virions overcame the low-inoculum-induced immune response and produced high-level viremia followed by seroconversion

  18. Effect of Astragalus Injection on Serious Abdominal Traumatic Patients' Cellular Immunity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To explore the change of serious abdominal traumatic patients' cellular immunity and the effect of Astragalus Injection (Al) on it. Methods: Sixty-three serious abdominal traumatic patients were randomly assigned into two groups, the conventional group and the treated group, patients in the conventional group were given conventional treatment, while others in the treated group were given conventional treatment as the basis, with Al 20 mi was added into 250 mi of 5% glucose solution given through intravenous dripping, and then on the first day and 14th day, their T cell activated antigens as well as that of 10 healthy subjects were monitored.Results: On the first day, in the conventional group and treated group, the levels of CD3 + , CD4 + , CD4 +/CD8 + ,CD16+ , CD69 + and CD3 +/homologous leucocytic antigen-DR (HLA-DR+) were apparently lower than those in the healthy group (P<0.05), while the CD8 + was significantly higher than that in the healthy group ( P<0.05), and there was no significant difference between the conventional group and the treated group (P>0.05) ; on the 14th days, the levels of CD3+, CD4+, CD4+/CD8+, CD16+, CD69+ and CD3+/HLA-DR+ of the treated group gotclosed to healthy subject value, and got even higher than those of conventional group (P<0.05); CD8 + got close to that of healthy subjects, while obviously lower than that of conventional group (P<0.05). Conclusion: After serious abdominal trauma, cellular immunity lowered, auxiliary use of Al was beneficial to the restoration of cellular immunity.

  19. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response

    Directory of Open Access Journals (Sweden)

    Renata eToth

    2015-10-01

    Full Text Available Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as C. parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response towards this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi’s virulence by detecting altered innate cellular responses.In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host pathogen interactions.

  20. Laparoscopic and open resection for colorectal cancer: an evaluation of cellular immunity

    Directory of Open Access Journals (Sweden)

    Cao Jun

    2010-10-01

    Full Text Available Abstract Background Colorectal cancer is one kind of frequent malignant tumors of the digestive tract which gets high morbidity and mortality allover the world. Despite the promising clinical results recently, less information is available regarding the perioperative immunological effects of laparoscopic surgery when compared with the open surgery. This study aimed to compare the cellular immune responses of patients who underwent laparoscopic(LCR and open resections(OCR for colorectal cancer. Methods Between Mar 2009 and Sep 2009, 35 patients with colorectal carcinoma underwent LCR by laparoscopic surgeon. These patients were compared with 33 cases underwent conventional OCR by colorectal surgeon. Clinical data about the patients were collected prospectively. Comparison of the operative details and postoperative outcomes between laparoscopic and open resection was performed. Peripheral venous blood samples from these 68 patients were taken prior to surgery as well as on postoperative days(POD 1, 4 and 7. Cell counts of total white blood cells, neutrophils, lymphocyte subpopulations, natural killer(NK cells as well as CRP were determined by blood counting instrument, flow cytometry and hematology analyzer. Results There was no difference in the age, gender and tumor status between the two groups. The operating time was a little longer in the laparoscopic group (P > 0.05, but the blood loss was less (P = 0.039. Patients with laparoscopic resection had earlier return of bowel function and earlier resumption of diet as well as shorter median hospital stay (P +T cells and CD8+T cells were significant more in LCR group (P +T or NK cell numbers between the two groups. Cellular immune responds were similar between the two groups on POD1 and POD7. Conclusions Laparoscopic colorectal resection gets less surgery stress and short-term advantages compared with open resection. Cellular immune respond appears to be less affected by laparoscopic colorectal

  1. A candidate DNA vaccine elicits HCV specific humoral and cellular immune responses

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Zhu; Jing Liu; Ye Ye; You-Hua Xie; Yu-Ying Kong; Guang-Di Li; Yuan Wang

    2004-01-01

    AIM: To investigate the immunogenicity of candidate DNA vaccine against hepatitis C virus (HCV) delivered by two plasmids expressing HCV envelope protein 1 (E1) and envelope protein 2 (E2) antigens respectively and to study the effect of CpG adjuvant on this candidate vaccine.METHODS: Recombinant plasmids expressing HCV E1 and E2 antigens respectively were used to simultaneously inoculate mice with or without CpG adjuvant. Antisera were then collected and titers of anti-HCV antibodies were analyzed by ELISA. One month after the last injection, animals were sacrificed to prepare single-cell suspension of splenocytes.These cells were subjected to HCVantigen specific proliferation assays and cytokine secretion assays to evaluate the cellular immune responses of the vaccinated animals.RESULTS: Antibody responses to HCV E1 and E2 antigens were detected in vaccinated animals. Animals receiving CpG adjuvant had slightly lower titers of anti-HCV antibodies in the sera, while the splenocytes from these animals showed higher HCV-antigen specific proliferation. Analysis of cytokine secretion from the splenocytes was consistent with the above results. While no antigen-specific IL-4 secretion was detected for all vaccinated animals, HCV antigen-specific INF-γ secretion was detected for the splenocytes of vaccinated animals. CpG adjuvant enhanced the secretion of INF-γ but did not change the profile of IL-4 secretion.CONCLUSION: Vaccination of mice with plasmids encoding HCV E1 and E2 antigens induces humoral and cellular immune responses. CpG adjuvant significantly enhances the cellular immune response.

  2. Study on Effect of Aloe Glue on Cytogenetics, Cellular Immunity and Cell Proliferation of Human Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiahua; WEN Shaluo; XIA Yun; ZHANG Lijun

    2002-01-01

    Objective To provide the scientific evidence for the exploiture of aloe resource. Methods Cytological combined determination was used to study the effect of aloe glue(0.01 ~ 0.3ml) on cytogenetics, cellular immunity and cell proliferation of human cells. Results SCE and MNR in varying dose groups had no significant differences as compared with control group( P > 0.05). LTR was significantly higher than that of control group(P < 0.005). MI was significantly higher than that of control group ( P < 0.05). M3 and PRI in highest dose group had significant differences as compared with control group (P < 0.05). Conclusion Aloe gel had no significant effect on cytogenetics. But it had activating effects on immunity and proliferation of cells.

  3. Cellular adaptation to hypoxia and p53 transcription regulation

    Institute of Scientific and Technical Information of China (English)

    Yang ZHAO; Xue-qun CHEN; Ji-zeng DU

    2009-01-01

    Tumor suppressor p53 is the most frequently mutated gene in human tumors. Meanwhile, under stress conditions, p53 also acts as a transcription factor, regulating the expression of a series of target genes to maintain the integrity of genome. The target genes of p53 can be classified into genes regulating cell cycle arrest, genes involved in apoptosis, and genes inhibiting angiogenesis. p53 protein contains a transactivation domain, a sequence-specific DNA binding domain, a tetramerization domain, a non-specific DNA binding domain that recognizes damaged DNA, and a later identified proline-rich domain. Under stress, p53 proteins accumulate and are activated through two mechanisms. One, involving ataxia telangiectasia-mutated protein (ATM), is that the interaction between p53 and its down-regulation factor murine double minute 2 (MDM2) decreases, leading to p53 phosphorylation on Ser15, as determined by the post-translational mechanism; the other holds that p53 increases and is activated through the binding of ribosomal protein L26 (RPL26) or nucleolin to p53 mRNA 5' untranslated region (UTR), regulating p53 translation. Under hypoxia, p53 decreases transactivation and increases transrepression. The mutations outside the DNA binding domain of p53 also contribute to tumor progress, so further studies on p53 should also be focused on this direction. The subterranean blind mole rat Spalax in Israel is a good model for hypoxia-adaptation. The p53 of Spalax mutated in residue 172 and residue 207 from arginine to lysine, conferring it the ability to survive hypoxic conditions. This model indicates that p53 acts as a master gene of diversity formation during evolution.

  4. Dietary nucleotides prevent decrease in cellular immunity in ground-based microgravity analog

    Science.gov (United States)

    Yamauchi, Keiko; Hales, Nathan W.; Robinson, Sandra M.; Niehoff, Michael L.; Ramesh, Vani; Pellis, Neal R.; Kulkarni, Anil D.

    2002-01-01

    Microgravity and stress of spaceflights result in immune dysfunction. The role of nutrition, especially nucleotide supplementation, has become an area of intensive research and significant interest in immunomodulation for maintenance of cellular immune responses. The studies presented here evaluate the plausibility of administering nucleotides to obviate immune dysfunction in an Earth-based in vivo analog of microgravity as studied in anti-orthostatic tail suspension (AOS) of mice. Mice were divided into three housing groups: group, isolation, and AOS. Mice were fed either control chow diet (CD), or RNA-, adenine-, or uracil-supplemented CD for the 1-wk duration of the experiments. In AOS mice, supplemental nucleotides significantly increased in vivo lymph node proliferation and ex vivo lymphoproliferation response to alloantigen and mitogens, respectively, and interleukin-2 and interferon-gamma production. A lower corticosterone level was observed in uracil-supplemented CD compared with CD. These results suggest that exogenous nucleotide supplementation, especially uracil, of normal diet is beneficial in the maintenance and restoration of the immune response during the microgravity analog conditions.

  5. The role of cellular immunity in Influenza H1N1 population dynamics

    OpenAIRE

    Duvvuri Venkata R; Heffernan Jane M; Moghadas Seyed M; Duvvuri Bhargavi; Guo Hongbin; Fisman David N; Wu Jianhong; Wu Gillian E

    2012-01-01

    Abstract Background Pre-existing cellular immunity has been recognized as one of the key factors in determining the outcome of influenza infection by reducing the likelihood of clinical disease and mitigates illness. Whether, and to what extent, the effect of this self-protective mechanism can be captured in the population dynamics of an influenza epidemic has not been addressed. Methods We applied previous findings regarding T-cell cross-reactivity between the 2009 pandemic H1N1 strain and s...

  6. Immune Responses to AAV in Canine Muscle Monitored by Cellular Assays and Noninvasive Imaging

    OpenAIRE

    Wang, Zejing; Storb, Rainer; Lee, Donghoon; Kushmerick, Martin J.; Chu, Baocheng; Berger, Carolina; Arnett, Andrea; Allen, James; Chamberlain, Jeffrey S.; Riddell, Stanley R.; Tapscott, Stephen J.

    2009-01-01

    We previously demonstrated that direct intramuscular injection of rAAV2 or rAAV6 in wild-type dogs resulted in robust T-cell responses to viral capsid proteins, and others have shown that cellular immunity to adeno-associated virus (AAV) capsid proteins coincided with liver toxicity and elimination of transgene expression in a human trial of hemophilia B. Here, we show that the heparin-binding ability of a given AAV serotype does not determine the induction of T-cell responses following intra...

  7. Cellular Immune Response of Weaned Pigs Fed Diet Supplemented with an Essential Oil

    OpenAIRE

    János Tossenberger; Róbert Tóthi; Csaba Szabó; Zsuzsanna Pásti; Imre Nochta; Veronika Halas; László Babinszky

    2011-01-01

    The objective of the present study was to investigate the effect of an essential oil product on growth performance and cellular immune response of 28-day-old weaned piglets. A total of 348 piglets (50% gilts, 50% barrows) were assigned to three dietary treatments (6 pens/trt). Th e basal diet was a commercial feed that was supplemented without any growth promoter (NC), with antibiotic growth promoter of 40 ppm avilamycin (PC), or with 0.25 g of an essential oil product (EO) per kg of feed. Al...

  8. Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity

    OpenAIRE

    Gabitzsch, Elizabeth S; Xu, Younong; Yoshida, Lois H.; Balint, Joseph; Amalfitano, Andrea; Jones, Frank R.

    2009-01-01

    Recombinant Adenovirus serotype 5 (Ad5) vectors have been used as vaccine platforms in numerous animal and human clinical studies. The immune response induced by Ad5 vaccines can be mitigated due to pre-existing Ad5 immunity. We report here the use of a novel Ad5 platform to induce cellular immune responses (CMI) in Ad5 hyper immunized mice. The effectiveness of the Ad5 [E1−, E2b−] vaccine platform was evaluated using HIV-1 Gag, Pol, and Nef as antigenic transgenes. Broad CMI was induced foll...

  9. Epitope-based vaccines with the Anaplasma marginale MSP1a functional motif induce a balanced humoral and cellular immune response in mice.

    Directory of Open Access Journals (Sweden)

    Paula S Santos

    Full Text Available Bovine anaplasmosis is a hemoparasitic disease that causes considerable economic loss to the dairy and beef industries. Cattle immunized with the Anaplasma marginale MSP1 outer membrane protein complex presents a protective humoral immune response; however, its efficacy is variable. Immunodominant epitopes seem to be a key-limiting factor for the adaptive immunity. We have successfully demonstrated that critical motifs of the MSP1a functional epitope are essential for antibody recognition of infected animal sera, but its protective immunity is yet to be tested. We have evaluated two synthetic vaccine formulations against A. marginale, using epitope-based approach in mice. Mice infection with bovine anaplasmosis was demonstrated by qPCR analysis of erythrocytes after 15-day exposure. A proof-of-concept was obtained in this murine model, in which peptides conjugated to bovine serum albumin were used for immunization in three 15-day intervals by intraperitoneal injections before challenging with live bacteria. Blood samples were analyzed for the presence of specific IgG2a and IgG1 antibodies, as well as for the rickettsemia analysis. A panel containing the cytokines' transcriptional profile for innate and adaptive immune responses was carried out through qPCR. Immunized BALB/c mice challenged with A. marginale presented stable body weight, reduced number of infected erythrocytes, and no mortality; and among control groups mortality rates ranged from 15% to 29%. Additionally, vaccines have significantly induced higher IgG2a than IgG1 response, followed by increased expression of pro-inflammatory cytokines. This is a successful demonstration of epitope-based vaccines, and protection against anaplasmosis may be associated with elicitation of effector functions of humoral and cellular immune responses in murine model.

  10. Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania.

    OpenAIRE

    Nicolas Collin; Regis Gomes; Clarissa Teixeira; Lily Cheng; Andre Laughinghouse; Ward, Jerrold M.; Dia-Eldin Elnaiem; Laurent Fischer; Valenzuela, Jesus G.; Shaden Kamhawi

    2009-01-01

    Immunity to a sand fly salivary protein protects against visceral leishmaniasis (VL) in hamsters. This protection was associated with the development of cellular immunity in the form of a delayed-type hypersensitivity response and the presence of IFN-gamma at the site of sand fly bites. To date, there are no data available regarding the cellular immune response to sand fly saliva in dogs, the main reservoirs of VL in Latin America, and its role in protection from this fatal disease. Two of 35...

  11. Toward a molecular understanding of adaptive immunity:A chronology, Part II

    Directory of Open Access Journals (Sweden)

    Kendall A Smith

    2012-11-01

    Full Text Available By 1980 it was obvious that to more fully understand adaptive immunity, one needed to somehow reduce the tremendous complexity of antigen recognition by T cell populations. Thus, there were two developments that resulted in a paradigm shift in immunology, one being the generation of monoclonal antibodies, and the other the development of monoclonal functional antigen-specific T cell lines. For the first time, the cellular reagents became available to ask new questions as to how individual cells comprising the complex cell populations recognize and respond to changes in their molecular environments. The first successful generation of monoclonal T cells depended upon the understanding that antigen renders cells responsive to the antigen non-specific T cell growth factor that came to be termed interleukin-2 (IL-2, which could then be used in propagating large numbers of the progeny of single cells, which in turn could then be used for molecular analyses. Monoclonal functional human T cells were used to immunize mice to generate clone-specific (clonotypic monoclonal antibodies, which then permitted the first biochemical characterizations of the antigen recognition elements of the T cell antigen receptor complex. Moreover, the use of monoclonal cytolytic and helper/inducer human T cell clones essentially proved that the T cell-specific molecules T4 and T8 functioned as accessory molecules in antigen recognition by defining MHC class II or class I restriction respectively. As well, the expression of the T3 molecules, found to be common to all T cells, were shown further to be obligatory for functional antigen-specific T cell signaling. The monoclonal IL-2-dependent T cells were also instrumental in the isolation and purification of the IL-2 molecule to homogeneity, the first interleukin molecule to be identified and characterized. These advances then led to the generation of pure radiolabeled IL-2 molecules that were used to identify the first

  12. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed,and a fitness function is provided.Simulations are conducted using the adaptive niche immune genetic algorithm,the simulated annealing algorithm,the quantum genetic algorithm and the simple genetic algorithm,respectively.The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation,and has quick convergence speed and strong global searching capability,which effectively reduces the system power consumption and bit error rate.

  13. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    International Nuclear Information System (INIS)

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)

  14. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis.

    Science.gov (United States)

    Inoue, Shigeaki; Unsinger, Jacqueline; Davis, Christopher G; Muenzer, Jared T; Ferguson, Thomas A; Chang, Katherine; Osborne, Dale F; Clark, Andrew T; Coopersmith, Craig M; McDunn, Jonathan E; Hotchkiss, Richard S

    2010-02-01

    IL-15 is a pluripotent antiapoptotic cytokine that signals to cells of both the innate and adaptive immune system and is regarded as a highly promising immunomodulatory agent in cancer therapy. Sepsis is a lethal condition in which apoptosis-induced depletion of immune cells and subsequent immunosuppression are thought to contribute to morbidity and mortality. This study tested the ability of IL-15 to block apoptosis, prevent immunosuppression, and improve survival in sepsis. Mice were made septic using cecal ligation and puncture or Pseudomonas aeruginosa pneumonia. The experiments comprised a 2 x 2 full factorial design with surgical sepsis versus sham and IL-15 versus vehicle. In addition to survival studies, splenic cellularity, canonical markers of activation and proliferation, intracellular pro- and antiapoptotic Bcl-2 family protein expression, and markers of immune cell apoptosis were evaluated by flow cytometry. Cytokine production was examined both in plasma of treated mice and splenocytes that were stimulated ex vivo. IL-15 blocked sepsis-induced apoptosis of NK cells, dendritic cells, and CD8 T cells. IL-15 also decreased sepsis-induced gut epithelial apoptosis. IL-15 therapy increased the abundance of antiapoptotic Bcl-2 while decreasing proapoptotic Bim and PUMA. IL-15 increased both circulating IFN-gamma, as well as the percentage of NK cells that produced IFN-gamma. Finally, IL-15 increased survival in both cecal ligation and puncture and P. aeruginosa pneumonia. In conclusion, IL-15 prevents two immunopathologic hallmarks of sepsis, namely, apoptosis and immunosuppression, and improves survival in two different models of sepsis. IL-15 represents a potentially novel therapy of this highly lethal disorder. PMID:20026737

  15. Role of cellular immunity in halothane hepatitis: an in vitro study

    Institute of Scientific and Technical Information of China (English)

    Lu Zhijie; Miao Xuerong; Wang Xiaoyan; Wu Jingxiang; Lv Xin; Yu Weifeng

    2008-01-01

    Objective: To explore the effect of cellular immunity in halothane hepatitis. Methods: Hepatotoxicity model was established by exposing male Hartley guinea pigs to 1% halothane via inspiration for 4 h each time for 1 or 3 times within a 42-day interval. Then their hepatocytes and lymphocytes were collected and divided into 2 parts for different cultures. Hepatocytes were cultivated with or without 1% halothane for 4 h and lymphocytes were cultivated with or without 12.5 μg/ml trifluoroacetylated guinea pig serum albumin (TFA-GSA). Then the 2 kinds of hepatocytes were co-cultivated with lymphocytes (1:100) with or without TFA-GSA induction respectively and the supernatant fluid was taken after 24, 48 and 72 h to determine the concentration of alanine aminotransferase (ALT). The halothane cultivated hepatocytes were co-cultivated with various proportion of TFA-GSA antigen induced lymphocytes and ALT was determined after 48 h to determine the proper proportion of hepatocytes and lymphocyte. Results: Lymphocytes of 3 times halothane induced guinea pigs caused a significant increase of ALT in hepatocytes with or without halothane induction. But the lymphocytes of l time halothane induced guinea pigs only caused a significant increase of ALT in hepatocytes with induction of halothane. The increase of ALT was only seen after 48- and 72-hour co-culture. The proper proportion of hepatocytes and lymphocytes was l:100 for lymphocytes cytotoxicity. Conclusion: Lymphocytes is sensitized after inhalation of halothane and generates cytotoxicity to hepatocytes. The immune response of lymphocytes to hepatocytes will be enhanced by repeated inhalation of halothane. The cellular immunity may be one of the mechanisms of halothane induced hepatotoxicity.

  16. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    Science.gov (United States)

    Ortiz-Sánchez, Juan P.; Cabrera-Chávez, Francisco; Calderón de la Barca, Ana M.

    2013-01-01

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet. PMID:24152750

  17. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses.

    Science.gov (United States)

    Doran, Todd M; Sarkar, Mohosin; Kodadek, Thomas

    2016-05-18

    Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field. PMID:27115249

  18. Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context

    OpenAIRE

    Iranzo, Jaime; Lobkovsky, Alexander E; Wolf, Yuri I; Koonin, Eugene V

    2013-01-01

    A stochastic, agent-based mathematical model of the coevolution of the archaeal and bacterial adaptive immunity system, CRISPR-Cas, and lytic viruses shows that CRISPR-Cas immunity can stabilize the virus-host coexistence rather than leading to the extinction of the virus. In the model, CRISPR-Cas immunity does not specifically promote viral diversity, presumably because the selection pressure on each single proto-spacer is too weak. However, the overall virus diversity in the presence of CRI...

  19. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children

    OpenAIRE

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E.; Rudin, Anna

    2016-01-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles–mumps–rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-...

  20. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

    NARCIS (Netherlands)

    Charpentier, Emmanuelle; Richter, Hagen; Oost, van der John; White, Malcolm F.

    2015-01-01

    CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences

  1. Senescence of the adaptive immune system in health and aging-associated autoimmune disease

    NARCIS (Netherlands)

    van der Geest, Kornelis Stephan Mario

    2015-01-01

    Aging of the immune system may contribute to the development of aging-associated autoimmune diseases, such as giant cell arteritis, polymyalgia rheumatica and rheumatoid arthritis. The aim of this thesis was to identify aging-dependent changes of the adaptive immune system that promote autoimmunity

  2. Cellular and Biochemical Changes of Antheraea mylitta D. on Immunization with Attenuated Antheraea mylitta Cytoplasmic Polyhedrosis Virus

    Directory of Open Access Journals (Sweden)

    Phani Kiran Kumar

    2011-01-01

    Full Text Available The aim of the present study is to analyze the cellular and biochemical changes noticed in tasar silkworm larva (Antheraea mylitta D. immunized with attenuated cytoplasmic polyhedrosis virus (AmCPV. The bioassay was carried out to confirm the no induction of disease in attenuated AmCPV inoculated larvae. Total Haemocytes count and Differential Haemocytes counts were carried out in healthy control, immunized and non immunized silkworm larvae at different time intervals. The hemolymph proteins were estimated in healthy control, immunized and non immunized silkworm larvae. The results confirm that, attenuated AmCPV provides protection against AmCPV infection for a short period (6 to 8 days. The mortality in immunized silkworms was reduced significantly as compared to non immunized inoculated control. The total haemocyte counts increased in haemolymph up to 8th day in immunized silkworms in comparison with non immunized inoculated control indicating the positive haemocyte mediated response in silkworm immunized with attenuated AmCPV. Similarly, differential haemocyte count was different in immunized silkworms from the inoculated control. The prohaemocyte, plasmatocytes and granulocytes were maximum in number whereas oenocytoids were minimum in number. The number of degenerated blood cells was increased in inoculated control up to 8th days of post inoculation. The hemolymph protein in immunized silkworms was significantly higher than non immunized control. The gradual increase 1st day to 8th day was observed in immunized silkworm. In non immunized inoculated control, the total hemolymph proteins have shown increasing trend from 1st to 5th day and decreasing from 6th day onwards.

  3. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function.

    Science.gov (United States)

    Marsh, Samuel E; Abud, Edsel M; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T; Davtyan, Hayk; Fote, Gianna M; Lau, Lydia; Weinger, Jason G; Lane, Thomas E; Inlay, Matthew A; Poon, Wayne W; Blurton-Jones, Mathew

    2016-03-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression. PMID:26884167

  4. Computer simulation of a cellular automata model for the immune response in a retrovirus system

    International Nuclear Information System (INIS)

    Immune response in a retrovirus system is modeled by a network of three binary cell elements to take into account some of the main functional features of T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, one of which leads to three fixed points while the other yields bistable fixed points oscillating between a healthy state and a sick state in a mean field treatment. Evolution of these cells is studied for quenched and annealed random interactions on a simple cubic lattice with a nearest neighbor interaction using inhomogenous cellular automata. Populations of T4 cells and viral cells oscillate together with damping (with constant amplitude) for annealed (quenched) interaction on increasing the value of mixing probability B from zero to a characteristic value Bca (Bcq). For higher B, the average number of T4 cells increases while that of the viral infected cells decreases monotonically on increasing B, suggesting a phase transition at Bca (Bcq)

  5. Nanoparticles for nasal delivery of vaccines : monitoring adaptive immune responses

    NARCIS (Netherlands)

    Keijzer, C.

    2013-01-01

    The continuous emergence of new pathogens and growing drug resistance of microorganisms asks for innovative vaccination strategies. An alternative to conventional multiple injection vaccines is the nasal route of vaccine delivery. The immune response induced following nasal antigen delivery depends

  6. Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

    Directory of Open Access Journals (Sweden)

    McGraw Elizabeth A

    2011-08-01

    Full Text Available Abstract Background While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity. Findings Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene. Conclusions The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of cis-regulatory elements.

  7. Host adaptive immunity deficiency in severe pandemic influenza

    OpenAIRE

    Bermejo-Martin, Jesus F; Martin-Loeches, Ignacio; Rello, Jordi; Antón, Andres; Almansa, Raquel; Xu, Luoling; Lopez-Campos, Guillermo; Pumarola, Tomás; Ran, Longsi; Ramirez, Paula; Banner, David; Cheuk Ng, Derek; Socias, Lorenzo; Loza, Ana; Andaluz, David

    2010-01-01

    Introduction Pandemic A/H1N1/2009 influenza causes severe lower respiratory complications in rare cases. The association between host immune responses and clinical outcome in severe cases is unknown. Methods We utilized gene expression, cytokine profiles and generation of antibody responses following hospitalization in 19 critically ill patients with primary pandemic A/H1N1/2009 influenza pneumonia for identifying host immune responses associated with clinical outcome. Ingenuity pathway analy...

  8. Toxoplasma gondii: humoral and cellular immune response of BALB/c mice immunized via intranasal route with rTgROP2

    Science.gov (United States)

    TgROP2 is an intracellular protein associated with rhoptries of Toxoplama gondii and an antigen component of a candidate vaccine for toxoplasmosis. The purpose of the present study was to evaluate the efficacy of rTgROP2 to stimulate humoral and cellular immune responses in BALB/c mice via intranasa...

  9. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    Institute of Scientific and Technical Information of China (English)

    LI Fengling; ZHANG Shicui; WANG Zhiping; LI Hongyan

    2011-01-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos,larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes (Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  10. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    Science.gov (United States)

    Li, Fengling; Zhang, Shicui; Wang, Zhiping; Li, Hongyan

    2011-03-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos, larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes ( Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  11. Anisotropic optical flow algorithm based on self-adaptive cellular neural network

    Science.gov (United States)

    Zhang, Congxuan; Chen, Zhen; Li, Ming; Sun, Kaiqiong

    2013-01-01

    An anisotropic optical flow estimation method based on self-adaptive cellular neural networks (CNN) is proposed. First, a novel optical flow energy function which contains a robust data term and an anisotropic smoothing term is projected. Next, the CNN model which has the self-adaptive feedback operator and threshold is presented according to the Euler-Lagrange partial differential equations of the proposed optical flow energy function. Finally, the elaborate evaluation experiments indicate the significant effects of the various proposed strategies for optical flow estimation, and the comparison results with the other methods show that the proposed algorithm has better performance in computing accuracy and efficiency.

  12. Cellular Immune Responses in HIV-Negative Immunodeficiency with Anti-Interferon-γ Antibodies and Opportunistic Intracellular Microorganisms

    OpenAIRE

    Wipasa, Jiraprapa; Wongkulab, Panuwat; Chawansuntati, Kriangkrai; Chaiwarit, Romanee; Supparatpinyo, Khuanchai

    2014-01-01

    Background Cell-mediated immunity plays a crucial role in resistance to intracellular infection. We previously reported antibodies against interferon-gamma (IFN-γ) in HIV− negative (HIV−) patients with acquired immunodeficiency presenting with repeated episodes of disseminated infection caused by uncommon opportunistic intracellular fungal, bacterial, and viral pathogens. This follow-up study aimed to investigate cellular immune responses in these unusual patients. Methods Twenty HIV− patient...

  13. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Zhang Quanfu

    2011-06-01

    Full Text Available Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV, has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated. Results By optimizing the expression plasmids, recombinant VLPs of four antigenically different DENV serotypes DENV1-4 were successfully produced in 293T cells. The vaccination effect of dengue VLPs in mice showed that monovalent VLPs of each serotype stimulated specific IgG responses and potent neutralizing antibodies against homotypic virus. Tetravalent VLPs efficiently enhanced specific IgG and neutralizing antibodies against all four serotypes of DENV. Moreover, vaccination with monovalent or tetravalent VLPs resulted in the induction of specific cytotoxic T cell responses. Conclusions Mammalian cell expressed dengue VLPs are capable to induce VLP-specific humoral and cellular immune responses in mice, and being a promising subunit vaccine candidate for prevention of dengue virus infection.

  14. Studies on cellular immunity in patients with renal carcinoma: radiation-induced inhibition of leukocyte migration

    International Nuclear Information System (INIS)

    Thirty-two patients with hypernephroma (renal carcinoma) untreated or preoperatively exposed to local radiotherapy, were examined for tumor-directed cellular hypersensitivity by means of the indirect leukocyte migration test (LMT). (a) When soluble tumor extracts from preoperatively radiated hypernephromas were tested with autologous lymphocytes, 17 of 19 cancer patients gave a positive response; 10 of 11 were positive with allogenic lymphocytes from hypernephroma patients. In no instance could migration inhibition be induced with allogenic lymphocytes from 14 normal donors. Similarly, in 9 of 10 patients there was no significant inhibition with allogenic lymphocytes from patients with histologically different types of malignant tumors other than hypernephroma. (b) Tissue extracts from untreated hypernephromas failed to react in 12 of 13 patients when treated with autologous lymphocytes. LMT's, however, became positive in 6 of 7 patients from this group by in vitro-radiation of tumor samples (60Co or electrons) before preparation of tissue extracts. This radiation-induced effect was dose-related and specific, since radiation of normal kidney tissue did not significantly influence the migratory activity of leukocytes. Our data indicating that an in vivo as well as in vitro- radiation of the hypernephroma will be suitable for the induction and the demonstration of a directed cellular immune response, may be considered as an additional perspective in the integration of radiotherapy in the management of this neoplasm. (author)

  15. Cellular Immune Response of Weaned Pigs Fed Diet Supplemented with an Essential Oil

    Directory of Open Access Journals (Sweden)

    János Tossenberger

    2011-10-01

    Full Text Available The objective of the present study was to investigate the effect of an essential oil product on growth performance and cellular immune response of 28-day-old weaned piglets. A total of 348 piglets (50% gilts, 50% barrows were assigned to three dietary treatments (6 pens/trt. Th e basal diet was a commercial feed that was supplemented without any growth promoter (NC, with antibiotic growth promoter of 40 ppm avilamycin (PC, or with 0.25 g of an essential oil product (EO per kg of feed. All pigs were immunized by inactivated Aujeszky’s disease virus vaccine at week one and three of the experiment (28- and 44-days-age, respectively. Blood samples were taken four times (on day one, 16, 24, 32 of the experiment for lymphocyte stimulation (LST tests with ConA, PWM, PHA used as non-specific and Aujeszky virus used as specific mitogens from 2 pigs/pen. All piglets were individually weighed on day 0, 8, 16, 24 and 32 of the trial.There was no significant difference among average daily gain, feed intake and feed conversion ratio of piglets fed different dietary treatments. The non-specific LST test at the 4th blood sampling showed higher values in pigs received feeds with essential oil supplementation (EO than that of the positive (PC and negative control (NC groups (P<0.05. However, no significant difference in specific immune response of pigs in different dietary treatments was found. It can be concluded that essential oil supplementation may enhance the non-specific immunocompetence of 28-day-old weaning pigs without compromising their growth performance.

  16. Learning emergence: adaptive cellular automata façade trained by artificial neural networks

    OpenAIRE

    Skavara, M. M. E.

    2009-01-01

    This thesis looks into the possibilities of controlling the emergent behaviour of Cellular Automata (CA) to achieve specific architectural goals. More explicitly, the objective is to develop a performing, adaptive building facade, which is fed with the history of its achievements and errors, to provide optimum light conditions in buildings’ interiors. To achieve that, an artificial Neural Network (NN) is implemented. However, can an artificial NN cope with the complexity of suc...

  17. Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses.

    Science.gov (United States)

    Lian, Jeffrey; Luster, Andrew D

    2015-10-01

    The generation of adaptive immune responses occurs in the lymph node (LN) and requires that lymphocytes locate and interact with cognate antigen-bearing dendritic cells. This process requires the coordinated movement of both innate and adaptive immune cells, and is orchestrated by the chemokine family of chemotactic cytokines. Upon initiation of inflammation, the LN undergoes dramatic changes that include the marked induction of specific chemokines in distinct regions of the reactive LN. These chemokine rich domains establish LN niches that facilitate the differentiation of CD4+ T cells into effector cell subsets and the rapid activation of memory CD8+ T cells. This review will focus on recent advances highlighting the importance of LN chemokines for shaping adaptive immune responses by controlling immune cell migration, positioning, and interactions in the reactive LN. PMID:26067148

  18. The Immunobiology of Prostanoid Receptor Signaling in Connecting Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Hedi Harizi

    2013-01-01

    Full Text Available Prostanoids, including prostaglandins (PGs, thromboxanes (TXs, and prostacyclins, are synthesized from arachidonic acid (AA by the action of Cyclooxygenase (COX enzymes. They are bioactive inflammatory lipid mediators that play a key role in immunity and immunopathology. Prostanoids exert their effects on immune and inflammatory cells by binding to membrane receptors that are widely expressed throughout the immune system and act at multiple levels in innate and adaptive immunity. The immunoregulatory role of prostanoids results from their ability to regulate cell-cell interaction, antigen presentation, cytokine production, cytokine receptor expression, differentiation, survival, apoptosis, cell-surface molecule levels, and cell migration in both autocrine and paracrine manners. By acting on immune cells of both systems, prostanoids and their receptors have great impact on immune regulation and play a pivotal role in connecting innate and adaptive immunity. This paper focuses on the immunobiology of prostanoid receptor signaling because of their potential clinical relevance for various disorders including inflammation, autoimmunity, and tumorigenesis. We mainly discuss the effects of major COX metabolites, PGD2, PGE2, their signaling during dendritic cell (DC-natural killer (NK reciprocal crosstalk, DC-T cell interaction, and subsequent consequences on determining crucial aspects of innate and adaptive immunity in normal and pathological settings.

  19. Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland

    Science.gov (United States)

    Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B.

    2016-01-01

    The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection. PMID:27100324

  20. Staphylococcus aureus avirulent mutant vaccine induces humoral and cellular immune responses on pregnant heifers.

    Science.gov (United States)

    Pellegrino, M; Rodriguez, N; Vivas, A; Giraudo, J; Bogni, C

    2016-06-17

    Bovine mastitis produces economic losses, attributable to the decrease in milk production, reduced milk quality, costs of treatment and replacement of animals. A successful prophylactic vaccine against Staphylococcus aureus should elicit both humoral and cellular immune responses. In a previous report we evaluated the effectiveness of a live vaccine to protect heifers against challenge with a virulent strain. In the present study the immunological response of heifers after combined immunization schedule was investigated. In a first experimental trial, heifers were vaccinated with 3 subcutaneous doses of avirulent mutant S. aureus RC122 before calving and one intramammary dose (IMD) after calving. Antibodies concentration in blood, bactericidal effect of serum from vaccinated animals and lymphocyte proliferation was determined. The levels of total IgG, IgG1 and IgG2 in colostrum and the lymphocyte proliferation index were significantly higher in vaccinated respect to non-vaccinated group throughout the experiment. The second trial, where animals were inoculated with different vaccination schedules, was carried out to determine the effect of the IMD on the level of antibodies in blood and milk, cytokines (IL-13 and IFN-γ) concentration and milk's SCC and bacteriology. The bacterial growth of the S. aureus strains was totally inhibited at 1-3×10(6) and 1-3×10(3)cfu/ml, when the strains were mixed with pooled serum diluted 1/40. The results shown that IMD has not a significant effect on the features determinate. In conclusion, a vaccination schedule involving three SC doses before calving would be enough to stimulate antibodies production in milk without an IMD. Furthermore, the results showed a bactericidal effect of serum from vaccinated animals and this provides further evidence about serum functionality. Immune responses, humoral (antigen-specific antibodies and Th2 type cytokines) and cellular (T-lymphocyte proliferation responses and Th1 type cytokines), were

  1. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function

    Science.gov (United States)

    Abud, Edsel M.; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T.; Davtyan, Hayk; Fote, Gianna M.; Lau, Lydia; Weinger, Jason G.; Lane, Thomas E.; Inlay, Matthew A.; Poon, Wayne W.; Blurton-Jones, Mathew

    2016-01-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer’s disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting “Rag-5xfAD” mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive–innate immunity cross talk and accelerated disease progression. PMID:26884167

  2. The microbiota in adaptive immune homeostasis and disease.

    Science.gov (United States)

    Honda, Kenya; Littman, Dan R

    2016-07-01

    In the mucosa, the immune system's T cells and B cells have position-specific phenotypes and functions that are influenced by the microbiota. These cells play pivotal parts in the maintenance of immune homeostasis by suppressing responses to harmless antigens and by enforcing the integrity of the barrier functions of the gut mucosa. Imbalances in the gut microbiota, known as dysbiosis, can trigger several immune disorders through the activity of T cells that are both near to and distant from the site of their induction. Elucidation of the mechanisms that distinguish between homeostatic and pathogenic microbiota-host interactions could identify therapeutic targets for preventing or modulating inflammatory diseases and for boosting the efficacy of cancer immunotherapy. PMID:27383982

  3. Modulation of cellular and humoral immune responses to anHIV-1 DNA vaccine by interleukin-12 and interleukin-18 DNA immunization

    Institute of Scientific and Technical Information of China (English)

    孙永涛; 王福祥; 孙永年; 徐哲; 王临旭; 刘娟; 白雪帆; 黄长形

    2004-01-01

    Objective: To investigate the effect of interleukin-12 (IL-12) and interleukin-18 (IL-18)DNA immunization on immune response induced by HIV-1 DNA vaccine and to explore new strategies for therapeutic HIV DNA vaccine.Methods: The recombinant expression vector pCI-neoGAG was constructed by inserting HIV Gag gene into the eukaryotic expression vector pCI-neo. Balb/c mice were immunized with pCI-neoGAG alone or co-immunized with the DNA encoding for IL-12 or IL-18. Anti-HIV antibody and IFN-γ were tested by ELISA, and splenocytes were isolated for detecting antigen-specific lymphoproliferative responses and specific CTL response by MTT assay and LDH assay respectively. Results: The antiHIV antibody titers of mice co-immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 were lower than that of mice immunized with pCI-neoGAG alone( P < 0.01). In contrast, the IFN-γ level of mice co-immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 was higher than that of mice immunized with pCI-neoGAG alone ( P <0.01). Furthermore, compared with mice injected with pCI-neoGAG alone, the specific CTL cytotoxity activity and antigenspecific lymphoproliferative responses of mice immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 were significantly enhanced respectively ( P < 0.01). Conclusion: The DNA encoding for IL-12 or IL-18 together with HIV DNA vaccine may enhance specific Th-1 responses and cellular immune response elicited in mice. Hence, the DNA encoding for IL-12 or IL-18 are promising immune adjuvants for HIV-1 DNA vaccine.

  4. Embryonic exposure to lead: comparison of immune and cellular responses in unchallenged and virally stressed chickens

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Eun; Kao, Elizabeth; Dietert, Rodney R. [Institute for Comparative and Environmental Toxicology, College of Veterinary Medicine, Cornell University, Ithaca, NY (United States); Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (United States); Naqi, Syed A. [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (United States)

    2002-01-01

    Lead, a ubiquitous environmental contaminant, has been shown to modulate various functions of the immune system and decrease host resistance to infectious disease. However, limited information is available concerning the direct effects of lead on the host immune response to an infectious agent after developmental exposure. The current study utilized chickens to examine the effect of embryonic lead exposure on immune and cellular responses during viral challenge. Sublethal doses of lead were introduced into fertilized Cornell K Strain White Leghorn chicken eggs via the air sac at day 5 or day 12 of embryonic development (designated as E5 and E12, respectively). Four-week-old female chickens were inoculated with infectious bronchitis virus (IBV) strain M41. Antibody titer to IBV, delayed-type hypersensitivity (DTH) response against bovine serum albumin (BSA), the absolute number and percentage of leukocyte subpopulations, and interferon-{gamma} (IFN-{gamma})-like cytokine production by splenocytes were evaluated at 5-6 weeks of age. While antibody response to IBV in juvenile chicks was unaffected by the in ovo lead exposure, IFN-{gamma}-like cytokine production by splenocytes was significantly depressed following lead exposure at both developmental stages. In contrast with this pattern, the DTH response against BSA was unaffected following E5 exposure, but was significantly decreased after E12 exposure to lead. These changes were similar to those previously reported in chickens not exposed to IBV. While lead exposure at E5 induced significant changes in the percentage of circulating heterophils at 1 day postinfection (dpi), lead did not cause any change in relative leukocyte counts after E12 exposure. At 7 dpi, E5 lead exposure resulted in decreased absolute number and percentage of circulating lymphocytes, while total leukocyte counts, and the absolute number and percentage of circulating monocytes and heterophils were significantly reduced in E12 lead

  5. Interaction of Streptococcus agalactiae and cellular innate immunity in colonization and disease

    Directory of Open Access Journals (Sweden)

    Sybille eLandwehr-Kenzel

    2014-10-01

    Full Text Available Streptococcus agalactiae (Group B streptococcus, GBS is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis and death at the beginning of life, in the elderly and in diabetic patients. Thus GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days seven and 90 of life are at risk of a particularly striking sepsis manifestation (late onset disease, LOD, where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases is caused by one clone, GBS ST-17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like GAPDH-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors (TLRs and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just

  6. On the evolutionary origin of the adaptive immune system--the adipocyte hypothesis.

    Science.gov (United States)

    van Niekerk, Gustav; Engelbrecht, Anna-Mart

    2015-04-01

    Jawless vertebrates utilize a form of adaptive immunity that is functionally based on molecular effectors that are completely different from those of vertebrates. This observation raises an intriguing question: why did vertebrates, representing only 5% of all animals, twice evolve a system as complex as adaptive immunity? Theories aimed at identifying a selective pressure that would 'drive' the development of an adaptive immune system (AIS) fail to explain why invertebrates would not similarly develop an AIS. We argue that an AIS can only be implemented in a certain physiological context, i.e., that an AIS represents an unevolvable trait for invertebrates. The immune system is functionally integrated with other systems; therefore a preexisting physiological innovation unique to vertebrates may have acted as the prerequisite infrastructure that allowed the development of an AIS. We propose that future efforts should be directed toward identifying the evolutionary release that allowed the development of an adaptive immune system in vertebrates. In particular, the advent of specialized adipocytes might have expanded the metabolic scope of vertebrates, allowing the opportunistic incorporation of an AIS. However, physiological innovations, unique to (or more developed in) vertebrates, support the implementation of an AIS. Thus, understanding the interaction between systems (e.g. neural-immune-adipose connection) may illuminate our understanding regarding the perplexing immunological dimorphism within the animal kingdom. PMID:25698354

  7. Cellular Immune Reactions of the Sunn Pest, Eurygaster integriceps, to the Entomopathogenic Fungus, Beauveria bassiana and Its Secondary Metabolites

    OpenAIRE

    Zibaee, Arash; Bandani, Ali Reza; Talaei-Hassanlouei, Reza; Malagoli, Davide

    2011-01-01

    In this study, five morphological types of circulating hemocytes were recognized in the hemolymph of the adult sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), namely prohemocytes, plasmatocytes, granulocytes, adipohemocytes, and oenocytoids. The effects of the secondary metabolites of the entomopathogenic fungus Beauveria bassiana on cellular immune defenses of Eurygaster integriceps were investigated. The results showed that the fungal secondary metabolites inhibited phag...

  8. Toxicity of cadmium in Japanese quail: Evaluation of body weight, hepatic and renal function, and cellular immune response

    International Nuclear Information System (INIS)

    Cadmium (Cd) is an environmental pollutant that is able to alter the immune function. Previous studies have shown that, in mammals, chronic exposure to Cd decreases the release of macrophagic cytokines such as IL1 and TNα and decreases phagocytosis activity. On the other hand contradictory results showed an increase in the humoral response. The cellular response could be decreased by exposure to Cd. These alterations were observed in mammals. The present study aimed to investigate some of the toxic effects of Cd exposure in birds. In particular, the main objective of this work was to elucidate the effects of exposure to this pollutant on the cellular immune function of the Japanese quail as a model for the study of toxicity in animals exposed in nature. The animals were exposed to the metal (100 ppm, per os) during development, i.e., from 1 to 28 days old. Body weight, biochemical parameters, and cellular immune response were measured during and at the end of treatment. The results showed that the exposure to Cd for 28 days significantly reduced the body weight and induced hepatic toxicity. The kidney function and cellular immune response were not affected by the Cd exposure

  9. Cellular and humoral immune responses in a population from the Baringo District, Kenya to Leishmania promastigote lipophosphoglycan

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Hey, A S; Theander, T G;

    1992-01-01

    In a cross-sectional house-to-house study in a leishmaniasis-endemic area in Kenya, the cellular and humoral immune response to Leishmania lipophosphoglycan (LPG) was determined. Clinical data, peripheral blood mononuclear cells, and plasma were obtained from 50 individuals over the age of eight...

  10. [Cellular immunity state assessed in bronchial and alveolar lavage for experimental animals exposed to the rubber dust].

    Science.gov (United States)

    Zhumabekova, B K; Karabalin, S K; Bakirova, R E

    2004-01-01

    Experiments on 21 rats helped to study influence of mechanical rubber dust on cellular immunity state in bronchial and alveolar lavage, efficiency of Ruvimine for prophylaxis. Findings are that mechanical rubber dust is strongly cytotoxic. Ruvimine administration during the whole experiment demonstrates therapeutic and prophylactic effect and normalizes local pulmonary phagocytosis. PMID:15318451

  11. H. pylori exploits and manipulates innate and adaptive immune cell signaling pathways to establish persistent infection

    Directory of Open Access Journals (Sweden)

    Arnold Isabelle C

    2011-11-01

    Full Text Available Abstract Persistent infection with the gastric bacterial pathogen Helicobacter pylori causes gastritis and predisposes carriers to a high gastric cancer risk, but has also been linked to protection from allergic, chronic inflammatory and autoimmune diseases. In the course of tens of thousands of years of co-existence with its human host, H. pylori has evolved elaborate adaptations that allow it to persist in the hostile environment of the stomach in the face of a vigorous innate and adaptive immune response. For this review, we have identified several key immune cell types and signaling pathways that appear to be preferentially targeted by the bacteria to establish and maintain persistent infection. We explore the mechanisms that allow the bacteria to avoid detection by innate immune cells via their pattern recognition receptors, to escape T-cell mediated adaptive immunity, and to reprogram the immune system towards tolerance rather than immunity. The implications of the immunomodulatory properties of the bacteria for the prevention of allergic and auto-immune diseases in chronically infected individuals are also discussed.

  12. Oxazolone-induced contact hypersensitivity reduces lymphatic drainage but enhances the induction of adaptive immunity.

    Directory of Open Access Journals (Sweden)

    David Aebischer

    Full Text Available Contact hypersensitivity (CHS induced by topical application of haptens is a commonly used model to study dermal inflammatory responses in mice. Several recent studies have indicated that CHS-induced skin inflammation triggers lymphangiogenesis but may negatively impact the immune-function of lymphatic vessels, namely fluid drainage and dendritic cell (DC migration to draining lymph nodes (dLNs. On the other hand, haptens have been shown to exert immune-stimulatory activity by inducing DC maturation. In this study we investigated how the presence of pre-established CHS-induced skin inflammation affects the induction of adaptive immunity in dLNs. Using a mouse model of oxazolone-induced skin inflammation we observed that lymphatic drainage was reduced and DC migration from skin to dLNs was partially compromised. At the same time, a significantly stronger adaptive immune response towards ovalbumin (OVA was induced when immunization had occurred in CHS-inflamed skin as compared to uninflamed control skin. In fact, immunization with sterile OVA in CHS-inflamed skin evoked a delayed-type hypersensitivity (DTH response comparable to the one induced by conventional immunization with OVA and adjuvant in uninflamed skin. Striking phenotypic and functional differences were observed when comparing DCs from LNs draining uninflamed or CHS-inflamed skin. DCs from LNs draining CHS-inflamed skin expressed higher levels of co-stimulatory molecules and MHC molecules, produced higher levels of the interleukin-12/23 p40 subunit (IL-12/23-p40 and more potently induced T cell activation in vitro. Immunization experiments revealed that blockade of IL-12/23-p40 during the priming phase partially reverted the CHS-induced enhancement of the adaptive immune response. Collectively, our findings indicate that CHS-induced skin inflammation generates an overall immune-stimulatory milieu, which outweighs the potentially suppressive effect of reduced lymphatic vessel function.

  13. Physical Model of the Immune Response of Bacteria Against Bacteriophage Through the Adaptive CRISPR-Cas Immune System

    OpenAIRE

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2014-01-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time....

  14. Novel Adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity.

    Science.gov (United States)

    Gabitzsch, Elizabeth S; Xu, Younong; Yoshida, Lois H; Balint, Joseph; Amalfitano, Andrea; Jones, Frank R

    2009-10-30

    Recombinant Adenovirus serotype 5 (Ad5) vectors have been used as vaccine platforms in numerous animal and human clinical studies. The immune response induced by Ad5 vaccines can be mitigated due to pre-existing Ad5 immunity. We previously reported the use of a novel Ad5 platform to induce cellular immune responses (CMI) against HIV-1 Gag in Ad5 hyper immune mice. Here, the effectiveness of the Ad5 [E1-, E2b-] vaccine platform was evaluated using a triad mixture of HIV-1 Gag, Pol, and Nef as antigenic transgenes. Broad CMI was induced following vaccination with the HIV-1 expressing vectors in Ad5 naïve and Ad5 immunized mice. A mixture of the three vaccines induced CMI against each transgene product even in the presence of hyper Ad5 immunity. These studies revealed that CMI responses to immunization with Ad5 [E1-, E2b-]-gag, Ad5 [E1-, E2b-]-pol or Ad5 [E1-, E2b-]-nef vectors were transgene specific and did not induce CMI responses against irrelevant antigens such as carcinoembryonic antigen (CEA), herpes simplex virus glycoprotein B (HSV), cytomegalovirus (CMV) or influenza virus antigens. We are evaluating this recombinant triad viral vector as an HIV-1 vaccine in a non-human primate model and the data indicate that the vaccine is worthy of clinical evaluation. PMID:19559110

  15. Integrating Innate and Adaptive Immunity for Intrusion Detection

    CERN Document Server

    Tedesco, Gianni; Aickelin, Uwe

    2010-01-01

    Network Intrusion Detection Systems (NDIS) monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS's rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alters, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.

  16. The placenta in toxicology. Part II: Systemic and local immune adaptations in pregnancy.

    Science.gov (United States)

    Svensson-Arvelund, Judit; Ernerudh, Jan; Buse, Eberhard; Cline, J Mark; Haeger, Jan-Dirk; Dixon, Darlene; Markert, Udo R; Pfarrer, Christiane; De Vos, Paul; Faas, Marijke M

    2014-01-01

    During pregnancy, the maternal immune system is challenged by the semiallogeneic fetus, which must be tolerated without compromising fetal or maternal health. This review updates the systemic and local immune changes taking place during human pregnancy, including some examples in rodents. Systemic changes are induced by contact of maternal blood with placental factors and include enhanced innate immunity with increased activation of granulocytes and nonclassical monocytes. Although a bias toward T helper (Th2) and regulatory T cell (Treg) immunity has been associated with healthy pregnancy, the relationship between different circulating Th cell subsets is not straightforward. Instead, these adaptations appear most evidently at the fetal-maternal interface, where for instance Tregs are enriched and promote fetal tolerance. Also innate immune cells, that is, natural killer cells and macrophages, are enriched, constituting the majority of decidual leukocytes. These cells not only contribute to immune regulation but also aid in establishing the placenta by promoting trophoblast recruitment and angiogenesis. Thus, proper interaction between leukocytes and placental trophoblasts is necessary for normal placentation and immune adaptation. Consequently, spontaneous maladaptation or interference of the immune system with toxic substances may be important contributing factors for the development of pregnancy complications such as preeclampsia, preterm labor, and recurrent miscarriages. PMID:23531796

  17. Evidence of the adaptive evolution of immune genes in chicken

    OpenAIRE

    Cormican Paul; Downing Tim; O'Farrelly Cliona; Bradley Daniel G; Lloyd Andrew T

    2009-01-01

    Abstract The basis for understanding the characteristics of gene functional categories in chicken has been enhanced by the ongoing sequencing of the zebra finch genome, the second bird species to be extensively sequenced. This sequence provides an avian context for examining how variation in chicken has evolved since its divergence from its common ancestor with zebra finch as well as well as a calibrating point for studying intraspecific diversity within chicken. Immune genes have been subjec...

  18. Occupational exposure alters innate and adaptive immune responses

    OpenAIRE

    Sahlander, Karin

    2010-01-01

    The farming environment is contaminated with high levels of organic dust. Especially pig barn facilities are highly polluted with airborne inhalable organic dust containing high amounts of molecular patterns from bacteria and fungi known to activate cells of the innate immunity through pattern recognition receptors (PRRs). Some hours of exposure in pig barn environment leads to an intensive upper and lower airway inflammation with systemic influences in previously unexposed ...

  19. CRISPR-Cas adaptive immune systems of the sulfolobales

    DEFF Research Database (Denmark)

    Garrett, Roger Antony; Shah, Shiraz Ali; Erdmann, Susanne;

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive...... structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation...... process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR...

  20. Adaptation of the immune system as a response to pregnancy

    OpenAIRE

    Milašinović Ljubomir; Bulatović Sanja; Ilić Đorđe; Ivanović Ljiljana; Županski Mirjana

    2002-01-01

    Introduction Pregnancy is an intriguing immunologic phenomenon. In spite of genetic differences, maternal and fetal cells are in close contact over the whole course of pregnancy with no evidence of either humoral and/or cellular immunologic response of mother to fetus as an allotransplant. The general opinion is that the fundamental protective mechanism must be located locally at the contact-plate, between the maternal and fetal tissues. Immunologic investigations proved the presence of speci...

  1. Enhancing cellular immune response to HBV M DNA vaccine in mice by codelivery of interleukin-18 recombinant

    Institute of Scientific and Technical Information of China (English)

    陈建忠; 朱海红; 刘克洲; 陈智

    2004-01-01

    Objective: To investigate the effect of interleukin-18 (IL-18) on immune response induced by plasmid encoding hepatitis B virus middle protein antigen and to explore new strategies for prophylactic and therapeutic HBV DNA vaccines. Methods: BALB/c mice were immunized with pCMV-M alone or co-immunized with pcDNA3-18 and pCMV-M and then their sera were collected for analysing anti-HBsAg antibody by ELISA; splenocytes were isolated for detecting specific CTL response and cytokine assay in vitro. Results: The anti-HBs antibody level of mice co-immunized with pcDNA3-18 and pCMV-M was slightly higher than that of mice immunized with pCMV-M alone, but there was not significantly different (P>0.05). Compared with mice injected with pCMV-M, the specific CTL cytotoxity activity of mice immunized with pcDNA3-18 and pCMV-M was significantly enhanced (P0.05). Conclusion: The plasmid encoding IL-18 together with HBV M gene DNA vaccines may enhance specific TH1 cells and CTL cellular immune response induced in mice, so that IL-18 is a promising immune adjuvant.

  2. Enhancing cellular immune response to HBV M DNA vaccine in mice by codelivery of interleukin-18 recombinant

    Institute of Scientific and Technical Information of China (English)

    陈建忠; 朱海红; 刘克洲; 陈智

    2004-01-01

    Objective:To investigate the effect of interleukin-18 (IL-18) on immune response induced by plasmid encoding hepatitis B virus middle protein antigen and to explore new strategies for prophylactic and therapeutic HBV DNA vaccines.Methods:BALB/c mice were immunized with pCMV-M alone or co-immunized with pcDNA3-18 and pCMV-M and then their sera were collected for analysing anti-HBsAg antibody by ELISA;splenocytes were isolated for detecting specific CTL response and cytokine assay in vitro.Results:The anti-HBs antibody level of mice co-immunized with pcDNA3-18 and pCMV-M was slightly higher than that of mice immunized with pCMV-M alone,but there was not significantly different (P>0.05).Compared with mice injected with pCMV-M, the specific CTL cytotoxity activity of mice immunized with pcDNA3-18 and pCMV-M was significantly enhanced (P0.05).Conclusion:The plasmid encoding IL-18 together with HBV M gene DNA vaccines may enhance specific TH1 cells and CTL cellular immune response induced in mice, so that IL-18 is a promising immune adjuvant.

  3. Effects of whole flaxseed, raw soybeans, and calcium salts of fatty acids on measures of cellular immune function of transition dairy cows.

    Science.gov (United States)

    Gandra, J R; Barletta, R V; Mingoti, R D; Verdurico, L C; Freitas, J E; Oliveira, L J; Takiya, C S; Kfoury, J R; Wiltbank, M C; Renno, F P

    2016-06-01

    The objective of the current study was to evaluate the effects of supplemental n-3 and n-6 fatty acid (FA) sources on cellular immune function of transition dairy cows. Animals were randomly assigned to receive 1 of 4 diets: control (n=11); whole flaxseed (n-3 FA source; n=11), 60 and 80g/kg of whole flaxseed [diet dry matter (DM) basis] during pre- and postpartum, respectively; whole raw soybeans (n-6 FA source; n=10), 120 and 160g/kg of whole raw soybeans (diet DM basis) during pre- and postpartum, respectively; and calcium salts of unsaturated FA (Megalac-E, n-6 FA source; n=10), 24 and 32g/kg of calcium salts of unsaturated FA (diet DM basis) during pre- and postpartum, respectively. Supplemental FA did not alter DM intake and milk yield but increased energy balance during the postpartum period. Diets containing n-3 and n-6 FA sources increased phagocytosis capacity of leukocytes and monocytes and phagocytosis activity of monocytes. Furthermore, n-3 FA source increased phagocytic capacity of leukocytes and neutrophils and increased phagocytic activity in monocytes and neutrophils when compared with n-6 FA sources. Supplemental FA effects on adaptive immune system included increased percentage of T-helper cells, T-cytotoxic cells, cells that expressed IL-2 receptors, and CD62 adhesion molecules. The results of this study suggest that unsaturated FA can modulate innate and adaptive cellular immunity and trigger a proinflammatory response. The n-3 FA seems to have a greater effect on phagocytic capacity and activity of leukocytes when compared with n-6 FA. PMID:27060809

  4. Once Upon a Time: The Adaptive Immune Response in Atherosclerosis—a Fairy Tale No More

    OpenAIRE

    Le Borgne, Marie; Caligiuri, Giuseppina; Nicoletti, Antonino

    2015-01-01

    Extensive research has been carried out to decipher the function of the adaptive immune response in atherosclerosis, with the expectation that it will pave the road for the design of immunomodulatory therapies that will prevent or reverse the progression of the disease. All this work has led to the concept that some T- and B-cell subsets are proatherogenic, whereas others are atheroprotective. In addition to the immune response occurring in the spleen and lymph nodes, it has been shown that l...

  5. Immune system adaptations during competition period in female cross-country skiers

    OpenAIRE

    Stenholm, Johanna

    2011-01-01

    Stenholm, Johanna. Immune system adaptations during competition period in female cross-country skiers. Master’s Thesis in Exercise Physiology, Department of Biology of Physical Activity. University of Jyväskylä. 95pp. Purpose. This study was undertaken to characterize the extent of immune and endocrine changes in competition period and related to two competition weekends in well trained athletes in different parts of the competition period. An additional purpose was to evaluate if the cha...

  6. Innate and adaptive immunity at Mucosal Surfaces of the Female Reproductive Tract: Stratification and Integration of Immune Protection against the Transmission of Sexually Transmitted Infections

    OpenAIRE

    Hickey, DK; Patel, MV; Fahey, JV; Wira, CR

    2011-01-01

    This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge ...

  7. Computer simulation of a cellular automata model for the immune response in a retrovirus system

    Science.gov (United States)

    Pandey, R. B.

    1989-02-01

    Immune response in a retrovirus system is modeled by a network of three binary cell elements to take into account some of the main functional features of T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, one of which leads to three fixed points while the other yields bistable fixed points oscillating between a healthy state and a sick state in a mean field treatment. Evolution of these cells is studied for quenched and annealed random interactions on a simple cubic lattice with a nearest neighbor interaction using inhomogenous cellular automata. Populations of T4 cells and viral cells oscillate together with damping (with constant amplitude) for annealed (quenched) interaction on increasing the value of mixing probability B from zero to a characteristic value B ca ( B cq). For higher B, the average number of T4 cells increases while that of the viral infected cells decreases monotonically on increasing B, suggesting a phase transition at B ca ( B cq).

  8. Innate lymphoid cell function in the context of adaptive immunity.

    Science.gov (United States)

    Bando, Jennifer K; Colonna, Marco

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized in vivo functions of ILCs. PMID:27328008

  9. GATA-3 Function in Innate and Adaptive Immunity.

    OpenAIRE

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P.; Hendriks, Rudi W

    2014-01-01

    : The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells,...

  10. Adaptive immune-genetic algorithm for global optimization to multivariable function

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An adaptive immune-genetic algorithm(AIGA)is proposed to avoid premature convergence and guarantee the diversity of the population.Rapid immune response (secondary response),adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability,greatly increase the converging speed,and decrease locating the local maxima due to the premature convergence.The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly,guarantees the diversity,stability and good searching ability.

  11. DMPD: ITAM-based signaling beyond the adaptive immune response. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available AM-based signaling beyond the adaptive immune response. PubmedID 16332394 Title ITAM-based signaling beyond...16332394 ITAM-based signaling beyond the adaptive immune response. Fodor S, Jakus Z..., Mocsai A. Immunol Lett. 2006 Apr 15;104(1-2):29-37. Epub 2005 Nov 28. (.png) (.svg) (.html) (.csml) Show IT...e (.html) CSML File (.csml) Open .csml file with CIOPlayer Open .csml file with CIOPlayer - ※CIO Playerのご利用上の注意 Open .csml file with CIO Open .csml file with CIO - ※CIOのご利用上の注意 ...

  12. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Sandra Winning

    2016-01-01

    Full Text Available Dendritic cells (DCs are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate immunity.

  13. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma.

    Science.gov (United States)

    Schmudde, Inken; Laumonnier, Yves; Köhl, Jörg

    2013-02-01

    Allergic asthma is a chronic disease of the airways in which maladaptive Th2 and Th17 immune responses drive airway hyperresponsiveness (AHR), eosinophilic and neutrophilic airway inflammation and mucus overproduction. Airway epithelial and pulmonary vascular endothelial cells in concert with different resident and monocyte-derived dendritic cells (DC) play critical roles in allergen sensing and consecutive activation of TH cells and their differentiation toward TH2 and TH17 effector or regulatory T cells (Treg). Further, myeloid-derived regulatory cells (MDRC) act on TH cells and either suppress or enhance their activation. The complement-derived anaphylatoxins (AT) C3a and C5a are generated during initial antigen encounter and regulate the development of maladaptive immunity at allergen sensitization. Here, we will review the complex role of ATs in activation and modulation of different DC populations, MDRCs and CD4⁺ TH cells. We will also discuss the potential impact of ATs on the regulation of the pulmonary stromal compartment as an important means to regulate DC functions. PMID:23694705

  14. Complement activation pathways: a bridge between innate and adaptive immune responses in asthma.

    Science.gov (United States)

    Wills-Karp, Marsha

    2007-07-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, is no exception. The emerging paradigm is that C3a production at the airway surface serves as a common pathway for the induction of Th2-mediated inflammatory responses to a variety of environmental triggers of asthma (i.e., allergens, pollutants, viral infections, cigarette smoke). In contrast, C5a plays a dual immunoregulatory role by protecting against the initial development of a Th2-polarized adaptive immune response via its ability to induce tolerogenic dendritic cell subsets. On the other hand, C5a drives type 2-mediated inflammatory responses once inflammation ensues. Thus, alterations in the balance of generation of the various components of the complement pathway either due to environmental exposure changes or genetic alterations in genes of the complement cascade may underlie the recent rise in asthma prevalence in westernized countries. PMID:17607007

  15. SELF-ADAPTIVE CONTROLS OF A COMPLEX CELLULAR SIGNALING TRANSDUCTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LI Hong; ZHOU Zhiyuan; DAI Rongyang; LUO Bo; ZHENG Xiaoli; YANG Wenli; HE Tao; WU Minglu

    2004-01-01

    In cells, the interactions of distinct signaling transduction pathways originating from cross-talkings between signaling molecules give rise to the formation of signaling transduction networks, which contributes to the changes (emergency) of kinetic behaviors of signaling system compared with single molecule or pathway. Depending on the known experimental data, we have constructed a model for complex cellular signaling transduction system, which is derived from signaling transduction of epidermal growth factor receptor in neuron. By the computational simulating methods, the self-adaptive controls of this system have been investigated. We find that this model exhibits a relatively stable selfadaptive system, especially to over-stimulation of agonist, and the amplitude and duration of signaling intermediates in it could be controlled by multiple self-adaptive effects, such as "signal scattering", "positive feedback", "negative feedback" and "B-Raf shunt". Our results provide an approach to understanding the dynamic behaviors of complex biological systems.

  16. A New Method for Fastening the Convergence of Immune Algorithms Using an Adaptive Mutation Approach

    OpenAIRE

    Ahmad F. Al-Ajlouni; Nabil Sabor; Sabah M. Ahmed; Mohammed Abo-Zahhad

    2012-01-01

    This paper presents a new adaptive mutation approach for fastening the convergence of immune algorithms (IAs). This method is adopted to realize the twin goals of maintaining diversity in the population and sustaining the convergence capacity of the IA. In this method, the mutation rate (pm) is adaptively varied depending on the fitness values of the solutions. Solutions of high fitness are protected, while solutions with sub-average fitness are total...

  17. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  18. Delayed adaptive immunity is related to higher MMR vaccine-induced antibody titers in children.

    Science.gov (United States)

    Strömbeck, Anna; Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Adlerberth, Ingegerd; Wold, Agnes E; Rudin, Anna

    2016-04-01

    There are notable inter-individual variations in vaccine-specific antibody responses in vaccinated children. The aim of our study was to investigate whether early-life environmental factors and adaptive immune maturation prior and close to measles-mumps-rubella (MMR) immunization relate to magnitudes of vaccine-specific antibody titers. In the FARMFLORA birth cohort, including both farming and non-farming families, children were immunized with the MMR vaccine at 18 months of age. MMR vaccine-induced antibody titers were measured in plasma samples obtained at 36 months of age. Infants' blood samples obtained at birth, 3-5 days and at 4 and 18 months of age were analyzed for T- and B-cell numbers, proportions of naive and memory T and B cells, and fractions of putative regulatory T cells. Multivariate factor analyses show that higher anti-MMR antibody titers were associated with a lower degree of adaptive immune maturation, that is, lower proportions of memory T cells and a lower capacity of mononuclear cells to produce cytokines, but with higher proportions of putative regulatory T cells. Further, children born by cesarean section (CS) had significantly higher anti-measles titers than vaginally-born children; and CS was found to be associated with delayed adaptive immunity. Also, girls presented with significantly higher anti-mumps and anti-rubella antibody levels than boys at 36 months of age. These results indicate that delayed adaptive immune maturation before and in close proximity to immunization seems to be advantageous for the ability of children to respond with higher anti-MMR antibody levels after vaccination. PMID:27195118

  19. The role of time delay in adaptive cellular negative feedback systems.

    Science.gov (United States)

    Lapytsko, Anastasiya; Schaber, Jörg

    2016-06-01

    Adaptation in cellular systems is often mediated by negative feedbacks, which usually come with certain time delays causing several characteristic response patterns including an overdamped response, damped or sustained oscillations. Here, we analyse generic two-dimensional delay differential equations with delayed negative feedback describing the dynamics of biochemical adaptive signal-response networks. We derive explicit thresholds and boundaries showing how time delay determines characteristic response patterns of these networks. Applying our theoretical analyses to concrete data we show that adaptation to osmotic stress in yeast is optimal in the sense of minimizing adaptation time without causing oscillatory behaviour, i.e., a critically damped response. In addition, our framework demonstrates that a slight increase of time delay in the NF-κB system might induce a switch from damped to sustained oscillatory behaviour. Thus, we demonstrate how delay differential equations can be used to explicitly study the delay in biochemical negative feedback systems. Our analysis also provides insight into how time delay may tune biological signal-response patterns and control the systems behaviour. PMID:26995333

  20. Role of SHIP-1 in the adaptive immune responses to aeroallergen in the airway.

    Directory of Open Access Journals (Sweden)

    Sukit Roongapinun

    Full Text Available BACKGROUND: Th2-dominated inflammatory response in the airway is an integral component in the pathogenesis of allergic asthma. Accumulating evidence supports the notion that the phosphoinositide 3-kinase (PI3K pathway is involved in the process. We previously reported that SHIP-1, a negative regulator of the PI3K pathway, is essential in maintaining lung immunohomeostasis, potentially through regulation of innate immune cells. However, the function of SHIP-1 in adaptive immune response in the lung has not been defined. We sought to determine the role of SHIP-1 in adaptive immunity in response to aeroallergen stimulation in the airway. METHODOLOGY/PRINCIPAL FINDINGS: SHIP-1 knockout (SHIP-1-/- mice on BALB/c background were immunized with ovalbumin (OVA plus aluminum hydroxide, a strong Th2-inducing immunization, and challenged with OVA. Airway and lung inflammation, immunoglobulin response, Th2 cytokine production and lymphocyte response were analyzed and compared with wild type mice. Even though there was mild spontaneous inflammation in the lung at baseline, SHIP-1-/- mice showed altered responses, including less cell infiltration around the airways but more in the parenchyma, less mucus production, decreased Th2 cytokine production, and diminished serum OVA-specific IgE, IgG1, but not IgG2a. Naïve and OVA sensitized SHIP-1-/- T cells produced a lower amount of IL-4. In vitro differentiated SHIP-1-/- Th2 cells produced less IL-4 compared to wild type Th2 cells upon T cell receptor stimulation. CONCLUSIONS/SIGNIFICANCE: These findings indicate that, in contrast to its role as a negative regulator in the innate immune cells, SHIP-1 acts as a positive regulator in Th2 cells in the adaptive immune response to aeroallergen. Thus any potential manipulation of SHIP-1 activity should be adjusted according to the specific immune response.

  1. Tactics used by HIV-1 to evade host innate, adaptive, and intrinsic immunities

    Institute of Scientific and Technical Information of China (English)

    LU Lu; YU Fei; DU Lan-ying; XU Wei; JIANG Shi-bo

    2013-01-01

    Objective To review the mechanisms by which HIV evades different components of the host immune system.Data sources This review is based on data obtained from published articles from 1991 to 2012.To perform the PubMed literature search,the following key words were input:HIV and immune evasion.Study selection Articles containing information related to HIV immune evasion were selected.Results Although HIV is able to induce vigorous antiviral immune responses,viral replication cannot be fully controlled,and neither pre-existing infected cells nor latent HIV infection can be completely eradicated.Like many other enveloped viruses,HIV can escape recognition by the innate and adaptive immune systems.Recent findings have demonstrated that HIV can also successfully evade host restriction factors,the components of intrinsic immune system,such as APOBEC3G (apolipoprotein B mRNA-editing enzyme,catalytic polypeptide-like 3G),TRIM5α (tripartite motif 5-α),tetherin,and SAMHD1 (SAM-domain HD-domain containing protein).Conclusions HIV immune evasion plays an important role in HIV pathcgenesis.Fully understanding the tactics deployed by HIV to evade various components of the host immune systems will allow for the development of novel strategies aimed toward the prevention and cure of HIV/AIDS.

  2. Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavation.

    Science.gov (United States)

    Guida, Brandon Scott; Garcia-Pichel, Ferran

    2016-05-17

    Some cyanobacteria, known as euendoliths, excavate and grow into calcium carbonates, with their activity leading to significant marine and terrestrial carbonate erosion and to deleterious effects on coral reef and bivalve ecology. Despite their environmental relevance, the mechanisms by which they can bore have remained elusive and paradoxical, in that, as oxygenic phototrophs, cyanobacteria tend to alkalinize their surroundings, which will encourage carbonate precipitation, not dissolution. Therefore, cyanobacteria must rely on unique adaptations to bore. Studies with the filamentous euendolith, Mastigocoleus testarum, indicated that excavation requires both cellular energy and transcellular calcium transport, mediated by P-type ATPases, but the cellular basis for this phenomenon remains obscure. We present evidence that excavation in M. testarum involves two unique cellular adaptations. Long-range calcium transport is based on active pumping at multiple cells along boring filaments, orchestrated by the preferential localization of calcium ATPases at one cell pole, in a ring pattern, facing the cross-walls, and by repeating this placement and polarity, a pattern that breaks at branching and apical cells. In addition, M. testarum differentiates specialized cells we call calcicytes, that which accumulate calcium at concentrations more than 500-fold those found in other cyanobacteria, concomitantly and drastically lowering photosynthetic pigments and enduring severe cytoplasmatic alkalinization. Calcicytes occur commonly, but not exclusively, in apical parts of the filaments distal to the excavation front. We suggest that calcicytes allow for fast calcium flow at low, nontoxic concentrations through undifferentiated cells by providing buffering storage for excess calcium before final excretion to the outside medium. PMID:27140633

  3. Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses

    DEFF Research Database (Denmark)

    Tkaczyk, Christine; Jensen, Bettina M; Iwaki, Shoko; Gilfillan, Alasdair M

    2006-01-01

    In this article, we have described studies that have demonstrated that mast cells can be activated as a consequence of adaptive and innate immune reactions and that these responses can be modified by ligands for other receptors expressed on the surface of mast cells. These various stimuli differe...

  4. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus

    Science.gov (United States)

    Infection of pregnant cows with noncytopathic (ncp) BVDV induces rapid innate and adaptive immune responses resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent ...

  5. Dysregulation of adaptive immune responses in complement C3-deficient patients

    NARCIS (Netherlands)

    Pekkarinen, Pirkka T.; Heikkila, Nelli; Kisand, Kai; Peterson, Paert; Botto, Marina; Daha, Mohamed R.; Drouet, Christian; Isaac, Lourdes; Helminen, Merja; Haahtela, Tari; Meri, Seppo; Jarva, Hanna; Arstila, T. Petteri

    2015-01-01

    In addition to its effector functions, complement is an important regulator of adaptive immune responses. Murine studies suggest that complement modulates helper T-cell differentiation, and Th1 responses in particular are impaired in the absence of functional complement. Here, we have studied humora

  6. Effect of preoperative immunonutrition and other nutrition models on cellular immune parameters

    Institute of Scientific and Technical Information of China (English)

    Yusuf Gunerhan; Neset Koksal; Umit Yasar Sahin; Mehmet Ali Uzun; Emel Ek(s)ioglu-Demiralp

    2009-01-01

    AIM: To evaluate the effects of preoperative immunonutrition and other nutrition models on the cellular immunity parameters of patients with gastrointestinal tumors before surgical intervention. In addition, effects on postoperative complications were examined.METHODS: Patients with gastrointestinal tumors were randomized into 3 groups. The immunonutrition group received a combination of arginine, fatty acids and nucleotides. The second and third group received normal nutrition and standard enteral nutrition,respectively. Nutrition protocols were administered for 7 d prior to the operation. Nutritional parameters,in particular prealbumin levels and lymphocyte subpopulations (CD4+, CD8+, CD16+/56+, and CD69 cells) were evaluated before and after the nutrition protocols. Groups were compared in terms of postoperative complications and duration of hospital stay.RESULTS: Of the 42 patients who completed the study, 16 received immunonutrition, 13 received normal nutrition and 13 received standard enteral nutrition.prealbumin values were low in every group, but this parameter was improved after the nutritional protocol only in the immunonutrition group (13.64 ± 8.83vs 15.98 ± 8.66, P = 0.037). Groups were similar in terms of CD4+, CD16+/56, and CD69+ prior to the nutritional protocol; whereas CD8+ was higher in the standard nutrition group compared to the immunonutrition group. After nutritional protocols,none of the groups had an increase in their lymphocyte subpopulations. Also, groups did not differ in terms of postoperative complications and postoperative durations of hospital stay.CONCLUSION: Preoperative immunonutrition provided a significant increase in prealbumin levels,while it did not significantly alter T lymphocyte subpopulation counts, the rate of postoperative complications and the duration of hospital stay.

  7. Bacterial Stationary-State Mutagenesis and Mammalian Tumorigenesis as Stress-Induced Cellular Adaptations and the Role of Epigenetics

    OpenAIRE

    Karpinets, TV; Greenwood, DJ; Pogribny, IP; Samatova, NF

    2006-01-01

    Mechanisms of cellular adaptation may have some commonalities across different organisms. Revealing these common mechanisms may provide insight in the organismal level of adaptation and suggest solutions to important problems related to the adaptation. An increased rate of mutations, referred as the mutator phenotype, and beneficial nature of these mutations are common features of the bacterial stationary-state mutagenesis and of the tumorigenic transformations in mammalian cells. We argue th...

  8. Thymus involvement in immune system adaptive response to fractionated low-level γ-radiation

    International Nuclear Information System (INIS)

    In experiments with normal and thymoctomized rats it has been revealed that exposure of normal animals to 0.35 Gy of γ-radiation induces changes in blood cells subsets, depression of NK functional activity, decrease in polymorphonuclear leukocyte basal chemiluminescence level, supression of the delayed type of hypersensitivity reaction and stimulation of local IgE-synthesis in respiratory organs. At the same time irradiation of adult thymectomized animals did not resulted in significant fluctuations in cellular and humoral immunity indices as well as blood cells functional activity level. Some mechanisms of radiation-induced immune system disturbances mediate via thymus are discussed

  9. IL-17A in Human Respiratory Diseases: Innate or Adaptive Immunity? Clinical Implications

    Directory of Open Access Journals (Sweden)

    Dominique M. A. Bullens

    2013-01-01

    Full Text Available Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A, called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases.

  10. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important?.

    Science.gov (United States)

    Fausther-Bovendo, Hugues; Kobinger, Gary P

    2014-01-01

    Pre-existing immunity against human adenovirus (HAd) serotype 5 derived vector in the human population is widespread, thus hampering its clinical use. Various components of the immune system, including neutralizing antibodies (nAbs), Ad specific T cells and type I IFN activated NK cells, contribute to dampening the efficacy of Ad vectors in individuals with pre-existing Ad immunity. In order to circumvent pre-existing immunity to adenovirus, numerous strategies, such as developing alternative Ad serotypes, varying immunization routes and utilizing prime-boost regimens, are under pre-clinical or clinical phases of development. However, these strategies mainly focus on one arm of pre-existing immunity. Selection of alternative serotypes has been largely driven by the absence in the human population of nAbs against them with little attention paid to cross-reactive Ad specific T cells. Conversely, varying the route of immunization appears to mainly rely on avoiding Ad specific tissue-resident T cells. Finally, prime-boost regimens do not actually circumvent pre-existing immunity but instead generate immune responses of sufficient magnitude to confer protection despite pre-existing immunity. Combining the above strategies and thus taking into account all components regulating pre-existing Ad immunity will help further improve the development of Ad vectors for animal and human use. PMID:25483662

  11. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses.

    Science.gov (United States)

    Wu, Gongqing; Xu, Li; Yi, Yunhong

    2016-06-01

    Larvae of Galleria mellonella are useful models for studying the innate immunity of invertebrates or for evaluating the virulence of microbial pathogens. In this work, we demonstrated that prior exposure of G. mellonella larvae to high doses (1×10(4), 1×10(5) or 1×10(6) cells/larva) of heat-killed Photorhabdus luminescens TT01 increases the resistance of larvae to a lethal dose (50 cells/larva) of viable P. luminescens TT01 infection administered 48h later. We also found that the changes in immune protection level were highly correlated to the changes in levels of cellular and humoral immune parameters when priming the larvae with different doses of heat-killed P. luminescens TT01. Priming the larvae with high doses of heat-killed P. luminescens TT01 resulted in significant increases in the hemocytes activities of phagocytosis and encapsulation. High doses of heat-killed P. luminescens TT01 also induced an increase in total hemocyte count and a reduction in bacterial density within the larval hemocoel. Quantitative real-time PCR analysis showed that genes coding for cecropin and gallerimycin and galiomycin increased in expression after priming G. mellonella with heat-killed P. luminescens TT01. All the immune parameters changed in a dose-dependent manner. These results indicate that the insect immune system is capable of sensing the extent of priming agent and mounting a proportionate immune response. PMID:27107784

  12. The reconstitution of the thymus in immunosuppressed individuals restores CD4-specific cellular and humoral immune responses.

    Science.gov (United States)

    Plana, Montserrat; Garcia, Felipe; Darwich, Laila; Romeu, Joan; López, Anna; Cabrera, Cecilia; Massanella, Marta; Canto, Esther; Ruiz-Hernandez, Raul; Blanco, Julià; Sánchez, Marcelo; Gatell, Josep M; Clotet, Bonaventura; Ruiz, Lidia; Bofill, Margarita

    2011-07-01

    Infection with HIV-1 frequently results in the loss of specific cellular immune responses and an associated lack of antibodies. Recombinant growth hormone (rGH) administration reconstitutes thymic tissue and boosts the levels of peripheral T cells, so rGH therapy may be an effective adjuvant through promoting the recovery of lost cellular and T-cell-dependent humoral immune responses in immunosuppressed individuals. To test this concept, we administered rGH to a clinically defined group of HIV-1-infected subjects with defective cellular and serological immune responses to at least one of three commonly employed vaccines (hepatitis A, hepatitis B or tetanus toxoid). Of the original 278 HIV-1-infected patients entering the trial, only 20 conformed to these immunological criteria and were randomized into three groups: Group A (n = 8) receiving rGH and challenged with the same vaccine to which they were unresponsive and Groups B (n = 5) and C (n = 7) who received either rGH or vaccination alone, respectively. Of the eight subjects in Group A, five recovered CD4 cellular responses to vaccine antigen and four of these produced the corresponding antibodies. In the controls, three of the five in group B recovered cellular responses with two producing antibodies, whereas three of the seven in Group C recovered CD4 responses, with only two producing antibodies. Significantly, whereas seven of ten patients receiving rGH treatment in Group A (six patients) and B (one patient) recovered T-cell responses to HIVp24, only two of six in Group C responded similarly. In conclusion, reconstitution of the thymus in immunosuppressed adults through rGH hormone treatment restored both specific antibody and CD4 T-cell responses. PMID:21501161

  13. Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity in Vivo.

    Science.gov (United States)

    Meng, Chunchun; Zhi, Xiao; Li, Chao; Li, Chuanfeng; Chen, Zongyan; Qiu, Xusheng; Ding, Chan; Ma, Lijun; Lu, Hongmin; Chen, Di; Liu, Guangqing; Cui, Daxiang

    2016-02-23

    Current studies have revealed the immune effects of graphene oxide (GO) and have utilized them as vaccine carriers and adjuvants. However, GO easily induces strong oxidative stress and inflammatory reaction at the site of injection. It is very necessary to develop an alternative adjuvant based on graphene oxide derivatives for improving immune responses and decreasing side effects. Carnosine (Car) is an outstanding and safe antioxidant. Herein, the feasibility and efficiency of ultrasmall graphene oxide decorated with carnosine as an alternative immune adjuvant were explored. OVA@GO-Car was prepared by simply mixing ovalbumin (OVA, a model antigen) with ultrasmall GO covalently modified with carnosine (GO-Car). We investigated the immunological properties of the GO-Car adjuvant in model mice. Results show that OVA@GO-Car can promote robust and durable OVA-specific antibody response, increase lymphocyte proliferation efficiency, and enhance CD4(+) T and CD8(+) T cell activation. The presence of Car in GO also probably contributes to enhancing the antigen-specific adaptive immune response through modulating the expression of some cytokines, including IL-6, CXCL1, CCL2, and CSF3. In addition, the safety of GO-Car as an adjuvant was evaluated comprehensively. No symptoms such as allergic response, inflammatory redness swelling, raised surface temperatures, physiological anomalies of blood, and remarkable weight changes were observed. Besides, after modification with carnosine, histological damages caused by GO-Car in lung, muscle, kidney, and spleen became weaken significantly. This study sufficiently suggest that GO-Car as a safe adjuvant can effectively enhance humoral and innate immune responses against antigens in vivo. PMID:26766427

  14. An experimental protocol for the establishment of dogs with long-term cellular immune reactions to Leishmania antigens

    Directory of Open Access Journals (Sweden)

    Márcia Cristina Aquino Teixeira

    2011-03-01

    Full Text Available Domestic dogs are considered to be the main reservoirs of zoonotic visceral leishmaniasis. In this work, we evaluated a protocol to induce Leishmania infantum/Leishmania chagasi-specific cellular and humoral immune responses in dogs, which consisted of two injections of Leishmania promastigote lysate followed by a subcutaneous inoculation of viable promastigotes. The primary objective was to establish a canine experimental model to provide positive controls for testing immune responses to Leishmania in laboratory conditions. After inoculation of viable promastigotes, specific proliferative responses of peripheral blood mononuclear cells (PBMCs to either Leishmania lysate or recombinant proteins, the in vitro production of interferon-γ by antigen-stimulated PBMCs and a significant increase in circulating levels of anti-Leishmania antibodies were observed. The immunized dogs also displayed positive delayed-type hypersensitivity reactions to Leishmania crude antigens and to purified recombinant proteins. An important finding that supports the suitability of the dogs as positive controls is that they remained healthy for the entire observation period, i.e., more than seven years after infection. Following the Leishmania antigen lysate injections, the infection of dogs by the subcutaneous route appears to induce a sustained cellular immune response, leading to an asymptomatic infection. This provides a useful model for both the selection of immunogenic Leishmania antigens and for immunobiological studies on their possible immunoprotective activities.

  15. Cellular immune responses to HPV-18, -31, and -53 in healthy volunteers immunized with recombinant HPV-16 L1 virus-like particles

    International Nuclear Information System (INIS)

    Human papillomavirus-like particles (HPV VLP) are candidate vaccines that have shown to be efficacious in reducing infection and inducing robust antiviral immunity. Neutralizing antibodies generated by vaccination are largely type-specific, but little is known about the type-specificity of cellular immune responses to VLP vaccination. To determine whether vaccination with HPV-16 L1VLP induces cellular immunity to heterologous HPV types (HPV-18, HPV-31, and HPV-53), we examined proliferative and cytokine responses in vaccine (n = 11) and placebo (n = 5) recipients. Increased proliferative and cytokine responses to heterologous types were observed postvaccination in some individuals. The proportion of women responding to heterologous types postvaccination (36%-55%) was lower than that observed in response to HPV-16 (73%). Response to HPV-16 VLP predicted response to other types. The strongest correlations in response were observed between HPV-16 and HPV-31, consistent with their phylogenetic relatedness. In summary, PBMC from HPV-16 VLP vaccine recipients can respond to L1VLP from heterologous HPV types, suggesting the presence of conserved T cell epitopes

  16. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. PMID:25528359

  17. AN EFFICIENT RADIO RESOURCE MANAGEMENT STRATEGY FOR ADAPTIVE OFDM CELLULAR SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Yu Guanding; Zhang Zhaoyang; Qiu Peiliang

    2006-01-01

    This paper presents an efficient Radio Resource Management (RRM) strategy for adaptive Orthogonal Frequency Division Multiplexing (OFDM) cellular systems. In the proposed strategy, only those users who have the same distance from their base stations can reuse a same subcarrier. This can guarantee the received Carrier-to-Interference ratio (C/I) of each subcarrier to be acceptable as required by system planning. Then by employing different modulation scheme on each subcarrier according to its received C/I, system spectral efficiency can be gracefully increased. Analytical and simulation results show that the spectral efficiency is improved by 40% without sacrificing the Bit Error Rate (BER) performance and call blocking probability and system capacity of the proposed strategy is better than conventional systems.

  18. Cross Talk between Nucleotide Synthesis Pathways with Cellular Immunity in Constraining Hepatitis E Virus Replication.

    Science.gov (United States)

    Wang, Yijin; Wang, Wenshi; Xu, Lei; Zhou, Xinying; Shokrollahi, Ehsan; Felczak, Krzysztof; van der Laan, Luc J W; Pankiewicz, Krzysztof W; Sprengers, Dave; Raat, Nicolaas J H; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-05-01

    Viruses are solely dependent on host cells to propagate; therefore, understanding virus-host interaction is important for antiviral drug development. Since de novo nucleotide biosynthesis is essentially required for both host cell metabolism and viral replication, specific catalytic enzymes of these pathways have been explored as potential antiviral targets. In this study, we investigated the role of different enzymatic cascades of nucleotide biosynthesis in hepatitis E virus (HEV) replication. By profiling various pharmacological inhibitors of nucleotide biosynthesis, we found that targeting the early steps of the purine biosynthesis pathway led to the enhancement of HEV replication, whereas targeting the later step resulted in potent antiviral activity via the depletion of purine nucleotide. Furthermore, the inhibition of the pyrimidine pathway resulted in potent anti-HEV activity. Interestingly, all of these inhibitors with anti-HEV activity concurrently triggered the induction of antiviral interferon-stimulated genes (ISGs). Although ISGs are commonly induced by interferons via the JAK-STAT pathway, their induction by nucleotide synthesis inhibitors is completely independent of this classical mechanism. In conclusion, this study revealed an unconventional novel mechanism of cross talk between nucleotide biosynthesis pathways and cellular antiviral immunity in constraining HEV infection. Targeting particular enzymes in nucleotide biosynthesis represents a viable option for antiviral drug development against HEV. HEV is the most common cause of acute viral hepatitis worldwide and is also associated with chronic hepatitis, especially in immunocompromised patients. Although often an acute and self-limiting infection in the general population, HEV can cause severe morbidity and mortality in certain patients, a problem compounded by the lack of FDA-approved anti-HEV medication available. In this study, we have investigated the role of the nucleotide synthesis pathway

  19. THE HUMORAL AND CELLULAR IMMUNE RESPONSES INDUCED BY HPV18L1-E6/E7 DNA VACCINES IN MICE

    Institute of Scientific and Technical Information of China (English)

    Yang Jin; Li Xu; Li Ang; Wang Yili; Si Lüsheng

    2006-01-01

    Objective To construct eukaryotic expression vector of HPV18 L1- E6, E7 chimeric gene and examine the humoral and cellular immune responses induced by this DNA vaccines in mice. Methods The C-terminal of major capsid protein L1 gene and mutant zinc finger domains of early E6/7 oncogenes in HPV18 were integrated and inserted into eukaryotic expression vector pVAX1 to generate vaccines pVAX1-L1E6Mxx, E7Mxx. CHO cells were transiently transfected with the individual construct. Target protein expressions in the lysate of the transfected cells were measured by ELISA and immunocytochemistry. After BALB/c mice were vaccinated with various recombinant plasmids(pVAX1-L1-E6M3 or pVAX1-L1-E7M3) and immunie adjuvants (pLXHDmB7-2 or LTB) through different administration routes (intramuscular or intranasal) , the great cellular immune responses were produced as revealed by delayed-type hypersensitivity (DTH) and lymphocyte proliferation, and the expression of IL-4 and IFN- γ cells in CD4+ and CD8+subpopulations. Results The highly efficient expression of pVAX1-L1E6Mxx, E7Mxx vector in host eukaryotic cells were demonstrated both by ELISA and immunocytochemistry. The level of specific serum IgG against HPV in experiment groups mice was much higher than that of control group, and intranuscular immunization group had the highest antibody level. Intramuscular immunization groups were superior to intranasal immunization groups in DTH response, splenocyte proliferation and CD8+ IFN-γ + cells number, but CD4+ IL4+ cell number was higher in intranasal immunization groups. The immunization groups using pLXHDmB7-2 as adjuvant were superior to other groups in immunoresponse. Conclusion These DNA vaccines produce remarkable cellular and humoral immuneresponses in the mouse and may provide as prophylatic and therapeutic candidates for HPV induced cancer treatment.

  20. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity

    OpenAIRE

    Charpentier, Emmanuelle; Richter, Hagen; van der Oost, John; White, Malcolm F

    2015-01-01

    CRISPR-Cas is an RNA-mediated adaptive immune system that defends bacteria and archaea against mobile genetic elements. Short mature CRISPR RNAs (crRNAs) are key elements in the interference step of the immune pathway. A CRISPR array composed of a series of repeats interspaced by spacer sequences acquired from invading mobile genomes is transcribed as a precursor crRNA (pre-crRNA) molecule. This pre-crRNA undergoes one or two maturation steps to generate the mature crRNAs that guide CRISPR-as...

  1. Motion adaptive vertical handoff in cellular/WLAN heterogeneous wireless network.

    Science.gov (United States)

    Li, Limin; Ma, Lin; Xu, Yubin; Fu, Yunhai

    2014-01-01

    In heterogeneous wireless network, vertical handoff plays an important role for guaranteeing quality of service and overall performance of network. Conventional vertical handoff trigger schemes are mostly developed from horizontal handoff in homogeneous cellular network. Basically, they can be summarized as hysteresis-based and dwelling-timer-based algorithms, which are reliable on avoiding unnecessary handoff caused by the terminals dwelling at the edge of WLAN coverage. However, the coverage of WLAN is much smaller compared with cellular network, while the motion types of terminals can be various in a typical outdoor scenario. As a result, traditional algorithms are less effective in avoiding unnecessary handoff triggered by vehicle-borne terminals with various speeds. Besides that, hysteresis and dwelling-timer thresholds usually need to be modified to satisfy different channel environments. For solving this problem, a vertical handoff algorithm based on Q-learning is proposed in this paper. Q-learning can provide the decider with self-adaptive ability for handling the terminals' handoff requests with different motion types and channel conditions. Meanwhile, Neural Fuzzy Inference System (NFIS) is embedded to retain a continuous perception of the state space. Simulation results verify that the proposed algorithm can achieve lower unnecessary handoff probability compared with the other two conventional algorithms. PMID:24741347

  2. Status of cellular immunity lacks prognostic significance in vulvar squamous carcinoma

    NARCIS (Netherlands)

    de Jong, R.A.; Toppen, N. L.; ten Hoor, K. A.; Boezen, H. M.; Kema, I. P.; Hollema, H.; Nijman, H. W.

    2012-01-01

    Objective. It is generally recognized that the immune system has an important role in regulating cancer development. Evidence indicating a prognostic role of the immune system in vulvar carcinoma is scarce. This study investigated the presence and prognostic significance of several aspects of the im

  3. Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells.

    Science.gov (United States)

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-09-01

    Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules. PMID:27262513

  4. Relative rate and location of intra-host HIV evolution to evade cellular immunity are predictable.

    Science.gov (United States)

    Barton, John P; Goonetilleke, Nilu; Butler, Thomas C; Walker, Bruce D; McMichael, Andrew J; Chakraborty, Arup K

    2016-01-01

    Human immunodeficiency virus (HIV) evolves within infected persons to escape being destroyed by the host immune system, thereby preventing effective immune control of infection. Here, we combine methods from evolutionary dynamics and statistical physics to simulate in vivo HIV sequence evolution, predicting the relative rate of escape and the location of escape mutations in response to T-cell-mediated immune pressure in a cohort of 17 persons with acute HIV infection. Predicted and clinically observed times to escape immune responses agree well, and we show that the mutational pathways to escape depend on the viral sequence background due to epistatic interactions. The ability to predict escape pathways and the duration over which control is maintained by specific immune responses open the door to rational design of immunotherapeutic strategies that might enable long-term control of HIV infection. Our approach enables intra-host evolution of a human pathogen to be predicted in a probabilistic framework. PMID:27212475

  5. Stress, ageing and their influence on functional, cellular and molecular aspects of the immune system.

    Science.gov (United States)

    Vitlic, Ana; Lord, Janet M; Phillips, Anna C

    2014-06-01

    The immune response is essential for keeping an organism healthy and for defending it from different types of pathogens. It is a complex system that consists of a large number of components performing different functions. The adequate and controlled interaction between these components is necessary for a robust and strong immune response. There are, however, many factors that interfere with the way the immune response functions. Stress and ageing now consistently appear in the literature as factors that act upon the immune system in the way that is often damaging. This review focuses on the role of stress and ageing in altering the robustness of the immune response first separately, and then simultaneously, discussing the effects that emerge from their interplay. The special focus is on the psychological stress and the impact that it has at different levels, from the whole system to the individual molecules, resulting in consequences for physical health. PMID:24562499

  6. Dengue encephalitis-associated immunopathology in the mouse model: Implications for vaccine developers and antigens inducer of cellular immune response.

    Science.gov (United States)

    Marcos, Ernesto; Lazo, Laura; Gil, Lázaro; Izquierdo, Alienys; Suzarte, Edith; Valdés, Iris; Blanco, Aracelys; Ancizar, Julio; Alba, José Suárez; Pérez, Yusleydis de la C; Cobas, Karen; Romero, Yaremis; Guillén, Gerardo; Guzmán, María G; Hermida, Lisset

    2016-08-01

    Despite the many efforts made by the scientific community in the development of vaccine candidates against dengue virus (DENV), no vaccine has been licensed up to date. Although the immunopathogenesis associated to the disease is a key factor to take into account by vaccine developers, the lack of animal models that reproduce the clinical signs of the disease has hampered the vaccine progress. Non-human primates support viral replication, but they are very expensive and do not show signs of disease. Immunocompromised mice develop viremia and some signs of the disease; however, they are not valuable for vaccine testing. Nowadays, immunocompetent mice are the most used model to evaluate the immunogenicity of vaccine candidates. These animals are resistant to DENV infection; therefore, the intracranial inoculation with neuroadapted virus, which provokes viral encephalitis, represents an alternative to evaluate the protective capacity of vaccine candidates. Previous results have demonstrated the crucial role of cellular immune response in the protection induced by the virus and vaccine candidates in this mouse encephalitis model. However, in the present work we are proposing that the magnitude of the cell-mediated immunity and the inflammatory response generated by the vaccine can modulate the survival rate after viral challenge. We observed that the intracranial challenge of naïve mice with DENV-2 induces the recruitment of immune cells that contribute to the reduction of viral load, but does not increase the survival rate. On the contrary, animals treated with cyclophosphamide, an immunosuppressive drug that affects proliferating lymphocytes, had a higher viral load but a better survival rate than untreated animals. These results suggest that the immune system is playing an immunopathogenic role in this model and the survival rate may not be a suitable endpoint in the evaluation of vaccine candidates based on antigens that induce a strong cellular immune response

  7. Impaired cellular immune response to injected bacteria after knockdown of ferritin genes in the hard tick Haemaphysalis longicornis.

    Science.gov (United States)

    Galay, Remil Linggatong; Takechi, Rie; Umemiya-Shirafuji, Rika; Talactac, Melbourne Rio; Maeda, Hiroki; Kusakisako, Kodai; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2016-06-01

    Iron is an indispensable element for most microorganisms, including many pathogenic bacteria. Iron-withholding is a known component of the innate immunity, particularly of vertebrate hosts. Ticks are vectors of multiple pathogens and reports have shown that they naturally harbor several bacterial species. Thus, tick innate immunity must be crucial in limiting bacterial population to tolerable level that will not cause adverse effects. We have previously characterized two types of the iron-binding protein ferritin (HlFER) in the hard tick Haemaphysalis longicornis, known to be a vector of some protozoan parasites and rickettsiae, and showed their antioxidant function and importance in blood feeding and reproduction. Here we examined the possible role of HlFERs in tick immunity against bacterial infection. After silencing Hlfer genes, adult ticks were injected with live enhanced green fluorescence protein-expressing Escherichia coli, and then monitored for survival rate. Hemolymph that included hemocytes was collected for microscopic examination to observe cellular immune response, and for E. coli culture to determine bacterial viability after injection in the ticks. The expression of some antimicrobial peptides in whole ticks was also analyzed by RT-PCR. Hlfer-silenced ticks had a significantly lower survival rate than control ticks after E. coli injection. Greater number of bacteria inside and outside the hemocytes and higher bacterial colony counts after culture with hemolymph were also observed in Hlfer-silenced ticks. However, no difference on the expression of antimicrobial peptides was observed. These results suggest that ferritin molecules might be important in the cellular immune response of ticks to some bacteria. PMID:26792075

  8. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    Science.gov (United States)

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  9. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    International Nuclear Information System (INIS)

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45highCD11b+) and CD8+ T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8+ T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-γ) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.

  10. Activity against Mycobacterium tuberculosis with concomitant induction of cellular immune responses by a tetraaza-macrocycle with acetate pendant arms.

    Science.gov (United States)

    David, S; Ordway, D; Arroz, M J; Costa, J; Delgado, R

    2001-01-01

    The novel tetraaza-macrocyclic compound 3,7,11-tris(carboxymethyl)-3,7,11,17-tetraaza-bicyclo[11.3.1]heptadeca-1(17),13,15-triene, abbreviated as ac3py14, was investigated for its activity against Mycobacterium tuberculosis and for induction of protective cellular immune responses. Perspective results show that ac3py14 and its Fe3+ 1:1 complex, [Fe(ac3py14)], inhibited radiometric growth of several strains of M. tuberculosis. Inhibition with 25 microg/mL varied from 99% for H37Rv to 80% and above for multiple drug-resistant clinical isolates. The capacity of ac3py14 to elicit a beneficial immune response without cellular apoptosis was assessed and compared to the effects of virulent M. tuberculosis. The present study produces evidence that after stimulation with ac3py14 there was significant production of interferon gamma (IFN-gamma), whereas the production of interleukin-5 (IL-5) remained low, and there was development of a memory population (CD45RO). The level of binding of Annexin V, a marker of apoptosis, was not sufficient to result in toxic effects toward alphabeta and gammadelta T cells and CD14+ macrophages. This preliminary study is the first report of a compound that simultaneously exerts an inhibitory effect against M. tuberculosis and induces factors associated with protective immune responses. PMID:11501675

  11. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses.

    Science.gov (United States)

    Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender

    2016-05-01

    In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens. PMID:27056086

  12. The effects of chemotherapeutics on cellular metabolism and consequent immune recognition.

    Science.gov (United States)

    Newell, M Karen; Melamede, Robert; Villalobos-Menuey, Elizabeth; Swartzendruber, Douglas; Trauger, Richard; Camley, Robert E; Crisp, William

    2004-02-01

    Awidely held view is that oncolytic agents induce death of tumor cells directly. In this report we review and discuss the apoptosis-inducing effects of chemotherapeutics, the effects of chemotherapeutics on metabolic function, and the consequent effects of metabolic function on immune recognition. Finally, we propose that effective chemotherapeutic and/or apoptosis-inducing agents, at concentrations that can be achieved physiologically, do not kill tumor cells directly. Rather, we suggest that effective oncolytic agents sensitize immunologically altered tumor cells to immune recognition and immune-directed cell death. PMID:14756899

  13. The Two Sides of Complement C3d: Evolution of Electrostatics in a Link between Innate and Adaptive Immunity

    OpenAIRE

    Kieslich, Chris A.; Dimitrios Morikis

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor compl...

  14. Shades of grey-the blurring view of innate and adaptive immunity

    OpenAIRE

    Lanier, LL

    2013-01-01

    This special issue of Nature Reviews Immunology focuses on the types of lymphocyte that blur the traditional boundaries between the innate and adaptive immune systems. The development and functional properties of 'innate-like' B and T cells and natural killer (NK) cells are reviewed and the emerging understanding of newly discovered innate lymphoid cells (ILCs) is considered. © 2013 Macmillan Publishers Limited. All rights reserved.

  15. Can We Translate Vitamin D Immunomodulating Effect on Innate and Adaptive Immunity to Vaccine Response?

    Directory of Open Access Journals (Sweden)

    Pierre Olivier Lang

    2015-03-01

    Full Text Available Vitamin D (VitD, which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body’s immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend “booster” of VitD at vaccination time to enhance vaccine response.

  16. Once Upon a Time: The Adaptive Immune Response in Atherosclerosis--a Fairy Tale No More.

    Science.gov (United States)

    Le Borgne, Marie; Caligiuri, Giuseppina; Nicoletti, Antonino

    2015-01-01

    Extensive research has been carried out to decipher the function of the adaptive immune response in atherosclerosis, with the expectation that it will pave the road for the design of immunomodulatory therapies that will prevent or reverse the progression of the disease. All this work has led to the concept that some T- and B-cell subsets are proatherogenic, whereas others are atheroprotective. In addition to the immune response occurring in the spleen and lymph nodes, it has been shown that lymphoid neo-genesis takes place in the adventitia of atherosclerotic vessels, leading to the formation of tertiary lymphoid organs where an adaptive immune response can be mounted. Whereas the mechanisms orchestrating the formation of these organs are becoming better understood, their impact on atherosclerosis progression remains unclear. Several potential therapeutic strategies against atherosclerosis, such as protective vaccination against atherosclerosis antigens or inhibiting the activation of proatherogenic B cells, have been proposed based on our improving knowledge of the role of the immune system in atherosclerosis. These strategies have shown success in preclinical studies, giving hope that they will lead to clinical applications. PMID:26605642

  17. Role of cellular immunity in cow's milk allergy : pathogenesis, tolerance induction, and beyond

    OpenAIRE

    Jo, Juandy; Garssen, Johan; Knippels, Leon; Sandalova, Elena

    2014-01-01

    Food allergy is an aberrant immune-mediated reaction against harmless food substances, such as cow's milk proteins. Due to its very early introduction, cow's milk allergy is one of the earliest and most common food allergies. For this reason cow's milk allergy can be recognized as one of the first indications of an aberrant inflammatory response in early life. Classically, cow's milk allergy, as is true for most other allergies as well, is primarily associated with abnormal humoral immune res...

  18. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    Science.gov (United States)

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-01-01

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses. PMID:27110810

  19. Soluble metals in residual oil fly ash alter innate and adaptive pulmonary immune responses to bacterial infection in rats

    International Nuclear Information System (INIS)

    The soluble metals of the pollutant, residual oil fly ash (ROFA), have been shown to alter pulmonary bacterial clearance in rats. The goal of this study was to determine the potential effects on both the innate and adaptive lung immune responses after bacterial infection in rats pre-exposed to the soluble metals in ROFA. Sprague-Dawley rats were intratracheally dosed (i.t.) at day 0 with ROFA (R-Total) (1.0 mg/100 g body weight), the soluble fraction of ROFA (R-Soluble), the soluble sample subject to a chelator (R-Chelex), or phosphate-buffered saline (Saline). On day 3, rats were administered an i.t. dose of 5 x 104 Listeria monocytogenes. On days 6, 8, and 10, bacterial pulmonary clearance was monitored and bronchoalveolar lavage (BAL) was performed on days 3 (pre-infection), 6, 8, and 10. A concentrated first fraction of lavage fluid was retained for analysis of lactate dehydrogenase and albumin to assess lung injury. BAL cell number, phenotype, and production of reactive oxygen (ROS) and nitrogen species (RNS) were assessed, and a variety of cytokines were measured in the BAL fluid. Rats pre-treated with R-Soluble showed elevated lung injury/cytotoxicity and increased cellular influx into the lungs. R-Soluble-treatment also altered ROS, RNS, and cytokine levels, and caused a degree of macrophage and T cell inhibition. These effects of R-Soluble result in increased pulmonary bacterial burden after infection. The results suggest that soluble metals in ROFA increase lung injury and inflammation, and alter both innate and adaptive pulmonary immune responses

  20. Peroxisomes are platforms for cytomegalovirus’ evasion from the cellular immune response

    OpenAIRE

    Magalhães, Ana Cristina; Ferreira, Ana Rita; Gomes, Sílvia; Vieira, Marta; Gouveia, Ana; Valença, Isabel; Islinger, Markus; Nascimento, Rute; Schrader, Michael; Kagan, Jonathan C.; Ribeiro, Daniela

    2016-01-01

    The human cytomegalovirus developed distinct evasion mechanisms from the cellular antiviral response involving vMIA, a virally-encoded protein that is not only able to prevent cellular apoptosis but also to inhibit signalling downstream from mitochondrial MAVS. vMIA has been shown to localize at mitochondria and to trigger their fragmentation, a phenomenon proven to be essential for the signalling inhibition. Here, we demonstrate that vMIA is also localized at peroxisomes, induces their fragm...

  1. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    International Nuclear Information System (INIS)

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population. (paper)

  2. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    Science.gov (United States)

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  3. Pathogen-Mimicking Polymeric Nanoparticles based on Dopamine Polymerization as Vaccines Adjuvants Induce Robust Humoral and Cellular Immune Responses.

    Science.gov (United States)

    Liu, Qi; Jia, Jilei; Yang, Tingyuan; Fan, Qingze; Wang, Lianyan; Ma, Guanghui

    2016-04-01

    Aiming to enhance the immunogenicity of subunit vaccines, a novel antigen delivery and adjuvant system based on dopamine polymerization on the surface of poly(D,L-lactic-glycolic-acid) nanoparticles (NPs) with multiple mechanisms of immunity enhancement is developed. The mussel-inspired biomimetic polydopamine (pD) not only serves as a coating to NPs but also functionalizes NP surfaces. The method is facile and mild including simple incubation of the preformed NPs in the weak alkaline dopamine solution, and incorporation of hepatitis B surface antigen and TLR9 agonist unmethylated cytosine-guanine (CpG) motif with the pD surface. The as-constructed NPs possess pathogen-mimicking manners owing to their size, shape, and surface molecular immune-activating properties given by CpG. The biocompatibility and biosafety of these pathogen-mimicking NPs are confirmed using bone marrow-derived dendritic cells. Pathogen-mimicking NPs hold great potential as vaccine delivery and adjuvant system due to their ability to: 1) enhance cytokine secretion and immune cell recruitment at the injection site; 2) significantly activate and maturate dendritic cells; 3) induce stronger humoral and cellular immune responses in vivo. Furthermore, this simple and versatile dopamine polymerization method can be applicable to endow NPs with characteristics to mimic pathogen structure and function, and manipulate NPs for the generation of efficacious vaccine adjuvants. PMID:26849717

  4. Cellular immune responses during high-dose interferon-alpha induction therapy for hepatitis C virus infection

    OpenAIRE

    Barnes, E; Gelderblom, H.C.; Humphreys, I.; Semmo, N.; Reesink, H W; Beld, M.G.H.M.; Lier, van, R.A.W.; Klenerman, P.

    2009-01-01

    BACKGROUND: The effect that high-dose interferon (IFN)-alpha induction therapy for hepatitis C virus (HCV) infection has on cellular immune responses is currently unknown. METHODS: Thirty-one treatment-naive patients with chronic HCV infection received amantadine and ribavirin, combined with 6 weeks of high-dose IFN-alpha-2b induction therapy followed by weekly pegylated IFN-alpha-2b, for 24 or 48 weeks. Using IFN-gamma and interleukin (IL)-2 enzyme-linked immunospot (ELISpot) assays, we anal...

  5. Tamoxifen persistently disrupts the humoral adaptive immune response of gilthead seabream (Sparus aurata L.).

    Science.gov (United States)

    Rodenas, M C; Cabas, I; Abellán, E; Meseguer, J; Mulero, V; García-Ayala, A

    2015-12-01

    There is increasing concern about the possible effect of pharmaceutical compounds may have on the fish immune system. Bath exposition of 17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives, altered the immune response of the gilthead seabream (Sparus aurata L.), a marine hermaphrodite teleost. Tamoxifen (Tmx) is a selective estrogen-receptor modulator used in hormone replacement therapy, the effects of which are unknown in fish immunity. This study aims to investigate the effects of dietary administration of EE2 (5 μg/g food) and Tmx (100 μg/g food) on the immune response of gilthead seabream, and the capacity of the immune system to recover its functionality after a recovery period. The results show for the first time the reversibility of the effect of EE2 and Tmx on the fish immune response. Tmx promoted a transient alteration in hepatic vitellogenin gene expression of a different magnitude to that produced by EE2. Both, EE2 and Tmx inhibited the induction of interleukin-1β gene expression while reversed the inhibition of ROI production in leukocytes following vaccination. However, none of these effects were observed after ceasing EE2 and Tmx exposure. EE2 and Tmx stimulated the antibody response of vaccinated fish although Tmx, but not EE2, altered the antibody response and modulated the percentage of IgM(+) B lymphocytes of vaccinated fish during the recovery phase. Taken together, our results suggest that EE2 and Tmx might alter the capacity of fish to appropriately respond to infection and show that Tmx has a long-lasting effect on humoral adaptive immunity. PMID:26234710

  6. Standardized extract of Tinospora crispa stimulates innate and adaptive immune responses in Balb/c mice.

    Science.gov (United States)

    Ahmad, Waqas; Jantan, Ibrahim; Kumolosasi, Endang; Bukhari, Syed Nasir Abbas

    2016-03-01

    Standardized extract of Tinospora crispa has been shown to exhibit immunostimulatory effects on innate immune responses in Wistar-Kyoto rats by enhancing neutrophil and T cell-mediated immunity. In this study the immunostimulatory effects of T. crispa were further investigated on the cellular immune response by determining its effect on nitric oxide (NO) production ability, peritoneal macrophage phagocytosis and delayed type hypersensitivity (DTH), whereas the humoral immune response was evaluated through the measurement of serum immunoglobulins (IgG and IgM) and serum lysozyme levels. Male Balb/c mice were immunized with 200 μL of 5 × 10(9) sheep red blood cells (sRBCs) per mL on day 0 and orally administered with 50, 100 and 200 mg per kg of ethanol extract of T. crispa for 14 days. Syringin and magnoflorine were qualitatively and quantitatively analyzed in the extract as chemical markers by using a validated reversed-phase high performance liquid chromatography method. T. crispa extract (TCE) considerably improved the peritoneal macrophages' ability to engulf FITC-labeled E. coli in a dose-dependent manner. TCE also dose-dependently promoted NO production in peritoneal macrophages activated by a lipopolysaccharide (LPS) and markedly potentiated the sRBS-induced swelling rate of the mice paw in DTH. The extract significantly enhanced the level of serum immunoglobulins, showing maximum activity at 100 mg kg(-1). Compared to the control groups, the serum lysozyme level and myeloperoxidase (MPO) activity were significantly higher in extract-treated groups. These findings suggest that T. crispa possesses strong immunostimulatory activities and might act as a natural immunomodulator as well as a potential nutraceutical for the modulation of the immune response. PMID:26839149

  7. Immunomodulatory effects and adaptive immune response to daratumumab in multiple myeloma

    DEFF Research Database (Denmark)

    Krejcik, Jakub; Casneuf, T.; Nijhof, I.;

    2015-01-01

    assays. T-cell subpopulation counts were modelled over time with linear mixed modelling. Two group comparisons were performed using non-parametric Wilcoxon rank sum tests. Results: Data from 148 patients receiving 16 mg/kg DARA in GEN501 (n = 42) and Sirius (n = 106) were analyzed for changes in immune......Introduction: Daratumumab (DARA) is a novel human monoclonal antibody that targets CD38, a protein that is highly expressed on multiple myeloma (MM) cells. DARA acts through multiple immune effector-mediated mechanisms, including complement-dependent cytotoxicity, antibody-dependent cell......-mediated cytotoxicity, and antibody-dependent cellular phagocytosis. In two clinical studies (NCT00574288 [GEN501] and NCT01985126 [Sirius]) of DARA monotherapy in patients with relapsed and refractory MM, overall response rates were 36% and 29%, respectively. CD38 is highly expressed in myeloma cells but also...

  8. Genome complexity in the coelacanth is reflected in its adaptive immune system

    Science.gov (United States)

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  9. Endotoxemia is associated with altered innate and adaptive immune responses in untreated HIV-1 infected individuals.

    Directory of Open Access Journals (Sweden)

    Anne Roslev Bukh

    Full Text Available BACKGROUND: Microbial translocation may contribute to the immunopathogenesis in HIV infection. We investigated if microbial translocation and inflammation were associated with innate and adaptive immune responses in adults with HIV. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational cohort study. Sera from HIV-infected and HIV-uninfected individuals were analyzed for microbial translocation (soluble CD14, lipopolysaccharides [LPS], endotoxin core antibody, and anti-α-galactosyl antibodies and inflammatory markers (high sensitivity C-reactive protein, IL-6, IL-1 receptor antagonist, soluble tumor necrosis factor receptor II, and IL-10 with enzyme-linked immunosorbent assays. Peripheral blood mononuclear cells (PBMC from HIV-infected persons and healthy controls (primed with single-stranded HIV-1-derived RNA were stimulated with LPS, and cytokine production was measured. Finally, HIV-infected patients were immunized with Prevnar 7vPnC±CpG 7909 followed by Pneumo Novum PPV-23. Effects of microbial translocation and inflammation on immunization were analyzed in a predictive regression model. We included 96 HIV-infected individuals, 76 on highly active antiretroviral therapy (HAART, 20 HAART-naive, and 50 healthy controls. Microbial translocation and inflammatory markers were higher among HIV-infected persons than controls. Cytokine levels following LPS stimulation were increased in PBMCs from HAART-naive compared to HAART-treated HIV-infected persons. Further, RNA-priming of PBMCs from controls acted synergistically with LPS to augment cytokine responses. Finally, high serum LPS levels predicted poor vaccine responses among HAART-naive, but not among HAART-treated HIV-infected individuals. CONCLUSIONS/SIGNIFICANCE: LPS acts synergistically with HIV RNA to stimulate innate immune responses in vitro and increasing serum LPS levels seem to predict poor antibody responses after vaccination among HAART-naive HIV-infected persons. Thus, our

  10. Role of Cellular Immunity in Cow’s Milk Allergy: Pathogenesis, Tolerance Induction, and Beyond

    OpenAIRE

    Juandy Jo; Johan Garssen; Leon Knippels; Elena Sandalova

    2014-01-01

    Food allergy is an aberrant immune-mediated reaction against harmless food substances, such as cow’s milk proteins. Due to its very early introduction, cow’s milk allergy is one of the earliest and most common food allergies. For this reason cow’s milk allergy can be recognized as one of the first indications of an aberrant inflammatory response in early life. Classically, cow’s milk allergy, as is true for most other allergies as well, is primarily associated with abnormal humoral immune res...

  11. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines

    OpenAIRE

    Thomas R. Laws; Tinatin Kuchuloria; Nazibriola Chitadze; Little, Stephen F.; Webster, Wendy M.; Debes, Amanda K; Salome Saginadze; Nikoloz Tsertsvadze; Mariam Chubinidze; Robert G Rivard; Shota Tsanava; Dyson, Edward H.; Andrew J H Simpson; Hepburn, Matthew J; Nino Trapaidze

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthr...

  12. PACS—Realization of an adaptive concept using pressure actuated cellular structures

    International Nuclear Information System (INIS)

    A biologically inspired concept is investigated which can be utilized to develop energy efficient, lightweight and applicational flexible adaptive structures. Building a real life morphing unit is an ambitious task as the numerous works in the particular field show. Summarizing fundamental demands and barriers regarding shape changing structures, the basic challenges of designing morphing structures are listed. The concept of Pressure Actuated Cellular Structures (PACS) is arranged within the recent morphing activities and it is shown that it complies with the underlying demands. Systematically divided into energy-related and structural subcomponents the working principle is illuminated and relationships between basic design parameters are expressed. The analytical background describing the physical mechanisms of PACS is presented in concentrated manner. This work focuses on the procedure of dimensioning, realizing and experimental testing of a single cell and a single row cantilever made of PACS. The experimental outcomes as well as the results from the FEM computations are used for evaluating the analytical methods. The functionality of the basic principle is thus validated and open issues are determined pointing the way ahead. (paper)

  13. An Adaptive Control Method for Ros-Drill Cellular Microinjector with Low-Resolution Encoder

    Directory of Open Access Journals (Sweden)

    Zhenyu Zhang

    2013-01-01

    Full Text Available A novel control methodology which uses a low-resolution encoder is presented for a cellular microinjection technology called the Ros-Drill (rotationally oscillating drill. It is developed primarily for ICSI (intracytoplasmic sperm injection operations, with the objective of generating a desired oscillatory motion at the tip of a micro glass pipette. It is an inexpensive setup, which creates high-frequency (higher than 500 Hz and small-amplitude (around 0.2 deg rotational oscillations at the tip of an injection pipette. These rotational oscillations enable the pipette to drill into cell membranes with minimum biological damage. Such a motion control procedure presents no particular difficulty when it uses sufficiently precise motion sensors. However, size, costs, and accessibility of technology to the hardware components severely constrain the sensory capabilities. Consequently, the control mission and the trajectory tracking are adversely affected. This paper presents two contributions: (a a dedicated novel adaptive feedback control method to achieve a satisfactory trajectory tracking capability. We demonstrate via experiments that the tracking of the harmonic rotational motion is achieved with desirable fidelity; (b some important analytical features and related observations associated with the controlled harmonic motion which is created by the low-resolution feedback control structure.

  14. Delayed effects of low-dose radiation on cellular immunity in atomic bomb survivors residing in the United States.

    Science.gov (United States)

    Bloom, E T; Akiyama, M; Kusunoki, Y; Makinodan, T

    1987-05-01

    Several parameters of cellular immune function were assessed among persons who survived the 1945 atomic bombs in Hiroshima and Nagasaki but who now reside in the United States. The subjects in this study were exposed to various low doses (T65D) of radiation at the time of the bomb. More than half received an estimated 0 Gy (S0 group). Of those exposed to more radiation (S+ group), nearly 90% received less than 0.50 Gy (50 rad). Lymphocytes were isolated from the peripheral blood of these individuals and were assessed for the following parameters of cellular immunity: mitogenic response to phytohemagglutinin, mitogenic response to allogeneic lymphocytes, natural cell-mediated cytotoxicity (NCMC), and interferon production. In every case, the response of the S+ group was greater than that of the S0 group, although only the difference for NCMC was statistically significant. Results of studies presently being performed on A-bomb survivors residing in Hiroshima do not confirm this difference. Therefore, it is difficult to say whether the increase in natural cytotoxicity observed among the American and not the Japanese A-bomb survivors exposed to very low doses of radiation is a hormetic effect which was modulated by post-radiation environmental conditions or a result of selective migration. PMID:3570796

  15. Quantifying the dynamics of viruses and the cellular immune response of the host

    NARCIS (Netherlands)

    Althaus, C.L.

    2009-01-01

    Infections can be caused by viruses, which attack certain cells within an infected host. However, the immune system of the host has evolved remarkable defense mechanisms that counter against an infection. In particular, so-called cytotoxic T lymphocytes can recognize and eliminate infected cells. Th

  16. Aberrant cellular immune responses in humans infected persistently with parvovirus B19

    DEFF Research Database (Denmark)

    Isa, Adiba; Norbeck, Oscar; Hirbod, Taha;

    2006-01-01

    A subset of parvovirus B19 (B19) infected patients retains the infection for years, as defined by detection of B19 DNA in bone marrow. Thus far, analysis of B19-specific humoral immune responses and viral genome variations has not revealed a mechanism for the absent viral clearance. In this study...

  17. Optimal reactive power flow incorporating static voltage stability based on multi-objective adaptive immune algorithm

    International Nuclear Information System (INIS)

    People have paid more attention to enhancing voltage stability margin since voltage collapses happened in some power systems recently. This paper proposes an optimal reactive power flow (ORPF) incorporating static voltage stability based on a multi-objective adaptive immune algorithm (MOAIA). The main idea of the proposed algorithm is to add two parts to an existing immune algorithm. The first part defines both partial affinity and global affinity to evaluate the antibody affinity to the multi-objective functions. The second part uses adaptive crossover, mutation and clone rates for antibodies to maintain the antibodies diversity. Hence, the proposed algorithm can achieve a dynamic balance between individual diversity and population convergence. The paper describes ORPF's multi-objective functional mathematical model and the constraint conditions. The problems associated with the antibody are also discussed in detail. The proposed method has been tested in the IEEE-30 system and compared with IGA (immune genetic algorithm). The results show that the proposed algorithm has improved performance over the IGA

  18. Quantitative PCR evaluation of cellular immune responses in Kenyan children vaccinated with a candidate malaria vaccine.

    Directory of Open Access Journals (Sweden)

    Jedidah Mwacharo

    Full Text Available BACKGROUND: The T-cell mediated immune response plays a central role in the control of malaria after natural infection or vaccination. There is increasing evidence that T-cell responses are heterogeneous and that both the quality of the immune response and the balance between pro-inflammatory and regulatory T-cells determines the outcome of an infection. As Malaria parasites have been shown to induce immunosuppressive responses to the parasite and non-related antigens this study examined T-cell mediated pro-inflammatory and regulatory immune responses induced by malaria vaccination in children in an endemic area to determine if these responses were associated with vaccine immunogenicity. METHODS: Using real-time RT- PCR we profiled the expression of a panel of key markers of immunogenecity at different time points after vaccination with two viral vector vaccines expressing the malaria TRAP antigen (FP9-TRAP and MVA-TRAP or following rabies vaccination as a control. PRINCIPAL FINDINGS: The vaccine induced modest levels of IFN-gamma mRNA one week after vaccination. There was also an increase in FoxP3 mRNA expression in both TRAP stimulated and media stimulated cells in the FFM ME-TRAP vaccine group; however, this may have been driven by natural exposure to parasite rather than by vaccination. CONCLUSION: Quantitative PCR is a useful method for evaluating vaccine induced cell mediated immune responses in frozen PBMC from children in a malaria endemic country. Future studies should seek to use vaccine vectors that increase the magnitude and quality of the IFN-gamma immune response in naturally exposed populations and should monitor the induction of a regulatory T cell response.

  19. A novel calcium-independent cellular PLA2 acts in insect immunity and development

    Science.gov (United States)

    Phospholipase A2 (PLA2) catalyzes the position-specific hydrolysis of fatty acids linked to the sn-2 position of phospholipids (PLs). PLA2s make up a very large superfamily, with more than known 15 groups, classified into secretory PLA2 (sPLA2), Ca2+-dependent cellular PLA2 (sPLA2), and Ca2+-indepen...

  20. HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like gag-env particles

    International Nuclear Information System (INIS)

    Recombinant human immunodeficiency virus type-1 (HIV-1)-like gag-env particles produced in mammalian cells were inoculated into two New Zealand white rabbits. In parallel, two control rabbits were inoculated with the homologous HIV-1 virions inactivated by ultraviolet light (uv) and psoralen treatments. The humoral and cellular immune responses to HIV-1 were evaluated for both groups of animals. Recombinant particles elicited humoral immunity that was specific for all the viral structural proteins. The antibodies recognized both denatured and nondenatured proteins. Moreover, the sera neutralized the in vitro infectivity of the homologous virus in CEM cells. Importantly, the recombinant particles also generated a T helper response by priming with the HIV proteins. Similar results were observed with inactivated virus immunization. Therefore, the authors results suggest that the recombinant HIV-like particles elicit functional humoral immunity as well as cellular immunity and represent a novel vaccine candidate for AIDS

  1. Cellular Immune Responses in Humans Induced by Two Serogroup B Meningococcal Outer Membrane Vesicle Vaccines Given Separately and in Combination.

    Science.gov (United States)

    Oftung, Fredrik; Korsvold, Gro Ellen; Aase, Audun; Næss, Lisbeth M

    2016-04-01

    MenBvac and MeNZB are safe and efficacious outer membrane vesicle (OMV) vaccines against serogroup B meningococcal disease. Antibody responses have previously been investigated in a clinical trial with these two OMV vaccines given separately (25 μg/dose) or in combination (12.5 and 12.5 μg/dose) in three doses administered at 6-week intervals. Here, we report the results from analyzing cellular immune responses against MenBvac and MeNZB OMVs in terms of antigen-specific CD4(+)T cell proliferation and secretion of cytokines. The proliferative CD4(+)T cell responses to the combined vaccine were of the same magnitude as the homologous responses observed for each individual vaccine. The results also showed cross-reactivity in the sense that both vaccine groups receiving separate vaccines responded to both homologous and heterologous OMV antigen when assayed for antigen-specific cellular proliferation. In addition, a multiplex bead array assay was used to analyze the presence of Th1 and Th2 cytokines in cell culture supernatants. The results showed that gamma interferon, interleukin-4 (IL-4), and IL-10 responses could be detected as a result of vaccination with both the MenBvac and the MeNZB vaccines given separately, as well as when given in combination. With respect to cross-reactivity, the cytokine results paralleled the observations made for proliferation. In conclusion, the results demonstrate that cross-reactive cellular immune responses involving both Th1 and Th2 cytokines can be induced to the same extent by different tailor-made OMV vaccines given either separately or in combination with half the dose of each vaccine. PMID:26865595

  2. Synergistic and additive effects of cimetidine and levamisole on cellular immune responses to hepatitis B virus DNA vaccine in mice.

    Science.gov (United States)

    Niu, X; Yang, Y; Wang, J

    2013-02-01

    We and others have previously shown that both cimetidine (CIM) and levamisole (LMS) enhance humoral and cellular responses to DNA vaccines via different mechanisms. In this study, we investigated the synergistic and additive effects of CIM and LMS on the potency of antigen-specific immunities generated by a DNA vaccine encoding the hepatitis B surface antigen (HBsAg, pVax-S2). Compared with CIM or LMS alone, the combination of CIM and LMS elicited a robust HBsAg-specific cellular response that was characterized by higher IgG2a, but did not further increase HBsAg-specific antibody IgG and IgG1 production. Consistent with these results, the combination of CIM and LMS produced the highest level of IL-2 and IFN-γ in antigen-specific CD4(+) T cells, whereas the combination of CIM and LMS did not further increase IL-4 production. Significantly, a robust HBsAg-specific cytotoxic response was also observed in the animals immunized with pVax-S2 in the presence of the combination of CIM and LMS. Further mechanistic studies demonstrated that the combination of CIM and LMS promoted dendritic cell (DC) activation and blocked anti-inflammatory cytokine IL-10 and TGF-β production in CD4(+) CD25(+) T cells. These findings suggest that CIM and LMS have the synergistic and additive ability to enhance cellular response to hepatitis B virus DNA vaccine, which may be mediated by DC activation and inhibition of anti-inflammatory cytokine expression. Thus, the combination of cimetidine and levamisole may be useful as an effective adjuvant in DNA vaccinations for chronic hepatitis B virus infection. PMID:23298196

  3. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses.

    Science.gov (United States)

    Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei

    2016-05-18

    Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses. PMID:27088457

  4. Strain variations in the murine cellular immune response to the phenolic glycolipid I antigen of Mycobacterium leprae.

    Science.gov (United States)

    Koster, F T; Teuscher, C; Matzner, P; Umland, E; Yanagihara, D; Brennan, P J; Tung, K S

    1986-01-01

    The cellular immune response to the Mycobacterium leprae-specific phenolic glycolipid I was examined in inbred mice immunized with M. leprae by in vivo delayed cutaneous hypersensitivity and in vitro lymphocyte proliferation. Whereas all mouse strains responded to M.leprae-induced delayed-type hypersensitivity and lymphocyte proliferation, only BALB.K was responsive in both assays to the glycolipid. Responsiveness was determined in part by non-H-2 genes, while the influence of H-2 genes was not apparent. Among congenic BALB/c mice differing only at Igh-C allotype loci, variations in responsiveness were found in both delayed-type hypersensitivity and lymphocytes proliferation assays, indicating a possible role for Igh-C loci-linked genes. Unresponsiveness in the lymphocyte proliferation assay to the glycolipid was inherited as a dominant trait in one set of responder X nonresponder F1 progeny. We conclude that after immunization with M. leprae organisms, the cell-mediated responses to the glycolipid, endowed with a single carbohydrate epitope, are under polygenic control, predominantly non-H-2-linked genes. PMID:3510979

  5. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice.

    Science.gov (United States)

    Leal, Fernanda Munhoz Dos Anjos; Virginio, Veridiana Gomes; Martello, Carolina Lumertz; Paes, Jéssica Andrade; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Ferreira, Henrique Bunselmeyer

    2016-07-15

    Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species. PMID:27283856

  6. Enhancement of adaptive immunity to Neisseria gonorrhoeae by local intravaginal administration of microencapsulated interleukin 12.

    Science.gov (United States)

    Liu, Yingru; Egilmez, Nejat K; Russell, Michael W

    2013-12-01

    Gonorrhea remains one of the most frequent infectious diseases, and Neisseria gonorrhoeae is emerging as resistant to most available antibiotics, yet it does not induce a state of specific protective immunity against reinfection. Our recent studies have demonstrated that N. gonorrhoeae proactively suppresses host T-helper (Th) 1/Th2-mediated adaptive immune responses, which can be manipulated to generate protective immunity. Here we show that intravaginally administered interleukin 12 (IL-12) encapsulated in sustained-release polymer microspheres significantly enhanced both Th1 and humoral immune responses in a mouse model of genital gonococcal infection. Treatment of mice with IL-12 microspheres during gonococcal challenge led to faster clearance of infection and induced resistance to reinfection, with the generation of gonococcus-specific circulating immunoglobulin G and vaginal immunoglobulin A and G antibodies. These results suggest that local administration of microencapsulated IL-12 can serve as a novel therapeutic and prophylactic strategy against gonorrhea, with implications for the development of an effective vaccine. PMID:24048962

  7. Evaluation of cellular phenotypes implicated in immunopathogenesis and monitoring immune reconstitution inflammatory syndrome in HIV/leprosy cases.

    Directory of Open Access Journals (Sweden)

    Carmem Beatriz Wagner Giacoia-Gripp

    Full Text Available BACKGROUND: It is now evident that HAART-associated immunological improvement often leads to a variety of new clinical manifestations, collectively termed immune reconstitution inflammatory syndrome, or IRIS. This phenomenon has already been described in cases of HIV coinfection with Mycobacterium leprae, most of them belonging to the tuberculoid spectrum of leprosy disease, as observed in leprosy reversal reaction (RR. However, the events related to the pathogenesis of this association need to be clarified. This study investigated the immunological profile of HIV/leprosy patients, with special attention to the cellular activation status, to better understand the mechanisms related to IRIS/RR immunopathogenesis, identifying any potential biomarkers for IRIS/RR intercurrence. METHODS/PRINCIPAL FINDINGS: Eighty-five individuals were assessed in this study: HIV/leprosy and HIV-monoinfected patients, grouped according to HIV-viral load levels, leprosy patients without HIV coinfection, and healthy controls. Phenotypes were evaluated by flow cytometry for T cell subsets and immune differentiation/activation markers. As expected, absolute counts of the CD4+ and CD8+ T cells from the HIV-infected individuals changed in relation to those of the leprosy patients and controls. However, there were no significant differences among the groups, whether in the expression of cellular differentiation phenotypes or cellular activation, as reflected by the expression of CD38 and HLA-DR. Six HIV/leprosy patients identified as IRIS/RR were analyzed during IRIS/RR episodes and after prednisone treatment. These patients presented high cellular activation levels regarding the expression of CD38 in CD8+ cells T during IRIS/RR (median: 77,15%, dropping significantly (p<0,05 during post-IRIS/RR moments (median: 29,7%. Furthermore, an increase of cellular activation seems to occur prior to IRIS/RR. CONCLUSION/SIGNIFICANCE: These data suggest CD38 expression in CD8+ T cells

  8. Treponemal antibody in CSF and cellular immunity in peripheral blood of syphilitic patients with persisting positive rapid plasma regain.

    Science.gov (United States)

    He, Wei-Qiang; Wang, Huan-Li; Zhong, Dao-Qing; Lin, Lu-Yang; Qiu, Xiao-Shan; Yang, Ri-Dong

    2015-01-01

    The ratio of patients with RPR constant positive more than 2 years despite receiving standard syphilis treatment has been reported to be 11.54%~31.3%. The current interpretations on this phenomenon are cellular immune function restrained and the existence of neurosyphilis or asymptomatic neurosyphilis. We conducted this study to detect the treponemal antibody in cerebrospinal fluid (CSF) and lymphocyte subsets in peripheral blood of syphilis patients with persisting RPR positive more than 2 years without neurologic signs, and then explore their relationship. In this study, Treponemal antibody in CSF of 46 syphilitic with HIV negative were measured by syphilis serum test and compared with that of 5 neurosyphilis. Lymphocyte subsets were measured by flow cytometry (FCM) and compared with that of 30 healthy controls. We observed that treponemal antibody in CSF was detected not only in 12 cases (25.21%) of 46 treated patients, but also in 5 neurosyphilis. The ratio of lymphocyte subsets revealed that CD3+, CD4+ T cells and natural killer (NK) cells showed no significant differences between the patient and healthy controls (P>0.05), while CD8+ T cells in patients were significant higher than that in healthy controls (P0.05). In conclusion, the treponemal antibody in CSF of treated patients suggests that part of them were asymptomatic neurosyphilis and with cellular immunodifeciency. And there is no significant relationship between asymptomatic neurosyphilis and cellular immunodeficiency in peripheral blood. PMID:26191296

  9. Lithology intelligent identification using support vector machine and adaptive cellular automata in multispectral remote sensing image

    Science.gov (United States)

    Wang, Xianmin; Niu, Ruiqing; Wu, Ke

    2011-07-01

    Remote sensing provides a new idea and an advanced method for lithology identification, but lithology identification by remote sensing is quite difficult because 1. the disciplines of lithology identification in a concrete region are often quite different from the experts' experience; 2. in the regions with flourishing vegetation, lithology information is poor, so it is very difficult to identify the lithologies by remote sensing images. At present, the studies on lithology identification by remote sensing are primarily conducted on the regions with low vegetation coverage and high rock bareness. And there is no mature method of lithology identification in the regions with flourishing vegetation. Traditional methods lacking in the mining and extraction of the various complicated lithology information from a remote sensing image, often need much manual intervention and possess poor intelligence and accuracy. An intelligent method proposed in this paper for lithology identification based on support vector machine (SVM) and adaptive cellular automata (ACA) is expected to solve the above problems. The method adopted Landsat-7 ETM+ images and 1:50000 geological map as the data origins. It first derived the lithology identification factors on three aspects: 1. spectra, 2. texture and 3. vegetation cover. Second, it plied the remote sensing images with the geological map and established the SVM to obtain the transition rules according to the factor values of the samples. Finally, it established an ACA model to intelligently identify the lithologies according to the transition and neighborhood rules. In this paper an ACA model is proposed and compared with the traditional one. Results of 2 real-world examples show that: 1. The SVM-ACA method obtains a good result of lithology identification in the regions with flourishing vegetation; 2. it possesses high accuracies of lithology identification (with the overall accuracies of 92.29% and 85.54%, respectively, in the two

  10. The diversity-generating benefits of a prokaryotic adaptive immune system.

    Science.gov (United States)

    van Houte, Stineke; Ekroth, Alice K E; Broniewski, Jenny M; Chabas, Hélène; Ashby, Ben; Bondy-Denomy, Joseph; Gandon, Sylvain; Boots, Mike; Paterson, Steve; Buckling, Angus; Westra, Edze R

    2016-04-21

    Prokaryotic CRISPR-Cas adaptive immune systems insert spacers derived from viruses and other parasitic DNA elements into CRISPR loci to provide sequence-specific immunity. This frequently results in high within-population spacer diversity, but it is unclear if and why this is important. Here we show that, as a result of this spacer diversity, viruses can no longer evolve to overcome CRISPR-Cas by point mutation, which results in rapid virus extinction. This effect arises from synergy between spacer diversity and the high specificity of infection, which greatly increases overall population resistance. We propose that the resulting short-lived nature of CRISPR-dependent bacteria-virus coevolution has provided strong selection for the evolution of sophisticated virus-encoded anti-CRISPR mechanisms. PMID:27074511

  11. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation.

    Science.gov (United States)

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  12. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    OpenAIRE

    Zhang Quanfu; Zhang Fushun; Zhang Li; Jin Cong; Wang Xiaofang; Miao Fang; Li Chuan; Gu Wen; Liang Mifang; Zhang Shuo; Jiang Lifang; Li Mengfeng; Li Dexin

    2011-01-01

    Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV), has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs) has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has...

  13. A Major Cell Surface Antigen of Coccidioides immitis Which Elicits Both Humoral and Cellular Immune Responses

    OpenAIRE

    Hung, Chiung-Yu; Ampel, Neil M.; Christian, Lara; Seshan, Kalpathi R.; Cole, Garry T.

    2000-01-01

    Multinucleate parasitic cells (spherules) of Coccidioides immitis isolates produce a membranous outer wall component (SOW) in vitro which has been reported to be reactive with antibody from patients with coccidioidal infection, elicits a potent proliferative response of murine immune T cells, and has immunoprotective capacity in a murine model of coccidioidomycosis. To identify the antigenic components of SOW, the crude wall material was first subjected to Triton X-114 extraction, and a water...

  14. Early cellular immune response to a new candidate mycobacterial vaccine antigen in childhood tuberculosis.

    Science.gov (United States)

    Schepers, K; Dirix, V; Mouchet, F; Verscheure, V; Lecher, S; Locht, C; Mascart, F

    2015-02-18

    The search for novel vaccines against tuberculosis (TB) would benefit from in-depths knowledge of the human immune responses to Mycobacterium tuberculosis (Mtb) infection. Here, we characterised in a low TB incidence country, the immune responses to a new candidate vaccine antigen against TB, the heparin-binding haemagglutinin (HBHA), in young children in contact with an active TB case (aTB). Children with no history of BCG vaccination were compared to those vaccinated at birth to compare the initial immune responses to HBHA with secondary immune responses. Fifty-eight children with aTB and 76 with latent TB infection (LTBI) were included and they were compared to 90 non-infected children. Whereas Mtb-infected children globally secreted more interferon-gamma (IFN-γ) in response to HBHA compared to the non-infected children, these IFN-γ concentrations were higher in previously BCG-vaccinated compared to non-vaccinated children. The IFN-γ concentrations were similar in LTBI and aTB children, but appeared to differ qualitatively. Whereas the IFN-γ secretion induced by native methylated and recombinant non-methylated HBHA were well correlated for aTB, this was not the case for LTBI children. Thus, Mtb-infected young children develop IFN-γ responses to HBHA that are enhanced by prior BCG vaccination, indicating BCG-induced priming, thereby supporting a prime-boost strategy for HBHA-based vaccines. The qualitative differences between aTB and LTBI in their HBHA-induced IFN-γ responses may perhaps be exploited for diagnostic purposes. PMID:25583385

  15. The effects of chemotherapeutics on cellular metabolism and consequent immune recognition

    OpenAIRE

    Newell, M Karen; Melamede, Robert; Villalobos-Menuey, Elizabeth; Swartzendruber, Douglas; Trauger, Richard; Camley, Robert E; Crisp, William

    2004-01-01

    A widely held view is that oncolytic agents induce death of tumor cells directly. In this report we review and discuss the apoptosis-inducing effects of chemotherapeutics, the effects of chemotherapeutics on metabolic function, and the consequent effects of metabolic function on immune recognition. Finally, we propose that effective chemotherapeutic and/or apoptosis-inducing agents, at concentrations that can be achieved physiologically, do not kill tumor cells directly. Rather, we suggest th...

  16. Role of Natural Immunomodulator (Aloe Vera) in Cellular and Humoral Immune Responses

    OpenAIRE

    Ening Wiedosari

    2007-01-01

    Aloe vera belongs to a group of Liliaceae family plant and cultivated worldwide. It possesses acemannan (acetylated mannan), which has a significant pharmacological property. The acemannan has an immunomodulatory activity when administered to animals. The major immunomodulating effect includes the activation of immune effector cells, such as lymphocytes and macrophages, resulting in the production of cytokines, interleukin (IL)-1, IL-6, IL-12 and tumor necrosis factor alpha (TNFα). In particu...

  17. Cellular adaptation contributes to calorie restriction-induced preservation of skeletal muscle in aged rhesus monkeys.

    Science.gov (United States)

    McKiernan, Susan H; Colman, Ricki J; Aiken, Erik; Evans, Trent D; Beasley, T Mark; Aiken, Judd M; Weindruch, Richard; Anderson, Rozalyn M

    2012-03-01

    We have previously shown that a 30% reduced calorie intake diet delayed the onset of muscle mass loss in adult monkeys between ~16 and ~22 years of age and prevented multiple cellular phenotypes of aging. In the present study we show the impact of long term (~17 years) calorie restriction (CR) on muscle aging in very old monkeys (27-33 yrs) compared to age-matched Control monkeys fed ad libitum, and describe these data in the context of the whole longitudinal study. Muscle mass was preserved in very old calorie restricted (CR) monkeys compared to age-matched Controls. Immunohistochemical analysis revealed an age-associated increase in the proportion of Type I fibers in the VL from Control animals that was prevented with CR. The cross sectional area (CSA) of Type II fibers was reduced in old CR animals compared to earlier time points (16-22 years of age); however, the total loss in CSA was only 15% in CR animals compared to 36% in old Controls at ~27 years of age. Atrophy was not detected in Type I fibers from either group. Notably, Type I fiber CSA was ~1.6 fold greater in VL from CR animals compared to Control animals at ~27 years of age. The frequency of VL muscle fibers with defects in mitochondrial electron transport system enzymes (ETS(ab)), the absence of cytochrome c oxidase and hyper-reactive succinate dehydrogenase, were identical between Control and CR. We describe changes in ETS(ab) fiber CSA and determined that CR fibers respond differently to the challenge of mitochondrial deficiency. Fiber counts of intact rectus femoris muscles revealed that muscle fiber density was preserved in old CR animals. We suggest that muscle fibers from CR animals are better poised to endure and adapt to changes in muscle mass than those of Control animals. PMID:22226624

  18. Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms.

    Directory of Open Access Journals (Sweden)

    Kelly L Robertson

    Full Text Available Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS, increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and

  19. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia.

    Science.gov (United States)

    Hsu, Peter; Nanan, Ralph Kay Heinrich

    2014-01-01

    Maternal immune tolerance of the fetus is indispensable for a healthy pregnancy outcome. Nowhere is this immune tolerance more important than at the fetal-maternal interface - the decidua, the site of implantation, and placentation. Indeed, many lines of evidence suggest an immunological origin to the common pregnancy-related disorder, pre-eclampsia. Within the innate immune system, decidual NK cells and antigen presenting cells (including dendritic cells and macrophages) make up a large proportion of the decidual leukocyte population, and are thought to modulate vascular remodeling and trophoblast invasion. On the other hand, within the adaptive immune system, Foxp3(+) regulatory T cells are crucial for ensuring immune tolerance toward the semi-allogeneic fetus. Additionally, another population of CD4(+)HLA-G(+) suppressor T cells has also been identified as a potential player in the maintenance of immune tolerance. More recently, studies are beginning to unravel the potential interactions between the innate and the adaptive immune system within the decidua, that are required to maintain a healthy pregnancy. In this review, we discuss the recent advances exploring the complex crosstalk between the innate and the adaptive immune system during human pregnancy. PMID:24734032

  20. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    Science.gov (United States)

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. PMID:24631200

  1. Cellular immune responses in patients with hepatitis B surface antigen seroclearance induced by antiviral therapy

    Directory of Open Access Journals (Sweden)

    Zhu Xiaolin

    2011-02-01

    Full Text Available Abstract Background The mechanisms by which chronic hepatitis B is completely resolved through antiviral therapy are unknown, and the contribution of acquired T cell immunity to hepatitis B surface antigen (HBsAg seroclearance has not been investigated. Therefore, we measured the T-cell responses to core and envelope antigens in patients with HBsAg seroclearance. Methods Fourteen subjects with HBsAg seroclearance following antiviral treatment for chronic hepatitis B, 7 HBeAg-positive immunotolerant HBV carriers and 9 HBeAg-negative inactive HBsAg carriers were recruited. HBV-specific T-cell responses to recombinant HBV core (rHBcAg and envelope (rHBsAg proteins and pools of core and envelope peptides were measured using an ELISPOT assay detecting interferon-gamma and intracellular cytokine staining (ICS assays detecting interferon-gamma or interleukin 2. Results Interferon-gamma ELISPOT assays showed a low frequency of weak responses to the rHBsAg and S peptide pool in the HBsAg seroclearance group, and the response frequency to the rHBcAg and the C peptide pool was higher than to the rHBsAg (P P = 0.001 respectively. A higher response frequency to C than S peptide pools was confirmed in the interferon-gamma ICS assays for both CD4+ (P = 0.033 and CD8+ (P = 0.040 T cells in the HBsAg seroclearance group. The responses to C and S antigens in the inactive carriers were similar. Conclusions There was a low frequency of CD4+ and CD8+ T cell immune responses to envelope antigens in Chinese subjects with HBsAg seroclearance following antiviral therapy. It is unlikely that these immune responses are responsible for HBsAg seroclearance in these subjects.

  2. [The cellular immunity indices of patients with malignant melanoma using the viral immunomodulator rigvir].

    Science.gov (United States)

    Glinkina, L S; Bruvere, R Zh; Venskus, D R; Garklava, R R; Muceniece, A J

    1992-01-01

    The effect of rigvir, an immunomodulator of the viral origin, on cell-mediated immunity was studied in patients with skin malignant melanoma. Rosette formation and monoclonal antibody techniques were used to measure blood immunocompetent cell levels in patients with the above pathology, cases of benign skin tumors and healthy subjects. Rigvir was shown to influence natural resistance by raising blood monocyte and large granule-containing lymphocyte levels. It potentiated recruitment of pre-T-lymphocytes and young active T-lymphocytes to the peripheral blood. PMID:1300752

  3. Cellular Immune Response of Weaned Pigs Fed Diet Supplemented with an Essential Oil

    Directory of Open Access Journals (Sweden)

    Veronika Halas

    2011-12-01

    There was no significant difference among average daily gain, feed intake and feed conversion ratio of piglets fed different dietary treatments. The non-specific LST test at the 4th blood sampling showed higher values in pigs received feeds with essential oil supplementation (EO than that of the positive (PC and negative control (NC groups (P<0.05. However, no significant difference in specific immune response of pigs in different dietary treatments was found. It can be concluded that essential oil supplementation may enhance the non-specific immunocompetence of 28-day-old weaning pigs without compromising their growth performance.

  4. Assessment of cellular immune responses of healthy and diseased Tasmanian devils (Sarcophilus harrisii).

    Science.gov (United States)

    Kreiss, Alexandre; Fox, Nolan; Bergfeld, Jemma; Quinn, Stephen J; Pyecroft, Stephen; Woods, Gregory M

    2008-01-01

    The Tasmanian devil (TD) (Sarcophilus harrisii) is under threat from devil facial tumour disease (DFTD), a cancer that is transmitted between devils by direct cell implantation. As no devil is known to have rejected the tumour allograft, an understanding of the immune status of this species is essential to help explain the unique infectious nature of this cancer. We analysed differential white blood cell counts, the phagocytic response of neutrophils as well as mitogen-induced lymphocyte proliferation. Devils analysed included healthy TDs kept in captivity, healthy devils from disease-free and diseased areas as well as diseased devils. Neutrophils isolated from the peripheral blood of healthy devils showed competent phagocytosis and peripheral blood mononuclear cells from healthy and diseased devils proliferated in response to Con A, PHA and PWM stimulation. Although a wide range of responses was observed and relatively high doses of mitogens were required, there was no significant difference between males and females, adults and juveniles or between normal and diseased animals, suggesting that transmission of DFTD is not a consequence of a severely impaired immune system. As lymphocytes from all TDs appear to require strong stimulation for activation, this threshold may contribute to all devils being susceptible to DFTD. PMID:17988737

  5. Short- and long-term biomarkers for bacterial robustness: a framework for quantifying correlations between cellular indicators and adaptive behavior.

    Directory of Open Access Journals (Sweden)

    Heidy M W den Besten

    Full Text Available The ability of microorganisms to adapt to changing environments challenges the prediction of their history-dependent behavior. Cellular biomarkers that are quantitatively correlated to stress adaptive behavior will facilitate our ability to predict the impact of these adaptive traits. Here, we present a framework for identifying cellular biomarkers for mild stress induced enhanced microbial robustness towards lethal stresses. Several candidate-biomarkers were selected by comparing the genome-wide transcriptome profiles of our model-organism Bacillus cereus upon exposure to four mild stress conditions (mild heat, acid, salt and oxidative stress. These candidate-biomarkers--a transcriptional regulator (activating general stress responses, enzymes (removing reactive oxygen species, and chaperones and proteases (maintaining protein quality--were quantitatively determined at transcript, protein and/or activity level upon exposure to mild heat, acid, salt and oxidative stress for various time intervals. Both unstressed and mild stress treated cells were also exposed to lethal stress conditions (severe heat, acid and oxidative stress to quantify the robustness advantage provided by mild stress pretreatment. To evaluate whether the candidate-biomarkers could predict the robustness enhancement towards lethal stress elicited by mild stress pretreatment, the biomarker responses upon mild stress treatment were correlated to mild stress induced robustness towards lethal stress. Both short- and long-term biomarkers could be identified of which their induction levels were correlated to mild stress induced enhanced robustness towards lethal heat, acid and/or oxidative stress, respectively, and are therefore predictive cellular indicators for mild stress induced enhanced robustness. The identified biomarkers are among the most consistently induced cellular components in stress responses and ubiquitous in biology, supporting extrapolation to other microorganisms

  6. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses.

    Science.gov (United States)

    Aravindhan, Vivekanandhan; Madhumitha, Haridoss

    2016-01-01

    Globally, noncommunicable chronic diseases such as Type-2 Diabetes Mellitus (T2DM) and Coronary Artery Disease (CAD) are posing a major threat to the world. T2DM is known to potentiate CAD which had led to the coining of a new clinical entity named diabetic CAD (DM-CAD), leading to excessive morbidity and mortality. The synergistic interaction between these two comorbidities is through sterile inflammation which is now being addressed as metabolic inflammation or metainflammation, which plays a pivotal role during both early and late stages of T2DM and also serves as a link between T2DM and CAD. This review summarises the current concepts on the role played by both innate and adaptive immune responses in setting up metainflammation in DM-CAD. More specifically, the role played by innate pattern recognition receptors (PRRs) like Toll-like receptors (TLRs), NOD1-like receptors (NLRs), Rig-1-like receptors (RLRs), and C-type lectin like receptors (CLRs) and metabolic endotoxemia in fuelling metainflammation in DM-CAD would be discussed. Further, the role played by adaptive immune cells (Th1, Th2, Th17, and Th9 cells) in fuelling metainflammation in DM-CAD will also be discussed. PMID:27610390

  7. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection

    Science.gov (United States)

    Stevens, Natalie E.; Hatjopolous, Antoinette; Fraser, Cara K.; Alsharifi, Mohammed; Diener, Kerrilyn R.; Hayball, John D.

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  8. Preserved antiviral adaptive immunity following polyclonal antibody immunotherapy for severe murine influenza infection.

    Science.gov (United States)

    Stevens, Natalie E; Hatjopolous, Antoinette; Fraser, Cara K; Alsharifi, Mohammed; Diener, Kerrilyn R; Hayball, John D

    2016-01-01

    Passive immunotherapy may have particular benefits for the treatment of severe influenza infection in at-risk populations, however little is known of the impact of passive immunotherapy on the formation of memory responses to the virus. Ideally, passive immunotherapy should attenuate the severity of infection while still allowing the formation of adaptive responses to confer protection from future exposure. In this study, we sought to determine if administration of influenza-specific ovine polyclonal antibodies could inhibit adaptive immune responses in a murine model of lethal influenza infection. Ovine polyclonal antibodies generated against recombinant PR8 (H1N1) hemagglutinin exhibited potent prophylactic capacity and reduced lethality in an established influenza infection, particularly when administered intranasally. Surviving mice were also protected against reinfection and generated normal antibody and cytotoxic T lymphocyte responses to the virus. The longevity of ovine polyclonal antibodies was explored with a half-life of over two weeks following a single antibody administration. These findings support the development of an ovine passive polyclonal antibody therapy for treatment of severe influenza infection which does not affect the formation of subsequent acquired immunity to the virus. PMID:27380890

  9. HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response—Implications on HSCT Outcome

    Directory of Open Access Journals (Sweden)

    Thomas Kraemer

    2015-01-01

    Full Text Available The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire. To investigate the self-peptide repertoire of HLA-E∗01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E∗01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E∗01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection. Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.

  10. Control of Dichotomic Innate and Adaptive Immune Responses by Artery Tertiary Lymphoid Organs in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Falk eWeih

    2012-07-01

    Full Text Available Tertiary lymphoid organs (TLOs emerge in tissues in response to nonresolving inflammation such as chronic infection, graft rejection, and autoimmune disease. We identified artery TLOs (ATLOs in the adventitia adjacent to atherosclerotic plaques of aged hyperlipidemic ApoE-/- mice. ATLOs are structured into T cell areas harboring conventional dendritic cells (cDCs and monocyte-derived DCs (mDCs; B cell follicles containing follicular dendritic cells (FDCs within activated germinal centers; and peripheral niches of plasma cells. ATLOs also show extensive neoangiogenesis, aberrant lymphangiogenesis, and high endothelial venule (HEV neogenesis. Newly formed conduit networks connect the external lamina of the artery with HEVs in T cell areas. ATLOs recruit and generate lymphocyte subsets with opposing activities including activated CD4+ and CD8+ effector T cells, natural and induced CD4+ T regulatory cells (nTregs; iTregs as well as B-1 and B-2 cells at different stages of differentiation. These data indicate that ATLOs organize dichotomic innate and adaptive immune responses in atherosclerosis. In this review we discuss the novel concept that dichotomic immune responses towards atherosclerosis-specific antigens are carried out by ATLOs in the adventitia of the arterial wall and that malfunction of the tolerogenic arm of ATLO immunity triggers transition from silent autoimmune reactivity to clinically overt disease.

  11. The antimicrobial/elastase inhibitor elafin regulates lung dendritic cells and adaptive immunity.

    Science.gov (United States)

    Roghanian, Ali; Williams, Steven E; Sheldrake, Tara A; Brown, Tom I; Oberheim, Karen; Xing, Zhou; Howie, Sarah E M; Sallenave, Jean-Michel

    2006-05-01

    Infections with bacteria and viruses such as adenovirus are a feature of chronic lung diseases such as chronic obstructive pulmonary diseases (COPD), and may be instrumental in the generation of disease exacerbations. We have previously shown in acute models that elafin (a lung natural chemotactic molecule for macrophages and neutrophils, with potent antimicrobial and neutrophil elastase inhibitor activity) is upregulated in infection and modulates innate immunity. Here we present data using two independent systems of elafin overexpression in vivo (recombinant adenovirus [Ad-elafin] and an elafin transgenic mouse line) to examine the function of elafin in adaptive immunity. We show that elafin increases the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung dendritic cells in vivo. Analysis of cytokines produced by spleen and lung cells, and of antibodies measured in serum and bronchoalveolar lavage fluid, shows that the immunity induced is biased toward a type 1 response (production of IL-12, IFN-gamma, and IgG2a). Furthermore, elafin overexpression protected mice against further challenge with Ad-LacZ, as assessed by antibody levels and neutralization titer, as well as LacZ expression in lung tissue. Thus, the pleiotropic molecule elafin has significant potential in modulating antigen-presenting cell numbers and activity, and could be beneficial in mucosal protective strategies. PMID:16424380

  12. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections.

    Science.gov (United States)

    Hernández-Santos, N; Huppler, A R; Peterson, A C; Khader, S A; McKenna, K C; Gaffen, S L

    2013-09-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both T helper type 1 (Th1) and Th17 responses, and considerable evidence implicates interleukin (IL)-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relative contribution(s) of Th1, Th17, and innate IL-17-producing cells in OPC have not been clearly defined. Here, we sought to determine the nature and function of adaptive T-cell responses to OPC, using a new recall infection model. Mice subjected to infection and re-challenge with Candida mounted a robust and stable antigen-specific IL-17 response in CD4+ but not CD8+ T cells. There was little evidence for Th1 or Th1/Th17 responses. The Th17 response promoted accelerated fungal clearance, and Th17 cells could confer protection in Rag1-/- mice upon adoptive transfer. Surprisingly, CD4 deficiency did not cause OPC but was instead associated with compensatory IL-17 production by Tc17 and CD3+CD4-CD8- cells. Therefore, classic CD4+Th17 cells protect from OPC but can be compensated by other IL-17-producing cells in CD4-deficient hosts. PMID:23250275

  13. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    Science.gov (United States)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  14. Long-term in vitro and in vivo effects of γ-irradiated BCG on innate and adaptive immunity

    DEFF Research Database (Denmark)

    Arts, Rob J W; Blok, Bastiaan A; Aaby, Peter; Joosten, Leo A B; de Jong, Dirk; van der Meer, Jos W M; Benn, Christine Stabell; van Crevel, Reinout; Netea, Mihai G

    2015-01-01

    BCG vaccination is associated with a reduced mortality from nonmycobacterial infections. This is likely to be mediated by a combination of innate-immune memory ("trained immunity") and heterologous effects on adaptive immunity. As such, BCG could be used to boost host immunity but not in...... immunocompromised hosts, as it is a live, attenuated vaccine. Therefore, we assessed whether killed γBCG has similar potentiating effects. In an in vitro model of trained immunity, human monocytes were incubated with γBCG for 24 h and restimulated after 6 d. Cytokine production and the role of pattern recognition...... receptors and histone methylation markers were assessed. The in vivo effects of γBCG vaccination were studied in a proof-of-principle trial in 15 healthy volunteers. γBCG induced trained immunity in vitro via the NOD2 receptor pathway and up-regulation of H3K4me3 histone methylation. However, these effects...

  15. Enhancement of humoral and cellular immune responses by monophosphoryl lipid A (MPLA) as an adjuvant to the rabies vaccine in BALB/c mice.

    Science.gov (United States)

    Hu, Xiaobo; Liu, Rui; Zhu, Naishuo

    2013-12-01

    The development of effective vaccines against the rabies virus could prevent infection with this fatal virus. However, the current rabies vaccine fails to provide a full range of protection because of its limited ability to elicit a cellular immune response and the requirement for repeat vaccination. Monophosphoryl lipid A (MPLA) is well known as a potent adjuvant to enhance immune responses against virus infection. Here we investigated the efficacy of MPLA as an adjuvant to improve the humoral and cellular immune responses to the rabies vaccine in BALB/c mice. Supplementation of the rabies vaccine with MPLA significantly accelerated the production of specific antibodies by 10 days compared to the original vaccines. Furthermore, MPLA promoted the induction of stronger cellular immune responses by the rabies vaccine, including the production of IL-4, IFN-γ and the activation of CD4⁺/CD8⁺ T cells, than those elicited without MPLA. Collectively, our findings indicated that MPLA enhances humoral and cellular immunity and is a promising adjuvant for the development of more effective rabies vaccines. PMID:23816301

  16. Plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Noone Cariosa

    2013-01-01

    Full Text Available Abstract Background Malaria is a major cause of morbidity and mortality worldwide with over one million deaths annually, particularly in children under five years. This study was the first to examine plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum from four semi-urban villages near Ile-Ife, Osun State, Nigeria. Methods Blood was obtained from 231 children (aged 39–73 months who were classified according to mean P. falciparum density per μl of blood (uninfected (n = 89, low density (10,000, n = 22. IL-12p70, IL-10, Nitric oxide, IFN-γ, TNF, IL-17, IL-4 and TGF-β, C-C chemokine RANTES, MMP-8 and TIMP-1 were measured in plasma. Peripheral blood mononuclear cells were obtained and examined markers of innate immune cells (CD14, CD36, CD56, CD54, CD11c AND HLA-DR. T-cell sub-populations (CD4, CD3 and γδTCR were intracellularly stained for IL-10, IFN-γ and TNF following polyclonal stimulation or stimulated with malaria parasites. Ascaris lumbricoides was endemic in these villages and all data were analysed taking into account the potential impact of bystander helminth infection. All data were analysed using SPSS 15 for windows and in all tests, p Results The level of P. falciparum parasitaemia was positively associated with plasma IL-10 and negatively associated with IL-12p70. The percentage of monocytes was significantly decreased in malaria-infected individuals while malaria parasitaemia was positively associated with increasing percentages of CD54+, CD11c+ and CD56+ cell populations. No association was observed in cytokine expression in mitogen-activated T-cell populations between groups and no malaria specific immune responses were detected. Although A. lumbricoides is endemic in these villages, an analysis of the data showed no impact of this helminth infection on P. falciparum parasitaemia or on immune responses associated with P. falciparum infection

  17. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search.

    Directory of Open Access Journals (Sweden)

    G Matthew Fricke

    2016-03-01

    Full Text Available Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1 a lognormal distribution of step lengths, 2 motion that is directionally persistent over short time scales, and 3 heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.

  18. Role of Natural Immunomodulator (Aloe Vera in Cellular and Humoral Immune Responses

    Directory of Open Access Journals (Sweden)

    Ening Wiedosari

    2007-12-01

    Full Text Available Aloe vera belongs to a group of Liliaceae family plant and cultivated worldwide. It possesses acemannan (acetylated mannan, which has a significant pharmacological property. The acemannan has an immunomodulatory activity when administered to animals. The major immunomodulating effect includes the activation of immune effector cells, such as lymphocytes and macrophages, resulting in the production of cytokines, interleukin (IL-1, IL-6, IL-12 and tumor necrosis factor alpha (TNFα. In particular, this extract can modulate the differentiation capacity of CD4+T cells to mature into Th1 subsets and enhance the innate cytokine response. As a consequence, this extract will have a profound effect in controlling disease, caused by intracellular infectious agents (bacteria and viruses. However, further studies are needed to determine the immunomodulating effects of Aloe vera in multi-component extracts equivalent to what are being used commonly in traditional medicine.

  19. Autoimmunity in ulcerative colitis: humoral and cellular immune response bytropomyosin in ulcerative colitis

    Institute of Scientific and Technical Information of China (English)

    Xin Geng; Masato Taniguchi; Hui Hui Dai; JJ-C Lin; Jim Lin; Kiron Moy Das

    2000-01-01

    AIM Autoimmunity has been emphasized in the pathogenesis of ulcerative colitis (UC). We reported thattropomyosin (TM) or TM related protein is a putative autoantigen in UC. In human fibroblast, at least 8isoforms of TM have been identified with molecular weight range from 30kD to 40kD, depending upon theisoforms, and human TM isoforms (hTM5) has been found the main isoform in human intestinal epithelialcells. In this study, hTM5 was used as a putative auto-antigen for the humoral and T cell immune responses inpatients with UC, Crohn's disease (CD) and healthy subjects (HS) as controls.METHODS Anti-bTM antibody was examined by enzyme-linked immunosorbent assay using human sera(UC 59, CD 28, HS 26) against hTM isoforms. The IFN-γ production by peripheral blood T cells followingstimulation by recombinant hTM5 was analyzed by ELISPOT assay.RESULTS Anti-hTM5 antibody (IgG1) was detected in 15/59 (25.4%) patients with UC, 3/28 (10.γ%)with CD, and 3/26 (11.5%) of HS. The OD value in UC was significantly higher than in CD and HS groups(P < 0.05; P < 0.01 respectively). Western blot analysis demonstrated immunoreactivity against hTM5 inseveral UC sera. ELISPOT assay demonstrated that IFN-γ production is significantly higher in UC (7/18),39.0%), compared with CD (0/8, 0%) and HS (0/7, 0%), (P<0.05).CONCLUSION A significantly higher immune response to hTM5 was present in UC compared to CD andHS. Further studies of the hTM5/peptides may provide immuno-biochemical mechanism of autoimmuneprocess in UC.

  20. Early impact of cryosurgery ablation on the function of T cellular immunity in tumor-bearing rabbits

    International Nuclear Information System (INIS)

    Objective: To discuss the early impact of cryosurgery ablation on the function of T cellular immunity in tumor-bearing rabbits through observing the changes of T cell subsets after cryosurgery procedure in experimental rabbits. Methods: (1) Thirty tumor-bearing rabbits were randomly and equally divided into 3 groups: group A, receiving cryosurgical treatment; group B, receiving surgical resection; and group C, used as control group. (2) Both the preoperative and the postoperative peripheral blood T cell subsets were determine in all experimental rabbits of three groups, the results were compared and statistically analyzed. Results: After the procedure, CD8 was significantly decreased in all three groups (P < 0.05). CD4 showed an obvious increase in group A (P < 0.05), while a marked decrease in both group B and group C (P < 0.05). The ratio of CD4 /CD8 showed a distinct elevation in group A (P < 0.05), while no change in both group B and group C. Conclusion: The results of this study indicates that cryosurgical ablation is superior to the surgical resection in enhancing the early effect of cell-mediated immunity. (authors)

  1. Suppression of cellular immunity by head and neck irradiation. Precipitating factors and reparative mechanisms in an experimental model

    International Nuclear Information System (INIS)

    A model was developed in C3H mice to investigate the immunosuppressive effects of head and neck irradiation and to explore mechanisms for repair of the defects. Mice receiving 1200 rad (12 Gy) of head and neck irradiation showed significant depression of delayed-type hypersensitivity, peripheral blood lymphocyte counts, spleen cell counts, and spleen cell production of interleukin-2. Treatment with optimal dosages of thymosin alpha 1 (T alpha-1) produced significant increases in all of these values, in some instances to levels higher than in the nonirradiated controls. In identical experiments with mice irradiated to a portal limited to the pelvic region, T alpha-1 induced only partial remission of the abnormalities. The dose response of T alpha-1 with head and neck irradiation showed a relatively limited dose range for immune restoration, a finding that warrants similar determinations in clinical trials with immunomodulating agents. The results suggest a potential clinical usefulness of T alpha-1 and also interleukin-2 in restoring cellular immunity after irradiation for head and neck cancers. The model appears to be useful for investigating immunomodulating agents before they are clinically evaluated as adjuvants with head and neck irradiation regimens

  2. Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism.

    Science.gov (United States)

    Rajpurohit, R; Koch, C J; Tao, Z; Teixeira, C M; Shapiro, I M

    1996-08-01

    In endochondral bone, the growth cartilage is the site of rapid growth. Since the vascular supply to the cartilage is limited, it is widely assumed that cells of the cartilage are hypoxic and that limitations in the oxygen supply regulate the energetic state of the maturing cells. In this report, we evaluate the effects of oxygen tension on chondrocyte energy metabolism, thiol status, and expression of transcription elements, HIF and AP-1. Imposition of an hypoxic environment on cultured chondrocytes caused a proportional increase in glucose utilization and elevated levels of lactate synthesis. Although we observed a statistical increase in the activities of phosphofructokinase, pyruvate kinase, lactate dehydrogenase, and creatine kinase after exposure to lowered oxygen concentrations, the effect was small. The cultured cells exhibited a decreased utilization of glutamine, possibly due to down regulation of mitochondrial function and inhibition of oxidative deamination. With respect to total energy generation, we noted that these cells are quite capable of maintaining the energy charge of the cell at low oxygen tensions. Indeed, no changes in the absolute quantity of adenine nucleotides or the energy charge ratio was observed. Hypoxia caused a decrease in the glutathione content of cultured chondrocytes and a concomitant rise in cell and medium cysteine levels. It is likely that the fall in cell glutathione level is due to decreased synthesis of the tripeptide under reduced oxygen stress and the limited supply of glutamate. The observed rise in cellular and medium cysteine levels probably reflects an increase in the rate of degradation of glutathione and a decrease in synthesis of the peptide. To explore how cells transduce these metabolic effects, gel retardation assays were used to study chondrocyte HIF and AP-1 binding activities. Chondrocyte nuclear preparations bound an HIF-oligonucleotide; however, at low oxygen tensions, no increase in HIF binding was

  3. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice.

    Directory of Open Access Journals (Sweden)

    Rebecca Banerjee

    Full Text Available BACKGROUND: Innate neuroimmune dysfunction is a pathobiological feature of amyotrophic lateral sclerosis (ALS. However, links, if any, between disease and adaptive immunity are poorly understood. Thus, the role of T cell immunity in disease was investigated in human G93A superoxide dismutase 1 (SOD1 transgenic (Tg mice and subsequently in ALS patients. METHODS AND FINDINGS: Quantitative and qualitative immune deficits in lymphoid cell and T cell function were seen in G93A-SOD1 Tg mice. Spleens of Tg animals showed reductions in size, weight, lymphocyte numbers, and morphological deficits at terminal stages of disease compared to their wild-type (Wt littermates. Spleen sizes and weights of pre-symptomatic Tg mice were unchanged, but deficits were readily seen in T cell proliferation coincident with increased annexin-V associated apoptosis and necrosis of lymphocytes. These lymphoid deficits paralleled failure of Copolymer-1 (COP-1 immunization to affect longevity. In addition, among CD4(+ T cells in ALS patients, levels of CD45RA(+ (naïve T cells were diminished, while CD45RO(+ (memory T cells were increased compared to age-matched caregivers. In attempts to correct mutant SOD1 associated immune deficits, we reconstituted SOD1 Tg mice with unfractionated naïve lymphocytes or anti-CD3 activated CD4(+CD25(+ T regulatory cells (Treg or CD4(+CD25(- T effector cells (Teff from Wt donor mice. While naive lymphocytes failed to enhance survival, both polyclonal-activated Treg and Teff subsets delayed loss of motor function and extended survival; however, only Treg delayed neurological symptom onset, whereas Teff increased latency between disease onset and entry into late stage. CONCLUSIONS: A profound and progressive immunodeficiency is operative in G93A-SOD1 mice and is linked to T cell dysfunction and the failure to elicit COP-1 neuroprotective immune responses. In preliminary studies T cell deficits were also observed in human ALS. These findings

  4. The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    Directory of Open Access Journals (Sweden)

    Zarbock Ralf

    2012-03-01

    Full Text Available Abstract Background Surfactant protein C (SP-C is important for the function of pulmonary surfactant. Heterozygous mutations in SFTPC, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects. Methods SP-CA116D was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide. Results Stable expression of SP-CA116D in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-CA116D expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CA116D cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-CA116D on neighboring cells in the alveolar space. Conclusions We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy

  5. Effect of psychological intervention in the form of relaxation and guided imagery on cellular immune function in normal healthy subjects. An overview

    DEFF Research Database (Denmark)

    Zachariae, R; Kristensen, J S; Hokland, P;

    1991-01-01

    The present study measured the effects of relaxation and guided imagery on cellular immune function. During a period of 10 days 10 healthy subjects were given one 1-hour relaxation procedure and one combined relaxation and guided imagery procedure, instructing the subjects to imagine their immune...... system becoming very effective. Even though no major changes in the composition of the major mononuclear leukocyte subsets could be demonstrated a significant increase in natural killer function was demonstrated. These data suggest that relaxation and guided imagery might have a beneficial effect on the...... immune defense and could form the basis of further studies on psychological intervention and immunological status. Udgivelsesdato: 1990-null...

  6. The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections

    Directory of Open Access Journals (Sweden)

    Philipp Schuster

    2011-01-01

    Full Text Available In 1999, two independent groups identified plasmacytoid dendritic cells (PDC as major type I interferon- (IFN- producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a “spider web”, in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought.

  7. [Development of vaccines for HIV-1. Relevance of subtype-specific cellular immunity].

    Science.gov (United States)

    Rodríguez, Ana María; Turk, Gabriela; Pascutti, María Fernanda; Falivene, Juliana; Gherardi, María Magdalena

    2010-01-01

    It has been almost 30 years since the detection of the first HIV-1 cases and yet an effective and safe vaccine has not been developed. Although, advances in antiretroviral therapy (HAART) have produced a major impact on the pandemic, and even though HIV/aids remains a major concern for developing countries, where access to therapy is limited. The last report from UNAIDS notified 33 million people living with HIV/aids, worldwide, while in Argentina it is estimated that 120,000 persons have been infected. One of the challenges to address and ultimately overcome when developing a vaccine is the high variability of HIV-1. The M group, responsible for the pandemic, is divided into 10 subtypes and several sub-subtypes, in addition to the 48 circulating recombinant forms (CRF) and over one hundred unique recombinant forms (URF). The HIV epidemic in Argentina is as complex as in the rest of the world, characterized by the high prevalence of infections caused by subtype B and BF variants. Despite the wide range of publications focused on the immune response against HIV as well as to vaccine development, how to overcome variability on vaccine antigen selection is still unclear. Studies performed in our laboratory showed the impact of the immunogenicity of BF recombinant variants, both in humans and in animal models. These results are of great concern in vaccine development for our region. PMID:21163746

  8. New TLR7 agonists with improved humoral and cellular immune responses.

    Science.gov (United States)

    Upchurch, Katherine C; Boquín, José R; Yin, Wenjie; Xue, Yaming; Joo, HyeMee; Kane, Robert R; Oh, SangKon

    2015-11-01

    Toll-like receptor 7 (TLR7) agonists are of interest as vaccine adjuvants and cancer therapeutics. Therefore, development of new TLR7 agonists that can efficiently promote host immune responses without evoking side effects is of great importance. Here, we describe two new compounds, J4 and F4, which elicit intracellular signaling exclusively via TLR7. Interestingly, both J4 and F4 induced less cytokine secretion (IL-1β, IL-6, IL-10, IL-12p40, TNFα, and IL-12p70) from myeloid dendritic cells (mDCs) and monocytes than CL075 and R848; however, they all generated similar levels of phenotype maturation of antigen presenting cells (APCs), including plasmacytoid DCs. We further found that J4- and F4-induced APC activation was largely dependent on the activation of NF-κB and p38. Lastly, J4 and F4 could efficiently promote B cell proliferation and plasmablast differentiation as well as antigen-specific CD8(+) T cell responses in human in vitro. Therefore, these new TLR7 agonists could be employed to facilitate the development of new therapeutics and vaccine adjuvants against cancers and microbial infections. PMID:26381186

  9. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens

    OpenAIRE

    Holtzman, Michael J.

    2012-01-01

    Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well a...

  10. The marginating-pulmonary immune compartment in mice exhibits increased NK cytotoxicity and unique cellular characteristics.

    Science.gov (United States)

    Benish, Marganit; Melamed, Rivka; Rosenne, Ella; Neeman, Elad; Sorski, Liat; Levi, Ben; Shaashua, Lee; Matzner, Pini; Ben-Eliyahu, Shamgar

    2014-01-01

    To test whether marginating-pulmonary (MP) leukocytes in mice have a unique potential to identify and destroy aberrant circulating cells, we compared MP to circulating leukocytes with respect to natural killer (NK) cytotoxicity, proinflammatory characteristics, molecular determinants of activation, and response to IL-12 immunostimulation. Cytotoxicity was assessed employing the YAC-1, B16F10, and 3LL target lines. C57BL/6 mice were injected with either saline or murine IL-12 (0.1 or 0.5 µg/mouse), either once or three times 48-h apart. Twenty-four hours after last injection, cardiac blood was withdrawn and MP leukocytes were collected by forced lung perfusion. NK cytotoxicity, cellular composition, and surface molecular markers were studied. MP leukocytes exhibited greater NK cytotoxicity than circulating leukocytes against the syngeneic B16F10 and 3LL tumor lines, but not against the allogeneic YAC-1 line. NKG2D and IL-12 receptor expression predicted NK cytotoxicity in circulating leukocytes, but not in MP leukocytes. IFNγ-receptor, IL-12-receptor, CD69, CD11a, and CD11b showed different patterns of expression in the two leukocyte populations, suggesting pro-inflammatory characteristics of the MP compartment. IL-12 stimulation caused differential effects on these markers and also elevated cytotoxicity in both compartments, but in different effector: target ratio-dependent patterns. MP leukocytes may play a critical role in eliminating aberrant circulating cells due to their enhanced NK cytotoxicity and given their strategic location in the lungs vasculature, which forces physical interactions with all circulating aberrant cells. MP-NK cells are unique in their cytotoxic mechanisms against syngeneic targets and in their activation profile and response to immunostimulatory agents. PMID:24132552

  11. Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells

    Science.gov (United States)

    Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu

    2016-05-01

    This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials.

  12. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali; Garrett, Roger Antony

    2011-01-01

    CRISPR/Cas and CRISPR/Cmr immune machineries of archaea and bacteria provide an adaptive and effective defence mechanism directed specifically against viruses and plasmids. Present data suggest that both CRISPR/Cas and Cmr modules can behave like integral genetic elements. They tend to be located...... in the more variable regions of chromosomes and are displaced by genome shuffling mechanisms including transposition. CRISPR loci may be broken up and dispersed in chromosomes by transposons with the potential for creating genetic novelty. Both CRISPR/Cas and Cmr modules appear to exchange readily...... the significant barriers imposed by their differing conjugative, transcriptional and translational mechanisms. There are parallels between the CRISPR crRNAs and eukaryal siRNAs, most notably to germ cell piRNAs which are directed, with the help of effector proteins, to silence or destroy transposons...

  13. Children after Chernobyl: immune cells adaptive changes and stable alterations under low-dose irradiation

    International Nuclear Information System (INIS)

    Early changes of immune parameters in children evacuated from 30-km zone were characterized by E-rossette forming cells decrease and E-receptor non-stability in theophylline assay, surface Ig changes. Immunological follow-up of children inhabitants of territories contaminated with radionuclides after Chernobyl accident revealed TCR/CD3, CD4 and MHC CD3+, CD4+, CD57+ subsets, RIL-2, TrT expression and calcium channel activity. PMNC percentage with cortical thymocyte phenotype (CD1+, CD4+8+) was elevated during the first years after the accident and seemed to be of a compensatory origin. Combination of heterogenic activation and suppression subset reactions and changes in fine subset (Th1/Th2) organization were suggested. Adaptive and compensatory reactions were supposed and delayed hypersensitivity reactions increase as well. (author)

  14. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    International Nuclear Information System (INIS)

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 μm or less, PM10) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 μm or less, PM2.5) and ultrafine particles (0.1 μm or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-κB and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-κB pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  15. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  16. Active chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses

    Institute of Scientific and Technical Information of China (English)

    Yan-Hui Ma; Wei-Zhi Cheng; Fang Gong; An-Lun Ma; Qi-Wen Yu; Ji-Ying Zhang; Chao-Ying Hu; Xue-Hua Chen; Dong-Qing Zhang

    2008-01-01

    AIM:To investigate the potential role of Active Chinese mistletoe lectin-55 (ACML-55) in tumor immune surveillance.METHODS:In this study,an experimental model was established by hypodermic inoculating the colon cancer cell line CT26 (5×105 cells) into BALB/c mice.The experimental treatment was orally administered with ACML-55 or PBS,followed by the inoculation of colon cancer cell line CT26.Intracellular cytokine staining was used to detect IFN-y production by tumor antigen specific CD8+ T cells.FACS analysis was employed to profile composition and activation of CD4+,CD8+,γδ T and NK cells.RESULTS:Our results showed,compared to PBS treated mice,ACML-55 treatment significantly delayed colon cancer development in colon cancer-bearing Balb/c mice in vivo.Treatment with ACML-55 enhanced both Ag specific activation and proliferation of CD4+ and CD8+ T cells,and increased the number of tumor Ag specific CD8+ T cells,it was more important to increase the frequency of tumor Ag specific IFN-γ producing-CD8+ T cells.Interestingly,ACML-55 treatment also showed increased cell number of NK,and γδT cells,indicating the role of ACML-55 in activation of innate lymphooltes.CONCLUSION:Our results demonstrate that ACML-55therapy can enhance function in immune surveillance in colon cancer-bearing mice through regulating both innate and adaptive immune responses.

  17. The role of idiotypic interactions in the adaptive immune system: a belief-propagation approach

    Science.gov (United States)

    Bartolucci, Silvia; Mozeika, Alexander; Annibale, Alessia

    2016-08-01

    In this work we use belief-propagation techniques to study the equilibrium behaviour of a minimal model for the immune system comprising interacting T and B clones. We investigate the effect of the so-called idiotypic interactions among complementary B clones on the system’s activation. Our results show that B–B interactions increase the system’s resilience to noise, making clonal activation more stable, while increasing the cross-talk between different clones. We derive analytically the noise level at which a B clone gets activated, in the absence of cross-talk, and find that this increases with the strength of idiotypic interactions and with the number of T cells sending signals to the B clones. We also derive, analytically and numerically, via population dynamics, the critical line where clonal cross-talk arises. Our approach allows us to derive the B clone size distribution, which can be experimentally measured and gives important information about the adaptive immune system response to antigens and vaccination.

  18. Unusual association of amyotrophic lateral sclerosis and myasthenia gravis: A dysregulation of the adaptive immune system?

    Science.gov (United States)

    Del Mar Amador, Maria; Vandenberghe, Nadia; Berhoune, Nawel; Camdessanché, Jean-Philippe; Gronier, Sophie; Delmont, Emilien; Desnuelle, Claude; Cintas, Pascal; Pittion, Sophie; Louis, Sarah; Demeret, Sophie; Lenglet, Timothée; Meininger, Vincent; Salachas, François; Pradat, Pierre-François; Bruneteau, Gaëlle

    2016-06-01

    Myasthenia gravis is an autoimmune disorder affecting neuromuscular junctions that has been associated with a small increased risk of amyotrophic lateral sclerosis (ALS). Here, we describe a retrospective series of seven cases with a concomitant diagnosis of ALS and myasthenia gravis, collected among the 18 French reference centers for ALS in a twelve year period. After careful review, only six patients strictly met the diagnostic criteria for both ALS and myasthenia gravis. In these patients, limb onset of ALS was reported in five (83%) cases. Localization of myasthenia gravis initial symptoms was ocular in three (50%) cases, generalized in two (33%) and bulbar in one (17%). Median delay between onset of the two conditions was 19 months (6-319 months). Anti-acetylcholine receptor antibodies testing was positive in all cases. All patients were treated with riluzole and one had an associated immune-mediated disease. In the one last ALS case, the final diagnosis was false-positivity for anti-acetylcholine receptor antibodies. The co-occurrence of ALS and myasthenia gravis is rare and requires strict diagnostic criteria. Its demonstration needs thoughtful interpretation of electrophysiological results and exclusion of false positivity for myasthenia gravis antibody testing in some ALS cases. This association may be triggered by a dysfunction of adaptive immunity. PMID:27102004

  19.  Evaluation of the humoral and cellular immune responses after implantation of a PTFE vascular prosthesis

    Directory of Open Access Journals (Sweden)

    Jan Skóra

    2012-07-01

    Full Text Available  Introduction:The experiment was designed in order to determine the immunological processes that occur during the healing in synthetic vascular grafts, especially to establish the differences in the location of the complement system proteins between the proximal and distal anastomosis and the differences in the arrangement of inflammatory cells in those anastomoses. The understanding of those processes will provide a true basis for determining risk factors for complications after arterial repair procedures.Material/Methods:The experiment was carried out on 16 dogs that underwent implantation of unilateral aorto-femoral bypass with expanded polytetrafluoroethylene (ePTFE. After 6 months all animals were euthanized to dissect the vascular grafts. Immunohistochemical assays and electron microscopic examinations were performed.Results:Immunohistochemical findings in the structure of neointima between anastomoses of vascular prostheses demonstrated significant differences between humoral and cellular responses. The area of proximal anastomosis revealed the presence of fibroblasts, but no macrophages were detected. The histological structure of the proximal anastomosis indicates that inflammatory processes were ended during the prosthesis healing. The immunological response obtained in the distal anastomosis corresponded to the chronic inflammatory reaction with the presence of macrophages, myofibroblasts and deposits of complement C3.Discussion:The identification of differences in the presence of macrophages and myofibroblasts and the presence of the C3 component between the anastomoses is the original achievement of the present study. In the available literature, no such significant differences have been shown so far in the humoral and cellular immune response caused by the presence of an artificial vessel in the arterial system.

  20. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    Science.gov (United States)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  1. NEW EMBO MEMBER’S REVIEW: Dendritic cell regulation of immune responses: a new role for interleukin 2 at the intersection of innate and adaptive immunity

    OpenAIRE

    Granucci, Francesca; Zanoni, Ivan; Feau, Sonia; Ricciardi-Castagnoli, Paola

    2003-01-01

    Dendritic cells are professional antigen-presenting cells able to initiate innate and adaptive immune responses against invading pathogens. In response to external stimuli dendritic cells undergo a complete genetic reprogramming that allows them to become, soon after activation, natural killer cell activators and subsequently T cell stimulators. The recent observation that dendritic cells produce interleukin 2 following microbial stimulation opens new possibilities for understanding the effic...

  2. Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection.

    Directory of Open Access Journals (Sweden)

    Justin M Richner

    2015-07-01

    Full Text Available Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV, an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN. Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection.

  3. Immunization with Human Papillomavirus 16 L1+E2 Chimeric Capsomers Elicits Cellular Immune Response and Antitumor Activity in a Mouse Model.

    Science.gov (United States)

    López-Toledo, Gabriela; Schädlich, Lysann; Alonso-Castro, Ángel Josabad; Monroy-García, Alberto; García-Rocha, Rosario; Guido, Miriam C; Gissmann, Lutz; García-Carrancá, Alejandro

    2016-06-01

    Development of cervical cancer is associated with persistent infections by high-risk human papillomavirus (HPV). Although current HPV L1-based prophylactic vaccines prevent infection, they do not help to eliminate prevalent infections or lesions. Our aims were (i) to generate a vaccine combining prophylactic and therapeutic properties by producing chimeric capsomers after fusion of the L1 protein to different fragments of E2 from HPV 16, and (ii) to evaluate their capacity to generate an antitumoral cellular response, while conserving L1 neutralizing epitopes. Chimeric proteins were produced in Escherichia coli and purified by glutathione S-transferase (GST)-affinity chromatography. Their structure was characterized using size exclusion chromatography, sucrose gradient centrifugation, electron microscopy, and anti-L1 enzyme-linked immunosorbent assay. All chimeric proteins form capsomers and heterogeneous aggregates. One, containing part of the carboxy-terminal domain of E2 and its hinge region (L1Δ+E2H/NC, aa 206-307), conserved the neutralizing epitope H16.V5. We then evaluated the capacity of this chimeric protein to induce a cytotoxic T-cell response against HPV 16 E2. In (51)Cr release cytotoxicity assays, splenocytes from C57BL/6 immunized mice recognized and lysed TC-1/E2 cells, which express and present endogenously processed E2 peptides. Moreover, this E2-specific cytotoxic response inhibited the growth of tumors of TC-1/E2 cells in mice. Finally, we identified an epitope (aa 292-301) of E2 involved in this cytotoxic response. We conclude that the L1Δ+E2H/NC chimeric protein produced in bacteria can be an effective and economically interesting candidate for a combined prophylactic and therapeutic vaccine that could help eliminating HPV16-positive low-grade cervical lesions and persistent viral infections, thus preventing the development of lesions and, at the same time, the establishment of new infections. PMID:27058179

  4. Local Cellular Immune Responses and Pathogenesis of Buruli Ulcer Lesions in the Experimental Mycobacterium Ulcerans Pig Infection Model

    Science.gov (United States)

    Bolz, Miriam; Ruggli, Nicolas; Borel, Nicole; Pluschke, Gerd; Ruf, Marie-Thérèse

    2016-01-01

    Background Buruli ulcer is a neglected tropical disease of the skin that is caused by infection with Mycobacterium ulcerans. We recently established an experimental pig (Sus scrofa) infection model for Buruli ulcer to investigate host-pathogen interactions, the efficacy of candidate vaccines and of new treatment options. Methodology/Principal Findings Here we have used the model to study pathogenesis and early host-pathogen interactions in the affected porcine skin upon infection with mycolactone-producing and non-producing M. ulcerans strains. Histopathological analyses of nodular lesions in the porcine skin revealed that six weeks after infection with wild-type M. ulcerans bacteria extracellular acid fast bacilli were surrounded by distinct layers of neutrophils, macrophages and lymphocytes. Upon ulceration, the necrotic tissue containing the major bacterial burden was sloughing off, leading to the loss of most of the mycobacteria. Compared to wild-type M. ulcerans bacteria, toxin-deficient mutants caused an increased granulomatous cellular infiltration without massive tissue necrosis, and only smaller clusters of acid fast bacilli. Conclusions/Significance In summary, the present study shows that the pathogenesis and early immune response to M. ulcerans infection in the pig is very well reflecting BU disease in humans, making the pig infection model an excellent tool for the profiling of new therapeutic and prophylactic interventions. PMID:27128097

  5. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function

    Directory of Open Access Journals (Sweden)

    Phillips R

    2006-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. Results Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. Conclusion Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.

  6. Combination Therapy With Reovirus and Anti-PD-1 Blockade Controls Tumor Growth Through Innate and Adaptive Immune Responses.

    Science.gov (United States)

    Rajani, Karishma; Parrish, Christopher; Kottke, Timothy; Thompson, Jill; Zaidi, Shane; Ilett, Liz; Shim, Kevin G; Diaz, Rosa-Maria; Pandha, Hardev; Harrington, Kevin; Coffey, Matt; Melcher, Alan; Vile, Richard

    2016-02-01

    Oncolytic reovirus can be delivered both systemically and intratumorally, in both preclinical models and in early phase clinical trials. Reovirus has direct oncolytic activity against a variety of tumor types and antitumor activity is directly associated with immune activation by virus replication in tumors. Immune mechanisms of therapy include both innate immune activation against virally infected tumor cells, and the generation of adaptive antitumor immune responses as a result of in vivo priming against tumor-associated antigens. We tested the combination of local oncolytic reovirus therapy with systemic immune checkpoint inhibition. We show that treatment of subcutaneous B16 melanomas with a combination of intravenous (i.v.) anti-PD-1 antibody and intratumoral (i.t.) reovirus significantly enhanced survival of mice compared to i.t. reovirus (P cells to kill reovirus-infected tumor cells, reduced T(reg) activity, and increased the adaptive CD8(+) T-cell-dependent antitumor T-cell response. PD-1 blockade also enhanced the antiviral immune response but through effector mechanisms which overlapped with but also differed from those affecting the antitumor response. Therefore, combination with checkpoint inhibition represents a readily translatable next step in the clinical development of reovirus viroimmunotherapy. PMID:26310630

  7. STSV2 as a Model Crenarchaeal Virus for Studying Virus-Host Interactions and CRISPR-Cas Adaptive Immunity

    DEFF Research Database (Denmark)

    León Sobrino, Carlos

    archaea harbour their own viruses, which constitute an extraordinarily diverse group with exotic morphologies and unique features. Prokaryotes possess a variety of defence mechanisms. The CRISPR-Cas adaptive immune system is of great importance for archaea –84% of them possess it, compared to 45% for...... generate immune memory by inserting in its own genome short invader-derived DNA fragments forming a database –the CRISPR locus. Little was known about this system until recent years, and the generation of immune memory has been the most elusive step. In this work, the interactions of the spindle......-shaped monocaudavirus STSV2 and its host Sulfolobus islandicus REY15A were studied. This interaction produced, after several days, de novo CRISPR adaptation – that is, without any previous memory that can act as a trigger. We employed transcriptome sequencing to characterise the long-term progression of this...

  8. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens.

    Science.gov (United States)

    Holtzman, Michael J

    2012-08-01

    Research on the pathogenesis of asthma has traditionally concentrated on environmental stimuli, genetic susceptibilities, adaptive immune responses, and end-organ alterations (particularly in airway mucous cells and smooth muscle) as critical steps leading to disease. The focus of this cascade has been the response to allergic stimuli. An alternative scheme suggests that respiratory viruses and the consequent response of the innate immune system also drives the development of asthma as well as related inflammatory diseases. This conceptual shift raises the possibility that sentinel cells such as airway epithelial cells, DCs, NKT cells, innate lymphoid cells, and macrophages also represent critical components of asthma pathogenesis as well as new targets for therapeutic discovery. A particular challenge will be to understand and balance the innate as well as the adaptive immune responses to defend the host against acute infection as well as chronic inflammatory disease. PMID:22850884

  9. A New Optimized Data Clustering Technique using Cellular Automata and Adaptive Central Force Optimization (ACFO

    Directory of Open Access Journals (Sweden)

    G. Srinivasa Rao

    2015-06-01

    Full Text Available As clustering techniques are gaining more important today, we propose a new clustering technique by means of ACFO and cellular automata. The cellular automata uniquely characterizes the condition of a cell at a specific moment by employing the data like the conditions of a reference cell together with its adjoining cell, total number of cells, restraint, transition function and neighbourhood calculation. With an eye on explaining the condition of the cell, morphological functions are executed on the image. In accordance with the four stages of the morphological process, the rural and the urban areas are grouped separately. In order to steer clear of the stochastic turbulences, the threshold is optimized by means of the ACFO. The test outcomes obtained vouchsafe superb performance of the innovative technique. The accomplishment of the new-fangled technique is assessed by using additional number of images and is contrasted with the traditional methods like CFO (Central Force Optimization and PSO (Particle Swarm Optimization.

  10. Joint Time-Domain Resource Partitioning, Rate Allocation, and Video Quality Adaptation in Heterogeneous Cellular Networks

    OpenAIRE

    Argyriou, Antonios; Kosmanos, Dimitrios; Tassiulas, Leandros

    2015-01-01

    Heterogenous cellular networks (HCN) introduce small cells within the transmission range of a macrocell. For the efficient operation of HCNs it is essential that the high power macrocell shuts off its transmissions for an appropriate amount of time in order for the low power small cells to transmit. This is a mechanism that allows time-domain resource partitioning (TDRP) and is critical to be optimized for maximizing the throughput of the complete HCN. In this paper, we investigate video comm...

  11. DAMPs and autophagy: Cellular adaptation to injury and unscheduled cell death

    OpenAIRE

    Zhang, Qiuhong; Kang, Rui; Zeh, III, Herbert J.; Lotze, Michael T; Tang, Daolin

    2013-01-01

    Autophagy is a lysosome-mediated catabolic process involving the degradation of intracellular contents (e.g., proteins and organelles) as well as invading microbes (e.g., parasites, bacteria and viruses). Multiple forms of cellular stress can stimulate this pathway, including nutritional imbalances, oxygen deprivation, immunological response, genetic defects, chromosomal anomalies and cytotoxic stress. Damage-associated molecular pattern molecules (DAMPs) are released by stressed cells underg...

  12. A Novel Mathematical Model Describing Adaptive Cellular Drug Metabolism and Toxicity in the Chemoimmune System

    OpenAIRE

    Tóth, Attila; Brózik, Anna; Szakács, Gergely; Sarkadi, Balázs; Hegedüs, Tamás

    2015-01-01

    Cells cope with the threat of xenobiotic stress by activating a complex molecular network that recognizes and eliminates chemically diverse toxic compounds. This “chemoimmune system” consists of cellular Phase I and Phase II metabolic enzymes, Phase 0 and Phase III ATP Binding Cassette (ABC) membrane transporters, and nuclear receptors regulating these components. In order to provide a systems biology characterization of the chemoimmune network, we designed a reaction kinetic model based on d...

  13. An Efficient Rank Adaptation Algorithm for Cellular MIMO Systems with IRC Receivers

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão; Lauridsen, Mads; Mogensen, Preben; Pajukoski, Kari

    of linear interference rejection combining (IRC) receivers. Typically, rank adaptation algorithms are aimed at balancing the trade-off between increasing the spatial gain, and improving the interference resilience property. In this paper, we propose an efficient and computationally effective rank...... adaptation algorithm based on an estimate of the mean signal-to-interference-plus-noise ratio (SINR) at an IRC receiver; wherein, we use results from random matrix theory to derive the expression for the mean post-IRC SINR in the presence of interferers with unequal powers. The performance of the proposed...

  14. Human Leukocyte Antigen Associations with Humoral and Cellular Immunity Following a Second Dose of Measles-Containing Vaccine: Persistence, Dampening, and Extinction of Associations Found After a First Dose

    OpenAIRE

    Jacobson, Robert M.; Ovsyannikova, Inna G.; Vierkant, Robert A.; Pankratz, V. Shane; Poland, Gregory A.

    2011-01-01

    Previously we found Human Leukocyte Antigen (HLA) associations with humoral immunity following a single dose of measles-containing vaccine. In this study, we sought to determine if HLA associations exist with humoral and cellular immunity following a second dose of measles-containing vaccine and if the associations we found with humoral immunity after the first dose persist following a second dose.

  15. Cellular immune responses of BALB/c mice induced by intramuscular injection of PRRSV-ORF5 DNA vaccine with different doses

    Institute of Scientific and Technical Information of China (English)

    CHENG Anchun; WANG Mingshu; CHEN Xiwen; XINI Nigen; DOU Wenbo; LI Xuemei; LIU Wumei; WANG Gang; ZHANG Pingying

    2007-01-01

    BALB/c mice were immunized with 50 μg,100 μg,200 μg of pcDNA-PRRSV-ORF5 DNA vaccine respectively by intramuscular injection,with PBS and pcDNA3.1(+)as controls.Fluorescence activated cell Sorter (FACS)was used to detect the number of CD4+ and CD8+T-lymphocytes.T-lymphocyte proliferation test was used to detect proliferation of the T-lymphocyte cells in peripheral blood lymphocytes of mice vaccinated with pcDNA-PRRSV-ORF5 DNA vaccine.The results showed that the difference in ConA response to T-lymphocytes in blood was highly significant between all experimental groups and the control group(P<0.01).The number of CD4+T-lymphocytes in experimental groups was significantly higher than that of the control group 7d after vaccination.The number of CD8+ T-lymphocytes in the experimental groups was higher than that of the control group 28 d after vaccination.Mice immunized with a higher dose(200 μg)of DNA vaccine demonstrated higher cellular immune response than those immunized with a lower dose(100 μg,50 μg)of DNA vaccine.The results demonstrated that pcDNA-PRRSV-ORF5 DNA vaccine could induce a good cellular immune response which may be dose-dependent.

  16. The hedgehog receptor patched1 in T cells is dispensable for adaptive immunity in mice.

    Directory of Open Access Journals (Sweden)

    Kai D Michel

    Full Text Available Hedgehog (Hh signaling modulates T cell development and function but its exact role remains a matter of debate. To further address this issue we made use of conditional knock-out mice in which the Hh receptor Patched1 (Ptch is inactivated in the T cell lineage. Thymocyte development was moderately compromised by the deletion of Ptch as characterized by reduced numbers of CD4 and CD8 single-positive cells. In contrast, peripheral T cells were not affected. Proliferation and IFNγ secretion by Ptch-deficient T cells were indistinguishable from controls irrespectively of whether we used strong or suboptimal conditions for stimulation. Analysis of CTL and Treg cell functions did not reveal any differences between both genotypes, and T cell apoptosis induced by glucocorticoids or γ-irradiation was also similar. Surprisingly, absence of Ptch did not lead to an activation of canonic Hh signaling in peripheral T cells as indicated by unaltered expression levels of Gli1 and Gli2. To test whether we could uncover any role of Ptch in T cells in vivo we subjected the mutant mice to three different disease models, namely allogeneic bone marrow transplantation mimicking graft-versus-host disease, allergic airway inflammation as a model of asthma and growth of adoptively transferred melanoma cells as a means to test tumor surveillance by the immune system. Nonetheless, we were neither able to demonstrate any difference in the disease courses nor in any pathogenic parameter in these three models of adaptive immunity. We therefore conclude that the Hh receptor Ptch is dispensable for T cell function in vitro as well as in vivo.

  17. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5.

    Science.gov (United States)

    Uematsu, Satoshi; Fujimoto, Kosuke; Jang, Myoung Ho; Yang, Bo-Gie; Jung, Yun-Jae; Nishiyama, Mika; Sato, Shintaro; Tsujimura, Tohru; Yamamoto, Masafumi; Yokota, Yoshifumi; Kiyono, Hiroshi; Miyasaka, Masayuki; Ishii, Ken J; Akira, Shizuo

    2008-07-01

    The intestinal cell types responsible for defense against pathogenic organisms remain incompletely characterized. Here we identify a subset of CD11c(hi)CD11b(hi) lamina propria dendritic cells (LPDCs) that expressed Toll-like receptor 5 (TLR5) in the small intestine. When stimulated by the TLR5 ligand flagellin, TLR5(+) LPDCs induced the differentiation of naive B cells into immunoglobulin A-producing plasma cells by a mechanism independent of gut-associated lymphoid tissue. In addition, by a mechanism dependent on TLR5 stimulation, these LPDCs promoted the differentiation of antigen-specific interleukin 17-producing T helper cells and type 1 T helper cells. Unlike spleen DCs, the LPDCs specifically produced retinoic acid, which, in a dose-dependent way, supported the generation and retention of immunoglobulin A-producing cells in the lamina propria and positively regulated the differentiation interleukin 17-producing T helper cells. Our findings demonstrate unique properties of LPDCs and the importance of TLR5 for adaptive immunity in the intestine. PMID:18516037

  18. Effect of adenosine cyclophosphate combined with vitamin C on cellular immune function of children with viral myocarditis

    Institute of Scientific and Technical Information of China (English)

    Xiu Chang; Lan-Hui Jiu

    2016-01-01

    Objective:To investigate the curative effect of adenosine cyclophosphate combined with vitamin C on children with viral myocarditis andon cellular immune function.Methods:A total of96 cases of children with viral myocarditis were randomly divided into control group and observation group, 48 cases in each. The control group received routine treatment for viral myocarditis. The observation group received routine treatment for viral myocarditis as well as vitamin C and adenosine cyclophosphate.Results:The total effective rate of observation group 89.59% was higher than that of control group 64.58%, and differences were statistical significant. The electrocardiogram total effective rate of observation group 91.67% was higher than that of control group 68.75%, and differences were statistical significant. After treatment, the level of CD3+ (65.09±10.35)%, the level of CD4+ (42.93±6.22)%, the level of CD8+ (29.55±4.87)% and the level of NK (47.37±8.52)% of observation group were higher than the level of CD3+ (51.85±9.33)%, the level of CD4+ (35.18±5.73)%, the level of CD8+(24.46±4.03)% and the level of NK (35.64±7.72)% of control group, and differences were statistical significant. After treatment, myocardial enzyme indexes lactate dehydrogenase (329.65±19.76) U/L, creatine phosphate kinase (126.36±12.92) U/L, hydroxybutyrate dehydrogenase (271.68±14.73) U/L, glutamic oxaloacetic transaminase (31.22±3.76) U/L and creatine kinase (185.28±13.83) U/L of observation group were lower than lactate dehydrogenase (348.06±20.51) U/L, creatine phosphate kinase (163.19±13.15) U/L, hydroxybutyrate dehydrogenase (305.50±16.42) U/L, glutamic oxaloacetic transaminase (37.87±4.07) U/L and creatine kinase (202.79±15.47) U/L of control group, and differences were statistical significant. After treatment, heart function indexes CI, FS and EF levels of observation group were higher than those of control group, and differences were statistical significant

  19. Cellular adaptation contributes to calorie restriction-induced preservation of skeletal muscle in aged rhesus monkeys

    OpenAIRE

    McKiernan, Susan H; Colman, Ricki J; Aiken, Erik; Evans, Trent D.; Beasley, T.Mark; Aiken, Judd M.; Weindruch, Richard; Anderson, Rozalyn M.

    2011-01-01

    We have previously shown that a 30% reduced calorie intake diet delayed the onset of muscle mass loss in adult monkeys between ~16 and ~22 years of age and prevented multiple cellular phenotypes of aging. In the present study we show the impact of long term (~17 years) calorie restriction (CR) on muscle aging in very old monkeys (27–33yrs) compared to age-matched Control monkeys fed ad libitum, and describe these data in the context of the whole longitudinal study. Muscle mass was preserved i...

  20. Genotype-by-environment interactions and adaptation to local temperature affect immunity and fecundity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Brian P Lazzaro

    2008-03-01

    Full Text Available Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history "balance" between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations.

  1. Impact of comorbid anxiety and depression on quality of life and cellular immunity changes in patients with digestive tract cancers

    Institute of Scientific and Technical Information of China (English)

    Fu-Ling Zhou; Wang-Gang Zhang; Yong-Chang Wei; Kang-Ling Xu; Ling-Yun Hui; Xu-Sheng Wang; Ming-Zhong Li

    2005-01-01

    AIM: A study was performed to investigate the impact of comorbid anxiety and depression (CAD) on quality of life (QOL) and cellular immunity changes in patients with digestive tract cancers.METHODS: One hundred and fifty-six cases of both sexes with cancers of the digestive tract admitted between March 2001 and February 2004 in the Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University were randomly enrolled in the study. Depressive and anxiety disorder diagnoses were assessed by using the Structured Clinical Interview for DSM-Ⅳ. All adult patients were evaluated with the Hamilton depressive scale (HAMD, the 24-item version), the Hamilton anxiety scale (HAMA, a modified 14-item version), quality of life questionnaire-core 30 (QLQ-C30), social support rating scale (SSRS), simple coping style questionnaire (SCSQ), and other questionnaires, respectively. In terms of HAMD ≥ 20 and HAMA ≥ 14, the patients were categorized, including CAD (n = 31) in group A, anxiety disorder (n = 23) in group B,depressive disorder (n = 37) in group C, and non-disorder (n = 65) in group D. Immunological parameters such as T-lymphocyte subsets and natural killer (NK) cell activities in peripheral blood were determined and compared among the four groups.RESULTS: The incidence of CAD was 21.15% in patients with digestive tract cancers. The average scores of social support was 43.67±7.05 for 156 cases, active coping 20.34±7.33, and passive coping 9.55±5.51. Compared with group D, subjective support was enhanced slightly in group A, but social support, objective support, and utilization of support reduced, especially utilization of support with significance (6.16 vs 7.80, P<0.05); total scores of active coping decreased, while passive coping reversed; granulocytes proliferated, monocytes declined,and lymphocytes declined significantly (32.87 vs 34.00,P<0.05); moreover, the percentage of CD3, CD4, CD8and CD56 in T lymphocyte subsets was in lower

  2. Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity

    Science.gov (United States)

    Xu, Ligeng; Xiang, Jian; Liu, Ye; Xu, Jun; Luo, Yinchan; Feng, Liangzhu; Liu, Zhuang; Peng, Rui

    2016-02-01

    Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen for Helicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG) and various types of polyethylenimine (PEI) were used as coating polymers. Compared with single-polymer modified GOs (GO-PEG and GO-PEI), certain dual-polymer modified GOs (GO-PEG-PEI) can act as a positive modulator to promote the maturation of dendritic cells (DCs) and enhance their cytokine secretion through the activation of multiple toll-like receptor (TLR) pathways while showing low toxicity. Moreover, this GO-PEG-PEI can serve as an antigen carrier to effectively shuttle antigens into DCs. These two advantages enable GO-PEG-PEI to serve as a novel vaccine adjuvant. In the subsequent in vivo experiments, compared with free Ure B and clinically used aluminum-adjuvant-based vaccine (Alum-Ure B), GO-PEG-PEI-Ure B induces stronger cellular immunity via intradermal administration, suggesting promising applications in cancer immunotherapy. Our work not only presents a novel, highly effective GO-based vaccine nano-adjuvant, but also highlights the critical roles of surface chemistry for the rational design of nano-adjuvants.Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen for Helicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG) and various types of polyethylenimine (PEI) were used as coating polymers. Compared with single-polymer modified GOs (GO-PEG and GO-PEI), certain dual

  3. Cardiac hypertrophy, arrhythmogenicity and the new myocardial phenotype. II. The cellular adaptational process.

    Science.gov (United States)

    Swynghedauw, B; Chevalier, B; Charlemagne, D; Mansier, P; Carré, F

    1997-07-01

    Ventricular fibrosis is not the only structural determinant of arrhythmias in left ventricular hypertrophy. In an experimental model of compensatory cardiac hypertrophy (CCH) the degree of cardiac hypertrophy is also independently linked to ventricular arrhythmias. Cardiac hypertrophy reflects the level of adaptation, and matches the adaptational modifications of the myocardial phenotype. We suggest that these modifications have detrimental aspects. The increased action potential (AP) and QT duration and the prolonged calcium transient both favour spontaneous calcium oscillations, and both are potentially arrhythmogenic and linked to phenotypic changes in membrane proteins. To date, only two ionic currents have been studied in detail: Ito is depressed (likely the main determinant in AP durations), and If, the pacemaker current, is induced in the overloaded ventricular myocytes. In rat CCH, the two components of the sarcoplasmic reticulum, namely Ca(2+)-ATPase and ryanodine receptors, are down-regulated in parallel. Nevertheless, while the inward calcium current is unchanged, the functionally linked duo composed of the Na+/Ca2+ exchanged and (Na+, K+)-ATPase, is less active. Such an imbalance may explain the prolonged calcium transient. The changes in heart rate variability provide information about the state of the autonomic nervous system and has prognostic value even in CCH. Transgenic studies have demonstrated that the myocardial adrenergic and muscarinic receptor content is also a determining factor. During CCH, several phenotypic membrane changes participate in the slowing of contraction velocity and are thus adaptational. They also have a detrimental counterpart and, together with fibrosis, favour arrhythmias. PMID:9302342

  4. A novel mathematical model describing adaptive cellular drug metabolism and toxicity in the chemoimmune system.

    Directory of Open Access Journals (Sweden)

    Attila Tóth

    Full Text Available Cells cope with the threat of xenobiotic stress by activating a complex molecular network that recognizes and eliminates chemically diverse toxic compounds. This "chemoimmune system" consists of cellular Phase I and Phase II metabolic enzymes, Phase 0 and Phase III ATP Binding Cassette (ABC membrane transporters, and nuclear receptors regulating these components. In order to provide a systems biology characterization of the chemoimmune network, we designed a reaction kinetic model based on differential equations describing Phase 0-III participants and regulatory elements, and characterized cellular fitness to evaluate toxicity. In spite of the simplifications, the model recapitulates changes associated with acquired drug resistance and allows toxicity predictions under variable protein expression and xenobiotic exposure conditions. Our simulations suggest that multidrug ABC transporters at Phase 0 significantly facilitate the defense function of successive network members by lowering intracellular drug concentrations. The model was extended with a novel toxicity framework which opened the possibility of performing in silico cytotoxicity assays. The alterations of the in silico cytotoxicity curves show good agreement with in vitro cell killing experiments. The behavior of the simplified kinetic model suggests that it can serve as a basis for more complex models to efficiently predict xenobiotic and drug metabolism for human medical applications.

  5. Transgenic Eimeria mitis expressing chicken interleukin 2 stimulated higher cellular immune response in chickens compared with the wild-type parasites

    Science.gov (United States)

    Li, Zhuoran; Tang, Xinming; Suo, Jingxia; Qin, Mei; Yin, Guangwen; Liu, Xianyong; Suo, Xun

    2015-01-01

    Chicken coccidiosis, caused by Eimeria sp., occurs in almost all poultry farms and causes huge economic losses in the poultry industry. Although this disease could be controlled by vaccination, the reduced feed conservation ratio limits the widespread application of anticoccidial vaccines in broilers because some intermediate and/or low immunogenic Eimeria sp. only elicit partial protection. It is of importance to enhance the immunogenicity of these Eimeria sp. by adjuvants for more effective prevention of coccidiosis. Cytokines have remarkable effects on the immunogenicity of antigens. Interleukin 2 (IL-2), for example, significantly stimulates the activation of CD8+ T cells and other immune cells. In this study, we constructed a transgenic Eimeria mitis line (EmiChIL-2) expressing chicken IL-2 (ChIL-2) to investigate the adjuvant effect of ChIL-2 to enhance the immunogenicity of E. mitis against its infection. Stable transfected EmiChIL-2 population was obtained by pyrimethamine selection and verified by PCR, genome walking, western blotting and indirect immunofluorescence assay. Cellular immune response, E. mitis-specific IFN-γ secretion lymphocytes in the peripheral blood mononuclear cells, stimulated by EmiChIL-2 was analyzed by enzyme-linked immunospot assay (ELISPOT). The results showed that EmiChIL-2 stimulated a higher cellular immune response compared with that of the wild-type parasite infection in chickens. Moreover, after the immunization with EmiChIL-2, elevated cellular immune response as well as reduced oocyst output were observed These results indicated that ChIL-2 expressed by Eimeria sp. functions as adjuvant and IL-2 expressing Eimeria parasites are valuable vaccine strains against coccidiosis. PMID:26082759

  6. Open cascades as simple solutions to providing ultrasensitivity and adaptation in cellular signaling

    International Nuclear Information System (INIS)

    Cell signaling is achieved predominantly by reversible phosphorylation–dephosphorylation reaction cascades. Up until now, circuits conferring adaptation have all required the presence of a cascade with some type of closed topology: negative-feedback loop with a buffering node, or incoherent feed-forward loop with a proportioner node. In this paper—using Goldbeter and Koshland-type expressions—we propose a differential equation model to describe a generic, open signaling cascade that elicits an adaptation response. This is accomplished by coupling N phosphorylation–dephosphorylation cycles unidirectionally, without any explicit feedback loops. Using this model, we show that as the length of the cascade grows, the steady states of the downstream cycles reach a limiting value. In other words, our model indicates that there are a minimum number of cycles required to achieve a maximum in sensitivity and amplitude in the response of a signaling cascade. We also describe for the first time that the phenomenon of ultrasensitivity can be further subdivided into three sub-regimes, separated by sharp stimulus threshold values: OFF, OFF-ON-OFF, and ON. In the OFF-ON-OFF regime, an interesting property emerges. In the presence of a basal amount of activity, the temporal evolution of early cycles yields damped peak responses. On the other hand, the downstream cycles switch rapidly to a higher activity state for an extended period of time, prior to settling to an OFF state (OFF-ON-OFF). This response arises from the changing dynamics between a feed-forward activation module and dephosphorylation reactions. In conclusion, our model gives the new perspective that open signaling cascades embedded in complex biochemical circuits may possess the ability to show a switch-like adaptation response, without the need for any explicit feedback circuitry

  7. Comparative genomic analysis of buffalo (Bubalus bubalis NOD1 and NOD2 receptors and their functional role in in-vitro cellular immune response.

    Directory of Open Access Journals (Sweden)

    Biswajit Brahma

    Full Text Available Nucleotide binding and oligomerization domain (NOD-like receptors (NLRs are innate immune receptors that recognize bacterial cell wall components and initiate host immune response. Structure and function of NLRs have been well studied in human and mice, but little information exists on genetic composition and role of these receptors in innate immune system of water buffalo--a species known for its exceptional disease resistance. Here, a comparative study on the functional domains of NOD1 and NOD2 was performed across different species. The NOD mediated in-vitro cellular responses were studied in buffalo peripheral blood mononuclear cells, resident macrophages, mammary epithelial, and fibroblast cells. Buffalo NOD1 (buNOD1 and buNOD2 showed conserved domain architectures as found in other mammals. The domains of buNOD1 and buNOD2 showed analogy in secondary and tertiary conformations. Constitutive expressions of NODs were ubiquitous in different tissues. Following treatment with NOD agonists, peripheral lymphocytes showed an IFN-γ response along-with production of pro-inflammatory cytokines. Alveolar macrophages and mammary epithelial cells showed NOD mediated in-vitro immune response through NF-κB dependent pathway. Fibroblasts showed pro-inflammatory cytokine response following agonist treatment. Our study demonstrates that both immune and non-immune cells could generate NOD-mediated responses to pathogens though the type and magnitude of response depend on the cell types. The structural basis of ligand recognition by buffalo NODs and knowledge of immune response by different cell types could be useful for development of non-infective innate immune modulators and next generation anti-inflammatory compounds.

  8. Functional adaptation and phenotypic plasticity at the cellular and whole plant level

    Indian Academy of Sciences (India)

    Karl J Niklas

    2009-10-01

    The ability to adaptively alter morphological, anatomical, or physiological functional traits to local environmental variations using external environmental cues is especially well expressed by all terrestrial and most aquatic plants. A ubiquitous cue eliciting these plastic phenotypic responses is mechanical perturbation (MP), which can evoke dramatic differences in the size, shape, or mechanical properties of conspecifics. Current thinking posits that MP is part of a very ancient ``stress-perception response system” that involves receptors located at the cell membrane/cell wall interface capable of responding to a broad spectrum of stress-inducing factors. This hypothesis is explored here from the perspective of cell wall evolution and the control of cell wall architecture by unicellular and multicellular plants. Among the conclusions that emerge from this exploration is the perspective that the plant cell is phenotypically plastic.

  9. In-vivo imaging of inner retinal cellular morphology with adaptive optics - optical coherence tomography: challenges and possible solutions

    Science.gov (United States)

    Zawadzki, Robert J.; Jones, Steven M.; Kim, Dae Yu; Poyneer, Lisa; Capps, Arlie G.; Hamann, Bernd; Olivier, Scot S.; Werner, John S.

    2012-03-01

    Recent progress in retinal image acquisition techniques, including optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO), combined with improved performance of adaptive optics (AO) instrumentation, has resulted in improvement in the quality of in vivo images of cellular structures in the outer layers of the human retina. Despite the significant progress in imaging cone and rod photoreceptor mosaics, visualization of cellular structures in the inner retina has been achieved only with extrinsic contrast agents that have not been approved for use with humans. In this paper we describe the main limiting factors in visualizing inner retinal cells and the methods we implemented to reduce their effects on images acquired with AO-OCT. These include improving the system point spread function (AO performance), monitoring of motion artifacts (retinal motion tracking), and speckle pattern reduction (temporal and spatial averaging). Results of imaging inner retinal morphology and the improvement offered by the new UC Davis AOOCT system with spatio-temporal image averaging are presented.

  10. Modified Self-adaptive Immune Genetic Algorithm for Optimization of Combustion Side Reaction of p-Xylene Oxidation

    Institute of Scientific and Technical Information of China (English)

    陶莉莉; 孔祥东; 钟伟民; 钱锋

    2012-01-01

    In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained.

  11. Complex dynamics of selection and cellular memory in adaptation to a changing environment

    Science.gov (United States)

    Kussell, Edo; Lin, Wei-Hsiang

    We study a synthetic evolutionary system in bacteria in which an antibiotic resistance gene is controlled by a stochastic on/off switching promoter. At the population level, this system displays all the basic ingredients for evolutionary selection, including diversity, fitness differences, and heritability. At the single cell level, physiological processes can modulate the ability of selection to act. We expose the stochastic switching strains to pulses of antibiotics of different durations in periodically changing environments using microfluidics. Small populations are tracked over a large number of periods at single cell resolution, allowing the visualization and quantification of selective sweeps and counter-sweeps at the population level, as well as detailed single cell analysis. A simple model is introduced to predict long-term population growth rates from single cell measurements, and reveals unexpected aspects of population dynamics, including cellular memory that acts on a fast timescale to modulate growth rates. This work is supported by NIH Grant No. R01-GM097356.

  12. Cocaine-induced adaptations in cellular redox balance contributes to enduring behavioral plasticity.

    Science.gov (United States)

    Uys, Joachim D; Knackstedt, Lori; Hurt, Phelipe; Tew, Kenneth D; Manevich, Yefim; Hutchens, Steven; Townsend, Danyelle M; Kalivas, Peter W

    2011-11-01

    Impaired glutamate homeostasis in the nucleus accumbens has been linked to cocaine relapse in animal models, and results in part from cocaine-induced downregulation of the cystine-glutamate exchanger. In addition to regulating extracellular glutamate, the uptake of cystine by the exchanger is a rate-limiting step in the synthesis of glutathione (GSH). GSH is critical for balancing cellular redox in response to oxidative stress. Cocaine administration induces oxidative stress, and we first determined if downregulated cystine-glutamate exchange alters redox homeostasis in rats withdrawn from daily cocaine injections and then challenged with acute cocaine. Among the daily cocaine-induced changes in redox homeostasis were an increase in protein S-glutathionylation and a decrease in expression of GSH-S-transferase pi (GSTpi). To mimic reduced GSTpi, a genetic mouse model of GSTpi deletion or pharmacological inhibition of GSTpi by administering ketoprofen during daily cocaine administration was used. The capacity of cocaine to induce conditioned place preference or locomotor sensitization was augmented, indicating that reducing GSTpi may contribute to cocaine-induced behavioral neuroplasticity. Conversely, an acute cocaine challenge after withdrawal from daily cocaine elicited a marked increase in accumbens GSTpi, and the expression of behavioral sensitization to a cocaine challenge injection was inhibited by ketoprofen pretreatment; supporting a protective effect by the acute cocaine-induced rise in GSTpi. Together, these data indicate that cocaine-induced oxidative stress induces changes in GSTpi that contribute to cocaine-induced behavioral plasticity. PMID:21796101

  13. Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation.

    Science.gov (United States)

    Santander, Ricardo D; Oliver, James D; Biosca, Elena G

    2014-05-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants distributed worldwide. This bacterium is a nonobligate pathogen able to survive outside the host under starvation conditions, allowing its spread by various means such as rainwater. We studied E. amylovora responses to starvation using water microcosms to mimic natural oligotrophy. Initially, survivability under optimal (28 °C) and suboptimal (20 °C) growth temperatures was compared. Starvation induced a loss of culturability much more pronounced at 28 °C than at 20 °C. Natural water microcosms at 20 °C were then used to characterize cellular, physiological, and molecular starvation responses of E. amylovora. Challenged cells developed starvation-survival and viable but nonculturable responses, reduced their size, acquired rounded shapes and developed surface vesicles. Starved cells lost motility in a few days, but a fraction retained flagella. The expression of genes related to starvation, oxidative stress, motility, pathogenicity, and virulence was detected during the entire experimental period with different regulation patterns observed during the first 24 h. Further, starved cells remained as virulent as nonstressed cells. Overall, these results provide new knowledge on the biology of E. amylovora under conditions prevailing in nature, which could contribute to a better understanding of the life cycle of this pathogen. PMID:24476337

  14. Antibacterial immune competence of honey bees (Apis mellifera is adapted to different life stages and environmental risks.

    Directory of Open Access Journals (Sweden)

    Heike Gätschenberger

    Full Text Available The development of all honey bee castes proceeds through three different life stages all of which encounter microbial infections to a various extent. We have examined the immune strength of honey bees across all developmental stages with emphasis on the temporal expression of cellular and humoral immune responses upon artificial challenge with viable Escherichia coli bacteria. We employed a broad array of methods to investigate defence strategies of infected individuals: (a fate of bacteria in the haemocoel; (b nodule formation and (c induction of antimicrobial peptides (AMPs. Newly emerged adult worker bees and drones were able to activate efficiently all examined immune reactions. The number of viable bacteria circulating in the haemocoel of infected bees declined rapidly by more than two orders of magnitude within the first 4-6 h post-injection (p.i., coinciding with the occurrence of melanised nodules. Antimicrobial activity, on the other hand, became detectable only after the initial bacterial clearance. These two temporal patterns of defence reactions very likely represent the constitutive cellular and the induced humoral immune response. A unique feature of honey bees is that a fraction of worker bees survives the winter season in a cluster mostly engaged in thermoregulation. We show here that the overall immune strength of winter bees matches that of young summer bees although nodulation reactions are not initiated at all. As expected, high doses of injected viable E.coli bacteria caused no mortality in larvae or adults of each age. However, drone and worker pupae succumbed to challenge with E.coli even at low doses, accompanied by a premature darkening of the pupal body. In contrast to larvae and adults, we observed no fast clearance of viable bacteria and no induction of AMPs but a rapid proliferation of E.coli bacteria in the haemocoel of bee pupae ultimately leading to their death.

  15. Adaptive cellular structures and devices with internal features for enhanced structural performance

    Science.gov (United States)

    Pontecorvo, Michael Eugene

    This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement

  16. Safety of Probiotic Escherichia coli Strain Nissle 1917 Depends on Intestinal Microbiota and Adaptive Immunity of the Host▿

    OpenAIRE

    Gronbach, Kerstin; Eberle, Ute; Müller, Martina; Ölschläger, Tobias A.; Dobrindt, Ulrich; Leithäuser, Frank; Niess, Jan Hendrik; Döring, Gerd; Reimann, Jörg; Autenrieth, Ingo B.; Frick, Julia-Stefanie

    2010-01-01

    Probiotics are viable microorganisms that are increasingly used for treatment of a variety of diseases. Occasionally, however, probiotics may have adverse clinical effects, including septicemia. Here we examined the role of the intestinal microbiota and the adaptive immune system in preventing translocation of probiotics (e.g., Escherichia coli Nissle). We challenged C57BL/6J mice raised under germfree conditions (GF-raised C57BL/6J mice) and Rag1−/− mice raised under germfree conditions (GF-...

  17. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria

    OpenAIRE

    Gasiunas, Giedrius; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2012-01-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide adaptive immunity against viruses and plasmids in bacteria and archaea. The silencing of invading nucleic acids is executed by ribonucleoprotein complexes preloaded with small, interfering CRISPR RNAs (crRNAs) that act as guides for targeting and degradation of foreign nucleic acid. Here, we demonstrate that the Cas9–crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system in...

  18. Adaptive Spam Detection Inspired by a Cross-Regulation Model of Immune Dynamics: A Study of Concept Drift

    OpenAIRE

    Abi-Haidar, Alaa; Rocha, Luis M

    2008-01-01

    This paper proposes a novel solution to spam detection inspired by a model of the adaptive immune system known as the crossregulation model. We report on the testing of a preliminary algorithm on six e-mail corpora. We also compare our results statically and dynamically with those obtained by the Naive Bayes classifier and another binary classification method we developed previously for biomedical text-mining applications. We show that the cross-regulation model is competitive against those a...

  19. A genetically engineered live-attenuated simian-human immunodeficiency virus that co-expresses the RANTES gene improves the magnitude of cellular immunity in rhesus macaques

    International Nuclear Information System (INIS)

    Regulated-on-activation-normal-T-cell-expressed-and-secreted (RANTES), a CC-chemokine, enhances antigen-specific T helper (Th) type-1 responses against HIV-1. To evaluate the adjuvant effects of RANTES against HIV vaccine candidate in SHIV-macaque models, we genetically engineered a live-attenuated SHIV to express the RANTES gene (SHIV-RANTES) and characterized the virus's properties in vivo. After the vaccination, the plasma viral loads were same in the SHIV-RANTES-inoculated monkeys and the parental nef-deleted SHIV (SHIV-NI)-inoculated monkeys. SHIV-RANTES provided some immunity in monkeys by remarkably increasing the antigen-specific CD4+ Th cell-proliferative response and by inducing an antigen-specific IFN-γ ELISpot response. The magnitude of the immunity in SHIV-RANTES-immunized animals, however, failed to afford greater protection against a heterologous pathogenic SHIV (SHIV-C2/1) challenge compared to control SHIV-NI-immunized animals. SHIV-RANTES immunized monkeys, elicited robust cellular CD4+ Th responses and IFN-γ ELISpot responses after SHIV-C2/1 challenge. These findings suggest that the chemokine RANTES can augment vaccine-elicited, HIV-specific CD4+ T cell responses

  20. The cellular immune system in myelomagenesis: NK cells and T cells in the development of MM and their uses in immunotherapies

    International Nuclear Information System (INIS)

    As vast strides are being made in the management and treatment of multiple myeloma (MM), recent interests are increasingly focusing on understanding the development of the disease. The knowledge that MM develops exclusively from a protracted phase of monoclonal gammopathy of undetermined significance provides an opportunity to study tumor evolution in this process. Although the immune system has been implicated in the development of MM, the scientific literature on the role and status of various immune components in this process is broad and sometimes contradictory. Accordingly, we present a review of cellular immune subsets in myelomagenesis. We summarize the current literature on the quantitative and functional profiles of natural killer cells and T-cells, including conventional T-cells, natural killer T-cells, γδ T-cells and regulatory T-cells, in myelomagenesis. Our goal is to provide an overview of the status and function of these immune cells in both the peripheral blood and the bone marrow during myelomagenesis. This provides a better understanding of the nature of the immune system in tumor evolution, the knowledge of which is especially significant considering that immunotherapies are increasingly being explored in the treatment of both MM and its precursor conditions

  1. Th17 cells confer long term adaptive immunity to oral mucosal Candida albicans infections

    OpenAIRE

    Hernández-Santos, Nydiaris; Huppler, Anna R; Peterson, Alanna C.; Khader, Shabaana A.; McKenna, Kyle C.; Sarah L Gaffen

    2012-01-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both Th1 and Th17 responses, and considerable evidence implicates IL-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relat...

  2. The complementary roles of cellular and humoral immunity in resistance to re-infection with LCM virus

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Marker, O

    1988-01-01

    conclude that preformed antibodies constitute a primary barrier to re-infection with LCMV; only if the first line of defence fails, does memory function become critical and a secondary immune response induced. In the latter case the accelerated kinetics of this response will ensure that the infection is...... used for rechallenge (10(6) - 10(8) LD50), significant re-infection as well as reactivation of cytotoxicity were observed. Both resistance and memory expression were controlled by an antigen-specific, radio-resistant factor in the immune mouse. Transfusion of serum from immune mice to naive recipients...... markedly reduced both virus take and the LCMV-specific immune response. In contrast, transfer of primed cells did not have an immediate effect on virus titres in naive recipients; instead an enhanced immune response was detected and accelerated virus clearance was the result. Based on these observations we...

  3. Retrospective Proteomic Analysis of Cellular Immune Responses and Protective Correlates of p24 Vaccination in an HIV Elite Controller Using Antibody Arrays

    Directory of Open Access Journals (Sweden)

    Suneth S. Perera

    2016-06-01

    Full Text Available Background: HIV p24 is an extracellular HIV antigen involved in viral replication. Falling p24 antibody responses are associated with clinical disease progression and their preservation with non-progressive disease. Stimulation of p24 antibody production by immunization to delay progression was the basis of discontinued p24 vaccine. We studied a therapy-naive HIV+ man from Sydney, Australia, infected in 1988. He received the HIV-p24-virus like particle (VLP vaccine in 1993, and continues to show vigorous p24 antigen responses (>4% p24-specific CD4+ T cells, coupled with undetectable plasma viremia. We defined immune-protective correlates of p24 vaccination at the proteomic level through parallel retrospective analysis of cellular immune responses to p24 antigen in CD4+ and CD8+ T cells and CD14+ monocytes at viremic and aviremic phases using antibody-array. We found statistically significant coordinated up-regulation by all three cell-types with high fold-changes in fractalkine, ITAC, IGFBP-2, and MIP-1α in the aviremic phase. TECK and TRAIL-R4 were down-regulated in the viremic phase and up-regulated in the aviremic phase. The up-regulation of fractalkine in all three cell-types coincided with protective effect, whereas the dysfunction in anti-apoptotic chemokines with the loss of immune function. This study highlights the fact that induction of HIV-1-specific helper cells together with coordinated cellular immune response (p < 0.001 might be important in immunotherapeutic interventions and HIV vaccine development.

  4. Immunity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008254 Prokaryotic expression and immunogenicity of Fba,a novel fibronectin-binding protein of group A streptococcus.MA Cuiqing(马翠柳),et al.Dept Immunol,Basic Med Coll,Hebei Med Univ,Shijiazhuang 050017.Chin J Infect Dis 2008;26(3):146-150.Objective To express the novel fibronectin-binding protein Fba ofgroupAstreptococcus(GAS)and analyze its immunogenicity,so to evaluate the immune responses to GAS infection.Methods fbagene was amplified by

  5. Influence of postoperative enteral nutrition on cellular immunity. A random double-blinded placebo controlled clinical trial

    DEFF Research Database (Denmark)

    Beier-Holgersen, R; Brandstrup, B

    2012-01-01

    The aim of this study was to discover if the cellular immunological response is different in patients receiving early postoperative enteral nutrition compared to patients who only receive "water".......The aim of this study was to discover if the cellular immunological response is different in patients receiving early postoperative enteral nutrition compared to patients who only receive "water"....

  6. Cellular immunity of monovalent influenza vaccine lyophilized liposome%单价流感疫苗脂质体干粉细胞免疫研究

    Institute of Scientific and Technical Information of China (English)

    刘洁; 马波; 鲁卫东; 徐勇军; 林华; 代云波

    2011-01-01

    从细胞免疫水平考察流感疫苗脂质体干粉肺部免疫的免疫原性,以验证在稳定性提高的同时,流感疫苗脂质体干粉肺部免疫原性不低于现行应用的流感疫苗原液腹腔注射免疫.将实验小鼠分为2个大组,每组分为阴性对照组、疫苗脂质体冻干粉组、非脂质体流感疫苗原液组和阳性对照组(n=5).非脂质体流感疫苗原液组和疫苗脂质体冻干粉组分别以每只6μg血凝素(以H1N1计)肺部灌注免疫,同时以每只6μg非脂质体流感疫苗原液组腹腔免疫作为阳性对照.分别免疫14d和28 d后,用四甲基偶氮唑盐微量酶反应比色法(MTT法)检测脾淋巴细胞增殖情况,以考察其细胞免疫原性.脂质体肺部免疫可以诱导细胞免疫,且其免疫原性明显高于流感疫苗原液传统腹腔注射免疫组.与流感疫苗原液腹腔注射免疫相比,流感疫苗脂质体干粉通过肺部免疫,细胞免疫效果明显提高.%To evaluate the immunogenicity of the influenza vaccine lyophilized liposomes through cellular immunity, it could be confirm that, with the increasing of the stability, the immunogenicity of the influenza vaccine lyophilized liposomes by pulmonary delivery was better than that of the influenza vaccine non-liposome immunized by intraperitoneal injection. Experimental mice were divided into two groups, and each group was divided into the negative control group, the influenza vaccine lyophilized liposome group, the influenza vaccine non-liposome group, and the positive control group (n = 5). The influenza vaccine lyophilized liposome group and the influenza vaccine non-liposome group were immunized with 6 |xg hemagglutinin of H1N1 per mouse through pulmonary deli very, and the positive control group was immunized with 6 u,g hemagglutinin of H1N1 per mouse through intraperitoneal injection. MTT method was used to measure the spleen cell proliferation after immunization to mice 14 days and 28 days in order to study

  7. Induction of intrahepatic HCV NS4B, NS5A and NS5B-specific cellular immune responses following peripheral immunization.

    Directory of Open Access Journals (Sweden)

    Krystle A Lang Kuhs

    Full Text Available Numerous studies have suggested that an effective Hepatitis C Virus (HCV vaccine must induce strong cytotoxic and IFN-γ+ T cell responses targeting the non-structural region of the virus. Most importantly, these responses must be able to migrate into and remain functional within the liver, an organ known to cause T cell tolerance. Using three novel HCV DNA vaccines encoding non-structural proteins NS4B, NS5A and NS5B, we assessed the ability of peripheral immunization to induce functional intrahepatic immunity both in the presence and absence of cognate HCV antigen expression within the liver. We have shown that these constructs induced potent HCV-specific CD4+ and CD8+ T cell responses in the spleen of C57BL/6 mice and that these responses were detected within the liver following peripheral immunization. Additionally, using a transfection method to express HCV antigen within the liver, we showed that intrahepatic HCV-specific T cells remained highly functional within the liver and retained the ability to become highly activated as evidenced by upregulation of IFN-γ and clearance of HCV protein expressing hepatocytes. Taken together, these findings suggest that peripheral immunization can induce potent HCV-specific T cell responses able to traffic to and function within the tolerant environment of the liver.

  8. Distinctive cellular immunity in genetically susceptible BALB/c mice recovered from Leishmania major infection or after subcutaneous immunization with killed parasites

    Energy Technology Data Exchange (ETDEWEB)

    Liew, F.Y.; Dhaliwal, J.S.

    1987-06-15

    Genetically susceptible BALB/c mice are refractory to further infection after recovery from Leishmania major infection after a sublethal dose of gamma-irradiation. In contrast, mice immunized with killed promastigotes s.c. develop exacerbated lesions after infection. Both groups of mice produce only a low level of specific antibody and no detectable cytotoxic T cells, but do have a strong antigen-specific DTH, which is adoptively transferable with Lyt-1+2-, L3T4+ T cells. Kinetic and histological studies revealed that mice immunized s.c. developed Jones-Mote hypersensitivity, peaking at 15 hr. with little mononuclear cell infiltration at the site of antigen administration; whereas mice that had recovered from infection developed tuberculin-type of reactivity, peaking at 24 to 48 hr, with intense mononuclear cell infiltration. Splenic T cells from recovered mice, when injected into the footpads of normal recipients together with live promastigotes, were able to retard lesion development; whereas T cells from s.c. immunized mice, when similarly transferred, accelerated disease progression. Antigen-specific culture supernatant of spleen cells from recovered mice also activated normal resident peritoneal macrophages to kill intracellular L. major amastigotes and tumor cells. Culture supernatants of spleen cells from s.c. immunized or normal mice were devoid of such activities. Part of the macrophage-activating potential can be inhibited by antibody specific for IFN-gamma. These results therefore demonstrate that whereas the Jones-Mote reaction is correlated with disease exacerbation, the tuberculin-type of DTH may be protective. Furthermore, in vivo immunity is directly related to the capacity of T cells to produce macrophage-activating factor.

  9. Distinctive cellular immunity in genetically susceptible BALB/c mice recovered from Leishmania major infection or after subcutaneous immunization with killed parasites

    International Nuclear Information System (INIS)

    Genetically susceptible BALB/c mice are refractory to further infection after recovery from Leishmania major infection after a sublethal dose of gamma-irradiation. In contrast, mice immunized with killed promastigotes s.c. develop exacerbated lesions after infection. Both groups of mice produce only a low level of specific antibody and no detectable cytotoxic T cells, but do have a strong antigen-specific DTH, which is adoptively transferable with Lyt-1+2-, L3T4+ T cells. Kinetic and histological studies revealed that mice immunized s.c. developed Jones-Mote hypersensitivity, peaking at 15 hr. with little mononuclear cell infiltration at the site of antigen administration; whereas mice that had recovered from infection developed tuberculin-type of reactivity, peaking at 24 to 48 hr, with intense mononuclear cell infiltration. Splenic T cells from recovered mice, when injected into the footpads of normal recipients together with live promastigotes, were able to retard lesion development; whereas T cells from s.c. immunized mice, when similarly transferred, accelerated disease progression. Antigen-specific culture supernatant of spleen cells from recovered mice also activated normal resident peritoneal macrophages to kill intracellular L. major amastigotes and tumor cells. Culture supernatants of spleen cells from s.c. immunized or normal mice were devoid of such activities. Part of the macrophage-activating potential can be inhibited by antibody specific for IFN-gamma. These results therefore demonstrate that whereas the Jones-Mote reaction is correlated with disease exacerbation, the tuberculin-type of DTH may be protective. Furthermore, in vivo immunity is directly related to the capacity of T cells to produce macrophage-activating factor

  10. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines.

    Science.gov (United States)

    Laws, Thomas R; Kuchuloria, Tinatin; Chitadze, Nazibriola; Little, Stephen F; Webster, Wendy M; Debes, Amanda K; Saginadze, Salome; Tsertsvadze, Nikoloz; Chubinidze, Mariam; Rivard, Robert G; Tsanava, Shota; Dyson, Edward H; Simpson, Andrew J H; Hepburn, Matthew J; Trapaidze, Nino

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens. PMID:27007118

  11. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines.

    Directory of Open Access Journals (Sweden)

    Thomas R Laws

    Full Text Available Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees or anti-LF (in AVP vaccinees antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens.

  12. Food-Nonfood Discrimination in Ancestral Vertebrates: Gamete Cannibalism and the Origin of the Adaptive Immune System.

    Science.gov (United States)

    Corcos, D

    2015-11-01

    Adaptive immunity is a complex system that appeared twice in vertebrates (in gnathostomes and in jawless fish) although it is not required for invertebrate defence. The adaptive immune system is tightly associated with self-non-self discrimination, and it is now clear that this interplay is not limited to the prevention of autoreactivity. Micro-organisms are usually considered for their pathogenicity or symbiotic ability, but, for most small metazoans, they mainly constitute food. Vertebrates are characterized by feeding by predation on larger preys, when compared to their ancestors who were filter feeders and ate micro-organisms. Predation gives a strong selective advantage, not only due to the availability of new food resources but also by the ability to eliminate competitors for environmental resources (intraguild predation (IGP)). Unlike size-structured IGP, intraspecific predation of juveniles, zygotes or gametes can be detrimental for species fitness in some circumstances. The ability of individuals to recognize highly polymorphic molecules on the surface of gametes present in the plankton and so distinguish self versus non-self gametes might have constituted a strong selective advantage in intraspecific competition. Here, I propose the theory that the capacity to rearrange receptors has been selected in ancestral vertebrates as a consequence of this strong need for discriminating between hetero-cannibalism versus filial cannibalism. This evolutionary origin sheds light on presently unexplained features of the immune system, including the existence of regulatory T cells and of non-pathogenic natural autoimmunity. PMID:26286030

  13. A Comparison of the Adaptive Immune Response between Recovered Anthrax Patients and Individuals Receiving Three Different Anthrax Vaccines

    Science.gov (United States)

    Laws, Thomas R.; Kuchuloria, Tinatin; Chitadze, Nazibriola; Little, Stephen F.; Webster, Wendy M.; Debes, Amanda K.; Saginadze, Salome; Tsertsvadze, Nikoloz; Chubinidze, Mariam; Rivard, Robert G.; Tsanava, Shota; Dyson, Edward H.; Simpson, Andrew J. H.; Hepburn, Matthew J.; Trapaidze, Nino

    2016-01-01

    Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens. PMID:27007118

  14. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Directory of Open Access Journals (Sweden)

    Daniel M Appledorn

    Full Text Available BACKGROUND: Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions. CONCLUSION/SIGNIFICANCE: The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  15. Adaptive multi-channel downlink assignment for overloaded spectrum-shared multi-antenna overlaid cellular networks

    KAUST Repository

    Radaydeh, Redha Mahmoud

    2012-10-19

    Overlaid cellular technology has been considered as a promising candidate to enhance the capacity and extend the coverage of cellular networks, particularly indoors. The deployment of small cells (e.g. femtocells and/or picocells) in an overlaid setup is expected to reduce the operational power and to function satisfactorily with the existing cellular architecture. Among the possible deployments of small-cell access points is to manage many of them to serve specific spatial locations, while reusing the available spectrum universally. This contribution considers the aforementioned scenario with the objective to serve as many active users as possible when the available downlink spectrum is overloaded. The case study is motivated by the importance of realizing universal resource sharing in overlaid networks, while reducing the load of distributing available resources, satisfying downlink multi-channel assignment, controlling the aggregate level of interference, and maintaining desired design/operation requirements. These objectives need to be achieved in distributed manner in each spatial space with as low processing load as possible when the feedback links are capacity-limited, multiple small-cell access points can be shared, and data exchange between access points can not be coordinated. This contribution is summarized as follows. An adaptive downlink multi-channel assignment scheme when multiple co-channel and shared small-cell access points are allocated to serve active users is proposed. It is assumed that the deployed access points employ isotropic antenna arrays of arbitrary sizes, operate using the open-access strategy, and transmit on shared physical channels simultaneously. Moreover, each active user can be served by a single transmit channel per each access point at a time, and can sense the concurrent interference level associated with each transmit antenna channel non-coherently. The proposed scheme aims to identify a suitable subset of transmit channels

  16. Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercariae. V. Anamnestic cellular and humoral responses following challenge infection

    Energy Technology Data Exchange (ETDEWEB)

    Correa-Oliveira, R.; Sher, A.; James, S.L.

    1984-03-01

    Mice vaccinated with radiation-attenuated cercariae display low levels of cellular and humoral immune responses toward schistosomulum antigens, as measured in vitro by lymphocyte blastogenesis and quantitation of anti-larval antibodies by indirect immunofluorescence. Both responses wane with time after vaccination. However subsequent challenge infection provokes immune responses of classical anamnestic character, being both more rapid in appearance and of greater magnitude. Antigen responsive cells appear in lymph nodes draining the challenge site within 24 hours after infection. Both circulating anti-schistosomulum surface antibodies as well as cytophilic IgE anti-worm antigen antibodies increase substantially by 1 week after challenge. All of the anamnestic circulating antibodies belong to the IgG class. Those findings support the concept that vaccine-induced resistance to Schistosoma mansoni infection involves sensitized T and B lymphocytes, and point to the possible role of post-challenge anamnestic responses in the effector mechanism of parasite killing in this model.

  17. Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercariae. V. Anamnestic cellular and humoral responses following challenge infection

    International Nuclear Information System (INIS)

    Mice vaccinated with radiation-attenuated cercariae display low levels of cellular and humoral immune responses toward schistosomulum antigens, as measured in vitro by lymphocyte blastogenesis and quantitation of anti-larval antibodies by indirect immunofluorescence. Both responses wane with time after vaccination. However subsequent challenge infection provokes immune responses of classical anamnestic character, being both more rapid in appearance and of greater magnitude. Antigen responsive cells appear in lymph nodes draining the challenge site within 24 hours after infection. Both circulating anti-schistosomulum surface antibodies as well as cytophilic IgE anti-worm antigen antibodies increase substantially by 1 week after challenge. All of the anamnestic circulating antibodies belong to the IgG class. Those findings support the concept that vaccine-induced resistance to Schistosoma mansoni infection involves sensitized T and B lymphocytes, and point to the possible role of post-challenge anamnestic responses in the effector mechanism of parasite killing in this model

  18. A fusion protein of HCMV IE1 exon4 and IE2 exon5 stimulates potent cellular immunity in an MVA vaccine vector

    International Nuclear Information System (INIS)

    A therapeutic CMV vaccine incorporating an antigenic repertoire capable of eliciting a cellular immune response has yet to be successfully implemented for patients who already have acquired an infection. To address this problem, we have developed a vaccine candidate derived from modified vaccinia Ankara (MVA) that expresses three immunodominant antigens (pp65, IE1, IE2) from CMV. The novelty of this vaccine is the fusion of two adjacent exons from the immediate-early region of CMV, their successful expression in MVA, and robust immunogenicity in both primary and memory response models. Evaluation of the immunogenicity of the viral vaccine in mouse models shows that it can stimulate primary immunity against all three antigens in both the CD4+ and CD8+ T cell subsets. Evaluation of human PBMC from healthy CMV-positive donors or patients within 6 months of receiving hematopoietic cell transplant shows robust stimulation of existing CMV-specific CD4+ and CD8+ T cell subsets

  19. The influence of Maloprim chemoprophylaxis on cellular and humoral immune responses to Plasmodium falciparum asexual blood stage antigens in schoolchildren living in a malaria endemic area of Mozambique

    DEFF Research Database (Denmark)

    Hogh, B; Thompson, R; Lobo, V;

    1994-01-01

    We examined the impact of chemoprophylaxis on the cellular and humoral immune responses to polypeptides of the asexual Plasmodium falciparum blood stage antigens, the glutamate rich protein GLURP and Pf155/RESA, both of which in previous field studies have been identified as potentially protective...... antigens. The study was carried out in the Escola Primária de Lingamo, a primary school in a suburban area of Maputo, Mozambique. A cohort of 392 schoolchildren (aged 7-12 years) was randomly allocated to two equal groups, one receiving chemoprophylaxis with dapsone/pyrimethamine (Maloprim), the other...... responses to the GLURP molecule and partly to the Pf155/RESA antigen in this study population were shortlived and dependent on frequent boostering, but whether these antigens play a role in the development of natural clinical immunity remains open. In the experimental group of schoolchildren weekly...

  20. Induction of humoral and cellular immune responses against the HIV-1 envelope protein using γ-retroviral virus-like particles

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2011-08-01

    Full Text Available Abstract This study evaluates the immunogenicity of the HIV envelope protein (env in mice presented either attached to γ-retroviral virus-like-particles (VLPs, associated with cell-derived microsomes or as solubilized recombinant protein (gp160. The magnitude and polyfunctionality of the cellular immune response was enhanced when delivering HIV env in the VLP or microsome form compared to recombinant gp160. Humoral responses measured by antibody titres were comparable across the groups and low levels of antibody neutralization were observed. Lastly, we identified stronger IgG2a class switching in the two particle-delivered antigen vaccinations modalities compared to recombinant gp160.

  1. Immunopotentiation of Different Adjuvants on Humoral and Cellular Immune Responses Induced by HA1-2 Subunit Vaccines of H7N9 Influenza in Mice.

    Directory of Open Access Journals (Sweden)

    Li Song

    Full Text Available In spring 2013, human infections with a novel avian influenza A (H7N9 virus were reported in China. The number of cases has increased with over 200 mortalities reported to date. However, there is currently no vaccine available for the H7 subtype of influenza A virus. Virus-specific cellular immune responses play a critical role in virus clearance during influenza infection. In this study, we undertook a side-by-side evaluation of two different adjuvants, Salmonella typhimurium flagellin (fliC and polyethyleneimine (PEI, through intraperitoneal administration to assess their effects on the immunogenicity of the recombinant HA1-2 subunit vaccine of H7N9 influenza. The fusion protein HA1-2-fliC and HA1-2 combined with PEI could induce significantly higher HA1-2-specific IgG and hemagglutination inhibition titers than HA1-2 alone at 12 days post-boost, with superior HA1-2 specific IgG titers in the HA1-2-fliC group compared with the PEI adjuvanted group. The PEI adjuvanted vaccine induced higher IgG1/IgG2a ratio and significantly increased numbers of IFN-γ- and IL-4-producing cells than HA1-2 alone, suggesting a mixed Th1/Th2-type cellular immune response with a Th2 bias. Meanwhile, the HA1-2-fliC induced higher IgG2a and IgG1 levels, which is indicative of a mixed Th1/Th2-type profile. Consistent with this, significant levels, and equal numbers, of IFN-γ- and IL-4-producing cells were detected after HA1-2-fliC vaccination. Moreover, the marked increase in CD69 expression and the proliferative index with the HA1-2-fliC and PEI adjuvanted vaccines indicated that both adjuvanted vaccine candidates effectively induced antigen-specific cellular immune responses. Taken together, our findings indicate that the two adjuvanted vaccine candidates elicit effective and HA1-2-specific humoral and cellular immune responses, offering significant promise for the development of a successful recombinant HA1-2 subunit vaccine for H7N9 influenza.

  2. Dendritic Cells and Humoral Immunity in Humans

    Science.gov (United States)

    Ueno, Hideki; Schmitt, Nathalie; Palucka, A. Karolina; Banchereau, Jacques

    2010-01-01

    Summary Dendritic cells (DCs) orchestrate the innate and adaptive immune systems to induce tolerance and immunity. DC plasticity and subsets are prominent determinants in the regulation of immune responses. Our recent studies suggest that humoral and cellular immunity is regulated by different myeloid DC subsets with distinct intrinsic properties in humans. While antibody response is preferentially mediated by CD14+ dermal DCs, cytotoxic T cell response is preferentially mediated by Langerhans cells (LCs). Thus, mechanisms whereby DCs induce humoral and cellular immunity appear to be fundamentally distinct. In this review, we will focus on the role of DCs in the development of humoral immunity. We will also discuss the mechanisms whereby DCs induce CD4+ T cells associated with the help of B cell response, including T follicular helper (Tfh) cells, and why human LCs lack this ability. PMID:20309010

  3. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment

    OpenAIRE

    Gjini, Erida; Brito, Patricia H.

    2016-01-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. W...

  4. Pycnogenol attenuates the symptoms of immune dysfunction through restoring a cellular antioxidant status in low micronutrient-induced immune deficient mice

    OpenAIRE

    Lee, Jeongmin; Nam, Da-Eun; Kim, Ok-Kyung; Lee, Myung-Yul

    2014-01-01

    BACKGROUND/OBJECTIVES We investigated the effect of Pycnogenol (Pyc) on survival and immune dysfunction of C57BL/6 mice induced by low micronutrient supplementation. MATERIALS/METHODS Female C57/BL/6 mice were fed a diet containing 7.5% of the recommended amount of micronutrients for a period of 12 wks (immunological assay) and 18 wks (survival test). For immunological assay, lymphocyte proliferation, cytokine regulation, and hepatic oxidative status were determined. RESLUTS Pyc supplementati...

  5. The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen.

    Directory of Open Access Journals (Sweden)

    Jonathan J Hansen

    Full Text Available BACKGROUND: Inflammatory bowel diseases (IBD may be caused in part by aberrant immune responses to commensal intestinal microbes including the well-characterized anaerobic gut commensal Bacteroides thetaiotaomicron (B. theta. Healthy, germ-free HLA-B27 transgenic (Tg rats develop chronic colitis when colonized with complex gut commensal bacteria whereas non-transgenic (nTg rats remain disease-free. However, the role of B. theta in causing disease in Tg rats is unknown nor is much known about how gut microbes respond to host inflammation. METHODS: Tg and nTg rats were monoassociated with a human isolate of B. theta. Colonic inflammation was assessed by histologic scoring and tissue pro-inflammatory cytokine measurement. Whole genome transcriptional profiling of B. theta recovered from ceca was performed using custom GeneChips and data analyzed using dChip, Significance Analysis of Microarrays, and Gene Set Enrichment Analysis (GSEA software. Western Blots were used to determine adaptive immune responses to a differentially expressed B. theta gene. RESULTS: B. theta monoassociated Tg rats, but not nTg or germ-free controls, developed chronic colitis. Transcriptional profiles of cecal B. theta were significantly different in Tg vs. nTg rats. GSEA revealed that genes in KEGG canonical pathways involved in bacterial growth and metabolism were downregulated in B. theta from Tg rats with colitis though luminal bacterial concentrations were unaffected. Bacterial genes in the Gene Ontology molecular function "receptor activity", most of which encode nutrient binding proteins, were significantly upregulated in B. theta from Tg rats and include a SusC homolog that induces adaptive immune responses in Tg rats. CONCLUSIONS: B. theta induces colitis in HLA-B27 Tg rats, which is associated with regulation of bacterial genes in metabolic and nutrient binding pathways that may affect host immune responses. These studies of the host-microbial dialogue may lead to

  6. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections.

    Science.gov (United States)

    Bishu, Shrinivas; Hernández-Santos, Nydiaris; Simpson-Abelson, Michelle R; Huppler, Anna R; Conti, Heather R; Ghilardi, Nico; Mamo, Anna J; Gaffen, Sarah L

    2014-03-01

    Oropharyngeal candidiasis (OPC [thrush]) is an opportunistic infection caused by the commensal fungus Candida albicans. OPC is common in individuals with HIV/AIDS, infants, patients on chemotherapy, and individuals with congenital immune defects. Immunity to OPC is strongly dependent on the interleukin-23 (IL-23)/IL-17R axis, as mice and humans with defects in IL-17R signaling (IL17F, ACT1, IL-17RA) or in genes that direct Th17 differentiation (STAT3, STAT1, CARD9) are prone to mucocutaneous candidiasis. Conventional Th17 cells are induced in response to C. albicans infection via signals from C-type lectin receptors, which signal through the adaptor CARD9, leading to production of Th17-inducing cytokines such as IL-6, IL-1β, and IL-23. Recent data indicate that IL-17 can also be made by numerous innate cell subsets. These innate "type 17" cells resemble conventional Th17 cells, but they can be activated without need for prior antigen exposure. Because C. albicans is not a commensal organism in rodents and mice are thus naive to this fungus, we had the opportunity to assess the role of CARD9 in innate versus adaptive responses using an OPC infection model. As expected, CARD9(-/-) mice failed to mount an adaptive Th17 response following oral Candida infection. Surprisingly, however, CARD9(-/-) mice had preserved innate IL-17-dependent responses to Candida and were almost fully resistant to OPC. Thus, CARD9 is important primarily for adaptive immunity to C. albicans, whereas alternate recognition systems appear to be needed for effective innate responses. PMID:24379290

  7. Cellular and humoral immunity, mood and exam stress: the influences of self-hypnosis and personality predictors.

    Science.gov (United States)

    Gruzelier, J; Smith, F; Nagy, A; Henderson, D

    2001-08-01

    The effects of self-hypnosis training on immune function and mood were examined in medical students at exam time. Hypnosis involved relaxation and imagery directed at improved immune function and increased energy, alertness and concentration. Hypotheses were made about activated and withdrawn personality differences. Eight high and eight low hypnotically susceptible participants were given 10 sessions of hypnosis, one live and nine tape-recorded, and were compared with control subjects (N=12). CD3, CD4, CD8, CD19 and CD56 NK cells and blood cortisol were assayed. Life-style, activated vs. withdrawn temperament, arousal and anxiety questionnaires were administered. Self-hypnosis buffered the decline found in controls in NK (Pexam levels of T and B lymphocytes (P&z.Lt;0.08-Pstress in young, healthy adults have implications for illness prevention and for patients with compromised immunity. PMID:11451479

  8. Adaptive Spam Detection Inspired by a Cross-Regulation Model of Immune Dynamics: A Study of Concept Drift

    CERN Document Server

    Abi-Haidar, Alaa; 10.1007/978-3-540-85072-4_4

    2008-01-01

    This paper proposes a novel solution to spam detection inspired by a model of the adaptive immune system known as the crossregulation model. We report on the testing of a preliminary algorithm on six e-mail corpora. We also compare our results statically and dynamically with those obtained by the Naive Bayes classifier and another binary classification method we developed previously for biomedical text-mining applications. We show that the cross-regulation model is competitive against those and thus promising as a bio-inspired algorithm for spam detection in particular, and binary classification in general.

  9. Aerosol vaccination with AERAS-402 elicits robust cellular immune responses in the lungs of rhesus macaques but fails to protect against high-dose Mycobacterium tuberculosis challenge.

    Science.gov (United States)

    Darrah, Patricia A; Bolton, Diane L; Lackner, Andrew A; Kaushal, Deepak; Aye, Pyone Pyone; Mehra, Smriti; Blanchard, James L; Didier, Peter J; Roy, Chad J; Rao, Srinivas S; Hokey, David A; Scanga, Charles A; Sizemore, Donata R; Sadoff, Jerald C; Roederer, Mario; Seder, Robert A

    2014-08-15

    Development of a vaccine against pulmonary tuberculosis may require immunization strategies that induce a high frequency of Ag-specific CD4 and CD8 T cells in the lung. The nonhuman primate model is essential for testing such approaches because it has predictive value for how vaccines elicit responses in humans. In this study, we used an aerosol vaccination strategy to administer AERAS-402, a replication-defective recombinant adenovirus (rAd) type 35 expressing Mycobacterium tuberculosis Ags Ag85A, Ag85B, and TB10.4, in bacillus Calmette-Guérin (BCG)-primed or unprimed rhesus macaques. Immunization with BCG generated low purified protein derivative-specific CD4 T cell responses in blood and bronchoalveolar lavage. In contrast, aerosolized AERAS-402 alone or following BCG induced potent and stable Ag85A/b-specific CD4 and CD8 effector T cells in bronchoalveolar lavage that largely produced IFN-γ, as well as TNF and IL-2. Such responses induced by BCG, AERAS-402, or both failed to confer overall protection following challenge with 275 CFUs M. tuberculosis Erdman, although vaccine-induced responses associated with reduced pathology were observed in some animals. Anamnestic T cell responses to Ag85A/b were not detected in blood of immunized animals after challenge. Overall, our data suggest that a high M. tuberculosis challenge dose may be a critical factor in limiting vaccine efficacy in this model. However, the ability of aerosol rAd immunization to generate potent cellular immunity in the lung suggests that using different or more immunogens, alternative rAd serotypes with enhanced immunogenicity, and a physiological challenge dose may achieve protection against M. tuberculosis. PMID:25024382

  10. Assessment of cellular and mucosal immune responses in chicks to Newcastle disease oral pellet vaccine (D58 strain) using qPCR.

    Science.gov (United States)

    Shilpa, P; Kirubaharan, J John; Chandran, N Daniel Joy; Gnanapriya, N

    2014-12-01

    To assess the cell mediated and mucosal immune responses in chicks to Newcastle disease vaccine, expression levels of certain genes encoding cytokines and chemokines were quantified by q-PCR. The utility of cytokine and chemokine gene expression profile in estimating the cell mediated and humoral immune response has been established. The cell mediated immune response was assessed by quantifying the IFN-γ gene expression in splenocytes and compared with colorimetric blastogenesis assay. The mucosal immune response was assessed by quantifying the expression of IL-8, IL1-β, MIP1-β, K60 and K203 in the intestinal cells and compared with IgA ELISA. On 14th day post vaccination, the expression of IFN-γ was upregulated by 12-folds in the Group I, which have received oral pellet vaccine and fourfolds in the Group II where birds have received live thermostable vaccine as occulonasal instillation. 3 and 7 days after receiving booster, the same cytokine gene was upregulated by 12-folds and 27-folds respectively in the Group III, where birds have received live thermostable ND vaccine as priming vaccine and oral pellet vaccine as booster. On 21st day post vaccination the expression of IL-8 was upregulated by 42.8-folds in Group I and 3.3-folds in the Group II. The expression of IL-1β was upregulated by eightfolds on 3rd day post vaccination and 23-folds on 21st day post vaccination in Group I. The expression of macrophage inflammatory protein-1β (MIP-1β) was upregulated by 16-folds in Group I and 70-folds in Group II on 14th day post vaccination. No significant change in expression of chemokine genes K60 and K203 in vaccinated birds. The results were comparable with the results of conventional tests and proved the utility of qPCR in estimating the cellular and mucosal immune responses. PMID:25674624

  11. Cardiac allograft immune activation: current perspectives

    Directory of Open Access Journals (Sweden)

    Chang D

    2014-12-01

    Full Text Available David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibody-mediated rejection, and chronic rejection. In this review, we will summarize the innate and adaptive immune responses which influence the post-heart transplant recipient. Different forms of rejection and their clinical presentation, detection, and immune monitoring will be discussed. Treatment of heart transplant rejection will be examined. We will discuss potential treatment strategies for preventing rejection post-transplant in immunologically high-risk patients with antibody sensitization. Keywords: heart transplant, innate immunity, adaptive immunity, rejection, immunosuppression

  12. Subunit influenza vaccine candidate based on CD154 fused to HAH5 increases the antibody titers and cellular immune response in chickens.

    Science.gov (United States)

    Pose, Alaín González; Gómez, Julia Noda; Sánchez, Alina Venereo; Redondo, Armando Vega; Rodríguez, Elsa Rodríguez; Seguí, Raquel Montesino; Ramos, Ernesto Manuel González; Moltó, María Pilar Rodríguez; Rodríguez, Elaine Santana; Cordero, Liliam Rios; Mallón, Alina Rodríguez; Nordelo, Carlos Borroto

    2011-09-28

    World Health Organization has a great concern about the spreading of avian influenza virus H5N1. To counteract its massive spread, poultry vaccination is highly recommended together with biosecurity measures. In our study, a recombinant vaccine candidate based on the fusion of extracellular segments of hemagglutinin (HA) H5 of avian influenza virus and chicken CD154 (HACD) is tested with the aim of enhancing humoral and cellular immune responses in chickens. Protein expression was carried out by transducing several mammalian cell lines with recombinant adenoviral vectors. HACD purification was assessed by three distinct purification protocols: immunoaffinity chromatography by elution at acidic pH or with a chaotropic agent and size exclusion chromatography. Humoral and cellular immune responses were measured using the hemagglutination inhibition assay and the semiquantitative real time PCR, respectively. The results showed that humoral response against HACD was significantly higher than the obtained with HA alone after booster (Pvaccine candidate against H5N1 virus outbreaks. PMID:21680114

  13. Alternations of cellular immunity in the patients with chronic hepatitis B after the interventional administration of thymosin and Huangqi via the portal vein catheterization

    International Nuclear Information System (INIS)

    Objective: To evaluate feasibility administration of thymosin and Huangqi through the portal vein catheterization. And an assessment of the effects of the interventional therapy on the cellular immunity in the patients with chronic hepatitis B. Methods: Thymosin and Huangqi solution were given via portal vein catheterization in eight cases of chronic hepatitis B with hepatic carcinoma. The CD3, CD3+CD8+, CD3+CD4+, and NK cell level of peripheral blood were analyzed by flow cytometry pre- and post-operatively. Results: The level of CD3 was pre-operative 665.63 ± 434.80/μlvs post-operative 1326.50 ± 551.09/μl; CD3+CD8+ was 275.63 ± 205.78/μl vs 513.50 ± 231.00/μl; CD3+CD4+ was 515.88 ± 329.75 μl vs 981.75 ± 478.54/μl; and NK was 130.86 ± 176.58/μl vs 303.43 ± 190.90/μl, respectively. There were significance difference between pre-operative and post-operative data. Conclusion: The administration of thymosin and Huangqi via the portal vein catheterization is an effective and safe therapy to improve cellular immunity in patients with chronic hepatitis B, and potentially is a new treatment of chronic hepatitis B. Study of larger sample is expected. (authors)

  14. Orally administered marine (1-3)-Beta-D-glucan Phycarine stimulates both humoral and cellular immunity

    Czech Academy of Sciences Publication Activity Database

    Větvička, V.; Dvořák, B.; Větvičková, J.; Richter, Jan; Křižan, Jiří; Šíma, Petr; Yvin, J.; C.

    2007-01-01

    Roč. 40, - (2007), s. 291-298. ISSN 0141-8130 R&D Projects: GA ČR GA301/05/0078 Institutional research plan: CEZ:AV0Z50200510 Keywords : phagocytosis * immunity * cancer Subject RIV: EE - Microbiology, Virology Impact factor: 1.578, year: 2007

  15. Epitope DNA vaccines against tuberculosis: spacers and ubiquitin modulates cellular immune responses elicited by epitope DNA vaccine

    Institute of Scientific and Technical Information of China (English)

    Wang QM; Sun SH; Hu ZL; Zhou FJ; Yin M; Xiao CJ; Zhang JC

    2005-01-01

    Cell-mediated immune responses are crucial in the protection against tuberculosis. In this study, we constructed epitope DNA vaccines (p3-M-38) encoding cytotoxic T lymphocyte (CTL) epitopes of MPT64 and 38 kDa proteins of Mycobacterium tuberculosis. In order to observe the influence of spacer sequence (Ala-Ala-Tyr) or ubiquitin (UbGR) on the efficacy of the two CTL epitopes, we also constructed DNA vaccines, p3-M-S(spacer)-38, p3-Ub (UbGR)-M-S-38 and p3-Ub-M-38. The immune responses elicited by the four DNA vaccines were tested in C57BL/6 (H-2b) mice. The cytotoxicity of T cells was detected by LDH-release method and by enzyme-linked immunospot assay for epitope-specific cells secreting interferon-gamma. The results showed that DNA immunization with p3-M-38 vaccine could induce epitope-specific CD8+ CTL response and that the spacer sequence (AAY) only enhanced M epitope presentation. The protein-targeting sequence (UbGR) enhanced the immunogenicity of the two epitopes. The finding that defined spacer sequences at C-terminus and protein-targeting degradation modulated the immune response of epitope string DNA vaccines will be of importance for the further development of multi-epitope DNA vaccines against tuberculosis.

  16. Development of cellular immune response of mice to infection with low doses of Trichinella spiralis, Trichinella britovi and Trichinella pseudospiralis larvae.

    Science.gov (United States)

    Dvorožňáková, Emília; Hurníková, Zuzana; Kołodziej-Sobocińska, Marta

    2011-01-01

    The murine cellular immune response to the infection with ten larvae of encapsulating (Trichinella spiralis, Trichinella britovi) and non-encapsulating species (Trichinella pseudospiralis) was studied. Both T. spiralis and T. britovi stimulated the proliferation of splenic T and B lymphocytes during the intestinal phase of infection, but T. spiralis activated the proliferative response also at the muscle phase, particularly in B cells. Non-encapsulating T. pseudospiralis stimulated the proliferation of T and B cells only on day 10 post-infection (p.i.) and later at the muscle phase. The numbers of splenic CD4 and CD8 T cells of T. spiralis infected mice were significantly increased till day 10 p.i., i.e., at the intestinal phase, and then at the late muscle phase, on day 60 p.i. T. britovi infection increased the CD4 and CD8 T cell numbers only on day 30 p.i. Decreased numbers of CD4 and CD8 T cells after T. pseudospiralis infection suggest a suppression of cellular immunity. Both encapsulating Trichinella species induced the Th2 response (cytokines interleukin-5 (IL-5) and interleukin-10) at the intestinal phase and the Th2 dominant response at the advanced muscle phase. Interferon-γ (IFN-γ) production (Th1 type) started to increase with migrating newborn larvae from day 15 p.i. till the end of the experiment. IL-5 production was suppressed during the intestinal phase of T. pseudospiralis infection. The immune response to T. pseudospiralis was directed more to the Th1 response at the muscle phase, the high IFN-γ production was found on day 10 p.i. and it peaked on days 45 and 60 p.i. PMID:20967464

  17. DNA-based vaccination induces humoral and cellular immune responses against hepatitis B virus surface antigen in mice without activation of Cmyc

    Institute of Scientific and Technical Information of China (English)

    Lian San Zhao; Shan Qin; Tao You Zhou; Hong Tang; Li Liu; Bing Jun Lei

    2000-01-01

    AIM To develop a safe and effective DNA vaccine for inducing humoral and cellular immunological responses against hepatitis B virus surface antigen (HBsAg). METHODS BALB/c mice were inoculated with NV-HB/s, a recombinant plasmid that had been inserted S gene of hepatitis B virus genome and could express HBsAg in eukaryotes. HBsAg expression was measured by ABC immunohistochemical assay, generation of anti-HBs by ELISA and cytotoxic T lymphocyte (CTL), by MTT method, existence of vaccine DNA by Southern blot hybridization and activation of oncogene C-myc by in situ hybridization.RESULTS With NV-HB/s vaccination by intramuscular injection, anti-HBs was initially positive 2 weeks after inoculation while all mice tested were HBsAg positive in the muscles. The titers and seroconversion rate of anti-HBs were steadily increasing as time went on and were dose-dependent. All the mice inoculated with 100 μg NV-HB/ s were anti-HBs positive one month after inoculation, the titer was 1:1024 or more. The humoral immune response was similar induced by either intramuscular or intradermal injection. CTL activities were much stronger (45.26%) in NV-HB/s DNA immunized mice as compared with those (only 6%) in plasmaderived HBsAg vaccine immunized mice. Two months after inoculation, all muscle samples were positive by Southern-blot hybridization for NV-HB/s DNA detection, but decreased to 25%and all were undetectable by in situ hybridization after 6 months. No oncogene Cmyc activation was found in the muscle of inoculation site. CONCLUSION NV-HB/s could generate humoral and cellular immunological responses against HBsAg that had been safely expressed in situ by NV-HB/s vaccination.

  18. Adaptation of innate lymphoid cells to nutrient deprivation promotes type 2 barrier immunity

    Science.gov (United States)

    Survival of the host relies on the establishment of site-specific barrier defense tailored to constrain pressures imposed by commensal and parasitic exposures. The host is confronted with the additional challenge of maintaining barrier immunity in fluctuating states of dietary availability, yet how ...

  19. The Two Sides of Complement C3d: Evolution of Electrostatics in a Link between Innate and Adaptive Immunity

    Science.gov (United States)

    Kieslich, Chris A.; Morikis, Dimitrios

    2012-01-01

    The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of −1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic “hot-spots”. Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic “hot-spots” at the two functional sites of C3d, while the surface of CR2 lacks electrostatic “hot-spots” despite its excessively positive nature. We propose that the electrostatic “hot-spots” of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3

  20. The two sides of complement C3d: evolution of electrostatics in a link between innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Chris A Kieslich

    Full Text Available The interaction between complement fragment C3d and complement receptor 2 (CR2 is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of -1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic "hot-spots". Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic "hot-spots" at the two functional sites of C3d, while the surface of CR2 lacks electrostatic "hot-spots" despite its excessively positive nature. We propose that the electrostatic "hot-spots" of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2, which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3

  1. The CRISPR-Cas immune system : Biology, mechanisms and applications

    OpenAIRE

    Rath, Devashish; Amlinger, Lina; Rath, Archana; Lundgren, Magnus

    2015-01-01

    Viruses are a common threat to cellular life, not the least to bacteria and archaea who constitute the majority of life on Earth. Consequently, a variety of mechanisms to resist virus infection has evolved. A recent discovery is the adaptive immune system in prokaryotes, a type of system previously thought to be present only in vertebrates. The system, called CRISPR-Cas, provide sequence-specific adaptive immunity and fundamentally affect our understanding of virus host interaction. CRISPR-ba...

  2. NF-κB Functions in Tumor Initiation by Suppressing the Surveillance of Both Innate and Adaptive Immune Cells

    Directory of Open Access Journals (Sweden)

    David J. Wang

    2014-10-01

    Full Text Available NF-κB is considered a major contributor to tumor development, but how this factor functions in the initial stages of oncogenesis is not clear. In a model of Ras-induced transformation, we probed NF-κB function as preneoplastic cells formed tumors in mice. As previously shown, the p65 subunit of NF-κB acts as a tumor suppressor in normal cells by sustaining senescence following DNA damage. Our current data reveal that, following immortalization, p65 switches to an oncogene by counteracting the surveillance properties of immune cells. NF-κB exerts this effect by protecting transformed cells against macrophage-derived proapoptotic factors, tumor necrosis factor, and nitric oxide. Additionally, NF-κB acts through transforming growth factor beta (TGF-β to mitigate T cell cytotoxicity and other factors to expand myeloid-derived suppressor cells. Together, these data suggest that NF-κB functions in the early stages of transformation by suppressing immune surveillance of both innate and adaptive immune cells, information that may be useful for targeted immunotherapies.

  3. Dual-Track Clearance of Circulating Bacteria Balances Rapid Restoration of Blood Sterility with Induction of Adaptive Immunity.

    Science.gov (United States)

    Broadley, Steven P; Plaumann, Ann; Coletti, Raffaele; Lehmann, Christin; Wanisch, Andreas; Seidlmeier, Amelie; Esser, Knud; Luo, Shanshan; Rämer, Patrick C; Massberg, Steffen; Busch, Dirk H; van Lookeren Campagne, Menno; Verschoor, Admar

    2016-07-13

    Efficient clearance of bacteremia prevents life-threatening disease. Platelet binding to intravascular bacteria, a process involving platelet glycoprotein GPIb and bacterial opsonization with activated complement C3, influences blood clearance and anti-infective immunity. Using intravital microscopy of the bloodstream of mice infected with Listeria monocytogenes, we show that bacterial clearance is not a uniform process but a "dual-track" mechanism consisting of parallel "fast" and "slow" pathways. "Slow clearance" is regulated by time-dependent bacterial opsonization, stochastic platelet binding, and capture of bacteria-platelet-complexes via the complement receptor of the immunoglobulin superfamily, CRIg. The mechanism spares some bacteria from "fast clearance" and rapid destruction in the liver via Kupffer cell scavenger receptors, keeping them available for adaptive immunity induction by splenic CD8α(+) dendritic cells. We consistently find "fast" and "slow" clearance patterns for a broad panel of other Gram+ and Gram- bacteria. Thus, dual-track clearance balances rapid restoration of blood sterility with induction of specific antibacterial immunity. PMID:27345696

  4. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses.

    Directory of Open Access Journals (Sweden)

    Jong W Yu

    Full Text Available CARMA-BCL10-MALT1 signalosomes play important roles in antigen receptor signaling and other pathways. Previous studies have suggested that as part of this complex, MALT1 functions as both a scaffolding protein to activate NF-κB through recruitment of ubiquitin ligases, and as a protease to cleave and inactivate downstream inhibitory signaling proteins. However, our understanding of the relative importance of these two distinct MALT1 activities has been hampered by a lack of selective MALT1 protease inhibitors with suitable pharmacologic properties. To fully investigate the role of MALT1 protease activity, we generated mice homozygous for a protease-dead mutation in MALT1. We found that some, but not all, MALT1 functions in immune cells were dependent upon its protease activity. Protease-dead mice had defects in the generation of splenic marginal zone and peritoneal B1 B cells. CD4+ and CD8+ T cells displayed decreased T cell receptor-stimulated proliferation and IL-2 production while B cell receptor-stimulated proliferation was partially dependent on protease activity. In dendritic cells, stimulation of cytokine production through the Dectin-1, Dectin-2, and Mincle C-type lectin receptors was also found to be partially dependent upon protease activity. In vivo, protease-dead mice had reduced basal immunoglobulin levels, and showed defective responses to immunization with T-dependent and T-independent antigens. Surprisingly, despite these decreased responses, MALT1 protease-dead mice, but not MALT1 null mice, developed mixed inflammatory cell infiltrates in multiple organs, suggesting MALT1 protease activity plays a role in immune homeostasis. These findings highlight the importance of MALT1 protease activity in multiple immune cell types, and in integrating immune responses in vivo.

  5. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose

    OpenAIRE

    Auld, Stuart K. J. R.; Kai H. Edel; Tom J Little

    2012-01-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established patt...

  6. Evaluation of Cellular Phenotypes Implicated in Immunopathogenesis and Monitoring Immune Reconstitution Inflammatory Syndrome in HIV/Leprosy Cases

    OpenAIRE

    Giacoia-Gripp, Carmem Beatriz Wagner; Sales, Anna Maria; Nery, José Augusto da Costa; Santos-Oliveira, Joanna Reis; de Oliveira, Ariane Leite; Sarno, Euzenir Nunes; Morgado, Mariza Gonçalves

    2011-01-01

    Background It is now evident that HAART-associated immunological improvement often leads to a variety of new clinical manifestations, collectively termed immune reconstitution inflammatory syndrome, or IRIS. This phenomenon has already been described in cases of HIV coinfection with Mycobacterium leprae, most of them belonging to the tuberculoid spectrum of leprosy disease, as observed in leprosy reversal reaction (RR). However, the events related to the pathogenesis of this association need ...

  7. Cellular immunity confers transient protection in experimental Buruli ulcer following BCG or mycolactone-negative Mycobacterium ulcerans vaccination.

    Directory of Open Access Journals (Sweden)

    Alexandra G Fraga

    Full Text Available BACKGROUND: Buruli ulcer (BU is an emerging infectious disease caused by Mycobacterium ulcerans that can result in extensive necrotizing cutaneous lesions due to the cytotoxic exotoxin mycolactone. There is no specific vaccine against BU but reports show some degree of cross-reactive protection conferred by M. bovis BCG immunization. Alternatively, an M. ulcerans-specific immunization could be a better preventive strategy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used the mouse model to characterize the histological and cytokine profiles triggered by vaccination with either BCG or mycolactone-negative M. ulcerans, followed by footpad infection with virulent M. ulcerans. We observed that BCG vaccination significantly delayed the onset of M. ulcerans growth and footpad swelling through the induction of an earlier and sustained IFN-γ T cell response in the draining lymph node (DLN. BCG vaccination also resulted in cell-mediated immunity (CMI in M. ulcerans-infected footpads, given the predominance of a chronic mononuclear infiltrate positive for iNOS, as well as increased and sustained levels of IFN-γ and TNF. No significant IL-4, IL-17 or IL-10 responses were detected in the footpad or the DLN, in either infected or vaccinated mice. Despite this protective Th1 response, BCG vaccination did not avoid the later progression of M. ulcerans infection, regardless of challenge dose. Immunization with mycolactone-deficient M. ulcerans also significantly delayed the progression of footpad infection, swelling and ulceration, but ultimately M. ulcerans pathogenic mechanisms prevailed. CONCLUSIONS/SIGNIFICANCE: The delay in the emergence of pathology observed in vaccinated mice emphasizes the relevance of protective Th1 recall responses against M. ulcerans. In future studies it will be important to determine how the transient CMI induced by vaccination is compromised.

  8. Differential effects of interleukin-17 receptor signaling on innate and adaptive immunity during central nervous system bacterial infection

    Directory of Open Access Journals (Sweden)

    Vidlak Debbie

    2012-06-01

    Full Text Available Abstract Although IL-17A (commonly referred to as IL-17 has been implicated in the pathogenesis of central nervous system (CNS autoimmune disease, its role during CNS bacterial infections remains unclear. To evaluate the broader impact of IL-17 family members in the context of CNS infection, we utilized IL-17 receptor (IL-17R knockout (KO mice that lack the ability to respond to IL-17, IL-17F and IL-17E (IL-25. In this article, we demonstrate that IL-17R signaling regulates bacterial clearance as well as natural killer T (NKT cell and gamma-delta (γδ T cell infiltrates during Staphylococcus aureus-induced brain abscess formation. Specifically, when compared with wild-type (WT animals, IL-17R KO mice exhibited elevated bacterial burdens at days 7 and 14 following S. aureus infection. Additionally, IL-17R KO animals displayed elevated neutrophil chemokine production, revealing the ability to compensate for the lack of IL-17R activity. Despite these differences, innate immune cell recruitment into brain abscesses was similar in IL-17R KO and WT mice, whereas IL-17R signaling exerted a greater influence on adaptive immune cell recruitment. In particular, γδ T cell influx was increased in IL-17R KO mice at day 7 post-infection. In addition, NK1.1high infiltrates were absent in brain abscesses of IL-17R KO animals and, surprisingly, were rarely detected in the livers of uninfected IL-17R KO mice. Although IL-17 is a key regulator of neutrophils in other infection models, our data implicate an important role for IL-17R signaling in regulating adaptive immunity during CNS bacterial infection.

  9. In vivo dynamics of innate immune sentinels in the CNS

    OpenAIRE

    Nayak, Debasis; Zinselmeyer, Bernd H.; Corps, Kara N.; McGavern, Dorian B.

    2012-01-01

    The innate immune system is comprised of cellular sentinels that often serve as the first responders to injury and invading pathogens. Our basic understanding of innate immunity is derived from research conducted in peripheral lymphoid tissues. However, it is now recognized that most non-lymphoid tissues throughout the body are equipped with specialized innate immune cells that are uniquely adapted to the niches in which they reside. The central nervous system (CNS) is a particularly interest...

  10. Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung's Disease.

    Directory of Open Access Journals (Sweden)

    Ankush Gosain

    Full Text Available Hirschsprung's disease (HSCR is characterized by aganglionosis from failure of neural crest cell (NCC migration to the distal hindgut. Up to 40% of HSCR patients suffer Hirschsprung's-associated enterocolitis (HAEC, with an incidence that is unchanged from the pre-operative to the post-operative state. Recent reports indicate that signaling pathways involved in NCC migration may also be involved in the development of secondary lymphoid organs. We hypothesize that gastrointestinal (GI mucosal immune defects occur in HSCR that may contribute to enterocolitis. EdnrB was deleted from the neural crest (EdnrBNCC-/- resulting in mutants with defective NCC migration, distal colonic aganglionosis and the development of enterocolitis. The mucosal immune apparatus of these mice was interrogated at post-natal day (P 21-24, prior to histological signs of enterocolitis. We found that EdnrBNCC-/- display lymphopenia of their Peyer's Patches, the major inductive site of GI mucosal immunity. EdnrBNCC-/- Peyer's Patches demonstrate decreased B-lymphocytes, specifically IgM+IgDhi (Mature B-lymphocytes, which are normally activated and produce IgA following antigen presentation. EdnrBNCC-/- animals demonstrate decreased small intestinal secretory IgA, but unchanged nasal and bronchial airway secretory IgA, indicating a gut-specific defect in IgA production or secretion. In the spleen, which is the primary source of IgA-producing Mature B-lymphocytes, EdnrBNCC-/- animals display decreased B-lymphocytes, but an increase in Mature B-lymphocytes. EdnrBNCC-/- spleens are also small and show altered architecture, with decreased red pulp and a paucity of B-lymphocytes in the germinal centers and marginal zone. Taken together, these findings suggest impaired GI mucosal immunity in EdnrBNCC-/- animals, with the spleen as a potential site of the defect. These findings build upon the growing body of literature that suggests that intestinal defects in HSCR are not restricted

  11. Nine μg intradermal influenza vaccine and 15 μg intramuscular influenza vaccine induce similar cellular and humoral immune responses in adults

    Science.gov (United States)

    Nougarede, Nolwenn; Bisceglia, Hélène; Rozières, Aurore; Goujon, Catherine; Boudet, Florence; Laurent, Philippe; Vanbervliet, Beatrice; Rodet, Karen; Hennino, Ana; Nicolas, Jean-François

    2014-01-01

    Intanza® 9 μg (Sanofi Pasteur), a trivalent split-virion vaccine administered by intradermal (ID) injection, was approved in Europe in 2009 for the prevention of seasonal influenza in adults 18 to 59 years. Here, we examined the immune responses induced in adults by the ID 9 μg vaccine and the standard trivalent intramuscular (IM) vaccine (Vaxigrip® 15 μg, Sanofi Pasteur). This trial was a randomized, controlled, single-center, open-label study in healthy adults 18 to 40 years of age during the 2007/8 influenza season. Subjects received a single vaccination with the ID 9 μg (n = 38) or IM 15 μg (n = 42) vaccine. Serum, saliva, and peripheral blood mononuclear cells were collected up to 180 days post-vaccination. Geometric mean hemagglutination inhibition titers, seroprotection rates, seroconversion rates, and pre-vaccination-to-post-vaccination ratios of geometric mean hemagglutination inhibition titers did not differ between the two vaccines. Compared with pre-vaccination, the vaccines induced similar increases in vaccine-specific circulating B cells at day 7 but did not induce significant increases in vaccine-specific memory B cells at day 180. Cell-mediated immunity to all three vaccine strains, measured in peripheral blood mononuclear cells, was high at baseline and not increased by either vaccine. Neither vaccine induced a mucosal immune response. These results show that the humoral and cellular immune responses to the ID 9 μg vaccine are similar to those to the standard IM 15 μg vaccine. PMID:25483667

  12. Influence of Phthalates on in vitro Innate and Adaptive Immune Responses

    OpenAIRE

    Hansen, Juliana Frohnert; Nielsen, Claus Henrik; Brorson, Marianne Møller; Frederiksen, Hanne; Hartoft-Nielsen, Marie-Louise; Rasmussen, Åse Krogh; Bendtzen, Klaus; Feldt-Rasmussen, Ulla

    2015-01-01

    Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentr...

  13. Uncomplicated Diverticular Disease: Innate and Adaptive Immunity in Human Gut Mucosa before and after Rifaximin

    OpenAIRE

    Rossella Cianci; Simona Frosali; Danilo Pagliari; Paola Cesaro; Lucio Petruzziello; Fabio Casciano; Raffaele Landolfi; Guido Costamagna; Franco Pandolfi

    2014-01-01

    Background/Aim. Uncomplicated diverticular disease (UDD) is a frequent condition in adults. The pathogenesis of symptoms remains unknown. Bacteria are able to interact with Toll-like receptors (TLRs) and to induce inflammation through both innate immunity and T-cell recruitment. We investigated the pattern of TLRs 2 and 4 and the intestinal homing in patients with UDD before and after a course of Rifaximin. Methods. Forty consecutive patients with UDD and 20 healthy asymptomatic subjects were...

  14. 5-Lipoxygenase Deficiency Impairs Innate and Adaptive Immune Responses during Fungal Infection

    OpenAIRE

    Adriana Secatto; Lilian Cataldi Rodrigues; Carlos Henrique Serezani; Simone Gusmão Ramos; Marcelo Dias-Baruffi; Lúcia Helena Faccioli; Medeiros, Alexandra I.

    2012-01-01

    5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/-) mice showed an intense in...

  15. Has the microbiota played a critical role in the evolution of the adaptive immune system?

    OpenAIRE

    Lee, Yun Kyung; Mazmanian, Sarkis K.

    2010-01-01

    Although microbes have been classically viewed as pathogens, it is now well established that the majority of host-bacterial interactions are symbiotic. During development and into adulthood, gut bacteria shape the tissues, cells and molecular profile of our gastrointestinal immune system. This partnership, forged over many millennia of co-evolution, is based on a molecular exchange involving bacterial signals that are recognized by host receptors to mediate beneficial outcomes for both microb...

  16. Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease

    OpenAIRE

    Rizzetto, Lisa; De Filippo, Carlotta; Cavalieri, Duccio

    2014-01-01

    Human holobiomes are networks of mutualistic interactions between human cells and complex communities of bacteria and fungi that colonize the human body. The immune system must tolerate colonization with commensal bacteria and fungi but defend against invasion by either organism. Molecular ecological surveys of the human prokaryotic microbiota performed to date have revealed a remarkable degree of bacterial diversity and functionality. However, there is a dearth of information regarding the e...

  17. The isolator piglet: a model for studying the development of adaptive immunity

    Czech Academy of Sciences Publication Activity Database

    Butler, J. E.; Šinkora, Marek

    2007-01-01

    Roč. 39, 1-3 (2007), s. 33-51. ISSN 0257-277X R&D Projects: GA ČR GA524/07/0087; GA ČR GA523/07/0088; GA AV ČR IAA5020303 Institutional research plan: CEZ:AV0Z50200510 Keywords : neonatal development * colonization * immune homeostasis Subject RIV: EE - Microbiology, Virology Impact factor: 2.364, year: 2007

  18. Trichodysplasia spinulosa-associated polyomavirus (TSV) and Merkel cell polyomavirus: correlation between humoral and cellular immunity stronger with TSV.

    Science.gov (United States)

    Kumar, Arun; Kantele, Anu; Järvinen, Tommi; Chen, Tingting; Kavola, Heli; Sadeghi, Mohammadreza; Hedman, Klaus; Franssila, Rauli

    2012-01-01

    Merkel Cell Polyomavirus (MCV) is a common infectious agent likely to be involved in the pathogenesis of most Merkel cell carcinomas (MCC). Trichodysplasia spinulosa-associated polyomavirus (TSV), which exhibit high seroprevalence in general population, has been detected in trichodysplasia spinulosa (TS) skin lesions suggesting an etiological role for this disease. Previous studies have shown strong MCV-specific T-cell responses, while no data exist on T-cell immunity against TSV. In order to characterize Th-cell immunity against TSV, and to allow comparisons with the MCV-specific Th-cell immunity, we studied TSV-specific proliferation, IFN-γ, IL-10 and IL-13, and MCV-specific IFN-γ and IL-10 responses in 51 healthy volunteers, and in one MCC patient. Recombinant TSV and MCV VP1 virus-like particles (VLPs) were used as antigens. A significant correlation was found between virus-specific Th-cell and antibody responses with TSV; with MCV it proved weaker. Despite significant homology in amino acid sequences, Th-cell crossreactivity was not evident between these viruses. Some subjects seronegative to both TSV and MCV exhibited Th-cell responses to both viruses. The agent initially priming these Th-cells remains an enigma. As CD8(+) cells specific to MCV T-Ag oncoprotein clearly provide an important defense against established MCC, the MCV VP1-specific Th-cells may, by suppressing MCV replication with antiviral cytokines such as IFN-γ, significantly contribute to preventing the full process of oncogenesis. PMID:23029236

  19. Glutathione and adaptive immune responses against Mycobacterium tuberculosis infection in healthy and HIV infected individuals.

    Directory of Open Access Journals (Sweden)

    Carlos Guerra

    Full Text Available Glutathione (GSH, a tripeptide antioxidant, is essential for cellular homeostasis and plays a vital role in diverse cellular functions. Individuals who are infected with Human immuno deficiency virus (HIV are known to be susceptible to Mycobacterium tuberculosis (M. tb infection. We report that by enhancing GSH levels, T-cells are able to inhibit the growth of M. tb inside macrophages. In addition, those GSH-replenished T cell cultures produced increased levels of Interleukin-2 (IL-2, Interleukin-12 (IL-12, and Interferon-gamma (IFN-γ, cytokines, which are known to be crucial for the control of intracellular pathogens. Our study reveals that T lymphocytes that are derived from HIV infected individuals are deficient in GSH, and that this deficiency correlates with decreased levels of Th1 cytokines and enhanced growth of M. tb inside human macrophages.

  20. Senescent Remodeling of the Innate and Adaptive Immune System in the Elderly Men with Prostate Cancer

    OpenAIRE

    Gianluigi Taverna; Mauro Seveso; Guido Giusti; Rodolfo Hurle; Pierpaolo Graziotti; Sanja Štifter; Maurizio Chiriva-Internati; Fabio Grizzi

    2014-01-01

    Despite years of intensive investigation that has been made in understanding prostate cancer, it remains a major cause of death in men worldwide. Prostate cancer emerges from multiple alterations that induce changes in expression patterns of genes and proteins that function in networks controlling critical cellular events. Based on the exponential aging of the population and the increasing life expectancy in industrialized Western countries, prostate cancer in the elderly men is becoming a di...

  1. Hormonal Contraception and HIV-1 Infection: Medroxyprogesterone Acetate Suppresses Innate and Adaptive Immune Mechanisms

    OpenAIRE

    Huijbregts, Richard P. H.; Helton, E. Scott; Katherine G Michel; Sabbaj, Steffanie; Richter, Holly E.; Goepfert, Paul A.; Hel, Zdenek

    2013-01-01

    Recent observational studies indicate an association between the use of hormonal contraceptives and acquisition and transmission of HIV-1. The biological and immunological mechanisms underlying the observed association are unknown. Depot medroxyprogesterone acetate (DMPA) is a progestin-only injectable contraceptive that is commonly used in regions with high HIV-1 prevalence. Here we show that medroxyprogesterone acetate (MPA) suppresses the production of key regulators of cellular and humora...

  2. The many paths to asthma: phenotype shaped by innate and adaptive immunity

    OpenAIRE

    Kim, Hye Young; DeKruyff, Rosemarie H.; Umetsu, Dale T.

    2010-01-01

    Asthma is a very complex and heterogeneous disease that is characterized by airway inflammation and airway hyper-reactivity (AHR). The pathogenesis of asthma is associated with environmental factors, many cell types, and several molecular and cellular pathways. These include allergic, non-allergic and intrinsic pathways, which involve many cell types and cytokines. Animal models of asthma have helped to clarify some of the underlying mechanisms of asthma, demonstrating the importance of T hel...

  3. HIV-1 Adaptation to Antigen Processing Results in Population-Level Immune Evasion and Affects Subtype Diversification

    Directory of Open Access Journals (Sweden)

    Stefan Tenzer

    2014-04-01

    Full Text Available The recent HIV-1 vaccine failures highlight the need to better understand virus-host interactions. One key question is why CD8+ T cell responses to two HIV-Gag regions are uniquely associated with delayed disease progression only in patients expressing a few rare HLA class I variants when these regions encode epitopes presented by ∼30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ∼60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions at subtype-specific motifs. Multiple HLA variants presenting epitopes situated next to a given subtype-specific motif drive selection at this subtype-specific position, and epitope abundances correlate inversely with the HLA frequency distribution in affected populations. This adaptation reflects the sum of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most people vaccinated with natural HIV-1 sequence constructs. Our results suggest that artificial sequence modifications at subtype-specific positions in vitro could refocus and reverse the poor immunogenicity of HIV proteins.

  4. The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    OpenAIRE

    Zarbock Ralf; Woischnik Markus; Sparr Christiane; Thurm Tobias; Kern Sunčana; Kaltenborn Eva; Hector Andreas; Hartl Dominik; Liebisch Gerhard; Schmitz Gerd; Griese Matthias

    2012-01-01

    Abstract Background Surfactant protein C (SP-C) is important for the function of pulmonary surfactant. Heterozygous mutations in SFTPC, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD) in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We al...

  5. Molecular and Cellular Characterization of a Salmonella enterica Serovar Paratyphi A Outbreak Strain and the Human Immune Response to Infection

    OpenAIRE

    Gal-Mor, Ohad; Suez, Jotham; Elhadad, Dana; Porwollik, Steffen; Leshem, Eyal; Valinsky, Lea; McClelland, Michael; Schwartz, Eliezer; Rahav, Galia

    2012-01-01

    Enteric fever is an invasive life-threatening systemic disease caused by the Salmonella enterica human-adapted serovars Typhi and Paratyphi. Increasing incidence of infections with Salmonella enterica serovar Paratyphi A and the spreading of its antibiotic-resistant derivates pose a significant health concern in some areas of the world. Herein, we describe a molecular and phenotypic characterization of an S. Paratyphi A strain accounted for a recent paratyphoid outbreak in Nepal that affected...

  6. New Digital Signature Scheme Attaining Immunity to Adaptive Chosen Message Attack

    Institute of Scientific and Technical Information of China (English)

    ZHU Huafei

    2001-01-01

    A new signature provably secureagainst adaptive chosen message attack is developedin this report. It is state-free and the proof of secu-rity is based on "strong RSA (Rivest-shamir-adleman)assumption, collision free hash algorithm as well as in-tractability of" discrete logarithm problem.

  7. Effects of beta-lactam antibiotics imipenem/cilastatin and cefodizime on cellular and humoral immune responses in BALB/c-mice.

    Science.gov (United States)

    Grochla, I; Ko, H L; Beuth, J; Roszkowski, K; Roszkowski, W; Pulverer, G

    1990-11-01

    The effects of a 7-day chemotherapy with two broad-spectrum beta-lactam antibiotics (imipenem/cilastatin and cefodizime) on the humoral and cellular immune responses in BALB/c-mice were investigated. Antibiotic dosages were calculated on a body weight basis from therapeutical dosages in human medicine. Treatment of experimental mice with imipenem/cilastatin and cefodizime did not influence the production of immunoglobulines (IgM and IgG) nor the delayed type hypersensitivity to oxazolone. In vitro, exposure of human granulocytes to imipenem/cilastatin and cefodizime did not interfere with their phagocytic activity as determined by chemiluminescence assay. Subinhibitory concentrations of both antibiotics modified Staphylococcus aureus and made them more susceptible for granulocyte phagocytosis in chemiluminescence assays. PMID:2085374

  8. 玫瑰茄多糖对小鼠体液免疫和细胞免疫功能的影响%Study on the Influence of Hibiscus Sabdariffa Polysaccharide on Humoral Immunity and Cellular Immunity Function in Mice

    Institute of Scientific and Technical Information of China (English)

    张赛男

    2015-01-01

    玫瑰茄多糖设置低、中、高3个剂量组和1个对照组,给(SPF)小鼠连续灌胃4周,以脾淋巴细胞转化功能、迟发性变态反应(DTH)、溶血空斑数、半数溶血值(HC50)等为指标,观察瑰茄多糖对小鼠体液免疫和细胞免疫功能的影响。结果表明:与对照组比较,脾淋巴细胞转化功能、迟发性变态反应(DTH)、溶血空斑数、半数溶血值(HC50)测定实验均有显著提高作用。其中,高剂量组对小鼠迟发型变态反应能力(DTH)影响、半数溶血值(HC50)达到极显著水平(P<0.01),高剂量组对小鼠溶血空斑数的影响达到显著水平(P<0.05)。说明玫瑰茄多糖具有增强小鼠体液免疫功能和细胞免疫功能的作用。%(SPF) Rats were feed with low、 medium、 high dose of Hibiscus Sabdariffa polysaccharide and 1 control group for 4 weeks to observe the humoral immunity and cellular immunity function of Hibiscus Sabdariffa polysaccharides by measurement spleen lymphocyte transform function、 delayed type hypersensitivity (DTH)、 the serum hemolysin concentration、 the serum hemolysin concentration (HC50) . Results, To compared with control group, spleen lymphocyte transform function、 delayed type hypersensitivity (DTH)、 the serum hemolysin concentration、 the serum hemolysin concentration (HC50) were obviously improved. And the influence of high dose group on delayed type hypersensitivity (DTH)、 the serum hemolysin concentration (HC50) reached extremely significant level(P<0.01), the influence of high dose group on the serum hemolysin concentration reached significant level (P<0.05) .Conclusions, Hibiscus Sabdariffa polysaccharide has the role of enhancing humoral immunity and cellular immunity function in mice.

  9. Study of cellular immunity response of mB7-1 gene transfected mouse ovarian cancer cell line and its tumorigeneeities in vivo

    Institute of Scientific and Technical Information of China (English)

    Jiang Jie; Liang Huamao; Yang Xingsheng; Cui Baoxia; Zhang Youzhong; Kong Beihua

    2003-01-01

    Objective: To investigate the cellular immunity response in vitro and the tumorigenecities in vivo of mB7-1 gene transfected murine ovarian cancer cell line. Methods: mB7-1 gene was transfected into the NuTu-19 cell line by retrovirus vector, and the expression of mB7-1 gene was confirmed by flow cytometry(FCM).NuTu-19/neo and NuTu-19/mB7-1 cells were injected subcutaneously into syngeneic Fischer 344 rats respectively, and their tumorigenecities were recorded. Proliferation indices of lymphocyte were assayed after syngenieic mixed tumor-lymphocyte cultures(MTLCs). The lysis activity of CTL toward tumor cells was determined using methyl thiazolyl tetrazolium(MTT) assay. Results: Successful transfection of mB7-1 gene into NuTu-19 cell line was comfirmed with FCM. In vitro study showed that there was no obvious changes in cell growth of gene transfected cell line, compared with the cell line NuTu-19. NuTu-19/mB7-1 cells could induce more effective proliferation of effector lymphocytes( P < 0.05). The lysis activity of CTL activated by NuTu-19/mB7-1 was stronger than that of NuTu-19/neo ( P < 0.01). Tumor sizes were smaller in the NuTu-19/mB7-1 receptance syngeneic Fischer 344 rats compared with those in the control group. Conclusion: mB7-1 genetically modified ovarian cancer cells could induce the cellular immunity response in vitro and the tumorigenecitiy of NuTu-19 cells was decreased after inoculation with the experimental vaccine.

  10. Effect of field capture on the measurement of cellular immune responses in wild ferrets (Mustela furo), vectors of bovine tuberculosis in New Zealand.

    Science.gov (United States)

    Cross, M L; Swale, E; Young, G; Mackintosh, C

    1999-01-01

    Ferrets are recognised as significant wildlife vectors of bovine tuberculosis (Tb) in New Zealand. Disease management strategies, such as the development of a protective wildlife vaccine, could be assisted by the ability to measure pertinent cellular immune responses among wild animals. In the present study, we investigated whether it is possible to measure in vitro lymphocyte reactivity in wild-caught ferrets, and also determined levels of physiological stress in these animals, and we compared these responses to those observed in laboratory-maintained domesticated ferrets. Over a 12-month period, 80 ferrets were live-captured from a Tb-endemic region (Otago, southern New Zealand); cardiac blood was withdrawn on-site, and mononuclear cell cultures were successfully established from 75 of these animals. Lymphocyte transformation (LT) responses to T cell and T/B cell mitogens (Concanavalin A [Con A] and pokeweed mitogen) were measured via uridine incorporation assay. The magnitude of these responses did not differ significantly between animals that had been captured in wire-framed cage traps and those captured using soft-jawed leg-hold traps. Levels of serum cortisol and glucose (as indicators of physiological and oxidative stress, respectively) were highest in animals captured using leg-hold traps. In comparison to domesticated ferrets, wild-caught ferrets had lower overall LT responses to Con A, but significantly higher levels of serum cortisol. Finally, 10/80 animals captured from the wild were severely diseased (Tb+), as evidenced by gross tuberculous lesions at autopsy. Successful mononuclear cell cultures were established from nine of these animals; LT responses to Con A were significantly lower in Tb+ ferrets than in either wild-caught/non-diseased (Tb-) or domesticated ferrets. These results demonstrate that it is possible to measure cellular immune responses from the blood of wild-caught ferrets, but that field capture and disease status may have detrimental

  11. Topical CpG Oligodeoxynucleotide Adjuvant Enhances the Adaptive Immune Response against Influenza A Infections.

    Science.gov (United States)

    Cheng, Wing Ki; Plumb, Adam William; Lai, Jacqueline Cheuk-Yan; Abraham, Ninan; Dutz, Jan Peter

    2016-01-01

    Current influenza vaccines generate humoral immunity, targeting highly variable epitopes and thus fail to achieve long-term protection. T cells recognize and respond to several highly conserved epitopes across influenza serotypes. A strategy of raising strong cytotoxic T cell memory responses to epitopes conserved across serotypes would provide cross serotype protection, eliminating the need for annual vaccination. We explored the adjuvant potential of epicutaneous (ec) and subcutaneous (sc) delivery of CpG oligodeoxynucleotide in conjunction with sc protein immunization to improve protection against influenza A virus (IAV) infections using a mouse model. We found enhanced long-term protection with epicutaneous CpG ODN (ecCpG) compared to subcutaneous CpG ODN (scCpG) as demonstrated by reduced viral titers in the lungs. This correlated with increased antigen-specific CD8 T cells in the airways and the lungs. The memory T cell response after immunization with ecCpG adjuvant was comparable to memory response by priming with IAV infection in the lungs. In addition, ecCpG was more efficient than scCpG in inducing the generation of IFN-γ producing CD4 T cells. The adjuvant effect of ecCpG was accompanied with its ability to modulate tissue-homing molecules on T cells that may direct them to the site of infection. Together, this work provides evidence for using ecCpG to induce strong antibody and memory T cell responses to confer protection against IAV infection. PMID:27524984

  12. Leishmania donovani: impairment of the cellular immune response against recombinant ornithine decarboxylase protein as a possible evasion strategy of Leishmania in visceral leishmaniasis.

    Science.gov (United States)

    Yadav, Anupam; Amit, Ajay; Chaudhary, Rajesh; Chandel, Arvind Singh; Mahantesh, Vijay; Suman, Shashi Shekhar; Singh, Subhankar Kumar; Dikhit, Manas Ranjan; Ali, Vahab; Rabidas, Vidyanand; Pandey, Krishna; Kumar, Anil; Das, Pradeep; Bimal, Sanjiva

    2015-01-01

    Ornithine decarboxylase, the rate limiting enzyme of the polyamine biosynthesis pathway, is significant in the synthesis of trypanothione, T(SH)2, the major reduced thiol which is responsible for the modulation of the immune response and pathogenesis in visceral leishmaniasis. Data on the relationship between ornithine decarboxylase and the cellular immune response in VL patients are limited. Therefore, we purified a recombinant ornithine decarboxylase from Leishmania donovani (r-LdODC) of approximately 77kDa and examined its effects on the immunological responses in peripheral blood mononuclear cells of human visceral leishmaniasis cases. For these studies, α-difluoromethylornithine was tested as an inhibitor and was used in parallel in all experiments. The r-LdODC was identified as having a direct correlation with parasite growth and significantly increased the number of promastigotes as well as axenic amastigotes after 96h of culture. The stimulation of peripheral blood mononuclear cells with r-LdODC up-regulated IL-10 production but not IFN-γ production from CD4(+) T cells in active as well as cured visceral leishmaniasis cases, indicating a pivotal role for r-LdODC in causing strong immune suppression in a susceptible host. In addition, severe hindrance of the immune response and anti-leishmanial macrophage function due to r-LdODC, as revealed by decreased IL-12 and nitric oxide production, and down-regulation in mean fluorescence intensities of reactive oxygen species, occurred in visceral leishmaniasis patients. There was little impact of r-LdODC in the killing of L. donovani amastigotes in macrophages of visceral leishmaniasis patients. In contrast, when cultures of promastigotes and amastigotes, and patients' blood samples, were directed against α-difluoromethylornithine, parasite numbers significantly reduced in culture, whereas the levels of IFN-γ and IL-12, and the production of reactive oxygen species and nitric oxide, were significantly elevated

  13. Dietary Korean mistletoe enhances cellular non-specific immune responses and survival of Japanese eel (Anguilla japonica).

    Science.gov (United States)

    Choi, Sang-Hoon; Park, Kwan-Ha; Yoon, Taek-Joon; Kim, Jong-Bae; Jang, Yong-Suk; Choe, Chung Hyeon

    2008-01-01

    The present study was performed to investigate the immunostimulatory effects of Korean mistletoe extract (KM-110; Viscum album Coloratum) on the non-specific immune response and protection against Aeromonas hydrophila infection in Japanese eel (Anguilla japonica). Eels were fed under 4 regimes, 0%, 0.1%, 0.5% and 1.0% KM-110 mixed diet. On day 14 after feeding, 15 fish from each group were injected i.p. with live A. hydrophila (3 x 10(6)CFU) and the remaining unchallenged fish from each group were used to study the innate immune response. On 14 days post-infection, the total survival rates were 26.6% in control, and 33.3%, 66.6% and 80% in 0.1%, 0.5% and 1% KM-110-treated groups, respectively. The maximum lysozyme activity was observed in the 1% KM-110-treated group. There was no significant difference of lysozyme activity between 0.1% and 0.5% KM-110 group. Superoxide anion (O(2)(-)) production was significantly (pcontrol and 0.1% KM-110 group. No significant difference of (O(2)(-) production was found between 0.5% and 1% KM-110 group. Likewise, there was a significant increase in phagocytic activity in the 0.5% KM-110 group compared with the 0.1% group (p<0.05), but no significant difference between the 0.5% and the 1% KM-110 group indicating that 0.5% KM-110 concentration is suitable for stimulating maximum phagocytic activity resulting in a high amount of ROI production. Considering the present results, KM-110 could be utilized as a promising immunostimulating substance for a diet in aquaculture. PMID:18023593

  14. Cellular analysis of the phenotypic correction of the genetically controlled low immune response to the polyproline determinant by macrophages

    International Nuclear Information System (INIS)

    SJL mice are high responders to the polyproline region of poly(Tyr,Glu)-polyPro-polyLys, (T,G)-Pro-L and of poly(Phe,Glu)-polyPro-polyLys, (Phe,G)-Pro-L, whereas DBA/l mice are the low responders to this moiety. The low responsiveness of DBA/l mice to polyproline could be enhanced by immunization with (T,G)-Pro-L 4 days after stimulation of peritoneal cells by thioglycolate. The same effect was observed when DBA/l mice were immunized with 107 syngeneic peritoneal exudate cells (PEC) preincubated in vitro with the immunogen. Similar treatments of SJL mice did not enhance the high response to polyproline, nor did it enhance low responses to other synthetic polypeptides tested. The enhancing effect of PEC on immunocompetent cells was established by transferring graded numbers of spleen cells together with 107 PEC into irradiated syngeneic DBA/l recipients. The effective cell type in the PEC was found to be the macrophage as the same results were observed with the adherent-cell population. Furthermore, the effect was not abolished after in vitro irradiation of PEC with 5000 R or by anti-theta treatment. In vivo irradiation of the PEC donors 2 days before the cells were harvested also did not influence the phenotypic correction of the low responsiveness. Transfer experiments in which graded inocula of either marrow cells or thymocytes from DBA/l donors were transferred into syngeneic recipients in the presence of an excess of the complementary cell type together with PEC indicated that the enhancing effect was reflected in the bone-marrow-cell population only

  15. A synthetic lymph node containing inactivated Treponema pallidum cells elicits strong, antigen-specific humoral and cellular immune responses in mice.

    Science.gov (United States)

    Stamm, Lola V; Drapp, Rebecca L

    2014-02-01

    The goal of this study was to investigate the use of a synthetic lymph node (SLN) for delivery of Treponema pallidum (Tp) antigens. Immune responses of C57BL/6 mice were analyzed at 4, 8, and 12 weeks after SLN implantation. Group 1 mice received SLN with no antigen; Group 2, SLN with formalin-inactivated Tp (f-Tp); and Group 3, SLN with f-Tp plus a CpG oligodeoxynucleotide. When tested by ELISA, sera from Group 2 and Group 3 mice showed stronger IgG antibody reactivity than sera from Group 1 mice to sonicates of f-Tp or untreated Tp, but not to sonicate of normal rabbit testicular extract at all times. The IgG1 level was higher than IgG2c level for Group 2 mice at all times and for Group 3 mice at 4 and 8 weeks. IgG1 and IgG2c levels were nearly equivalent for Group 3 mice at 12 weeks. Immunoblotting showed that IgG from Group 2 and Group 3 mice recognized several Tp proteins at all times. Supernatants of splenocytes from Group 2 and Group 3 mice contained significantly more IFNγ than those from Group 1 mice after stimulation with f-Tp at all times. A significant level of IL-4 was not detected in any supernatants. These data show that strong humoral and cellular immune responses to Tp can be elicited via a SLN. PMID:24106125

  16. 白癜风细胞免疫研究新进展%Advances in the Research of Vitiligo Cellular Immunity

    Institute of Scientific and Technical Information of China (English)

    吴成

    2012-01-01

    Vitiligo is a common skin disorder characterized by the skin devoid of melanocytes. The etiology of vitiligo is complex and the pathogenesis has not been well understood. In resent years many intensive studies show that cellular immunity is closely related with vitiligo pathogenesis. Researches have found that CD4+ T cells,CD8+ T cells,Langerhans cells,nature killer cells,melanocyte-specific T cells,immunity cells and cytokines play important roles in the pathogenesis and melanocyte injuries and apoptosis.%白癜风是一种常见的色素脱失性皮肤病,其病因复杂,发病机制尚未完全明确.近年来的研究表明,细胞免疫与白癜风的发病发展关系密切.异常分布的CD4+T细胞、CD8+T细胞、朗格汉斯细胞、自然杀伤细胞、黑素特异性T细胞及其他免疫细胞及细胞因子在白癜风的发病与黑素细胞损伤和凋亡过程中发挥着重要的作用.

  17. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    Directory of Open Access Journals (Sweden)

    Tinggui Chen

    2014-01-01

    Full Text Available Artificial bee colony (ABC algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA, artificial colony optimization (ACO, and particle swarm optimization (PSO. However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments.

  18. Enhancing artificial bee colony algorithm with self-adaptive searching strategy and artificial immune network operators for global optimization.

    Science.gov (United States)

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  19. A chromosomally encoded virulence factor protects the Lyme disease pathogen against host-adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Xiuli Yang

    2009-03-01

    Full Text Available Borrelia burgdorferi, the bacterial pathogen of Lyme borreliosis, differentially expresses select genes in vivo, likely contributing to microbial persistence and disease. Expression analysis of spirochete genes encoding potential membrane proteins showed that surface-located membrane protein 1 (lmp1 transcripts were expressed at high levels in the infected murine heart, especially during early stages of infection. Mice and humans with diagnosed Lyme borreliosis also developed antibodies against Lmp1. Deletion of lmp1 severely impaired the pathogen's ability to persist in diverse murine tissues including the heart, and to induce disease, which was restored upon chromosomal complementation of the mutant with the lmp1 gene. Lmp1 performs an immune-related rather than a metabolic function, as its deletion did not affect microbial persistence in immunodeficient mice, but significantly decreased spirochete resistance to the borreliacidal effects of anti-B. burgdorferi sera in a complement-independent manner. These data demonstrate the existence of a virulence factor that helps the pathogen evade host-acquired immune defense and establish persistent infection in mammals.

  20. Synthesizing within-host and population-level selective pressures on viral populations: The impact of adaptive immunity on viral immune escape

    OpenAIRE

    Volkov, I.; Pepin, KM; Lloyd-Smith, JO; Banavar, JR; Grenfell, BT

    2010-01-01

    The evolution of viruses to escape prevailing host immunity involves selection at multiple integrative scales, from within-host viral and immune kinetics to the host population level. In order to understand how viral immune escape occurs, we develop an analytical framework that links the dynamical nature of immunity and viral variation across these scales. Our epidemiological model incorporates within-host viral evolutionary dynamics for a virus that causes acute infections (e.g. influenza an...

  1. Biomarker Analysis Revealed Distinct Profiles of Innate and Adaptive Immunity in Infants with Ocular Lesions of Congenital Toxoplasmosis

    Science.gov (United States)

    Machado, Anderson Silva; Carneiro, Ana Carolina Aguiar Vasconcelos; Béla, Samantha Ribeiro; Andrade, Gláucia Manzan Queiroz; Vasconcelos-Santos, Daniel Vitor; Januário, José Nélio; Coelho-dos-Reis, Jordana G.; Ferro, Eloisa Amália Vieira; Teixeira-Carvalho, Andréa; Vitor, Ricardo Wagner Almeida; Martins-Filho, Olindo Assis; —UFMG-CTBG, UFMG Congenital Toxoplasmosis Brazilian Group

    2014-01-01

    Toxoplasma gondii is the main infectious cause of human posterior retinochoroiditis, the most frequent clinical manifestation of congenital toxoplasmosis. This investigation was performed after neonatal screening to identify biomarkers of immunity associated with immunopathological features of the disease by flow cytometry. The study included infected infants without NRL and with retinochoroidal lesions (ARL, ACRL, and CRL) as well as noninfected individuals (NI). Our data demonstrated that leukocytosis, with increased monocytes and lymphocytes, was a relevant hematological biomarker of ARL. Immunophenotypic analysis also revealed expansion of CD14+CD16+HLA-DRhigh monocytes and CD56dim cytotoxic NK-cells in ARL. Moreover, augmented TCRγδ+ and CD8+ T-cell counts were apparently good biomarkers of morbidity. Biomarker network analysis revealed that complex and intricated networks underscored the negative correlation of monocytes with NK- and B-cells in NRL. The remarkable lack of connections involving B-cells and a relevant shift of NK-cell connections from B-cells toward T-cells observed in ARL were outstanding. A tightly connected biomarker network was observed in CRL, with relevant connections of NK- and CD8+ T-cells with a broad range of cell subsets. Our findings add novel elements to the current knowledge on the innate and adaptive immune responses in congenital toxoplasmosis. PMID:25328286

  2. Long-term effects of early life microbiota disturbance on adaptive immunity in laying hens.

    Science.gov (United States)

    Simon, K; Verwoolde, M B; Zhang, J; Smidt, H; de Vries Reilingh, G; Kemp, B; Lammers, A

    2016-07-01

    Due to an interplay between intestinal microbiota and immune system, disruption of intestinal microbiota composition during immune development may have consequences for immune responses later in life. The present study investigated the effects of antibiotic treatment in the first weeks of life on the specific antibody response later in life in chickens. Layer chicks received an antibiotic cocktail consisting of vancomycin, neomycin, metronidazole, and amphotericin-B by oral gavage every 12 h, and ampicillin and colistin in drinking water for the first week of life. After the first week of life, chicks received ampicillin and colistin in drinking water for two more weeks. Control birds received no antibiotic cocktail and plain drinking water. Fecal microbiota composition was determined during antibiotic treatment (d 8 and 22), two weeks after cessation of antibiotic treatment (d 36), and at the end of the experimental period at d 175 using a 16S ribosomal RNA gene targeted microarray, the Chicken Intestinal Tract Chip (ChickChip). During antibiotic treatment fecal microbiota composition differed strongly between treatment groups. Fecal microbiota of antibiotic treated birds consisted mainly of Proteobacteria, and in particular E.coli, whereas fecal microbiota of control birds consisted mainly of Firmicutes, such as lactobacilli and clostridia. Two weeks after cessation of antibiotic treatment fecal microbiota composition of antibiotic treated birds had recovered and was similar to that of control birds. On d 105, 12 weeks after cessation of antibiotic treatment, chicks of both treatment groups received an intra-tracheal lipopolysaccharide (LPS)/human serum albumin (HuSA) challenge. Antibody titers against LPS and HuSA were measured 10 days after administration of the challenge. While T cell independent antibody titers (LPS) were not affected by antibiotic treatment, antibiotic treated birds showed lower T cell dependent antibody titers (HuSA) compared with control

  3. The adaptive immune system in atopic dermatitis and implications on therapy.

    Science.gov (United States)

    Roesner, Lennart M; Werfel, Thomas; Heratizadeh, Annice

    2016-07-01

    In atopic dermatitis (AD), the skin inflammation is believed to occur due to a misdirected immune reaction against harmless antigens on the one hand, and to a disturbed skin barrier on the other. In recent years, vast efforts have been made to investigate the relevance and details of the immune response to allergens. Clinically, it was demonstrated for the first time that aeroallergen exposure leads to worsening of AD symptoms. An overexpression of Th2 cytokines has been observed in acute and subacute lesions of AD. The clinical impact of the key Th2 cytokines IL-4 and IL-13 on atopic dermatitis has recently been shown in clinical studies with dupilumab, a monoclonal antibody which blocks the IL-4/IL-13 receptor. In vitro data indicate, however, that the T cell response is not solely Th2-polarized but may lead to heterogeneous cytokine production involving IFN-γ and IL-17 in an allergen-dependent manner. Classical thymus-derived Foxp3 T cells have interestingly been detected in elevated numbers in the circulation of AD patients. Therapeutic approaches with allergen specific immunotherapy aim to induce regulatory T cells of the Tr1 type. The strikingly altered microbiome of AD skin with diminished diversity of bacteria on lesional skin but increases of S. aureus colonization and the sensitization against microbial allergens and homologue self-proteins deserve special attention. For the treatment of itch symptoms, which still represent a challenge in daily practice, promising data have been published on the relevance of the H(histamine)4-receptor and on mediators such as IL-31, TSLP. PMID:26967382

  4. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity

    Directory of Open Access Journals (Sweden)

    Roger A. Garrett

    2015-03-01

    Full Text Available The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed.

  5. UVB-induced decreased resistance to Trichinella spiralis in the rat is related to impaired cellular immunity

    International Nuclear Information System (INIS)

    Our laboratory has demonstrated in preliminary experiments that UVB exposure using the Kromayer lamp can induce increased numbers of Trichinella spiralis larvae in carcasses of infected Wistar rats, without affecting specific antibody titers to this parasite. In this study, orally T.spiralis-infected Wistar rats were exposed to subery-thermal doses of UVB radiation using FS40 lamps during different time periods before or after infection. A significant increase in the number of T. spiralis larvae was found in the carcasses of rats that were UVB irradiated daily for 7 consecutive days in the second week after infection. Additionally, increased numbers of larvae were also detected histologically in the tongue of rats that were exposed the first and the second week after infection. Lymphocyte stimulation assays using mesenteral lymph node cells indicated that UVB exposure also impaired the specific lymphocyte response to T. spiralis. Moreover, DTH responses to T. spiralis were severely impaired in rats that were UVB irradiated daily for 7 consecutive days in the second week after infection. Thus, these data combined with the data of the Kromayer study indicate that exposure of rats to FS40 irradiation following oral infection with T. spiralis leads to increased numbers of larvae in systemic sites and impaired T-cell immunity to the parasite. (Author)

  6. Intradermal DNA Electroporation Induces Cellular and Humoral Immune Response and Confers Protection against HER2/neu Tumor

    Directory of Open Access Journals (Sweden)

    Alessia Lamolinara

    2015-01-01

    Full Text Available Skin represents an attractive target for DNA vaccine delivery because of its natural richness in APCs, whose targeting may potentiate the effect of vaccination. Nevertheless, intramuscular electroporation is the most common delivery method for ECTM vaccination. In this study we assessed whether intradermal administration could deliver the vaccine into different cell types and we analyzed the evolution of tissue infiltrate elicited by the vaccination protocol. Intradermal electroporation (EP vaccination resulted in transfection of different skin layers, as well as mononuclear cells. Additionally, we observed a marked recruitment of reactive infiltrates mainly 6–24 hours after treatment and inflammatory cells included CD11c+. Moreover, we tested the efficacy of intradermal vaccination against Her2/neu antigen in cellular and humoral response induction and consequent protection from a Her2/neu tumor challenge in Her2/neu nontolerant and tolerant mice. A significant delay in transplantable tumor onset was observed in both BALB/c (p≤0,0003 and BALB-neuT mice (p=0,003. Moreover, BALB-neuT mice displayed slow tumor growth as compared to control group (p<0,0016. In addition, while in vivo cytotoxic response was observed only in BALB/c mice, a significant antibody response was achieved in both mouse models. Our results identify intradermal EP vaccination as a promising method for delivering Her2/neu DNA vaccine.

  7. Trained immunity: A smart way to enhance innate immune defence.

    Science.gov (United States)

    van der Meer, Jos W M; Joosten, Leo A B; Riksen, Niels; Netea, Mihai G

    2015-11-01

    The innate arm of the immune system is generally viewed as primitive and non-specific and - in contrast to the adaptive immune arm - not to possess memory. However in plants and invertebrate animals that lack adaptive immunity, innate immunity will exhibit a prolonged enhanced functional state after adequate priming. A similar enhancement of function of the innate immunity has occasionally been described in vertebrates, including humans. Over the past few years we have studied this phenomenon in greater detail and we have coined the term 'Trained (innate) immunity' (TI). TI can be induced by a variety of stimuli, of which we have studied BCG and β-glucan in greater detail. The non-specific protective effects of BCG that have been observed in vaccination studies in the literature are probably due to TI. Monocytes and macrophages are among the main cells of the innate immune arm that can be trained. We have discovered that both BCG (via NOD2 signalling) and β-glucan (via dectin-1) induce epigenetic reprogramming, in particular stable changes in histone trimethylation at H3K4. These epigenetic changes lead to cellular activation, enhanced cytokine production and a change in the metabolic state of the cell with a shift from oxidative phosphorylation to aerobic glycolysis. TI is not only important for host defence and vaccine responses, but most probably also for diseases like atherosclerosis. Modulation of TI is a promising area for new treatments. PMID:26597205

  8. Echinoderm immunity

    OpenAIRE

    JE García-Arrarás; F Ramírez-Gómez

    2010-01-01

    Echinoderms are exclusively marine animals that, after the chordates, represent the second largest group of deuterostomes. Their diverse species composition and singular ecological niches provide at the same time challenges and rewards when studying the broad range of responses that make up their immune mechanisms. Two types of responses comprise the immune system of echinoderms: a cellular response and a humoral one. Cell-based immunity is carried by the celomocytes, a morphologically hetero...

  9. Yersinia enterocolitica targets cells of the innate and adaptive immune system by injection of Yops in a mouse infection model.

    Directory of Open Access Journals (Sweden)

    Martin Köberle

    2009-08-01

    Full Text Available Yersinia enterocolitica (Ye evades the immune system of the host by injection of Yersinia outer proteins (Yops via a type three secretion system into host cells. In this study, a reporter system comprising a YopE-beta-lactamase hybrid protein and a fluorescent staining sensitive to beta-lactamase cleavage was used to track Yop injection in cell culture and in an experimental Ye mouse infection model. Experiments with GD25, GD25-beta1A, and HeLa cells demonstrated that beta1-integrins and RhoGTPases play a role for Yop injection. As demonstrated by infection of splenocyte suspensions in vitro, injection of Yops appears to occur randomly into all types of leukocytes. In contrast, upon infection of mice, Yop injection was detected in 13% of F4/80(+, 11% of CD11c(+, 7% of CD49b(+, 5% of Gr1(+ cells, 2.3% of CD19(+, and 2.6% of CD3(+ cells. Taking the different abundance of these cell types in the spleen into account, the highest total number of Yop-injected cells represents B cells, particularly CD19(+CD21(+CD23(+ follicular B cells, followed by neutrophils, dendritic cells, and macrophages, suggesting a distinct cellular tropism of Ye. Yop-injected B cells displayed a significantly increased expression of CD69 compared to non-Yop-injected B cells, indicating activation of these cells by Ye. Infection of IFN-gammaR (receptor- and TNFRp55-deficient mice resulted in increased numbers of Yop-injected spleen cells for yet unknown reasons. The YopE-beta-lactamase hybrid protein reporter system provides new insights into the modulation of host cell and immune responses by Ye Yops.

  10. Immunomodulatory effects of Pteridium aquilinum on natural killer cell activity and select aspects of the cellular immune response of mice.

    Science.gov (United States)

    Latorre, Andréia Oliveira; Furlan, Maria Stella; Sakai, Mônica; Fukumasu, Heidge; Hueza, Isis Machado; Haraguchi, Mitsue; Górniak, Silvana Lima

    2009-06-01

    Pteridium aquilinum (bracken fern) is one of the most common plants. Epidemiological studies have revealed a higher risk of certain types of cancers (i.e., esophageal, gastric) in people who consume bracken fern directly (as crosiers or rhizomes) or indirectly through the consumption of milk from livestock that fed on the plant. In animals, evidence exists regarding the associations between chronic bracken fern intoxication, papilloma virus infection, and the development of carcinomas. While it is possible that some carcinogens in bracken fern could be responsible for these cancers in both humans and animals, it is equally plausible that the observed increases in cancers could be related to induction of an overall immunosuppression by the plant/its various constituents. Under the latter scenario, normal tumor surveillance responses against nascent (non-bracken-induced) cancers or responses against viral infections (specifically those linked to induction of cancers) might be adversely impacted by continuous dietary exposure to this plant. Therefore, the overall objective of this study was to evaluate the immunomodulatory effects of bracken fern following daily ingestion of its extract by a murine host over a period of 14 (or up to 30) days. In C57BL/6 mice administered (by gavage) the extract, histological analyses revealed a significant reduction in splenic white pulp area. Among a variety of immune response parameters/functions assessed in these hosts and isolated cells, both delayed-type hypersensitivity (DTH) analysis and evaluation of IFNgamma production by NK cells during T(H)1 priming were also reduced. Lastly, the innate response in these hosts-assessed by analysis of NK cell cytotoxic functionality-was also diminished. The results here clearly showed the immunosuppressive effects of P. aquilinum and that many of the functions that were modulated could contribute to the increased risk of cancer formation in exposed hosts. PMID:19589097

  11. C3-Luc Cells Are an Excellent Model for Evaluation of Cellular Immunity following HPV16L1 Vaccination.

    Directory of Open Access Journals (Sweden)

    Li-Li Li

    Full Text Available C3 and TC-1 are the two model cell lines most commonly used in studies of vaccines and drugs against human papillomavirus (HPV infection. Because C3 cells contain both the HPV16 E and L genes, but TC-1 cells contain only the HPV16 E genes, C3 cells are usually used as the model cell line in studies targeting the HPV16 L protein. However, expression of the L1 protein is difficult to detect in C3 cells using common methods. In our study, Short tandem repeat analysis (STR was used to demonstrate that C3 cells are indeed derived from mice, PCR results show that HPV16 L1, E6 and E7 genes were detected in C3 genomic DNA, and RT-PCR results demonstrated that L1 transcription had occurred in C3 cells. However, the expression of C3 protein was not found in the results of western blot and immunohistochemistry (IHC. Growth and proliferation of C3 were inhibited by mice spleen lymphocytes that had been immunized with a vaccine against HPV16L1. The luciferase gene was integrated into C3 cells, and it was confirmed that addition of the exogenous gene had no effect on C3 cells by comparing cell growth and tumor formation with untransformed cells. Cells stably expressing luciferase (C3-luc were screened and subcutaneously injected into the mice. Tumors became established and were observed using a Spectrum Pre-clinical in Vivo Imaging System. Tumor size of mice in the different groups at various time points was calculated by counting photons. The sensitivity of the animals to the vaccine was quantified by statistical comparison. Ten or 30 days following injection of the C3-luc cells, tumor size differed significantly between the PBS and vaccine groups, indicating that C3 cells were susceptible to vaccination even after tumors were formed in vivo.

  12. MAJOR LYMPHOCYTE SUBPOPULATIONS IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS AND THEIR ASSOCIATIONS WITH CELLULAR AND HUMORAL ANTI-ENDOTOXIN IMMUNITY

    Directory of Open Access Journals (Sweden)

    D. V. Shaduro

    2015-01-01

    Full Text Available At the present time, systemic lupus erythematosus (SLE takes the leading place among systemic autoimmune disorders. Despite considerable progress in understanding basic pathogenesis of this disease, many subtle mechanisms of progressive inflammation in SLE are still unknown. It has been discovered that the persistent self-maintenance factors of autoimmune inflammation could be represented by lipopolysaccharides or endotoxins of Gram-negative intestinal bacteria. The objective of this study was to assess the levels of major lymphocyte subpopulations, and their probable relation to specific anti-endotoxin antibodies and endotoxin-neutralizing receptors of granulocytes and monocytes in peripheral blood of SLE patients. The study involved forty-eight patients with SLE. The levels of lymphocyte subpopulations, expression of monocyte and granulocyte anti-endotoxin receptors, amounts of total and endotoxin-specific immunoglobulins were determined by means of, respectively, cytometric analysis and enzyme immunoassay techniques. The results of study have shown an increase in overall numbers of activated and cytotoxic T lymphocytes, a decrease in lymphocytes and NK-cells, diminished levels endotoxin-binding receptors on the monocytes and granulocytes, along with increased anti-endotoxin IgG antibodies. Our study revealed correlations between the levels of the leukocyte endotoxin-binding receptors, and B-lymphocyte contents, like as some associations between anti-endotoxin IgM antibodies, and the levels of B-lymphocytes, and cytotoxic T-lymphocytes. A correlation was also found between anti-endotoxin IgG antibodies and CD4+ lymphocyte levels. Significant alterations of the endotoxin-specific immunity among SLE patients suggest that this imbalance might play an important role in the mechanisms of onset and progression of autoimmune diseases.

  13. Acute adaptive immune response correlates with late radiation-induced pulmonary fibrosis in mice

    International Nuclear Information System (INIS)

    The lung response to radiation exposure can involve an immediate or early reaction to the radiation challenge, including cell death and an initial immune reaction, and can be followed by a tissue injury response, of pneumonitis or fibrosis, to this acute reaction. Herein, we aimed to determine whether markers of the initial immune response, measured within days of radiation exposure, are correlated with the lung tissue injury responses occurring weeks later. Inbred strains of mice known to be susceptible (KK/HIJ, C57BL/6J, 129S1/SvImJ) or resistant (C3H/HeJ, A/J, AKR/J) to radiation-induced pulmonary fibrosis and to vary in time to onset of respiratory distress post thoracic irradiation (from 10–23 weeks) were studied. Mice were untreated (controls) or received 18 Gy whole thorax irradiation and were euthanized at 6 h, 1d or 7 d after radiation treatment. Pulmonary CD4+ lymphocytes, bronchoalveolar cell profile & cytokine level, and serum cytokine levels were assayed. Thoracic irradiation and inbred strain background significantly affected the numbers of CD4+ cells in the lungs and the bronchoalveolar lavage cell differential of exposed mice. At the 7 day timepoint greater numbers of pulmonary Th1 and Th17 lymphocytes and reduced lavage interleukin17 and interferonγ levels were significant predictors of late stage fibrosis. Lavage levels of interleukin-10, measured at the 7 day timepoint, were inversely correlated with fibrosis score (R = −0.80, p = 0.05), while serum levels of interleukin-17 in control mice significantly correlated with post irradiation survival time (R = 0.81, p = 0.04). Lavage macrophage, lymphocyte or neutrophil counts were not significantly correlated with either of fibrosis score or time to respiratory distress in the six mouse strains. Specific cytokine and lymphocyte levels, but not strain dependent lavage cell profiles, were predictive of later radiation-induced lung injury in this panel of inbred strains. The online version of this

  14. Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis

    DEFF Research Database (Denmark)

    Pedersen, Morten Løbner; Walsted, Anette; Larsen, Rune;

    2008-01-01

    The effect of consumption of Immulina, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis, on adaptive immune responses was investigated by evaluation of changes in leukocyte responsiveness to two foreign recall antigens, Candida albicans (CA) and tetanus...

  15. Inhibition of adaptive immune responses leads to a fatal clinical outcome in SIV-infected pigtailed macaques but not vervet African green monkeys.

    Directory of Open Access Journals (Sweden)

    Jörn E Schmitz

    2009-12-01

    Full Text Available African green monkeys (AGM and other natural hosts for simian immunodeficiency virus (SIV do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIV(agmVer90 to infect vervet AGM and pigtailed macaques (PTM. This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4 and AGM (n = 4, and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms.

  16. The pattern recognition molecule ficolin-1 exhibits differential binding to lymphocyte subsets, providing a novel link between innate and adaptive immunity

    DEFF Research Database (Denmark)

    Genster, Ninette; Ma, Ying Jie; Munthe-Fog, Lea; Garred, Peter

    2014-01-01

    -lymphocyte interaction occurred via the pathogen-recognition domain of ficolin-1 to sialic acid on the cell surface. Thus, the differential binding of ficolin-1 to lymphocyte subsets suggests ficolin-1 as a novel link between innate and adaptive immunity. Our results provide new insight about the recognition properties...

  17. Advances in inducing adaptive immunity using cell-based cancer vaccines: Clinical applications in pancreatic cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Matsumoto, Yoshihiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-14

    The incidence of pancreatic ductal adenocarcinoma (PDA) is on the rise, and the prognosis is extremely poor because PDA is highly aggressive and notoriously difficult to treat. Although gemcitabine- or 5-fluorouracil-based chemotherapy is typically offered as a standard of care, most patients do not survive longer than 1 year. Therefore, the development of alternative therapeutic approaches for patients with PDA is imperative. As PDA cells express numerous tumor-associated antigens that are suitable vaccine targets, one promising treatment approach is cancer vaccines. During the last few decades, cell-based cancer vaccines have offered encouraging results in preclinical studies. Cell-based cancer vaccines are mainly generated by presenting whole tumor cells or dendritic cells to cells of the immune system. In particular, several clinical trials have explored cell-based cancer vaccines as a promising therapeutic approach for patients with PDA. Moreover, chemotherapy and cancer vaccines can synergize to result in increased efficacies in patients with PDA. In this review, we will discuss both the effect of cell-based cancer vaccines and advances in terms of future strategies of cancer vaccines for the treatment of PDA patients. PMID:27182156

  18. Immunity to bacterial infection in the chicken.

    Science.gov (United States)

    Wigley, Paul

    2013-11-01

    Bacterial infections remain important to the poultry industry both in terms of animal and public health, the latter due to the importance of poultry as a source of foodborne bacterial zoonoses such as Salmonella and Campylobacter. As such, much focus of research to the immune response to bacterial infection has been to Salmonella. In this review we will focus on how research on avian salmonellosis has developed our understanding of immunity to bacteria in the chicken from understanding the role of TLRs in recognition of bacterial pathogens, through the role of heterophils, macrophages and γδ lymphocytes in innate immunity and activation of adaptive responses to the role of cellular and humoral immunity in immune clearance and protection. What is known of the immune response to other bacterial infections and in particular infections that have emerged recently as major problems in poultry production including Campylobacter jejuni, Avian Pathogenic Escherichia coli, Ornithobacterium rhinotracheale and Clostridium perfringens are discussed. PMID:23648643

  19. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  20. How to Make a Non-Antigenic Protein (Auto) Antigenic: Molecular Complementarity Alters Antigen Processing and Activates Adaptive-Innate Immunity Synergy.

    Science.gov (United States)

    Root-Bernstein, Robert

    2015-01-01

    Evidence is reviewed that complementary proteins and peptides form complexes with increased antigenicity and/or autoimmunogenicity. Five case studies are highlighted: 1) diphtheria toxin-antitoxin (antibody), which induces immunity to the normally non-antigenic toxin, and autoimmune neuritis; 2) tryptophan peptide of myelin basic protein and muramyl dipeptide ("adjuvant peptide"), which form a complex that induces experimental allergic encephalomyelitis; 3) an insulin and glucagon complex that is far more antigenic than either component individually; 4) various causes of experimental autoimmune myocarditis such as C protein in combination with its antibody, or coxsackie B virus in combination with the coxsackie and adenovirus receptor; 5) influenza A virus haemagglutinin with the outer membrane protein of the Haemophilus influenzae, which increases antigenicity. Several mechanisms cooperate to alter immunogenicity. Complexation alters antigen processing, protecting the components against proteolysis, altering fragmentation and presenting novel antigens to the immune system. Complementary antigens induce complementary adaptive immune responses (complementary antibodies and/or T cell receptors) that produce circulating immune complexes (CIC). CIC stimulate innate immunity. Concurrently, complementary antigens stimulate multiple Toll-like receptors that synergize to over-produce cytokines, which further stimulate adaptive immunity. Thus innate and adaptive immunity form a positive feedback loop. If components of the complex mimic a host protein, then autoimmunity may result. Enhanced antigenicity for production of improved vaccines and/or therapeutic autoimmunity (e.g., against cancer cells) might be achieved by using information from antibody or TCR recognition sites to complement an antigen; by panning for complements in randomized peptide libraries; or using antisense peptide strategies to design complements. PMID:26179268

  1. Characterization of homologous and heterologous adaptive immune responses in porcine reproductive and respiratory syndrome virus infection.

    Science.gov (United States)

    Díaz, Ivan; Gimeno, Mariona; Darwich, Laila; Navarro, Nuria; Kuzemtseva, Liudmila; López, Sergio; Galindo, Ivan; Segalés, Joaquim; Martín, Margarita; Pujols, Joan; Mateu, Enric

    2012-01-01

    The present study characterized the homologous and heterologous immune response in type-I porcine reproductive and respiratory syndrome virus (PRRSV) infection. Two experiments were conducted: in experiment 1, eight pigs were inoculated with PRRSV strain 3262 and 84 days post-inoculation (dpi) they were challenged with either strain 3262 or strain 3267 and followed for the next 14 days (98 dpi). In experiment 2, eight pigs were inoculated with strain 3267 and challenged at 84 dpi as above. Clinical course, viremia, humoral response (neutralizing and non-neutralizing antibodies, NA) and virus-specific IFN-γ responses (ELISPOT) were evaluated all throughout the study. Serum levels of IL-1, IL-6, IL-8, TNF-α and TGF-β were determined (ELISA) after the second challenge. In experiment 1 primo-inoculation with strain 3262 induced viremia of ≤ 28 days, low titres of homologous NA but strong IFN-γ responses. In contrast, strain 3267 induced longer viremias (up to 56 days), higher NA titres (≤ 6 log2) and lower IFN-γ responses. Inoculation with 3267 produced higher serum IL-8 levels. After the re-challenge at 84 dpi, pigs in experiment 1 developed mostly a one week viremia regardless of the strain used. In experiment 2, neither the homologous nor the heterologous challenge resulted in detectable viremia although PRRSV was present in tonsils of some animals. Homologous re-inoculation with 3267 produced elevated TGF-β levels in serum for 7-14 days but this did not occur with the heterologous re-inoculation. In conclusion, inoculation with different PRRSV strains result in different virological and immunological outcomes and in different degrees of homologous and heterologous protection. PMID:22515169

  2. Characterization of homologous and heterologous adaptive immune responses in porcine reproductive and respiratory syndrome virus infection

    Directory of Open Access Journals (Sweden)

    Díaz Ivan

    2012-04-01

    Full Text Available Abstract The present study characterized the homologous and heterologous immune response in type-I porcine reproductive and respiratory syndrome virus (PRRSV infection. Two experiments were conducted: in experiment 1, eight pigs were inoculated with PRRSV strain 3262 and 84 days post-inoculation (dpi they were challenged with either strain 3262 or strain 3267 and followed for the next 14 days (98 dpi. In experiment 2, eight pigs were inoculated with strain 3267 and challenged at 84 dpi as above. Clinical course, viremia, humoral response (neutralizing and non-neutralizing antibodies, NA and virus-specific IFN-γ responses (ELISPOT were evaluated all throughout the study. Serum levels of IL-1, IL-6, IL-8, TNF-α and TGF-β were determined (ELISA after the second challenge. In experiment 1 primo-inoculation with strain 3262 induced viremia of ≤ 28 days, low titres of homologous NA but strong IFN-γ responses. In contrast, strain 3267 induced longer viremias (up to 56 days, higher NA titres (≤ 6 log2 and lower IFN-γ responses. Inoculation with 3267 produced higher serum IL-8 levels. After the re-challenge at 84 dpi, pigs in experiment 1 developed mostly a one week viremia regardless of the strain used. In experiment 2, neither the homologous nor the heterologous challenge resulted in detectable viremia although PRRSV was present in tonsils of some animals. Homologous re-inoculation with 3267 produced elevated TGF-β levels in serum for 7–14 days but this did not occur with the heterologous re-inoculation. In conclusion, inoculation with different PRRSV strains result in different virological and immunological outcomes and in different degrees of homologous and heterologous protection.

  3. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging

    OpenAIRE

    Zawadzki, RJ; Jones, SM; Pilli, S; Balderas-Mata, S; Kim, DY; Olivier, SS; Werner, JS

    2011-01-01

    We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this d...

  4. Dual role of TRBP in HIV replication and RNA interference: viral diversion of a cellular pathway or evasion from antiviral immunity?

    Directory of Open Access Journals (Sweden)

    Clerzius Guerline

    2005-10-01

    Full Text Available Abstract Increasing evidence indicates that RNA interference (RNAi may be used to provide antiviral immunity in mammalian cells. Human micro (miRNAs can inhibit the replication of a primate virus, whereas a virally-encoded miRNA from HIV inhibits its own replication. Indirect proof comes from RNAi suppressors encoded by mammalian viruses. Influenza NS1 and Vaccinia E3L proteins can inhibit RNAi in plants, insects and worms. HIV-1 Tat protein and Adenovirus VA RNAs act as RNAi suppressors in mammalian cells. Surprisingly, many RNAi suppressors are also inhibitors of the interferon (IFN-induced protein kinase R (PKR but the potential overlap between the RNAi and the IFN pathways remains to be determined. The link between RNAi as an immune response and the IFN pathway may be formed by a cellular protein, TRBP, which has a dual role in HIV replication and RNAi. TRBP has been isolated as an HIV-1 TAR RNA binding protein that increases HIV expression and replication by inhibiting PKR and by increasing translation of structured RNAs. A recent report published in the Journal of Virology shows that the poor replication of HIV in astrocytes is mainly due to a heightened PKR response that can be overcome by supplying TRBP exogenously. In two recent papers published in Nature and EMBO Reports, TRBP is now shown to interact with Dicer and to be required for RNAi mediated by small interfering (si and micro (miRNAs. The apparent discrepancy between TRBP requirement in RNAi and in HIV replication opens the hypotheses that RNAi may be beneficial for HIV-1 replication or that HIV-1 may evade the RNAi restriction by diverting TRBP from Dicer and use it for its own benefit.

  5. Involvement of cellular immunity and humoral immunity in mixed allergy induced by trichloroethylene%三氯乙烯致细胞免疫和体液免疫参与的混合型变态反应研究

    Institute of Scientific and Technical Information of China (English)

    徐新云; 李学余; 刘月峰

    2014-01-01

    目的 探讨三氯乙烯(TCE)致变态反应是否存在细胞免疫和体液免疫共同参与,为研究其发病机制提供科学依据.方法 应用豚鼠和大鼠进行实验,分别设立阴性对照组、阳性对照组、TCE实验组,用皮内注射方式分别注射橄榄油、2,4-二硝基氯苯(DNCB)和TCE.实验结束后收集大鼠外周血液,用流式细胞仪检测淋巴细胞CD3+、CD4+、CD8+比例;收集豚鼠外周血液测定IgG、IgA、IgM、C3、C4水平;收集豚鼠脾淋巴细胞,用荧光定量PCR检测免疫相关基因GATA3、T-bet、CTLA4和Foxp3的mRNA表达水平.此外,选取TCE药疹样皮炎患者作为病例组,采用荧光定量PCR检测外周血Foxp3、GATA3、CTLA4、T-bet的mRNA表达水平.结果 (1)TCE对豚鼠皮肤有明显致敏作用,致敏率为83.3%;TCE实验组和阳性对照组IgG水平比阴性对照组显著升高(P<0.01);TCE实验组和阳性对照组GATA3、T-bet、CTLA4 mRNA表达水平显著高于阴性对照组,Foxp3 mRNA表达水平低于阴性对照组.(2)TCE实验组和阳性对照组大鼠外周血淋巴细胞CD3+比例高于阴性对照组,TCE实验组CD4+、CD8+、CD4+/CD8+与阴性对照组比较无统计学差异.(3)TCE病例组Foxp3、GATA3、CTLA4 mRNA表达水平比对照组分别升高115%、97%和241%(P<0.01),T-bet mRNA表达水平下降47%(P<0.01).结论 TCE可引起细胞免疫和体液免疫发生明显改变,说明TCE导致的免疫损伤属于细胞免疫和体液免疫共同参与的混合型变态反应,可能是Ⅳ型和Ⅱ型变态反应.%Objective To investigate whether cellular immunity and humoral immunity are involved in trichlorethylene (TCE)-induced mixed allergy,then provide the scientific basis for the mechanism of this disease.Methods Guinea pigs and rats were tested for this study by application of guinea pig maximization test (GPMT),the animals were randomly divided into negative control,positive control and TCE treatment groups.Animals of these groups were

  6. Circulating Tumor Cells (CTC) Are Associated with Defects in Adaptive Immunity in Patients with Inflammatory Breast Cancer

    Science.gov (United States)

    Mego, M; Gao, H; Cohen, EN; Anfossi, S; Giordano, A; Sanda, T; Fouad, TM; De Giorgi, U; Giuliano, M; Woodward, WA; Alvarez, RH; Valero, V; Ueno, NT; Hortobagyi, GN; Cristofanilli, M; Reuben, JM

    2016-01-01

    Background: Circulating tumor cells (CTCs) play a crucial role in tumor dissemination and are prognostic in primary and metastatic breast cancer. Peripheral blood (PB) immune cells contribute to an unfavorable microenvironment for CTC survival. This study aimed to correlate CTCs with the PB T-cell immunophenotypes and functions of patients with inflammatory breast cancer (IBC). Methods: This study included 65 IBC patients treated at the MD Anderson Cancer Center. PB was obtained from patients prior to starting a new line of chemotherapy for CTCs enumeration by CellSearch®, and T cell phenotype and function by flow cytometry; the results were correlated with CTCs and clinical outcome. Results: At least 1 CTC (≥1) or ≥5 CTCs was detected in 61.5% or 32.3% of patients, respectively. CTC count did not correlate with total lymphocytes; however, patients with ≥1 CTC or ≥5 CTCs had lower percentages (%) of CD3+ and CD4+ T cells compared with patients with no CTCs or <5 CTCs, respectively. Patients with ≥1 CTC had a lower percentage of T-cell receptor (TCR)-activated CD8+ T cells synthesizing TNF-α and IFN-γ and a higher percentage of T-regulatory lymphocytes compared to patients without CTCs. In multivariate analysis, tumor grade and % CD3+ T-cells were associated with ≥1 CTC, whereas ≥5 CTC was associated with tumor grade, stage, % CD3+ and % CD4+ T cells, and % TCR-activated CD8 T-cells synthesizing IL-17. Conclusions: IBC patients with CTCs in PB had abnormalities in adaptive immunity that could potentially impact tumor cell dissemination and initiation of the metastatic cascade. PMID:27326253

  7. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation

    Science.gov (United States)

    Takagi, Hideaki; Arimura, Keiichi; Uto, Tomofumi; Fukaya, Tomohiro; Nakamura, Takeshi; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Sato, Katsuaki

    2016-01-01

    Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation. PMID:27075414

  8. Imaging Immunity in Lymph Nodes: Past, Present and Future.

    Science.gov (United States)

    Butler, James; Sawtell, Amy; Jarrett, Simon; Cosgrove, Jason; Leigh, Roger; Timmis, Jon; Coles, Mark

    2016-01-01

    Immune responses occur as a result of stochastic interactions between a plethora of different cell types and molecules that regulate the migration and function of innate and adaptive immune cells to drive protection from pathogen infection. The trafficking of immune cells into peripheral tissues during inflammation and then subsequent migration to draining lymphoid tissues has been quantitated using radiolabelled immune cells over 40 years ago. However, how these processes lead to efficient immune responses was unclear. Advances in physics (multi-photon), chemistry (probes) and biology (animal models) have provided immunologists with specialized tools to quantify the molecular and cellular mechanisms driving immune function in lymphoid tissues through directly visualising cellular behaviours in 3-dimensions over time. Through the temporal and spatial resolution of multi-photon confocal microscopy immunologists have developed new insights into normal immune homeostasis, host responses to pathogens, anti-tumour immune responses and processes driving development of autoimmune pathologies, by the quantification of the interactions and cellular migration involved in adaptive immune responses. Advances in deep tissue imaging, including new fluorescent proteins, increased resolution, speed of image acquisition, sensitivity, number of signals and improved data analysis techniques have provided unprecedented capacity to quantify immune responses at the single cell level. This quantitative information has facilitated development of high-fidelity mathematical and computational models of immune function. Together this approach is providing new mechanistic understanding of immune responses and new insights into how immune modulators work. Advances in biophysics have therefore revolutionised our understanding of immune function, directly impacting on the development of next generation immunotherapies and vaccines, and is providing the quantitative basis for emerging technology

  9. Response of C2C12 Myoblasts to Hypoxia: The Relative Roles of Glucose and Oxygen in Adaptive Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-01-01

    Full Text Available Background. Oxygen and glucose are two important nutrients for mammalian cell function. In this study, the effect of glucose and oxygen concentrations on C2C12 cellular metabolism was characterized with an emphasis on detecting whether cells show oxygen conformance (OC in response to hypoxia. Methods. After C2C12 cells being cultured in the levels of glucose at 0.6 mM (LG, 5.6 mM (MG, or 23.3 mM(HG under normoxic or hypoxic (1% oxygen condition, cellular oxygen consumption, glucose consumption, lactate production, and metabolic status were determined. Short-term oxygen consumption was measured with a novel oxygen biosensor technique. Longer-term measurements were performed with standard glucose, lactate, and cell metabolism assays. Results. It was found that oxygen depletion in normoxia is dependent on the glucose concentration in the medium. Cellular glucose uptake and lactate production increased significantly in hypoxia than those in normoxia. In hypoxia the cellular response to the level of glucose was different to that in normoxia. The metabolic activities decreased while glucose concentration increased in normoxia, while in hypoxia, metabolic activity was reduced in LG and MG, but unchanged in HG condition. The OC phenomenon was not observed in the present study. Conclusions. Our findings suggested that a combination of low oxygen and low glucose damages the viability of C2C12 cells more seriously than low oxygen alone. In addition, when there is sufficient glucose, C2C12 cells will respond to hypoxia by upregulating anaerobic respiration, as shown by lactate production.

  10. Part I. Molecular and cellular characterization of high nitric oxide-adapted human breast adenocarcinoma cell lines

    OpenAIRE

    Vesper, B; Onul, A; Haines III, G; Tarjan, G; Xue, J; Elseth, K; Aydogan, B.; Altman, M.; Roeske, J; Paradise, W; De Vitto, H; Radosevich, J

    2013-01-01

    There is a lack of understanding of the casual mechanisms behind the observation that some breast adenocarcinomas have identical morphology and comparatively different cellular growth behavior. This is exemplified by a differential response to radiation, chemotherapy, and other biological intervention therapies. Elevated concentrations of the free radical nitric oxide (NO), coupled with the up-regulated enzyme nitric oxide synthase (NOS) which produces NO, are activities which impact tumor gr...

  11. Improving cellular function and immune protection via layer-by-layer nanocoating of pancreatic islet β-cell spheroids cocultured with mesenchymal stem cells.

    Science.gov (United States)

    Bhaiji, Tasneem; Zhi, Zheng-Liang; Pickup, John C

    2012-06-01

    Islet transplantation as a therapy for type 1 diabetes is currently limited by lack of primary transplant material from human donors and post-transplantation loss of islets caused by adverse immune and nonimmune reactions. This study aimed to develop a novel strategy to create microenvironment for islets via integration of nanoencapsulation with cell cocultures, thereby enhancing their survival and function. The nanoencapsulation was achieved via layer-by-layer deposition of phosphorycholine-modified poly-L-lysine/heparin leading to the formation of nanometer-thick multilayer coating on islets. Spheroids formed by coculturing MIN6 β-cells with mesenchymal stem cells in suspension were used as the tool for testing encapsulation. Coculturing MSCs with MIN6 cells allowed the cell constructs to enhance structural and morphologic stability with improved insulin secretory function and render them less susceptible to inflammatory cytokine-induced apoptosis. Combining nanoencapsulation with coculture of MSCs/MIN6 resulted in higher glucose responsiveness, and lower antibody binding and apoptosis-inducing effects of cytokines. This strategy of nanoencapsulating islet cocultures appears promising to improve cellular delivery of insulin for treating type 1 diabetes. PMID:22447690

  12. [Commemorative lecture of receiving Imamura Memorial Prize. Analysis of cellular immunity against tuberculosis in man with special reference to tuberculous pleurisy and cytokines].

    Science.gov (United States)

    Shimokata, K

    1996-10-01

    Because of containing of numerous immunocompetent cells, tuberculous pleurisy is a good model for analysis of local cellular immunity. When lymphocytes in pleural effusion were cocultured with purified protein derivative (PPD), they reacted to PPD and produced far more interleukin 2 (IL-2) and interferon-gamma (IFN-gamma) than did peripheral blood lymphocytes. Analysis using monoclonal antibody and complement revealed that at least the OKT4+/OKT8- T-cell subset is responsible for the antigen-specific IFN-gamma production in pleural fluid T lymphocytes. Tuberculous pleural fluid itself had far higher levels of IL-2 and IFN-gamma than malignant pleural fluid. Therefore, it is indicated that activated T lymphocytes in tuberculous pleural fluid concern the production of lymphokines at the morbid site. Treatment with IFN-gamma resulted in an increased percentage of human alveolar macrophages ingesting BCG and an increased number of ingested BCG in individual alveolar macrophage in patient with pulmonary tuberculosis. The IFN-gamma treatment also showed increased killing activity of alveolar macrophages. Through these studies, IFN-gamma is an essential cytokine which activates human alveolar macrophages and induces antimycobacterial activity. In conclusion, we could elucidate from the study of tuberculous pleurisy that exudative sensitized pleural fluid T-lymphocytes play a major role in the defence of tuberculosis at the morbid site. PMID:8936994

  13. Activation of Cellular Immunity in Herpes Simplex Virus Type 1-Infected Mice by the Oral Administration of Aqueous Extract of Moringa oleifera Lam. Leaves.

    Science.gov (United States)

    Kurokawa, Masahiko; Wadhwani, Ashish; Kai, Hisahiro; Hidaka, Muneaki; Yoshida, Hiroki; Sugita, Chihiro; Watanabe, Wataru; Matsuno, Koji; Hagiwara, Akinori

    2016-05-01

    Moringa oleifera Lam. is used as a nutritive vegetable and spice. Its ethanol extract has been previously shown to be significantly effective in alleviating herpetic skin lesions in mice. In this study, we evaluated the alleviation by the aqueous extract (AqMOL) and assessed the mode of its anti-herpetic action in a murine cutaneous herpes simplex virus type 1 (HSV-1) infection model. AqMOL (300 mg/kg) was administered orally to HSV-1-infected mice three times daily on days 0 to 5 after infection. AqMOL significantly limited the development of herpetic skin lesions and reduced virus titers in the brain on day 4 without toxicity. Delayed-type hypersensitivity (DTH) reaction to inactivated HSV-1 antigen was significantly stronger in infected mice administered AqMOL and AqMOL augmented interferon (IFN)-γ production by HSV-1 antigen from splenocytes of HSV-1-infected mice at 4 days post-infection. AqMOL administration was effective in elevating the ratio of CD11b(+) and CD49b(+) subpopulations of splenocytes in infected mice. As DTH is a major host defense mechanism for intradermal HSV infection, augmentation of the DTH response by AqMOL may contribute to their efficacies against HSV-1 infection. These results provided an important insights into the mechanism by which AqMOL activates cellular immunity. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26814058

  14. Immune response

    Science.gov (United States)

    ... Cellular and Molecular Immunology. 8th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 1. Craft J. The adaptive ... eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 46. Crow MK. The innate ...

  15. Plasmacytoid Dendritic Cells Act as the Most Competent Cell Type in Linking Antiviral Innate and Adaptive Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhang; Fu-Sheng Wang

    2005-01-01

    Appropriate in vivo control of plasmacytoid dendritic cell (pDC) recruitment and activation is a fundamental requirement for defense against viral infection. During this process, a pivotal event that influences the outcome of viral infection is the production of high levels of type I interferon by pDCs. In particular, recent research findings showed that pDCs not only shape the nature of innate resistance, but are also responsible for the successful transition from innate to adaptive immunity for viral resistance. In addition, pDCs can differentiate into antigen presenting cells that may regulate tolerance to a given pathogen. Importantly, in a series of recent clinical studies,pDCs appeared to be defective in number and function in conditions of chronic viral diseases such as infected with HIV-1, HBV or HCV. pDC-associated clinical antiviral therapy is also emerging. This review describes research findings exanining the functional and antiviral properties of in vivo pDC plasticity.

  16. Omics Approaches for the Study of Adaptive Immunity to Staphylococcus aureus and the Selection of Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Silva Holtfreter

    2016-03-01

    Full Text Available Staphylococcus aureus is a dangerous pathogen both in hospitals and in the community. Due to the crisis of antibiotic resistance, there is an urgent need for new strategies to combat S. aureus infections, such as vaccination. Increasing our knowledge about the mechanisms of protection will be key for the successful prevention or treatment of S. aureus invasion. Omics technologies generate a comprehensive picture of the physiological and pathophysiological processes within cells, tissues, organs, organisms and even populations. This review provides an overview of the contribution of genomics, transcriptomics, proteomics, metabolomics and immunoproteomics to the current understanding of S. aureus‑host interaction, with a focus on the adaptive immune response to the microorganism. While antibody responses during colonization and infection have been analyzed in detail using immunoproteomics, the full potential of omics technologies has not been tapped yet in terms of T-cells. Omics technologies promise to speed up vaccine development by enabling reverse vaccinology approaches. In consequence, omics technologies are powerful tools for deepening our understanding of the “superbug” S. aureus and for improving its control.

  17. iNKT-cell help to B cells: a cooperative job between innate and adaptive immune responses.

    Science.gov (United States)

    Dellabona, Paolo; Abrignani, Sergio; Casorati, Giulia

    2014-08-01

    T-cell help to B lymphocytes is one of the most important events in adaptive immune responses in health and disease. It is generally delivered by cognate CD4(+) T follicular helper (T(FH)) cells via both cell-to-cell contacts and soluble mediators, and it is essential for both the clonal expansion of antibody (Ab)-secreting B cells and memory B-cell formation. CD1d-restricted invariant natural killer T (iNKT) cells are a subset of innate-like T lymphocytes that rapidly respond to stimulation with specific lipid antigens (Ags) that are derived from infectious pathogens or stressed host cells. Activated iNKT cells produce a wide range of cytokines and upregulate costimulatory molecules that can promote activation of dendritic cells (DCs), natural killer (NK) cells, and T cells. A decade ago, we discovered that iNKT cells can help B cells to proliferate and to produce IgG Abs in vitro and in vivo. This adjuvant-like function of Ag-activated iNKT cells provides a flexible set of helper mechanisms that expand the current paradigm of T-cell-B-cell interaction and highlights the potential of iNKT-cell targeting vaccine formulations. PMID:24782127

  18. Cold-Adapted Pandemic 2009 H1N1 Influenza Virus Live Vaccine Elicits Cross-Reactive Immune Responses against Seasonal and H5 Influenza A Viruses

    OpenAIRE

    Jang, Yo Han; Byun, Young Ho; Lee, Yoon Jae; Lee, Yun Ha; Lee, Kwang-Hee; Seong, Baik Lin

    2012-01-01

    The rapid transmission of the pandemic 2009 H1N1 influenza virus (pH1N1) among humans has raised the concern of a potential emergence of reassortment between pH1N1 and highly pathogenic influenza strains, especially the avian H5N1 influenza virus. Here, we report that the cold-adapted pH1N1 live attenuated vaccine (CApH1N1) elicits cross-reactive immunity to seasonal and H5 influenza A viruses in the mouse model. Immunization with CApH1N1 induced both systemic and mucosal antibodies with broa...

  19. Adapt

    Science.gov (United States)

    Bargatze, L. F.

    2015-12-01

    Active Data Archive Product Tracking (ADAPT) is a collection of software routines that permits one to generate XML metadata files to describe and register data products in support of the NASA Heliophysics Virtual Observatory VxO effort. ADAPT is also a philosophy. The ADAPT concept is to use any and all available metadata associated with scientific data to produce XML metadata descriptions in a consistent, uniform, and organized fashion to provide blanket access to the full complement of data stored on a targeted data server. In this poster, we present an application of ADAPT to describe all of the data products that are stored by using the Common Data File (CDF) format served out by the CDAWEB and SPDF data servers hosted at the NASA Goddard Space Flight Center. These data servers are the primary repositories for NASA Heliophysics data. For this purpose, the ADAPT routines have been used to generate data resource descriptions by using an XML schema named Space Physics Archive, Search, and Extract (SPASE). SPASE is the designated standard for documenting Heliophysics data products, as adopted by the Heliophysics Data and Model Consortium. The set of SPASE XML resource descriptions produced by ADAPT includes high-level descriptions of numerical data products, display data products, or catalogs and also includes low-level "Granule" descriptions. A SPASE Granule is effectively a universal access metadata resource; a Granule associates an individual data file (e.g. a CDF file) with a "parent" high-level data resource description, assigns a resource identifier to the file, and lists the corresponding assess URL(s). The CDAWEB and SPDF file systems were queried to provide the input required by the ADAPT software to create an initial set of SPASE metadata resource descriptions. Then, the CDAWEB and SPDF data repositories were queried subsequently on a nightly basis and the CDF file lists were checked for any changes such as the occurrence of new, modified, or deleted

  20. STRUCTURAL ADAPTATIONS OF CELLULAR WALLS OF AQUATIC PLANTS TO THE ACTION OF IONS OF ZINC AND LEAD

    Directory of Open Access Journals (Sweden)

    Grubinko V.V.

    2012-11-01

    Full Text Available Main specific and nonspecific cells responses and membrane structures participation in formation of cells resistance in stress conditions, caused by heavy metals (chlorella, waterweed, duckweed in toxic concentrations are analyzed. The cell membranes participation in adaptation to toxicants (formation of growths, multiplication, fluidization, forming of aquaporin, apoptosis, which are first exposed to stressors, is discussed. Found specific and nonspecific reactions in membrane formation are proposed to use as biomarkers of toxicity.