WorldWideScience

Sample records for cells technology status

  1. Fuel Cell Technology Status Analysis | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Technology Status Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective

  2. Technology status: Batteries and fuel cells

    Science.gov (United States)

    Fordyce, J. S.

    1978-01-01

    The current status of research and development programs on batteries and fuel cells and the technology goals being pursued are discussed. Emphasis is placed upon those technologies relevant to earth orbital electric energy storage applications.

  3. The current status of fuel cell technology for mobile and stationary applications

    NARCIS (Netherlands)

    Bruijn, de F.A.

    2005-01-01

    This review of fuel cell technology gives an overview on the status of low and high temperature fuel cells, both on materials as well as on a system level. Their application in transport and the combined generation of heat and power is discussed in relation to their environmental benefits

  4. Status and promise of fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [National Energy Technology Lab., Pittsburgh, PA (United States). Dept. of Energy

    2001-09-01

    The niche or early entry market penetration by ONSI and its phosphoric acid fuel cell technology has proven that fuel cells are reliable and suitable for premium power and other opportunity fuel niche market applications. Now, new fuel cell technologies - solid oxide fuel cells, molten carbonate fuel cells, and polymer electrolyte fuel cells - are being developed for near-term distributed generation shortly after 2003. Some of the evolving fuel cell systems are incorporating gas turbines in hybrid configurations. The combination of the gas turbine with the fuel cell promises to lower system costs and increase efficiency to enhance market penetration. Market estimates indicate that significant early entry markets exist to sustain the initially high cost of some distributed generation technologies. However, distributed generation technologies must have low introductory first cost, low installation cost, and high system reliability to be viable options in competitive commercial and industrial markets. In the long-term, solid state fuel cell technology with stack costs under $100/kilowatt (kW) promises deeper and wider market penetration in a range of applications including a residential, auxillary power, and the mature distributed generation markets. The solid state energy conversion alliance (SECA) with its vision for fuel cells in 2010 was recently formed to commercialize solid state fuel cells and realize the full potential of the fuel cell technology. Ultimately, the SECA concept could lead to megawatt-size fuel-cell systems for commercial and industrial applications and Vision 21 fuel cell turbine hybrid energy plants in 2015. (orig.)

  5. Status and prospects of fuel cell technology in Europe

    International Nuclear Information System (INIS)

    Van Dijkum

    1998-01-01

    Fuel Cells attract a lot of press attention today and an some example of a recent press heading is: ''Orders for Onsi's fuel cells hit $111 million''. The principle of fuel cell technology is explained and examples of realized applications given. In short: fuel cells can be used everywhere where power (and heat) is needed. Regarding the status of fuel cells, Europe is way behind Japan and the US. The 15 PAFC-200 kWe units in operation in Europe (worldwide > 90 units) produced 46,796 MWhe during 296,704 cumulative operating hours with an availability % over 70.00. The world record on continuous operation is held by Japan with 9,478 hours reached at 14th September 1996 and two PAFC-units passed their 40,000 hours of cumulative operation (US and Japan). In Japan, market enabling support is continued with subsidies of one third of the costs for 7 PAFC-units. In the Netherlands, Energy Distribution Companies test their tubular 100 kWe SOFC-unit. During 1,335 hours of continuous operation, the unit produced 165 MWhe in total at 3rd March. EnergieNed, CLC/Ansaldo and Gastec evaluated changes for co-generation and small power production with packaged fuel cell power plants in EU and EFTA countries. In general the authors concluded that implementation of fuel cell power plants in all EU and EFTA countries will be probably possible with today' s technical regulations. On might wonder: What has fuel cell technology to offer in one of the most efficient and low-priced gas economies in Europe, the Netherlands. An example of efficient energy use are greenhouses with artificial lighting and CO 2 -fertilization and energy (heat) storage device. Applying relatively favorable depreciation periods and (utility) interest rate, a PAFC 200 kWe generates just a positive return (IRR = 1.7 % after taxes and subsidies) when part of a gas-engine capacity is replaced

  6. Status of molten carbonate fuel cell technology development

    Science.gov (United States)

    Parsons, E. L., Jr.; Williams, M. C.; George, T. J.

    The MCFC technology has been identified by the DOE as a promising product for commercialization. Development of the MCFC technology supports the National Energy Strategy. Review of the status of the MCFC technology indicates that the MCFC technology developers are making rapid and significant progress. Manufacturing facility development and extensive testing is occurring. Improvements in performance (power density), lower costs, improved packaging, and scale up to full height are planned. MCFC developers need to continue to be responsive to end-users in potential markets. It will be market demands for the correct product definition which will ultimately determine the character of MCFC power plants. There is a need for continued MCFC product improvement and multiple product development tests.

  7. Danish research and development in PEM fuel cell technology. Status for strategy follow up; Dansk forskning og udvikling inden for PEM-braendselscelleteknologi. Status for strategiopfoelgning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    PEM fuel cell technology shows promise as to efficient and environmental friendly production of power and heat. Furthermore, the technology can be used for production of hydrogen through electrolysis of water. In Denmark research and development focus on PEM fuel cells for low temperatures (up to c 80 deg. C) as well as for high temperatures (up to 200 deg. C). This note summarizes the present plane for research and development in PEM in Denmark, including status for development within specific areas i.e. basic research and development, process development, cell and stack development and tests, and system development. (BA)

  8. Present status of foreign reprocessing technology

    International Nuclear Information System (INIS)

    Otagaki, Takao; Ishikawa, Yasusi; Mori, Jyunichi

    2000-03-01

    In considering extensively and evaluating advanced nuclear fuel recycle technologies then selecting credible one among those technology options and establishing practicable plan of future fast reactor fuel recycle technology, it is important to investigate foreign reprocessing information extensively and minutely as much as possible then to know trends of reprocessing technology development in the world and present technology level of each country. This report is intending to present information of the status and the technology of operating, constructing and closed foreign reprocessing facilities in the world, including, mixed oxide (MOX) fuel reprocessing technology. The conceptual study of 'Foreign Reprocessing Technology Database' was also performed in order to add or revise the information easily. The eight countries, France, The U.K., Russia, The U.S., Germany, Belgium, India and China, were studied regarding outline of the facilities, operation status, future plan, technical information of process flow sheet, primary components, maintenance system etc, construction and operating costs, accidents or troubles, decommissioning status. (author)

  9. Status of radiation-based measurement technology

    International Nuclear Information System (INIS)

    Moon, B. S.; Lee, J. W.; Chung, C. E.; Hong, S. B.; Kim, J. T.; Park, W. M.; Kim, J. Y.

    1999-03-01

    This report describes the status of measurement equipment using radiation source and new technologies in this field. This report includes the development status in Korea together with a brief description of the technology development and application status in ten countries including France, America, and Japan. Also this report describes technical factors related to radiation-based measurement and trends of new technologies. Measurement principles are also described for the equipment that is widely used among radiation-based measurement, such as level measurement, density measurement, basis weight measurement, moisture measurement, and thickness measurement. (author). 7 refs., 2 tabs., 21 figs

  10. Status of the DOE Battery and Electrochemical Technology Program V

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  11. Environmental aspects of battery and fuel cell technologies

    International Nuclear Information System (INIS)

    1992-10-01

    This report was commissioned by the UK Department of Trade and Industry in order to understand the policy, infrastructural and standards implications of increased use of batteries and fuel cells. In order to meet these requirements, the following areas have been examined: environmental initiatives related to power generation and transport in a pan-European context; the status of alternative technologies, specifically batteries and fuel cells; the market potential of battery and fuel cell based technologies in transport and power generation; environmental life cycle and cost benefit analyses of these technologies; the implications of the use of alternative technologies on the UK infrastructure. Each of these areas is covered briefly in the main body of the report and discussed in greater detail in six appendices. Overall there are 51 figures, 38 tables and 20 references. (UK)

  12. AlliedSignal solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K. [AlliedSignal Aerospace Equipment Systems, Torrance, CA (United States)

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  13. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.

    2012-09-28

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

  14. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.; Brown, Scott A.

    2011-09-29

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

  15. Human iPS Cell-Derived Germ Cells: Current Status and Clinical Potential

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishii

    2014-10-01

    Full Text Available Recently, fertile spermatozoa and oocytes were generated from mouse induced pluripotent (iPS cells using a combined in vitro and in vivo induction system. With regard to germ cell induction from human iPS cells, progress has been made particularly in the male germline, demonstrating in vitro generation of haploid, round spermatids. Although iPS-derived germ cells are expected to be developed to yield a form of assisted reproductive technology (ART that can address unmet reproductive needs, genetic and/or epigenetic instabilities abound in iPS cell generation and germ cell induction. In addition, there is still room to improve the induction protocol in the female germline. However, rapid advances in stem cell research are likely to make such obstacles surmountable, potentially translating induced germ cells into the clinical setting in the immediate future. This review examines the current status of the induction of germ cells from human iPS cells and discusses the clinical potential, as well as future directions.

  16. Present status of research and development on solar cells in Japan

    International Nuclear Information System (INIS)

    Goto, S.; Kawakami, K.; Nishimura, T.; Uda, K.; Ishiyama, K.; Aratani, H.

    2004-01-01

    New Energy and Industrial Technology Development Organization (NEDO) has promoted a 5-year master plan (JFY2001-2005) for research and development of solar cells and modules in order to achieve the target of 4.82 GW, which is the target of Japanese cumulative photovoltaic installation in JFY2010, and worldwide PV deployment after 2010. Various technologies for reducing manufacturing cost are extensively developed in this project. We report recent status of three main themes in this project. Advanced manufacturing technology is designed as a short-term project which set itself the goal of manufacturing cost of 140 yen/W. Advanced solar cells technology based on a mid-term project and manufacturing cost of 100 yen/W as the object. Innovative PV technology is a long-term project and focused on novel technologies that enables further cost reduction in and beyond the year 2010. (authors)

  17. Fusion technology status and requirements

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1982-01-01

    This paper summarizes the status of fusion technology and discusses the requirements to be met in order to build a demonstration fusion plant. Strategies and programmatic considerations in pursuing engineering feasibility are also outlined

  18. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  19. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  20. Reviews on Solid Oxide Fuel Cell Technology

    Directory of Open Access Journals (Sweden)

    Apinan Soottitantawat

    2009-02-01

    Full Text Available Solid Oxide Fuel Cell (SOFC is one type of high temperature fuel cell that appears to be one of the most promising technology to provide the efficient and clean energy production for wide range of applications (from small units to large scale power plants. This paper reviews the current status and related researches on SOFC technologies. In details, the research trend for the development of SOFC components(i.e. anode, electrolyte, cathode, and interconnect are presented. Later, the current important designs of SOFC (i.e. Seal-less Tubular Design, Segmented Cell in Series Design, Monolithic Design and Flat Plate Design are exampled. In addition, the possible operations of SOFC (i.e. external reforming, indirect internal reforming, and direct internal reforming are discussed. Lastly, the research studies on applications of SOFCs with co-generation (i.e. SOFC with Combined Heat and Power (SOFC-CHP, SOFC with Gas Turbine (SOFC-GT and SOFC with chemical production are given.

  1. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2012-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  2. Status of Fast Reactor Research and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  3. Status of Fast Reactor Research and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  4. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2013-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  5. Instructional Technology in Brazil: A Status Report

    Science.gov (United States)

    Saettler, Paul

    1973-01-01

    A status report on the evolving conceptions of instructional technology and current applications in Brazil. A complementary purpose is to summarize those conditions which vitally influence the general characteristics of the Brazilian educational system and the nature of instructional technology in this major developing country of the world.…

  6. Current status of Chinese nuclear power industry and technology

    International Nuclear Information System (INIS)

    Kim, Hyun Min; Kim, Min; Jeong, Hee Jong; Hwang, Jeong Ki; Cho, Chung Hee

    1996-10-01

    China has been carrying out active international cooperation aiming to be a country where is to be an economical super power and an advanced country in nuclear power technology by the year early 2000, and China also has begun to be recognized as the largest potential market for the construction of nuclear power plants(NPPs) expecting to construct more than thirty nuclear power units by the year 2020. China has advanced technology in the basic nuclear science including liquid metal breeder reactor technology, nuclear material, medium and small size power plants, and isotope production technology, and also China has complete nuclear fuel cycle technology. However, China still has low NPP technology. Therefore, it is expected that China may have complementary cooperative relationship with China, it is expected that Korea may have an access to the advanced Chinese nuclear science technology, and may have a good opportunity to explore the Chinese market actively exporting excellent Korean NPP technology, and further may have a good position to the neighboring Asian countries' NPP markets. From this perspective, general Chinese social status, major nuclear R and D activity status, and correct NPP and technology status have been analyzed in this report, and this report is expected to be a useful resource for cooperating with China in future. 10 tabs., 6 figs., 16 refs. (Author)

  7. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Post, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gikakis, Christina [Federal Transit Administration, Washington, DC (United States)

    2015-12-11

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. The 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.

  8. Status of solid polymer electrolyte fuel cell technology and potential for transportation applications

    Science.gov (United States)

    McElroy, J. F.; Nuttall, L. J.

    The solid polymer electrolyte (SPE) fuel cell represents the first fuel cell technology known to be used operationally. Current activities are mainly related to the development of a space regenerative fuel cell system for energy storage on board space stations, or other large orbiting vehicles and platforms. During 1981, a study was performed to determine the feasibility of using SPE fuel cells for automotive or other vehicular applications, using methanol as the fuel. The results of this study were very encouraging. Details concerning a conceptual automotive fuel cell power plant study are discussed, taking into account also a layout of major components for compact passenger car installation.

  9. The status of silicon ribbon growth technology for high-efficiency silicon solar cells

    Science.gov (United States)

    Ciszek, T. F.

    1985-01-01

    More than a dozen methods have been applied to the growth of silicon ribbons, beginning as early as 1963. The ribbon geometry has been particularly intriguing for photovoltaic applications, because it might provide large area, damage free, nearly continuous substrates without the material loss or cost of ingot wafering. In general, the efficiency of silicon ribbon solar cells has been lower than that of ingot cells. The status of some ribbon growth techniques that have achieved laboratory efficiencies greater than 13.5% are reviewed, i.e., edge-defined, film-fed growth (EFG), edge-supported pulling (ESP), ribbon against a drop (RAD), and dendritic web growth (web).

  10. Technological status of organic photovoltaics (OPV)

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Krebs, Frederik C

    2013-01-01

    This paper gives a technological status of organic and polymer photovoltaics (OPV) for both single and tandem junctions. We list the current state-of-the-art at the laboratory level for very small rigid and mostly vacuum processed devices to larger area flexible and printed devices. In comparison...

  11. Water treatment for fossil fuel power generation - technology status report

    International Nuclear Information System (INIS)

    2006-01-01

    This technology status report focuses on the use of water treatment technology in fossil fuel power plants. The use of polymeric ion exchange resins for deionization of water, the currently preferred use of ion exchange for economically treating water containing low dissolved salts, the use of low pressure high-flux membranes, membrane microfiltration, and reverse osmosis are discussed. Details are given of the benefits of the technologies, water use at power plants, the current status of water treatment technologies, and the potential for future developments, along with power plant market trends and potentials, worldwide developments, and UK capabilities in water treatment plant design and manufacturing

  12. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    Science.gov (United States)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  13. An overview to development of fuel cell technology in Iran

    International Nuclear Information System (INIS)

    Amirinejad, M.; Rowshanzamir, S.; Eikani, M.H.

    2005-01-01

    The fuel cell has been known as a modern technology for conversion of chemical energy into electrical energy in the worldwide. Some factors of adaptation to environment targets and high efficiency production of energy are two main reasons that motivated several governments to be active in supporting developments of the fuel cells sector through integrated strategies. The rapid population growth in Iran in recent years is a significant agent of consuming more energy that is satisfied with the fossil resources resulting in environmental problems. The demand for environmental quality and balance in fuel consumption are two main drivers behind the development of fuel cell vehicle in Iran. In order to have sustainable economy and independent on the oil revenue, it is required to make use of oil and natural gas resources in a better manner. Fuel cells are the best candidates to fulfill this requirement. Iran's potential application for this technology in different sectors, design and construction it and fuel system based on natural gas is high. In this paper, current status, potential application, and future research and development of this technology in Iran are investigated

  14. Status of fusion technology

    International Nuclear Information System (INIS)

    Mohan, Ashok

    1978-01-01

    The current status of fusion technology is surveyed. Limited reserves of fossil fuel and dangers of proliferation from nuclear reactors have brought into focus the need to develop an optional energy source. Fusion is being looked upon as an optional energy source which is free from environmental hazards unlike fossil fuels and nuclear reactors. Investments in R and D of fusion energy have increased rapidly in USA, Japan, USSR and European countries. Out of the various fusion fuels known, a mixture of D and T is widely chosen. The main problem in fusion technology is the confinement of plasma for a time sufficient to start the fusion reaction. This can be done magnetically or inertially. The three approaches to magnetic confinement are : (1) tokamak, (2) mirror and (3) pinch. Inertial confinement makes use of lasers or electron beams or ion beams. Both the methods of confinement i.e. magnetic and inertial have problems which are identified and their nature is discussed. (M.G.B.)

  15. Status of irradiation technology development in JMTR

    International Nuclear Information System (INIS)

    Inaba, Y.; Inoue, S.; Izumo, H.; Kitagishi, S.; Tsuchiya, K.; Saito, T.; Ishitsuka, E.

    2008-01-01

    Irradiation Engineering Section of the Neutron Irradiation and Testing Reactor Centre was organised to development the new irradiation technology for the application at JMTR re-operation. The new irradiation engineering building was remoulded from the old RI development building, and was started to use from the end of September, 2008. Advanced in-situ instrumentation technology(high temperature multi-paired thermocouple, ceramic sensor,application of optical measurement), 99 Mo production technology by new Mo solution irradiation method,recycling technology on used beryllium reflector, and so on are planned as the development of new irradiation technologies. The development will be also important for the education and training programs through the development of young generation in not only Japan but also Asian countries. In this report, as the status of the development the new irradiation technology, new irradiation engineering building, high temperature multi-paired thermocouple, experiences of optical measurement, recycling technology on used beryllium reflector are introduced

  16. Status of Irradiation technology development in JMTR

    International Nuclear Information System (INIS)

    Inaba, Y.; Inoue, S.; Izumo, H.; Kitagishi, S.; Tsuchiya, K.; Saito, T.; Ishitsuka, E.

    2008-01-01

    Irradiation Engineering Section of the Neutron Irradiation and Testing Reactor Center was organized to development the new irradiation technology for the application at JMTR re operation. The new irradiation engineering building was remodeled from the old RI development building, and was started to use from the end of September, 2008. Advanced in situ instrumentation technology (high temperature multi paired thermocouple, ceramic sensor, application of optical measurement), 99M o production technology by new Mo solution irradiation method, recycling technology on used beryllium reflector, and so on are planned as the development of new irradiation technologies. The development will be also important for the education and training programs through the development of young generation in not only Japan but also Asian counties. In this report, as the status of the development the new irradiation technology, new irradiation engineering building, high temperature multi paired thermocouple, experiences of optical measurement, recycling technology on used beryllium reflector are introduced

  17. Cell sheet technology and cell patterning for biofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Imen Elloumi; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo (Japan)

    2009-06-01

    We have developed cell sheet technology as a modern method for the fabrication of functional tissue-like and organ-like structures. This technology allows for a sheet of interconnected cells and cells in full contact with their natural extracellular environment to be obtained. A cell sheet can be patterned and composed according to more than one cell type. The key technology of cell sheet engineering is that a fabricated cell sheet can be harvested and transplanted utilizing temperature-responsive surfaces. In this review, we summarize different aspects of cell sheet engineering and provide a survey of the application of cell sheets as a suitable material for biofabrication and clinics. Moreover, since cell micropatterning is a key tool for cell sheet engineering, in this review we focus on the introduction of our approaches to cell micropatterning and cell co-culture to the principles of automation and how they can be subjected to easy robotics programming. Finally, efforts towards making cell sheet technology suitable for biofabrication and robotic biofabrication are also summarized. (topical review)

  18. Update on status of fluidized-bed combustion technology

    International Nuclear Information System (INIS)

    Stallings, J.; Boyd, T.; Brown, R.

    1992-01-01

    During the 1980s, fluidized-bed combustion technology has become the dominant technology for solid-fuel-fired power generation systems in the United States. Atmospheric fluidized beds as large as 160 MWe in capacity are now in operation, while pressurized systems reaching 80 MWe have started up in the last year. The commercial status, boiler performance, emissions, and future developments for both atmospheric and pressurized fluidized-bed combustion systems are discussed

  19. Current Status of Concentrator Photovoltaic (CPV) Technology

    Energy Technology Data Exchange (ETDEWEB)

    Philipps, Simon P. [Fraunhofer Inst. for Solar Energy Systems ISE, Freiburg (Germany); Bett, Andreas W. [Fraunhofer Inst. for Solar Energy Systems ISE, Freiburg (Germany); Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Sarah [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-12-01

    This report summarizes the status of the concentrator photovoltaic (CPV) market and industry as well as current trends in research and technology. This report is intended to guide research agendas for Fraunhofer ISE, the National Renewable Energy Laboratory (NREL), and other R&D organizations. Version 1.1 of this report includes recent progress in CPV. The recent record module efficiency of 38.9% at Concentrator Standard Test Conditions (CSTC) is an impressive result, demonstrating the continuing opportunity for CPV technology to improve. 38.9% at Concentrator Standard Test Conditions (CSTC) is an impressive result, demonstrating the continuing opportunity for CPV technology to improve. 38.9% at Concentrator Standard Test Conditions (CSTC) is an impressive result, demonstrating the continuing opportunity for CPV technology to improve. 38.9% at Concentrator Standard Test Conditions (CSTC) is an impressive result, demonstrating the continuing opportunity for CPV technology to improve.

  20. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  1. Status of clean vehicle technologies and impact of the accompanying public policies; Etat des filieres de vehicules propres et impact des politiques publiques d'accompagnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The French inter-ministry committee for clean vehicles (CIVP) published in 1999 a report about the status of development of the different clean vehicle technologies (electric-powered, LPG-fueled, natural gas fueled, hybrid, fuel cells) and accompanied by recommendations for public policies. A re-evaluation of these technologies was planned by the end of 2002 and is the purpose of this document. The first part makes a status of the actions carried out by the public authorities since the previous CIVP report. The second part presents the present day situation of the LPG, natural gas and electric technologies. It describes also the recent advances in the classical technologies (gasoline and diesel engines) and includes a part about battery technologies and about the use of bio-fuels. The status of each technology is presented both for France and for foreign countries and with its perspectives of evolution. (J.S.)

  2. Status of the DOE battery and electrochemical technology program. III

    International Nuclear Information System (INIS)

    Roberts, R.

    1982-02-01

    This report reviews the status of the Department of Energy Subelement on Electrochemical Storage Systems. It emphasizes material presented at the Fourth US Department of Energy Battery and Electrochemical Contractors' Conference, held June 2-4, 1981. The conference stressed secondary batteries, however, the aluminum/air mechanically rechargeable battery and selected topics on industrial electrochemical processes were included. The potential contributions of the battery and electrochemical technology efforts to supported technologies: electric vehicles, solar electric systems, and energy conservation in industrial electrochemical processes, are reviewed. The analyses of the potential impact of these systems on energy technologies as the basis for selecting specific battery systems for investigation are noted. The battery systems in the research, development, and demonstration phase discussed include: aqueous mobile batteries (near term) - lead-acid, iron/nickel-oxide, zinc/nickel-oxide; advanced batteries - aluminum/air, iron/air, zinc/bromine, zinc/ferricyanide, chromous/ferric, lithium/metal sulfide, sodium/sulfur; and exploratory batteries - lithium organic electrolyte, lithium/polymer electrolyte, sodium/sulfur (IV) chloroaluminate, calcium/iron disulfide, lithium/solid electrolyte. Supporting research on electrode reactions, cell performance modeling, new battery materials, ionic conducting solid electrolytes, and electrocatalysis is reviewed. Potential energy saving processes for the electrowinning of aluminum and zinc, and for the electrosynthesis of inorganic and organic compounds are included

  3. Buried Waste Integrated Demonstration Technology Preparedness and Status Report Guidance

    International Nuclear Information System (INIS)

    Blacker, P.B.; Bonnenberg, R.W.; Cannon, P.G.; Hyde, R.A.; Watson, L.R.

    1994-04-01

    A Technology Preparedness and Status Report is required for each Technical Task Plan funded by the Buried Waste Integrated Demonstration. This document provides guidance for the preparation of that report. Major sections of the report will include a subset of the need for the technology, objectives of the demonstration, technology description and readiness evaluation, demonstration requirements, and preparedness checklist and action plan

  4. Lifestyles and mental health status are associated with natural killer cell and lymphokine-activated killer cell activities.

    Science.gov (United States)

    Morimoto, K; Takeshita, T; Inoue-Sakurai, C; Maruyama, S

    2001-04-10

    We investigated the association of lifestyle and mental health status with natural killer (NK) cell and lymphokine-activated killer (LAK) cell activities in healthy males. NK cell activity was determined in 105 male workers and LAK cell activity was determined in 54 male workers. Peripheral blood was obtained from each subject and peripheral blood mononuclear cells (PBMC) were isolated from the blood. These PBMC were used as effector cells. LAK cells were generated by incubation of PBMC with interleukin-2 for 72 h. NK cell activity against NK-sensitive K562 cells and LAK cell activity against NK-resistant Raji cells were examined by 51Cr release assay. Overall lifestyles were evaluated according to the answers on a questionnaire regarding eight health practices (cigarette smoking, alcohol consumption, eating breakfast, hours of sleep, hours of work, physical exercise, nutritional balance, mental stress). Subjects with a good overall lifestyle showed significantly higher NK cell (P mental status had significantly lower NK cell activity than those who reported stable mental status. When subjects were divided into four groups by lifestyle and mental health status, subjects who had poor or moderate lifestyle and reported unstable mental status showed the lowest NK cell activity and subjects who had good lifestyle and reported stable mental status showed the highest NK cell activity among four groups.

  5. Review of New Technology for Preparing Crystalline Silicon Solar Cell Materials by Metallurgical Method

    Science.gov (United States)

    Li, Man; Dai, Yongnian; Ma, Wenhui; Yang, Bin; Chu, Qingmei

    2017-11-01

    The goals of greatly reducing the photovoltaic power cost and making it less than that of thermal power to realize photovoltaic power grid parity without state subsidies are focused on in this paper. The research status, key technologies and development of the new technology for preparing crystalline silicon solar cell materials by metallurgical method at home and abroad are reviewed. The important effects of impurities and defects in crystalline silicon on its properties are analysed. The importance of new technology on reducing production costs and improving its quality to increase the cell conversion efficiency are emphasized. The previous research results show that the raw materials of crystalline silicon are extremely abundant. The product of crystalline silicon can meet the quality requirements of solar cell materials: Si ≥ 6 N, P 1 Ω cm, minority carrier life > 25 μs cell conversion efficiency of about 19.3%, the product costs energy consumption energy consumption, low carbon and sustainable development are prospected.

  6. History and current status of nuclear fuel reprocessing technology

    International Nuclear Information System (INIS)

    Funasaka, Hideyuki; Nagai, Toshihisa; Washiya, Tadahiro

    2008-01-01

    History and present state of fast breeder reactor was reviewed in series. As a history and current status of nuclear fuel reprocessing technology, this ninth lecture presented the progress of the FBR fuel reprocessing technology and advanced reprocessing processes. FBR fuel reprocessing technology had been developed to construct the reprocessing equipment test facilities (RETF) based on PUREX process technologies. With economics, reduction of environmental burdens and proliferation resistance taken into consideration, advanced aqueous method for nuclear fuel cycle activities has been promoted as the government's basic policy. Innovative technologies on mechanical disassembly, continuous rotary dissolver, crystallizer, solvent extraction and actinides recovery have been mainly studied. (T. Tanaka)

  7. Current status and technology development tendency of research reactors in china

    International Nuclear Information System (INIS)

    Ke Guotu; Shen Feng; Zhao Shouzhi; Zhang Weiguo; Yuan Luzheng

    2009-01-01

    The current status and development history of domestic and abroad research reactors (RRs) are mentioned. The representative RRs and their respective technology characteristics are introduced. The utilizations of China's RRs, mainly included as nuclear engineering technology, basic research applications of nuclear technology, teaching and personnel training, are explained. (authors)

  8. Technologies for Single-Cell Isolation

    Science.gov (United States)

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-01-01

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field. PMID:26213926

  9. Technologies for Single-Cell Isolation

    Directory of Open Access Journals (Sweden)

    Andre Gross

    2015-07-01

    Full Text Available The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting respectively Flow cytometry (33% usage, laser microdissection (17%, manual cell picking (17%, random seeding/dilution (15%, and microfluidics/lab-on-a-chip devices (12% are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  10. Technologies for Single-Cell Isolation.

    Science.gov (United States)

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-07-24

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  11. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  12. ZnO growth technologies: current status and perspectives

    International Nuclear Information System (INIS)

    Lupan, Oleg

    2011-01-01

    Development of new technologies for ZnO nano materials and thin films is of critical importance for further fundamental investigations and practical applications. We discuss on the main technical control of the synthesis of zinc oxide and its properties, which are of significance in understanding the growth mechanism and further developing ZnO-based devices. Next, we present a brief summary of recent research activities, current status and progress in developing improved control of technological processes for zinc oxide as advanced material.

  13. Decontamination and decommissioning technology tree and the current status of the technologies

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H.J.; Kim, G.N.; Lee, K.W.; Chol, W.K.; Jung, C.H.; Kim, C.J.; Kim, S.H.; Kwon, S.O.; Chung, C.M

    2001-03-01

    A technology tree diagram was developed on the basis of the necessary technologies applicable to the decontamination and decommissioning of nuclear facilities. The technology tree diagram is consist of 6 main areas such as characterization, decontamination, decommissioning and remote technology, radwaste management, site restoration, and decommissioning plan and engineering. Characterization is divided into 4 regions such as sampling and data collection, general characterization, chemical analysis and radiological analysis. Decontamination is also divided into 4 regions such as chemical decontamination, mechanical decontamination, the other decontamination technologies and new decontamination technologies. Decommissioning and remote technology area is divided into 4 regions such as cutting techniques, decommissioning technologies, new developing technologies and remote technologies. Radwaste management area is divided into 5 regions such as solid waste treatment, sludge treatment, liquid waste treatment, gas waste treatment and thermal treatment. Site restoration area is divided into 3 regions such as the evaluation of site contamination, soil decontamination and ground water decontamination. Finally, permission, decommissioning process, cost evaluation, quality assurance and the estimation of radionuclide inventory were mentioned in the decommissioning plan and engineering area. The estimated items for each technology are applicable domestic D and D facilities, D and D problem area and contamination/requirement, classification of D and D technology, similar technology, principle and overview of technology, status, science technology needs, implementation needs, reference and contact point.

  14. Decontamination and decommissioning technology tree and the current status of the technologies

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Kim, G. N.; Lee, K. W.; Chol, W. K.; Jung, C. H.; Kim, C. J.; Kim, S. H.; Kwon, S. O.; Chung, C. M.

    2001-03-01

    A technology tree diagram was developed on the basis of the necessary technologies applicable to the decontamination and decommissioning of nuclear facilities. The technology tree diagram is consist of 6 main areas such as characterization, decontamination, decommissioning and remote technology, radwaste management, site restoration, and decommissioning plan and engineering. Characterization is divided into 4 regions such as sampling and data collection, general characterization, chemical analysis and radiological analysis. Decontamination is also divided into 4 regions such as chemical decontamination, mechanical decontamination, the other decontamination technologies and new decontamination technologies. Decommissioning and remote technology area is divided into 4 regions such as cutting techniques, decommissioning technologies, new developing technologies and remote technologies. Radwaste management area is divided into 5 regions such as solid waste treatment, sludge treatment, liquid waste treatment, gas waste treatment and thermal treatment. Site restoration area is divided into 3 regions such as the evaluation of site contamination, soil decontamination and ground water decontamination. Finally, permission, decommissioning process, cost evaluation, quality assurance and the estimation of radionuclide inventory were mentioned in the decommissioning plan and engineering area. The estimated items for each technology are applicable domestic D and D facilities, D and D problem area and contamination/requirement, classification of D and D technology, similar technology, principle and overview of technology, status, science technology needs, implementation needs, reference and contact point

  15. Current status and applications of somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Jang, Goo; Kim, Min Kyu; Lee, Byeong Chun

    2010-11-01

    Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. The status of membrane bioreactor technology.

    Science.gov (United States)

    Judd, Simon

    2008-02-01

    In this article, the current status of membrane bioreactor (MBR) technology for wastewater treatment is reviewed. Fundamental facets of the MBR process and membrane and process configurations are outlined and the advantages and disadvantages over conventional suspended growth-based biotreatment are briefly identified. Key process design and operating parameters are defined and their significance explained. The inter-relationships between these parameters are identified and their implications discussed, with particular reference to impacts on membrane surface fouling and channel clogging. In addition, current understanding of membrane surface fouling and identification of candidate foulants is appraised. Although much interest in this technology exists and its penetration of the market will probably increase significantly, there remains a lack of understanding of key process constraints such as membrane channel clogging, and of the science of membrane cleaning.

  17. The status of basic technology in Cross River State Junior ...

    African Journals Online (AJOL)

    The purpose of the study was to ascertain the status of basic technology in Cross River State junior secondary schools. Descriptive survey design was adopted for the study. The study was guided by three (3) research questions. The population for the study comprised of one hundred and twelve (112) basic technology ...

  18. MicroRNA expression profiling identifies activated B cell status in chronic lymphocytic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Shuqiang Li

    2011-03-01

    Full Text Available Chronic lymphocytic leukemia (CLL is thought to be a disease of resting lymphocytes. However, recent data suggest that CLL cells may more closely resemble activated B cells. Using microRNA (miRNA expression profiling of highly-enriched CLL cells from 38 patients and 9 untransformed B cells from normal donors before acute CpG activation and 5 matched B cells after acute CpG activation, we demonstrate an activated B cell status for CLL. Gene set enrichment analysis (GSEA identified statistically-significant similarities in miRNA expression between activated B cells and CLL cells including upregulation of miR-34a, miR-155, and miR-342-3p and downregulation of miR-103, miR-181a and miR-181b. Additionally, decreased levels of two CLL signature miRNAs miR-29c and miR-223 are associated with ZAP70(+ and IgV(H unmutated status and with shorter time to first therapy. These data indicate an activated B cell status for CLL cells and suggest that the direction of change of individual miRNAs may predict clinical course in CLL.

  19. Status of SOFCo SOFC technology development

    Energy Technology Data Exchange (ETDEWEB)

    Privette, R.; Perna, M.A.; Kneidel, K. [SOFCo, Alliance, OH (United States)] [and others

    1996-12-31

    SOFCo, a Babcock & Wilcox/Ceramatec Research & Development Limited Partnership, is a collaborative research and development venture to develop technologies related to planar, solid-oxide fuel cells (SOFCs). SOFCo has successfully demonstrated a kW-class, solid-oxide fuel cell module operating on pipeline natural gas. The SOFC system design integrates the air preheater and the fuel processor with the fuel cell stacks into a compact test unit; this is the platform for multi-kW modules. The cells, made of tape-cast zirconia electrolyte and conventional electrode materials, exhibit excel lent stability in single-cell tests approaching 40,000 hours of operation. Stack tests using 10-cm and 15-cm cells with ceramic interconnects also show good performance and stability in tests for many thousands of hours.

  20. Biomass electric technologies: Status and future development

    International Nuclear Information System (INIS)

    Bain, R.L.; Overend, R.P.

    1992-01-01

    At the present time, there axe approximately 6 gigawatts (GWe) of biomass-based, grid-connected electrical generation capacity in the United States. This capacity is primarily combustion-driven, steam-turbine technology, with the great majority of the plants of a 5-50 megawatt (MW) size and characterized by heat rates of 14,770-17,935 gigajoules per kilowatt-hour (GJ/kWh) (14,000-17,000 Btu/kWh or 18%-24% efficiency), and with installed capital costs of $1,300-$1,500/kW. Cost of electricity for existing plants is in the $0.065-$O.08/kWh range. Feedstocks are mainly waste materials; wood-fired systems account for 88% of the total biomass capacity, followed by agricultural waste (3%), landfill gas (8%), and anaerobic digesters (1%). A significant amount of remote, non-grid-connected, wood-fired capacity also exists in the paper and wood products industry. This chapter discusses biomass power technology status and presents the strategy for the U.S. Department of Energy (DOE) Biomass Power Program for advancing biomass electric technologies to 18 GWe by the year 2010, and to greater than 100 GWe by the year 2030. Future generation systems will be characterized by process efficiencies in the 35%-40% range, by installed capital costs of $770-$900/kW, by a cost of electricity in the $0.04-$O.05/kWh range, and by the use of dedicated fuel-supply systems. Technology options such as integrated gasification/gas-turbine systems, integrated pyrolysis/gas-turbine systems, and innovative direct-combustion systems are discussed, including present status and potential growth. This chapter also presents discussions of the U.S. utility sector and the role of biomass-based systems within the industry, the potential advantages of biomass in comparison to coal, and the potential environmental impact of biomass-based electricity generation

  1. [THE TECHNOLOGY "CELL BLOCK" IN CYTOLOGICAL PRACTICE].

    Science.gov (United States)

    Volchenko, N N; Borisova, O V; Baranova, I B

    2015-08-01

    The article presents summary information concerning application of "cell block" technology in cytological practice. The possibilities of implementation of various modern techniques (immune cytochemnical analysis. FISH, CISH, polymerase chain reaction) with application of "cell block" method are demonstrated. The original results of study of "cell block" technology made with gelatin, AgarCyto and Shadon Cyoblock set are presented. The diagnostic effectiveness of "cell block" technology and common cytological smear and also immune cytochemical analysis on samples of "cell block" technology and fluid cytology were compared. Actually application of "cell block" technology is necessary for ensuring preservation of cell elements for subsequent immune cytochemical and molecular genetic analysis.

  2. Status of liquid metal cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants Refs, figs, tabs

  3. Status of liquid metal cooled fast reactor technology

    International Nuclear Information System (INIS)

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  4. Status report on the relativistic electron beam technology

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Ron, P.H.; Rohatgi, V.K.

    1974-01-01

    The status of technology of the pulsed relativistic electron beam (REB) has been examined and summarised in this report. With the present technology the beam generator can be used either as a source of intense electron burst or to produce bursts of positive ions x and γ-rays, and neutrons by suitable secondary reactions. A large number of applications have been identified where this technology can play an important role. Typical applications of the technology include : (a) generation and heating of fusion plasma (b) development of high power laser and (c) sterilisation and radiation sources. The present day cost of radiation produced by REB is competitive with the cost of radiation produced from Co 60 source. At the same time there are indications that the cost of radiation from REB source can be significantly reduced with advanced technology. The type of equipment developed by various laboratories to study realitivistic electron beams is also included in this report. (author)

  5. Integrated Magnetic MEMS Relays: Status of the Technology

    Directory of Open Access Journals (Sweden)

    Giuseppe Schiavone

    2014-08-01

    Full Text Available The development and application of magnetic technologies employing microfabricated magnetic structures for the production of switching components has generated enormous interest in the scientific and industrial communities over the last decade. Magnetic actuation offers many benefits when compared to other schemes for microelectromechanical systems (MEMS, including the generation of forces that have higher magnitude and longer range. Magnetic actuation can be achieved using different excitation sources, which create challenges related to the integration with other technologies, such as CMOS (Complementary Metal Oxide Semiconductor, and the requirement to reduce power consumption. Novel designs and technologies are therefore sought to enable the use of magnetic switching architectures in integrated MEMS devices, without incurring excessive energy consumption. This article reviews the status of magnetic MEMS technology and presents devices recently developed by various research groups, with key focuses on integrability and effective power management, in addition to the ability to integrate the technology with other microelectronic fabrication processes.

  6. Current Status and Application of Hazard Definition Technology

    Science.gov (United States)

    Greene, George C.

    1997-01-01

    A research is performed: to define wake non-encounter & hazard, to provide requirements for sensors, and to obtain input from the user community. This research includes: validating wake encounter simulation models, establishing a metric to quantify the upset potential of a wake encounter, applying hazard metric and simulation models to the commercial fleet for development of candidate acceptable encounter limits, and applying technology to near term problems to evaluate current status of technology. The following lessons are learned from this project: technology is not adequate to determine absolute spacing requirements; time, not distance, determines the duration of the wake hazard; Optimum standards depend on the traffic; Wing span is an important parameter for characterizing both generator and follower; and Short span "biz jets" are easily rolled.

  7. PV Status Report 2010. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2010-08-01

    Photovoltaics is a solar power technology to generate Electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report combines international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last decade were on average more than 40 %, thus making Photovoltaics one of the fastest growing industries at present. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  8. Status and outlook of CFD technology at Mitsubishi Heavy Industries, Nagoya

    Science.gov (United States)

    Tanioka, Tadayuki

    1990-09-01

    Computational Fluid Dynamics (CFD) technology has made tremendous progress in the last several years. It has matured to become a practical simulation tool in aircraft industries. In MHI, CFD has become an indispensible tool for aerodynamic design aerospace vehicles. The present status is described of this advanced technology at MHI. Also mentioned are some future advances of the fast growing technology as well as associated hardware requirements.

  9. [Assisted reproductive technologies and the embryo status].

    Science.gov (United States)

    Englert, Y

    The status of the human embryo has always be a subject of philosophical and theological thoughts with major social consequences, but, until the 19th century, it has been mainly an abstraction. The arrival of the human embryo in vitro, materialized by Louise Brown's birth in 1978 and above all by the supernumerary embryos produced by the Australian team of Trounson and Wood following the introduction of ovarian stimulation, will turn theoretical thoughts into a reality. Nobody may ignore the hidden intentions behind the debate, as to recognise a status to a few days old embryo will immediately have a major impact on the status of a few weeks old foetus and therefore on the abortion rights. We will see that the embryo status, essentially based as well on a vision on the good and evil as on social order, cannot be based on a scientific analysis of the reproduction process but comes from a society's choice, by essence " arbitrary " and always disputable. This does not preclude the collectivity right and legitimacy to give a precise status and it is remarkable to observe the law is careful not to specify which status to give to the human embryo. It is more thru handling procedures and functioning rules that the law designed the embryo position, neither with a status of a person, nor of a thing. It nevertheless remains true that there is a constant risk that the legislation gives the embryo a status that would call into question it's unique characteristic of early reproductive stage, jeopardizing at once the hard-won reproductive freedom (reproductive choice) as well as freedom of research on embryonic stem cells, one of the most promising field of medical research.

  10. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Post, Matthew B [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-11-21

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. These data and analyses help provide needed information to guide future early-stage research and development. The 2017 summary results primarily focus on the most recent year for each demonstration, from August 2016 through July 2017. The primary results presented in the report are from five demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus (AFCB) Project at SunLine Transit Agency in California; AFCB Project at the University of California at Irvine; AFCB Project at Orange County Transportation Authority; and AFCB Project at Massachusetts Bay Transportation Authority.

  11. History, Status and Prospects on Development of Pyroprocess Technology

    International Nuclear Information System (INIS)

    Kim, Eung Ho; Lee, Han Soo; Park, Geunil; Seo, Chungseok; Ko, Wonil; Kim, Hodong; Choi, Jongwon

    2013-01-01

    The objective of this study is to evaluate prospects for a practical use of pyroprocess through analysis of current issues and status of pyroprocess technology development being performed at domestic and abroad. Following Fukushima accident, awareness about nuclear safety is further increasing and problems on safe management of used nuclear fuel has emerged as well. So, nuclear industrialized countries are developing recycling technology of used nuclear fuel, significantly reducing used fuel inventory that have cumulated. In this respects, there is a need to comprehensively summarize the technology developed at KAERI until now. In addition to, the current issues of pyroprocess for future R and D are suggested

  12. Technology Status and Expected Greenhouse Gas Emissions of Battery, Plug-In Hybrid, and Fuel Cell Electric Vehicles

    Science.gov (United States)

    Lipman, Timothy E.

    2011-11-01

    Electric vehicles (EVs) of various types are experiencing a commercial renaissance but of uncertain ultimate success. Many new electric-drive models are being introduced by different automakers with significant technical improvements from earlier models, particularly with regard to further refinement of drivetrain systems and important improvements in battery and fuel cell systems. The various types of hybrid and all-electric vehicles can offer significant greenhouse gas (GHG) reductions when compared to conventional vehicles on a full fuel-cycle basis. In fact, most EVs used under most condition are expected to significantly reduce lifecycle GHG emissions. This paper reviews the current technology status of EVs and compares various estimates of their potential to reduce GHGs on a fuel cycle basis. In general, various studies show that battery powered EVs reduce GHGs by a widely disparate amount depending on the type of powerplant used and the particular region involved, among other factors. Reductions typical of the United States would be on the order of 20-50%, depending on the relative level of coal versus natural gas and renewables in the powerplant feedstock mix. However, much deeper reductions of over 90% are possible for battery EVs running on renewable or nuclear power sources. Plug-in hybrid vehicles running on gasoline can reduce emissions by 20-60%, and fuel cell EV reduce GHGs by 30-50% when running on natural gas-derived hydrogen and up to 95% or more when the hydrogen is made (and potentially compressed) using renewable feedstocks. These are all in comparison to what is usually assumed to be a more advanced gasoline vehicle "baseline" of comparison, with some incremental improvements by 2020 or 2030. Thus, the emissions from all of these EV types are highly variable depending on the details of how the electric fuel or hydrogen is produced.

  13. Status of biomass fuels technologies research in the US

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, R.P.; Parker, S.; Glenn, B.

    1984-07-01

    Biomass is a tremendous potential source of fuel and chemical feedstocks. The US Department of Energy has sponsored a broad spectrum of research on biomass at various US government laboratories, private installations, and universities. The status of biomass fuels technologies research in the US is discussed.

  14. Microscale technologies for cell engineering

    CERN Document Server

    Gaharwar, Akhilesh

    2016-01-01

    This book offers readers cutting-edge research at the interface of polymer science and engineering, biomedical engineering, materials science, and biology. State-of-the-art developments in microscale technologies for cell engineering applications are covered, including technologies relevant to both pluripotent and adult stem cells, the immune system, and somatic cells of the animal and human origin. This book bridges the gap in the understanding of engineering biology at multiple length scale, including microenvironmental control, bioprocessing, and tissue engineering in the areas of cardiac, cartilage, skeletal, and vascular tissues, among others. This book also discusses unique, emerging areas of micropatterning and three-dimensional printing models of cellular engineering, and contributes to the better understanding of the role of biophysical factors in determining the cell fate. Microscale Technologies for Cell Engineering is valuable for bioengineers, biomaterial scientists, tissue engineers, clinicians,...

  15. Development of solid oxide fuel cells by applying DC and RF plasma deposition technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, G.; Henne, R.; Lang, M.; Mueller, M. [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Institut fuer Technische Thermodynamik, Postfach 800370, 70503 Stuttgart (Germany)

    2004-04-01

    Based on advanced plasma deposition technology with both DC and RF plasmas DLR Stuttgart has developed a concept of a planar SOFC with consecutive deposition of all layers of a thin-film cell onto a porous metallic substrate support. This concept is an alternative approach to conventionally used sintering techniques for SOFC fabrication without needing any sintering steps or other thermal post-treatment. Furthermore, is has the potential to be developed into an automated continous production process. For both stationary and mobile applications, adequate stack designs and stack technologies have been developed. Future development work will focus on light-weight stacks to be applied as an Auxillary Power Unit (APU) for on-board electricity supply in passenger cars and airplanes. This paper describes the plasma deposition technologies used for cell fabrication and the DLR spray concept including the resulting stack designs. The current status of development and recent progress with respect to materials development and electrochemical characterization of single cells and short-stacks is presented. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  16. Research Status on the Heterogeneous Sheet Connection Forming Technology

    Directory of Open Access Journals (Sweden)

    SHI Wen-yong

    2017-04-01

    Full Text Available The heterogeneous sheet connection forming is one of the effective ways to realize lightweight in many fields,such as equipment manufacturing and transportation. However, there are obvious differences in the material properties,when using the traditional connection methods,there is a certain technical bottlenecks. In this paper, the technological characteristics and research status of the welding method and mechanical connection method are discussed in detail,such as the TIC welding and the laser welding. The advantages and development potential of the technology are introduced in the field of the heterogeneous sheet connection,in combination with the industry development and the use demand,the development of the heterogeneous sheet connection technology is expected,to provide the technical support for the research and development of new heterogeneous sheet connection technology.

  17. Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects

    International Nuclear Information System (INIS)

    Pollet, Bruno G.; Staffell, Iain; Shang, Jin Lei

    2012-01-01

    Decarbonising transport is proving to be one of today's major challenges for the global automotive industry due to many factors such as the increase in greenhouse gas and particulate emissions affecting not only the climate but also humans, the increase in pollution, rapid oil depletion, issues with energy security and dependency from foreign sources and population growth. For more than a century, our society has been dependent upon oil, and major breakthroughs in low- and ultra-low carbon technologies and vehicles are urgently required. This review paper highlights the current status of hybrid, battery and fuel cell electric vehicles from an electrochemical and market point of view. The review paper also discusses the advantages and disadvantages of using each technology in the automotive industry and the impact of these technologies on consumers.

  18. Material challenges for solar cells in the twenty-first century: directions in emerging technologies.

    Science.gov (United States)

    Almosni, Samy; Delamarre, Amaury; Jehl, Zacharie; Suchet, Daniel; Cojocaru, Ludmila; Giteau, Maxime; Behaghel, Benoit; Julian, Anatole; Ibrahim, Camille; Tatry, Léa; Wang, Haibin; Kubo, Takaya; Uchida, Satoshi; Segawa, Hiroshi; Miyashita, Naoya; Tamaki, Ryo; Shoji, Yasushi; Yoshida, Katsuhisa; Ahsan, Nazmul; Watanabe, Kentaro; Inoue, Tomoyuki; Sugiyama, Masakazu; Nakano, Yoshiaki; Hamamura, Tomofumi; Toupance, Thierry; Olivier, Céline; Chambon, Sylvain; Vignau, Laurence; Geffroy, Camille; Cloutet, Eric; Hadziioannou, Georges; Cavassilas, Nicolas; Rale, Pierre; Cattoni, Andrea; Collin, Stéphane; Gibelli, François; Paire, Myriam; Lombez, Laurent; Aureau, Damien; Bouttemy, Muriel; Etcheberry, Arnaud; Okada, Yoshitaka; Guillemoles, Jean-François

    2018-01-01

    Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan-French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots.

  19. Potential role of centrioles in determining the morphogenetic status of animal somatic cells.

    Science.gov (United States)

    Tkemaladze, J; Chichinadze, K

    2005-05-01

    Irreversible differentiation (change of morphogenetic status) and programmed death (apoptosis) are observed only in somatic cells. Cell division is the only way by which the morphogenetic status of the offspring cells may be modified. It is known that there is a fixed limit to the number of possible cell divisions, the so-called 'Hayflick limit'. Existing links between cell division, differentiation and apoptosis make it possible to conclude that all these processes could be controlled by a single self-reproducing structure. Potential candidates for this replicable structure in a somatic cell are chromosomes, mitochondria (both contain DNA), and centrioles. Centrioles (diplosome) are the most likely unit that can fully regulate the processes of irreversible differentiation, determination and modification of the morphogenetic status. It may contain differently encoded RNA molecules stacked in a definite order. During mitosis, these RNA molecules are released one by one into the cytoplasm. In the presence of reverse transcriptase and endonuclease, RNA can be embedded in nuclear DNA. This process presumably changes the status of repressed and potentially active genes and, subsequently, the morphogenetic status of a cell.

  20. Advanced fuel technology and performance: Current status and trends

    International Nuclear Information System (INIS)

    1990-11-01

    During the last years the Nuclear Fuel Cycle and Waste Management Division of the IAEA has been giving great attention to the collection, analysis and exchange of information in the field of reactor fuel technology. Most of these activities are being conducted in the framework of the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT). The purpose of this Advisory Group Meeting on Advanced Fuel Technology and Performance was to update and to continue the previous work, and to review the experience of advanced fuel technology, its performance with regard to all types of reactors and to outline the future trends on the basis of national experience and discussions during the meeting. As a result of the meeting a Summary Report was prepared which reflected the status of the advanced nuclear fuel technology up to 1990. The 10 papers presented by participants of this meeting are also published here. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  1. Application of single-cell technology in cancer research.

    Science.gov (United States)

    Liang, Shao-Bo; Fu, Li-Wu

    2017-07-01

    In this review, we have outlined the application of single-cell technology in cancer research. Single-cell technology has made encouraging progress in recent years and now provides the means to detect rare cancer cells such as circulating tumor cells and cancer stem cells. We reveal how this technology has advanced the analysis of intratumor heterogeneity and tumor epigenetics, and guided individualized treatment strategies. The future prospects now are to bring single-cell technology into the clinical arena. We believe that the clinical application of single-cell technology will be beneficial in cancer diagnostics and treatment, and ultimately improve survival in cancer patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Status of technology for isolating high-level radioactive wastes in geologic repositories

    International Nuclear Information System (INIS)

    Klingsberg, C.; Duguid, J.

    1980-10-01

    This report attempts to summarize the status of scientific and technological knowledge relevant to long-term isolation of high-level and transuranic wastes in a mined geologic repository. It also identifies and evaluates needed information and identifies topics in which work is under way or needed to reduce uncertainties. The major findings and conclusions on the following topics are presented: importance of the systems approach; prospects for successful isolation of wastes; need for site-specific investigations; human activities in the future; importance of modelling; disposal of transuranic wastes; status of technology of isolation barriers, performance assessment, site selection and characterization, and potential host rocks

  3. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  4. NASA advanced space photovoltaic technology-status, potential and future mission applications

    Science.gov (United States)

    Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.

    1989-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  5. Limitations of Commercializing Fuel Cell Technologies

    Science.gov (United States)

    Nordin, Normayati

    2010-06-01

    Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.

  6. Non-invasive prenatal diagnosis using cell-free fetal DNA technology: applications and implications.

    Science.gov (United States)

    Hall, Alison; Bostanci, A; Wright, C F

    2010-01-01

    Cell-free fetal DNA and RNA circulating in maternal blood can be used for the early non-invasive prenatal diagnosis (NIPD) of an increasing number of genetic conditions, both for pregnancy management and to aid reproductive decision-making. Here we present a brief review of the scientific and clinical status of the technology, and an overview of key ethical, legal and social issues raised by the analysis of cell-free fetal DNA for NIPD. We suggest that the less invasive nature of the technology brings some distinctive issues into focus, such as the possibility of broader uptake of prenatal diagnosis and access to the technology directly by the consumer via the internet, which have not been emphasised in previous work in this area. We also revisit significant issues that are familiar from previous debates about prenatal testing. Since the technology seems to transect existing distinctions between screening and diagnostic tests, there are important implications for the form and process involved in obtaining informed consent or choice. This analysis forms part of the work undertaken by a multidisciplinary group of experts which made recommendations about the implementation of this technology within the UK National Health Service. Copyright 2010 S. Karger AG, Basel.

  7. Material challenges for solar cells in the twenty-first century: directions in emerging technologies

    Science.gov (United States)

    Delamarre, Amaury; Jehl, Zacharie; Suchet, Daniel; Cojocaru, Ludmila; Giteau, Maxime; Behaghel, Benoit; Julian, Anatole; Ibrahim, Camille; Tatry, Léa; Wang, Haibin; Kubo, Takaya; Uchida, Satoshi; Segawa, Hiroshi; Miyashita, Naoya; Tamaki, Ryo; Shoji, Yasushi; Yoshida, Katsuhisa; Ahsan, Nazmul; Watanabe, Kentaro; Inoue, Tomoyuki; Sugiyama, Masakazu; Nakano, Yoshiaki; Hamamura, Tomofumi; Toupance, Thierry; Olivier, Céline; Chambon, Sylvain; Vignau, Laurence; Geffroy, Camille; Cloutet, Eric; Hadziioannou, Georges; Cavassilas, Nicolas; Rale, Pierre; Cattoni, Andrea; Collin, Stéphane; Gibelli, François; Paire, Myriam; Lombez, Laurent; Aureau, Damien; Bouttemy, Muriel; Etcheberry, Arnaud; Okada, Yoshitaka

    2018-01-01

    Abstract Photovoltaic generation has stepped up within the last decade from outsider status to one of the important contributors of the ongoing energy transition, with about 1.7% of world electricity provided by solar cells. Progress in materials and production processes has played an important part in this development. Yet, there are many challenges before photovoltaics could provide clean, abundant, and cheap energy. Here, we review this research direction, with a focus on the results obtained within a Japan–French cooperation program, NextPV, working on promising solar cell technologies. The cooperation was focused on efficient photovoltaic devices, such as multijunction, ultrathin, intermediate band, and hot-carrier solar cells, and on printable solar cell materials such as colloidal quantum dots. PMID:29707072

  8. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  9. Current status and challenges for automotive battery production technologies

    Science.gov (United States)

    Kwade, Arno; Haselrieder, Wolfgang; Leithoff, Ruben; Modlinger, Armin; Dietrich, Franz; Droeder, Klaus

    2018-04-01

    Production technology for automotive lithium-ion battery (LIB) cells and packs has improved considerably in the past five years. However, the transfer of developments in materials, cell design and processes from lab scale to production scale remains a challenge due to the large number of consecutive process steps and the significant impact of material properties, electrode compositions and cell designs on processes. This requires an in-depth understanding of the individual production processes and their interactions, and pilot-scale investigations into process parameter selection and prototype cell production. Furthermore, emerging process concepts must be developed at lab and pilot scale that reduce production costs and improve cell performance. Here, we present an introductory summary of the state-of-the-art production technologies for automotive LIBs. We then discuss the key relationships between process, quality and performance, as well as explore the impact of materials and processes on scale and cost. Finally, future developments and innovations that aim to overcome the main challenges are presented.

  10. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  11. PV Status Report 2008. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-09-01

    Photovoltaics is a solar power technology to generate electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report is to combine international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact-finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last five years were on average more than 40%, thus making Photovoltaics one of the fastest growing industries at present. Business analysts predict that the market volume will increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  12. Technology readiness levels and technology status for selected long term/high payoff technologies on the RLV program

    Science.gov (United States)

    Rosmait, Russell L.

    1996-01-01

    The development of a new space transportation system in a climate of constant budget cuts and staff reductions can be and is a difficult task. It is no secret that NASA's current launching system consumes a very large portion of NASA funding and requires a large army of people to operate & maintain the system. The new Reusable Launch Vehicle (RLV) project and it's programs are faced with a monumental task of making the cost of access to space dramatically lower and more efficient than NASA's current system. With pressures from congressional budget cutters and also increased competition and loss of market share from international agencies RLV's first priority is to develop a 'low-cost, reliable transportation to earth orbit.' One of the RLV's major focus in achieving low-cost, reliable transportation to earth orbit is to rely on the maturing of advanced technologies. The technologies for the RLV are numerous and varied. Trying to assess their current status, within the RLV development program is paramount. There are several ways to assess these technologies. One way is through the use of Technology Readiness Levels (TRL's). This project focused on establishing current (summer 95) 'worst case' TRL's for six selected technologies that are under consideration for use within the RLV program. The six technologies evaluated were Concurrent Engineering, Embedded Sensor Technology, Rapid Prototyping, Friction Stir Welding, Thermal Spray Coatings, and VPPA Welding.

  13. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  14. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  15. Alkaline fuel cell technology in the lead

    International Nuclear Information System (INIS)

    Nor, J.K.

    2004-01-01

    The Alkaline Fuel Cell (AFC) was the first fuel cell successfully put into practice, a century after William Grove patented his 'hydrogen battery' in 1839. The space program provided the necessary momentum, and alkaline fuel cells became the power source for both the U.S. and Russian manned space flight. Astris Energi's mission has been to bring this technology down to earth as inexpensive, rugged fuel cells for everyday applications. The early cells, LABCELL 50 and LABCELL 200 were aimed at deployment in research labs, colleges and universities. They served well in technology demonstration projects such as the 1998 Mini Jeep, 2001 Golf Car and a series of portable and stationary fuel cell generators. The present third generation POWERSTACK MC250 poised for commercialization is being offered to AFC system integrators as a building block of fuel cell systems in numerous portable, stationary and transportation applications. It is also used in Astris' own E7 and E8 alkaline fuel cell generators. Astris alkaline technology leads the way toward economical, plentiful fuel cells. The paper highlights the progress achieved at Astris, improvements of performance, durability and simplicity of use, as well as the current and future thrust in technology development and commercialization. (author)

  16. Micro/nano-fabrication technologies for cell biology.

    Science.gov (United States)

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  17. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  18. Technology advancement for integrative stem cell analyses.

    Science.gov (United States)

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  19. Status of thermal imaging technology as applied to conservation-update 1

    Energy Technology Data Exchange (ETDEWEB)

    Snow, F.J.; Wood, J.T.; Barthle, R.C.

    1980-07-01

    This document updates the 1978 report on the status of thermal imaging technology as applied to energy conservation in buildings. Thermal imaging technology is discussed in terms of airborne surveys, ground survey programs, and application needs such as standards development and lower cost equipment. Information on the various thermal imaging devices was obtained from manufacturer's standard product literature. Listings are provided of infrared projects of the DOE building diagnostics program, of aerial thermographic firms, and of aerial survey programs. (LCL)

  20. Status and future perspectives of PWR and comparing views on WWER fuel technology

    International Nuclear Information System (INIS)

    Weidinger, H.

    2003-01-01

    The main purpose of this paper is to give an overview on status and future perspectives of the Western PWR fuel technology. For easer understanding and correlating, some comparing views to the WWER fuel technology are provided. This overview of the PWR fuel technology of course can not go into the details of the today used designs of fuel, fuel rods and fuel assemblies. However, it tries to describe the today achieved capability of PWR fuel technology with regard to reliability, efficiency and safety

  1. Status epilepticus increases mature granule cells in the molecular layer of the dentate gyrus in rats★

    Science.gov (United States)

    Liang, Zhaoliang; Gao, Fei; Wang, Fajun; Wang, Xiaochen; Song, Xinyu; Liu, Kejing; Zhan, Ren-Zhi

    2013-01-01

    Enhanced neurogenesis in the dentate gyrus of the hippocampus following seizure activity, especially status epilepticus, is associated with ectopic residence and aberrant integration of newborn granule cells. Hilar ectopic granule cells may be detrimental to the stability of dentate circuitry by means of their electrophysiological properties and synaptic connectivity. We hypothesized that status epilepticus also increases ectopic granule cells in the molecular layer. Status epilepticus was induced in male Sprague-Dawley rats by intraperitoneal injection of pilocarpine. Immunostaining showed that many doublecortin-positive cells were present in the molecular layer and the hilus 7 days after the induction of status epilepticus. At least 10 weeks after status epilepticus, the estimated number of cells positive for both prospero homeobox protein 1 and neuron-specific nuclear protein in the hilus was significantly increased. A similar trend was also found in the molecular layer. These findings indicate that status epilepticus can increase the numbers of mature and ectopic newborn granule cells in the molecular layer. PMID:25206705

  2. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.; Gikakis, C.

    2011-11-01

    This status report, fifth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), discusses the achievements and challenges of fuel cell propulsion for transit and summarizes the introduction of fuel cell transit buses in the United States. Progress this year includes an increase in the number of fuel cell electric buses (FCEBs), from 15 to 25, operating at eight transit agencies, as well as increased diversity of the fuel cell design options for transit buses. The report also provides an analysis of the combined results from fuel cell transit bus demonstrations evaluated by NREL with a focus on the most recent data through July 2011 including fuel cell power system reliability and durability; fuel economy; roadcall; and hydrogen fueling results. These evaluations cover 22 of the 25 FCEBs currently operating.

  3. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  4. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B. [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  5. Growth and nutritional status of children with homozygous sickle cell disease

    NARCIS (Netherlands)

    Al-Saqladi, A.-W. M.; Cipolotti, R.; Fijnvandraat, K.; Brabin, B. J.

    2008-01-01

    Background: Poor growth and under-nutrition are common in children with sickle cell disease (SCD). This review summarises evidence of nutritional status in children with SCD in relation to anthropometric status, disease severity, body composition, energy metabolism, micronutrient deficiency and

  6. Photovoltaic concentrator technology development project. Sixth project integration meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  7. 75 FR 39664 - Grant of Authority For Subzone Status Materials Science Technology, Inc. (Specialty Elastomers...

    Science.gov (United States)

    2010-07-12

    ... Status Materials Science Technology, Inc. (Specialty Elastomers and Fire Retardant Chemicals) Conroe... specialty elastomer manufacturing and distribution facility of Materials Science Technology, Inc., located... and distribution of specialty elastomers and fire retardant chemicals at the facility of Materials...

  8. Ceramic technologies for automotive industry: Current status and perspectives

    International Nuclear Information System (INIS)

    Okada, Akira

    2009-01-01

    The automotive industry has developed substantially through advances in mechanical technologies, and technologies such as electronics and advanced materials have also contributed to further advances in automobiles. The contribution of ceramic materials to automobile technologies ranges over driving performance, exhaust gas purification, and fuel efficiency improvements. Several ceramic components, such as knock sensors, oxygen sensors, exhaust gas catalysts, and silicon nitride parts for automotive engines, have been successfully applied to automobiles. This paper focuses on the contribution of ceramics to automotive technologies. It also mentions potential contributions in the future, including adiabatic turbo-compound diesels, ceramic gas turbines, fuel cells, and electric vehicles because ceramic technologies have been intensively involved in the challenge to achieve advanced power sources.

  9. Review of ORNL's MSR technology and status

    International Nuclear Information System (INIS)

    Toth, L.M.; Gat, U.; Del Cul, G.D.; Dai, S.; Williams, D.F.

    1996-01-01

    The current status of molten salt reactor development is discussed with reference to the experience from the Oak Ridge Molten Salt Reactor Experiment. Assessment of the future for this reactor system is reviewed with consideration of both advantages and disadvantages. Application of this concept to ADTT (accelerator driven transmutation technology) needs appears to be feasible by drawing on the MSRE experience. Key chemical considerations remain as: solubility, redox behavior, and chemical activity and their importance to ADTT planning is briefly explained. Priorities in the future development of molten salts for these applications are listed, with the foremost being the acceptance of the 2LiF-BeF 2 solvent system. 8 refs, 2 figs

  10. Status of reprocessing technology in the HTGR fuel cycle

    International Nuclear Information System (INIS)

    Kaiser, G.; Merz, E.; Zimmer, E.

    1977-01-01

    For more than ten years extensive R and D work has been carried out in the Federal Republic of Germany in order to develop the technology necessary for closing the fuel cycle of high-temperature gas-cooled reactors. The efforts are concentrated primarily on fuel elements having either highly enriched 235 U or recycled 233 U as the fissile and thorium as the fertile material embedded in a graphite matrix. They include the development of processes and equipment for reprocessing and remote preparation of coated microspheres from the recovered uranium. The paper reviews the issues and problems associated with the requirements to deal with high burn-up fuel from HTGR's of different design and composition. It is anticipated that a grind-burn-leach head-end treatment and a modified THOREX-type chemical processing are the optimum choice for the flowsheet. An overview of the present status achieved in construction of a small reprocessing facility, called JUPITER, is presented. It includes a discussion of problems which have already been solved and which have still to be solved like the treatment of feed/breed particle systems and for minimizing environmental impacts envisaged with a HTGR fuel cycle technology. Also discussed is the present status of remote fuel kernel fabrication and coating technology. Additional activities include the design of a mock-up prototype burning head-end facility, called VENUS, with a throughput equivalent to about 6000 MW installed electrical power, as well as a preliminary study for the utilisation of the Karlsruhe LWR prototype reprocessing plant (WAK) to handle HTGR fuel after remodelling of the installations. The paper concludes with an outlook of projects for the future

  11. Micro and Nano-Scale Technologies for Cell Mechanics

    Directory of Open Access Journals (Sweden)

    Mustafa Unal

    2014-10-01

    Full Text Available Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS, we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS. BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.

  12. IEA Energy Technology Essentials: Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Fuel cells is the topic covered in this edition.

  13. Strategies for fuel cell product development. Developing fuel cell products in the technology supply chain

    International Nuclear Information System (INIS)

    Hellman, H.L.

    2004-01-01

    Due to the high cost of research and development and the broad spectrum of knowledge and competences required to develop fuel cell products, many product-developing firms outsource fuel cell technology, either partly or completely. This article addresses the inter-firm process of fuel cell product development from an Industrial Design Engineering perspective. The fuel cell product development can currently be characterised by a high degree of economic and technical uncertainty. Regarding the technology uncertainty: product-developing firms are more often then not unfamiliar with fuel cell technology technology. Yet there is a high interface complexity between the technology supplied and the product in which it is to be incorporated. In this paper the information exchange in three current fuel cell product development projects is analysed to determine the information required by a product designer to develop a fuel cell product. Technology transfer literature suggests that transfer effectiveness is greatest when the type of technology (technology uncertainty) and the type of relationship between the technology supplier and the recipient are carefully matched. In this line of thinking this paper proposes that the information required by a designer, determined by the design strategy and product/system volume, should be met by an appropriate level of communication interactivity with a technology specialist. (author)

  14. Proceedings -- US Russian workshop on fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    Baker, B.; Sylwester, A. [comps.

    1996-04-01

    On September 26--28, 1995, Sandia National Laboratories sponsored the first Joint US/Russian Workshop on Fuel Cell Technology at the Marriott Hotel in Albuquerque, New Mexico. This workshop brought together the US and Russian fuel cell communities as represented by users, producers, R and D establishments and government agencies. Customer needs and potential markets in both countries were discussed to establish a customer focus for the workshop. Parallel technical sessions defined research needs and opportunities for collaboration to advance fuel cell technology. A desired outcome of the workshop was the formation of a Russian/American Fuel Cell Consortium to advance fuel cell technology for application in emerging markets in both countries. This consortium is envisioned to involve industry and national labs in both countries. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. Environmental aspects of battery and fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The PA Consulting Group was commissioned by the Longer Term Studies Unit, Research and Technology Policy Division and Information and Manufacturing Technologies Division, Dept. of Trade and Industry to investigate possible environmental initiatives which might be driven by the European Commission and which could promote interest in alternative energy sources, particularly batteries and fuel cells. Findings confirmed that there is a role for fuel cells in power generation, the most commercially advanced technology being the phosphoric acid fuel cell (PAFC). Development of other systems such as Proton Exchange Membrane technology (PEMFC) and solid oxide fuel cells (SOFC) should also continue. Emissions from fuel cells are lower than those of gas turbines, their main competitors for power generation applications below 100 MW. The study concluded that there is a role for both batteries or fuel cells in powering electric vehicles. Battery powered retrofitted vehicles have an environmental impact comparable to that of internal combustion engine powered vehicles and they could become commercially viable in the context of a carbon tax scenario. Purpose built electric vehicles would be even more attractive. From an environmental viewpoint, fuels cells based on proton membrane membrane technology seemed the best option for powering vehicles if the technical targets could be met.

  16. Update on status of direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, R.W.

    2002-07-01

    This report reviews the progress in direct methanol fuel cell (DMFC) technology since 1995 and examines the opportunities for this technology in various market sectors. The report is divided into two parts. Part A describes the state-of-the-art of DMFC technology, developments in electrocatalysis relevant to DMFCs, single cell and stack performance, and polymer electrolyte membranes. Part B discusses the viability of current DMFCs for portable and automotive applications, and examines some niche markets, eg for remote power applications. Market opportunities, technical issues, applications and competing technologies are summarised. The report draws attention to the outstanding technical issues and recommends further development in a number of areas (eg inexpensive membranes with lower rates of methanol crossover, membranes with lower rates of water permeation, improved power density and methods to ensure solutions do not freeze in cold climates).

  17. Status of advanced ultra-supercritical pulverised coal technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-01

    In pulverised coal combustion (PCC) power plant, increasing the maximum temperature of the steam cycle increases the electrical efficiency, which in turn lowers both coal consumption and flue gas emissions. However, the maximum steam temperature is limited by materials that can operate at these conditions for practical service lifetimes without failure. The EU, USA, Japan, India and China all have material research programmes aiming for the next generation of increased steam temperatures and efficiency, known as advanced ultra-supercritical (AUSC) or 700°C technology. This report reviews developments and status of these major material research programmes.

  18. Status of photovoltaic industry in China

    International Nuclear Information System (INIS)

    Hong Yang; He Wang; Guangde Chen; Huacong Yu; Jianping Xi; Rongqiang Cui

    2003-01-01

    In recent years, photovoltaic industry has achieved some remarkable development in China, This paper presents a summary and review of the present status of terrestrial photovoltaic industry, and tries to look at possible future scenarios in China, the recent progress with laboratory cells is also discussed. Topics covered include the production equipment, fabrication technology of cells and modules, storage battery, solar charge controller, DC/AC inverter, market and national policy. (Author)

  19. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  20. Technology status in support of refined technical baseline for the Spent Nuclear Fuel project. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Puigh, R.J.; Toffer, H.; Heard, F.J.; Irvin, J.J.; Cooper, T.D.

    1995-10-20

    The Spent Nuclear Fuel Project (SNFP) has undertaken technology acquisition activities focused on supporting the technical basis for the removal of the N Reactor fuel from the K Basins to an interim storage facility. The purpose of these technology acquisition activities has been to identify technology issues impacting design or safety approval, to establish the strategy for obtaining the necessary information through either existing project activities, or the assignment of new work. A set of specific path options has been identified for each major action proposed for placing the N Reactor fuel into a ``stabilized`` form for interim storage as part of this refined technical basis. This report summarizes the status of technology information acquisition as it relates to key decisions impacting the selection of specific path options. The following specific categories were chosen to characterize and partition the technology information status: hydride issues and ignition, corrosion, hydrogen generation, drying and conditioning, thermal performance, criticality and materials accountability, canister/fuel particulate behavior, and MCO integrity. This report represents a preliminary assessment of the technology information supporting the SNFP. As our understanding of the N Reactor fuel performance develops the technology information supporting the SNFP will be updated and documented in later revisions to this report. Revision 1 represents the incorporation of peer review comments into the original document. The substantive evolution in our understanding of the technical status for the SNFP (except section 3) since July 1995 have not been incorporated into this revision.

  1. Technology status in support of refined technical baseline for the Spent Nuclear Fuel project. Revision 1

    International Nuclear Information System (INIS)

    Puigh, R.J.; Toffer, H.; Heard, F.J.; Irvin, J.J.; Cooper, T.D.

    1995-01-01

    The Spent Nuclear Fuel Project (SNFP) has undertaken technology acquisition activities focused on supporting the technical basis for the removal of the N Reactor fuel from the K Basins to an interim storage facility. The purpose of these technology acquisition activities has been to identify technology issues impacting design or safety approval, to establish the strategy for obtaining the necessary information through either existing project activities, or the assignment of new work. A set of specific path options has been identified for each major action proposed for placing the N Reactor fuel into a ''stabilized'' form for interim storage as part of this refined technical basis. This report summarizes the status of technology information acquisition as it relates to key decisions impacting the selection of specific path options. The following specific categories were chosen to characterize and partition the technology information status: hydride issues and ignition, corrosion, hydrogen generation, drying and conditioning, thermal performance, criticality and materials accountability, canister/fuel particulate behavior, and MCO integrity. This report represents a preliminary assessment of the technology information supporting the SNFP. As our understanding of the N Reactor fuel performance develops the technology information supporting the SNFP will be updated and documented in later revisions to this report. Revision 1 represents the incorporation of peer review comments into the original document. The substantive evolution in our understanding of the technical status for the SNFP (except section 3) since July 1995 have not been incorporated into this revision

  2. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2010

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.; Gigakis, C.

    2010-11-01

    This status report, fourth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory, summarizes progress and accomplishments from demonstrations of fuel cell transit buses in the United States. This year's assessment report provides the results from the fifth year of operation of five Van Hool, ISE, and UTC Power fuel cell buses operating at AC Transit, SunLine, and CTTRANSIT. The achievements and challenges of this bus design, implementation, and operating are presented, with a focus on the next steps for implementing larger numbers and new and different designs of fuel cell buses. The major positive result from nearly five years of operation is the dramatic increase in reliability experienced for the fuel cell power system.

  3. Nutritional status, quality of life and CD4 cell count of adults living ...

    African Journals Online (AJOL)

    Keywords: CD4 cell count; Quality of Life; adults; nutritional status; nutritional intake. Nutritional status .... used to calculate the Body Mass Index (BMI). BMI was ... fat consumption as a percentage of the total food energy intake, and component ..... except when the CD4 counts fall very low.5,27 The CD4 cell count may offer a ...

  4. Hybrid fuel cells technologies for electrical microgrids

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, Jose Ignacio; Zamora, Inmaculada; San Martin, Jose Javier; Aperribay, Victor; Eguia, Pablo [Department of Electrical Engineering, University of the Basque Country, Alda. de Urquijo, s/n, 48013 Bilbao (Spain)

    2010-09-15

    Hybrid systems are characterized by containing two or more electrical generation technologies, in order to optimize the global efficiency of the processes involved. These systems can present different operating modes. Besides, they take into account aspects that not only concern the electrical and thermal efficiencies, but also the reduction of pollutant emissions. There is a wide range of possible configurations to form hybrid systems, including hydrogen, renewable energies, gas cycles, vapour cycles or both. Nowadays, these technologies are mainly used for energy production in electrical microgrids. Some examples of these technologies are: hybridization processes of fuel cells with wind turbines and photovoltaic plants, cogeneration and trigeneration processes that can be configured with fuel cell technologies, etc. This paper reviews and analyses the main characteristics of electrical microgrids and the systems based on fuel cells for polygeneration and hybridization processes. (author)

  5. Development of New Technologies for Stem Cell Research

    Directory of Open Access Journals (Sweden)

    Xibo Ma

    2012-01-01

    Full Text Available Since the 1960s, the stem cells have been extensively studied including embryonic stem cells, neural stem cells, bone marrow hematopoietic stem cells, and mesenchymal stem cells. In the recent years, several stem cells have been initially used in the treatment of diseases, such as in bone marrow transplant. At the same time, isolation and culture experimental technologies for stem cell research have been widely developed in recent years. In addition, molecular imaging technologies including optical molecular imaging, positron emission tomography, single-photon emission computed tomography, and computed tomography have been developed rapidly in recent the 10 years and have also been used in the research on disease mechanism and evaluation of treatment of disease related with stem cells. This paper will focus on recent typical isolation, culture, and observation techniques of stem cells followed by a concise introduction. Finally, the current challenges and the future applications of the new technologies in stem cells are given according to the understanding of the authors, and the paper is then concluded.

  6. Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies.

    Science.gov (United States)

    Simaria, Ana S; Hassan, Sally; Varadaraju, Hemanthram; Rowley, Jon; Warren, Kim; Vanek, Philip; Farid, Suzanne S

    2014-01-01

    For allogeneic cell therapies to reach their therapeutic potential, challenges related to achieving scalable and robust manufacturing processes will need to be addressed. A particular challenge is producing lot-sizes capable of meeting commercial demands of up to 10(9) cells/dose for large patient numbers due to the current limitations of expansion technologies. This article describes the application of a decisional tool to identify the most cost-effective expansion technologies for different scales of production as well as current gaps in the technology capabilities for allogeneic cell therapy manufacture. The tool integrates bioprocess economics with optimization to assess the economic competitiveness of planar and microcarrier-based cell expansion technologies. Visualization methods were used to identify the production scales where planar technologies will cease to be cost-effective and where microcarrier-based bioreactors become the only option. The tool outputs also predict that for the industry to be sustainable for high demand scenarios, significant increases will likely be needed in the performance capabilities of microcarrier-based systems. These data are presented using a technology S-curve as well as windows of operation to identify the combination of cell productivities and scale of single-use bioreactors required to meet future lot sizes. The modeling insights can be used to identify where future R&D investment should be focused to improve the performance of the most promising technologies so that they become a robust and scalable option that enables the cell therapy industry reach commercially relevant lot sizes. The tool outputs can facilitate decision-making very early on in development and be used to predict, and better manage, the risk of process changes needed as products proceed through the development pathway. © 2013 Wiley Periodicals, Inc.

  7. A balanced review of the status T cell-based therapy against cancer

    Directory of Open Access Journals (Sweden)

    Marincola Francesco M

    2005-04-01

    Full Text Available Abstract A recent commentary stirred intense controversy over the status of anti-cancer immunotherapy. The commentary suggested moving beyond current anti-cancer vaccines since active-specific immunization failed to match expectations toward a more aggressive approach involving the adoptive transfer of in vitro expanded tumor antigen-specific T cells. Although the same authors clarified their position in response to others' rebuttal more discussion needs to be devoted to the current status of T cell-based anti-cancer therapy. The accompanying publications review the status of adoptive transfer of cancer vaccines on one hand and active-specific immunization on the other. Hopefully, reading these articles will offer a balanced view of the current status of antigen-specific ant-cancer therapies and suggest future strategies to foster unified efforts to complement either approach with the other according to specific biological principles.

  8. High-efficient and high-content cytotoxic recording via dynamic and continuous cell-based impedance biosensor technology.

    Science.gov (United States)

    Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping

    2016-10-01

    Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.

  9. Monitoring Technology for Vehicle Loading Status Based on the Analysis of Suspension Vibration Characters

    Directory of Open Access Journals (Sweden)

    Shiwu Li

    2014-01-01

    Full Text Available Monitoring and early warning of vehicle risk status was one of the key technologies of transportation security, and real-time monitoring load status could reduce the transportation accidents effectively. In order to obtain vehicle load status information, vehicle characters of suspension were analyzed and simulated under different working conditions. On the basis of this, the device that can detect suspension load with overload protection structure was designed and a method of monitored vehicle load status was proposed. The monitoring platform of vehicle load status was constructed and developed for a FAW truck and system was tested on level-A road and body twist lane. The results show that the measurement error is less than 5% and horizontal centre-of-mass of vehicle was positioned accurately. The platform enables providing technical support for the real-time monitoring and warning of vehicles risk status in transit.

  10. Optical imaging the redox status change during cell apoptosis

    Science.gov (United States)

    Su, Ting; Zhang, Zhihong; Lin, Juqiang; Luo, Qingming

    2007-02-01

    Many cellular events involve the alteration in redox equilibrium, globally or locally. In many cases, excessive reactive oxygen species (ROS) production is the underlying cause. Several green fluoresecence protein based indicators are constructed to measure redox status in cells, e.g, rxYFP and roGFPs, which allow real time detection. reduction and oxidization-sensitive GFP (RoGFPs) are more useful due to ratiometric variation by excitation, making the measurement more accurate. Utilizing one of those roGFPs called roGFP1, we establish a mitochondrial redox state probing platform in HeLa cells with laser scan confocal microscopy (LSCM) as detection system. Control experiments confirmed that our platform could produce stable ratiometric values, which made the data more accurately reflect the real environmental changes of redox status that roGFP1 probed. Using exogenous H IIO II and DTT, we evaluated the reactivity and reversibility of roGFP1. The minimal hydrogen peroxide concentration that roGFP1 could show detectable ratiometric changes in our system was about 200μM. Preliminarily applying our platform to exploring the redox status during apoptosis, we observed an increase in ratiometric, suggesting an excessive ROS production.

  11. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  12. Seventh Edition Fuel Cell Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  13. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011

    Science.gov (United States)

    2011-11-11

    his report is the fifth in a series of annual status reports that summarize the progress resulting from fuel cell transit bus demonstrations in the United States and provide a discussion of the achievements and challenges of fuel cell propulsion in t...

  14. An Overview of Stationary Fuel Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    DR Brown; R Jones

    1999-03-23

    Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

  15. Status of technologies related to radioactive waste management and disposal

    International Nuclear Information System (INIS)

    1979-09-01

    The document discusses the status of technologies relevant to radioactive waste management and disposal, as defined by the INFCE Working Group 7 study. All fuel cycle wastes, with the exception of mill tailings, are placed in mined geologic repositories. In addition to the availability of technologies, the document discusses the: a) importance of the systems viewpoint, b) importance of modeling, c) need for site-specific investigations, d) consideration of future sub-surface human activities and e) prospects for successful isolation. In the sections on waste isolation and repository safety assessments, principal considerations are discussed. The document concludes that successful isolation of radioactive wastes from the biosphere appears technically feasible for periods of thousands of years provided that the systems view is used in repository siting and design

  16. A Quantitative Examination of the Educational Technology Characteristics of Ohio Schools and Their Blue Ribbon Status

    Science.gov (United States)

    Goon, Dean A.

    2012-01-01

    The purpose of this study was to analyze data from Ohio schools and the frequency of use of educational technology, a teacher's comfort level using technology, and a teacher's beliefs about the effect of educational technology on teaching and learning based upon the school's Blue Ribbon award status. The study used an ex-post facto, quantitative…

  17. Demonstration of Passive Fuel Cell Thermal Management Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  18. Axin gene methylation status correlates with radiosensitivity of lung cancer cells

    International Nuclear Information System (INIS)

    Yang, Lian-He; Stoecker, Maggie; Wang, Endi; Xu, Ke; Wang, En-Hua; Han, Yang; Li, Guang; Xu, Hong-Tao; Jiang, Gui-Yang; Miao, Yuan; Zhang, Xiu-Peng; Zhao, Huan-Yu; Xu, Zheng-Fan

    2013-01-01

    We previously reported that Axin1 (Axin) is down-regulated in many cases of lung cancer, and X-ray irradiation increased Axin expression and inhibited lung cancer cells. The mechanisms, however, were not clear. Four lung cancer cell lines were used to detect the methylation status of Axin with or without X-ray treatment. Real-time PCR was used to quantify the expression of Axin, and western blot analysis was applied to measure protein levels of Axin, β-catenin, Cyclin D1, MMP-7, DNMTS, MeCP2 and acetylated histones. Flow cytometric analysis, colony formation assay, transwell assay and xenograft growth experiment were used to study the biological behavior of the cells with hypermethylated or unmethylated Axin gene after X-ray treatment. Hypermethylated Axin gene was detected in 2 of 4 cell lines, and it correlated inversely with Axin expression. X-ray treatment significantly up-regulated Axin expression in H446 and H157 cells, which possess intrinsic hypermethylation of the Axin gene (P<0.01), but did not show up-regulation in LTE and H460 cells, which have unmethylated Axin gene. 2Gy X-ray significantly reduced colony formation (from 71% to 10.5%) in H157 cells, while the reduction was lower in LTE cells (from 71% to 20%). After X-ray irradiation, xenograft growth was significantly decreased in H157 cells (from 1.15 g to 0.28 g) in comparison with LTE cells (from 1.06 g to 0.65 g). Significantly decreased cell invasiveness and increased apoptosis were also observed in H157 cells treated with X-ray irradiation (P<0.01). Down-regulation of DNMTs and MeCP2 and up-regulation of acetylated histones could be detected in lung cancer cells. X-ray-induced inhibition of lung cancer cells may be mediated by enhanced expression of Axin via genomic DNA demethylation and histone acetylation. Lung cancer cells with a different methylation status of the Axin gene showed different radiosensitivity, suggesting that the methylation status of the Axin gene may be one important factor

  19. Emerging Solar Technologies: Perovskite Solar Cell

    Indian Academy of Sciences (India)

    energy technologies and ... cost-effective and feasible non-silicon solar cell technologies. ..... storing in the air for long periods, and the stability reached up to .... [12] Y Liu, L A Renna, M Bag, Z A Page, P Kim, J Choi, T Emrick, D Venkatara-.

  20. In vitro preparation of radionuclides labeled blood cells: Status and requirements

    International Nuclear Information System (INIS)

    Couret, I.; Desruet, M.D.; Bolot, C.; Chassel, M.L.; Pellegrin, M.

    2010-01-01

    Labelled blood cells permit nuclear medicine imaging using their physiological behaviours. The radiolabeling must be performed in vitro because of the lack of specific markers and requires several highly technical stages of preparation. Labelled blood cells have not the medication drug status, so that the nuclear physician conducting the nuclear test is fully liable. In most cases, the physician delegates the technical responsibility to radio-pharmacists. Although the status of radiolabelled autologous cells is not legally defined and in the absence of a specific repository, it is essential that their preparation is subject to the requirements of the rules of French Good Manufacturing Practice published by Agence francaise de securite sanitaire des produits de sante (Afssaps). It would be desirable to harmonize the practices of radiolabeling cellular blood components by editing a repository. (authors)

  1. Hydrogen fuel cell engines and related technologies

    Science.gov (United States)

    2001-12-01

    The manual documents the first training course developed on the use of hydrogen fuel cells in transportation. The manual contains eleven modules covering hydrogen properties, use and safety; fuel cell technology and its systems, fuel cell engine desi...

  2. Stem cell technology for drug discovery and development.

    Science.gov (United States)

    Hook, Lilian A

    2012-04-01

    Stem cells have enormous potential to revolutionise the drug discovery process at all stages, from target identification through to toxicology studies. Their ability to generate physiologically relevant cells in limitless supply makes them an attractive alternative to currently used recombinant cell lines or primary cells. However, realisation of the full potential of stem cells is currently hampered by the difficulty in routinely directing stem cell differentiation to reproducibly and cost effectively generate pure populations of specific cell types. In this article we discuss how stem cells have already been used in the drug discovery process and how novel technologies, particularly in relation to stem cell differentiation, can be applied to attain widespread adoption of stem cell technology by the pharmaceutical industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Direct disposal of spent nuclear fuel. The current status of technology January 1987

    International Nuclear Information System (INIS)

    Wheelton, I.S.; Kelly, B.R.; Wood, E.

    1987-02-01

    The Study assesses the degree and status of research and development worldwide on Direct Disposal of Spent Nuclear Fuel. It is limited to technological, radiological and waste management aspects appertaining to Light Water and AGR Reactor Systems and reviews the 'State of the Art' in terms of applicability to the United Kingdom. The report concludes that much technology exists both at National and International level which the UK can apply to the subject of Direct Disposal. (author)

  4. MHD Technology Transfer, Integration and Review Committee. Seventh semi-annual status report, April 1991--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This seventh semi-annual status report of the MHD Technology Transfer, Integration and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1991 through September 1991. It includes a summary and minutes of the General Committee meeting, progress summaries of ongoing POC contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months. The meeting included test plan with Western coal, seed regeneration economics, power management for the integrated topping cycle and status of the Clean Coal Technology Proposal activities. Appendices cover CDIF operations HRSR development, CFFF operations etc.

  5. Extended Temperature Solar Cell Technology Development

    Science.gov (United States)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  6. Elevated homocysteine levels indicate suboptimal folate status in pediatric sickle cell patients

    NARCIS (Netherlands)

    van der Dijs, FPL; Schnog, JJB; Brouwer, DAJ; Velvis, HJR; van den Berg, GA; Bakker, AJ; Duits, AJ; Muskiet, FD

    1998-01-01

    We investigated whether pediatric patients with sickle cell disease (SCD) (9 +/- 4 years; 27 homozygous SCD [HbSS]; 19 sickle-C disease [HbSC]) have different folate status compared with age-, sex-, and race-matched normal hemoglobin (HbAA) controls (n = 20), and whether their folate status can be

  7. Sliver Solar Cells: High-Efficiency, Low-Cost PV Technology

    Directory of Open Access Journals (Sweden)

    Evan Franklin

    2007-01-01

    Full Text Available Sliver cells are thin, single-crystal silicon solar cells fabricated using standard fabrication technology. Sliver modules, composed of several thousand individual Sliver cells, can be efficient, low-cost, bifacial, transparent, flexible, shadow tolerant, and lightweight. Compared with current PV technology, mature Sliver technology will need 10% of the pure silicon and fewer than 5% of the wafer starts per MW of factory output. This paper deals with two distinct challenges related to Sliver cell and Sliver module production: providing a mature and robust Sliver cell fabrication method which produces a high yield of highly efficient Sliver cells, and which is suitable for transfer to industry; and, handling, electrically interconnecting, and encapsulating billions of sliver cells at low cost. Sliver cells with efficiencies of 20% have been fabricated at ANU using a reliable, optimised processing sequence, while low-cost encapsulation methods have been demonstrated using a submodule technique.

  8. Linear thermal expansion coefficient measurement technology in hot cell

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Choo, Yong Sun; Ahn, Sang Bok; Hong, Kwon Pyo; Lee, K. S.

    1998-06-01

    To establish linear thermal expansion coefficient measurement technology in hot cell, we reviewed and evaluated various measuring technology by paper and these were compared with the data produced with pre-installed dilatometer in hot cell. Detailed contents are as follows; - The theory of test. - Review of characteristics for various measurement technology and compatibility with hot cell. - Review of standard testing regulations(ASTM). - System calibration of pre-installed dilatometer. - Performance test of pre-installed dilatometer. (author). 12 refs., 15 tabs., 8 figs

  9. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  10. Present status and problems of remote systems technology in nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This reports the activities of Special Committee on Remote Systems Technology, Atomic Energy Society of Japan, during the period from Oct. 1984 to Sep. 1988. The Committee studied and reviewed the present status and problems of remote operation and maintenance in various fields of nuclear industry. Reported items are; reactor operation, reprocessing, nuclear fusion and decommissioning. It also reviews robotics and remote systems tehcnology applied to space and marine development.

  11. Present status and problems of remote systems technology in nuclear industry

    International Nuclear Information System (INIS)

    1989-01-01

    This reports the activities of Special Committee on Remote Systems Technology, Atomic Energy Society of Japan, during the period from Oct. 1984 to Sep. 1988. The Committee studied and reviewed the present status and problems of remote operation and maintenance in various fields of nuclear industry. Reported items are; reactor operation, reprocessing, nuclear fusion and decommissioning. It also reviews robotics and remote systems tehcnology applied to space and marine development. (author)

  12. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  13. Advances in tubular solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, S.C. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1996-12-31

    The design, materials and fabrication processes for the earlier technology Westinghouse tubular geometry cell have been described in detail previously. In that design, the active cell components were deposited in the form of thin layers on a ceramic porous support tube (PST). The tubular design of these cells and the materials used therein have been validated by successful electrical testing for over 65,000 h (>7 years). In these early technology PST cells, the support tube, although sufficiently porous, presented an inherent impedance to air flow toward air electrode. In order to reduce such impedance to air flow, the wall thickness of the PST was first decreased from the original 2 mm (the thick-wall PST) to 1.2 mm (the thin-wall PST). The calcia-stabilized zirconia support tube has now been completely eliminated and replaced by a doped lanthanum manganite tube in state-of-the-art SOFCs. This doped lanthanum manganite tube is extruded and sintered to about 30 to 35 percent porosity, and serves as the air electrode onto which the other cell components are fabricated in thin layer form. These latest technology cells are designated as air electrode supported (AES) cells.

  14. Challenges in amorphous silicon solar cell technology

    NARCIS (Netherlands)

    Swaaij, van R.A.C.M.M.; Zeman, M.; Korevaar, B.A.; Smit, C.; Metselaar, J.W.; Sanden, van de M.C.M.

    2000-01-01

    Hydrogenated amorphous silicon is nowadays extensively used for a range of devices, amongst others solar cells, Solar cell technology has matured over the last two decades and resulted in conversion efficiencies in excess of 15%. In this paper the operation of amorphous silicon solar cells is

  15. Status of 2 micron laser technology program

    Science.gov (United States)

    Storm, Mark

    1991-01-01

    The status of 2 micron lasers for windshear detection is described in viewgraph form Theoretical atmospheric and instrument system studies have demonstrated that the 2.1 micron Ho:YAG lasers can effectively measure wind speeds in both wet and dry conditions with accuracies of 1 m/sec. Two micron laser technology looks very promising in the near future, but several technical questions remain. The Ho:YAG laser would be small, compact, and efficient, requiring little or no maintenance. Since the Ho:YAG laser is laser diode pumped and has no moving part, the lifetime of this laser would be directly related to the diode laser lifetimes which can perform in excess of 10,000 hours. Efficiencies of 3 to 12 percent are expected, but laser demonstrations confirming the ability to Q-switch this laser are required. Coherent laser operation has been demonstrated for both the CW and Q-switched lasers.

  16. The Asia Pacific LNG trade: Status and technology development

    International Nuclear Information System (INIS)

    Hovdestad, W.R.

    1995-01-01

    The Asia Pacific Region is experiencing a period of sustained economic expansion. Economic growth has led to an increasing demand for energy that has spurred a rapid expansion of baseload liquefied natural gas (LNG) facilities in this region. This is illustrated by the fact that seven of the ten baseload facilities in existence provide LNG for markets in the Asia Pacific region. With the three exceptions having been initially commissioned in 1972 and earlier, it is fair to observed that most advances in LNG technology have been developed and applied for this market. The paper presents the current status and identified future trends for the Asia Pacific LNG trade. Technology development in terms of application to onstream production, processing and transportation facilities, including LNG tankers, is presented. The potential of future advances to applied technology and operational practices to improve the cost-effectiveness of new and existing facilities is discussed. Current design data and methods as actually used are examined in terms of identifying where fundamental research and basic physical data are insufficient for optimization purposes. These findings are then summarized and presented in terms of the likely evolution of future and existing LNG projects in the Asia Pacific region

  17. Current status of 700 MWe class PHWR NSSS design and engineering technology

    International Nuclear Information System (INIS)

    Park, Tae Keun; Suh, Sung Ki

    1996-06-01

    The capability of NSSS design and engineering technology of KAERI for 700 MWe class PHWR (CANDU 6) as of 1996 March 30 is comprehensively summarized in this report. The design and engineering capability of KAERI which have been gained during the implementation of Wolsung 2, 3 and 4 project are assessed, and showed with tangible scale. The status of Technology Transfer Materials received from Atomic Energy of Canada Limited under the Technology Transfer Agreement (TTA) which is effective simultaneously to Wolsung 3 and 4 contract, is also given in this report. The division of responsibility (DOR) of KAERI for Wolsung 2 and Wolsung 3 and 4 contract is also given, and expansion of DOR from Wolsung 2 contract to Wolsung 3 and 4 is presented. 3 refs. (Author)

  18. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, C. H. [TA Engineering, Inc., Catonsville, MD (United States); Moore, J. S. [TA Engineering, Inc., Catonsville, MD (United States); Ward, J. [United States Department of Energy, Washington, DC (United States). Office of Energy Efficiency and Renewable Energy

    2016-02-23

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which there is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76

  19. Printing technologies for biomolecule and cell-based applications.

    Science.gov (United States)

    Ihalainen, Petri; Määttänen, Anni; Sandler, Niklas

    2015-10-30

    Biomolecules, such as enzymes, proteins and other biomacromolecules (polynucleotides, polypeptides, polysaccharides and DNA) that are immobilized on solid surfaces are relevant to many areas of science and technology. These functionalized surfaces have applications in biosensors, chromatography, diagnostic immunoassays, cell culturing, DNA microarrays and other analytical techniques. Printing technologies offer opportunities in this context. The main interests in printing biomolecules are in immobilizing them on surfaces for sensors and catalysts or for controlled delivery of protein-based drugs. Recently, there have been significant developments in the use of inkjet printing for dispensing of proteins, biomacromolecules and cells. This review discusses the use of roll-to-roll and inkjet printing technologies in manufacturing of biomolecule and cell-based applications. Copyright © 2015. Published by Elsevier B.V.

  20. The status of fast reactor technology development in China

    International Nuclear Information System (INIS)

    Xu Mi

    1998-01-01

    The paper describes recent status and trends on Chinese national economy, electrical power capacity and nuclear power development. The preliminary design of the CEFR has been approved by the State Science and Technology Commission. Now it is in the detail design stage. It is planned that the first pot of concrete will be in April of 1999, in the end of 2000 the reactor building construction will be finished and the first criticality of the reactor will be envisaged in July 2003. The brief of preliminary design, analysis results of some beyond design basic accidents and design basic accidents, CEFR research works, and international cooperation are presented in the paper. (author)

  1. Update of super-speed ground transportation technology development status and performance capabilities. CIGGT report No. 89-16

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, W F

    1990-01-01

    This report presents an update of the Phase II assessment of development status and performance capabilities for four candidate super-speed ground transportation system alternatives for the Las Vegas-Southern California corridor. The four alternatives considered are the TGV wheel-on-rail technology, the Transrapid TR- 07 long-stator Electromagnetic Maglev (EMS) technology, the Japan Railways MLU Electrodynamic Maglev (EDS) technology, and the HSST Corp. HSST-400 short-stator Electromagnetic Maglev technology.

  2. Review of status developments of high-efficiency crystalline silicon solar cells

    Science.gov (United States)

    Liu, Jingjing; Yao, Yao; Xiao, Shaoqing; Gu, Xiaofeng

    2018-03-01

    In order to further improve cell efficiency and reduce cost in achieving grid parity, a large number of PV manufacturing companies, universities and research institutes have been devoted to a variety of low-cost and high-efficiency crystalline Si solar cells. In this article, the cell structures, characteristics and efficiency progresses of several types of high-efficiency crystalline Si solar cells that have been in small scale production or are promising in mass production are presented, including passivated emitter rear cell, tunnel oxide passivated contact solar cell, interdigitated back contact cell, heterojunction with intrinsic thin-layer cell, and heterojunction solar cells with interdigitated back contacts. Both the industrialization status and future development trend of high-efficiency crystalline silicon solar cells are also pinpointed.

  3. Present status of intermediate band solar cell research

    International Nuclear Information System (INIS)

    Cuadra, L.; Marti, A.; Luque, A.

    2004-01-01

    The intermediate band solar cell is a theoretical concept with the potential for exceeding the performance of conventional single-gap solar cells. This novel photovoltaic converter bases its superior theoretical efficiency over single-gap solar cells by enhancing its photogenerated current, via the two-step absorption of sub-band gap photons, without reducing its output voltage. This is achieved through a material with an electrically isolated and partially filled intermediate band located within a higher forbidden gap. This material is commonly named intermediate band material. This paper centres on summarising the present status of intermediate band solar cell research. A number of attempts, which aim to implement the intermediate band concept, are being followed: the direct engineering of the intermediate band material, its implementation by means of quantum dots and the highly porous material approach. Among other sub-band gap absorbing proposals, there is a renewed interest on the impurity photovoltaic effect, the quantum well solar cells and the particularly promising proposal for the use of up- and down-converters

  4. Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status

    International Nuclear Information System (INIS)

    Vlashi, Erina; Chen, Allen M.; Boyrie, Sabrina; Yu, Garrett; Nguyen, Andrea; Brower, Philip A.; Hess, Clayton B.; Pajonk, Frank

    2016-01-01

    Purpose: To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Methods and Materials: Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positive and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription–polymerase chain reaction for re-expression of reprogramming factors. Results: Patients with HPV-positive tumors have superior overall survival and local–regional control. Human papillomavirus–positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus–negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Conclusions: Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor.

  5. Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status

    Energy Technology Data Exchange (ETDEWEB)

    Vlashi, Erina, E-mail: evlashi@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Chen, Allen M.; Boyrie, Sabrina; Yu, Garrett; Nguyen, Andrea; Brower, Philip A. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Hess, Clayton B. [Department of Radiation Oncology, University of California Davis, Sacramento, California (United States); Pajonk, Frank [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2016-04-01

    Purpose: To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Methods and Materials: Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positive and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription–polymerase chain reaction for re-expression of reprogramming factors. Results: Patients with HPV-positive tumors have superior overall survival and local–regional control. Human papillomavirus–positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus–negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Conclusions: Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor.

  6. NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL

    Science.gov (United States)

    Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal Technology Transfer Prize May 7, 2009 A new class of ultra-light, high-efficiency solar cells developed by the U.S. Department of Energy's National Renewable Energy Laboratory has been awarded a national prize

  7. Single-cell technologies to study the immune system.

    Science.gov (United States)

    Proserpio, Valentina; Mahata, Bidesh

    2016-02-01

    The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single-cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single-cell technologies, their limitations and future applications to study the immune system. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.

  8. SENIEUR status of the originating cell donor negates certain 'anti-immunosenescence' effects of ebselen and N-acetyl cysteine in human T cell clone cultures.

    Science.gov (United States)

    Marthandan, Shiva; Freeburn, Robin; Steinbrecht, Susanne; Pawelec, Graham; Barnett, Yvonne

    2014-01-01

    Damage to T cells of the immune system by reactive oxygen species may result in altered cell function or cell death and thereby potentially impact upon the efficacy of a subsequent immune response. Here, we assess the impact of the antioxidants Ebselen and N-acetyl cysteine on a range of biological markers in human T cells derived from a SENIEUR status donor. In addition, the impact of these antioxidants on different MAP kinase pathways in T cells from donors of different ages was also examined. T cell clones were derived from healthy 26, 45 and SENIEUR status 80 year old people and the impact of titrated concentrations of Ebselen or N-acetyl cysteine on their proliferation and in vitro lifespan, GSH:GSSG ratio as well as levels of oxidative DNA damage and on MAP kinase signaling pathways was examined. In this investigation neither Ebselen nor N-acetyl cysteine supplementation had any impact on the biological endpoints examined in the T cells derived from the SENIEUR status 80 year old donor. This is in contrast to the anti-immunosenescent effects of these antioxidants on T cells from donors of 26 or 45 years of age. The analysis of MAP kinases showed that pro-apoptotic pathways become activated in T cells with increasing in vitro age and that Ebselen or N-acetyl cysteine could decrease activation (phosphorylation) in T cells from 26 or 45 year old donors, but not from the SENIEUR status 80 year old donor. The results of this investigation demonstrate that the biological phenotype of SENIEUR status derived human T cells negates the anti-immunosenescence effects of Ebselen and also N-acetyl cysteine. The results highlight the importance of pre-antioxidant intervention evaluation to determine risk-benefit.

  9. Advances in polymer concrete technology for cell house components

    International Nuclear Information System (INIS)

    Lynch, P.

    2000-01-01

    The cell house environment is very challenging with regard to protection of the concrete structure and components against the corrosive effects of acid. Coating technology using Epoxy, Vinyl Ester and Polyurethane Polymers is available, to provide the necessary chemical and heat resistance. However, producing suitable POLYMER CONCRETE technology for pre-cast components, especially tanks and cells requires not only the correct POLYMER selection, but also significant know-how in mineral aggregate technology to achieve the desired performance properties. Furthermore, the POLYMER CONCRETE technology must enable the pre-caster to manufacture the components in a simple one-step procedure. This paper outlines the important aspects in formulating POLYMER CONCRETE, the performance properties that can be achieved and the practical issues relating to the cost effective pre-casting of tanks and cells in particular. (author)

  10. Current status of technology development for fabrication of Indian Test Blanket Module (TBM) of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T., E-mail: tjk@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Rajendra Kumar, E. [TBM Division, Institute for Plasma Research (IPR), Bhat, Gandhinagar 382428 (India)

    2014-10-15

    Highlights: • Status of technology developments for Indian TBM to be installed in ITER is presented. • Procedure development for EB, laser and laser-hybrid welding of RAFM steel presented. • Filler wires for RAFM steel for TIG, NG-TIG and laser-hybrid welding have been developed. • Feasibility of production of channel plate by HIP technology has been demonstrated. - Abstract: Ever since India decided to install its Lead-Lithium Ceramic Breeder (LLCB) TBM in ITER, various technologies for fabrication of Indian TBM are being pursued by IPR and IGCAR, in collaboration with various research laboratories in India. Welding consumables for joining India specific RAFM steels (IN-RAFMS), procedures for hot isostatic pressing, electron beam welding, laser and laser-hybrid welding have been developed. Considering the complex nature and limited access available for inspection, innovative inspection procedures that involved use of phased array ultrasonic and C-scan imaging are also being pursued. This paper presents the current status of these developments and provides a roadmap for the future activities planned in realizing Indian TBM for testing in ITER.

  11. Robotic technology in surgery: current status in 2008.

    Science.gov (United States)

    Murphy, Declan G; Hall, Rohan; Tong, Raymond; Goel, Rajiv; Costello, Anthony J

    2008-12-01

    There is increasing patient and surgeon interest in robotic-assisted surgery, particularly with the proliferation of da Vinci surgical systems (Intuitive Surgical, Sunnyvale, CA, USA) throughout the world. There is much debate over the usefulness and cost-effectiveness of these systems. The currently available robotic surgical technology is described. Published data relating to the da Vinci system are reviewed and the current status of surgical robotics within Australia and New Zealand is assessed. The first da Vinci system in Australia and New Zealand was installed in 2003. Four systems had been installed by 2006 and seven systems are currently in use. Most of these are based in private hospitals. Technical advantages of this system include 3-D vision, enhanced dexterity and improved ergonomics when compared with standard laparoscopic surgery. Most procedures currently carried out are urological, with cardiac, gynaecological and general surgeons also using this system. The number of patients undergoing robotic-assisted surgery in Australia and New Zealand has increased fivefold in the past 4 years. The most common procedure carried out is robotic-assisted laparoscopic radical prostatectomy. Published data suggest that robotic-assisted surgery is feasible and safe although the installation and recurring costs remain high. There is increasing acceptance of robotic-assisted surgery, especially for urological procedures. The da Vinci surgical system is becoming more widely available in Australia and New Zealand. Other surgical specialties will probably use this technology. Significant costs are associated with robotic technology and it is not yet widely available to public patients.

  12. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Catriona, E-mail: catriona.kelly@qub.ac.uk [SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine (United Kingdom); Flatt, Peter R.; McClenaghan, Neville H. [SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine (United Kingdom)

    2010-08-20

    Research highlights: {yields} TGP52 cells display enhanced functionality in pseudoislet form. {yields} Somatostatin content was reduced, but secretion increased in high glucose conditions. {yields} Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  13. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    International Nuclear Information System (INIS)

    Kelly, Catriona; Flatt, Peter R.; McClenaghan, Neville H.

    2010-01-01

    Research highlights: → TGP52 cells display enhanced functionality in pseudoislet form. → Somatostatin content was reduced, but secretion increased in high glucose conditions. → Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  14. Mono-crystalline Silicon Photovoltaic Cells: Innovative Technologies toward low Series Resistance

    OpenAIRE

    Chibbaro, Claudio

    2011-01-01

    This thesis gives, at first, a collocation of photovoltaic technology inside the picture of world energy production. The need of a transition to a renewables-intensive energy market is reported as a scientific evidence deriving from economical and environmental data analysis. The present state-of-art of photovoltaic technology in terms of research development, manufacturing cost, market status and forecast is illustrated. In spite of emerging new technologies promising higher efficiencies ...

  15. A review on the current status and production technology of 32,33P-orthophosphoric acid

    International Nuclear Information System (INIS)

    Park, Ul Jae; Han, Hyun Soo; Cho, Woon Kap; Kuznetsov, Rostislav A.

    2000-10-01

    The current status of 32 , 33 P-Orthophosphoric acid production technology is reviewed. The following aspects of the technology are covered: - production of phosphorus-32 and phosphorus-33 using various nuclear reactions; - chemical properties of sulfur and phosphorus effecting the technology of radioactive phosphorus production; - chemical state of 32 , 33 P in neutron irradiated sulfur; - the technology of radioactive phosphorus isolation from neutron irradiated target and orthophosphoric acid production; - purification of 32 , 33 P-orthophosphoric acid from impurities and some related problems, like the nature of impurities, the storage of the final product, etc. - the quality control procedures of carrier-free ( 32 , 33 P)-orthophosphoric acid preparations

  16. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas

    2015-10-22

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  17. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas; Gojobori, Takashi

    2015-01-01

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  18. The mast cell stabilizer sodium cromoglycate reduces histamine release and status epilepticus-induced neuronal damage in the rat hippocampus.

    Science.gov (United States)

    Valle-Dorado, María Guadalupe; Santana-Gómez, César Emmanuel; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2015-05-01

    Experiments were designed to evaluate changes in the histamine release, mast cell number and neuronal damage in hippocampus induced by status epilepticus. We also evaluated if sodium cromoglycate, a stabilizer of mast cells with a possible stabilizing effect on the membrane of neurons, was able to prevent the release of histamine, γ-aminobutyric acid (GABA) and glutamate during the status epilepticus. During microdialysis experiments, rats were treated with saline (SS-SE) or sodium cromoglycate (CG-SE) and 30 min later received the administration of pilocarpine to induce status epilepticus. Twenty-four hours after the status epilepticus, the brains were used to determine the neuronal damage and the number of mast cells in hippocampus. During the status epilepticus, SS-SE group showed an enhanced release of histamine (138.5%, p = 0.005), GABA (331 ± 91%, p ≤ 0.001) and glutamate (467%, p ≤ 0.001), even after diazepam administration. One day after the status epilepticus, SS-SE group demonstrated increased number of mast cells in Stratum pyramidale of CA1 (88%, p status epilepticus (p = 0.048), absence of wet-dog shakes, reduced histamine (but not GABA and glutamate) release, lower number of mast cells (p = 0.008) and reduced neuronal damage in hippocampus. Our data revealed that histamine, possibly from mast cells, is released in hippocampus during the status epilepticus. This effect may be involved in the subsequent neuronal damage and is diminished with sodium cromoglycate pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Case Report: Detection and quantification of tumor cells in peripheral blood and ascitic fluid from a metastatic esophageal cancer patient using the CellSearch® technology [v1; ref status: indexed, http://f1000r.es/2hr

    Directory of Open Access Journals (Sweden)

    Qian Tu

    2014-01-01

    Full Text Available Analysis of ascitic fluid should help to identify and characterize malignant cells in gastrointestinal cancer. However, despite a high specificity, the sensitivity of traditional ascitic fluid cytology remains insufficient, at around 60%. Since 2004 the CellSearch® technology has shown its advantages in the detection of circulating tumor cells (CTCs in peripheral blood, which can perform an accurate diagnosis and molecular analysis at the same time. To our knowledge, no previous study has explored the potential utility of this technology for the detection and quantification of tumor cells in ascitic fluid samples. Herein we report a case of metastatic esophageal adenocarcinoma in a 70-year-old man presenting with dysphagia and a large amount of fluid in the peritoneal cavity. Analysis of a peripheral blood sample and ascites sample with the CellSearch® technology both revealed the presence of putative tumor cells that were positive for epithelial cell adhesion molecule (EpCAM and cytokeratin (CK expression. This study confirmed the hematogenous dissemination of esophageal cancer by the detection of circulating tumor cells in the peripheral blood, and is the first to demonstrate that tumor cells can be identified in ascitic fluid by using CellSearch® technology.

  20. Redox status evaluation in dogs affected by mast cell tumour.

    Science.gov (United States)

    Finotello, R; Pasquini, A; Meucci, V; Lippi, I; Rota, A; Guidi, G; Marchetti, V

    2014-06-01

    Oxidative stress status has been evaluated in depth in human medicine and its role in carcinogenesis has been clearly established. The purpose of this prospective study was to evaluate antioxidant concentrations and oxidative stress in dogs with mast cell tumours (MCTs) that had received no previous treatments, and to compare them to healthy controls. In 23 dogs with mast cell tumour and 10 healthy controls, oxidative status was assessed using the Reactive Oxygen Metabolites-derived compounds (d-ROMs) test, antioxidant activity was measured by the Biological Antioxidant Potential (BAP) test, and α-tocopherol levels were evaluated using high-performance liquid chromatography and ultraviolet analysis. At baseline, dogs with MCT had significantly higher d-ROMs (P defence barrier are altered in dogs with newly diagnosed MCT compared with control dogs. Future studies are needed in order to assess the prognostic role of oxidative stress and to evaluate the impact of different therapeutic approaches. © 2012 John Wiley & Sons Ltd.

  1. Islet Microencapsulation: Strategies and Clinical Status in Diabetes.

    Science.gov (United States)

    Omami, Mustafa; McGarrigle, James J; Reedy, Mick; Isa, Douglas; Ghani, Sofia; Marchese, Enza; Bochenek, Matthew A; Longi, Maha; Xing, Yuan; Joshi, Ira; Wang, Yong; Oberholzer, José

    2017-07-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results from the destruction of insulin-producing pancreatic β cells in the islets of Langerhans. Islet cell transplantation has become a successful therapy for specific patients with T1DM with hypoglycemic unawareness. The reversal of T1DM by islet transplantation is now performed at many major medical facilities throughout the world. However, many challenges must still be overcome in order to achieve continuous, long-term successful transplant outcomes. Two major obstacles to this therapy are a lack of islet cells for transplantation and the need for life-long immunosuppressive treatment. Microencapsulation is seen as a technology that can overcome both these limitations of islet cell transplantation. This review depicts the present state of microencapsulated islet transplantation. Microencapsulation can play a significant role in overcoming the need for immunosuppression and lack of donor islet cells. This review focuses on microencapsulation and the clinical status of the technology in combating T1DM.

  2. Protein profiling of single epidermal cell types from Arabidopsis thaliana using surface-enhanced laser desorption and ionization technology.

    Science.gov (United States)

    Ebert, Berit; Melle, Christian; Lieckfeldt, Elke; Zöller, Daniela; von Eggeling, Ferdinand; Fisahn, Joachim

    2008-08-25

    Here, we describe a novel approach for investigating differential protein expression within three epidermal cell types. In particular, 3000 single pavement, basal, and trichome cells from leaves of Arabidopsis thaliana were harvested by glass micro-capillaries. Subsequently, these single cell samples were joined to form pools of 100 individual cells and analyzed using the ProteinChip technology; SELDI: surface-enhanced laser desorption and ionization. As a result, numerous protein signals that were differentially expressed in the three epidermal cell types could be detected. One of these proteins was characterized by tryptical digestion and subsequent identification via tandem quadrupole-time of flight (Q-TOF) mass spectrometry. Down regulation of this sequenced small subunit precursor of ribulose-1,5 bisphosphate carboxylase(C) oxygenase(O) (RuBisCo) in trichome and basal cells indicates the sink status of these cell types that are located on the surface of A. thaliana source leaves. Based on the obtained protein profiles, we suggest a close functional relationship between basal and trichome cells at the protein level.

  3. A reversible electrolyzer-fuel cell system based on PEM technology

    International Nuclear Information System (INIS)

    Grigoriev, S.A.; Millet, P.; Fateev, V.N.

    2009-01-01

    'Full text': A reversible electrolyzer-fuel cell is an electrochemical system which can be alternatively operated in water electrolysis or H 2 /O 2 (air) fuel cell modes. Whereas proton-exchange membrane (PEM) water electrolysis and PEM fuel cell technologies are individually well-established, it is still a very challenging task to develop efficient reversible systems which can maintain interesting electrochemical performances during a significant number of cycles. Results reported in this communication are related to R and D on bi-functional catalysts, electrocatalytic layers, gas diffusion layers/current collectors and reversible PEM stack design. Electrodes which do not change their redox status when the operation mode of the cell is switched from electrolysis to fuel cell are more specifically considered. In particular, it is shown that, when the anode is composed of Pt-Ir layers (ca. 0.5/0.5 wt. ratio), best electrochemical performances are obtained (for both for water and hydrogen oxidation reactions) when an Ir layer is placed face-to-face with the membrane. Cathodic electrocatalytic layers made of Pt/C were prepared and optimized by adding PTFE to obtain the required hydrophobic-hydrophilic properties for effective oxygen and protons electro-reduction. Gas diffusion electrodes made of porous carbon materials and bi-porous titanium sheets with appropriate water management properties have also been developed. A two-cell stack with 250 cm 2 active area electrodes has been assembled using the optimized components and successfully tested. Results are rather close to those obtained for individual water electrolysis and H 2 /O 2 fuel cells with the same noble metal loadings and similar operating conditions. For instance, at a current density of 0.2 A/cm 2 , typical cell voltages of ca. 1.55 and 0.70 V were respectively obtained during water electrolysis and H 2 /O 2 fuel cell operation, using Nafion-1135 as solid polymer electrolyte and noble metal loadings 2

  4. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  5. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-08

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  6. Technology status of spray calcination--vitrification of high-level liquid waste for full-scale application

    International Nuclear Information System (INIS)

    Keeley, R.B.; Bonner, W.F.; Larson, D.E.

    1977-01-01

    Spray calcination and vitrification technology for stabilization of high-level nuclear wastes has been developed to the point that initiation of technology transfer to an industrial-sized facility could begin. This report discusses current process and equipment development status together with additional R and D studies and engineering evaluations needed. Preliminary full-scale process and equipment descriptions are presented. Technology application in a full-scale plant would blend three distinct maintenance design philosophies, depending on service life anticipated: (1) totally remote maintenance with limited viewing and handling equipment, (2) totally remote maintenance with extensive viewing and handling equipment, and (3) contact maintenance

  7. Analysis on the status of the application of satellite remote sensing technology to nuclear safeguards

    International Nuclear Information System (INIS)

    Tao Zhangsheng; Zhao Yingjun

    2008-01-01

    Based on the application status of satellite remote sensing technology to nuclear safeguards, advantage of satellite remote sensing technology is analyzed, main types of satellite image used in nuclear safeguards are elaborated and the main application of satellite images is regarded to detect, verify and monitor nuclear activities; verify additional protocol declaration and design information, support performing complementary access inspections; investigate alleged undeclared activities based on open source or the third party information. Application examples of satellite image in nuclear safeguards to analyze nuclear facilities by other countries, the ability of remote sensing technology in nuclear safeguards is discussed. (authors)

  8. Cell-based therapy technology classifications and translational challenges

    Science.gov (United States)

    Mount, Natalie M.; Ward, Stephen J.; Kefalas, Panos; Hyllner, Johan

    2015-01-01

    Cell therapies offer the promise of treating and altering the course of diseases which cannot be addressed adequately by existing pharmaceuticals. Cell therapies are a diverse group across cell types and therapeutic indications and have been an active area of research for many years but are now strongly emerging through translation and towards successful commercial development and patient access. In this article, we present a description of a classification of cell therapies on the basis of their underlying technologies rather than the more commonly used classification by cell type because the regulatory path and manufacturing solutions are often similar within a technology area due to the nature of the methods used. We analyse the progress of new cell therapies towards clinical translation, examine how they are addressing the clinical, regulatory, manufacturing and reimbursement requirements, describe some of the remaining challenges and provide perspectives on how the field may progress for the future. PMID:26416686

  9. Studies of cell biomechanics with surface micro-/nano-technology

    International Nuclear Information System (INIS)

    Wang Dong; Zhang Wei; Jiang Xingyu

    2011-01-01

    We report the recent progress in our studies of cell biology using micro-/nano-technology. Cells have a size of several to tens of microns, which makes them easily manipulated by micro-/nano-technology. The shape of the cell influences the alignment of the actin cytoskeleton, which bears the main forces of the cell, maintains the shape,and mediates a series of biochemical reactions. We invented a stretching device and studied the real-time actin filament dynamics under stretch. We found that one stretch cycle shortened the actin filaments and promoted their reassemble process. Cell migration is a complex mechanical process. We found that cell geometry determines the cell polarity and migration direction. We fabricated three-dimensional surfaces to mimic the topography in vivo, and further built a cell culture model by integrating the three-dimensional surface, microfluidics, cell patterning,and coculturing of multiple cell types. We also investigated the neuronal guidance by surface patterning. (authors)

  10. Tritium processing and containment technology for fusion reactors: perspective and status

    International Nuclear Information System (INIS)

    Maroni, V.A.

    1976-01-01

    This paper reviews the status of selected tritium processing and containment technologies that will be required to support the development of the fusion energy program. Considered in order are the fuel conditioning and recycle systems, the containment and cleanup systems, the blanket processing systems, and two unique problems relating to tritium interactions in neutral beam injectors and first wall coolant circuits. The major technical problem areas appear to lie in the development of (1) high-capacity, rapid recycle plasma chamber evacuation systems; (2) large-capacity (greater than or equal to 100,000 cfm) air handling and processing systems for atmospheric detritiation; (3) tritium recovery technology for liquid lithium blanket concepts; (4) tritium compatible neutral injector systems; and (5) an overall approach to tritium handling and containment that guarantees near zero release to the environment at a bearable cost

  11. Drug resistance in colorectal cancer cell lines is partially associated with aneuploidy status in light of profiling gene expression

    DEFF Research Database (Denmark)

    Guo, Jiao; Xu, Shaohang; Huang, Xuanlin

    2016-01-01

    A priority in solving the problem of drug resistance is to understand the molecular mechanism of how a drug induces the resistance response within cells. Because many cancer cells exhibit chromosome aneuploidy, we explored whether changes of aneuploidy status result in drug resistance. Two typical...... colorectal cancer cells, HCT116 and LoVo, were cultured with the chemotherapeutic drugs irinotecan (SN38) or oxaliplatin (QxPt), and the non- and drug-resistant cell lines were selected. Whole exome sequencing (WES) was employed to evaluate the aneuploidy status of these cells, and RNAseq and LC-MS/MS were...... the aneuploidy status in cancer cells, which was partially associated with the acquired drug resistance....

  12. Leading research on cell proliferation regulation technology; Saibo zoshoku seigyo gijutsu no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing intelligent material, animal test alternative model, bio-cell analysis equipment, self-controlling bio-reactor and medical material, development of functional cells was studied by cell proliferation regulation technology. In fiscal 1996, the expression analysis and separation technology of specific gene for cell proliferation, and the intracellular regulation technology were surveyed from the viewpoint of intracellular regulation. The cell proliferation regulation technology by specific regulating material of cells, extracellular matrix, coculture system and embryonic cell was surveyed from the viewpoint of extracellular regulation. In addition, based on these survey results, new cell culture/analysis technology, new bio-material, artificial organ system, energy saving bio-reactor, environment purification microorganism, and animal test alternative model were surveyed as applications to industrial basic technologies from a long-term viewpoint. The approach to cell proliferation regulation requires preparation of a concrete proliferation regulation technology system of cells, and concrete application targets. 268 refs., 43 figs., 4 tabs.

  13. The Relationship Between Human Papillomavirus Status and Other Molecular Prognostic Markers in Head and Neck Squamous Cell Carcinomas

    International Nuclear Information System (INIS)

    Kong, Christina S.; Narasimhan, Balasubramanian; Cao Hongbin; Kwok, Shirley; Erickson, Julianna P.; Koong, Albert; Pourmand, Nader; Le, Quynh-Thu

    2009-01-01

    Purpose: To evaluate the relationship between human papillomavirus (HPV) status and known prognostic makers for head and neck cancers including tumor hypoxia, epidermal growth factor receptor (EGFR) expression and intratumoral T-cell levels and to determine the prognostic impact of these markers by HPV status. Methods and Materials: HPV status in 82 evaluable head and neck squamous cell carcinomas patients was determined by pyrosequencing and related to p16 INK4a staining and treatment outcomes. It was correlated with tumor hypoxia (tumor pO 2 and carbonic anhydrase [CAIX] staining), EGFR status, and intratumoral lymphocyte expression (CD3 staining). Results: Forty-four percent of evaluable tumors had strong HPV signal by pyrosequencing. There was a significant relationship between strong HPV signal and p16 INK4a staining as well as oropharynx location. The strong HPV signal group fared significantly better than others, both in time to progression (TTP, p = 0.008) and overall survival (OS, p = 0.004) for all patients and for the oropharyngeal subset. Positive p16 INK4a staining was associated with better TTP (p = 0.014) and OS (p = 0.00002). There was no relationship between HPV status and tumor pO 2 or CAIX staining. However, HPV status correlated inversely with EGFR reactivity (p = 0.0006) and directly with CD3(+) T-lymphocyte level (p = 0.03). Whereas CAIX and EGFR overexpression were negative prognostic factors regardless of HPV status, CD3(+) T-cell levels was prognostic only in HPV(-) tumors. Conclusion: HPV status was a prognostic factor for progression and survival. It correlated inversely with EGFR expression and directly with T-cell infiltration. The prognostic effect of CAIX and EGFR expression was not influenced by HPV status, whereas intratumoral T-cell levels was significant only for HPV(-) tumors.

  14. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking

    Science.gov (United States)

    Focosi, Daniele

    2016-01-01

    Summary Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises. Significance The aging population in Western countries is causing a progressive reduction of blood donors and a constant increase of blood recipients. Because blood is the main therapeutic option to treat acute hemorrhage, cost-effective alternatives to blood donations are being actively investigated. The enormous replication capability of induced pluripotent stem cells and their promising results in many other fields of medicine could be an apt solution to produce the large numbers of viable cells required in transfusion and usher in a new era in transfusion medicine. The present report describes the potentiality, technological hurdles, and promises of induced pluripotent stem cells to generate red blood cells by redifferentiation. PMID:26819256

  15. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  16. Understanding the build-up of a technological innovation system around hydrogen and fuel cell technologies

    NARCIS (Netherlands)

    Suurs, R.A.A.; Hekkert, M.P.; Smits, R.E.H.M.

    2009-01-01

    This study provides insight into the development of hydrogen and fuel cell technologies in the Netherlands (1980-2007). This is done by applying a Technological Innovation System (TIS) approach. This approach takes the perspective that a technology is shaped by a surrounding network of actors,

  17. Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.

    Science.gov (United States)

    Han, Sung-Woong; Nakamura, Chikashi; Miyake, Jun; Chang, Sang-Mok; Adachi, Taiji

    2014-01-01

    The recent single-cell manipulation technology using atomic force microscopy (AFM) not only allows high-resolution visualization and probing of biomolecules and cells but also provides spatial and temporal access to the interior of living cells via the nanoneedle technology. Here we review the development and application of single-cell manipulations and the DNA delivery technology using a nanoneedle. We briefly describe various DNA delivery methods and discuss their advantages and disadvantages. Fabrication of the nanoneedle, visualization of nanoneedle insertion into living cells, DNA modification on the nanoneedle surface, and the invasiveness of nanoneedle insertion into living cells are described. Different methods of DNA delivery into a living cell, such as lipofection, microinjection, and nanoneedles, are then compared. Finally, single-cell diagnostics using the nanoneedle and the perspectives of the nanoneedle technology are outlined. The nanoneedle-based DNA delivery technology provides new opportunities for efficient and specific introduction of DNA and other biomolecules into precious living cells with a high spatial resolution within a desired time frame. This technology has the potential to be applied for many basic cellular studies and for clinical studies such as single-cell diagnostics.

  18. NEDO fuel/storage technology subcommittee. 18th project report meeting; NEDO nenryo chozo gijutsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Taro Yamayasu, a NEDO (New Energy and Industrial Technology Development Organization) director, reports fuel and storage technologies, taking reference to the research and development of technologies relating to fuel cell power generation, cell power storage system of a novel type, ceramic gas turbine, superconductor-generated power application, wide-area energy utilization network system (urbane eco-energy system), high-temperature superconductor-supported flywheel power storage, demonstration of a novel method of load levelling, demonstration test for the establishment of a centralized control system, and so forth. Reported also is research and development involving a molten carbonate fuel cell power generation system, current status of distributed cell power storage system development (large lithium secondary storage battery technology development), current status of superconductor-generated power application technology, regenerative cycle type 2-shaft ceramic gas turbine for a 300kW-class cogeneration system, high-density latent heat transportation, and so forth. (NEDO)

  19. Technological development and prospect of alkaline fuel cells

    International Nuclear Information System (INIS)

    Meng Ni; Michael KH Leung; Dennis YC Leung

    2006-01-01

    This paper reviewed the technological development of alkaline fuel cell (AFC). Although the technology was popular in 1970's and 1980's, there has been a decline in AFC research over the past decade, mainly due to the poisoning of CO 2 . Continuous efforts have demonstrated that CO 2 concentration could be reduced to an acceptable level by a number of viable methods such as absorption, adsorption, electrochemical process, electrolyte circulation, use of liquid hydrogen, and use of solid anionic exchange membranes. Literature survey showed that AFC lifetime could achieve up to 5000 hours. In addition, the use of ammonia as a fuel for AFC was identified as a promising technology. Comparison between AFC and proton exchange membrane fuel cell (PEMFC) was presented to evaluate the AFC technology and its economics. The present review and assessment showed the promise of AFC for the coming hydrogen economy and sustainable development. (authors)

  20. Fuel cell vehicles: technological solution

    International Nuclear Information System (INIS)

    Lopez Martinez, J. M.

    2004-01-01

    Recently it takes a serious look at fuel cell vehicles, a leading candidate for next-generation vehicle propulsion systems. The green house effect and air quality are pressing to the designers of internal combustion engine vehicles, owing to the manufacturers to find out technological solutions in order to increase the efficiency and reduce emissions from the vehicles. On the other hand, energy source used by currently propulsion systems is not renewable, the well are limited and produce CO 2 as a product from the combustion process. In that situation, why fuel cell is an alternative of internal combustion engine?

  1. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    Science.gov (United States)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed

  2. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    International Nuclear Information System (INIS)

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile; Bours, Vincent; Griffioen, Arjan W.

    2007-01-01

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications

  3. Status of dye solar cell technology as a guideline for further research.

    Science.gov (United States)

    Hinsch, Andreas; Veurman, Welmoed; Brandt, Henning; Jensen, Katrine Flarup; Mastroianni, Simone

    2014-04-14

    Recently, the first commercial dye solar cell (DSC) products based on the mesoscopic principle were successfully launched. Introduction to the market has been accompanied by a strong increase in patent applications in the field during the last four years, which is a good indication of further commercialization activity. Materials and cell concepts have been developed to such extent that easy uptake by industrial manufacturers is possible. The critical phase for broad market acceptance has therefore been reached, which implies focusing on standardization-related research topics. In parallel the number of scientific publications on DSC is growing further (>3500 since 2012), and the range of new or renewed fundamental topics is broadening. A recent example is the introduction of the perovskite mesoscopic cell, for which an efficiency of 14.1% has been certified. Thus, a growing divergence between market introduction and research could be the consequence. Herein, an attempt is made to show that such an unwanted divergence can be prevented, for example, by developing suitable reference-type cell and module concepts as well as manufacturing routes. An in situ cell manufacturing concept that can be applied to mesoscopic-based solar cells in a broader sense is proposed. As a guideline for future module concepts, recent results for large-area, glass-frit-sealed DSC modules from efficiency studies (6.6% active-area efficiency) and outdoor analysis are discussed. Electroluminescence measurements are introduced as a quality tool. Another important point that is addressed is sustainability, which affects both market introduction and the direction of fundamental research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Current status and potential perspectives in classical radiotherapy technology].

    Science.gov (United States)

    Dabić-Stanković, Kata M; Stanković, Jovan B; Radosević-Jelić, Ljiljana M

    2004-01-01

    After purchase of radiotherapy equipment in 2003, classic radiation therapy in Serbia will reach the highest world level. In order to define the highest standards in radiation technology, we analyzed the current status and potential perspectives of radiation therapy. An analysis of present situation in the USA, assumed as the most developed in the world, was done. Available data, collected in the last 3 years (equipment assortment, therapy modalities, workload and manpower) for 284 radiotherapy centers, out of potential 2050, were analyzed. Results were presented as crude percentage and matched to point current status. The analysis showed that CLINAC accelerators are the most popular (82.7%), as well as, ADAC (43.7%) and Focus (CMS) (27.4%) systems for therapy planning. Movement towards virtual simulation is evident (59.3%), although classic "simulation" is not fully eliminated from the radiotherapy chain. The most popular brachytherapy afterloader is Microselectron HDR (71%). About 64.4% centers use IMPAC communication/verification/record system that seems more open than Varis. All centers practice modern radiotherapy modalities and techniques (CPRT, IMRT, SRS/SRT, TBI, IORT, IVBHRT, HDR BHRT, etc.). CT and MRI availability is out of question, but PET is available in 3% of centers, however this percentage is rapidly growing. Up to 350 new patients per year are treated by one accelerator (about 35 pts. a day). Centers are relatively small and utilize 2-3 accelerators on average. Average FTE staffing norm is 4 radiation oncologists, 2-3 medical radiotherapy physicists, about 3 certified medical dosimetrists and about 6 radiotherapy technologists. In the past 5 years relative stagnation in classic radiotherapy has been observed. In spite of substantial investments in technology and consequent improvements, as well as wide introduction of computers in radiotherapy, radiotherapy results have not changed significantly. Vendor developement strategies do not point that

  5. PV status report 2004. Research, Solar cell production and market implementation of photovoltaic s

    International Nuclear Information System (INIS)

    Jager-Waldau, A.

    2004-01-01

    The increasing demand for photovoltaic devices leads to the search for new developments with respect to material use and consumption, device design and production technologies, as well as new concepts to increase the overall efficiency. At present solar cell manufacturing is based on single junction device silicon wafer technology with close to 90% market share. Consistent with the time needed for any major change in the energy infrastructure, another 20 to 30 years of sustained and aggressive growth will be required for photovoltaic to substitute a significant share of the conventional energy sources. This growth will be possible if a continuous introduction of new technologies takes place, made possible by sound fundamental research. In October 2004 the Russian Duma ratified the Kyoto Protocol and it can be expected that the Protocol will now be set into force by the beginning of 2005. This recent development will definitively have an impact on the further implementation of renewable energies and photovoltaic is a prime source to deliver it. The Third Edition of the PV Status Report will widen its view to the enlarged European Union as well as the new player China and tries to give an overview about the current activities regarding Research, Manufacturing and Market Implementation. The opinion given in this report is based on the current information available to the author, and does not reflect the opinion of the European Commission. (author)

  6. Silver-zinc: status of technology and applications

    Energy Technology Data Exchange (ETDEWEB)

    Karpinski, A.P.; Makovetski, B.; Russell, S.J.; Serenyi, J.R.; Williams, D.C. [Yardney Technical Products, Pawcatuck, CT (United States)

    1999-07-01

    available in small cylindrical cells) and lack of an established data base. In spite of the advantages noted for the popular secondary systems, the silver-zinc couple still is the system of choice where high specific energy/energy density, coupled with high specific power/power density are important for high-rate, weight or size-sensitive applications. In the 1950s, Yardney developed the first practical rechargeable silver-zinc cell for an underwater application. The U.S. Navy, recognizing the potential of this system for torpedo propulsion, soon adopted it to power the majority of its electric torpedoes - increasing their speed and range, and allowing more room for increasing the performance capability of the torpedo. One of the first programmes which adopted the silver-zinc technology was the MK58 or `Brush` torpedo which consisted of 44 A h cells. At that time, silver-zinc batteries became the preferred system for many other applications. Some of the unique systems include the largest silver-zinc battery ever made, a 256-ton battery for the Albacore G-5 submarine. This battery consisted of a two-section, two-hundred-and-eighty-cell battery, with each cell rated at 20,000 A h. Each cell was essentially the size of a standard four-drawer filing cabinet. Since that time, many of the silver-zinc applications have considerably scaled down their power requirements. Underwater applications are consistently using the larger sized batteries while the smallest are typically found in missile applications. This paper will describe some of the current activities in addressing the major components of the cell and a summary of the current applications of the silver-zinc system. (orig.)

  7. Lab on a chip technologies for algae detection : a review

    NARCIS (Netherlands)

    Schaap, A.M.; Rohrlack, T.; Bellouard, Y.J.

    2012-01-01

    Over the last few decades, lab on a chip technologies have emerged as powerful tools for high-accuracy diagnosis with minute quantities of liquid and as tools for exploring cell properties in general. In this paper, we present a review of the current status of this technology in the context of algae

  8. Advances in Mammalian Cell Line Development Technologies for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Say Kong Ng

    2013-04-01

    Full Text Available From 2006 to 2011, an average of 15 novel recombinant protein therapeutics have been approved by US Food and Drug Administration (FDA annually. In addition, the expiration of blockbuster biologics has also spurred the emergence of biosimilars. The increasing numbers of innovator biologic products and biosimilars have thus fuelled the demand of production cell lines with high productivity. Currently, mammalian cell line development technologies used by most biopharmaceutical companies are based on either the methotrexate (MTX amplification technology or the glutamine synthetase (GS system. With both systems, the cell clones obtained are highly heterogeneous, as a result of random genome integration by the gene of interest and the gene amplification process. Consequently, large numbers of cell clones have to be screened to identify rare stable high producer cell clones. As such, the cell line development process typically requires 6 to 12 months and is a time, capital and labour intensive process. This article reviews established advances in protein expression and clone screening which are the core technologies in mammalian cell line development. Advancements in these component technologies are vital to improve the speed and efficiency of generating robust and highly productive cell line for large scale production of protein therapeutics.

  9. Development of solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Kab; Kim, Sun Jae; Jung, Choong Hwan; Kim, Kyung Hoh; Park, Ji Yun; Oh, Suk Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Solid Oxide Fuel Cell (SOFC) technologies that use zirconium oxide as the electrolyte material were studied in this present report. SOFC exhibits a very high power generation efficiency of over 50 %, and does not discharge pollution materials such as dusts, sulfur dioxide, and nitrogen oxide. Zirconia, Ni/YSZ (yttria stabilized zirconia), and La-Sr-Mn-Oxide materials were developed for the electrolyte material, for the anode, and for the cathode, respectively. After making thin zirconia plate using tape casting process, anode and cathode powders were screen printed on the zirconia plate for fabricating unit cells. A test system composed of a vertical tube furnace, digital multimeter, DC current supplier, and measuring circuit was constructed for testing the unit cell performance. This system was controlled by a home-made computer program. Founded on this unit cell technology and system, a multi-stack SOFC system was studied. This system was composed of 10 unit cells each of them had an electrode area of 40 x 40 mm. Based on this system design, large and thin zirconia plates of 70 x 70 mm in area was fabricated for the electrolyte. Different from in the unit cell system, interconnectors are needed in the multi-stack system for connecting unit cells electrically. For this interconnectors, Inconel 750 alloy was selected, sliced into wafers, machined, surface finished, and then Pt-plated. 55 figs, 8 tabs, 51 refs. (Author).

  10. Development of solid oxide fuel cell technology

    International Nuclear Information System (INIS)

    Kang, Dae Kab; Kim, Sun Jae; Jung, Choong Hwan; Kim, Kyung Hoh; Park, Ji Yun; Oh, Suk Jin

    1995-01-01

    Solid Oxide Fuel Cell (SOFC) technologies that use zirconium oxide as the electrolyte material were studied in this present report. SOFC exhibits a very high power generation efficiency of over 50 %, and does not discharge pollution materials such as dusts, sulfur dioxide, and nitrogen oxide. Zirconia, Ni/YSZ (yttria stabilized zirconia), and La-Sr-Mn-Oxide materials were developed for the electrolyte material, for the anode, and for the cathode, respectively. After making thin zirconia plate using tape casting process, anode and cathode powders were screen printed on the zirconia plate for fabricating unit cells. A test system composed of a vertical tube furnace, digital multimeter, DC current supplier, and measuring circuit was constructed for testing the unit cell performance. This system was controlled by a home-made computer program. Founded on this unit cell technology and system, a multi-stack SOFC system was studied. This system was composed of 10 unit cells each of them had an electrode area of 40 x 40 mm. Based on this system design, large and thin zirconia plates of 70 x 70 mm in area was fabricated for the electrolyte. Different from in the unit cell system, interconnectors are needed in the multi-stack system for connecting unit cells electrically. For this interconnectors, Inconel 750 alloy was selected, sliced into wafers, machined, surface finished, and then Pt-plated. 55 figs, 8 tabs, 51 refs. (Author)

  11. Status of thorium technology

    International Nuclear Information System (INIS)

    Garg, R.K.; Raghavan, R.V.; Karve, V.M.; Narayandas, G.R.

    1977-01-01

    Although a number of studies have been conducted in various countries to evolve reactor systems based on thorium fuel cycle, its use, so far, is limited to only a few reactors. However, for countries having large reserves of thorium, its utilization is of great significance for their nuclear power programmes. Reasonably assured world resources of thorium in the lower price range have been estimated at more than 500,000 tons of ThO 2 . While most of these resources are in placer deposits in various parts of the world, some vein deposits and uranium ores are other important sources of thorium. Monazite, the most important mineral of thorium, is found in the beach sand deposits along with other heavy minerals like ilmenite, rutile, zircon, and sillimanite etc. Mining of these deposits is usually carried out by suction dredging and separation of monazite from other minerals is effected by a combination of magnetic, electrostatic and gravity separation techniques. Chemical processing of monazite is carried out either by sulphuric acid or caustic treatment, followed by separation of the rare earths and thorium by partial precipitation or leaching. The thorium concentrate is further processed to obtain mantle grade thorium nitrate by chemical purification steps whereas solvent extraction using TBP is adopted for making nuclear-grade material. The purified thorium nitrate is converted to the oxide usually by precipitation as oxalate followed by calcination. The oxide is reduced directly with calcium or converted to the chloride or fluoride and then reduced by calcium or magnesium to obtain thorium metal. Various fuel designs based on the metal or its alloys, mixed oxides or carbides, and dispersed type fuel elements have been developed and accordingly, different fabrication techniques have been employed. Work on irradiation of thorium containing fuel elements and separation of U 233 is being carried out. This paper reviews the status of thorium technology in the world with

  12. Photovoltaic-cell technologies joust for position

    Science.gov (United States)

    Fischetti, M. A.

    1984-03-01

    The three most promising photovoltaic cell technologies, single-crystal-silicon cells, polycrystalline thin films, and amorphous silicon thin films, are reviewed and discussed in terms of present levels of applicability and the prospects for domination of PV markets in the future. A U.S. DOE research plan running from 1984 to 1988 which aims to produce PV modules that will generate electricity at $.20/kWh by 1988 is outlined, and R & D efforts in Japan and Europe are considered. Although GaAs cells have reached efficiencies to 20 percent in the laboratory, the most successful commercial products have been single-crystal-silicon cells with efficiencies between 11 and 12 percent. It is suggested that the immiment rise of amorphous silicon in the late 1980s may thwart polycrystalline-cell development before it has a chance to flourish.

  13. The Status of Information Technology in Iranian Hospital Libraries: A Comparative Study of Managers' Attitude

    Science.gov (United States)

    Isfandyari-Moghaddam, Alireza; Sedehi, Maryam; Dehghani, Mozhdeh; Nemati-Anaraki, Leila; Hasanzadeh-Dizaji, Elaheh

    2013-01-01

    Purpose: The purpose of this paper is to compare the attitude of the managers of libraries located at Iran, Tehran and Shahid Beheshti Medical Sciences Universities' training hospitals, on the status of information technology (IT) in the mentioned libraries. Design/methodology/approach: This study employed a researcher-made questionnaire. The…

  14. Status of the Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and DTU Energy Conversion

    DEFF Research Database (Denmark)

    Christiansen, N.; Primdahl, S.; Wandel, Marie

    2013-01-01

    Many years of close collaboration between Topsoe Fuel Cell A/S (TOFC) and Risø (to day DTU Energy Conversion) on SOFC development have ensured an efficient transfer of SOFC basic know how to industrial technology. The SOFC development in the consortium includes material development...... and manufacturing of materials, cells and stacks based on state of the art as well as innovative strategies. Today TOFC provides the SOFC technology platform: Cells, stacks, integrated multi stack module and PowerCore units that integrate stack modules with hot fuel processing units for high electrical efficiency...

  15. Enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell with different p53 status

    International Nuclear Information System (INIS)

    Pang Dequan; Wang Peiguo; Wang Ping; Zhang Weiming

    2008-01-01

    Objective: To investigate the enhancement of radiosensitivity of recombinant Ad-p53 gene on human lung adenocarcinoma cell lines(A549 and GLC-82) with different p53 status in vitro. Methods: Two human lung adenocarcinoma cell lines of A549 and GLC-82 were examined on their difference in p53 status with immunohistochemistry stain and PCR-SSCP technique. Expand Ad-wtp53 was transfected into tumor cells. Clonogenic assays were performed to evaluate the inhibition effect on cell growth and the degree of sensitization to irradiation. Apoptosis and cell cycle changes were determined using the flow cytometry assay. Results: The A549 cell line presented positive P53 expression while GLC-82 negative. GLC-82 bore mutant p53 on the exon 7. The wtp53 gene could be efficiently expressed in the two cell lines and greatly inhibit the cell growth. Its efficiency didn't depend on the intrinsic p53 genetic status. After irradiation, its function of inducing G 1 arrest and apoptosis on GLC-82 cell line was much stronger than the A549 cell line. In both the A549 and GLC-82 cell lines, the combination of Ad-p53 plus radiation resulted in more apoptosis than the others. There was no significant difference between two groups. Conclusions: Ad-p53 can depress the tumor growth and enhance the radiosensitivity of human lung adenocarcinoma cells. And this effect is independent of endogenous p53 status. (authors)

  16. Quantifying changes in the cellular thiol-disulfide status during differentiation of B cells into antibody-secreting plasma cells

    DEFF Research Database (Denmark)

    Hansen, Rosa Rebecca Erritzøe; Otsu, Mieko; Braakman, Ineke

    2013-01-01

    by the differentiation, steady-state levels of glutathionylated protein thiols are less than 0.3% of the total protein cysteines, even in fully differentiated cells, and the overall protein redox state is not affected until late in differentiation, when large-scale IgM production is ongoing. A general expansion......Plasma cells produce and secrete massive amounts of disulfide-containing antibodies. To accommodate this load on the secretory machinery, the differentiation of resting B cells into antibody-secreting plasma cells is accompanied by a preferential expansion of the secretory compartments of the cells...... of the ER does not affect global protein redox status until an extensive production of cargo proteins has started....

  17. Stem cells technology: a powerful tool behind new brain treatments.

    Science.gov (United States)

    Duru, Lucienne N; Quan, Zhenzhen; Qazi, Talal Jamil; Qing, Hong

    2018-06-18

    Stem cell research has recently become a hot research topic in biomedical research due to the foreseen unlimited potential of stem cells in tissue engineering and regenerative medicine. For many years, medicine has been facing intense challenges, such as an insufficient number of organ donations that is preventing clinicians to fulfill the increasing needs. To try and overcome this regrettable matter, research has been aiming at developing strategies to facilitate the in vitro culture and study of stem cells as a tool for tissue regeneration. Meanwhile, new developments in the microfluidics technology brought forward emerging cell culture applications that are currently allowing for a better chemical and physical control of cellular microenvironment. This review presents the latest developments in stem cell research that brought new therapies to the clinics and how the convergence of the microfluidics technology with stem cell research can have positive outcomes on the fields of regenerative medicine and high-throughput screening. These advances will bring new translational solutions for drug discovery and will upgrade in vitro cell culture to a new level of accuracy and performance. We hope this review will provide new insights into the understanding of new brain treatments from the perspective of stem cell technology especially regarding regenerative medicine and tissue engineering.

  18. Recent technological updates and clinical applications of induced pluripotent stem cells.

    Science.gov (United States)

    Diecke, Sebastian; Jung, Seung Min; Lee, Jaecheol; Ju, Ji Hyeon

    2014-09-01

    Induced pluripotent stem cells (iPSCs) were first described in 2006 and have since emerged as a promising cell source for clinical applications. The rapid progression in iPSC technology is still ongoing and directed toward increasing the efficacy of iPSC production and reducing the immunogenic and tumorigenic potential of these cells. Enormous efforts have been made to apply iPSC-based technology in the clinic, for drug screening approaches and cell replacement therapy. Moreover, disease modeling using patient-specific iPSCs continues to expand our knowledge regarding the pathophysiology and prospective treatment of rare disorders. Furthermore, autologous stem cell therapy with patient-specific iPSCs shows great propensity for the minimization of immune reactions and the provision of a limitless supply of cells for transplantation. In this review, we discuss the recent updates in iPSC technology and the use of iPSCs in disease modeling and regenerative medicine.

  19. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  20. Induced pluripotent stem cell technology: a decade of progress.

    Science.gov (United States)

    Shi, Yanhong; Inoue, Haruhisa; Wu, Joseph C; Yamanaka, Shinya

    2017-02-01

    Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, enormous progress has been made in stem cell biology and regenerative medicine. Human iPSCs have been widely used for disease modelling, drug discovery and cell therapy development. Novel pathological mechanisms have been elucidated, new drugs originating from iPSC screens are in the pipeline and the first clinical trial using human iPSC-derived products has been initiated. In particular, the combination of human iPSC technology with recent developments in gene editing and 3D organoids makes iPSC-based platforms even more powerful in each area of their application, including precision medicine. In this Review, we discuss the progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, and consider the remaining challenges and the emerging opportunities in the field.

  1. Developing fossil fuel based technologies

    International Nuclear Information System (INIS)

    Manzoori, A.R.; Lindner, E.R.

    1991-01-01

    Some of the undesirable effects of burning fossil fuels in the conventional power generating systems have resulted in increasing demand for alternative technologies for power generation. This paper describes a number of new technologies and their potential to reduce the level of atmospheric emissions associated with coal based power generation, such as atmospheric and pressurized fluid bed combustion systems and fuel cells. The status of their development is given and their efficiency is compared with that of conventional pc fired power plants. 1 tab., 7 figs

  2. Current status and prospect of radiation technology for the safety and security of food

    International Nuclear Information System (INIS)

    Byun, Myung Woo

    2009-01-01

    Since 1960, radiation technology (RT), which had been known as the method eliminating the biologically hazardous factors of the products in the food, medical, pharmaceutical and cosmetic industries, was comprehensively investigated. The safety of food irradiation has been throughout evaluated with scientific experiments. Recently, RT has been associated with other high technologies such as biotechnology and nanotechnology, and resulted in the innovative products. Through these fusion technology with RT, the new items with high functionality and value will be shown. But, until now, consumers' acceptance on radiation is still the problem to be solved for further development. To make the consumer correctly understand RT, the benefits and defects of RT should be informed and there should be the legislated policy for the industrialization of RT by government. Therefore, this review will introduce the current status of food irradiation in the world, the safety and national agreements and the recent results from radiation fusion technology, and suggest the further work

  3. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells are critically important for antiviral immunity. Devastating viruses like porcine reproductive and respiratory syndrome virus (PRRSV) are capable of directly infecting these cells, subverting host immunity. Monocyte-derived DCs (mDCs) are major target cells in ...

  4. THE THIOREDOXIN SYSTEM IN REGULATING MCF-7 CELL PROLIFERATION UNDER REDOX STATUS MODULATION

    Directory of Open Access Journals (Sweden)

    E. A. Stepovaya

    2016-01-01

    Full Text Available Introduction. Despite the available data on tumor cell functioning under the conditions of free radical-mediated oxidation, the mechanisms of redox regulation, cell proliferation management and apoptosis avoidance remain understudied.The objective of the study was to identify the role of the thioredoxin system in regulating MCF-7 breast cancer cell proliferation under redox status modulation with 1.4-dithioerythritol.Material and methods. The studies were conducted on the MCF-7 breast cancer cell line, grown in adherent cell culture. Cell redox status was modulated with5 mM N-ethylmaleimide – an SH group and peptide inhibitor and5 mM 1.4-dithioerythritol – a thiol group protector. The cell cycle was evaluated by flow cytometry, the same technique was used to measure the reactive oxygen species concentration. The levels of reduced and oxidized glutathione and the activity of thioredoxin reductase were identified by spectrophotometry. The intracellular concentrations of thioredoxin, cyclin E and cyclin-dependent kinase 2 were determined by Western blot analysis.Results and discussion. The essential role of the thioredoxin system in regulating MCF-7 breast cancer cell proliferation was exhibited. S-phase arrest under the effect of N-ethylmaleimide and G0/G1-phase arrest under the effect of 1.4-dithioerythritol are associated with the changes in the activity of redox-sensitive protein complexes (cyclins and cyclin-dependent kinases that regulate cell proliferation.Conclusion. Redoxdependent modulation of proliferation regulating intracellular protein activity occurs due to the thioredoxin system. This is a promising research area for seeking molecular targets of breast cell malignization. 

  5. Forward Technology Solar Cell Experiment First On-Orbit Data

    Science.gov (United States)

    Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Warner, J. H.; Lorentzen, J. R.; Messenger, S. R.; Bruninga, R.; hide

    2007-01-01

    This paper presents first on orbit measured data from the Forward Technology Solar Cell Experiment (FTSCE). FTSCE is a space experiment housed within the 5th Materials on the International Space Station Experiment (MISSE-5). MISSE-5 was launched aboard the Shuttle return to flight mission (STS-114) on July 26, 2005 and deployed on the exterior of the International Space Station (ISS). The experiment will remain in orbit for nominally one year, after which it will be returned to Earth for post-flight testing and analysis. While on orbit, the experiment is designed to measure a 36 point current vs. voltage (IV) curve on each of the experimental solar cells, and the data is continuously telemetered to Earth. The experiment also measures the solar cell temperature and the orientation of the solar cells to the sun. A range of solar cell technologies are included in the experiment including state-of-the-art triple junction InGaP/GaAs/Ge solar cells from several vendors, thin film amorphous Si and CuIn(Ga)Se2 cells, and next-generation technologies like single-junction GaAs cells grown on Si wafers and metamorphic InGaP/InGaAs/Ge triple-junction cells. In addition to FTSCE, MISSE-5 also contains a Thin-Film Materials experiment. This is a passive experiment that will provide data on the effect of the space environment on more than 200 different materials. FTSCE was initially conceived in response to various on-orbit and ground test anomalies associated with space power systems. The Department of Defense (DoD) required a method of rapidly obtaining on orbit validation data for new space solar cell technologies, and NRL was tasked to devise an experiment to meet this requirement. Rapid access to space was provided by the MISSE Program which is a NASA Langley Research Center program. MISSE-5 is a completely self-contained experiment system with its own power generation and storage system and communications system. The communications system, referred to as PCSat, transmits

  6. Curcumin protects neuronal cells against status-epilepticus-induced hippocampal damage through induction of autophagy and inhibition of necroptosis.

    Science.gov (United States)

    Wang, Jin; Liu, Yuan; Li, Xiao-Hui; Zeng, Xiang-Chang; Li, Jian; Zhou, Jun; Xiao, Bo; Hu, Kai

    2017-05-01

    Status epilepticus, the most severe form of epilepsy, is characterized by progressive functional and structural damage in the hippocampus, ultimately leading to the development and clinical appearance of spontaneous, recurrent seizures. Although the pathogenesis underlying epileptogenesis processes remains unclear, a substantial body of evidence has shown that status epilepticus acts as an important initial factor in triggering epileptogenesis. Notably, besides classical cell death mechanisms such as apoptosis and necrosis, 2 novel regulators of cell fate known as necroptosis and autophagy, are demonstrated to be involved in neuronal damage in various neurodegenerative and neuropsychiatric disorders. However, whether necroptosis and autophagy play a role in post-status-epilepticus rat hippocampus and other epilepsy mechanisms deserves further research effort. In addition, research is needed to determine whether compounds from traditional Chinese herbs possess antiepileptic effects through the modulation of necroptosis and autophagy. In this study, we found that curcumin, a polyphenolic phytochemical extracted from the Curcuma longa plant, protects neuronal cells against status-epilepticus-induced hippocampal neuronal damage in the lithium-pilocarpine-induced status epilepticus rat model through induction of autophagy and inhibition of necroptosis.

  7. A FISH-based method for assessment of HER-2 amplification status in breast cancer circulating tumor cells following CellSearch isolation

    Directory of Open Access Journals (Sweden)

    Frithiof H

    2016-11-01

    Full Text Available Henrik Frithiof,1 Kristina Aaltonen,1 Lisa Rydén2,3 1Division of Oncology and Pathology, 2Division of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, 3Department of Surgery, Skåne University Hospital, Malmö, Sweden Introduction: Amplification of the HER-2/neu (HER-2 proto-oncogene occurs in 10%–15% of primary breast cancer, leading to an activated HER-2 receptor, augmenting growth of cancer cells. Tumor classification is determined in primary tumor tissue and metastatic biopsies. However, malignant cells tend to alter their phenotype during disease progression. Circulating tumor cell (CTC analysis may serve as an alternative to repeated biopsies. The Food and Drug Administration-approved CellSearch system allows determination of the HER-2 protein, but not of the HER-2 gene. The aim of this study was to optimize a fluorescence in situ hybridization (FISH-based method to quantitatively determine HER-2 amplification in breast cancer CTCs following CellSearch-based isolation and verify the method in patient samples. Methods: Using healthy donor blood spiked with human epidermal growth factor receptor 2 (HER-2-positive breast cancer cell lines, SKBr-3 and BT-474, and a corresponding negative control (the HER-2-negative MCF-7 cell line, an in vitro CTC model system was designed. Following isolation in the CellSearch system, CTC samples were further enriched and fixed on microscope slides. Immunocytochemical staining with cytokeratin and 4',6-diamidino-2'-phenylindole dihydrochloride identified CTCs under a fluorescence microscope. A FISH-based procedure was optimized by applying the HER2 IQFISH pharmDx assay for assessment of HER-2 amplification status in breast cancer CTCs. Results: A method for defining the presence of HER-2 amplification in single breast cancer CTCs after CellSearch isolation was established using cell lines as positive and negative controls. The method was validated in blood from breast cancer patients

  8. Genetic Influence on the Peripheral Blood CD4+ T-cell Differentiation Status in CMV Infection

    DEFF Research Database (Denmark)

    Goldeck, David; Larsen, Lisbeth Aagaard; Christiansen, Lene

    2016-01-01

    from the Danish Twin Registry for their T-cell differentiation status, assessed by surface expression of CD27, CD28, CD57, and KLRG-1. We observed a significant intraclass correlation between cotwins of MZ, but not DZ pairs for the differentiation status of CD4(+) and CD8(+) subsets. Classical......A latent infection with cytomegalovirus (CMV), a ubiquitous beta herpesvirus, is associated with an accumulation of late-differentiated memory T-cells, often accompanied by a reciprocal reduced frequency of early-differentiated cells (commonly also referred to as "naïve"). However, this impact...... of CMV on T-cell phenotypes is variable between individuals. Our previous findings in a subgroup of participants in the Leiden familial Longevity Study indicated an important role of genetics. For further testing, we have analyzed middle-aged monozygotic (MZ, n = 42) and dizygotic (DZ, n = 39) twin pairs...

  9. Information technologies in optimization process of monitoring of software and hardware status

    Science.gov (United States)

    Nikitin, P. V.; Savinov, A. N.; Bazhenov, R. I.; Ryabov, I. V.

    2018-05-01

    The article describes a model of a hardware and software monitoring system for a large company that provides customers with software as a service (SaaS solution) using information technology. The main functions of the monitoring system are: provision of up-todate data for analyzing the state of the IT infrastructure, rapid detection of the fault and its effective elimination. The main risks associated with the provision of these services are described; the comparative characteristics of the software are given; author's methods of monitoring the status of software and hardware are proposed.

  10. Electronic Nose Technology to Measure Soil Microbial Activity and Classify Soil Metabolic Status

    OpenAIRE

    Fabrizio De Cesare; Elena Di Mattia; Simone Pantalei; Emiliano Zampetti; Vittorio Vinciguerra; Antonella Macagnano

    2011-01-01

    The electronic nose (E-nose) is a sensing technology that has been widely used to monitor environments in the last decade. In the present study, the capability of an E-nose, in combination with biochemical and microbiological techniques, of both detecting the microbial activity and estimating the metabolic status of soil ecosystems, was tested by measuring on one side respiration, enzyme activities and growth of bacteria in natural but simplified soil ecosystems over 23 days of incubation thr...

  11. Dish concentrators for solar thermal energy - Status and technology development

    Science.gov (United States)

    Jaffe, L. D.

    1981-01-01

    Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.

  12. Total Isolation Status Monitoring and Management System by CAD Assisted Technology

    International Nuclear Information System (INIS)

    Nakamura, Masaaki

    1995-01-01

    Isolation tasks in a nuclear power station require high confidence and quick response particularly during the annual inspection when the equipment must be checked in a safe and planned manner. To realize these advanced isolation works, JAPC has developed TOtal Isolation Status Monitoring and Management System using CAD Assisted Technology. This system, TOMM-CAT, developed under the concept of 'User friendly advanced man-machine interface', allows planning and management to be performed on a CRT display. TOMM-CAT allows isolation tasks to be performed accurately and efficiently in conjunction with equipment information from the existing Job Order Management System, which runs on the station host computer. (author)

  13. LNG - Status in Denmark. Technology and potential. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2012-05-15

    The interest for LNG both on a small and a large scale is increasing worldwide. The experiences and knowledge on LNG is limited in Denmark. The Danish gas companies' Technical Management Group (TCG) has asked for a status report including a technology description and an evaluation of the potential in Denmark. A survey of primarily small-scale LNG technology is done in the report. The focus is motivated by the new areas of gas utilisation that become possible with small-scale LNG. Small-scale LNG in this study is defined as LNG stored and used at the application or in an isolated gas grid. The small-scale use of LNG has today an almost negligible share of the total LNG trade but offers interesting new applications for gas utilisation. LNG on a small scale can be used primarily as: 1) Ship fuel. 2) Truck fuel (heavy duty long distance). 3) Individual users not connected to the natural gas grid. 4) Backup for upgraded biogas to individual users and vehicle fleets. 5) Security of supply or supply enhancement of heavily loaded parts of the gas grid. 6) Small-scale storage and/or peak shaving. All but the first topics are natural uses for the current Danish gas distributors. LNG as ship fuel may engage other specialized LNG companies. The report contains a technical description of the parts in primarily small-scale LNG handling and operation. Liquefaction, transport, storage, engine technologies, gas quality and safety aspects related to LNG are covered. There seem to be two more or less separate paths for LNG in Denmark, onshore and off-shore use. These are not, apparently, sharing their experiences and knowledge. Rules and regulations are also different which may create some problems in the interface, for example ship bunkering. Further studies are suggested in the area of gas quality and engine technologies and adaptation of foreign guidelines for small-scale installations to Danish conditions. These guidelines ought to be based on international standards and

  14. Hydrogen storage and fuel cells

    Science.gov (United States)

    Liu, Di-Jia

    2018-01-01

    Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.

  15. The Research on Polymer Microcapsulation for Cell Technology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; LI Min; SONG Hong; FANG Yi; HUA Hui; CHEN Li-guo; ZHOU Wei; WANG Zheng-rong

    2004-01-01

    ).The applications of polymer microcapsules in cell technologyThe "artificial cell" is the biological active microcapsule used in biological and medical fields.The applications of cells (including transgenic cells, the same as artificial cells) technology include several aspects as follows:3.1. Microcapsulation of artificial red cell3.2. Microcapsule of artificial cell of biological enzyme3.3. Microcapsule of artificial cell of magnetic material3.4. Microcapsule of artificial cell of active carbon3.5. Microcapsule of active biological cell

  16. Reflection of Information Technologies over the Information Professionals in Terms of Status: A Survey on the Librarians in Ankara

    Directory of Open Access Journals (Sweden)

    Semanur Öztemiz

    2013-11-01

    Full Text Available In order not to succumb to technologies that carry out tasks similar to those performed by humans, modern professional understanding makes it essential to adopt reconciliatory approaches. Because it requires less effort, the partnership between manpower and technology allows professional activities to be carried out in a shorter time and results in greater product or service output. In addition, this partnership deeply affects the workforce responsible for professional implementation. Developing technologies have brought about various changes in education and job titles and particularly in the professional specifications for information professionals. This study aims to set forth the reflections of change on the status extent, based on the information professionals ’ experiences. This study is based on descriptive methodology and covers 106 information professionals working in public libraries, university libraries and in the libraries of those institutions attached to the Prime Ministry in the Turkish capital city Ankara. This research finds that changes in information technologies have had meaningful impacts in terms of indicators of social status such as value, respectability, financial income and professional interest.

  17. A review on the current status and production technology of {sup 32,} {sup 33}P-orthophosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ul Jae; Han, Hyun Soo; Cho, Woon Kap; Kuznetsov, Rostislav A

    2000-10-01

    The current status of {sup 32}, {sup 33}P-Orthophosphoric acid production technology is reviewed. The following aspects of the technology are covered: - production of phosphorus-32 and phosphorus-33 using various nuclear reactions; - chemical properties of sulfur and phosphorus effecting the technology of radioactive phosphorus production; - chemical state of {sup 32}, {sup 33}P in neutron irradiated sulfur; - the technology of radioactive phosphorus isolation from neutron irradiated target and orthophosphoric acid production; - purification of {sup 32}, {sup 33}P-orthophosphoric acid from impurities and some related problems, like the nature of impurities, the storage of the final product, etc. - the quality control procedures of carrier-free ({sup 32}, {sup 33}P)-orthophosphoric acid preparations.

  18. Test and Approval Center for Fuel Cell and Hydrogen Technologies: Phase I. Initiation

    DEFF Research Database (Denmark)

    already spent on these technologies also lead to commercial success. The project ‘Test and Approval Center for Fuel Cell and Hydrogen Technologies: Phase I. Initiation’ was aiming at starting with the Establishment of such a center. The following report documents the achievements within the project...... of the fluctuating wind energy. As the fuel cell and hydrogen technologies come closer to commercialization, development of testing methodology, qualified testing and demonstration become increasingly important. Danish industrial players have expressed a strong need for support in the process to push fuel cell...... and hydrogen technologies from the research and development stage into the commercial domain. A Center to support industry with test, development, analysis, approval, certification, consultation, and training in the areas of fuel cell and hydrogen technologies was needed. Denmark has demonstrated leading...

  19. Present status of laser technology for maintenance and repair

    International Nuclear Information System (INIS)

    Sano, Yuji

    2001-01-01

    A laser has superior spatial and timely controllability and has no repulsive force at its use, it is a tool suitable for remote operation. And, as a partial processing with low exotherm and deformation by its use becomes possible, it can have an advantage omissible for post processes such as heat treatment and so on. Therefore, on in-situ repair of present constructions, laser is thought to be an optimum tool. And, in nuclear energy plants, maintenance and management of their instruments are important, and then a number of technical developments activating its advantages have been carried out. Above all, repair engineering around a reactor has a number of places difficult to access them for its operators, so remote engineering using laser is desired for in special. Here was described on the present status of development and realization containing protect conservation and inspection repair technology using laser. (G.K.)

  20. The emergence of new technology-based industries: the case of fuel cells and its technological relatedness to regional knowledge bases

    DEFF Research Database (Denmark)

    Tanner, Anne Nygaard

    2016-01-01

    to emerging radical technologies that create the foundation for new industries. The article develops a new measure for technological relatedness between the knowledge base of a region and that of a radical technology based on patent classes. It demonstrates that emerging fuel cell technology develops where...... the regional knowledge base is technologically related to that of fuel cells and consequently confirms the evolutionary thesis.......Evolutionary economic geographers propose that regional diversification is a path-dependent process whereby industries grow out of pre-existing industrial structures through technologically related localised knowledge spillovers and learning. This article examines whether this also applies...

  1. Development of exosome surface display technology in living human cells

    International Nuclear Information System (INIS)

    Stickney, Zachary; Losacco, Joseph; McDevitt, Sophie; Zhang, Zhiwen; Lu, Biao

    2016-01-01

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell–cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.

  2. Development of exosome surface display technology in living human cells

    Energy Technology Data Exchange (ETDEWEB)

    Stickney, Zachary, E-mail: zstickney@scu.edu; Losacco, Joseph, E-mail: jlosacco@scu.edu; McDevitt, Sophie, E-mail: smmcdevitt@scu.edu; Zhang, Zhiwen, E-mail: zzhang@scu.edu; Lu, Biao, E-mail: blu2@scu.edu

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell–cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.

  3. Status of international cooperation in nuclear technology on testing/research reactors between JAEA and INP-NNC

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi; Tsuchiya, Kunihiko; Takemoto, Noriyuki; Kimura, Akihiro; Tanimoto, Masataka; Izumo, Hironobu; Chakrov, Petr; Gizatulin, Shamil; Chakrova, Yelena; Ludmila, Chkushuina; Asset, Shaimerdenov; Nataliya, Romanova

    2012-02-01

    Based on the implementing arrangement between National Nuclear Center of the Republic of Kazakhstan (NNC) and the Japan Atomic Energy Agency (JAEA) for 'Nuclear Technology on Testing/Research Reactors' in cooperation in Research and Development in Nuclear Energy and Technology, four specific topics of cooperation (STC) have been carried out from June, 2009. Four STCs are as follows; (1) STC No.II-1 : International Standard of Instrumentation. (2) STC No.II-2 : Irradiation Technology of RI Production. (3) STC No.II-3 : Lifetime Expansion of Beryllium Reflector. (4) STC No.II-4 : Irradiation Technology for NTD-Si. The information exchange, personal exchange and cooperation experiments are carried out under these STCs. The status in the field of nuclear technology on testing/research reactors in the implementing arrangement is summarized, and future plans of these specific topics of cooperation are described in this report. (author)

  4. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  5. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-01

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  6. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  7. The Status of Technology and Engineering Education in the United States: A Fourth Report of the Findings from the States (2011-12)

    Science.gov (United States)

    Moye, Johnny J.; Dugger, William E., Jr.; Starkweather, Kendall N.

    2012-01-01

    Technology and engineering education continues to evolve as it becomes more apparent that students need this information to become more successful in college and careers. The International Technology and Engineering Educators Association (ITEEA ) has tracked the status of technology education in the United States in three separate studies over the…

  8. Process engineering and economic evaluations of diaphragm and membrane chlorine cell technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The chlor-alkali manufacturing technologies of (1), diaphragm cells (2), current technology membrane cells (3), catalytic cathode membrane cells (4), oxygen-cathode membrane cells and to a lesser extent several other related emerging processes are studied. Comparisons have been made on the two bases of (1) conventional industrial economics, and (2) energy consumption. The current diaphragm cell may have a small economic advantage over the other technologies at the plant size of 544 metric T/D (600 T/D). The three membrane cells all consume less energy, with the oxygen-cathode cell being the lowest. The oxygen-cathode cell appears promising as a low energy chlor-alkali cell where there is no chemical market for hydrogen. Federal funding of the oxygen-cathode cell has been beneficial to the development of the technology, to electrochemical cell research, and may help maintain the US's position in the international chlor-alkali technology marketplace. Tax law changes inducing the installation of additional cells in existing plants would produce the quickest reduction in power consumption by the chlor-alkali industry. Alternative technologies such as the solid polymer electrolyte cell, the coupling of diaphragm cells with fuel cells and the dynamic gel diaphragm have a strong potential for reducing chloralkali industry power consumption. Adding up all the recent and expected improvements that have become cost-effective, the electrical energy required to produce a unit of chlorine by 1990 should be only 50% to 60% of that used in 1970. In the United States the majority of the market does not demand salt-free caustic. About 75% of the electrolytic caustic is produced in diaphragm cells and only a small part of that is purified. This study indicates that unless membrane cell costs are greatly reduced or a stronger demand develops for salt-free caustic, the diaphragm cells will remain competitive. (WHK)

  9. Comprehensive assessment of the status scientific and technical projects using Technology Project Readiness Level

    Directory of Open Access Journals (Sweden)

    A. N. Petrov

    2016-01-01

    Full Text Available The balanced methodology for assessing the Technology Project Readiness Level for commercialization (TPRL is proposed. TPRL allows to determine the dynamics and balance of development projects that use the standardized approaches used in assessing the readiness of the technology. Validation of the methodology undertaken for the projects of Federal target programs “Research and development on priority directions of development of scientific-technological complex of Russia for 2007–2013” and “Research and development on priority directions of development of scientific-technological complex of Russia for 2014–2020”. The obtained results showed the possibility of application of the methodology for the evaluation of projects, improving efficiency of expert activity in the evaluation of projects, monitoring the status of individual project and group of projects (portfolio. The application of the methodology allowed us to improve the management of individual project and portfolio of projects.Methodology TPRL will allow the implementers, industry partners, investors, and innovative industrial companies to improve the efficiency of its activities.

  10. Proinflammatory T Cell Status Associated with Early Life Adversity.

    Science.gov (United States)

    Elwenspoek, Martha M C; Hengesch, Xenia; Leenen, Fleur A D; Schritz, Anna; Sias, Krystel; Schaan, Violetta K; Mériaux, Sophie B; Schmitz, Stephanie; Bonnemberger, Fanny; Schächinger, Hartmut; Vögele, Claus; Turner, Jonathan D; Muller, Claude P

    2017-12-15

    Early life adversity (ELA) has been associated with an increased risk for diseases in which the immune system plays a critical role. The ELA immune phenotype is characterized by inflammation, impaired cellular immunity, and immunosenescence. However, data on cell-specific immune effects are largely absent. Additionally, stress systems and health behaviors are altered in ELA, which may contribute to the generation of the ELA immune phenotype. The present investigation tested cell-specific immune differences in relationship to the ELA immune phenotype, altered stress parameters, and health behaviors in individuals with ELA ( n = 42) and those without a history of ELA (control, n = 73). Relative number and activation status (CD25, CD69, HLA-DR, CD11a, CD11b) of monocytes, NK cells, B cells, T cells, and their main subsets were assessed by flow cytometry. ELA was associated with significantly reduced numbers of CD69 + CD8 + T cells ( p = 0.022), increased numbers of HLA-DR + CD4 and HLA-DR + CD8 T cells ( p ELA also showed a trend toward higher numbers of CCR4 + CXCR3 - CCR6 + CD4 T cells. Taken together, our data suggest an elevated state of immune activation in ELA, in which particularly T cells are affected. Although several aspects of the ELA immune phenotype were related to increased activation markers, neither stress nor health-risk behaviors explained the observed group differences. Thus, the state of immune activation in ELA does not seem to be secondary to alterations in the stress system or health-risk behaviors, but rather a primary effect of early life programming on immune cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Impact of the p53 status of tumor cells on extrinsic and intrinsic apoptosis signaling.

    Science.gov (United States)

    Wachter, Franziska; Grunert, Michaela; Blaj, Cristina; Weinstock, David M; Jeremias, Irmela; Ehrhardt, Harald

    2013-04-17

    The p53 protein is the best studied target in human cancer. For decades, p53 has been believed to act mainly as a tumor suppressor and by transcriptional regulation. Only recently, the complex and diverse function of p53 has attracted more attention. Using several molecular approaches, we studied the impact of different p53 variants on extrinsic and intrinsic apoptosis signaling. We reproduced the previously published results within intrinsic apoptosis induction: while wild-type p53 promoted cell death, different p53 mutations reduced apoptosis sensitivity. The prediction of the impact of the p53 status on the extrinsic cell death induction was much more complex. The presence of p53 in tumor cell lines and primary xenograft tumor cells resulted in either augmented, unchanged or reduced cell death. The substitution of wild-type p53 by mutant p53 did not affect the extrinsic apoptosis inducing capacity. In summary, we have identified a non-expected impact of p53 on extrinsic cell death induction. We suggest that the impact of the p53 status of tumor cells on extrinsic apoptosis signaling should be studied in detail especially in the context of therapeutic approaches that aim to restore p53 function to facilitate cell death via the extrinsic apoptosis pathway.

  12. Thin film solar cell technology in Germany

    International Nuclear Information System (INIS)

    Diehl, W.; Sittinger, V.; Szyszka, B.

    2005-01-01

    Within the scope of limited nonrenewable energy resources and the limited capacity of the ecosystem for greenhouse gases and nuclear waste, sustainability is one important target in the future. Different energy scenarios showed the huge potential for photovoltaics (PV) to solve this energy problem. Nevertheless, in the last decade, PV had an average growth rate of over 20% per year. In 2002, the solar industry delivered more than 500 MWp/year of photovoltaic generators [A. Jaeger-Waldau, A European Roadmap for PV R and D, E-MRS Spring Meeting, (2003)]. More than 85% of the current production involves crystalline silicon technologies. These technologies still have a high cost reduction potential, but this will be limited by the silicon feedstock. On the other hand the so-called second generation thin film solar cells based on a-Si, Cu(In,Ga)(Se,S 2 (CIGS) or CdTe have material thicknesses of a few microns as a result of their direct band gap. Also, the possibility of circuit integration offers an additional cost reduction potential. Especially in Germany, there are a few companies who focus on thin film solar cells. Today, there are two manufacturers with production lines: the Phototronics (PST) division of RWE-Schott Solar with a-Si thin film technology and the former Antec Solar GmbH (now Antec Solar Energy GmbH) featuring the CdTe technology. A pilot line based on CIGS technology is run by Wuerth Solar GmbH. There is also a variety of research activity at other companies, namely, at Shell Solar, Sulfurcell Solartechnik GmbH, Solarion GmbH and the CIS-Solartechnik GmbH. We will give an overview on research activity on various thin film technologies, as well as different manufacturing and production processes in the companies mentioned above. (Author)

  13. Periodontal status of HIV infected patients with special reference to CD4 cell count in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Shallu Rozra

    2012-12-01

    Full Text Available Objective: To evaluate the periodontal status of HIV seropositive patients and to find out if any correlation exists between the severity of periodontal disease and the CD4 cell count in HIV patients. Methods: One hundred and thirty patients attending the Viral Diseases OPD, Calcutta School of Tropical Medicine, Kolkata were examined. They were grouped according to the CD4 cell count as Group A - Subjects with CD4 Cell count < 200/ 毺 L and Group B - Subjects with CD4 Cell count 曒 200/ 毺 L. Their community periodontal index of treatment needs (CPITN score were recorded. Results: It was found that most of the patients in each group were having score ‘2’ (i.e. presence of supra or subgingival calculus, as their highest score. A statistically significant association was found between immune status as depicted by CD4 cell count and periodontal status as shown by highest CPITN score in the present study. Conclusions: The present study confirms the effect of immunosuppression on periodontal diseases in HIV infected patients.

  14. HTGR technology development: status and direction

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1982-01-01

    During the last two years there has been an extensive and comprehensive effort expended primarily by General Atomic (GA) in generating a revised technology development plan. Oak Ridge National Laboratory (ORNL) has assisted in this effort, primarily through its interactions over the past years in working together with GA in technology development, but also through detailed review of the initial versions of the technology development plan as prepared by GA. The plan covers Fuel Technology, Materials Technology (including metals, graphite, and ceramics), Plant Technology (including methods, safety, structures, systems, heat exchangers, control and electrical, and mechanical), and Component Design Verification and Support areas

  15. The status of two-arm bilateral servomanipulator system development

    International Nuclear Information System (INIS)

    Kawatsuma, S.; Fujita, Y.; Maeda, M.; Hayashi, S.; Sasao, N.; Kashihara, H.

    1987-01-01

    A bilateral servo-manipulator (BSM) has been developed to meet requirements for the new remote maintenance technologies. It will be applied to the Vitrification Plant (V.P.) of high-level liquid waste and FBR Fuel Recycle Pilot Plant (F.R.P.P.). Above mentioned new remote technologies are to perform the maintenance task of all equipments and machines which are installed in the large hot cell, and have several developing items such as BSM, rack, wall-through plug, remote connector and so on. Prototype II model of BSM has been designed and manufactured, adopting some new technologies to concentrate on operability, reliability and maintenability. This paper presents the status of two-arm bilateral servomanipulator system development

  16. Current status and improvement of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology

    International Nuclear Information System (INIS)

    Qu Guopu; Guo Lanying

    1999-01-01

    The author reviews the current status of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology in higher education and expresses author's views on the future improvement of the nuclear physics experiment course

  17. Status of the technology development of large scale HTS generators for wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of)

    2015-06-15

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study.

  18. Status of the technology development of large scale HTS generators for wind turbine

    International Nuclear Information System (INIS)

    Le, T. D.; Kim, J. H.; Kim, D. J.; Boo, C. J.; Kim, H. M.

    2015-01-01

    Large wind turbine generators with high temperature superconductors (HTS) are in incessant development because of their advantages such as weight and volume reduction and the increased efficiency compared with conventional technologies. In addition, nowadays the wind turbine market is growing in a function of time, increasing the capacity and energy production of the wind farms installed and increasing the electrical power for the electrical generators installed. As a consequence, it is raising the wind power energy contribution for the global electricity demand. In this study, a forecast of wind energy development will be firstly emphasized, then it continue presenting a recent status of the technology development of large scale HTSG for wind power followed by an explanation of HTS wire trend, cryogenics cooling systems concept, HTS magnets field coil stability and other technological parts for optimization of HTS generator design-operating temperature, design topology, field coil shape and level cost of energy, as well. Finally, the most relevant projects and designs of HTS generators specifically for offshore wind power systems are also mentioned in this study

  19. Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Abruna, H.D.; DiSalvo, Francis J.

    2012-06-29

    The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

  20. Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yimin

    2009-07-16

    The objective of this project is to develop a novel catalyst support technology based on unique engineered nanostructures for low temperature fuel cells which: (1) Achieves high catalyst activity and performance; (2) Improves catalyst durability over current technologies; and (3) Reduces catalyst cost. This project is directed at the development of durable catalysts supported by novel support that improves the catalyst utilization and hence reduce the catalyst loading. This project will develop a solid fundamental knowledge base necessary for the synthetic effort while at the same time demonstrating the catalyst advantages in Direct Methanol Fuel Cells (DMFCs).

  1. Commercialization of proton exchange membrane (PEM) fuel cell technology

    International Nuclear Information System (INIS)

    Goel, N.; Pant, A.; Sera, G.

    1995-01-01

    The MCTTC performed a market assessment for PEM Fuel Cells for terrestrial applications for the Center for Space Power (CSP). The purpose of the market assessment was to gauge the market and commercial potential for PEM fuel cell technology. Further, the market assessment was divided into subsections of technical and market overview, competitive environment, political environment, barriers to market entry, and keys to market entry. The market assessment conducted by the MCTTC involved both secondary and primary research. The primary target markets for PEM fuel cells were transportation and utilities in the power range of 10 kW to 100 kW. The fuel cell vehicle market size was estimated under a pessimistic scenario and an optimistic scenario. The estimated size of the fuel cell vehicle market in dollar terms for the year 2005 is $17.3 billion for the pessimistic scenario and $34.7 billion for the optimistic scenario. The fundamental and applied research funded and conducted by the National Aeronautics and Space Administration (NASA) and DOE in the area of fuel cells presents an excellent opportunity to commercialize dual-use technology and enhance U.S. business competitiveness. copyright 1995 American Institute of Physics

  2. Seeing and believing: recent advances in imaging cell-cell interactions [v1; ref status: indexed, http://f1000r.es/5br

    Directory of Open Access Journals (Sweden)

    Alpha S. Yap

    2015-07-01

    Full Text Available Advances in cell and developmental biology have often been closely linked to advances in our ability to visualize structure and function at many length and time scales. In this review, we discuss how new imaging technologies and new reagents have provided novel insights into the biology of cadherin-based cell-cell junctions. We focus on three developments: the application of super-resolution optical technologies to characterize the nanoscale organization of cadherins at cell-cell contacts, new approaches to interrogate the mechanical forces that act upon junctions, and advances in electron microscopy which have the potential to transform our understanding of cell-cell junctions.

  3. Serial Assessment of Immune Status by Circulating CD8+ Effector T Cell Frequencies for Posttransplant Infectious Complications

    Directory of Open Access Journals (Sweden)

    Shinji Uemoto

    2008-01-01

    Full Text Available To clarify the role of CD8+ effector T cells for infectious complications, 92 recipients were classified according to the hierarchical clustering of preoperative CD8+CD45 isoforms: Group I was naive, Group II was effector memory, and Group III was effector (E T cell-dominant. The posttransplant infection rates progressively increased from 29% in Group I to 64.3% in Group III recipients. The posttransplant immune status was compared with the pretransplant status, based on the measure (% difference and its graphical form (scatter plot. In Groups I and II, both approaches showed a strong upward deviation from pretransplant status upon posttransplant infection, indicating an enhanced clearance of pathogens. In Group III, in contrast, both approaches showed a clear downward deviation from preoperative status, indicating deficient cytotoxicity. The % E difference and scatter plot can be used as a useful indicator of a posttransplant infectious complication.

  4. Present status of some technological activities supporting the MOLCARE project

    Energy Technology Data Exchange (ETDEWEB)

    Torazza, A. [Ansaldo Ricerche S.r.l., Genova (Italy); Rocchini, G. [ENEL, Milano (Italy); Scagliotti, M. [CISE, Milano (Italy)

    1996-12-31

    The development of MCFC stack technology is carried out at Ansaldo Ricerche in the framework of the MOLCARE project, a cooperation with Spanish companies under a partial UE funding, while a specific research program concerning the physico-chemical characterization of materials is performed jointly by CISE and ENEL. The project includes the development, the construction and the testing of a full scale 100 kW prototype, the assessment of stack technology on subscale stacks, the mathematical modelling of the MCFC based plants and the basic researches. The aim of the basic researches, carried out on single cells, is to improve the effectiveness and durability of both the active and the hardware materials. The Ansaldo stack technology is based on external manifolding. The full scale 100 kW prototype will be integrated with the sensible heat reformer and other ancillary equipments according to the {open_quote}Compact Unit (CU){close_quotes} concept. These technical choices stress requirements for manifold gasket configuration. electrolyte migration control, {Delta}p management and porous component compaction.

  5. Silicon solar cell technology state of the art and a proposed double sided cell

    International Nuclear Information System (INIS)

    Seddik, M.M.

    1987-08-01

    A review of the silicon technology state of the art is given. It had been found that single crystal silicon efficiency was limitd to ≥ 20%. The reason was identified to be due to the recombination current loss mechanisms. However, use of new technologies such as back-surface field, surface passivation, double anti-reflection coatings and back-surface illumination demonstrated to achieve higher efficiencies. Experiments were carried out to evaluate the effect of back surfaces illumination on the cell efficiency enhancement. It was found that for single cell, back-surface illumination contribute a 12% increase in efficiency whereas for double cell illumination (back-to-back cells) the improvement was 59% increase in efficiency. A V-shaped flat mirror reflector with optimum angle of 45 deg. to the plane of the cell from both sides achieved the ultimate efficiency performance. Finally, a proposed high current - high efficiency solar cell called ''Double Drift'' - Double Sided Illumination Cell'' was presented. The new structures were in the form of n + pn + or p + np + double junctions. The expected efficiency ranges 50-60% with proper material design, double anti-reflection coatings and V-shaped irregular plane mirror reflector illumination. (author). 43 refs, 4 figs, 7 tabs

  6. Fermentation, gasification and pyrolysis of carbonaceous residues towards usage in fuel cells

    International Nuclear Information System (INIS)

    Sequeira, C.A.C.; Brito, P.S.D.; Mota, A.F.; Carvalho, J.L.; Rodrigues, L.F.F.T.T.G.; Santos, D.M.F.; Barrio, D.B.; Justo, D.M.

    2007-01-01

    In this paper, the technologies of fermentation, gasification and pyrolysis of carbonaceous residues for the production of biohydrogen and other gaseous, liquid or solid fuels, are analysed. The energetic, economic and environmental advantages of linking these energy areas with the fuel cell engines are stressed. In addition, the current status of fuel cell technologies, namely their historic trends, basic electrode mechanisms, cell types, market drivers and leading issues, are reviewed

  7. Efficiency Enhancement of Silicon Solar Cells by Porous Silicon Technology

    Directory of Open Access Journals (Sweden)

    Eugenijus SHATKOVSKIS

    2012-09-01

    Full Text Available Silicon solar cells produced by a usual technology in p-type, crystalline silicon wafer were investigated. The manufactured solar cells were of total thickness 450 mm, the junction depth was of 0.5 mm – 0.7 mm. Porous silicon technologies were adapted to enhance cell efficiency. The production of porous silicon layer was carried out in HF: ethanol = 1 : 2 volume ratio electrolytes, illuminating by 50 W halogen lamps at the time of processing. The etching current was computer-controlled in the limits of (6 ÷ 14 mA/cm2, etching time was set in the interval of (10 ÷ 20 s. The characteristics and performance of the solar cells samples was carried out illuminating by Xenon 5000 K lamp light. Current-voltage characteristic studies have shown that porous silicon structures produced affect the extent of dark and lighting parameters of the samples. Exactly it affects current-voltage characteristic and serial resistance of the cells. It has shown, the formation of porous silicon structure causes an increase in the electric power created of solar cell. Conversion efficiency increases also respectively to the initial efficiency of cell. Increase of solar cell maximum power in 15 or even more percent is found. The highest increase in power have been observed in the spectral range of Dl @ (450 ÷ 850 nm, where ~ 60 % of the A1.5 spectra solar energy is located. It has been demonstrated that porous silicon technology is effective tool to improve the silicon solar cells performance.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2428

  8. Examination of the Relationship between Technology Use of 5-6 Year-Old Children and Their Social Skills and Social Status

    Science.gov (United States)

    Gülay Ogelman, Hülya; Güngör, Hande; Körükçü, Özlem; Erten Sarkaya, Hatice

    2018-01-01

    The primary objective of this study is to determine the predictive effect of technology use durations of 5-6 year-old children on their social skill levels and social status. In this study, children's technology usage is restricted to the use of television, portable computers, tablets and smartphones. The sample group of the study consisted of 162…

  9. Manufacturing technologies for direct methanol fuel cells (DMFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Gluesen, Andreas; Mueller, Martin; Kimiaie, Nicola; Konradi, Irene; Mergel, Juergen; Stolten, Detlef [Forschungszentrum Juelich (Germany). Inst. of Energy Research - IEF-3: Fuel Cells

    2010-07-01

    Fuel cell research is focussing on increasing power density and lifetime and reducing costs of the whole fuel cell system. In order to reach these aims, it is necessary to develop appropriately designed components outgoing from high quality materials, a suitable manufacturing process and a well balanced system. To make use of the advantages that can be obtained by developing production technology, we are mainly improving the coating and assembling techniques for polymer electrolyte fuel cells, especially Direct Methanol Fuel Cells (DMFCs). Coating is used for making fuel cell electrodes as well as highly conductive contacts. Assembling is used to join larger components like membrane electrode assemblies (MEAs) and bipolar units consisting of flow fields and the separator plate, as well as entire stacks. On the one hand a reproducible manufacturing process is required to study fine differences in fuel cell performance affected by new materials or new designs. On the other hand a change in each parameter of the manufacturing process itself can change product properties and therefore affect fuel cell performance. As a result, gas diffusion electrodes (GDEs) are now produced automatically in square-meter batches, the hot-pressing of MEAs is a fully automated process and by pre-assembling the number of parts that have to be assembled in a stack was reduced by a factor of 10. These achievements make DMFC manufacturing more reproducible and less error-prone. All these and further developments of manufacturing technology are necessary to make DMFCs ready for the market. (orig.)

  10. New Sunshine Program for fiscal 2000. Development of photovoltaic power system commercialization technology (Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology - Surveys and studies of peripheral key technologies/Surveys of environmentally-friendliness enhancement for next-generation solar cell development); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu - Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu (Shuhen yoso gijutsu ni kansuru kenkyu chosa, Jisedai taiyodenchi kaihatsu kankyo tekioka chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Though the trends of solar cell development are becoming increasingly diverse across the world, yet none has emerged to promise a stable solar cell supply in the future. Under the circumstances, studies were conducted to clarify strategies for solar cell technology development which would be well adapted to Japan's social environments, with the trends of development in the United States and European countries taken into consideration. The surveys covered the research and development and diffusion of photovoltaic power generation in the United States and European countries, and their solar cell research and development strategies and trends of development were put together. Surveys were also conducted into the research and development of unconventional types of solar cells, such as the dye-sensitized solar cell, organic solar cell, conjugate polymer solar cell, and the polymer/C{sub 60} based solar cell, and into the status of resources of materials for solar cells such as gallium, arsenic, cadmium, tellurium, indium, selenium, and germanium. Regarding the future of photovoltaic power generation research and development, it was concluded that commercialization technology development and basic research and development should continue. Also pointed out was the importance of the enlargement of the market for photovoltaic power generation systems. (NEDO)

  11. New Sunshine Program for fiscal 2000. Development of photovoltaic power system commercialization technology (Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology - Surveys and studies of peripheral key technologies/Surveys of environmentally-friendliness enhancement for next-generation solar cell development); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu - Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu (Shuhen yoso gijutsu ni kansuru kenkyu chosa, Jisedai taiyodenchi kaihatsu kankyo tekioka chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Though the trends of solar cell development are becoming increasingly diverse across the world, yet none has emerged to promise a stable solar cell supply in the future. Under the circumstances, studies were conducted to clarify strategies for solar cell technology development which would be well adapted to Japan's social environments, with the trends of development in the United States and European countries taken into consideration. The surveys covered the research and development and diffusion of photovoltaic power generation in the United States and European countries, and their solar cell research and development strategies and trends of development were put together. Surveys were also conducted into the research and development of unconventional types of solar cells, such as the dye-sensitized solar cell, organic solar cell, conjugate polymer solar cell, and the polymer/C{sub 60} based solar cell, and into the status of resources of materials for solar cells such as gallium, arsenic, cadmium, tellurium, indium, selenium, and germanium. Regarding the future of photovoltaic power generation research and development, it was concluded that commercialization technology development and basic research and development should continue. Also pointed out was the importance of the enlargement of the market for photovoltaic power generation systems. (NEDO)

  12. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro

    Science.gov (United States)

    Shao, Meiying; Liu, Chao; Song, Yingnan; Ye, Wenduo; He, Wei; Yuan, Guohua; Gu, Shuping; Lin, Congxin; Ma, Liang; Zhang, Yanding; Tian, Weidong; Hu, Tao; Chen, YiPing

    2015-01-01

    The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration. PMID:26243590

  13. Recent Advances in Microbial Single Cell Genomics Technology and Applications

    Science.gov (United States)

    Stepanauskas, R.

    2016-02-01

    Single cell genomics is increasingly utilized as a powerful tool to decipher the metabolic potential, evolutionary histories and in situ interactions of environmental microorganisms. This transformative technology recovers extensive information from cultivation-unbiased samples of individual, unicellular organisms. Thus, it does not require data binning into arbitrary phylogenetic or functional groups and therefore is highly compatible with agent-based modeling approaches. I will present several technological advances in this field, which significantly improve genomic data recovery from individual cells and provide direct linkages between cell's genomic and phenotypic properties. I will also demonstrate how these new technical capabilities help understanding the metabolic potential and viral infections of the "microbial dark matter" inhabiting aquatic and subsurface environments.

  14. Preliminary study of steep pulse irreversible electroporation technology in human large cell lung cancer cell lines L9981

    Directory of Open Access Journals (Sweden)

    Song Zuoqing

    2013-01-01

    Full Text Available Our aim was to validate the effectiveness of steep pulse irreversible electroporation technology in human large cell lung cancer cells and to screen the optimal treatment of parameters for human large cell lung cancer cells. Three different sets of steep pulse therapy parameters were applied on the lung cancer cell line L9981. The cell line L9981 inhibition rate and proliferation capacity were detected by Vi-Cell vitality analysis and MTT. Steep pulsed irreversible electroporation technology for large cell lung cancer L9981 presents killing effects with various therapy parameters. The optimal treatment parameters are at a voltage amplitude of 2000V/cm, pulse width of 100μs, pulse frequency of 1 Hz, pulse number 10. With this group of parameters, steep pulse could have the best tumor cell-killing effects.

  15. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise.

    Science.gov (United States)

    Duelen, Robin; Sampaolesi, Maurilio

    2017-02-01

    Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and selection of the most suitable stem cell type for cardiac regenerative medicine. Human pluripotent stem cells (PSCs) have emerged as attractive cell source to obtain cardiomyocytes (CMs), with potential applications, including drug discovery and toxicity screening, disease modelling and innovative cell therapies. Lessons from embryology offered important insights into the development of stem cell-derived CMs. However, the generation of a CM population, uniform in cardiac subtype, adult maturation and functional properties, is highly recommended. Moreover, hurdles regarding tumorigenesis, graft cell death, immune rejection and arrhythmogenesis need to be overcome in clinical practice. Here we highlight the recent progression in PSC technologies for the regeneration of injured heart. We review novel strategies that might overcome current obstacles in heart regenerative medicine, aiming at improving cell survival and functional integration after cell transplantation. Copyright © 2017. Published by Elsevier B.V.

  16. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise

    Directory of Open Access Journals (Sweden)

    Robin Duelen

    2017-02-01

    Full Text Available Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and selection of the most suitable stem cell type for cardiac regenerative medicine. Human pluripotent stem cells (PSCs have emerged as attractive cell source to obtain cardiomyocytes (CMs, with potential applications, including drug discovery and toxicity screening, disease modelling and innovative cell therapies. Lessons from embryology offered important insights into the development of stem cell-derived CMs. However, the generation of a CM population, uniform in cardiac subtype, adult maturation and functional properties, is highly recommended. Moreover, hurdles regarding tumorigenesis, graft cell death, immune rejection and arrhythmogenesis need to be overcome in clinical practice. Here we highlight the recent progression in PSC technologies for the regeneration of injured heart. We review novel strategies that might overcome current obstacles in heart regenerative medicine, aiming at improving cell survival and functional integration after cell transplantation.

  17. Status of electrical energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents an overview of the status of electrical storage systems in the light of the growing use of renewable energy sources and distributed generation (DG) in meeting emission targets and in the interest of the UK electricity supply industry. Examples of storage technologies, their applications and current status are examined along with technical issues and possible activities by UK industries. Details are given of development opportunities in the fields of flow cells, advanced batteries - lithium batteries, high temperature batteries, flywheels, and capacitors. Power conversion systems and system integration, the all-electric ship project, and compressed air energy storage are discussed. Opportunities for development and deployment, small scale systems, demonstration programmes, and research and development issues are considered. An outline of the US Department of Energy Storage programme is given in the Annex to the report.

  18. Pathways to Commercial Success: Technologies and Innovations Enabled by the U.S. Department of Energy Fuel Cell Technologies Office

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-11

    This report published in October 2017 updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  19. Technology watch of fuel cells for vehicles in 2012; Teknikbevakning av braensleceller foer fordon 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Hans

    2013-03-15

    The report presents results from an international survey covering the status and development of tractionary fuel cells. Interviews, study visits, reports, journals, media coverage and participation in IEA Advanced Fuel Cells Annex 26 have served as main sources of information. The development in Korea has been devoted particular attention this period. The report covers the development during the second part of 2011 and the whole 2012. The transport sector must change to provide mobility for people and goods in a long-term sustainable way. Fuel cell technology offers an important opportunity for the vehicle manufacturer and the vehicle user to maintain the same level of performance, comfort and versatility without compromising the sustainability requirements. Fuel cell vehicles typically use polymer electrolyte fuel cells (PEFC) and pressurized hydrogen. They also use tractionary batteries for about the same reasons as other hybrid electric vehicles. For commercial vehicles fuel cells are developed for the production of auxiliary power, to be used when the vehicles are parked, for example. Until 2015, Hyundai aims at making up to 1,000 fuel cell vehicles. After 2015 the plan is for several thousand every year. Until 2025, Hyundai aims at a total delivery of more than 100,000 fuel cell vehicles and the technology is then expected to be fully competitive. A roadmap shows that Korea until 2015 has established 43 and until 2030, a total of 500 hydrogen refuelling stations are indicated. The Skaane Region has carried out the first Swedish procurement of fuel cell vehicles. Two Hyundai iX35 FCEV were purchased for delivery 2013. In addition, the city of Copenhagen has purchased 15 such vehicles. During the next few years three hydrogen refuelling stations will be established in the Copenhagen area. January 2012, the California Air Resources Board decided the new set of regulations Advanced Clean Cars. It comprises three parts; tailpipe emissions and greenhouse gases, Zero

  20. Analysis of multiple types of human cells subsequent to bioprinting with electrospraying technology.

    Science.gov (United States)

    Xin, Yu; Chai, Gang; Zhang, Ting; Wang, Xiangsheng; Qu, Miao; Tan, Andy; Bogari, Melia; Zhu, Ming; Lin, Li; Hu, Qingxi; Liu, Yuanyuan; Zhang, Yan

    2016-12-01

    The aim of the present study was to investigate bioprinting with electrospraying technology using multiple types of human cell suspensions as bio-ink, in order to lay the initial foundations for the application of the bioprinting technology in tissue engineering. In the current study, six types of human cells were selected and cultured, including human fibroblasts, human adipose-derived stem cells (hADSCs), human periodontal ligament cells (HPDLCs), adult human retinal pigment epithelial cells (ARPE-19), human umbilical vascular endothelial cells (HUVECs) and human gastric epithelial cell line (GES-1). Each cell type was divided into two groups, the experimental and control group. All the experimental group cells were electrosprayed using an electrospraying printer (voltage, 15 kV; flow rate, 150 µl/min) and collected in a petri dish placed 15 cm away from the needle (needle diameter, 0.5 mm). Subsequently, cell viability was detected by flow cytometry with a Live/Dead Viability kit. In addition, the cell morphological characteristics were observed with a phase-contrast microscope after 6 h of culturing in order to obtain adherent cells, while cell proliferation was analyzed using a Cell Counting Kit-8 assay. The control groups, without printing, were subjected to the same procedures as the experimental groups. The results of the cell viability and proliferation assays indicated a statistically significant difference after printing between the experiments and control groups only for the hADSCs (P0.05). In addition, there were no observable differences between all experimental and the control groups at any examined time point in the terms of cell morphological characteristics. In conclusion, bioprinting based on electrospraying technology demonstrated no distinct negative effect on cell vitality, proliferation and morphology in the present study, and thus the application of this novel technology to cell printing may provide a promising method in tissue engineering.

  1. Chromatin status of apoptosis genes correlates with sensitivity to chemo-, immune- and radiation therapy in colorectal cancer cell lines.

    Science.gov (United States)

    Benard, Anne; Janssen, Connie M; van den Elsen, Peter J; van Eggermond, Marja C J A; Hoon, Dave S B; van de Velde, Cornelis J H; Kuppen, Peter J K

    2014-12-01

    The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses.

  2. Fluctuations in Blood Marginal Zone B-Cell Frequencies May Reflect Migratory Patterns Associated with HIV-1 Disease Progression Status.

    Science.gov (United States)

    Gauvin, Julie; Chagnon-Choquet, Josiane; Poudrier, Johanne; Roger, Michel

    2016-01-01

    We have previously shown that overexpression of BLyS/BAFF was associated with increased relative frequencies of innate "precursor" marginal zone (MZ)-like B-cells in the blood of HIV-1-infected rapid and classic progressors. However, along with relatively normal BLyS/BAFF expression levels, these cells remain unaltered in elite-controllers (EC), rather, percentages of more mature MZ-like B-cells are decreased in the blood of these individuals. Fluctuations in frequencies of blood MZ-like B-cell populations may reflect migratory patterns associated with disease progression status, suggesting an important role for these cells in HIV-1 pathogenesis. We have therefore longitudinally measured plasma levels of B-tropic chemokines by ELISA-based technology as well as their ligands by flow-cytometry on blood B-cell populations of HIV-1-infected individuals with different rates of disease progression and uninfected controls. Migration potential of B-cell populations from these individuals were determined by chemotaxis assays. We found important modulations of CXCL13-CXCR5, CXCL12-CXCR4/CXCR7, CCL20-CCR6 and CCL25-CCR9 chemokine-axes and increased cell migration patterns in HIV progressors. Interestingly, frequencies of CCR6 expressing cells were significantly elevated within the precursor MZ-like population, consistent with increased migration in response to CCL20. Although we found little modulation of chemokine-axes in EC, cell migration was greater than that observed for uninfected controls, especially for MZ-like B-cells. Overall the immune response against HIV-1 may involve recruitment of MZ-like B-cells to peripheral sites. Moreover, our findings suggest that "regulated" attraction of these cells in a preserved BLyS/BAFF non-inflammatory environment, such as encountered in EC could be beneficial to the battle and even control of HIV.

  3. Proceedings of the 1999 Review Conference on Fuel Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    None Available

    2000-06-05

    The 1999 Review Conference on Fuel Cell Technology was jointly sponsored by the U.S. Department of Energy, Federal Energy Technology Center (FETC), the Gas Research Institute (GRI), and the Electric Power Research Institute (EPRI). It was held August 3 to 5 in Chicago, Illinois. The goal of this conference was to provide a forum for reviewing fuel cell research and development (R&D) programs, assist in strategic R&D planning, promote awareness of sponsor activities, and enhance interactions between manufacturers, researchers, and stakeholders. This conference was attended by over 250 representatives from industry, academia, national laboratories, gas and electric utilities, DOE, and other Government agencies. The conference agenda included a keynote session, five presentation sessions, a poster presentation reception, and three breakout sessions. The presentation session topics were DOD Fuel Cell Applications, Low-Temperature Fuel Cell Manufacturers, Low-Temperature Component Research, High-Temperature Fuel Cell Manufacturers, and High-Temperature Component Research; the breakout session topics were Future R&D Directions for Low-Temperature Fuel Cells, Future R&D Directions for High-Temperature Fuel Cells, and a plenary summary session. All sessions were well attended.

  4. Fuel cells science and engineering. Materials, processes, systems and technology. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Stolten, Detlef; Emonts, Bernd (eds.) [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF), Brennstoffzellen (IEF-3)

    2012-07-01

    The first volume is divided in four parts and 22 chapters. It is structured as follows: PART I: Technology. Chapter 1: Technical Advancement of Fuel-Cell Research and Development (Dr. Bernd Emonts, Ludger Blum, Thomas Grube, Werner Lehnert, Juergen Mergel, Martin Mueller and Ralf Peters); 2: Single-Chamber Fuel Cells (Teko W. Napporn and Melanie Kuhn); 3: Technology and Applications of Molten Carbonate Fuel Cells (Barbara Bosio, Elisabetta Arato and Paolo Greppi); 4: Alkaline Fuel Cells (Erich Guelzow); 5: Micro Fuel Cells (Ulf Groos and Dietmar Gerteisen); 6: Principles and Technology of Microbial Fuel Cells (Jan B. A. Arends, Joachim Desloover, Sebastia Puig and Willy Verstraete); 7: Micro-Reactors for Fuel Processing (Gunther Kolb); 8: Regenerative Fuel Cells (Martin Mueller). PART II: Materials and Production Processes. Chapter 9: Advances in Solid Oxide Fuel Cell Development between 1995 and 2010 at Forschungszentrum Juelich GmbH, Germany (Vincent Haanappel); 10: Solid Oxide Fuel Cell Electrode Fabrication by Infiltration (Evren Gunen); 11: Sealing Technology for Solid Oxide Fuel Cells (K. Scott Weil); 12: Phosphoric Acid, an Electrolyte for Fuel Cells - Temperature and Composition Dependence of Vapor Pressure and Proton Conductivity (Carsten Korte); 13: Materials and Coatings for Metallic Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells (Heli Wang and John A. Turner); 14: Nanostructured Materials for Fuel Cells (John F. Elter); 15: Catalysis in Low-Temperature Fuel Cells - An Overview (Sabine Schimpf and Michael Bron). PART III: Analytics and Diagnostics. Chapter 16: Impedance Spectroscopy for High-Temperature Fuel Cells (Ellen Ivers-Tiffee, Andre Leonide, Helge Schichlein, Volker Sonn and Andre Weber); 17: Post-Test Characterization of Solid Oxide Fuel-Cell Stacks (Norbert H. Menzler and Peter Batfalsky); 18: In Situ Imaging at Large-Scale Facilities (Christian Toetzke, Ingo Manke and Werner Lehnert); 19: Analytics of Physical Properties of Low

  5. Advanced secondary batteries: Their applications, technological status, market and opportunity

    Science.gov (United States)

    Yao, M.

    1989-03-01

    Program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.

  6. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    International Nuclear Information System (INIS)

    Bonifati, Serena; Daly, Michele B.; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A.; Shepard, Caitlin; Kennedy, Edward M.; Kim, Dong-Hyun; Schinazi, Raymond F.; Kim, Baek; Wu, Li

    2016-01-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G_1/G_0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  7. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonifati, Serena [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Daly, Michele B. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); St Gelais, Corine; Kim, Sun Hee [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States); Hollenbaugh, Joseph A.; Shepard, Caitlin [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kennedy, Edward M. [Department of Molecular Genetics and Microbiology, Duke University, Durham, NC (United States); Kim, Dong-Hyun [Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Schinazi, Raymond F. [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Kim, Baek, E-mail: baek.kim@emory.edu [Center for Drug Discovery, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA (United States); Department of Pharmacy, School of Pharmacy, Kyung-Hee University, Seoul (Korea, Republic of); Wu, Li, E-mail: wu.840@osu.edu [Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH (United States)

    2016-08-15

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.

  8. Next Generation Fuel Cell Technology for Passenger Cars and Buses

    OpenAIRE

    Mohrdieck, Dr.

    2009-01-01

    Daimler is presenting its latest fuel cell vehicle, the Mercedes-Benz B-Class F-CELL in 2009. Being one of the first series-produced fuel cell vehicles so far, the B-Class F-CELL will be a milestone on the road to commercialization of hydrogen-powered fuel cell vehicles. Equipped with advanced fuel cell technology it is suited for everyday operation and designed to fully meet customers´ expectations. From 2010 onwards, this zero emission vehicle is going to be operated by selected customers i...

  9. Microbial electrolysis cells as innovative technology for hydrogen production

    International Nuclear Information System (INIS)

    Chorbadzhiyska, Elitsa; Hristov, Georgi; Mitov, Mario; Hubenova, Yolina

    2011-01-01

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  10. A development of solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hee Chun; Lee, Chang Woo [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Kwy Youl; Yoon, Moon Soo; Kim, Ho Ki; Kim, Young Sik; Mun, Sung In; Eom, Sung Wuk [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of)

    1996-12-31

    Solid oxide fuel cell which was consisted of ceramics has high power density and is very simple in shape. The project named A development of SOFC(Solid Oxide Fuel Cell) technology is to develop the unit cell fabrication processing and to evaluate the unit cell of solid oxide full cell. In this project, a manufacturing process of cathode by citrate method and polymeric precursor methods were established. By using tape casting method, high density thin electrolyte was manufactured and has high performance. Unit cell composed with La{sub 17}Sr{sub 13}Mn{sub 3} as cathode, 8YSZ electrolyte and 50% NiYSZ anode had a performance of O.85 W/cm{sup 2} and recorded 510 hours operation time. On the basis of these results. 100 cm{sup 2} class unit cell will be fabricated and tests in next program (author). 59 refs., 120 figs.

  11. A development of solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hee Chun; Lee, Chang Woo [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Kwy Youl; Yoon, Moon Soo; Kim, Ho Ki; Kim, Young Sik; Mun, Sung In; Eom, Sung Wuk [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of)

    1995-12-31

    Solid oxide fuel cell which was consisted of ceramics has high power density and is very simple in shape. The project named A development of SOFC(Solid Oxide Fuel Cell) technology is to develop the unit cell fabrication processing and to evaluate the unit cell of solid oxide full cell. In this project, a manufacturing process of cathode by citrate method and polymeric precursor methods were established. By using tape casting method, high density thin electrolyte was manufactured and has high performance. Unit cell composed with La{sub 17}Sr{sub 13}Mn{sub 3} as cathode, 8YSZ electrolyte and 50% NiYSZ anode had a performance of O.85 W/cm{sup 2} and recorded 510 hours operation time. On the basis of these results. 100 cm{sup 2} class unit cell will be fabricated and tests in next program (author). 59 refs., 120 figs.

  12. 75 FR 8921 - Grant of Authority for Subzone Status; Brightpoint North America L.P. (Cell Phone Kitting and...

    Science.gov (United States)

    2010-02-26

    ... Status; Brightpoint North America L.P. (Cell Phone Kitting and Distribution) Indianapolis, IN Pursuant to... the cell phone kitting and distribution facilities of Brightpoint North America L.P., located in... cell phones at the facilities of Brightpoint North America L.P., located in Plainfield, Indiana...

  13. Photovoltaic cell and array technology development for future unique NASA missions

    Science.gov (United States)

    Bailey, S.; Curtis, H.; Piszczor, M.; Surampudi, R.; Hamilton, T.; Rapp, D.; Stella, P.; Mardesich, N.; Mondt, J.; Bunker, R.; hide

    2002-01-01

    A technology review committee from NASA, the U.S. Department of Energy (DOE), and the Air Force Research Lab, was formed to assess solar cell and array technologies required for future NASA science missions.

  14. Development of molten carbonate fuel cell technology at M-C Power Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, D. [M-C Power Corp., Burr Ridge, IL (United States)

    1996-04-01

    M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, and removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.

  15. Status of technologies related to the isolation of radioactive wastes in geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    Irish, E R [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Safety and Environmental Protection; Cooley, C R [Department of Energy, Washington, DC (USA). Office of Nuclear Waste Management

    1980-09-01

    The authors present an overview of the status of technologies relevant to the isolation of radioactive wastes in geologic repositories. In addition to summarizing scientific and technical work on waste forms and packages, the: a) importance of the systems viewpoint, b) importance of modeling, c) need for site-specific investigations, d) consideration of future sub-surface human activities and e) prospects for successful isolation are discussed. It is concluded that successful isolation of radioactive wastes from the biosphere appears technically feasible for periods of thousands of years provided that the systems view is used in repository siting and design.

  16. Bioelectricity Production from Microalgae-Microbial Fuel Cell Technology (MMFC

    Directory of Open Access Journals (Sweden)

    da Costa Carlito

    2018-01-01

    Full Text Available Microbial fuel cell is an ecological innovative technology producing bioelectricity by utilizing microbes activity. Substituent energy is produced by changing the chemical energy to electrical energy through the catalytic reaction of microorganism. The research aims to find out the potency of bioelectricity produced by microalgae microbial fuel cell technology by utilizing the combination of tapioca wastewater and microalgae cultivation. This research is conducted through the ingredients preparation stage – microalgae culture, wastewater characterization, membrane and graphite activation, and the providing of other supporting equipment. The next stage is the MMFC arrangement, while the last one is bioelectricity measurement. The result of optimal bioelectricity production on the comparison of electrode 2 : 2, the power density is 44,33 mW/m2 on day 6, meanwhile, on that of 1 : 1, 20,18 mW/m2 power density on day 1 is obtained. It shows that bioelectricity can be produced from the combination of tapioca wastewater and microalgae culture through the microalgae-microbial fuel cell (MMFC technology.This research is expected to be a reference for the next research particularly the one that observes the utilizing of microalgae as the part of new and renewable energy sources.

  17. Qualitative and quantitative expression status of the human chromosome 20 genes in cancer tissues and the representative cell lines.

    Science.gov (United States)

    Wang, Quanhui; Wen, Bo; Yan, Guangrong; Wei, Junying; Xie, Liqi; Xu, Shaohang; Jiang, Dahai; Wang, Tingyou; Lin, Liang; Zi, Jin; Zhang, Ju; Zhou, Ruo; Zhao, Haiyi; Ren, Zhe; Qu, Nengrong; Lou, Xiaomin; Sun, Haidan; Du, Chaoqin; Chen, Chuangbin; Zhang, Shenyan; Tan, Fengji; Xian, Youqi; Gao, Zhibo; He, Minghui; Chen, Longyun; Zhao, Xiaohang; Xu, Ping; Zhu, Yunping; Yin, Xingfeng; Shen, Huali; Zhang, Yang; Jiang, Jing; Zhang, Chengpu; Li, Liwei; Chang, Cheng; Ma, Jie; Yan, Guoquan; Yao, Jun; Lu, Haojie; Ying, Wantao; Zhong, Fan; He, Qing-Yu; Liu, Siqi

    2013-01-04

    Under the guidance of the Chromosome-centric Human Proteome Project (C-HPP), (1, 2) we conducted a systematic survey of the expression status of genes located at human chromosome 20 (Chr.20) in three cancer tissues, gastric, colon, and liver carcinoma, and their representative cell lines. We have globally profiled proteomes in these samples with combined technology of LC-MS/MS and acquired the corresponding mRNA information upon RNA-seq and RNAchip. In total, 323 unique proteins were identified, covering 60% of the coding genes (323/547) in Chr.20. With regards to qualitative information of proteomics, we overall evaluated the correlation of the identified Chr.20 proteins with target genes of transcription factors or of microRNA, conserved genes and cancer-related genes. As for quantitative information, the expression abundances of Chr.20 genes were found to be almost consistent in both tissues and cell lines of mRNA in all individual chromosome regions, whereas those of Chr.20 proteins in cells are different from tissues, especially in the region of 20q13.33. Furthermore, the abundances of Chr.20 proteins were hierarchically evaluated according to tissue- or cancer-related distribution. The analysis revealed several cancer-related proteins in Chr.20 are tissue- or cell-type dependent. With integration of all the acquired data, for the first time we established a solid database of the Chr.20 proteome.

  18. Semi-transparent solar cells

    International Nuclear Information System (INIS)

    Sun, J; Jasieniak, J J

    2017-01-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies. (topical review)

  19. Semi-transparent solar cells

    Science.gov (United States)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  20. G2-block after irradiation of cells with different p53 status

    Energy Technology Data Exchange (ETDEWEB)

    Zoelzer, Friedo [University of South Bohemia in Ceske Budejovice, Department of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Studies, Ceske Budejovice (Czech Republic); University Duisburg-Essen, Institute of Medical Radiobiology, Medical Faculty, Essen (Germany); Jagetia, Ganesh [University Duisburg-Essen, Institute of Medical Radiobiology, Medical Faculty, Essen (Germany); Mizoram University, Department of Zoology, School of Life Sciences, Aizawl (India); Streffer, Christian [University Duisburg-Essen, Institute of Medical Radiobiology, Medical Faculty, Essen (Germany)

    2014-11-15

    Although it is clear that functional p53 is not required for radiation-induced G{sub 2} block, certain experimental findings suggest a role for p53 in this context. For instance, as we also confirm here, the maximum accumulation in the G{sub 2} compartment after X-ray exposure occurs much later in p53 mutants than in wild types. It remains to be seen, however, whether this difference is due to a longer block in the G{sub 2} phase itself. We observed the movement of BrdU-labeled cells through G{sub 2} and M into G{sub 1}. From an analysis of the fraction of labeled cells that entered the second posttreatment cell cycle, we were able to determine the absolute duration of the G{sub 2} and M phases in unirradiated and irradiated cells. Our experiments with four cell lines, two melanomas and two squamous carcinomas, showed that the radiation-induced delay of transition through the G{sub 2} and M phases did not correlate with p53 status. We conclude that looking at the accumulation of cells in the G{sub 2} compartment alone is misleading when differences in the G{sub 2} block are investigated and that the G{sub 2} block itself is indeed independent of functional p53. (orig.) [German] Obwohl klar ist, dass ein funktionelles p53-Protein fuer die Ausbildung des strahleninduzierten G{sub 2}-Blocks nicht zwingend erforderlich ist, gibt es experimentelle Befunde, die nahe legen, dass p53 in diesem Zusammenhang doch eine gewisse Rolle spielt. Zum Beispiel bestaetigen wir hier fruehere Berichte, dass die Akkumulation von Zellen im G{sub 2}-Kompartiment bei p53-Mutanten deutlich spaeter nach Bestrahlung ihr Maximum erreicht als bei p53-Wildtypen. Es bleibt jedoch zu klaeren, ob dieser Unterschied seinen Grund in einem laengeren Block der G{sub 2}-Phase selbst hat. Beobachtet wurde die Bewegung von BrdU-markierten Zellen durch G{sub 2} und M nach G{sub 1}. Aus der zeitlichen Veraenderung des Anteils markierter Zellen im G{sub 1}-Kompartiment des naechsten Zellzyklus konnte die

  1. Applications of Laser Precisely Processing Technology in Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the design method of laser resonator cavity, we optimized the primary parameters of resonator and utilized LD arrays symmetrically pumping manner to implementing output of the high-brightness laser in our laser cutter, then which was applied to precisely cutting the conductive film of CuInSe2 solar cells, the buried contact silicon solar cells' electrode groove, and perforating in wafer which is used to the emitter wrap through silicon solar cells. Laser processing precision was less than 40μm, the results have met solar cell's fabrication technology, and made finally the buried cells' conversion efficiency be improved from 18% to 21% .

  2. Cell-printing and transfer technology applications for bone defects in mice.

    Science.gov (United States)

    Tsugawa, Junichi; Komaki, Motohiro; Yoshida, Tomoko; Nakahama, Ken-ichi; Amagasa, Teruo; Morita, Ikuo

    2011-10-01

    Bone regeneration therapy based on the delivery of osteogenic factors and/or cells has received a lot of attention in recent years since the discovery of pluripotent stem cells. We reported previously that the implantation of capillary networks engineered ex vivo by the use of cell-printing technology could improve blood perfusion. Here, we developed a new substrate prepared by coating glass with polyethylene glycol (PEG) to create a non-adhesive surface and subsequent photo-lithography to finely tune the adhesive property for efficient cell transfer. We examined the cell-transfer efficiency onto amniotic membrane and bone regenerative efficiency in murine calvarial bone defect. Cell transfer of KUSA-A1 cells (murine osteoblasts) to amniotic membrane was performed for 1 h using the substrates. Cell transfer using the substrate facilitated cell engraftment onto the amniotic membrane compared to that by direct cell inoculation. KUSA-A1 cells transferred onto the amniotic membrane were applied to critical-sized calvarial bone defects in mice. Micro-computed tomography (micro-CT) analysis showed rapid and effective bone formation by the cell-equipped amniotic membrane. These results indicate that the cell-printing and transfer technology used to create the cell-equipped amniotic membrane was beneficial for the cell delivery system. Our findings support the development of a biologically stable and effective bone regeneration therapy. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  4. EZH2 and CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples

    Science.gov (United States)

    Saieg, Mauro Ajaj; Geddie, William R; Boerner, Scott L; Bailey, Denis; Crump, Michael; da Cunha Santos, Gilda

    2013-01-01

    BACKGROUND: Numerous genomic abnormalities in B-cell non-Hodgkin lymphomas (NHLs) have been revealed by novel high-throughput technologies, including recurrent mutations in EZH2 (enhancer of zeste homolog 2) and CD79B (B cell antigen receptor complex-associated protein beta chain) genes. This study sought to determine the evolution of the mutational status of EZH2 and CD79B over time in different samples from the same patient in a cohort of B-cell NHLs, through use of a customized multiplex mutation assay. METHODS: DNA that was extracted from cytological material stored on FTA cards as well as from additional specimens, including archived frozen and formalin-fixed histological specimens, archived stained smears, and cytospin preparations, were submitted to a multiplex mutation assay specifically designed for the detection of point mutations involving EZH2 and CD79B, using MassARRAY spectrometry followed by Sanger sequencing. RESULTS: All 121 samples from 80 B-cell NHL cases were successfully analyzed. Mutations in EZH2 (Y646) and CD79B (Y196) were detected in 13.2% and 8% of the samples, respectively, almost exclusively in follicular lymphomas and diffuse large B-cell lymphomas. In one-third of the positive cases, a wild type was detected in a different sample from the same patient during follow-up. CONCLUSIONS: Testing multiple minimal tissue samples using a high-throughput multiplex platform exponentially increases tissue availability for molecular analysis and might facilitate future studies of tumor progression and the related molecular events. Mutational status of EZH2 and CD79B may vary in B-cell NHL samples over time and support the concept that individualized therapy should be based on molecular findings at the time of treatment, rather than on results obtained from previous specimens. Cancer (Cancer Cytopathol) 2013;121:377–386. © 2013 American Cancer Society. PMID:23361872

  5. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2008

    Science.gov (United States)

    2008-12-01

    In September 2007, the U.S. Department of Energys (DOE) National Renewable Energy Laboratory (NREL) published a report that reviewed past and present fuel cell bus technology development and implementation in the United States. That report reviewe...

  6. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Science.gov (United States)

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  7. Current Technologies Based on the Knowledge of the Stem Cells Microenvironments.

    Science.gov (United States)

    Mawad, Damia; Figtree, Gemma; Gentile, Carmine

    2017-01-01

    The stem cell microenvironment or niche plays a critical role in the regulation of survival, differentiation and behavior of stem cells and their progenies. Recapitulating each aspect of the stem cell niche is therefore essential for their optimal use in in vitro studies and in vivo as future therapeutics in humans. Engineering of optimal conditions for three-dimensional stem cell culture includes multiple transient and dynamic physiological stimuli, such as blood flow and tissue stiffness. Bioprinting and microfluidics technologies, including organs-on-a-chip, are among the most recent approaches utilized to replicate the three-dimensional stem cell niche for human tissue fabrication that allow the integration of multiple levels of tissue complexity, including blood flow. This chapter focuses on the physico-chemical and genetic cues utilized to engineer the stem cell niche and provides an overview on how both bioprinting and microfluidics technologies are improving our knowledge in this field for both disease modeling and tissue regeneration, including drug discovery and toxicity high-throughput assays and stem cell-based therapies in humans.

  8. Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-09-09

    Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.

  9. Stem Cell Technology for (Epi)genetic Brain Disorders.

    Science.gov (United States)

    Riemens, Renzo J M; Soares, Edilene S; Esteller, Manel; Delgado-Morales, Raul

    2017-01-01

    Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).

  10. Self-sustained cabinet based on fuel cell technology and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Rafael Augusto de Oliveira; Valentim, Rafael Bertier; Glir, Joao Raphael Zanlorensi; Stall, Alexandre; Sommer, Elise Meister; Sanches, Luciana Schimidilin; Dias, Fernando Gallego; Korndorfer, Heitor Medeiros de Albuquerque; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica], Email: rafaelcorrea123@hotmail.com; Ordonez, Juan Carlos [Florida State University, Tallahasse, Florida (United States). Dept. of Mechanical Engineering. Center for Advanced Power Systems

    2010-07-01

    Along the past few years, there has been intensive research on clean and renewable energy production. Two main reasons have been pointed out: pollution caused by oil based fuels consumption and their availability diminution, which increases their production costs. Fuel Cells have shown to be a clean and renewable energy source, which reveals them as a promising solution, although their technology needs further development. Fuel Cells produce electricity, water and heat consuming hydrogen and oxygen, this provided pure or from a natural air source. Present research has combined different equipment to compose a self-sustaining fuel cells technology based cabinet for energy production, which is a Regenerative Fuel Cell System (RFC). This system contains: fuel cells stack, electrolyzer, photovoltaic panel, batteries, current inverter and a charge controller. Photovoltaic panel charges the batteries, while charge controller controls the batteries loading. Batteries are connected to an inverter which converts direct current into alternating current. Inverter is connected to an electrolyzer (Hogen GC 600) which splits the water molecule into hydrogen and oxygen molecules. Produced hydrogen supplies the fuel cell stack and the oxygen is released directly to the atmosphere. Fuel cell stacks power production is transformed into mechanical energy by a fan. Electrical power generated by Ballard stack is 5.124 W, with a voltage of 36.6 V and current of 0.14 A. The system proved to have a great efficiency and to be capable to assemble two renewable energy sources (solar and fuel cell technology) in a self-sustainable cabinet. It has also been shown that equipment such as Electrolyzer, Fuel Cell Stack and Photovoltaic panel can be fit together in the order to produce energy. Therefore, research on Fuel Cells Regenerative System reveals great importance for developing a new, clean, renewable and regenerative energy production system. (author)

  11. Gas-fired electric power generating technologies

    International Nuclear Information System (INIS)

    1994-09-01

    The workshop that was held in Madrid 25-27 May 1994 included participation by experts from 16 countries. They represented such diverse fields and disciplines as technology, governmental regulation, economics, and environment. Thus, the participants provided an excellent cross section of key areas and a diversity of viewpoints. At the workshop, a broad range of topics regarding gas-fired electric power generation was discussed. These included political, regulatory and financial issues as well as more specific technical questions regarding the environment, energy efficiency, advanced generation technologies and the status of competitive developments. Important technological advances in gas-based power and CHP technologies have already been achieved including higher energy efficiency and lower emissions, with further improvements expected in the near future. Advanced technology trends include: (a) The use of gas technology to reduce emissions from existing coal-fired power plants. (b) The wide-spread application of combined-cycle gas turbines in new power plants and the growing use of aero-derivative gas turbines in CHP applications. (c) Phosphoric acid fuel cells that are being introduced commercially. Their market penetration will grow over the next 10 years. The next generation of fuel cells (solid oxide and molten carbonate) is expected to enter the market around the year 2000. (EG)

  12. IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells

    Science.gov (United States)

    Freund, Ariane; Chauveau, Corine; Brouillet, Jean-Paul; Lucas, Annick; Lacroix, Matthieu; Licznar, Anne; Vignon, Françoise; Lazennec, Gwendal

    2003-01-01

    Estrogen receptor (ER) status is an important parameter in breast cancer management as ER-positive breast cancers have a better prognosis than ER-negative tumors. This difference comes essentially from the lower aggressiveness and invasiveness of ER-positive tumors. Here, we demonstrate, that IL-8 was clearly overexpressed in most ER-negative breast, ovary cell lines and breast tumor samples tested, whereas no significant IL-8 level could be detected in ER-positive breast or ovarian cell lines. We have also cloned human IL-8 from ER-negative MDA-MB-231 cells and we show that IL-8 produced by breast cancer cells is identical to monocyte-derived IL-8. Interestingly, the invasion potential of ER-negative breast cancer cells is associated at least in part with expression of interleukin-8 (IL-8), but not with IL-8 receptors levels. Moreover, IL-8 increases the invasiveness of ER-positive breast cancer cells by 2 fold, thus confirming the invasion-promoting role of IL-8. On the other hand, exogenous expression of estrogen receptors in ER-negative cells led to a decrease of IL-8 levels. In summary, our data show that IL-8 expression is negatively linked to ER-status of breast and ovarian cancer cells. We also support the idea that IL-8 expression is associated with a higher invasiveness potential of cancer cells in vitro, which suggests that IL-8 could be a novel marker of tumor aggressiveness. PMID:12527894

  13. Multijunction Solar Cell Technology for Mars Surface Applications

    Science.gov (United States)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  14. Design, development, manufacture, testing, and delivery of devices for connection of solar cell panel circuitry to flat conductor cable solar cell array harness

    Science.gov (United States)

    Dillard, P. A.; Waddington, D.

    1971-01-01

    The technology status and problem areas which exist for the application of flat conductor cabling to solar cell arrays are summarized. Details covering the design, connector manufacture, and prototype test results are also summarized.

  15. Using technology to promote mobile learning: engaging students with cell phones in the classroom.

    Science.gov (United States)

    Robb, Meigan; Shellenbarger, Teresa

    2012-01-01

    Advancements in cell phone technology have impacted every aspect of society. Individuals have instant access to social networks, Web sites, and applications. Faculty need to consider using these mobile devices to enrich the classroom. The authors discuss how they successfully designed and incorporated cell phone learning activities into their classrooms. Teaching-learning strategies using cell phone technology and recommendations for overcoming challenges associated with cell phone use in the classroom are discussed.

  16. Plant cell technologies in space: Background, strategies and prospects

    Science.gov (United States)

    Kirkorian, A. D.; Scheld, H. W.

    1987-01-01

    An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.

  17. Correlation between HPV status at T and N sites of oropharyngeal squamous cell carcinomas

    DEFF Research Database (Denmark)

    Josiassen, Michael Vallop; Charabi, Birgitte; Lajer, Christel Braemer

    2017-01-01

    Objectives: Human papilloma virus (HPV) is known to be associated with oropharyngeal squamous cell carcinomas (OPSCC) and may potentially play a vital role in tumor metastasis. The purpose of this study was to correlate HPV status of cervical lymph node metastases with their respective primary...

  18. Recent progress in Si thin film technology for solar cells

    Science.gov (United States)

    Kuwano, Yukinori; Nakano, Shoichi; Tsuda, Shinya

    1991-11-01

    Progress in Si thin film technology 'specifically amorphous Si (a-Si) and polycrystalline Si (poly-Si) thin film' for solar cells is summarized here from fabrication method, material, and structural viewpoints. In addition to a-Si, primary results on poly-Si thin film research are discussed. Various applications for a-Si solar cells are mentioned, and consumer applications and a-Si solar cell photovoltaic systems are introduced. New product developments include see-through solar cells, solar cell roofing tiles, and ultra-light flexible solar cells. As for new systems, air conditioning equipment powered by solar cells is described. Looking to the future, the proposed GENESIS project is discussed.

  19. The next generation CdTe technology- Substrate foil based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, Chris [Univ. of South Florida, Tampa, FL (United States)

    2017-03-22

    The main objective of this project was the development of one of the most promising Photovoltaic (PV) materials CdTe into a versatile, cost effective, and high throughput technology, by demonstrating substrate devices on foil substrates using high throughput fabrication conditions. The typical CdTe cell is of the superstrate configuration where the solar cell is fabricated on a glass superstrate by the sequential deposition of a TCO, n-type heterojunction partner, p-CdTe absorber, and back contact. Large glass modules are heavy and present significant challenges during manufacturing (uniform heating, etc.). If a substrate CdTe cell could be developed (the main goal of this project) a roll-to-toll high throughput technology could be developed.

  20. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  1. Current status of development in dry pyro-electrochemical technology of SNF reprocessing

    International Nuclear Information System (INIS)

    Bychkov, A.V.; Skiba, O.V.; Kormilitsyn, M.V.

    2004-01-01

    The technology of SNF management in molten salts currently developed by a group of institutes headed by RIAR has had several stages of development: - basic research of uranium, plutonium and main FP properties (investigation and reprocessing of different kinds of SNF in 1960 - 1970); - development of the equipment and implementation of the pyro-electrochemical technology of granulated UPu fuel production. Development of the vibro-packing method and in-pile testing of vibro-packed fuel pins with granulated fuel as the most 'logical' continuation of reprocessing: implementation of the technology for BOR-60 and BN-600 (1980 - 1990); - development of closed fuel cycle elements. Checking of the technology using batches of SNF. In-pile tests. Feasibility study of the closed fuel cycle (CFC). Study of application of the technology to other objects (transmutation; nitride, cermet and other fuels) (1980 - 1990). The current status of the research is the following: - Basic research. Properties of uranium, plutonium, thorium, and neptunium in chloride melts have been studied in much detail. The data on physical chemistry and electrochemistry of the main FP is enough for understanding the processes. Detailed studies of americium, curium, and technetium chemistry are the essential investigation directions; - Engineering development. The technology and equipment bases have been developed for the processes of oxide fuel reprocessing and fabrication. The technology was checked using 5500 kg of pure fuel from different reactors and 20 kg of irradiated BN-350 and BOR-60 fuel. The bases of the technology have been provided and the feasibility study has been carried out for a full-scale plant of BN-800 CFC; - Industrial application: Since the technology is highly prepared, the activities on industrial application of U-Pu fuel are now underway. The BOR-60 reactor uses fuel obtained by the dry method, the design of the facility for implementation of CFC reactors is being developed. 9

  2. Understanding Hematopoietic Stem Cell Development through Functional Correlation of Their Proliferative Status with the Intra-aortic Cluster Architecture

    Directory of Open Access Journals (Sweden)

    Antoniana Batsivari

    2017-06-01

    Full Text Available During development, hematopoietic stem cells (HSCs emerge in the aorta-gonad-mesonephros (AGM region through a process of multi-step maturation and expansion. While proliferation of adult HSCs is implicated in the balance between self-renewal and differentiation, very little is known about the proliferation status of nascent HSCs in the AGM region. Using Fucci reporter mice that enable in vivo visualization of cell-cycle status, we detect increased proliferation during pre-HSC expansion followed by a slowing down of cycling once cells start to acquire a definitive HSC state, similar to fetal liver HSCs. We observe time-specific changes in intra-aortic hematopoietic clusters corresponding to HSC maturation stages. The proliferative architecture of the clusters is maintained in an orderly anatomical manner with slowly cycling cells at the base and more actively proliferating cells at the more apical part of the cluster, which correlates with c-KIT expression levels, thus providing an anatomical basis for the role of SCF in HSC maturation.

  3. Thin Cell Layer technology in ornamental plant micropropagation ...

    African Journals Online (AJOL)

    Thin cell layer (TCL) technology originated almost 30 years ago with the controlled development of flowers, roots, shoots and somatic embryos on tobacco pedicel longitudinal TCLs. Since then TCLs have been successfully used in the micropropagation of many ornamental plant species whose previous in vitro ...

  4. Fuel cell technology; Brennstoffzellen-Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Stimming, U; Friedrich, K A; Cappadonia, M; Vogel, R

    1999-12-31

    Hydrogen from fossil or renewable sources is an important fuel for low-emission power generation in fuel cells. Methanol and maybe also ethanol can also be produced by direct electrochemical processes in low-temperature fuel cells (PEMFC, PAFC). Fuel cell systems with high operating temperatures are highly flexible with regard to fuel but tend to have material problems. On the other hand, rapid developments in materials development and the possibility of production technology transfer from the electronics industry lead one to expect a breakthrough in the near future. But in spite of this, niche market applications will prevail. Since power stations have a longer life than motor vehicles and fuel cells in mobile applications, emission reductions from fuel cell applications in road vehicles are more probable on a medium-term basis than from applications in power stations. (orig.) [Deutsch] Wasserstoff, der sowohl aus fossilen wie auch aus regenerativen Quellen erschlossen werden kann, ist ein wesentlicher Brennstoff fuer die emissionsarme Elektrizitaetsproduktion in Brennstoffzellen. Methanol und eventuell Ethanol koennen auch direkt elektrochemisch in Niedertemperaturbrennstoffzellen (PEMFC, PAFC) umgesetzt werden. Brennstoffzellensysteme mit hohen Betriebstemperaturen erlauben eine hohe Flexibilitaet bezueglich der verwendeten Brennstoffe, sind aber nach wie vor durch starke Materialprobleme belastet. Die enormen Fortschritte in der Materialentwicklung einerseits sowie ein moeglicher Transfer von Fertigungstechnologien aus der Elektronikindustrie andererseits lassen eine zukuenftige grosstechnische Nutzung von Brennstoffzellen erwarten. Die technische Einfuehrung wird dennoch nur ueber Nischenmaerkte moeglich sein. Da die mittlere Lebensdauer eines Kraftwerks deutlich hoeher ist als die eines Strassenfahrzeugs, ausserdem Brennstoffzellen auch in staerkerem Masse in Fahrzeugen eingesetzt werden koennen, sind mittelfristig Emissionen eher durch

  5. Integrating single-cell transcriptomic data across different conditions, technologies, and species.

    Science.gov (United States)

    Butler, Andrew; Hoffman, Paul; Smibert, Peter; Papalexi, Efthymia; Satija, Rahul

    2018-06-01

    Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

  6. Tracking the Oxygen Status in the Cell Nucleus with a Hoechst-Tagged Phosphorescent Ruthenium Complex.

    Science.gov (United States)

    Hara, Daiki; Umehara, Yui; Son, Aoi; Asahi, Wataru; Misu, Sotaro; Kurihara, Ryohsuke; Kondo, Teruyuki; Tanabe, Kazuhito

    2018-05-04

    Molecular oxygen in living cells is distributed and consumed inhomogeneously, depending on the activity of each organelle. Therefore, tractable methods that can be used to monitor the oxygen status in each organelle are needed to understand cellular function. Here we report the design of a new oxygen-sensing probe for use in the cell nucleus. We prepared "Ru-Hoechsts", each consisting of a phosphorescent ruthenium complex linked to a Hoechst 33258 moiety, and characterized their properties as oxygen sensors. The Hoechst unit shows strong DNA-binding properties in the nucleus, and the ruthenium complex shows oxygen-dependent phosphorescence. Thus, Ru-Hoechsts accumulated in the cell nucleus and showed oxygen-dependent signals that could be monitored. Of the Ru-Hoechsts prepared in this study, Ru-Hoechst b, in which the ruthenium complex and the Hoechst unit were linked through a hexyl chain, showed the most suitable properties for monitoring the oxygen status. Ru-Hoechsts are probes with high potential for visualizing oxygen fluctuations in the nucleus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Perspectives for induced pluripotent stem cell technology: new insights into human physiology involved in somatic mosaicism.

    Science.gov (United States)

    Nagata, Naoki; Yamanaka, Shinya

    2014-01-31

    Induced pluripotent stem cell technology makes in vitro reprogramming of somatic cells from individuals with various genetic backgrounds possible. By applying this technology, it is possible to produce pluripotent stem cells from biopsy samples of arbitrarily selected individuals with various genetic backgrounds and to subsequently maintain, expand, and stock these cells. From these induced pluripotent stem cells, target cells and tissues can be generated after certain differentiation processes. These target cells/tissues are expected to be useful in regenerative medicine, disease modeling, drug screening, toxicology testing, and proof-of-concept studies in drug development. Therefore, the number of publications concerning induced pluripotent stem cells has recently been increasing rapidly, demonstrating that this technology has begun to infiltrate many aspects of stem cell biology and medical applications. In this review, we discuss the perspectives of induced pluripotent stem cell technology for modeling human diseases. In particular, we focus on the cloning event occurring through the reprogramming process and its ability to let us analyze the development of complex disease-harboring somatic mosaicism.

  8. Vehicle Technologies and Fuel Cell Technologies Office Research and Development Programs: Prospective Benefits Assessment Report for Fiscal Year 2018

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, T. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Birky, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohlke, David [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-01

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies Offices of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy invest in early-stage research of advanced batteries and electrification, engines and fuels, materials, and energy-efficient mobility systems; hydrogen production, delivery, and storage; and fuel cell technologies. This report documents the estimated benefits of successful development and implementation of advanced vehicle technologies. It presents a comparison of a scenario with completely successful implementation of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies (the Program Success case) to a future in which there is no contribution after Fiscal Year 2017 by the VTO or FCTO to these technologies (the No Program case). Benefits were attributed to individual program technology areas, which included FCTO research and development and the VTO programs of electrification, advanced combustion engines and fuels, and materials technology. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 24% to 30% higher than in the No Program case, while fuel economy for on-road medium- and heavy-duty vehicle stock could be as much as 13% higher. The resulting petroleum savings in 2035 were estimated to be as high as 1.9 million barrels of oil per day, and reductions in greenhouse gas emissions were estimated to be as high as 320 million metric tons of carbon dioxide equivalent per year. Projections of light-duty vehicle adoption indicate that although advanced-technology vehicles may be somewhat more expensive to purchase, the fuel savings result in a net reduction of consumer cost. In 2035, reductions in annual fuel expenditures for vehicles (both light- and heavy-duty) are projected to range from $86 billion to $109 billion (2015$), while the projected increase in new vehicle

  9. Danish SDHW Technology

    DEFF Research Database (Denmark)

    Furbo, Simon

    1996-01-01

    The status of Danish technology for solar heating systems for hot water supply as well as R&D work in the field is presented.......The status of Danish technology for solar heating systems for hot water supply as well as R&D work in the field is presented....

  10. Post-harvest technologies for various crops of pakistan: status quo, employment generation and prospects

    International Nuclear Information System (INIS)

    Ahmad, M.

    2005-01-01

    The climatic conditions of Pakistan vary from tropical to temperate, allow 40 different kinds of vegetables, 21 type of fruit, and 5 major crops (wheat, cotton, rice, sugarcane, and maize) to grow. During the peak harvest-season, a great proportion of fresh agricultural/horticultural produce is lost, due to unavailability of suitable post-harvest technologies. An effort was made to present the status quo, constraints, Government policies and possible post-harvest technologies that can be developed/adopted in the country to generate employment in the rural areas. Secondary processing-industry (flour mills, sugar mills, oil mills etc.) is fairly developed in the country. However. primary processing of agricultural produce is poorly developed in the country. The higher cost of the processed products, consumers habits of eating fresh commodities, seasonability of fresh fruit and vegetables, and low quality of the processed products are the key-constraints for the slow growth of post-harvest processing industry. By removing these constraints, and by developing/adopting various technologies, identified in this paper, we may help to establish post-harvest processing industry on sound footings. Consequently, the employment-opportunities will increase in the rural areas of the country. (author)

  11. Application of cell sheet technology to bone marrow stromal cell transplantation for rat brain infarct.

    Science.gov (United States)

    Ito, Masaki; Shichinohe, Hideo; Houkin, Kiyohiro; Kuroda, Satoshi

    2017-02-01

    Bone marrow stromal cells (BMSC) transplantation enhances functional recovery after cerebral infarct, but the optimal delivery route is undetermined. This study was aimed to assess whether a novel cell-sheet technology non-invasively serves therapeutic benefits to ischemic stroke. First, the monolayered cell sheet was engineered by culturing rat BMSCs on a temperature-responsive dish. The cell sheet was analysed histologically and then transplanted onto the ipsilateral neocortex of rats subjected to permanent middle cerebral artery occlusion at 7 days after the insult. Their behaviours and histology were compared with those in the animals treated with direct injection of BMSCs or vehicle over 4 weeks post-transplantation. The cell sheet was 27.9 ± 8.0 μm thick and was composed of 9.8 ± 2.4 × 10 5 cells. Cell sheet transplantation significantly improved motor function when compared with the vehicle-injected animals. Histological analysis revealed that the BMSCs were densely distributed to the neocortex adjacent to the cerebral infarct and expressed neuronal phenotype in the cell sheet-transplanted animals. These findings were almost equal to those for the animals treated with direct BMSC injection. The attachment of the BMSC sheet to the brain surface did not induce reactive astrocytes in the adjacent neocortex, although direct injection of BMSCs profoundly induced reactive astrocytes around the injection site. These findings suggest that the BMSCs in cell sheets preserve their biological capacity of migration and neural differentiation. Cell-sheet technology may enhance functional recovery after ischaemic stroke, using a less invasive method. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (development of fabrication technology of thin film polycrystalline Si solar cell); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (usumaku takessho silicon kei taiyo denchi seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of thin film polycrystalline Si solar cells in fiscal 1994. (1) On the fabrication technology of high-quality Si thin films, the new equipment was studied which allows uniform stable melting recrystallization over a large area. The new equipment adopted a heating method based on RTP system, and is now under adjustment. (2) On the fabrication technology of light/carrier confinement structure, degradation of hydrogen-treated thin film Si solar cells by light irradiation was examined. As a result, since any characteristic degradation was not found even by long time light irradiation, the high quality of the cells was confirmed regardless of hydrogen-treatment. Fabrication of stable reproducible fine texture structure became possible by using fabrication technology of light confinement structure by texture treatment of cell surfaces. (3) On low-cost process technology, design by VEST process, estimation of cell characteristics by simulation, and characteristics of prototype cells were reported. 33 figs., 1 tab.

  13. An overview of crystalline silicon solar cell technology: Past, present, and future

    Science.gov (United States)

    Sopian, K.; Cheow, S. L.; Zaidi, S. H.

    2017-09-01

    Crystalline silicon (c-Si) solar cell, ever since its inception, has been identified as the only economically and environmentally sustainable renewable resource to replace fossil fuels. Performance c-Si based photovoltaic (PV) technology has been equal to the task. Its price has been reduced by a factor of 250 over last twenty years (from ˜ 76 USD to ˜ 0.3 USD); its market growth is expected to reach 100 GWP by 2020. Unfortunately, it is still 3-4 times higher than carbon-based fuels. With the matured PV manufacturing technology as it exists today, continuing price reduction poses stiff challenges. Alternate manufacturing approaches in combination with thin wafers, low (< 10 x) optical enhancement with Fresnel lenses, band-gap engineering for enhanced optical absorption, and newer, advanced solar cell configurations including partially transparent bifacial and back contact solar cells will be required. This paper will present a detailed, cost-based analysis of advanced solar cell manufacturing technologies aimed at higher (˜ 22 %) efficiency with existing equipment and processes.

  14. The Impact of Smoking Status on the Efficacy of Erlotinib in Patients with Advanced Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yilong WU

    2009-12-01

    Full Text Available Background and objective Erlotinib is a targeted treatment for advanced non-small cell lung cancer. Smoking status may be one of influencing factors of the efficacy of erlotinib. The aim of this study is to explore the impact of smoking status on the efficacy of erlotinib in patients with advanced non-small cell lung cancer. Methods Patients with nonsmall cell lung cancer who had been previously treated with at least one course of platinum based chemotherapy received 150 mg oral doses of erlotinib once daily until disease progression. Response rate, progression-free survival, overall survival were analyzed in the different smoking status groups. Kaplan-Meier method was used to analyze the survival rate. Results Fortyeight patients were enrolled into the study from December 2005 to September 2006. We followed up these patients until 28th December, 2008. Median follow up time was 30 months. The compliance rate was 100%. The response rate was 32.1% in the smoking group and 35% in the never smoking group (P=0.836; The median progression-free survival was 3 months and 9 months, respectively (P=0.033. The median overall survival was 5 months and 17 months, respectively (P=0.162. Conclusion Erlotinib is an effective drug for advanced non-small cell lung cancer patients with different smoking status. Progressionfree survival is better in the never smoking patients than the smoking patients.

  15. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  16. Review of production status of heavy steel castings and key technologies for their manufacture in China

    Directory of Open Access Journals (Sweden)

    Liu Baicheng

    2008-02-01

    Full Text Available This paper expatiates on domestic status of heavy steel casting production, with a special focus on hydraulic turbine castings for Three Gorges Project. In China, there is magnificent demand for heavy castings with the rapid growth of the national economy in recent years and the expected high growth in the coming 10 to 20 years. Some heavy and large castings such as mill housing and hydraulic turbine runner crown, blade and band for Three Gorges Project have been successfully made. However, the domestic production capability is still far from meeting the gigantic requirements. The domestic capability still lags behind the world class level, and a lot of heavy castings still depend on import. The paper also gives a particular introduction of the key technologies in the manufacturing of heavy steel castings like metal melting, foundry technology, heat treatment technology and numerical simulation technique, etc. In addition, several case studies on the application of numerical simulation in the production of heavy steel castings are presented.

  17. Marital status and survival of patients with oral cavity squamous cell carcinoma: a population-based study

    OpenAIRE

    Shi, Xiao; Zhang, Ting-ting; Hu, Wei-ping; Ji, Qing-hai

    2017-01-01

    Background The relationship between marital status and oral cavity squamous cell carcinoma (OCSCC) survival has not been explored. The objective of our study was to evaluate the impact of marital status on OCSCC survival and investigate the potential mechanisms. Results Married patients had better 5-year cancer-specific survival (CSS) (66.7% vs 54.9%) and 5-year overall survival (OS) (56.0% vs 41.1%). In multivariate Cox regression models, unmarried patients also showed higher mortality risk ...

  18. Status of Research on Pebble Bed HTR Fuel Fabrication Technology in Indonesia

    International Nuclear Information System (INIS)

    Rachmawati, M.; Sarjono; Ridwan; Langenati, R.

    2014-01-01

    Research on pebble bed HTR fuel fabrication is conducted in Indonesia. One of the aims is to build a knowledge base on pebble bed HTR fuel element fabrication technology for fuel procurement. The steps of research strategies are firstly to understand the basic design research of TRISO fuel, properties, and requirements, and secondly to understand the TRISO fuel manufacturing technology, which comprises fabrication and quality control, including its facility. Both steps are adopted from research and experiences of the countries with HTR fuel element fabrication technology. From the knowledge gained in the research, an experimental design of the process and a set of prototype process equipment for fabrication are developed, namely kernels production using external gelation process, TRISO coating of the kernel, and pebble compacting. Experiments using the prototypes have been conducted. Characterization of the kernel product, i.e. diameter, sphericity, density and O/U ratio, shows that the kernel product is still not in compliance with the specification requirements. These are deemed to be caused mainly by the selected vibrating system and the viscosity adjustment. Another major cause is the selected NH3 and air feeding method for both NH3 and air layer in the preparation for spherical droplets of liquid. The FB-CVD TRISO coating of the kernel has been experimented but unsuccessful by using an FB-CVD once‐through continuous coating process. For the pebble compacting, the process is still in the early stage of setting-up compaction equipment. This paper summarizes the current status of research on HTR fuel fabrication technology in Indonesia, the proposed process and its equipment setting-up for improvement of the kernel production. The knowledge and lessons learned gained from the research is useful and can be an assistance in planning for fuel development laboratory facilities procurement, formulating User Requirement Document and Bid Invitation Specification for

  19. The Fountain of Stem Cell-Based Youth? Online Portrayals of Anti-Aging Stem Cell Technologies.

    Science.gov (United States)

    Rachul, Christen M; Percec, Ivona; Caulfield, Timothy

    2015-08-01

    The hype surrounding stem cell science has created a market opportunity for the cosmetic industry. Cosmetic and anti-aging products and treatments that make claims regarding stem cell technology are increasingly popular, despite a lack of evidence for safety and efficacy of such products. This study explores how stem cell-based products and services are portrayed to the public through online sources, in order to gain insight into the key messages available to consumers. A content analysis of 100 web pages was conducted to examine the portrayals of stem cell-based cosmetic and anti-aging products and treatments. A qualitative discourse analysis of one web page further examined how language contributes to the portrayals of these products and treatments to public audiences. The majority of web pages portrayed stem cell-based products as ready for public use. Very few web pages substantiated claims with scientific evidence, and even fewer mentioned any risks or limitations associated with stem cell science. The discourse analysis revealed that the framing and use of metaphor obscures the certainty of the efficacy of and length of time for stem cell-based anti-aging technology to be publicly available. This study highlights the need to educate patients and the public on the current limits of stem cell applications in this context. In addition, generating scientific evidence for stem cell-based anti-aging and aesthetic applications is needed for optimizing benefits and minimizing adverse effects for the public. Having more evidence on efficacy and risks will help to protect patients who are eagerly seeking out these treatments. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  20. Sensitivity of mitochondrial DNA depleted ρ0 cells to H2O2 depends on the plasma membrane status.

    Science.gov (United States)

    Tomita, Kazuo; Kuwahara, Yoshikazu; Takashi, Yuko; Tsukahara, Takao; Kurimasa, Akihiro; Fukumoto, Manabu; Nishitani, Yoshihiro; Sato, Tomoaki

    2017-08-19

    To clarify the relationship between mitochondrial DNA (mtDNA)-depleted ρ0 cells and the cellular sensitivity to hydrogen peroxide (H 2 O 2 ), we established HeLa and SAS ρ0 cell lines and investigated their survival rate in H 2 O 2 , radical scavenging enzymes, plasma membrane potential status, and chronological change in intracellular H 2 O 2 amount under the existence of extracellular hydrogen peroxide compared with the parental cells. The results revealed that ρ0 cells had higher sensitivity to H 2 O 2 than their parental cells, even though the catalase activity of ρ0 cells was up-regulated, and the membrane potential of the ρ0 cells was lower than their parental cells. Furthermore, the internal H 2 O 2 amount significantly increased only in ρ0 cells after 50 μM H 2 O 2 treatment for 1 h. These results suggest that plasma membrane status of ρ0 cells may cause degradation, and the change could lead to enhanced membrane permeability to H 2 O 2 . As a consequence, ρ0 cells have a higher H 2 O 2 sensitivity than the parental cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Gas-phase decontamination demonstration on PORTS cell X-25-4-2. Final technology status report

    International Nuclear Information System (INIS)

    Riddle, R.J.

    1997-09-01

    The Long-Term, Low Temperature (LTLT) process is a gas-phase in situ decontamination technique which has been tested by LMES/K-25 personnel on the laboratory scale with promising results. The purpose of the Gas-Phase Decontamination Demonstration at PORTS was to evaluate the LTLT process on an actual diffusion cascade cell at conditions similar to those used in the laboratory testing. The demonstration was conducted on PORTS diffusion cell X-25-4-2 which was one of the X-326 Building cells which was permanently shutdown as part of the Suspension of HEU Production at PORTS. The demonstration full-scale test consisted of rendering the cell leak-tight through the installation of Dresser seals onto the process seals, exposing the cell to the oxidants ClF 3 and F 2 for a period of 105 days and evaluating the effect of the clean-up treatment on cell samples and coupons representing the major diffusion cascade materials of construction. The results were extrapolated to determine the effectiveness of LTLT decontamination over the range of historical uranium isotope assays present in the diffusion complex. It was determined that acceptable surface contamination levels could be obtained in all of the equipment in the lower assay cascades which represents the bulk of the equipment contained in the diffusion complex

  2. High temperature polymer electrolyte membrane fuel cells: Approaches, status, and perspectives

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  3. Relationship between the depression status of patients with resectable non-small cell lung cancer and their family members in China.

    Science.gov (United States)

    Wu, Xian-Ning; Su, Dan; Li, Hui-Ping; Wang, Wei-Li; Wu, Wei-Qin; Yang, Ya-Juan; Yu, Feng-Lei; Zhang, Jing-Ping

    2013-10-01

    Less work on depression status has been done with family members of patients with non-small cell lung cancer (NSCLC). This study investigated depression status of patients and their family members; and the relationship of the depression status between these two groups. This cross-sectional study enrolled 194 patients diagnosed with non-small cell lung cancer as well as their family members. In this study, a self-administered General Information Questionnaire was used to collect general information and the Self-rating Depression Scale (SDS) to assess depression status. Linear correlation analysis was used to probe the relationship of the depression status between patients and their family members. Of the 194 patients, 148 (76.3%) showed symptoms of depression. 148 (76.3%) family members had depression symptoms. The severity of depression in patients was positively correlated with that of family members (r = 0.577, p family members suffered depression, and the two were correlated. A prospective study might prove helpful in determining the real relationship existing between the two groups' mental status and whether early detection and intervention might ameliorate this current situation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Prevailing vitamin D status influences mitochondrial and glycolytic bioenergetics in peripheral blood mononuclear cells obtained from adults

    Directory of Open Access Journals (Sweden)

    Emily K. Calton

    2016-12-01

    Conclusions: Inadequate vitamin D status adversely influenced bioenergetic parameters of PBMCs obtained from adults, in a pattern consistent with increased oxidative metabolism and activation of these cells.

  5. Understanding Hematopoietic Stem Cell Development through Functional Correlation of Their Proliferative Status with the Intra-aortic Cluster Architecture.

    Science.gov (United States)

    Batsivari, Antoniana; Rybtsov, Stanislav; Souilhol, Celine; Binagui-Casas, Anahi; Hills, David; Zhao, Suling; Travers, Paul; Medvinsky, Alexander

    2017-06-06

    During development, hematopoietic stem cells (HSCs) emerge in the aorta-gonad-mesonephros (AGM) region through a process of multi-step maturation and expansion. While proliferation of adult HSCs is implicated in the balance between self-renewal and differentiation, very little is known about the proliferation status of nascent HSCs in the AGM region. Using Fucci reporter mice that enable in vivo visualization of cell-cycle status, we detect increased proliferation during pre-HSC expansion followed by a slowing down of cycling once cells start to acquire a definitive HSC state, similar to fetal liver HSCs. We observe time-specific changes in intra-aortic hematopoietic clusters corresponding to HSC maturation stages. The proliferative architecture of the clusters is maintained in an orderly anatomical manner with slowly cycling cells at the base and more actively proliferating cells at the more apical part of the cluster, which correlates with c-KIT expression levels, thus providing an anatomical basis for the role of SCF in HSC maturation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Science.gov (United States)

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  7. Technology - a review of current status

    International Nuclear Information System (INIS)

    Wolf, R.

    1986-01-01

    The book reviews the history of the efforts taken by the political and administrative authorities to acquire the technical knowledge required to fulfill their functions as competent authorities to evaluate and decide on technical feasibility and economic justification of complex technical processes, a task which constantly puts strain on the authorities, who have to keep up with the technological know-how of the industrial and technological establishments who, as it where, stand opposite to the authorities in the process of legal regulation of technological risks. The author explains the problems involved in the attempt to use existing, or establish adequate new, legal provisions to reconcile the interests of the law with those of the economy. The leading example for this purpose is the air pollution control laws. Further aspects discussed are steps taken from a technicalization of the law towards a proceduralization, and attempts towards a control of technology in a democratic constitutional state. The chapter on the 'risk to be tolerated' in the law on licensing of nuclear installations has been separately analysed and abstracted for the database. (HSCH) [de

  8. Towards successful bioaugmentation with entrapped cells as a soil remediation technology

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Dechesne, Arnaud; Binning, Philip John

    2010-01-01

    Soil remediation technologies are proposed that rely on inoculation with degrading microorganisms entrapped in protective carriers. A mathematical model developed to model entrapped cell bioaugmentation describes the 3-D diffusion-driven mass transfer of benzoate, and its mineralization...... but is restricted in dry conditions, as confirmed by performing cell counts. This highlights the potential of entrapped cells when they act as seeds for soil colonization....

  9. U.S. Clean Energy Hydrogen and Fuel Cell Technologies: A Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fullenkamp, Patrick [Westside Industrial Retention & Expansion Network, Cleveland, OH (United States); Holody, Diane [Westside Industrial Retention & Expansion Network, Cleveland, OH (United States); James, Brian [Strategic Analysis, Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis, Inc., Arlington, VA (United States); Wheeler, Douglas [DJW Technology, Dublin, OH (United States); Hart, David [E4tech, London (United Kingdom); Lehner, Franz [E4tech, London (United Kingdom)

    2017-10-10

    The objectives of this project are a 1) Global Competitiveness Analysis of hydrogen and fuel cell systems and components manufactured including 700 bar compressed hydrogen storage system in the U.S., Europe, Asia, and other key areas to be identified to determine the global cost leaders, the best current manufacturing processes, the key factors determining competitiveness, and the potential means of cost reductions; and an 2) Analysis to assess the status of global hydrogen and fuel cell markets. The analysis of units, megawatts by country and by application will focus on polymer electrolyte membrane (PEM) fuel cell systems (automotive and stationary).

  10. Li ion batteries for electric-powered vehicles. Demands and status; Li-Ionen Batterien fuer elektrifizierte Fahrzeuge. Anforderungen und Status

    Energy Technology Data Exchange (ETDEWEB)

    Lamp, Peter [BMW AG, Muenchen (Germany). ' ' Speichertechnologie und -konzepte' '

    2011-07-01

    The idea of a rechargeable battery powered pure electrical vehicle exists for more than a century. In the course of the different oil crisis and the increasing efforts for emission and CO{sub 2} reduction there have been several attempts in the last 30 years to revive the idea of battery powered electric vehicles. Although new battery technologies like NaS or NaNiCl were used there was no real success as these technologies provided an improvement compared to lead-acid but still did not meet the automotive requirement. Compared to the other presently available battery technologies, Li-Ion batteries have outstanding performance regarding energy and power density. After being successfully introduced in the consumer market since more than a decade and in the meantime also penetrating the power-tool market, this technology now carries the hope of all political and industrial players, envisaging the future of increasing electrification of vehicles. In this paper the present status of the Li-Ion technology will be compared with the automotive requirements. Most of the relevant design features from electric performance as well as different cell technologies and geometries to cycle and calendar life will be addressed. Moreover necessary future development needs will be addressed. (orig.)

  11. The status and prospects of radiation application technology in Korea

    International Nuclear Information System (INIS)

    Sung-Kee, Jo

    2010-01-01

    Full text : This article describes the Nuclear age in Korea which began in 1959 when Korea Atomic Energy Research Institute (KAERI) was first established. Since then, Korea became one of the leading countries in the world nuclear technology and industry. In Korea, 20 nuclear power plants are currently in operation, which produced 34.1% of total electricity in 2009. Furthermore, 8 nuclear power plants are under construction. Eventually, Korea succeeded in exporting nuclear power plant to United Arab Emirates and research reactor to Jordan in 2009. The nuclear application can be divided into two fields. The first one is nuclear power production, and the other is radiation application. Due to the governmental promotion policy, the research activity on radiation and RI application is greatly rising in Korea. Korea Atomic Energy Research Institute (KAERI) and Korea Institute of Radiological and Medical Sciences (KIRAMS) are two leading research institutes in this field. KAERI is conducting RI production and neutron research by using research reactor, and radiation application research such as radiation processing, biotechnological and agricultural application, and cyclotron application. KIRAMS is dedicated to the research on the medical application of radiation. Advanced Radiation Technology Institute (ARTI), constructed in 2006 as a sub organization of KAERI, is a major research institute for radiation application to material engineering, agriculture, biotechnology, environmental technology, and cyclotron beam application. ARTI is equipped with various radiation facilities such as Co-60 irradiation facility (490 kCi and 3 kCi), gamma phytotron, gamma cell, electron beam irradiator, ion implanter, and 30 MeV cyclotron. In material engineering field, new industrial and biomedical materials (carbon fiber filament, composite electrolyte, fuel cell membrane, hydrogels) are developed by radiation processing of polymer materials. In agricultural area, new plant varieties

  12. Immobilized cell technology in beer brewing: Current experience and results

    Directory of Open Access Journals (Sweden)

    Leskošek-Čukalov Ida J.

    2005-01-01

    Full Text Available Immobilized cell technology (ICT has been attracting continual attention in the brewing industry over the past 30 years. Some of the reasons are: faster fermentation rates and increased volumetric productivity, compared to those of traditional beer production based on freely suspended cells, as well as the possibility of continuous operation. Nowadays, ICT technology is well established in secondary fermentation and alcohol- free and low-alcohol beer production. In main fermentation, the situation is more complex and this process is still under scrutiny on both the lab and pilot levels. The paper outlines the most important ICT processes developed for beer brewing and provides an overview of carrier materials, bioreactor design and examples of their industrial applications, as well as some recent results obtained by our research group. We investigated the possible applications of polyvinyl alcohol in the form of LentiKats®, as a potential porous matrices carrier for beer fermentation. Given are the results of growth studies of immobilized brewer's yeast Saccharomyces uvarum and the kinetic parameters obtained by using alginate microbeads with immobilized yeast cells and suspension of yeast cells as controls. The results indicate that the immobilization procedure in LentiKat® carriers has a negligible effect on cell viability and growth. The apparent specific growth rate of cells released in medium was comparable to that of freely suspended cells, implying preserved cell vitality. A series of batch fermentations performed in shaken flasks and an air-lift bioreactor indicated that the immobilized cells retained high fermentation activity. The full attenuation in green beer was reached after 48 hours in shaken flasks and less than 24 hours of fermentation in gas-lift bioreactors.

  13. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    Fuel cells have started replacing traditional lead-acid battery banks in backup systems. Although these systems are characterized by long periods of standby, they must be able to start at any instant in the shortest time. In the case of low temperature proton exchange membrane fuel cell systems......, a precise estimation of hydration status of the fuel cell during standby is important for a fast and safe startup. In this article, the measurement of the complex impedance of the fuel cell is suggested as a method to estimate the membrane hydration status. A 56-cell fuel cell stack has been symmetrically...... fed with air whose temperature and relative humidity were controlled, and its complex impedance was measured at different frequencies and for different values of relative humidity. After showing that the experiment was repeatable, the fuel cell stack was characterized, a power regression model...

  14. G2-block after irradiation of cells with different p53 status

    International Nuclear Information System (INIS)

    Zoelzer, Friedo; Jagetia, Ganesh; Streffer, Christian

    2014-01-01

    Although it is clear that functional p53 is not required for radiation-induced G 2 block, certain experimental findings suggest a role for p53 in this context. For instance, as we also confirm here, the maximum accumulation in the G 2 compartment after X-ray exposure occurs much later in p53 mutants than in wild types. It remains to be seen, however, whether this difference is due to a longer block in the G 2 phase itself. We observed the movement of BrdU-labeled cells through G 2 and M into G 1 . From an analysis of the fraction of labeled cells that entered the second posttreatment cell cycle, we were able to determine the absolute duration of the G 2 and M phases in unirradiated and irradiated cells. Our experiments with four cell lines, two melanomas and two squamous carcinomas, showed that the radiation-induced delay of transition through the G 2 and M phases did not correlate with p53 status. We conclude that looking at the accumulation of cells in the G 2 compartment alone is misleading when differences in the G 2 block are investigated and that the G 2 block itself is indeed independent of functional p53. (orig.) [de

  15. Status of readout integrated circuits for radiation detector

    International Nuclear Information System (INIS)

    Moon, B. S.; Hong, S. B.; Cheng, J. E. and others

    2001-09-01

    In this report, we describe the current status of readout integrated circuits developed for radiation detectors, along with new technologies being applied to this field. The current status of ASCIC chip development related to the readout electronics is also included in this report. Major sources of this report are from product catalogs and web sites of the related industries. In the field of semiconductor process technology in Korea, the current status of the multi-project wafer(MPW) of IDEC, the multi-project chip(MPC) of ISRC and other domestic semiconductor process industries is described. In the case of other countries, the status of the MPW of MOSIS in USA and the MPW of EUROPRACTICE in Europe is studied. This report also describes the technologies and products of readout integrated circuits of industries worldwide

  16. Acceleration of cell factories engineering using CRISPR-based technologies

    DEFF Research Database (Denmark)

    Ronda, Carlotta

    potentially be standardized in an automatable platform and, in the future be integrated with metabolic modeling tools. In particularly it describes the technologies developed in the three widely used organisms: E. coli, S. cerevisiae and CHO mammalian cells using the recent breakthrough CRISPR/ Cas9 system....... These include CRMAGE, a MAGE improved recombineering platform using CRISPR negative selection, CrEdit, a system for multi-loci marker-free simultaneous gene and pathway integrations and CRISPy a platform to accelerate genome editing in CHO cells....

  17. Arming Technology in Yeast—Novel Strategy for Whole-cell Biocatalyst and Protein Engineering

    Directory of Open Access Journals (Sweden)

    Mitsuyoshi Ueda

    2013-09-01

    Full Text Available Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called “arming technology”, can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.

  18. Recent findings and technological advances in phosphoproteomics for cells and tissues.

    Science.gov (United States)

    von Stechow, Louise; Francavilla, Chiara; Olsen, Jesper V

    2015-01-01

    Site-specific phosphorylation is a fast and reversible covalent post-translational modification that is tightly regulated in cells. The cellular machinery of enzymes that write, erase and read these modifications (kinases, phosphatases and phospho-binding proteins) is frequently deregulated in different diseases, including cancer. Large-scale studies of phosphoproteins - termed phosphoproteomics - strongly rely on the use of high-performance mass spectrometric instrumentation. This powerful technology has been applied to study a great number of phosphorylation-based phenotypes. Nevertheless, many technical and biological challenges have to be overcome to identify biologically relevant phosphorylation sites in cells and tissues. This review describes different technological strategies to identify and quantify phosphorylation sites with high accuracy, without significant loss of analysis speed and reproducibility in tissues and cells. Moreover, computational tools for analysis, integration and biological interpretation of phosphorylation events are discussed.

  19. Cell broadcast trials in The Netherlands: Using mobile phone technology for citizens' alarming

    International Nuclear Information System (INIS)

    Jagtman, H.M.

    2010-01-01

    In emergency situations authorities need to warn the public. The conventionally used method for warning citizens in The Netherlands is the use of a siren. Modern telecommunication technologies, especially the use of text-based features of mobile phones, have great potential for warning the public. In the years 2005-2007 cell broadcast was tested during several large-scale field trials with citizens in The Netherlands. One of the questions was to determine the penetration of cell broadcast for citizens' alarming. This article argues that the definition of penetration in the light of warning citizens in case of emergencies should include the citizens' responses to warning messages. In addition, the approach to determining the penetration, the data and validity issues regarding these data is discussed. The trials have shown cell broadcast has potential to become an effective citizens' alarming technology. This however requires the entire technological and organisational chain of the warning system to function correctly. Attention is required to network management, handset improvements and correct communication to the public about the conditions under which a cell broadcast message can be received. The latter includes managing realistic expectations including circumstances in which cell broadcast will not reach a citizen.

  20. Technology channel fuel cells; Reseau technologique piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document presents the PACo channel, its research and development program and the calendar of the first year. The PACo channel aims at stimulate the technology innovation in the domain of the fuel cells and organize collaborations between enterprises and research laboratories. (A.L.B.)

  1. Technology challenges for SRF guns as ERL sources in view of Rossendorf work

    International Nuclear Information System (INIS)

    Janssen, Dietmar; Buettig, Hartmut; Evtushenko, Pavel; Lehnert, Ulf; Michel, Peter; Moeller, Karsten; Murcek, Petr; Schneider, Christof; Schurig, Rico; Staufenbiel, Friedrich; Teichert, Jochen; Xiang, Rong; Stephan, Juergen; Lehmann, Wolf-Dietrich; Kamps, Thorsten; Lipka, Dirk; Volkov, Vladimir; Will, Ingo

    2006-01-01

    After successful tests of a SRF gun with a superconducting half-cell cavity a new SRF photoinjector for cw operation at the ELBE linac is under development. The paper discuss the design of the injector, the technological challenges of different components, the status of manufacturing and the expected parameters

  2. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies.

    Science.gov (United States)

    Abbasalizadeh, Saeed; Baharvand, Hossein

    2013-12-01

    Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing. © 2013.

  3. Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins.

    Science.gov (United States)

    Peaucelle, Alexis; Louvet, Romain; Johansen, Jorunn N; Höfte, Herman; Laufs, Patrick; Pelloux, Jérome; Mouille, Grégory

    2008-12-23

    Plant organs are produced from meristems in a characteristic pattern. This pattern, referred to as phyllotaxis, is thought to be generated by local gradients of an information molecule, auxin. Some studies propose a key role for the mechanical properties of the cell walls in the control of organ outgrowth. A major cell-wall component is the linear alpha-1-4-linked D-GalAp pectic polysaccharide homogalacturonan (HG), which plays a key role in cell-to-cell cohesion. HG is deposited in the cell wall in a highly (70%-80%) methyl-esterified form and is subsequently de-methyl-esterified by pectin methyl-esterases (PME, EC 3.1.1.11). PME activity is itself regulated by endogenous PME inhibitor (PMEI) proteins. PME action modulates cell-wall-matrix properties and plays a role in the control of cell growth. Here, we show that the formation of flower primordia in the Arabidopsis shoot apical meristem is accompanied by the de-methyl-esterification of pectic polysaccharides in the cell walls. In addition, experimental perturbation of the methyl-esterification status of pectins within the meristem dramatically alters the phyllotactic pattern. These results demonstrate that regulated de-methyl-esterification of pectins is a key event in the outgrowth of primordia and possibly also in phyllotactic patterning.

  4. Internal steam reforming in solid oxide fuel cells: Status and opportunities of kinetic studies and their impact on modelling

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, J.-D.; Hendriksen, Peter Vang

    2011-01-01

    Solid oxide fuel cells (SOFC) systems with internal steam reforming have the potential to become an economically competitive technology for cogeneration power plants, exploiting its significantly higher electrical efficiency compared to existing technologies. Optimal design and operation of such ......Solid oxide fuel cells (SOFC) systems with internal steam reforming have the potential to become an economically competitive technology for cogeneration power plants, exploiting its significantly higher electrical efficiency compared to existing technologies. Optimal design and operation...

  5. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Science.gov (United States)

    Yoshida, Toshiyuki; Washio, Kaoru; Iwata, Takanori; Okano, Teruo; Ishikawa, Isao

    2012-01-01

    It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy. PMID:22315604

  6. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Toshiyuki Yoshida

    2012-01-01

    Full Text Available It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy.

  7. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Post, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jeffers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through July 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.

  8. [Three dimensional bioprinting technology of human dental pulp cells mixtures].

    Science.gov (United States)

    Xue, Shi-hua; Lv, Pei-jun; Wang, Yong; Zhao, Yu; Zhang, Ting

    2013-02-18

    To explore the three dimensional(3D)bioprinting technology, using human dental pulp cells (hDPCs) mixture as bioink and to lay initial foundations for the application of the 3D bioprinting technology in tooth regeneration. Imageware 11.0 computer software was used to aid the design of the 3D biological printing blueprint. Sodium alginate-gelatin hydrosol was prepared and mixed with in vitro isolated hDPCs. The mixture contained 20 g/L sodium alginate and 80 g/L gelatin with cell density of 1×10(6)/mL. The bioprinting of hDPCs mixture was carried out according to certain parameters; the 3D constructs obtained by printing were examined; the viability of hDPCs after printing by staining the constructs with calcein-AM and propidium iodide dye and scanning of laser scanning confocal microscope was evaluated. The in vitro constructs obtained by the bioprinting were cultured, and the proliferation of hDPCs in the constructs detected. By using Imageware 11.0 software, the 3D constructs with the grid structure composed of the accumulation of staggered cylindrical microfilament layers were obtained. According to certain parameters, the hDPCs-sodium alginate-gelatin blends were printed by the 3D bioprinting technology. The self-defined shape and dimension of 3D constructs with the cell survival rate of 87%± 2% were constructed. The hDPCs could proliferate in 3D constructs after printing. In this study, the 3D bioprinting of hDPCs mixtures was realized, thus laying initial foundations for the application of the 3D bioprinting technology in tooth regeneration.

  9. Research on fabrication technology for thin film solar cells for practical use. Research on low-cost fabrication technology for large-area modules (production technology for amorphous silicon solar cell modules); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Daimenseki module no tei cost seizo gijutsu (amorphous taiyo denchi module seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of amorphous Si solar cell modules in fiscal 1994. (1) On process technology for prototype film substrate solar cells, an advanced preprocessing equipment for film substrates, stepping roll type film forming technology, and prototype submodules were studied. A conversion efficiency of 7.2% was achieved by use of the submodule formed in an effective region of 40 {times} 40cm{sup 2}. (2) On efficiency improvement technology for film substrate solar cells, p/i and n/i interfaces, forming condition for Ag film electrodes, film thickness of transparent electrode ITO, and optimum transmissivity were studied. (3) On technology for advanced solar cells, high-quality a-SiGe: H film, ion control in plasma CVD, and a-Si film formation by plasma CVD using SiH2Cl2 were studied as production technology of narrow gap materials. (4) On advanced two-layer tandem solar cells, the defect density in optical degradation of a-Si cells by reverse bias dark current was evaluated, and outdoor exposure data were analyzed. 4 figs., 1 tab.

  10. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.

    Science.gov (United States)

    Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin

    2015-12-01

    Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells.

  11. A new principle for low-cost hydrogen sensors for fuel cell technology safety

    Energy Technology Data Exchange (ETDEWEB)

    Liess, Martin [Rhein Main University of Applied Sciences, Rüsselsheim, Wiesbaden (Germany)

    2014-03-24

    Hydrogen sensors are of paramount importance for the safety of hydrogen fuel cell technology as result of the high pressure necessary in fuel tanks and its low explosion limit. I present a novel sensor principle based on thermal conduction that is very sensitive to hydrogen, highly specific and can operate on low temperatures. As opposed to other thermal sensors it can be operated with low cost and low power driving electronics. On top of this, as sensor element a modified standard of-the shelf MEMS thermopile IR-sensor can be used. The sensor principle presented is thus suited for the future mass markets of hydrogen fuel cell technology.S.

  12. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    Science.gov (United States)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-09-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  13. Current status and perspective of advanced loop type fast reactor in fast reactor cycle technology development project

    International Nuclear Information System (INIS)

    Niwa, Hajime; Aoto, Kazumi; Morishita, Masaki

    2007-01-01

    After selecting the combination of the sodium-cooled fast reactor (SFR) with oxide fuel, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication as the most promising concept of FR cycle system, 'Feasibility Study on Commercialized Fast Reactor Cycle Systems' was finalized in 2006. Instead, a new project, Fast Reactor Cycle Technology Development Project (FaCT Project) was launched in Japan focusing on development of the selected concepts. This paper describes the current status and perspective of the advanced loop type SFR system in the FaCT Project, especially on the design requirements, current design as well as the related innovative technologies together with the development road-map. Some considerations on advantages of the advanced loop type design are also described. (authors)

  14. Technology learning for fuel cells. An assessment of past and potential cost reductions

    International Nuclear Information System (INIS)

    Schoots, K.; Van der Zwaan, B.C.C.; Kramer, G.J.

    2010-01-01

    Fuel cells have gained considerable interest as a means to efficiently convert the energy stored in gases like hydrogen and methane into electricity. Further developing fuel cells in order to reach cost, safety and reliability levels at which their widespread use becomes feasible is an essential prerequisite for the potential establishment of a 'hydrogen economy'. A major factor currently obviating the extensive use of fuel cells is their relatively high costs. At present we estimate these at about 1100 EUR(2005)W for an 80 kW fuel cell system but notice that specific costs vary markedly with fuel cell system power capacity. We analyze past fuel cell cost reductions for both individual manufacturers and the global market. We determine learning curves, with fairly high uncertainty ranges, for three different types of fuel cell technology - AFC, PAFC and PEMFC - each manufactured by a different producer. For PEMFC technology we also calculate a global learning curve, characterised by a learning rate of 21% with an error margin of 4%. Given their respective uncertainties, this global learning rate value is in agreement with those we find for different manufacturers. In contrast to some other new energy technologies, R and D still plays a major role in today's fuel cell improvement process and hence probably explains a substantial part of our observed cost reductions. The remaining share of these cost reductions derives from learning-by-doing proper. Since learning-by-doing usually involves a learning rate of typically 20%, the residual value for pure learning we find for fuel cells is relatively low. In an ideal scenario for fuel cell technology we estimate a bottom-line for specific (80 kW system) manufacturing costs of 95 EUR(2005)W. Although learning curves observed in the past constitute no guarantee for sustained cost reductions in the future, when we assume global total learning at the pace calculated here as the only cost reduction mechanism, this ultimate cost

  15. Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications.

    Science.gov (United States)

    Chang, Chia-Yu; Ting, Hsiao-Chien; Su, Hong-Lin; Jeng, Jing-Ren

    2018-01-01

    In this review, we introduce current developments in induced pluripotent stem cells (iPSCs), site-specific nuclease (SSN)-mediated genome editing tools, and the combined application of these two novel technologies in biomedical research and therapeutic trials. The sustainable pluripotent property of iPSCs in vitro not only provides unlimited cell sources for basic research but also benefits precision medicines for human diseases. In addition, rapidly evolving SSN tools efficiently tailor genetic manipulations for exploring gene functions and can be utilized to correct genetic defects of congenital diseases in the near future. Combining iPSC and SSN technologies will create new reliable human disease models with isogenic backgrounds in vitro and provide new solutions for cell replacement and precise therapies.

  16. The Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corporation

    Energy Technology Data Exchange (ETDEWEB)

    EJ Brown; PF Baldasaro; SR Burger; LR Danielson; DM DePoy; JM Dolatowski; PM Fourspring; GJ Nichols; WF Topper; TD Rahmlow

    2004-07-29

    In a thermophotovoltaic (TPV) energy conversion system, a heated surface radiates in the mid-infrared range onto photocells which are sensitive at these energies. Part of the absorbed energy is converted into electric output. Conversion efficiency is maximized by reducing the absorption of non-convertible energy with some form of spectral control. In a TPV system, many technology options exist. Our development efforts have concentrated on flat-plate geometries with greybody radiators, front surface tandem filters and a multi-chip module (MCM) approach that allows selective fabrication processes to match cell performance. Recently, we discontinued development of GaInAsSb quaternary cell semiconductor material in favor of ternary GaInAs material. In our last publication (Ref. 1), the authors reported conversion efficiencies of about 20% (radiator 950 C, cells 22 C) for small modules (1-4 cm{sup 2}) tested in a prototypic cavity test environment. Recently, we have achieved measured conversion efficiencies of about 12.5% in larger ({approx}100 cm{sup 2}) test arrays. The efficiency reduction in the larger arrays was probably due to quality and variation of the cells as well as non-uniform illumination from the hot radiator to the cold plate. Modules in these tests used GaInAsSb cells with 0.52 eV bandgap and front surface filters for spectral control. This paper provides details of the individual system components and the rationale for our technical decisions. It also describes the measurement techniques used to record these efficiencies.

  17. Review of electrical energy storage technologies and systems and of their potential for the UK

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the findings of a review of current energy storage technologies and their potential application in the UK. Five groups of storage technologies are examined: compressed air energy storage; battery energy storage systems including lead-acid, nickel-cadmium, sodium-sulphur, sodium-nickel and lithium ion batteries; electrochemical flow cell systems, including the vanadium redox battery, the zinc bromide battery and the polysulphide battery; kinetic energy storage systems, ie flywheel storage; and fuel cell/electrolyser systems based on hydrogen. Details are given of the technology, its development status, potential applications and the key developers, manufacturers and suppliers. The opportunities available to UK industry and the potential for systems integration and wealth creation are also discussed.

  18. Overview and Status of the Levitated Dipole Experiment

    Science.gov (United States)

    Garnier, D. T.; Hansen, A. K.; Mauel, M. E.; Ortiz, E.; Sunn-Pedersen, T.; Dagen, S.; Ellsworth, J.; Karim, I.; Kesner, J.; Minervini, J.; Michael, P.; Zhukovsky, A.

    2002-11-01

    The Levitated Dipole Experiment (LDX) is the first experiment designed to study high-β plasmas confined by a magnetic dipole with near classical energy confinement. The primary goal of the initial phase of LDX operation is the study of plasma behavior near marginal stability for interchange modes at high-β. Other areas of investigation include dipole confinement characteristics, the formation of convective cells within the closed field line geometry and the possibility of non-local transport. LDX consists of three superconducting magnets and highlights the role of innovative magnetic technology that makes possible explorations of entirely new confinement concepts. We describe the LDX machine design and detail the fabrication status of the superconducting floating-coil, charging-coil, and levitation-coil as LDX nears plasma operations. An overview of the project goals, overall program plan, and current status of the experiment will also be presented.

  19. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  20. Developments in lithium-ion battery technology in the Peoples Republic of China.

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  1. Plant cell engineering: current research, application and future prospects

    International Nuclear Information System (INIS)

    Wang Xunqing; Liu Luxiang

    2008-01-01

    This paper reviewed the current status of basic research in plant cell engineering, highlighted the application of embryo culture, double haploid (DH) technology, protoplast culture and somatic hybridization, somaclonal variation, rapid propagation, and bio-products production of plant-origin, and t he prospects. (authors)

  2. Cell dispensing in low-volume range with the immediate drop-on-demand technology (I-DOT).

    Science.gov (United States)

    Schober, Lena; Büttner, Evy; Laske, Christopher; Traube, Andrea; Brode, Tobias; Traube, Andreas Florian; Bauernhansl, Thomas

    2015-04-01

    Handling and dosing of cells comprise the most critical step in the microfabrication of cell-based assay systems for screening and toxicity testing. Therefore, the immediate drop-on-demand technology (I-DOT) was developed to provide a flexible noncontact liquid handling system enabling dispensing of cells and liquid without the risk of cross-contamination down to a precise volume in the nanoliter range. Liquid is dispensed from a source plate within nozzles at the bottom by a short compressed air pulse that is given through a quick release valve into the well, thus exceeding the capillary pressure in the nozzle. Droplets of a defined volume can be spotted directly onto microplates or other cell culture devices. We present a study on the performance and biological impact of this technology by applying the cell line MCF-7, human fibroblasts, and human mesenchymal stem cells (hMSCs). For all cell types tested, viability after dispensing is comparable to the control and exhibits similar proliferation rates in the absence of apoptotic cells, and the differentiation potential of hMSCs is not impaired. The immediate drop-on-demand technology enables accurate cell dosage and offers promising potential for single-cell applications. © 2014 Society for Laboratory Automation and Screening.

  3. Phosphoinositide Kinase-3 Status Associated With Presence or Absence of Human Papillomavirus in Head and Neck Squamous Cell Carcinomas

    International Nuclear Information System (INIS)

    Yarbrough, Wendell G.; Whigham, Amy; Brown, Brandee; Roach, Michael; Slebos, Robbert

    2007-01-01

    Purpose: To investigate phosphoinositide kinase-3 (PI3K) activation in relation to human papillomavirus (HPV) status in head and neck squamous cell carcinoma (HNSCC). Methods and Materials: Gene expression microarray data were analyzed to determine differentially expressed genes between HPV(+) and HPV(-) HNSCC. PIK3CA gene expression was confirmed by quantitative reverse transcriptase-polymerase chain reaction in seven HPV(+) and seven HPV(-) primary HNSCCs. PIK3CA mutation status in three HPV(+) and nine HPV(-) cell lines was determined by polymerase chain reaction amplification of hot spot exons (1, 9, 20) followed by direct sequencing. Results: PIK3CA was overexpressed in HPV(+)-associated HNSCC compared with the expression in HPV(-) HNSCC. Activation of PIK3CA by mutation was found in 1 of the 12 tested HNSCC cell lines. Conclusion: Activation of PI3K by mutation of PIK3CA is rare in HNSCC cell lines and was not found in three HPV(+) cell lines. One mechanism by which HPV-associated HNSCC might activate PI3K is increased expression of PIK3CA

  4. Methylation Status of miR-182 Promoter in Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yongwen LI

    2015-05-01

    Full Text Available Background and objective It has been proven that the abnormal expression of miR-182 was related to the occurrence and development of tumors. The aim of this study is to explore the relationship between the methylation of miR-182 promoter and its expression in lung cancer cell lines. Methods Real-time quantitative PCR and methylation-specific PCR were used to detect the expression level of miR-182 and its promoter methylation status in five lung cancer cell lines (A549, L9981, NL9980, 95C and 95D. DNA sequencing was used to confirm the methylation results. Results The level of miR-182 expression significantly differs among these lung cancer cell lines. The highly metastatic human lung cancer cell lines, namely, A549 and L9981, demonstrate a relatively lower expression level of miR-182 compared with the lowly metastatic human lung cancer cell line 95C. Methylation-specific PCR and DNA sequencing assay results indicate that these lung cancer cell lines present different levels of miR-182 promoter methylation, and the highest methylation level is observed in A549 cells. Furthermore, the expression of miR-182 in these cell lines significantly increases when treated with 10 μM 5’-Aza-dC. Conclusion DNA methylation occurs in the miR-182 promoter region in lung cancer cell lines. This methylation can regulate the expression level of miR-182. Further study must be conducted to explore the function of miR-182 promoter methylation in lung cancer occurrence and development.

  5. Status of environmental technology; Interim Report to the sector study 'Petroleum and Energy', the integrated management plan for North Sea. Mapping of available environmental technology; Statusrapport for miljoeteknologi

    Energy Technology Data Exchange (ETDEWEB)

    2011-03-15

    The purpose of this report is to provide an overview of the current status of environmental technology that may help to prevent and reduce / prevent environmental pollution. The report is a foundation report to the management plan for the North Sea. The report was prepared based on the NPD's knowledge and with good input from the PSA, and resource persons in the oil companies. The following is given a summary of the various disciplines and the technological challenges the industry has managed to meet and which ones remain. (Author)

  6. Healthcare professionals' use of health clouds: Integrating technology acceptance and status quo bias perspectives.

    Science.gov (United States)

    Hsieh, Pi-Jung

    2015-07-01

    Cloud computing technology has recently been seen as an important milestone in medical informatics development. Despite its great potential, there are gaps in our understanding of how users evaluate change in relation to the health cloud and how they decide to resist it. Integrating technology acceptance and status quo bias perspectives, this study develops an integrated model to explain healthcare professionals' intention to use the health cloud service and their intention to resist it. A field survey was conducted in Taiwan to collect data from healthcare professionals; a structural equation model was used to examine the data. A valid sample of 209 healthcare professionals was collected for data analysis. The results show that healthcare professionals' resistance to the use of the health cloud is the result of regret avoidance, inertia, perceived value, switching costs, and perceived threat. Attitude, subjective norm, and perceived behavior control are shown to have positive and direct effects on healthcare professionals' intention to use the health cloud. The results also indicate a significant negative effect in the relationship between healthcare professionals' intention and resistance to using the health cloud. Our study illustrates the importance of incorporating user resistance in technology acceptance studies in general and in health technology usage studies in particular. This study also identifies key factors for practitioners and hospitals to make adoption decisions in relation to the health cloud. Further, the study provides a useful reference for future studies in this subject field. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Future mission opportunities and requirements for advanced space photovoltaic energy conversion technology

    Science.gov (United States)

    Flood, Dennis J.

    1990-01-01

    The variety of potential future missions under consideration by NASA will impose a broad range of requirements on space solar arrays, and mandates the development of new solar cells which can offer a wide range of capabilities to mission planners. Major advances in performance have recently been achieved at several laboratories in a variety of solar cell types. Many of those recent advances are reviewed, the areas are examined where possible improvements are yet to be made, and the requirements are discussed that must be met by advanced solar cell if they are to be used in space. The solar cells of interest include single and multiple junction cells which are fabricated from single crystal, polycrystalline and amorphous materials. Single crystal cells on foreign substrates, thin film single crystal cells on superstrates, and multiple junction cells which are either mechanically stacked, monolithically grown, or hybrid structures incorporating both techniques are discussed. Advanced concentrator array technology for space applications is described, and the status of thin film, flexible solar array blanket technology is reported.

  8. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells.

    Science.gov (United States)

    Lenzen, Sigurd

    2017-08-01

    Diabetes mellitus is a serious metabolic disease. Dysfunction and subsequent loss of the β-cells in the islets of Langerhans through apoptosis ultimately cause a life-threatening insulin deficiency. The underlying reason for the particular vulnerability of the β-cells is an extraordinary sensitivity to the toxicity of reactive oxygen and nitrogen species (ROS and RNS) due to its low antioxidative defense status. This review considers the different aspects of the chemistry and biology of the biologically most important reactive species and their chemico-biological interactions in the β-cell toxicity of proinflammatory cytokines in type 1 diabetes and of lipotoxicity in type 2 diabetes development. The weak antioxidative defense equipment in the different subcellular organelles makes the β-cells particularly vulnerable and prone to mitochondrial, peroxisomal and ER stress. Looking upon the enzyme deficiencies which are responsible for the low antioxidative defense status of the pancreatic β-cells it is the lack of enzymatic capacity for H 2 O 2 inactivation at all major subcellular sites. Diabetes is the most prevalent metabolic disorder with a steadily increasing incidence of both type 1 and type 2 diabetes worldwide. The weak protection of the pancreatic β-cells against oxidative stress is a major reason for their particular vulnerability. Thus, careful protection of the β-cells is required for prevention of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Overview of micro- and nano-technology tools for stem cell applications: micropatterned and microelectronic devices.

    Science.gov (United States)

    Cagnin, Stefano; Cimetta, Elisa; Guiducci, Carlotta; Martini, Paolo; Lanfranchi, Gerolamo

    2012-11-19

    In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element.

  10. THE CONTRACT OF EMPLOYMENT STATUS AND ITS INFLUENCE ON THE JOB SATISFACTION OF ACADEMICS WITHIN SOUTH AFRICAN UNIVERSITIES OF TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A.A. Ntisa

    2016-07-01

    Full Text Available South African higher education has gone through numerous changes in terms ofrestructuring and transformation. Rapid changes of this nature, within the highereducation system, necessitate alternative work arrangements, which have potentialnegative effects on job satisfaction of academics. Research on the contracts ofemployment of academic staff in the context of developing countries such asSouth Africa has remained scarce. The primary purpose of the study was toexplore the relationship between the status of the contract of employment and jobsatisfaction. Data were analysed from 494 (n academics within South Africanuniversities of technology. Correlation analysis was used to establish therelationship between the status of the contract of employment and job satisfaction.A negative correlation between the status of the contract and job satisfaction wasobserved. Significant differences were found between the status of the contractand job satisfaction. The results showed that those who are permanently employedexperience high levels of job satisfaction and those who have fixed-term andtemporary contracts experience lower levels of job satisfaction. This study concludes by discussing managerial implications of the results. Limitations andimplication for further research are explored.

  11. Photovoltaic technology, performance, manufacturing cost and markets

    International Nuclear Information System (INIS)

    Maycock, P.D.

    1999-01-01

    A comprehensive discussion of key aspects of photovoltaic energy conversion systems will provide the basis for forecasting PV module shipments from 1999 to 2010. Principal areas covered include: (1) Technology and Performance Status: The module efficiency and performance are described for commercial cell technologies including single crystal silicon, polycrystal silicon, ribbon silicon, film silicon on low cost substrate, amorphous silicon, copper indium diselenide, and cadmium telluride; (2) Manufacturing cost: 1999 costs for PV technologies in production (single crystal silicon, polycrystal silicon, and amorphous silicon) are developed. Manufacturing costs for 10--25 MW plants and 100 MW plants will be estimated; (3) The world PV market is summarized by region, top ten companies, and technology; and (4) Forecast of the World Market (seven market sectors) to 2010 will be presented. Key assumptions, price of modules, incentive programs, price of competing electricity generation will be detailed

  12. COMPENDIUM: SURVEYS EVALUATING KNOWLEDGE AND OPINIONS CONCERNING HYDROGEN AND FUEL CELL TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Truett, Lorena Faith [ORNL; Cooper, Christy [U.S. Department of Energy; Schmoyer, Richard L [ORNL

    2008-10-01

    This compendium updates a 2003 literature review of surveys of knowledge and opinions of hydrogen and fuel cell technologies. Its purpose is to ensure that results of comparable surveys are considered in surveys conducted by the U.S. Department of Energy (DOE). Over twice as many studies related to the DOE survey have been published since 2003 than prior to that date. The fact that there have been significantly more studies implies that there have been further demonstration projects and/or increased interest in hydrogen and fuel cell technologies. The primary findings of these 15 new surveys, all of which were conducted in Europe (E) or North America (NA), to the DOE surveys are as follows: 1.Respondents who are more educated are more accepting of hydrogen technologies (NA). 2.Respondents who are more knowledgeable about hydrogen and/or fuel cells are more accepting of hydrogen technologies (E, NA). 3.When asked about issues of trust, respondents generally expressed distrust of the government or political parties but trusted scientists and environmental protection organizations (E). 4.Technical knowledge about hydrogen and fuel cell technologies is low (E, NA). 5.Respondents may express opinions about a technology even when they are lacking in knowledge of that technology (E). 6.Women and men have different priorities when deciding on an automobile purchase (E). 7.Public acceptance to hydrogen is vulnerable to perceptions of decreased safety (E, NA). 8.Public acceptance to hydrogen is vulnerable to perceptions of increased cost (E, NA). The DOE surveys are similar to surveys that examine technical knowledge of hydrogen and fuel cell technologies, although the technical questions are certainly different. The DOE surveys are also similar to the opinion surveys in that they address many of the same issues, such as safety, sources of energy information, or trust. There are many differences between the surveys reviewed in this compendium and the DOE surveys. The

  13. Progress in N-type Si Solar Cell and Module Technology for High Efficiency and Low Cost

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dengyuan; Xiong, Jingfeng; Hu, Zhiyan; Li, Gaofei; Wang, Hongfang; An, Haijiao; Yu, Bo; Grenko, Brian; Borden, Kevin; Sauer, Kenneth; Cui, Jianhua; Wang, Haitao [Yingli Green Energy Holding Co., LTD, 071051 Boading (China); Roessler, T. [Yingli Green Energy Europe GmbH, Heimeranstr. 37, 80339 Munich (Germany); Bultman, J. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Vlooswijk, A.H.G.; Venema, P.R. [Tempress Systems BV, Radeweg 31, 8171 Vaassen (Netherlands)

    2012-06-15

    A novel high efficiency solar cell and module technology, named PANDA, using crystalline n-type CZ Si wafers has moved into large-scale production at Yingli. The first commercial sales of the PANDA modules commenced in mid 2010. Up to 600MW of mass production capacity from crystal-Si growth, wafer slicing, cell processing and module assembly have been implemented by the end of 2011. The PANDA technology was developed specifically for high efficiency and low cost. In contrast to the existing n-type Si solar cell manufacturing methods in mass production, this new technology is largely compatible with a traditional p-type Si solar cell production line by conventional diffusion, SiNx coating and screen-printing technology. With optimizing all technologies, Yingli's PANDA solar cells on semi-square 6-inch n-type CZ wafers (cell size 239cm{sup 2}) have been improved to currently have an average efficiency on commercial production lines exceeding 19.0% and up to 20.0% in pilot production. The PANDA modules have been produced and were certified according to UL1703, IEC 61215 and IEC 61730 standards. Nearly two years of full production on scale-up lines show that the PANDA modules have a high efficiency and power density, superior high temperature performance, near zero initial light induced degradation, and excellent efficiency at low irradiance.

  14. 45 CFR 170.440 - ONC-ATCB status.

    Science.gov (United States)

    2010-10-01

    ... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH INFORMATION TECHNOLOGY HEALTH INFORMATION TECHNOLOGY STANDARDS, IMPLEMENTATION SPECIFICATIONS, AND CERTIFICATION CRITERIA AND CERTIFICATION PROGRAMS FOR HEALTH INFORMATION TECHNOLOGY Temporary Certification Program for HIT § 170.440 ONC-ATCB status...

  15. Advanced cell culture technology for generation of in vivo-like tissue models

    OpenAIRE

    Przyborski, Stefan

    2017-01-01

    Human tissues are mostly composed of different cell types, that are often highly organised in relation to each other. Often cells are arranged in distinct layers that enable signalling and cell-to-cell interactions. Here we describe the application of scaffold-based technology, that can be used to create advanced organotypic 3D models of various tissue types that more closely resemble in vivo-like conditions (Knight et al., 2011). The scaffold comprises a highly porous polystyrene material, e...

  16. Science and Technology Policy

    DEFF Research Database (Denmark)

    Baark, Erik

    1996-01-01

    This paper examines the status of science and technology in Mongolia, and discusses the policy issues which have emerged with the transition to market economy in recent years.......This paper examines the status of science and technology in Mongolia, and discusses the policy issues which have emerged with the transition to market economy in recent years....

  17. Single-cell technologies in molecular marine studies

    KAUST Repository

    Kodzius, Rimantas

    2015-01-24

    Middle Eastern countries are experiencing a renaissance, with heavy investment in both in infrastructure and science. King Abdullah University of Science and Technology (KAUST) is a new and modern university in Saudi Arabia. At the Computational Bioscience Research Center (CBRC) we are working on exploring the Red Sea and beyond, collaborating with Japanese and other research centers. We are using the environment to collect and analyze the microorganisms present. The platform being established at CBRC allows to process samples in a pipeline. The pipeline components consist of sample collection, processing and sequencing, following the in silico analysis, determining the gene functions, identifying the organisms. The genomes of microorganisms of interest are targeted modified by genome editing technology such as CRISPR and desired properties are selected by single cell instrumentation. The final output is to identify valuable microorganisms with production of bio-energy, nutrients, the food and fine chemicals.

  18. CCR6+ Th cell distribution differentiates systemic lupus erythematosus patients based on anti-dsDNA antibody status.

    Science.gov (United States)

    Zhong, Wei; Jiang, Zhenyu; Wu, Jiang; Jiang, Yanfang; Zhao, Ling

    2018-01-01

    Systemic lupus erythematosus (SLE) disease has been shown to be associated with the generation of multiple auto-antibodies. Among these, anti-dsDNA antibodies (anti-DNAs) are specific and play a pathogenic role in SLE. Indeed, anti-DNA + SLE patients display a worse disease course. The generation of these pathogenic anti-DNAs has been attributed to the interaction between aberrant T helper (Th) cells and autoimmune B cells. Thus, in this study we have investigated whether CCR6 + Th cells have the ability to differentiate SLE patients based on anti-DNA status, and if their distribution has any correlation with disease activity. We recruited 25 anti-DNA + and 25 anti-DNA - treatment-naive onset SLE patients, matched for various clinical characteristics in our nested matched case-control study. CCR6 + Th cells and their additional subsets were analyzed in each patient by flow cytometry. Anti-DNA + SLE patients specifically had a higher percentage of Th cells expressing CCR6 and CXCR3. Further analysis of CCR6 + Th cell subsets showed that anti-DNA + SLE patients had elevated proportions of Th9, Th17, Th17.1 and CCR4/CXCR3 double-negative (DN) cells. However, the proportions of CCR6 - Th subsets, including Th1 and Th2 cells, did not show any association with anti-DNA status. Finally, we identified a correlation between CCR6 + Th subsets and clinical indicators, specifically in anti-DNA + SLE patients. Our data indicated that CCR6 + Th cells and their subsets were elevated and correlated with disease activity in anti-DNA + SLE patients. We speculated that CCR6 + Th cells may contribute to distinct disease severity in anti-DNA + SLE patients.

  19. Microencapsulation Technology: A Powerful Tool for Integrating Expansion and Cryopreservation of Human Embryonic Stem Cells

    Science.gov (United States)

    Malpique, Rita; Brito, Catarina; Jensen, Janne; Bjorquist, Petter; Carrondo, Manuel J. T.; Alves, Paula M.

    2011-01-01

    The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors. The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration) and high cell recovery yields (>70%) after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics. Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks. This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications. PMID:21850261

  20. Adapting to Student Learning Styles: Using Cell Phone Technology in Undergraduate Science Instruction

    Directory of Open Access Journals (Sweden)

    Richard Pennington

    2010-10-01

    Full Text Available Students of science traditionally make 3x5 flash cards to assist learning nomenclature, structures, and reactions. Advances in educational technology have enabled flashcards viewed on computers, offering an endless array of drilling and feedback opportunities for students. The current generation of students is less inclined to use computers, but they use their cell phones 24 hours a day. This report outlines these trends and an even more recent educational technology initiative, that of using cell phone flash cards to help students learn biology and chemistry nomenclature, structures, and reactions. Students responded positively to cell phone flash cards in a pilot study and a more detailed study is planned for the coming year.

  1. Adoption of Technology and the Socio-Economic Status of Rural ...

    African Journals Online (AJOL)

    economic status of rural women. A comparison of adopters and non-adopters reveals that the adopters are generally more privileged and occupy a higher status because of adoption. In addition, education and awareness are crucial variables in the ...

  2. Human embryonic stem cell technologies and drug discovery.

    Science.gov (United States)

    Jensen, Janne; Hyllner, Johan; Björquist, Petter

    2009-06-01

    Development of new drugs is costly and takes huge resources into consideration. The big pharmaceutical companies are currently facing increasing developmental costs and a lower success-rate of bringing new compounds to the market. Therefore, it is now of outmost importance that the drug-hunting companies minimize late attritions due to sub-optimal pharmacokinetic properties or unexpected toxicity when entering the clinical programs. To achieve this, a strong need to test new candidate drugs in assays of high human relevance in vitro as early as possible has been identified. The traditionally used cell systems are however remarkably limited in this sense, and new improved technologies are of greatest importance. The human embryonic stem cells (hESC) is one of the most powerful cell types known. They have not only the possibility to divide indefinitely; these cells can also differentiate into all mature cell types of the human body. This makes them potentially very valuable for pharmaceutical development, spanning from use as tools in early target studies, DMPK or safety assessment, as screening models to find new chemical entities modulating adult stem cell fate, or as the direct use in cell therapies. This review illustrates the use of hESC in the drug discovery process, today, as well as in a future perspective. This will specifically be exemplified with the most important cell type for pharmaceutical development-the hepatocyte. We discuss how hESC-derived hepatocyte-like cells could improve this process, and how these cells should be cultured if optimized functionality and usefulness should be achieved. J. Cell. Physiol. 219: 513-519, 2009. (c) 2009 Wiley-Liss, Inc.

  3. RBC deformability and amino acid concentrations after hypo-osmotic challenge may reflect chronic cell hydration status in healthy young men

    OpenAIRE

    Stookey, Jodi D; Klein, Alexis; Hamer, Janice; Chi, Christine; Higa, Annie; Ng, Vivian; Arieff, Allen; Kuypers, Frans A; Larkin, Sandra; Perrier, Erica; Lang, Florian

    2013-01-01

    Biomarkers of chronic cell hydration status are needed to determine whether chronic hyperosmotic stress increases chronic disease risk in population-representative samples. In vitro, cells adapt to chronic hyperosmotic stress by upregulating protein breakdown to counter the osmotic gradient with higher intracellular amino acid concentrations. If cells are subsequently exposed to hypo-osmotic conditions, the adaptation results in excess cell swelling and/or efflux of free amino acids. This stu...

  4. Current status on research and development of accelerator-driven system and nuclear transmutation technology in Asian countries

    International Nuclear Information System (INIS)

    Pyeon, Cheol Ho

    2013-01-01

    This status report describes the current status on research and development (R and D) of accelerator-driven system (ADS) and nuclear transmutation techniques (NTT), including nuclear data, accelerator techniques, Pb-Bi target, fuel technologies and reactor physics, in East Asian countries: Japan, Korea and China. The report also includes all presentation materials presented in 'the 10th International Workshop on Asian Network for ADS and NTT (ADS+NTT 2012)' held at the Kyoto University Research Reactor Institute, Osaka, Japan on 6th and 7th December, 2012. The objective of this workshop is to make actual progress of ADS R and D especially in East Asian countries, as well as in European countries, through sharing mutual interests and conducting the information exchange each other. The 5 of 27 papers presented at the entitled report and meeting are indexed individually. (J.P.N.)

  5. R&D status of linear collider technology at KEK

    Science.gov (United States)

    Urakawa, Junji

    1992-02-01

    This paper gives an outline of the Japan Linear Collider (JLC) project, especially JLC-I. The status of the various R&D works is particularly presented for the following topics: (1) electron and positron sources, (2) S-band injector linacs, (3) damping rings, (4) high power klystrons and accelerating structures, (5) the final focus system. Finally, the status of the construction and design studies for the Accelerator Test Facility (ATF) is summarized.

  6. Renewable energy technologies and its adaptation in an urban environment

    Energy Technology Data Exchange (ETDEWEB)

    Thampi, K. Ravindranathan, E-mail: ravindranathan.thampi@ucd.ie; Byrne, Owen, E-mail: ravindranathan.thampi@ucd.ie; Surolia, Praveen K., E-mail: ravindranathan.thampi@ucd.ie [SFI Strategic Research Cluster in Solar Energy Conversion, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4 (Ireland)

    2014-01-28

    This general article is based on the inaugural talk delivered at the opening of OMTAT 2013 conference. It notes that the integration of renewable energy sources into living and transport sectors presents a daunting task, still. In spite of the fact that the earth and its atmosphere continually receive 1.7 × 10{sup 17} watts of radiation from the sun, in the portfolio of sustainable and environment friendly energy options, which is about 16% of the world’s energy consumption and mostly met by biomass, only a paltry 0.04% is accredited to solar. First and second generation solar cells offer mature technologies for applications. The most important difficulty with regards to integration with structures is not only the additional cost, but also the lack of sufficient knowledge in managing the available energy smartly and efficiently. The incorporation of PV as a part of building fabric greatly reduces the overall costs compared with retrofitting. BIPV (Building Integrated photovoltaic) is a critical technology for establishing aesthetically pleasing solar structures. Infusing PV and building elements is greatly simplified with some of the second generation thin film technologies now manufactured as flexible panels. The same holds true for 3{sup rd} generation technologies under development such as, and dye- and quantum dot- sensitized solar cells. Additionally, these technologies offer transparent or translucent solar cells for incorporation into windows and skylights. This review deals with the present state of solar cell technologies suitable for BIPV and the status of BIPV applications and its future prospects.

  7. 700 C power plant technology. Status and challenge

    Energy Technology Data Exchange (ETDEWEB)

    Tschaffon, Helmut [E.ON Energie AG, Muenchen (Germany)

    2010-07-01

    Coal will remain an indispensable major source of energy for power generation in the world in the coming decades, because there are resources for hundreds of years. Coal fired power plants can be operated very flexible which gets increasing importance due to the stochastic input from regenerative energies like wind and solar energy. Sustainable technologies for cool-fired power plants have to be developed to optimise environmental protection and to save valuable resources and reduce CO{sub 2}-emissions. Future coal fired steam power plants aim an elevated steam temperature of about 700 C to reach a net efficiency of about 50%. This paper will give an overview over the status of the development of the 700 C technology and will highlight the challenges to be overcome before their commercial use. The European way to a 700 C Power plant started with the project AD700 in the year 1998. In this project the basic design of a 400 MW demo plant was done and some material tests and component qualifications for nickel-based alloys and new austenitic steels were started and terminated. AD700 delivered the basis of the design of the Component Test Facility COMTES700 (RFCS funded project with European manufacturers and utilities). COMTES 700 was operated between 2005 and 2009. It was integrated into the E.ON power plant Scholven in Germany to test mainly nickel based materials and power plant components. In the project NRWPP700 (2006-2010, funded by NRW and financed by European utilities) the detail design of the steam generator, piping system and turbine of a 500 MW power plant was done. In 7 material projects the qualification of components and materials was supported. At the same time of lot of national and international R and D projects (e.g. MARCKO and COORETEC) were performed. Due to the high amount of these projects they cannot be mentioned here in a detailed way. In 2007 the E.ON project 50plus was started. The aim was to plan and build a 700 C demo plant in

  8. A Survival Analysis on Fuel Cell Technology Patent Maintenance and Values Exploration between 1976 and 2001

    Directory of Open Access Journals (Sweden)

    Seng-Su Tsang

    2015-01-01

    Full Text Available Fuel cell R&D activities desirably arrive in patents; the costly maintenance fee challenges managers as well as researchers to whether or not renew existing patents. The key is, will the fuel cell patent’s value be worth renewing? Thus assessment of patent value is essential. Our study focus online searching was made available after 1976, as the initial year to conduct the patent search. Up to 2001, there are 2269 patents classified in the H01M 008/00~H01M 008/24 category, which is the category concerning fuel cell under the classification of the International Patent Classification. Effective exploitation of technology values is subject to the complementarities of organizational resources. The present study used the emerging technology of Fuel Cells as an example to show that firms may commercialize the values of technology according to their organizational resources. By aligning firms’ patenting strategies and the imparities between book values and market values this study concludes a technological ambidexterity with respect to firms’ technology development. The exploitative firms tend to file patents to defend their leadership in the product market as a result their technology is constrained within a firm’s boundaries. The results show that patent renewing decisions are consequence of firm’s constraints of complementary resources.

  9. Media Discourse on Cell Phone Technology and “Left-Behind Children” in China

    Directory of Open Access Journals (Sweden)

    Janice Hua Xu

    2016-06-01

    Full Text Available Through critical analysis of selected news stories from sina.com from 2010 to 2015 about cell phones and “left-behind children” in China, this article examines media discourses on the relationship between migrant families and communication technology. The author finds that the roles of cell phones in their lives are portrayed in the following narratives: 1 cell phones are highly valuable for connecting family members living apart; 2 cell phones are used as a problem-solver in charity giving and rural development projects; 3 cell phones can bring unexpected risks to children lacking media literacy; and 4 cell phones could harbour or unleash evil—associated with increasing cases of juvenile delinquency or crime stories. The author discusses how the different institutional goals of social agencies, corporations, educators, and law enforcement contribute to the polarity of the discourses, reflecting the societal anxieties over unsupervised use of mobile devices by adolescents, as well as the cultural and political implications of empowering the “have-nots” of the digital divide by improving access to communication technology.

  10. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    Science.gov (United States)

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  11. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  12. Combined analysis of circulating epithelial cells and serum thyroglobulin for distinguishing disease status of the patients with papillary thyroid carcinoma.

    Science.gov (United States)

    Lin, Hung-Chih; Liou, Miaw-Jene; Hsu, Hsung-Ling; Hsieh, Jason Chia-Hsun; Chen, Yi-An; Tseng, Ching-Ping; Lin, Jen Der

    2016-03-29

    Papillary thyroid carcinoma (PTC) accounts for about 80% of the cases in thyroid cancer. Routine surveillance by serum thyroglobulin (Tg) and medical imaging is the current practice to monitor disease progression of the patients. Whether enumeration of circulating epithelial cells (CECs) helps to define disease status of PTC patients was investigated. CECs were enriched from the peripheral blood of the healthy control subjects (G1, n = 17) and the patients at disease-free status (G2, n = 26) or with distant metastasis (G3, n = 22). The number of CECs expressing epithelial cell adhesion molecule (EpCAM) or thyroid-stimulating hormone receptor (TSHR) was determined by immunofluorescence microscopy analyses. The medium number of EpCAM+-CECs was 6 (interquartile range 1-11), 12 (interquartile range 7-16) and 91 (interquartile range 31-206) cells/ml of blood for G1, G2 and G3, respectively. EpCAM+-CEC counts were significantly higher in G3 than in G1 (p interquartile range 3-13), 16 (interquartile range 10-24) and 100 (interquartile range 31-226) cells/ml of blood for G1, G2 and G3, respectively. The TSHR+-CEC counts also distinguished G3 from G1 (p < 0.05) and G2 (p < 0.05). With an appropriate cut off value of CEC count, the disease status for 97.9% (47/48) of the cases was clearly defined. Notably, the metastatic disease for all patients in G3 (22/22) was revealed by combined analysis of serum Tg and CEC. This study implicates that CEC testing can supplement the current standard methods for monitoring disease status of PTC.

  13. Fuel cells: Trends in research and applications

    Science.gov (United States)

    Appleby, A. J.

    Various aspects of fuel cells are discussed. The subjects addressed include: fuel cells for electric power production; phosphoric acid fuel cells; long-term testing of an air-cooled 2.5 kW PAFC stack in Italy; status of fuel cell research and technology in the Netherlands, Bulgaria, PRC, UK, Sweden, India, Japan, and Brazil; fuel cells from the manufacturer's viewpoint; and fuel cells using biomass-derived fuels. Also examined are: solid oxide electrolye fuel cells; aluminum-air batteries with neutral chloride electrolyte; materials research for advanced solid-state fuel cells at the Energy Research Laboratory in Denmark; molten carbonate fuel cells; the impact of the Siemens program; fuel cells at Sorapec; impact of fuel cells on the electric power generation systems in industrial and developing countries; and application of fuel cells to large vehicles.

  14. N-Acetyl Cysteine Protects against Methamphetamine-Induced Dopaminergic Neurodegeneration via Modulation of Redox Status and Autophagy in Dopaminergic Cells

    Directory of Open Access Journals (Sweden)

    Prashanth Chandramani Shivalingappa

    2012-01-01

    Full Text Available Methamphetamine- (MA- induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. Our previous study demonstrated that MA induces autophagy in a dopaminergic neuronal cell model (N27 cells. The cellular mechanisms underlying MA-induced autophagy and apoptosis remain poorly characterized. In the present study we sought to investigate the importance of GSH redox status in MA-induced neurotoxicity using a thiol antioxidant, N-acetylcysteine (NAC. Morphological and biochemical analysis revealed that MA-induced autophagy in N27 dopaminergic cells was associated with pronounced depletion of GSH levels. Moreover, pretreatment with NAC reduced MA-induced GSH depletion and autophagy, while depletion of GSH using L-buthionine sulfoximine (L-BSO enhanced autophagy. Furthermore, treatment with NAC significantly attenuated MA-induced apoptotic cell death as well as oxidative stress markers, namely, 3-nitrotyrosine (3-NT and 4-hydroxynonenal (4-HNE. Together, these results suggest that NAC exhibits significant protective effects against MA-induced dopaminergic cell death, presumably via modulation of the GSH level and autophagy. Collectively, our data provide mechanistic insights into the role of cellular GSH redox status in MA-induced autophagy and apoptotic cell death, and additional studies are needed to determine the therapeutic effectiveness of cellular redox modifiers in attenuating dopaminergic neurodegeneration in vivo.

  15. Cell surface area and membrane folding in glioblastoma cell lines differing in PTEN and p53 status.

    Directory of Open Access Journals (Sweden)

    Simon Memmel

    Full Text Available Glioblastoma multiforme (GBM is characterized by rapid growth, invasion and resistance to chemo-/radiotherapy. The complex cell surface morphology with abundant membrane folds, microvilli, filopodia and other membrane extensions is believed to contribute to the highly invasive behavior and therapy resistance of GBM cells. The present study addresses the mechanisms leading to the excessive cell membrane area in five GBM lines differing in mutational status for PTEN and p53. In addition to scanning electron microscopy (SEM, the membrane area and folding were quantified by dielectric measurements of membrane capacitance using the single-cell electrorotation (ROT technique. The osmotic stability and volume regulation of GBM cells were analyzed by video microscopy. The expression of PTEN, p53, mTOR and several other marker proteins involved in cell growth and membrane synthesis were examined by Western blotting. The combined SEM, ROT and osmotic data provided independent lines of evidence for a large variability in membrane area and folding among tested GBM lines. Thus, DK-MG cells (wild type p53 and wild type PTEN exhibited the lowest degree of membrane folding, probed by the area-specific capacitance C m = 1.9 µF/cm(2. In contrast, cell lines carrying mutations in both p53 and PTEN (U373-MG and SNB19 showed the highest C m values of 3.7-4.0 µF/cm(2, which corroborate well with their heavily villated cell surface revealed by SEM. Since PTEN and p53 are well-known inhibitors of mTOR, the increased membrane area/folding in mutant GBM lines may be related to the enhanced protein and lipid synthesis due to a deregulation of the mTOR-dependent downstream signaling pathway. Given that membrane folds and extensions are implicated in tumor cell motility and metastasis, the dielectric approach presented here provides a rapid and simple tool for screening the biophysical cell properties in studies on targeting chemo- or radiotherapeutically the

  16. Comparative analysis of signature genes in porcine reproductive and respiratory syndrome virus (PRRSV)-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...

  17. Circulating immune cell subpopulations in pestivirus persistently infected calves and non-infected calves varying in immune status.

    Science.gov (United States)

    Circulating immune cell subpopulations in cattle representing varying stages of immune status categorized as; colostrum deprived (CD), receiving colostrum (COL), colostrum plus vaccination (VAC) and persistently infected with a pestivirus (PI) were compared. The PI calves were infected with a HoBi-...

  18. Review on thin-film transistor technology, its applications, and possible new applications to biological cells

    Science.gov (United States)

    Tixier-Mita, Agnès; Ihida, Satoshi; Ségard, Bertrand-David; Cathcart, Grant A.; Takahashi, Takuya; Fujita, Hiroyuki; Toshiyoshi, Hiroshi

    2016-04-01

    This paper presents a review on state-of-the-art of thin-film transistor (TFT) technology and its wide range of applications, not only in liquid crystal displays (TFT-LCDs), but also in sensing devices. The history of the evolution of the technology is first given. Then the standard applications of TFT-LCDs, and X-ray detectors, followed by state-of-the-art applications in the field of chemical and biochemical sensing are presented. TFT technology allows the fabrication of dense arrays of independent and transparent microelectrodes on large glass substrates. The potential of these devices as electrical substrates for biological cell applications is then described. The possibility of using TFT array substrates as new tools for electrical experiments on biological cells has been investigated for the first time by our group. Dielectrophoresis experiments and impedance measurements on yeast cells are presented here. Their promising results open the door towards new applications of TFT technology.

  19. Environmental Technology Assessment of Introducing Fuel Cell City Buses. A Case Study of Fuel Cell Buses in Goeteborg

    Energy Technology Data Exchange (ETDEWEB)

    Karlstroem, Magnus

    2002-07-01

    Over the last several years, fuel cell systems have improved. These advancements have increased the expectations that fuel cells are a feasible option for several applications such as transportation and stationary use. There are several reasons why fuel cell buses in city centres appear to be the most beneficial market niche to begin introducing the technology in. The goal of the report is to compile information about fuel cell buses relevant for city administrators working with public transport and environmental issues. A literature review of the fuel cells in buses is included. This study also consists of an environmental assessment of using fuel cell buses with hydrogen produced in various ways for buses on bus route 60 in Goeteborg by 2006. The fuel cell buses are compared with other bus and fuel alternatives. There are two goals of the case study: 1. The first goal is to describe the technical system, the methodology, and the problem for the intended audience. In the future, this study could help frame future investment decisions. 2. The second goal is to present environmental performance results---emission, health, monetary---relative the alternative bus technologies. The model calculations showed that the social benefits were approximately SEK 910,000 each year if all buses were fuel cell buses compared with developed diesel buses. If the fuel cell buses were compared to natural gas buses, then the benefits were SEK 860,000 each year. The benefits were SEK 1.39/bus/km compared with diesel buses or SEK 1.30/bus/km compared with natural gas buses.

  20. SNS online display technologies for EPICS

    International Nuclear Information System (INIS)

    Kasemir, K.U.; Chen, X.; Purcell, J.; Danilova, E.

    2012-01-01

    The ubiquitousness of web clients from personal computers to cell phones results in a growing demand for web-based access to control system data. At the Oak Ridge National Laboratory Spallation Neutron Source (SNS) we have investigated different technical approaches to provide read access to data in the Experimental Physics and Industrial Control System (EPICS) for a wide variety of web client devices. The core web technology, HTTP, is less than ideal for online control system displays. Appropriate use of Ajax, especially the Long Poll paradigm, can alleviate fundamental HTTP limitations. The SNS Status web uses basic Ajax technology to generate generic displays for a wide audience. The Dashboard uses Long Poll and more client-side Java-Script to offer more customization and faster updates for users that need specialized displays. The Web OPI uses RAP for web access to any BOY display, offering utmost flexibility because users can create their own BOY displays in CSS. These three approaches complement each other. Users can access generic status displays with zero effort, invest time in creating their fully customized displays for the Web OPI, or use the Dashboard as an intermediate solution

  1. Technology of solar cells of CuInSe-2

    International Nuclear Information System (INIS)

    Gordillo, Gerardo; Rodriguez, Jairo A

    1993-01-01

    The energetic problem in the World is at the present time one of the topics of more interest; for that reason the study of the transformation of the solar energy in electric power, using photovoltaic devices, it is a field of great priority in the investigation. The direct conversion of the solar energy in electric power, using solar cells, it represents an interesting alternative to replace a fraction of the energy deficit that will present as consequence of the limited reservations of hydrocarbons. At the present time they are had in experimentation plants lots of megawatts based on cells of silicon mono-crystalline. The solar cell technologically more developed it is that of silicon mono-crystalline; however their production cost is too high and difficultly it could compete economically with the traditional forms of generating energy; for this reason they are becoming big efforts and economic investments to develop solar cells of high efficiency and stability with base in thin movies whose production costs are much lower compared with those of cells of crystalline silicon

  2. Autologous Pluripotent Stem Cell-Derived β-Like Cells for Diabetes Cellular Therapy.

    Science.gov (United States)

    Millman, Jeffrey R; Pagliuca, Felicia W

    2017-05-01

    Development of stem cell technologies for cell replacement therapy has progressed rapidly in recent years. Diabetes has long been seen as one of the first applications for stem cell-derived cells because of the loss of only a single cell type-the insulin-producing β-cell. Recent reports have detailed strategies that overcome prior hurdles to generate functional β-like cells from human pluripotent stem cells in vitro, including from human induced pluripotent stem cells (hiPSCs). Even with this accomplishment, addressing immunological barriers to transplantation remains a major challenge for the field. The development of clinically relevant hiPSC derivation methods from patients and demonstration that these cells can be differentiated into β-like cells presents a new opportunity to treat diabetes without immunosuppression or immunoprotective encapsulation or with only targeted protection from autoimmunity. This review focuses on the current status in generating and transplanting autologous β-cells for diabetes cell therapy, highlighting the unique advantages and challenges of this approach. © 2017 by the American Diabetes Association.

  3. Energy storage options for fuel cell hybrid power-trains in road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Davies, D; Mortimer, R; Moore, J

    2000-07-01

    The objective of this work was to identify and assess energy storage technologies that may be applicable for use in fuel cell hybrid electric vehicles (HEVs) in the time frame to 2010. The current and projected status of each technology was evaluated, based on recognised existing goals (such as USDoE and USABC) and performance requirements, so that potential commercial opportunities could be identified. (Author)

  4. Extravehicular Activity Technology Development Status and Forecast

    Science.gov (United States)

    Chullen, Cinda; Westheimer, David T.

    2011-01-01

    The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an

  5. Realizing the dream: greenhouse gas free transportation through the application of Canada's fuel cell technology

    International Nuclear Information System (INIS)

    Adams, W.

    2001-01-01

    Fuel cells (FCs) generate electrical power without combustion using electrochemical processes and therefore do not have to first convert the fuel to heat and shaft-power before electricity is produced. They are, therefore, high efficiency energy converters and unlike batteries are able to continuously provide electrical power as long as fuel and air are fed to the electrodes. Fuel cells are now of great interest to the automotive industry throughout the world. The most economic fuel for fuel cells is reformed natural gas that is favoured by the utility industry, but methanol (as well, ethanol is being proposed by a GM, Shell, Argonne study) is one contender for fuel cells being developed for transportation. Several different fuel cell technologies exist. Recent developments in solid oxide fuel cell (SOFC) technology suggest that SOFCs could more easily adapt to conventional gasoline and diesel fuels and are less prone to catalyst poisoning than other fuel cells such as the solid polymer electrolyte (PEM) type, often also called the proton exchange membrane (PEM) fuel cell, being developed by Ballard in Canada. However, there remain significant development problems for SOFC technology related to the high operating temperatures (700 to 1000 deg C). In this paper, the range of fuel cell technologies now being developed will be reviewed since there is a convergence in the use of fuel cells for the production of power in distributed fixed systems and power sources for transportation. The factors that will determine the dominating technologies for automobile and truck propulsion in the future are the same as those currently in play. These factors are: performance, cost and convenience of the technologies. A common feature in these three factors is efficiency from which the environmental impact of the technology is largely determined-Electric propulsion in some form will ultimately be favoured over combustion systems because combustion systems are limited by fundamental

  6. Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting

    Directory of Open Access Journals (Sweden)

    Amit Panwar

    2016-05-01

    Full Text Available Recent developments in 3D printing technologies and design have been nothing short of spectacular. Parallel to this, development of bioinks has also emerged as an active research area with almost unlimited possibilities. Many bioinks have been developed for various cells types, but bioinks currently used for 3D printing still have challenges and limitations. Bioink development is significant due to two major objectives. The first objective is to provide growth- and function-supportive bioinks to the cells for their proper organization and eventual function and the second objective is to minimize the effect of printing on cell viability, without compromising the resolution shape and stability of the construct. Here, we will address the current status and challenges of bioinks for 3D printing of tissue constructs for in vitro and in vivo applications.

  7. Assessment of the competing technologies to fuel cells in the stationary power and CHP markets

    Energy Technology Data Exchange (ETDEWEB)

    Pears, T.J.

    1999-07-01

    This report summarises the results of a study assessing the commercial technologies that are likely to compete with fuel cells in the fields of stationary power and cogeneration markets. The competing technologies examined include clean coal technologies, reciprocating engines, gas turbines, microturbines, and stirling engines. Energy and environmental legislation, and the ranking of the competing technologies are discussed. (UK)

  8. Biomass torrefaction technology: Techno-economic status and future prospects

    International Nuclear Information System (INIS)

    Batidzirai, B.; Mignot, A.P.R.; Schakel, W.B.; Junginger, H.M.; Faaij, A.P.C.

    2013-01-01

    Torrefaction is a promising bioenergy pre-treatment technology, with potential to make a major contribution to the commodification of biomass. However, there is limited scientific knowledge on the techno-economic performance of torrefaction. This study therefore improves available knowledge on torrefaction by providing detailed insights into state of the art prospects of the commercial utilisation of torrefaction technology over time. Focussing on and based on the current status of the compact moving bed reactor, we identify process performance characteristics such as thermal efficiency and mass yield and discuss their determining factors through analysis of mass and energy balances. This study has shown that woody biomass can be torrefied with a thermal and mass efficiency of 94% and 48% respectively (on a dry ash free basis). For straw, the corresponding theoretical energetic efficiency is 96% and mass efficiency is 65%. In the long term, the technical performance of torrefaction processes is expected to improve and energy efficiencies are expected to be at least 97% as optimal torgas use and efficient heat transfer are realised. Short term production costs for woody biomass TOPs (torrefied pellets) are estimated to be between 3.3 and 4.8 US$/GJ LHV , falling to 2.1–5.1 US$/GJ LHV in the long term. At such cost levels, torrefied pellets would become competitive with traditional pellets. For full commercialisation, torrefaction reactors still require to be optimised. Of importance to torrefaction system performance is the achievement of consistent and homogeneous, fully hydrophobic and stable product, capable of utilising different feedstocks, at desired end-use energy densities. - Highlights: • Woody biomass torrefaction thermal efficiency is 94% and mass efficiency is 48% on a daf basis. • Straw theoretical torrefaction energetic efficiency is 96% and mass efficiency is 65%. • Current woody TOPs production costs are between 3.3 and 4.8 US$/GJ LHV , 50

  9. Current Status of Advanced Nuclear Fuel Cycle technologies

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Lee, Jong Hyun

    2009-07-01

    To expand the use of nuclear energy, SNF from nuclear power plants must be managed in a safe and environmental friendly and the problem of decreasing uranium should be solved. To resolve this, a dry processing technology Pyroprocessing is focused on. The government started to develop of Pyroprocessing technology in 1997. According to the decision of government based of Atomic Energy Commission in December 2008, the Korea Atomic Energy Research Institute will construct PRIDE (Pyroprocess Integrated Inactive DEmonstration Facility) by 2011 to prove a consistent process. If Pyroprocessing technology will be developed in the near future, the size of radioactive waste disposal site can be reduced to 100 times compared to the direct disposal. When this technology will be connected to Fast Reactor. high level nuclear waste management of Hundreds of thousands of years may be reduced to hundreds years. However for the commercialization of Pyroprocessing technology, there are some problems to solve. First, because of none commercial facilities in the world of executive experience, so that the facility design, measurement. management and material flow, the critical need for data accumulation. Second, High-level nuclear waste have been known to generate more than the wet methods, it should continue to reduce technology development. In addition, a careful consideration of the residual uranium generating on process also can maximize the efficiency of reducing. The new concept is being developed in Korea Atomic Energy Research Institute Pyroprocessing technology and nuclear waste processing technology to overcome these drawbacks sUQQested a way

  10. Recent findings and technological advances in phosphoproteomics for cells and tissues

    DEFF Research Database (Denmark)

    von Stechow, Louise; Francavilla, Chiara; Olsen, Jesper V

    2015-01-01

    in different diseases, including cancer. Large-scale studies of phosphoproteins - termed phosphoproteomics - strongly rely on the use of high-performance mass spectrometric instrumentation. This powerful technology has been applied to study a great number of phosphorylation-based phenotypes. Nevertheless, many...... technical and biological challenges have to be overcome to identify biologically relevant phosphorylation sites in cells and tissues. This review describes different technological strategies to identify and quantify phosphorylation sites with high accuracy, without significant loss of analysis speed...

  11. High temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  12. Evaluation of oxidative stress status and antioxidant capacity in patients with renal cell carcinoma

    OpenAIRE

    Aldemir, Mustafa; Karaguzel, Ersagun; Okulu, Emrah; Gudeloglu, Ahmet; Ener, Kemal; Ozayar, Asim; Erel, Ozcan

    2015-01-01

    Introduction We evaluated and compared the serum oxidative stress and antioxidant enzymes in patients with renal cell carcinoma (RCC) and the control group. Material and methods The prospective study consisted of 97 patients with RCC (Group 1) and 80 age and sex matched healthy volunteers (Group 2). Group 1 and 2 were compared concerning serum mean total oxidant status (TOS), total antioxidant capacity (TAC), paraoxonase-1 (PON-1), arylesterase, total thiol, catalase (CAT), myeloperoxidase (M...

  13. Extravehicular Activity (EVA) Technology Development Status and Forecast

    Science.gov (United States)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for

  14. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  15. Vectors to Increase Production Efficiency of Inducible Pluripotent Stem Cell (iPSC) | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    This invention describes the discovery that specific p53 isoform increase the number of inducible pluripotent stem cells (iPS). It is known that the activity of p53 regulates the self-renewal and pluripotency of normal and cancer stem cells, and also affects re-programming efficiency of iPS cells. This p53 isoform-based technology provides a more natural process of increasing iPS cell production than previous methods of decreasing p53. NCI seeks licensees for this technology.

  16. Role of p53 status in radiation sensitivity and cell cycle progression

    International Nuclear Information System (INIS)

    Zellars, Richard C.; Loney, Tania; Schott, Ann F.; Davis, Mary A.; Maybaum, Jonathan; Clarke, Michael F.; Lawrence, Theodore S.

    1995-01-01

    Purpose: Although p53 function plays a major role in G1 arrest after radiation, the influence of p53 status on progress through other phases of the cell cycle and on radiation sensitivity of human tumors is less clear. We investigated these issues using cells with a conditional expression system for wild type p53. Methods: A temperature sensitive murine wild type p53 plasmid was used (Ginsberg D, et al: Mol. Cell.Biol . 11:582, 1991). At the permissive temperature (32 deg. C), this plasmid produces a protein which assumes a conformation that exhibits wild type p53 function. However, when cells are cultured at 38 deg. C, this protein assumes an inactive conformation. HT29 human colon cancer cells (which are p53 mutant) were transduced with this plasmid (designated PEP A and PEP G cells) or a control vector (designated CCH1 cells) using electroporation and Geneticin selection. The presence of murine p53 transcript in the PEP cells was confirmed by Northern analysis. Results: Cells were cultured under 3 conditions: 1) 38 deg. C at all times; 2) 32 deg. C for 24 hours prior to irradiation and 3) 32 deg. C for 24 hours after irradiation. We found that culturing under permissive temperatures produced a small decrease in surviving fraction in the PEP clones (0.61 ± 0.10 and 0.64 ± 0.07, for PEP A and G, respectively) but not the CCH1 controls (1.14 ± 0.15). PEP cells tended to be more radiosensitive than CCH1 cells (even under non-permissive conditions) and demonstrated a trend towards increased radiosensitivity under both Conditions 2 and 3. In addition, flow cytometry revealed that a 24 hour exposure to permissive conditions increased the fraction of cells in G1 slightly and in G2/M substantially. S phase was almost absent. Conclusion: Restoration of p53 function in HT29 human colon cancer cells using this temperature sensitive system produced increased cytotoxicity and radiation sensitivity as well as cell cycle redistribution. It will be important to assess the

  17. The use of real-time cell analyzer technology in drug discovery: defining optimal cell culture conditions and assay reproducibility with different adherent cellular models.

    Science.gov (United States)

    Atienzar, Franck A; Tilmant, Karen; Gerets, Helga H; Toussaint, Gaelle; Speeckaert, Sebastien; Hanon, Etienne; Depelchin, Olympe; Dhalluin, Stephane

    2011-07-01

    The use of impedance-based label-free technology applied to drug discovery is nowadays receiving more and more attention. Indeed, such a simple and noninvasive assay that interferes minimally with cell morphology and function allows one to perform kinetic measurements and to obtain information on proliferation, migration, cytotoxicity, and receptor-mediated signaling. The objective of the study was to further assess the usefulness of a real-time cell analyzer (RTCA) platform based on impedance in the context of quality control and data reproducibility. The data indicate that this technology is useful to determine the best coating and cellular density conditions for different adherent cellular models including hepatocytes, cardiomyocytes, fibroblasts, and hybrid neuroblastoma/neuronal cells. Based on 31 independent experiments, the reproducibility of cell index data generated from HepG2 cells exposed to DMSO and to Triton X-100 was satisfactory, with a coefficient of variation close to 10%. Cell index data were also well reproduced when cardiomyocytes and fibroblasts were exposed to 21 compounds three times (correlation >0.91, p technology appears to be a powerful and reliable tool in drug discovery because of the reasonable throughput, rapid and efficient performance, technical optimization, and cell quality control.

  18. Negotiating sustainable innovation? Hydrogen and fuel cell technologies in Germany

    Directory of Open Access Journals (Sweden)

    Weert Canzler

    2013-06-01

    Full Text Available Recently, the German Federal Government made the consequential decision to change its energy program. This not only as a result of the decision to shut down the existing nuclear power plants within the next few years, but also due to vital challenges like climate change and security of energy supply. The shift in the energy-technology paradigm from fossil fuel technologies to regenerative energies might appear as a merely technical process at first glance. Yet, the road to environmental sustainability is paved with economic and social stumbling blocks. The concept of sustainable development is not a blueprint for technical progress but requires deliberations on questions about innovations and governance: How do we want to live and how do we want to get there? This paper traces the negotiations of sustainable innovation on the example of hydrogen and fuel cell technologies in Germany. The institutional set up in this field is analyzed and the new organizational actors are identified. These actors attempt to inform and persuade others of the benefits of hydrogen and fuel cells in order to establish a common view that is to guide the further development. However, while they succeeded in mobilizing enough actors to launch the largest Public Private Partnership in this sector in the EU, they could not attain the leadership in the public discourse on these technologies. It seems that an attractive guiding vision of a sustainable, post-fossil energy future and a broad acceptance in daily use would have been major prerequisites for such leadership.

  19. The developments of international hydrogen and fuel cell technology standards and the response strategies in Taiwan

    International Nuclear Information System (INIS)

    Tso, C.

    2009-01-01

    The application of hydrogen and fuel cells has expanded as the technology in international markets has improved. Leading countries have focused on establishing hydrogen and fuel cell technology standards. Both the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) continuously release new hydrogen and fuel cell related standards. Although the government of Taiwan is promoting the development of a hydrogen and fuel cell industry, it may delay the commercialized schedule if there are no hydrogen and fuel cell related standards and regulations in place. Standards and regulations must be established as quickly as possible in order to accelerate the progress of the hydrogen and fuel cell industry. This presentation reviewed the international progress in hydrogen and fuel cell development and explained Taiwan's response strategies regarding the adoption of hydrogen and fuel cell products in niche Taiwanese markets

  20. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.

    Science.gov (United States)

    Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui

    2015-11-02

    Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks.

  1. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  2. Nanofluid Technology: Current Status and Future Research

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Stephen U.-S. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Technology Division

    1998-10-20

    Downscaling or miniaturization has been a recent major trend in modern science and technology. Engineers now fabricate microscale devices such as microchannel heat exchangers, and micropumps that are the size of dust specks. Further major advances would be obtained if the coolant flowing in the microchannels were to contain nanoscale particles to enhance heat transfer. Nanofluid technology will thus be an emerging and exciting technology of the 21st century. This paper gives a brief history of the Advanced Fluids Program at Argonne National Laboratory (ANL), discusses the concept of nanofluids, and provides an overview of the R&D program at ANL on the production, property characterization, and performance of nanofluids. It also describes examples of potential applications and benefits of nanofluids. Finally, future research on the fundamentals and applications of nanofluids is addressed.

  3. Survey report on the status of new energy in the U.S. On-site research centering on fuel cell, hydrogen energy, and wind energy (4th World Energy Engineering Congress); Beikoku shin energy jijo chosa hokokusho. Nenryo denchi, suiso furyoku energy wo chushin to suru jicchi chosa (dai 4 kai World Energy Engineering Congress)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-02-01

    A survey group dispatched by the New Energy Industrial Forum technical development committee conduct researches into the status of technologies in the U.S. relative to fuel cells, hydrogen energy, and wind energy. The group also attend the 4th World Energy Engineering Congress. As for the research and development of the phosphoric acid fuel cell, it is undertaken by the United Technology Corporation, Westinghouse Electric Corporation, and the Engelhard Corporation, each having its own peculiar technologies and thereby avoiding competition with others in one and the same domain. As for the molten carbonate fuel cell, the Argonne National Laboratory is entrusted with the control of technology development, and the Laboratory in turn requests the United Technology Corporation and Westinghouse Electric Corporation to develop technologies and systems. As for the solid oxide fuel cell, the Westinghouse Electric Corporation is entrusted with its development through the intermediary of the Argonne National Laboratory. As for hydrogen energy, the General Electric Company and Westinghouse Electric Corporation develop hydrogen production systems and the Brookhaven National Laboratory develops hydrogen storage systems using metallic hydrides. As for wind power generation, a Bendix-made 3,000kW wind power plant is visited and discussion is held on it. (NEDO)

  4. Renewables 2013. Global Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sawin, J. L. [and others

    2013-07-01

    Renewable energy markets, industries, and policy frameworks have evolved rapidly in recent years. The Renewables Global Status Report provides a comprehensive and timely overview of renewable energy market, industry, investment, and policy developments worldwide. It relies on the most recent data available, provided by many contributors and researchers from around the world, all of which is brought together by a multi-disciplinary authoring team. The report covers recent developments, current status, and key trends; by design, it does not provide analysis or forecasts. This latest Renewables Global Status Report saw: a shift in investment patterns that led to a global decrease in clean energy investment; continuing growth in installed capacity due to significant technology cost reductions and increased investment in developing countries; renewables progressively supplementing established electricity systems, demonstrating that the implementation of suitable policies can enable the successful integration of higher shares of variable renewables; and the emergence of integrated policy approaches that link energy efficiency measures with the implementation of renewable energy technologies.

  5. The mission and status of the U.S. Department of Energy's battery energy storage program

    Science.gov (United States)

    Quinn, J. E.; Landgrebe, A. R.; Hurwitch, J. W.; Hauser, S. G.

    1985-12-01

    Attention is given to the U.S. Department of Energy's battery energy storage program history, assessing the importance it has had in the national interest to date in industrial, vehicular, and electric utility load leveling applications. The development status of battery technology is also evaluated for the cases of sodium-sulfur, zinc-bromine, zinc-ferricyanide, nickel-hydrogen, aluminum-air, lithium-metal disulfide, and fuel cell systems. Development trends are projected into the foreseeable future.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: RESIDENTIAL ELECTRIC POWER GENERATION USING THE PLUG POWER SU1 FUEL CELL SYSTEM

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Plug Power SU1 Fuel Cell System manufactured by Plug Power. The SU1 is a proton exchange membrane fuel cell that requires hydrogen (H2) as fuel. H2 is generally not available, so the ...

  7. TP53 mutation and human papilloma virus status of oral squamous cell carcinomas in young adult patients

    NARCIS (Netherlands)

    Braakhuis, B.J.M.; Rietbergen, M.M.; Buijze, M.; Snijders, P.J.F.; Bloemena, E.; Brakenhoff, R.H.; Leemans, C.R.

    2014-01-01

    Objective Little is known about the molecular carcinogenesis of oral squamous cell carcinoma (OSCC) in young adult patients. The aim of this study was to investigate the detailed TP53 mutation and human papilloma virus (HPV) status of OSCC in patients, younger than 45 years. Methods TP53 mutations

  8. Status quo of supply technology

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Shigeo

    1987-09-01

    Problems for gas supply function, activity of the Gas Association, and technological development mainly of the presented subjects are reported. According to the materials released by the Gas Associattion, demands for city gas by the 21st Century is expected to be rather high with 3.6% annual growth rate. It is premissed on an assumption that the superior quality of the city gas satisfying customer requirements would be further upgraded. The problems confronted by the supply function for this purpose are the pursuit for less cost, improvement in security, and stable gas supply. The Gas Association carried out research, investigation, preparation of standards, etc., and published instructive materials such as guide for main and branch piping, guide for supply piping, technical standards for gas related works, etc. It also has been endeavoring to popularize the use of polyethylene pipies, and studying the evaluation method for the renewal and repair of gas conduits and house regulator supply system, etc. The supply function has been working on the cutting dowm of costs, inprovement in security, and developing technologies such as underground probing radar, inteligent pipe locator, identifier for gas and water supply tubes, estimation of ground subsidence, inspection of inside of pipes by a television camera, etc. (1 tab)

  9. Longitudinal follow-up of nutritional status and its influencing factors in adults undergoing allogeneic hematopoietic cell transplantation.

    Science.gov (United States)

    Urbain, P; Birlinger, J; Lambert, C; Finke, J; Bertz, H; Biesalski, H-K

    2013-03-01

    There are few longitudinal data on nutritional status and body composition of patients undergoing allogeneic hematopoietic cell transplantation (alloHCT). We assessed nutritional status of 105 patients before alloHCT and its course during the early post-transplant period to day +30 and day +100 via weight history, body mass index (BMI) normalized for gender and age, Subjective Global Assessment, phase angle normalized for gender, age, and BMI, and fat-free and body fat masses. Furthermore, we present a multivariate regression model investigating the impact of factors on body weight. At admission, 23.8% reported significant weight losses (>5%) in the previous 6 months, and we noted 31.5% with abnormal age- and sex-adjusted BMI values (10th, 90th percentiles). BMI decreased significantly (Panorexia (parameter estimate 1.07; P=0.058) as independent factors influencing early weight loss. In conclusion, our results show a significant deterioration in nutritional status during the early post-transplant period. Predominant alloHCT-associated complications such as anorexia and acute GVHD became evident as significant factors influencing nutritional status.

  10. Status of technology for nuclear waste management

    International Nuclear Information System (INIS)

    Lieberman, J.A.

    1984-01-01

    In the area of low- and intermediate-level radioactive wastes the successful development and application of specific management technologies have been demonstrated over the years. The major area in which technology remains to be effectively implemented is in the management of high-level wastes from the nuclear fuel cycle. Research and development specifically directed at the management of high-level radioactive wastes in the USA and other countries is briefly reviewed in the article introduced

  11. Epidermal Growth Factor Receptor and K-RAS status in two cohorts of squamous cell carcinomas

    Directory of Open Access Journals (Sweden)

    Van Laethem Jean-Luc

    2010-05-01

    Full Text Available Abstract Background With the availability of effective anti-EGFR therapies for various solid malignancies, such as non-cell small lung cancer, colorectal cancer and squamous cell carcinoma of the head and neck, the knowledge of EGFR and K-RAS status becomes clinically important. The aim of this study was to analyse EGFR expression, EGFR gene copy number and EGFR and K-RAS mutations in two cohorts of squamous cell carcinomas, specifically anal canal and tonsil carcinomas. Methods Formalin fixed, paraffin-embedded tissues from anal and tonsil carcinoma were used. EGFR protein expression and EGFR gene copy number were analysed by means of immunohistochemistry and fluorescence in situ hybridisation. The somatic status of the EGFR gene was investigated by PCR using primers specific for exons 18 through 21. For the K-RAS gene, PCR was performed using exon 2 specific primers. Results EGFR immunoreactivity was present in 36/43 (83.7% of anal canal and in 20/24 (83.3% of tonsil squamous cell carcinomas. EGFR amplification was absent in anal canal tumours (0/23, but could be identified in 4 of 24 tonsil tumours. From 38 anal canal specimens, 26 specimens were successfully analysed for exon 18, 30 for exon 19, 34 for exon 20 and 30 for exon 21. No EGFR mutations were found in the investigated samples. Thirty samples were sequenced for K-RAS exon 2 and no mutation was identified. From 24 tonsil specimens, 22 were successfully analysed for exon 18 and all 24 specimens for exon 19, 20 and 21. No EGFR mutations were found. Twenty-two samples were sequenced for K-RAS exon 2 and one mutation c.53C > A was identified. Conclusion EGFR mutations were absent from squamous cell carcinoma of the anus and tonsils, but EGFR protein expression was detected in the majority of the cases. EGFR amplification was seen in tonsil but not in anal canal carcinomas. In our investigated panel, only one mutation in the K-RAS gene of a tonsil squamous cell carcinoma was identified

  12. Epidermal Growth Factor Receptor and K-RAS status in two cohorts of squamous cell carcinomas

    International Nuclear Information System (INIS)

    Van Damme, Nancy; Pauwels, Patrick; Peeters, Marc; Deron, Philippe; Van Roy, Nadine; Demetter, Pieter; Bols, Alain; Dorpe, Jo Van; Baert, Filip; Van Laethem, Jean-Luc; Speleman, Franki

    2010-01-01

    With the availability of effective anti-EGFR therapies for various solid malignancies, such as non-cell small lung cancer, colorectal cancer and squamous cell carcinoma of the head and neck, the knowledge of EGFR and K-RAS status becomes clinically important. The aim of this study was to analyse EGFR expression, EGFR gene copy number and EGFR and K-RAS mutations in two cohorts of squamous cell carcinomas, specifically anal canal and tonsil carcinomas. Formalin fixed, paraffin-embedded tissues from anal and tonsil carcinoma were used. EGFR protein expression and EGFR gene copy number were analysed by means of immunohistochemistry and fluorescence in situ hybridisation. The somatic status of the EGFR gene was investigated by PCR using primers specific for exons 18 through 21. For the K-RAS gene, PCR was performed using exon 2 specific primers. EGFR immunoreactivity was present in 36/43 (83.7%) of anal canal and in 20/24 (83.3%) of tonsil squamous cell carcinomas. EGFR amplification was absent in anal canal tumours (0/23), but could be identified in 4 of 24 tonsil tumours. From 38 anal canal specimens, 26 specimens were successfully analysed for exon 18, 30 for exon 19, 34 for exon 20 and 30 for exon 21. No EGFR mutations were found in the investigated samples. Thirty samples were sequenced for K-RAS exon 2 and no mutation was identified. From 24 tonsil specimens, 22 were successfully analysed for exon 18 and all 24 specimens for exon 19, 20 and 21. No EGFR mutations were found. Twenty-two samples were sequenced for K-RAS exon 2 and one mutation c.53C > A was identified. EGFR mutations were absent from squamous cell carcinoma of the anus and tonsils, but EGFR protein expression was detected in the majority of the cases. EGFR amplification was seen in tonsil but not in anal canal carcinomas. In our investigated panel, only one mutation in the K-RAS gene of a tonsil squamous cell carcinoma was identified. This indicates that EGFR and K-RAS mutation analysis is not

  13. Demographic, Clinical, and Prognostic Factors of Ovarian Clear Cell Adenocarcinomas According to Endometriosis Status

    DEFF Research Database (Denmark)

    Schnack, Tine H; Høgdall, Estrid; Thomsen, Lotte Nedergaard

    2017-01-01

    OBJECTIVES: Women with endometriosis carry an increased risk for ovarian clear cell adenocarcinomas (CCCs). Clear cell adenocarcinoma may develop from endometriosis lesions. Few studies have compared clinical and prognostic factors and overall survival in patients diagnosed as having CCC according...... to endometriosis status. METHODS: Population-based prospectively collected data on CCC with coexisting pelvic (including ovarian; n = 80) and ovarian (n = 46) endometriosis or without endometriosis (n = 95) were obtained through the Danish Gynecological Cancer Database. χ Test, independent-samples t test, logistic...... regression, Kaplan-Meier test, and Cox regression were used. Statistical tests were 2 sided. P values less than 0.05 were considered statistically significant. RESULTS: Patients with CCC and pelvic or ovarian endometriosis were significantly younger than CCC patients without endometriosis, and a higher...

  14. Parameter Screening in Microfluidics Based Hydrodynamic Single-Cell Trapping

    Directory of Open Access Journals (Sweden)

    B. Deng

    2014-01-01

    Full Text Available Microfluidic cell-based arraying technology is widely used in the field of single-cell analysis. However, among developed devices, there is a compromise between cellular loading efficiencies and trapped cell densities, which deserves further analysis and optimization. To address this issue, the cell trapping efficiency of a microfluidic device with two parallel micro channels interconnected with cellular trapping sites was studied in this paper. By regulating channel inlet and outlet status, the microfluidic trapping structure can mimic key functioning units of previously reported devices. Numerical simulations were used to model this cellular trapping structure, quantifying the effects of channel on/off status and trapping structure geometries on the cellular trapping efficiency. Furthermore, the microfluidic device was fabricated based on conventional microfabrication and the cellular trapping efficiency was quantified in experiments. Experimental results showed that, besides geometry parameters, cellular travelling velocities and sizes also affected the single-cell trapping efficiency. By fine tuning parameters, more than 95% of trapping sites were taken by individual cells. This study may lay foundation in further studies of single-cell positioning in microfluidics and push forward the study of single-cell analysis.

  15. The current status of usability studies of information technologies in China: a systematic study.

    Science.gov (United States)

    Lei, Jianbo; Xu, Lufei; Meng, Qun; Zhang, Jiajie; Gong, Yang

    2014-01-01

    To systematically review and analyze the current status and characteristics of usability studies in China in the field of information technology in general and in the field of healthcare in particular. We performed a quantitative literature analysis in three major Chinese academic databases and one English language database using Chinese search terms equivalent to the concept of usability. Six hundred forty-seven publications were selected for analysis. We found that in China the literature on usability in the field of information technology began in 1994 and increased thereafter. The usability definitions from ISO 9241-11:1998 and Nielsen (1993) have been widely recognized and cited. Authors who have published several publications are rare. Fourteen journals have a publishing rate over 1%. Only nine publications about HIT were identified. China's usability research started relatively late. There is a lack of organized research teams and dedicated usability journals. High-impact theoretical studies are scarce. On the application side, no original and systematic research frameworks have been developed. The understanding and definition of usability is not well synchronized with international norms. Besides, usability research in HIT is rare. More human and material resources need to be invested in China's usability research, particularly in HIT.

  16. Circulating immune cell subpopulations in pestivirus persistently infected calves and non-infected calves varying in immune status [Abstract

    Science.gov (United States)

    The circulating immune cell subpopulations in cattle representing varying stages of immune status categorized as; colostrum deprived (CD), receiving colostrum (COL), colostrum plus vaccination (VAC) and persistently infected with a pestivirus (PI) were compared. The PI calves were infected with a H...

  17. Fabrication of a miniaturized cell using microsystem technologies for electrochemical applications

    International Nuclear Information System (INIS)

    Lakard, Boris; Jeannot, Jean-Claude; Spajer, Michel; Herlem, Guillaume; Labachelerie, Michel de; Blind, Pascal; Fahys, Bernard

    2005-01-01

    A new type of electrochemical cell has been developed for use in electrochemical, chemical and biological applications. Using a platinum microelectrode as working electrode, this cell incorporates a silver microelectrode as reference electrode. These microelectrodes, whose area is equal to 1 μm 2 , were fabricated using photolithography, sputtering, and focused ion beam (FIB) technologies since these micro-fabrication techniques allow us to develop miniaturized electrochemical cells useful either for nanoelectrochemistry or biosensors applications. In this study, we show it is possible to coat a surface by chemical or biological compounds by immersing the microelectrodes in a solution, then setting a difference of potential between the two microelectrodes of the cell. For example, we used this miniaturized cell to realize the electrochemical polymerization of aniline into polyaniline to show that this electrochemical cell is efficient to coat a surface with a thin film of polymer

  18. Integrated economic and experimental framework for screening of primary recovery technologies for high cell density CHO cultures.

    Science.gov (United States)

    Popova, Daria; Stonier, Adam; Pain, David; Titchener-Hooker, Nigel J; Farid, Suzanne S

    2016-07-01

    Increases in mammalian cell culture titres and densities have placed significant demands on primary recovery operation performance. This article presents a methodology which aims to screen rapidly and evaluate primary recovery technologies for their scope for technically feasible and cost-effective operation in the context of high cell density mammalian cell cultures. It was applied to assess the performance of current (centrifugation and depth filtration options) and alternative (tangential flow filtration (TFF)) primary recovery strategies. Cell culture test materials (CCTM) were generated to simulate the most demanding cell culture conditions selected as a screening challenge for the technologies. The performance of these technology options was assessed using lab scale and ultra scale-down (USD) mimics requiring 25-110mL volumes for centrifugation and depth filtration and TFF screening experiments respectively. A centrifugation and depth filtration combination as well as both of the alternative technologies met the performance selection criteria. A detailed process economics evaluation was carried out at three scales of manufacturing (2,000L, 10,000L, 20,000L), where alternative primary recovery options were shown to potentially provide a more cost-effective primary recovery process in the future. This assessment process and the study results can aid technology selection to identify the most effective option for a specific scenario. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - Development of production technology of thin film solar cells. Development of production technology of application type new structure thin film solar cells (Development of production technology of high efficiency hybrid thin films/sheet solar cells); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Hakumaku taiyodenchi no seizo gijutsu kaihatsu, Oyogata shinkozo hakumaku taiyodenchi no seizo gijutsu kaihatsu, (Kokoritsu hybrid gata hakumaku / sheet taiyodenchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of realizing low cost and high efficiency hybrid thin films/sheet solar cells, the R and D were carried out, and the FY 2000 results were reported. As to the formation technology of the upper cell, the following technologies were developed and the results contributory to the heightening of efficiency were obtained: technology for improvement of cell characteristics by gap widening of p layer, technology for optimization of formation conditions of i layer corresponding to the hybrid solar cell, technology for heightening of current by the intermediate ZnO layer just under the upper cell. Relating to the development of formation technology of high quality microcrystal thin films, it was indicated that the microcrystal silicon thin film had the conformity effective also for polycrystal silicon, and at the same time, the conversion efficiency of 12.8% and release voltage of 0.579V were obtained by the cell using the cast polycrystal board. In the thin film/polycrystal sheet hybrid solar cell in which all these technologies were integrated, the conversion efficiency of 12.0% was achieved, and the possibility was verified of achieving the target efficiency of 14% by further improvement of FF. (NEDO)

  20. Planetary Science Technology Infusion Study: Findings and Recommendations Status

    Science.gov (United States)

    Anderson, David J.; Sandifer, Carl E., II; Sarver-Verhey, Timothy R.; Vento, Daniel M.; Zakrajsek, June F.

    2014-01-01

    The Planetary Science Division (PSD) within the National Aeronautics and Space Administrations (NASA) Science Mission Directorate (SMD) at NASA Headquarters sought to understand how to better realize a scientific return on spacecraft system technology investments currently being funded. In order to achieve this objective, a team at NASA Glenn Research Center was tasked with surveying the science and mission communities to collect their insight on technology infusion and additionally sought inputs from industry, universities, and other organizations involved with proposing for future PSD missions. This survey was undertaken by issuing a Request for Information (RFI) activity that requested input from the proposing community on present technology infusion efforts. The Technology Infusion Study was initiated in March 2013 with the release of the RFI request. The evaluation team compiled and assessed this input in order to provide PSD with recommendations on how to effectively infuse new spacecraft systems technologies that it develops into future competed missions enabling increased scientific discoveries, lower mission cost, or both. This team is comprised of personnel from the Radioisotope Power Systems (RPS) Program and the In-Space Propulsion Technology (ISPT) Program staff.The RFI survey covered two aspects of technology infusion: 1) General Insight, including: their assessment of barriers to technology infusion as related to infusion approach; technology readiness; information and documentation products; communication; integration considerations; interaction with technology development areas; cost-capped mission areas; risk considerations; system level impacts and implementation; and mission pull. 2) Specific technologies from the most recent PSD Announcements of Opportunities (AOs): The Advanced Stirling Radioisotope Generator (ASRG), aerocapture and aeroshell hardware technologies, the NASA Evolutionary Xenon Thruster (NEXT) ion propulsion system, and the

  1. D and D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms

    International Nuclear Information System (INIS)

    Lagos, L.; Shoffner, P.; Espinosa, E.; Pena, G.; Kirk, P.; Conley, T.

    2009-01-01

    The objective of the US Department of Energy Office of Environmental Management's (DOE-EM's) D and D Toolbox Project is to use an integrated systems approach to develop a suite of decontamination and decommissioning (D and D) technologies, a D and D toolbox, that can be readily used across the DOE complex to improve safety, reduce technical risks, and limit uncertainty within D and D operations. Florida International University's Applied Research Center (FIU-ARC) is supporting this initiative by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting technology demonstrations of selected technologies at FIU-ARC facilities in Miami, Florida. To meet the technology gap challenge for a technology to remotely apply strippable/fixative coatings, FIU-ARC identified and demonstrated of a remote fixative sprayer platform. During this process, FIU-ARC worked closely with the Oak Ridge National Laboratory in the selection of typical fixatives and in the design of a hot cell mockup facility for demonstrations at FIUARC. For this demonstration and for future demonstrations, FIU-ARC built a hot cell mockup facility at the FIU-ARC Technology Demonstration/Evaluation site in Miami, Florida. FIU-ARC selected the International Climbing Machines' (ICM's) Robotic Climber to perform this technology demonstration. The selected technology was demonstrated at the hot cell mockup facility at FIU-ARC during the week of November 10, 2008. Fixative products typically used inside hot cells were investigated and selected for this remote application. The fixatives tested included Sherwin Williams' Promar 200 and DTM paints and Bartlett's Polymeric Barrier System (PBS). The technology evaluation documented the ability of the remote system to spray fixative products on horizontal and vertical concrete surfaces. The technology performance, cost, and health and safety issues were evaluated

  2. Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients.

    Science.gov (United States)

    Papadopoulou, Eirini; Tsoulos, Nikolaos; Tsirigoti, Angeliki; Apessos, Angela; Agiannitopoulos, Konstantinos; Metaxa-Mariatou, Vasiliki; Zarogoulidis, Konstantinos; Zarogoulidis, Pavlos; Kasarakis, Dimitrios; Kakolyris, Stylianos; Dahabreh, Jubrail; Vlastos, Fotis; Zoublios, Charalampos; Rapti, Aggeliki; Papageorgiou, Niki Georgatou; Veldekis, Dimitrios; Gaga, Mina; Aravantinos, Gerasimos; Karavasilis, Vasileios; Karagiannidis, Napoleon; Nasioulas, George

    2015-10-01

    It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor ( EGFR ) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18-21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of

  3. Rapid isolation of bone marrow mesenchymal stromal cells using integrated centrifuge-based technology.

    Science.gov (United States)

    Meppelink, Amanda M; Wang, Xing-Hua; Bradica, Gino; Barron, Kathryn; Hiltz, Kathleen; Liu, Xiang-Hong; Goldman, Scott M; Vacanti, Joseph P; Keating, Armand; Hoganson, David M

    2016-06-01

    The use of bone marrow-derived mesenchymal stromal cells (MSCs) in cell-based therapies is currently being developed for a number of diseases. Thus far, the clinical results have been inconclusive and variable, in part because of the variety of cell isolation procedures and culture conditions used in each study. A new isolation technique that streamlines the method of concentration and demands less time and attention could provide clinical and economic advantages compared with current methodologies. In this study, we evaluated the concentrating capability of an integrated centrifuge-based technology compared with standard Ficoll isolation. MSCs were concentrated from bone marrow aspirate using the new device and the Ficoll method. The isolation capabilities of the device and the growth characteristics, secretome production, and differentiation capacity of the derived cells were determined. The new MSC isolation device concentrated the bone marrow in 90 seconds and resulted in a mononuclear cell yield 10-fold higher and with a twofold increase in cell retention compared with Ficoll. The cells isolated using the device were shown to exhibit similar morphology and functional activity as assessed by growth curves and secretome production compared to the Ficoll-isolated cells. The surface marker and trilineage differentiation profile of the device-isolated cells was consistent with the known profile of MSCs. The faster time to isolation and greater cell yield of the integrated centrifuge-based technology may make this an improved approach for MSC isolation from bone marrow aspirates. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Application status and prospect of X-ray lithography technology

    International Nuclear Information System (INIS)

    Xie Changqing; Chen Dapeng; Liu Ming; Ye Tianchun; Yi Futing

    2004-01-01

    Because of its many merits, such as high resolution, large depth of focus, large field size, high throughput, large process latitude, easy extendibility to 50 nm and below ground rule, and so on, the Proximity X-ray Lithography (PXL) is very attractive for the 100 nm and smaller ground rule integrated circuit manufacturing. In this paper, the international research and development status of PXL is briefly introduced firstly, and both its application status and prospect in nanoelectronics research, Monolithic Microwave Integrated Circuits (MMIC) production and silicon-based Ultra Large Scale Integrated Circuits (ULSIC) production are described, and the recent research progress in home PXL is also presented briefly. (authors)

  5. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    International Nuclear Information System (INIS)

    Djuzenova, Cholpon S.; Fiedler, Vanessa; Memmel, Simon; Katzer, Astrid; Hartmann, Susanne; Krohne, Georg; Zimmermann, Heiko; Scholz, Claus-Jürgen; Polat, Bülent; Flentje, Michael

    2015-01-01

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed

  6. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Energy Technology Data Exchange (ETDEWEB)

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Fiedler, Vanessa [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Memmel, Simon [Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Biozentrum Am Hubland, 97070 Würzburg (Germany); Katzer, Astrid; Hartmann, Susanne [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Krohne, Georg [Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, 97070 Würzburg (Germany); Zimmermann, Heiko [Hauptabteilung Biophysik and Kryotechnologie, Fraunhofer-Institut für Biomedizinische Technik, Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Ensheimer Strasse 48, 66386 St. Ingbert (Germany); Scholz, Claus-Jürgen [Interdisciplinary Center for Clinical Research, University Hospital, Versbacher Strasse 7, 97078 Würzburg (Germany); Polat, Bülent; Flentje, Michael [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  7. Technological implications of fusion power: requirements and status

    International Nuclear Information System (INIS)

    Steiner, D.

    1978-01-01

    The major technological requirements for fusion power, as implied by current conceptual designs of fusion power plants, are identified and assessed relative to the goals of existing technology programs. The focus of the discussion is on the tokamak magnetic confinement concept; however, key technological requirements of mirror magnetic confinement systems and of inertial confinement concepts will also be addressed. The required technology is examined on the basis of three general areas of concern: (a) the power balance, that is, the unique power handling requirements associated with the production of electrical power by fusion; (b) reactor design, focusing primarily on the requirements imposed by a tritium-based fuel cycle, thermal hydraulic considerations, and magnet systems; and (c) materials considerations, including radiation damage effects, neutron-induced activation, and resource limitations

  8. Cell Phone-Based and Adherence Device Technologies for HIV Care and Treatment in Resource-Limited Settings: Recent Advances.

    Science.gov (United States)

    Campbell, Jeffrey I; Haberer, Jessica E

    2015-12-01

    Numerous cell phone-based and adherence monitoring technologies have been developed to address barriers to effective HIV prevention, testing, and treatment. Because most people living with HIV and AIDS reside in resource-limited settings (RLS), it is important to understand the development and use of these technologies in RLS. Recent research on cell phone-based technologies has focused on HIV education, linkage to and retention in care, disease tracking, and antiretroviral therapy adherence reminders. Advances in adherence devices have focused on real-time adherence monitors, which have been used for both antiretroviral therapy and pre-exposure prophylaxis. Real-time monitoring has recently been combined with cell phone-based technologies to create real-time adherence interventions using short message service (SMS). New developments in adherence technologies are exploring ingestion monitoring and metabolite detection to confirm adherence. This article provides an overview of recent advances in these two families of technologies and includes research on their acceptability and cost-effectiveness when available. It additionally outlines key challenges and needed research as use of these technologies continues to expand and evolve.

  9. European accomplishments in regulation of the family status of the child conceived by artificial reproduction technologies

    Directory of Open Access Journals (Sweden)

    Kovaček-Stanić Gordana

    2015-01-01

    transferring the nucleus of a somatic cell from one woman into an enucleated egg of another. In that case, the child would not have genetic father at all. Bearing in mind the new artificial reproduction technologies and their influence to legal rules of establishment of the family status of the child, it could be said that the legal principle of the autonomy of the parties is widened in comparison to material truth. People who wish to be parents become legal parents although they are not generic parents. Sometimes they cannot be genetic parents due to their infertility and sometimes because they are of the same sex. As a result of artificial reproduction technologies, a child could have a genetic link with one of the parents, only with a mother - in the heterologous insemination, only a father - as in egg donation and genetic surrogacy. The child could have genetic link with both of the parents - as in the gestational surrogacy, or it could have no genetic links with his/her legal parents - as in embryo donation. According to some European legislatures, it is possible for the child to have a mother and the other female parent, or a father and the other male parent. Surrogate mother, as well as donors of the genetic material, are not considered as parents. Radical change in social and individual perception of parenthood could accept the fact the child could have more than two parents with different roles (biological - genetic parents, gestational mother, social - legal parents.

  10. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology (Survey of peripheral element technologies - Survey of environmental adaptation of next-generation solar cell development); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu (shuhen yoso gijutsu ni kansuru chosa kenkyu - jisedai taiyo denchi kaihatsu kankyo tekioka chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Surveys are conducted of photovoltaic power system development projects and their utilization in Japan and overseas, and a discussion is made on the progress, technical challenges, effects, and implementation systems relating to the solar cell application technology development project under the New Sunshine Program. Compiled in the report are the results of surveys of the research and development of photovoltaic power systems and their diffusion in the U.S. and European nations, and the research and development strategies for and the trends of the development of various types of solar cells in these countries. The trends of research and development of non-conventional type solar cells are also collected, which include 3 cases of TPV (thermophotovoltaic) devices, 5 cases of new inorganic materials, 1 case of new organic materials, and 4 cases of dye-sensitized solar cells. In relation to the status of resources of crystalline compound-based solar cell materials, raw materials for solar cells other than silicon are taken up, and their reserves, manufacturing methods, quantities yielded and consumed, costs, etc., are surveyed. These are all taken into consideration in discussing the basic approach to the study of future research and development as it ought to be. (NEDO)

  11. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    Science.gov (United States)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  12. Nutritional status and CD4 cell counts in patients with HIV/AIDS receiving antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Ana Celia Oliveira dos Santos

    2013-12-01

    Full Text Available Introduction Even with current highly active antiretroviral therapy, individuals with AIDS continue to exhibit important nutritional deficits and reduced levels of albumin and hemoglobin, which may be directly related to their cluster of differentiation 4 (CD4 cell counts. The aim of this study was to characterize the nutritional status of individuals with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS and relate the findings to the albumin level, hemoglobin level and CD4 cell count. Methods Patients over 20 years of age with AIDS who were hospitalized in a university hospital and were receiving antiretroviral therapy were studied with regard to clinical, anthropometric, biochemical and sociodemographic characteristics. Body mass index, percentage of weight loss, arm circumference, triceps skinfold and arm muscle circumference were analyzed. Data on albumin, hemoglobin, hematocrit and CD4 cell count were obtained from patient charts. Statistical analysis was performed using Fisher's exact test, Student's t-test for independent variables and the Mann-Whitney U-test. The level of significance was set to 0.05 (α = 5%. Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS 17.0 software for Windows. Results Of the 50 patients evaluated, 70% were male. The prevalence of malnutrition was higher when the definition was based on arm circumference and triceps skinfold measurement. The concentrations of all biochemical variables were significantly lower among patients with a body mass index of less than 18.5kg/m2. The CD4 cell count, albumin, hemoglobin and hematocrit anthropometric measures were directly related to each other. Conclusions These findings underscore the importance of nutritional follow-up for underweight patients with AIDS, as nutritional status proved to be related to important biochemical alterations.

  13. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  14. Cell Phones, Tablets, and Other Mobile Technology for Users with Visual Impairments

    Science.gov (United States)

    ... research. Share: Email Print Like (218 Likes) Cell Phones, Tablets, and Other Mobile Technology Touchscreen Smartphone Accessibility for People with Visual Impairments and Blindness The Benefits of Accessible Touchscreen Mobile Devices for People with ...

  15. A review on the current status and production technology for 188W-188Re generator system

    International Nuclear Information System (INIS)

    Kuznetsov, R. A.; Han, H. S.; Cho, W. K.; Park, U. J.; Kim, Y. M.

    1998-11-01

    The current status of 188 W- 188 Re generator production technology were reviewed in PART 1. Main interests were given to the aspects of 188 W reactor production, irradiated targets reprocessing and generator loading technologies, such as alumina type and gel type generators. In order to develop the more convenient and advanced 188 W- 188 Re generator, further studies must be carried out to get the precise evaluation of production and burn-up cross section of 188 W, the more easily realizable generator loading procedure, and also to optimize the column and generator design to compensate the deterioration of generator performance because of parent radionuclide decay. By irradiation of 186 W enriched sample, 188 W- 188 Re generator production experiments were performed to evaluate the possibility of 188 W- 188 Re generator production using HANARO, and PART 2 describes about the experiments. The experimental results shows the possibility of practical 188 W- 188 Re generator production using of low-specific activity 188 W produced in HANARO. (author). 79 refs., 4 tabs., 26 figs

  16. Production of "Green Natural Gas" Using Solid Oxide Electrolysis Cells (SOEC): Status of Technology and Costs

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Jensen, Søren Højgaard; Ebbesen, Sune Dalgaard

    2012-01-01

    energy sources only. Also dimethyl ether (DME = (CH3)2O), which might be called Liquefied Green Gas, LGG, in analogy to Liquefied Petroleum Gas, LPG, because DME has properties similar to LPG. It further gives a short review of the state of the art of electrolysis in general and SOEC in particular......This paper gives arguments in favour of using green natural gas (GNG) as storage media for the intermittent renewable energy sources. GNG is here defined as being CH4, i.e. methane, often called synthetic natural gas or substitute natural gas (SNG), produced using renewable or at least CO2 neutral....... Production of synthesis gas (H2 + CO) from CO2 and H2O using SOEC technology is evaluated. GNG and LGG can be produced from synthesis gas (or short: syngas) by means of well established commercially available catalysis technology. Finally, estimations of costs and efficiencies are presented and the relative...

  17. Gasification - Status and Technology; Foergasning - Status och teknik

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen

    2011-07-15

    In this report gasification and gas cleaning techniques for biomass are treated. The main reason for gasifying biomass is to refine the fuel to make it suitable for efficient CHP production, as vehicle fuel or in industrial processes. The focus is on production of synthesis gas that can be used for production of vehicle fuel and for CHP production. Depending on application different types of gasifiers, gasification techniques and process parameters are of interest. Two gasification techniques have been identified as suitable for syngas generation, mainly due to the fact that they allow the production of a nitrogen free gas out of the gasifier; Indirect atmospheric gasification and Pressurized oxygen blown gasification For CHP production there are no restrictions on the gas composition in terms of nitrogen and here air-blown gasification is of interest as well. The main challenge when it comes to gas cleaning is related to sulphur and tars. There are different concepts and alternatives to handle sulphur and tars. Some of them is based on conventional techniques with well-proven components that are commercially available while others more advantageous solutions, still need further development. The report deals to a minor extent with the conversion of syngas to synthetic fuels. The ongoing research and development of gasification techniques is extensive, both on national and international level. Although many process concepts and components have been demonstrated, there is still no full-scale plant for the production of synthetic fuels based on biomass. Factors affecting the choice of technology are plant size, operating conditions, the possibility for process integration, access to feedstock, market aspects, incentives and economic instruments et cetera. Increased competition for biofuels will inevitably lead to higher raw material costs. This in turn means that the fuel chains with high efficiency, such as biomethane through gasification and methanation, are favored

  18. Data on development of new energy technologies

    Science.gov (United States)

    1994-03-01

    The paper compiles data on the trend of development of new energy technologies into a book. By category, renewable energy is solar energy, wind power generation, geothermal power generation, ocean energy, and biomass. As a category of fuel form conversion, cited are coal liquefaction/gasification, coal gasification combined cycle power generation, and natural gas liquefaction/decarbonization. The other categories are cogeneration by fuel cell and ceramic gas turbine, district heat supply system, power load leveling technology, transportation-use substitution-fuel vehicle, and others (Stirling engine, superconducting power generator, etc.). The data are systematically compiled on essential principles, transition of introduction, objectives of introduction, status of production, cost, development schedule, performance, etc. The paper also deals with the related legislation system, developmental organizations, and a menu for power companies' buying surplus power.

  19. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2017-01-01

    Full Text Available Rat bone marrow mesenchymal stem cell sheets (rBMSC sheets are attractive for cell-based tissue engineering. However, methods of culturing rBMSC sheets are critically limited. In order to obtain intact rBMSC sheets, a light-induced cell sheet method was used in this study. TiO2 nanodot films were coated with (TL or without (TN laminin-521. We investigated the effects of laminin-521 on rBMSCs during cell sheet culturing. The fabricated rBMSC sheets were subsequently assessed to study cell sheet viability, reattachment ability, cell sheet thickness, collagen type I deposition, and multilineage potential. The results showed that laminin-521 could promote the formation of rBMSC sheets with good viability under hyperconfluent conditions. Cell sheet thickness increased from an initial 26.7 ± 1.5 μm (day 5 up to 47.7 ± 3.0 μm (day 10. Moreover, rBMSC sheets maintained their potential of osteogenic, adipogenic, and chondrogenic differentiation. This study provides a new strategy to obtain rBMSC sheets using light-induced cell sheet technology.

  20. DWPF liquid sample station: Status of equipment development

    International Nuclear Information System (INIS)

    Caplan, J.R.

    1987-01-01

    This report summarizes operating experience and equipment status of the DWPF liquid sample cell. Operation hours to date, results of equipment inspections and problems encountered and their solutions are discussed. An equipment and instrumentation status updating DPST-85-592, DWPF LIQUID SAMPLE CELL MOCK-UP, is presented. Remaining development items are also outlined

  1. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology

    Science.gov (United States)

    Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.

    2017-11-01

    Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.

  2. Status of nuclear technology education in Mongolia

    International Nuclear Information System (INIS)

    Davaa, S.; Khuukhenkhuu, G.

    2007-01-01

    The National University of Mongolia (NUM) is the country's oldest, the only comprehensive university, and a leading center of science, education and culture. The NUM has twelve schools and faculties in the capital city Ulaanbaatar and three branches in provinces. The University offers the widest range of undergraduate and graduate programs in natural and social sciences and humanities. After sixty years of dynamic growth, the University has become a place of sustained innovation, a blend of scholarship and practical realism. The last ten years have been a period of reforms in the structure, financing and governance of Mongolian educational institutions. The NUM has been continuously adjusting its operations and curriculum to deal with new economic conditions, changing labour market demands and altered social aspirations. Committed to human peace, development and welfare in the increasingly globalized world, the NUM promotes equal and mutually beneficial international cooperation. It is a member of the International Association of Universities (IAU), University Mobility in Asia and the Pacific (UMAP), and Euro-Asian University Network (EAUN) and has direct co-operation agreements with more than sixty international academic and research centers in Europe, the USA and the Asia-Pacific Rim. On the threshold of the 21st century, the NUM remains a major center for fundamental and applied research as well as a university that is distinguished by the quality of its teaching. Following its values and traditions, the University strives to be an innovative and dynamic learning community. Requirements for Program Majored in Nuclear Technology: Profession major purpose: The objective is to provide knowledge and skills to use nuclear physics' methodology and nuclear radiation for education, science, health protection, agriculture, geology, mining, nature protection, energy and etc industries. The graduates of this major will become engineer technology staff and researchers in

  3. Combined analysis of circulating epithelial cells and serum thyroglobulin for distinguishing disease status of the patients with papillary thyroid carcinoma

    OpenAIRE

    Lin, Hung-Chih; Liou, Miaw-Jene; Hsu, Hsung-Ling; Hsieh, Jason Chia-Hsun; Chen, Yi-An; Tseng, Ching-Ping; Lin, Jen-Der

    2015-01-01

    Papillary thyroid carcinoma (PTC) accounts for about 80% of the cases in thyroid cancer. Routine surveillance by serum thyroglobulin (Tg) and medical imaging is the current practice to monitor disease progression of the patients. Whether enumeration of circulating epithelial cells (CECs) helps to define disease status of PTC patients was investigated. CECs were enriched from the peripheral blood of the healthy control subjects (G1, n = 17) and the patients at disease-free status (G2, n = 26) ...

  4. In Situ Remediation Integrated Program. In situ physical/chemical treatment technologies for remediation of contaminated sites: Applicability, developing status, and research needs

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Gates, D.D.; West, O.R.; Liang, L.; Donaldson, T.L.; Webb, O.F.; Corder, S.L.; Dickerson, K.S.

    1994-06-01

    The U.S. Department of Energy (DOE) In Situ Remediation Integrated Program (ISR IP) was established in June 1991 to facilitate the development and implementation of in situ remediation technologies for environmental restoration within the DOE complex. Within the ISR IP, four subareas of research have been identified: (1) in situ containment, (2) in situ physical/chemical treatment (ISPCT), (3) in situ bioremediation, and (4) subsurface manipulation/electrokinetics. Although set out as individual focus areas, these four are interrelated, and successful developments in one will often necessitate successful developments in another. In situ remediation technologies are increasingly being sought for environmental restoration due to the potential advantages that in situ technologies can offer as opposed to more traditional ex situ technologies. These advantages include limited site disruption, lower cost, reduced worker exposure, and treatment at depth under structures. While in situ remediation technologies can offer great advantages, many technology gaps exist in their application. This document presents an overview of ISPCT technologies and describes their applicability to DOE-complex needs, their development status, and relevant ongoing research. It also highlights research needs that the ISR IP should consider when making funding decisions

  5. Technologies and methods used for the detection, enrichment and characterization of cancer stem cells.

    Science.gov (United States)

    Williams, Anthony; Datar, Ram; Cote, Richard

    2010-01-01

    Cancer stem cells (CSCs) represent a subclass of tumour cells with the ability for self-renewal, production of differentiated progeny, prolonged survival, resistance to damaging therapeutic agents, and anchorage-independent survival, which together make this population effectively equipped to metastasize, invade and colonize secondary tissues in the face of therapeutic intervention. In recent years, investigators have increasingly focused on the characterization of CSCs to better understand the mechanisms that govern malignant disease progression in an effort to develop more effective, targeted therapeutic agents. The primary obstacle to the study of CSCs, however, is their rarity. Thus, the study of CSCs requires the use of sensitive and efficient technologies for their enrichment and detection. This review discusses technologies and methods that have been adapted and used to isolate and characterize CSCs to date, as well as new potential directions for the enhanced enrichment and detection of CSCs. While the technologies used for CSC enrichment and detection have been useful thus far for their characterization, each approach is not without limitations. Future studies of CSCs will depend on the enhanced sensitivity and specificity of currently available technologies, and the development of novel technologies for increased detection and enrichment of CSCs.

  6. Current Status on Biochip and Detection Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Hyun; Gwon, Hui Jeong

    2007-06-15

    The recent biotechnology technique has been miniaturized and it features a fusion of electricity, electronics and mechanics in the existing biology. As an example, biochip is a collection of miniaturized test sites (microarrays) arranged on a solid substrate that permits many tests to be performed at the same time in order to achieve higher throughput and speed. Like a computer chip that can perform millions of mathematical operations in a second, the biochip can perform thousands of biological reactions, such as decoding genes, in a few seconds. The biochip is being used in toxicological, protein, and biochemical research and it can also be used to rapidly detect chemical agents used in biological warfare so that defensive measures can be taken. These biochip technologies incorporate elements of microfluidics, micromachining, synthetic chemistry, separation technologies, and detection technologies of biological molecules. Basically, biochips can be divided into two types: microarray and lab-on-a-chip system. Microarrays use planted probes to catch and identify target biological molecules while lab-on-a-chips actively process loaded samples. The biochips are becoming more diverse and customers are appearing all over the world. The products from the biochip market are being used to help accelerating the research processes and capabilities of bio-pharmaceutical drug discovery and basic academic bioresearch. To fully take advantages of the attributes of biochip technologies such as miniaturization, parallelism, automation and integration, there are some problems to overcome. The major problem is to reduce the cost. Currently the prices of biochip products are too expensive to replace traditional products and processes. As a method to solve the problem, a radioisotope can be used as a detecting sensor by appling on the biochip, as it were, radio-biochip that will further bring the cost down. The originality using the radioisotope on the biochip technology will be able

  7. Current Status on Biochip and Detection Technology

    International Nuclear Information System (INIS)

    Park, Sang Hyun; Gwon, Hui Jeong

    2007-06-01

    The recent biotechnology technique has been miniaturized and it features a fusion of electricity, electronics and mechanics in the existing biology. As an example, biochip is a collection of miniaturized test sites (microarrays) arranged on a solid substrate that permits many tests to be performed at the same time in order to achieve higher throughput and speed. Like a computer chip that can perform millions of mathematical operations in a second, the biochip can perform thousands of biological reactions, such as decoding genes, in a few seconds. The biochip is being used in toxicological, protein, and biochemical research and it can also be used to rapidly detect chemical agents used in biological warfare so that defensive measures can be taken. These biochip technologies incorporate elements of microfluidics, micromachining, synthetic chemistry, separation technologies, and detection technologies of biological molecules. Basically, biochips can be divided into two types: microarray and lab-on-a-chip system. Microarrays use planted probes to catch and identify target biological molecules while lab-on-a-chips actively process loaded samples. The biochips are becoming more diverse and customers are appearing all over the world. The products from the biochip market are being used to help accelerating the research processes and capabilities of bio-pharmaceutical drug discovery and basic academic bioresearch. To fully take advantages of the attributes of biochip technologies such as miniaturization, parallelism, automation and integration, there are some problems to overcome. The major problem is to reduce the cost. Currently the prices of biochip products are too expensive to replace traditional products and processes. As a method to solve the problem, a radioisotope can be used as a detecting sensor by appling on the biochip, as it were, radio-biochip that will further bring the cost down. The originality using the radioisotope on the biochip technology will be able

  8. System failure, innovation policy and patents: Fuel cells and related hydrogen technology in Norway 1990-2002

    International Nuclear Information System (INIS)

    Godoe, Helge; Nygaard, Stian

    2006-01-01

    The empirical focus of this article is technological innovation activities in the emerging field of fuel cells and related hydrogen technology in Norway from 1990 to 2002. In this period, four comparatively large-scale research and development projects and a number of smaller projects aimed at development of fuel cells technology were undertaken, resulting in many inventions that were subsequently patented. Although this creativity may be considered an indication of success, only one of the projects became successful in an innovation perspective. All the large projects were initiated and funded for divergent political and economic reasons. An important reason in the late 1980s was the prospect of using Norway's abundant supply of natural gas in fuel cells for electric power generation. The large R and D projects that attempted to develop fuel cells based on natural gas as energy source failed. In contrast, the successful project was undertaken by military R and D, i.e. in a different system of innovation than the projects that failed. Analysis of these cases points to the importance of a systemic approach to innovations-and to policy making. One challenge for policy makers is to decide how they should promote this development which is crucial for the vision of a future 'Hydrogen Economy', i.e. what kind of policy incentives should be introduced to spur efficiency in technological development and diffusion. Theoretically, many options are available; however, understanding the innovation dynamics in this sector is fundamental for making choices. In this article, focus will be set on policy aspects using an innovation systemic approach to analyze development of fuel cells and related hydrogen technology in Norway

  9. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    Science.gov (United States)

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Polymer and organic solar cells viewed as thin film technologies: What it will take for them to become a success outside academia

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Jørgensen, Mikkel

    2013-01-01

    The polymer and organic solar cell technology is critically presented in the context of other thin film technologies with a specific focus on what it will take to make them a commercial success. The academic success of polymer and organic solar cells far outweigh any other solar cell technology w...

  11. Radiation Metabolomics: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Smrithi eSugumaran Menon

    2016-02-01

    Full Text Available Human exposure to ionizing radiation disrupts normal metabolic processes in cells and organs by inducing complex biological responses that interfere with gene and protein expression. Conventional dosimetry, monitoring of prodromal symptoms and peripheral lymphocyte counts are of limited value as organ and tissue specific biomarkers for personnel exposed to radiation, particularly, weeks or months after exposure. Analysis of metabolites generated in known stress-responsive pathways by molecular profiling helps to predict the physiological status of an individual in response to environmental or genetic perturbations. Thus, a multi-metabolite profile obtained from a high resolution mass spectrometry-based metabolomics platform offers potential for identification of robust biomarkers to predict radiation toxicity of organs and tissues resulting from exposures to therapeutic or non-therapeutic ionizing radiation. Here, we review the status of radiation metabolomics and explore applications as a standalone technology, as well as its integration in systems biology, to facilitate a better understanding of the molecular basis of radiation response. Finally, we draw attention to the identification of specific pathways that can be targeted for the development of therapeutics to alleviate or mitigate harmful effects of radiation exposure.

  12. Fed-batch bioreactor performance and cell line stability evaluation of the artificial chromosome expression technology expressing an IgG1 in Chinese hamster ovary cells.

    Science.gov (United States)

    Combs, Rodney G; Yu, Erwin; Roe, Susanna; Piatchek, Michele Bailey; Jones, Heather L; Mott, John; Kennard, Malcolm L; Goosney, Danika L; Monteith, Diane

    2011-01-01

    The artificial chromosome expression (ACE) technology system uses an engineered artificial chromosome containing multiple site-specific recombination acceptor sites for the rapid and efficient construction of stable cell lines. The construction of Chinese hamster ovary(CHO) cell lines expressing an IgG1 monoclonal antibody (MAb) using the ACE system has been previously described (Kennard et al., Biotechnol Bioeng. 2009;104:540-553). To further demonstrate the manufacturing feasibility of the ACE system, four CHO cell lines expressing the human IgG1 MAb 4A1 were evaluated in batch and fed-batch shake flasks and in a 2-L fed-batch bioreactor. The batch shake flasks achieved titers between 0.7 and 1.1 g/L, whereas the fed-batch shake flask process improved titers to 2.5–3.0 g/L. The lead 4A1 ACE cell line achieved titers of 4.0 g/L with an average specific productivity of 40 pg/(cell day) when cultured in a non optimized 2-L fed-batch bioreactor using a completely chemically defined process. Generational stability characterization of the lead 4A1-expressing cell line demonstrated that the cell line was stable for up to 75 days in culture. Product quality attributes of the 4A1 MAb produced by the ACE system during the stability evaluation period were unchanged and also comparable to existing expression technologies such as the CHO-dhfr system. The results of this evaluation demonstrate that a clonal, stable MAb-expressing CHO cell line can be produced using ACE technology that performs competitively using a chemically defined fed-batch bioreactor process with comparable product quality attributes to cell lines generated by existing technologies.

  13. Radiosensitivity of cancer cells against carbon-ion beams in an aspect of the p53 gene status

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Ohnishi, Takeo; Matsumoto, Hideki

    2004-01-01

    We can easily understand that radiation sensitivities of cancer cells are dependent on the status of cancer-related genes. It is important to clarify which genes affect radiation sensitivity and reflect the effectiveness of radiation therapy for cancer cells. We have studied about the function of a tumor suppressor gene of p53, because p53 controls apoptosis, cell cycle and DNA repair from an aspect of important roles in cell fate. By analysis of function of p53 gene, therefore, we aim to predict the therapeutic effectiveness and to select the modalities of cancer therapies such as radiotherapy, chemotherapy and hyperthermia. As a final goal, we want to accept the most effective therapy, namely tailor-made cancer therapy, for each patient. Here, we introduce that carbon-beam therapy induced the expression of p53-independent apoptosis-related genes and NO radicals in mutated p53 cancer cells. (author)

  14. Status and perspectives of pixel sensors based on 3D vertical integration

    CERN Document Server

    Re, V

    2014-01-01

    This paper reviews the most recent developments of 3D integration in the field of silicon pixel sensors and readout integrated circuits. This technology may address the needs of future high energy physics and photon science experiments by increasing the electronic functional density in small pixel readout cells and by stacking various device layers based on different technologies, each optimized for a different function. Current efforts are aimed at improving the performance of both hybrid pixel detectors and of CMOS sensors. The status of these activities is discussed here, taking into account experimental results on 3D devices developed in the frame of the 3D-IC consortium. The paper also provides an overview of the ideas that are being currently devised for novel 3D vertically integrated pixel sensors.

  15. NASA Armstrong Status

    Science.gov (United States)

    Jacobson, Steven R.

    2014-01-01

    Armstrong (formerly Dryden) Flight Research Center continues it's legacy of exciting work in the area of dynamics and control of advanced vehicle concepts. This status presentation highlights the research and technology development that Armstrong's Control and Dynamics branch is performing in the areas of Control of Flexible Structures and Automated Cooperative Trajectories.

  16. A critical assessment of fuel cell technology

    International Nuclear Information System (INIS)

    Lindstroem, O.

    1994-01-01

    Cold combustion is a promised technology to mankind since the middle of the last century. The fuel cell may at last become the energy machine of the one to come after a long journey on a road bordered with expectations, successes and disappointments. Ten billion people will need the cell for their well-being. The progress and the state-of-art is assessed by means of figures of merit for performance, normalized to standard conditions, life and variability. State-of-art current densities for multi-kW stacks operating on atmospheric pressure air at 0.74 V cell voltage (50% efficiency, HHV) are estimated to be 150 mA/cm 2 for MCFC, 160 mA/cm 2 for AFC, 239 mA/cm 2 for PEFC and 270 mA/cm 2 for SOFC. PAFC gives 260 mA/cm 2 at 0.66 V and DMFC 100 mA/cm 2 at 0.37 V. Decay rates are about 1%/1000 h for PEFC, PAFC and SOFC compared to 2%/1000 h for AFC and 3%/1000 h for MCFC. Coefficients of variation for cell voltages amount to about 1% for all options, except for MCFC with 3-4%. Improvement of cell performance after 1975 is nil to moderate, except for SOFC with a consistent annual improvement of about 10%. There is room for further development of terrestrial AFCs towards 300-400 mA/cm 2 considering the figure 800 mA/cm 2 for oxygen AFCs. Life and cost will decide the future of the fuel cell. Prospects are not as good as they could be. The fuel cell community lacks understanding of the basics of fuel processing, as demonstrated by the widespread misbelief ('the CO 2 syndrome') that CO 2 cannot be removed cost effectively from a hydrogen feed (which is practiced in every NH 3 plant around the world). The competition, read the gas turbine, has to be taken very seriously. Emphasis has to be shifted from premature demonstrations to R and D on fundamental problems, which have been around too long. 34 refs

  17. Status of fusion maintenance

    International Nuclear Information System (INIS)

    Fuller, G.M.

    1984-01-01

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission

  18. Current status of assisted reproductive technology in Korea, 2011.

    Science.gov (United States)

    Lee, Gyoung Hoon; Song, Hyun Jin; Lee, Kyu Sup; Choi, Young Min

    2016-03-01

    The number of assisted reproductive technology (ART) clinics, ART cycles, clinical pregnancy rate (CPR), and number of newborns conceived using ART have steadily increased in South Korea. This aim of this study was to describe the status of ART in South Korea between January 1 and December 31, 2011. A localized online survey was created and sent to all available ART centers via email in 2015. Fresh embryo transfer (FET) cases were categorized depending on whether standard in vitro fertilization, intracytoplasmic sperm injection (ICSI), or half-ICSI procedures were used. Thawed embryo transfer (TET) and other related procedures were surveyed. Data from 36,990 ART procedures were provided by 74 clinics. Of the 30,410 cycles in which oocytes were retrieved, a complete transfer was performed in 91.0% (n=27,683). In addition, 9,197 cycles were confirmed to be clinical pregnancies in the FET cycles, representing a pregnancy rate of 30.2% per oocyte pick-up and 33.2% per ET. The most common number of embryos transferred in the FET procedures was three (38.1%), followed by two (34.7%) and one (14.3%). Of the 8,826 TET cycles, 3,137 clinical pregnancies (31.1%) were confirmed by ultrasonography. While the overall clinical pregnancy rate for the TET cycles performed was lower than the rate reported in 2010 (31.1% vs. 35.4%), the overall CPR for the FET cycles was higher than in 2010 (33.2% in 2011 and 32.9% in 2010). The most common number of embryos transferred in FET cycles was three, as was the case in 2010.

  19. Differences in Student Information and Communication Technology Literacy Based on Socio-Economic Status, Ethnicity, and Gender: Evidence of a Digital Divide in Florida Schools

    Science.gov (United States)

    Ritzhaupt, Albert D.; Liu, Feng; Dawson, Kara; Barron, Ann E.

    2013-01-01

    This research examines student information and communication technology (ICT) literacy and its relationships to a student's socio-economic status (SES), gender, and ethnicity of middle school students. We recruited 5,990 students from 13 school districts across the state of Florida. Student participants completed the Student Tool for Technology…

  20. Technological development for super-high efficiency solar cells. Technological development for super-high efficiency singlecrystalline silicon solar cells (super-high efficiency singlecrystalline Si solar cells); Chokokoritsu taiyo denchi no gijutsu kaihatsu. Chokokoritsu tankessho silicon taiyo denchi no gijutsu kaihatsu (chokokoritsu tankessho silicon taiyo denchi cell no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on technological development of super-high efficiency singlecrystalline silicon solar cells in fiscal 1994. (1) On development of high-performance light receiving layer, the fine electrode for receiving surfaces was designed to reduce serial resistance, and the high-quality oxide passivation film was studied to reduce surface recombination velocity. (2) On development of forming technology of back heterojunction, the high-quality cell with B-doped fine crystalline Si film on its back was studied by heat treatment of the fine crystalline Si film, and the cell structure with high back reflectance of light was also studied. (3) On analysis for high-efficiency cells, the relation between the back recombination velocity at the interface between p-type substrate and back passivation film, and the internal collection efficiency as probe light was injected from the back, was calculated by numerical simulation. As a result, the cell back recombination velocity could be evaluated by measuring the spectral internal collection efficiency to back injection. 15 figs., 6 tabs.