WorldWideScience

Sample records for cells sofat induces

  1. Induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Siddhartha Bhowmik; LI Yong

    2011-01-01

    Induced pluripotent stem (iPS) cells are a recent development which has brought a promise of great therapeutic values. The previous technique of somatic cell nuclear transfer (SCNT) has been ineffective in humans. Recent discoveries show that human fibroblasts can be reprogrammed by a transient over expression of a small number of genes; they can undergo induced pluripotency. iPS were first produced in 2006. By 2008, work was underway to remove the potential oncogenes from their structure. In 2009, protein iPS (piPS) cells were discovered. Surface markers and reporter genes play an important role in stem cell research. Clinical applications include generation of self renewing stem cells, tissue replacement and many more. Stem cell therapy has the ability to dramatically change the treatment of human diseases.

  2. Artesunate induces necrotic cell death in schwannoma cells

    OpenAIRE

    Button, R W; Lin, F.; Ercolano, E; Vincent, J H; Hu, B.; Hanemann, C O; Luo, S

    2014-01-01

    Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely ...

  3. HIV transcription is induced in dying cells

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Chang-Liu, Chin-Mei [Argonne National Lab., IL (United States); Schreck, S. [Argonne National Lab., IL (United States)]|[Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemistry; Panozzo, J. [Loyola Univ. Medical Center, Maywood, IL (United States); Libertin, C.R. [Loyola Univ. Medical Center, Maywood, IL (United States)

    1996-02-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. Doses which caused over 99% cell killing induced HIV-LTR transcription maximally, demonstrating that cells that will go on to die by 14 days are the cells expressing HIV-LTR-CAT.

  4. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  5. Fuel cells: Hydrogen induced insulation

    Science.gov (United States)

    Zhou, Wei; Shao, Zongping

    2016-06-01

    Coupling high ionic and low electronic conductivity in the electrolyte of low-temperature solid-oxide fuel cells remains a challenge. Now, the electronic conductivity of a perovskite electrolyte, which has high proton conductivity, is shown to be heavily suppressed when exposed to hydrogen, leading to high fuel cell performance.

  6. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    Science.gov (United States)

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-02-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells.

  7. Radiation- induced aneuploidy in mammalian germ cells

    International Nuclear Information System (INIS)

    The ability of ionizing radiation to induce aneuploidy in mammalian germ cells has been investigated experimentally in the laboratory mouse using a variety of cytogenetic and genetic methods. These studies have provided unambiguous evidence of induced nondisjunction in both male and female germ cells when the effect of irradiation is screened in meiotic cells or preimplantation embryos. In contrast, however, cytogenetic analyses of post-implantation embryos and genetic assays for induced chromosome gains have not found a significant radiation effect. These apparently contradictory findings may be reconciled if (a) radiation induces tertiary rather than primary trisomy, or (b) induces embryo-lethal genetic damage, such as deletions, in addition to numerical anomalies. Either or both of these explanations may account for the apparent loss during gestation of radiation-induced trisomic embryos. Extrapolating from the information so far available, it seems unlikely that environmental exposure to low doses if low dose rate radiation will result in a detectable increase in the rate of aneuploidy in the human population. (author)

  8. Mast cell degranulation induced by chlorogenic acid

    OpenAIRE

    Huang, Fang-hua; Zhang, Xin-yue; Zhang, Lu-Yong; Li, Qin; Ni, Bin; Zheng, Xiao-liang; CHEN, AI-JUN

    2010-01-01

    Aim: To investigate the mechanism of chlorogenic acid (CA)-induced anaphylactoid reactions. Methods: Degranulation of peritoneal mast cells was assayed by using alcian blue staining in guinea pigs, and the degranulation index (DI) was calculated. CA-induced degranulation of RBL-2H3 cells was also observed and assayed using light microscopy, transmission electron microscopy, flow cytometry, and β-hexosaminidase release. Results: CA 0.2, 1.0, and 5.0 mmol/L was able to promote degranulation of ...

  9. Cell Death Mechanisms Induced by Cytotoxic Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    Ch(a)vez-Gal(a)n L; Arenas-Del Angel MC; Zenteno E; Ch(a)vez R; Lascurain R

    2009-01-01

    One of the functions of the immune system is to recognize and destroy abnormal or infected cells to maintain homeostasis. This is accomplished by cytotoxic lymphocytes. Cytotoxicity is a highly organized multifactor process. Here, we reviewed the apoptosis pathways induced by the two main cytotoxic lymphocyte subsets, natural killer (NK) cells and CD8+T cells. In base to recent experimental evidence, we reviewed NK receptors involved in recognition of target-cell, as well as lytic molecules such as perforin, granzymes-A and -B, and granulysin. In addition, we reviewed the Fas-FasL intercellular linkage mediated pathway, and briefly the cross-linking of tumor necrosis factor (TNF) and TNF receptor pathway. We discussed three models of possible molecular interaction between lyric molecules from effector cytotoxic cells and target-cell membrane to induction of apoptosis.

  10. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  11. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  12. Baicalin induced dendritic cell apoptosis in vitro

    Directory of Open Access Journals (Sweden)

    HuahuaZhang

    2011-03-01

    Full Text Available This study was aimed to investigate the effects of Baicalin (BA, a major flavonoid constituent found in the herb Baikal skullcap, on dendritic cells (DCs. DCs were generated by culturing murine bone marrow cells for 6 days with granulocyte-macrophage colony-stimulating factor and interleukin-4, and lipopolysaccharide (LPS was added on day 5 to stimulate DCs maturation. The expression levels of DC maturity markers (CD80/CD86 were assessed by flow cytometry using direct immunofluorescence method. Interleukin-12 (IL-12 levels in the culture supernatants were assayed by ELISA. Apoptosis of DCs was analyzed by flow cytometry after Annexin V/propidium iodide staining. The mitochondrial membrane potential changes were measured by using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1. Exposure of DCs to BA (2-50 microM during bone marrow cell differentiation showed no effects on the up-regulation of CD80/CD86 expression on DCs in response to LPS stimulation, but reduced DCs recovery by inducing apoptosis, and significantly inhibited the release of IL-12 to culture supernatants. BA induced DC apoptosis in a time- and dose-dependent way, and immature DCs were more sensitive for BA-induced apoptosis than mature DC. BA also induced mitochondrial membrane potential changes in DCs. These results demonstrate that BA induces selective apoptosis in immature DCs possibly through mitochondria-mediated pathway.

  13. Significant differences in genotoxicity induced by retrovirus integration in human T cells and induced pluripotent stem cells

    OpenAIRE

    Zheng, Weiyan; Wang, Yingjia; Chang, Tammy; Huang, He; Yee, Jiing-Kuan

    2013-01-01

    Retrovirus is frequently used in the genetic modification of mammalian cells and the establishment of induced pluripotent stem cells (iPSCs) via cell reprogramming. Vector-induced genotoxicity could induce profound effect on the physiology and function of these stem cells and their differentiated progeny. We analyzed retrovirus-induced genotoxicity in somatic cells Jurkat and two iPSC lines. In Jurkat cells, retrovirus frequently activated host gene expression and gene activation was not depe...

  14. Heat induces gene amplification in cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. ► Hyperthermia induces DNA double strand breaks. ► DNA double strand breaks are considered to be required for the initiation of gene amplification. ► The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 °C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 °C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 °C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.

  15. Heat induces gene amplification in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  16. Resveratrol induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jia-hua; CHENG Hai-yan; YU Ze-qian; HE Dao-wei; PAN Zheng; YANG De-tong

    2011-01-01

    Background Pancreatic cancer is one of the most lethal human cancers with a very low survival rate of 5 years.Conventional cancer treatments including surgery, radiation, chemotherapy or combinations of these show little effect on this disease. Several proteins have been proved critical to the development and the progression of pancreatic cancer.The aim of this study was to investigate the effect of resveratrol on apoptosis in pancreatic cancer cells.Methods Several pancreatic cancer cell lines were screened by resveratrol, and its toxicity was tested by normal pancreatic cells. Western blotting was then performed to analyze the molecular mechanism of resveratrol induced apoptosis of pancreatic cancer cell lines.Results In the screened pancreatic cancer cell lines, capan-2 and colo357 showed high sensitivity to resveratrol induced apoptosis. Resveratrol exhibited insignificant toxicity to normal pancreatic cells. In resveratrol sensitive cells,capan-2 and colo357, the activation of caspase-3 was detected and showed significant caspase-3 activation upon resveratrol treatment; p53 and p21 were also detected up-regulated upon resveratrol treatment.Conclusion Resveratrol provides a promising anti-tumor stratagy to fight against pancreatic cancer.

  17. Induced pluripotent stem cells: advances to applications

    Directory of Open Access Journals (Sweden)

    Timothy J Nelson

    2009-12-01

    Full Text Available Timothy J Nelson1, Almudena Martinez-Fernandez1, Satsuki Yamada1, Yasuhiro Ikeda2, Carmen Perez-Terzic1, Andre Terzic11Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA; 2Department of Molecular Medicine; Mayo Clinic, Rochester, Minnesota, USAAbstract: Induced pluripotent stem cell (iPS technology has enriched the armamentarium of regenerative medicine by introducing autologous pluripotent progenitor pools bioengineered from ordinary somatic tissue. Through nuclear reprogramming, patient-specific iPS cells have been derived and validated. Optimizing iPS-based methodology will ensure robust applications across discovery science, offering opportunities for the development of personalized diagnostics and targeted therapeutics. Here, we highlight the process of nuclear reprogramming of somatic tissues that, when forced to ectopically express stemness factors, are converted into bona fide pluripotent stem cells. Bioengineered stem cells acquire the genuine ability to generate replacement tissues for a wide-spectrum of diseased conditions, and have so far demonstrated therapeutic benefit upon transplantation in model systems of sickle cell anemia, Parkinson’s disease, hemophilia A, and ischemic heart disease. The field of regenerative medicine is therefore primed to adopt and incorporate iPS cell-based advancements as a next generation stem cell platforms.Keywords: iPS, regenerative medicine, individualized medicine, stem cell therapy

  18. Paraquat-induced radiosensitization of mammalian cells

    International Nuclear Information System (INIS)

    The herbicide, paraquat (methyl viologen, 1-1' dimethy1-4, 4'-bipyridinium dichloride), stimulates the production of superoxide anion (O2sup(-.)) in aerobic cells and therefore mimics some effects of ionizing radiation. In addition, concentrations of cellular glutathione are reduced by reaction with O2sup(-.). It is reported here that paraquat, toxic in its own right to aerobic cells, acts as a radiosensitizer when cells are exposed to nontoxic concentrations of the drug prior to and during irradiation. The radiomimetic effect of paraquat, alone and in combination with X-rays, was examined. Paraquat affects aerated cells (hamster lung V79 cells) in a dose-dependent manner. Doses in excess of 1 mM for two hours cause significant cell killing. In combination with radiation, sublethal doses of paraquat, given for two hours prior to irradiation, enhance the lethal effects of radiation. However, if cells are exposed to the same concentration of paraquat following irradiation, no additional lethal effect is observed. Paraquat is a useful tool to study the effects of O2sup(-.) and may lead to better understanding of the mechanisms of radiation-induced energy deposition in cells. (author)

  19. Induced Pluripotent Stem Cells Meet Genome Editing.

    Science.gov (United States)

    Hockemeyer, Dirk; Jaenisch, Rudolf

    2016-05-01

    It is extremely rare for a single experiment to be so impactful and timely that it shapes and forecasts the experiments of the next decade. Here, we review how two such experiments-the generation of human induced pluripotent stem cells (iPSCs) and the development of CRISPR/Cas9 technology-have fundamentally reshaped our approach to biomedical research, stem cell biology, and human genetics. We will also highlight the previous knowledge that iPSC and CRISPR/Cas9 technologies were built on as this groundwork demonstrated the need for solutions and the benefits that these technologies provided and set the stage for their success. PMID:27152442

  20. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G;

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack......, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these...... pathways and their molecular components in plants are reviewed here....

  1. Phenytoin Induced Cutaneous B Cell Pseudolymphoma.

    Science.gov (United States)

    Riyaz, Najeeba; Sasidharanpillai, Sarita; Aravindan, Karumathil P; Nobin, Babu K; Raghavan, Nisha T; Nikhila, Pappinissery K

    2015-01-01

    Cutaneous pseudolymphomas are benign lymphoproliferative processes mimicking lymphomas clinically and histologically. One of the precipitating factors for pseudolymphoma is drugs like anticonvulsants, antidepressants and angiotensin-converting enzyme inhibitors. According to existing literature phenytoin-induced cutaneous pseudolymphomas are usually T-cell predominant. Most often withdrawal of the drug with or without short-course systemic steroids can attain a cure. Rarely malignant transformation has been reported years later despite withdrawal of the offending drug, which necessitates a long-term follow up of the affected. We report an 80-year-old male patient who was receiving phenytoin sodium and who presented with diffuse erythema and infiltrated skin lesions which histologically resembled cutaneous B-cell lymphoma. Substituting phenytoin with levetiracetam achieved resolution of symptoms. Further evaluation was suggestive of a reactive process. A detailed drug history is of paramount importance in differentiating drug-induced pseudolymphoma from lymphoma. Searching literature we could not find any previous reports of phenytoin-induced cutaneous B-cell pseudolymphoma. PMID:26538730

  2. Chemical -induced apoptotic cell death in tomato cells : involvement of caspase-like proteases

    NARCIS (Netherlands)

    Jong, de A.J.; Hoeberichts, F.A.; Yakimova, E.T.; Maximova, E.; Woltering, E.J.

    2000-01-01

    A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characte

  3. Activation-Induced Cell Death in T Cells and Autoimmunity

    Institute of Scientific and Technical Information of China (English)

    JianZhang; XuemeiXu; YongLiu

    2004-01-01

    Activation-induced cell death (AICD), which results from the interaction between Fas and Fas ligand, is responsible for maintaining tolerance to self-antigen. A defect in AICD may lead to development of autoimmunity. During the last several years, much progress has been made in understanding the mechanism(s) of AICD and its potential role in the pathogenesis of autoimmune diseases. In this review, we summarize the most recent progress on the regulation of the susceptibility of T cells to AICD and its possible involvement in autoimmune diseases.

  4. Cell Wall Polysaccharides of Candida albicans Induce Mast Cell Degranulation in the Gut

    OpenAIRE

    Sakurai, Atsuko; Yamaguchi, Natsu; Sonoyama, Kei

    2012-01-01

    We investigated Candida albicans-induced mast cell degranulation in vitro and in vivo. Cell wall fraction but not culture supernatant and cell membrane fraction prepared from hyphally grown C. albicans induced β-hexosaminidase release in RBL-2H3 cells. Cell wall mannan and soluble β-glucan fractions also induced β-hexosaminidase release. Histological examination of mouse forestomach showed that C. albicans gut colonization induces mast cell degranulation. However, intragastric administration ...

  5. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    Science.gov (United States)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  6. Measles Virus Induces Functional TRAIL Production by Human Dendritic Cells

    Science.gov (United States)

    Vidalain, Pierre-Olivier; Azocar, Olga; Lamouille, Barbara; Astier, Anne; Rabourdin-Combe, Chantal; Servet-Delprat, Christine

    2000-01-01

    Measles virus infection induces a profound immunosuppression that can lead to serious secondary infections. Here we demonstrate that measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression in human monocyte-derived dendritic cells. Moreover, measles virus-infected dendritic cells are shown to be cytotoxic via the TRAIL pathway. PMID:10590149

  7. Measles Virus Induces Functional TRAIL Production by Human Dendritic Cells

    OpenAIRE

    Vidalain, Pierre-Olivier; Azocar, Olga; Lamouille, Barbara; Astier, Anne; Rabourdin-Combe, Chantal; Servet-Delprat, Christine

    2000-01-01

    Measles virus infection induces a profound immunosuppression that can lead to serious secondary infections. Here we demonstrate that measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression in human monocyte-derived dendritic cells. Moreover, measles virus-infected dendritic cells are shown to be cytotoxic via the TRAIL pathway.

  8. The Preliminary Experimental Study of Induced Differentiation of Embryonic Stem Cells into Corneal Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Ling Yu; Jian Ge; Zhichong Wang; Bing Huang; Keming Yu; Chongde Long; Xigu Chen

    2001-01-01

    Purpose:To study preliminarily induced differentiation of embryonic stem cells intocorneal epithelial cells in vitro.Methods: Murine embryonic stem cells were co-cultured with Rabbit limbal cornealepithelial cells in Transwell system to induce differentiation. Mophological andimmunohistochemical examination were implemented.Results: The induced cells from embryonic stem cells have an epithelial appearance.The cells formed a network and were confluent into film gradually after beingco-cultured with rabbit limbal corneal epithelial cells for 24 ~ 96 hours. The cells rangedmosaic structure and localized together with clear rim. Most of the cells showedpolygonal appearance. Transmission electron microscope showed lots of microvilli on thesurface of induced cells and tight junctions between them. These epithelial-like cellsexpressed the corneal epithelial cell specific marker cytokeratin3/cytokeratinl2.Conclusion: The potential mechanism of the differentiation of murine embryonic stemcells into corneal epithelial cells induced by limbal corneal epithelial cell-derivedinducing activity is to be further verified.

  9. Sensitization of radiation-induced cell death by genistein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Rim; Kim, In Gyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-03-15

    A number of epidemiological studies as well as biological experiments, showed that genistein, one of the isoflavone, prevents prostate cancer occurrence. In this study, we showed that genistein inhibited the cell proliferation of human promyeoltic leukemia HL-60 cells and induced G2/M phase arrest. In addition, combination of genistein treatment and {gamma}-irradiation displayed synergistic effect in apoptotic cell death of HL-60 cells. This means that the repair of genistein-induced DNA damage was hindered by {gamma}-irradiation and thus cell death was increased. In conclusion, genistein is one of the important chemicals that sensitize radiation-induced cell death.

  10. Activation-induced and damage-induced cell death in aging human T cells.

    Science.gov (United States)

    Sikora, Ewa

    2015-11-01

    In multicellular organisms the proper system functionality is ensured by the balance between cell division, differentiation, senescence and death. This balance is changed during aging. Immunosenescence plays a crucial role in aging and leads to the shrinkage of T cell repertoire and the propensity to apoptosis. The elimination of expanded T cells at the end of immune response is crucial to maintain homeostasis and avoid any uncontrolled inflammation. Resting mature T lymphocytes, when activated via their antigen-specific receptor (TCR) and CD28 co-receptor, start to proliferate and then undergo the so called activation induced cell death (AICD), which mechanistically is triggered by the death receptor and leads to apoptosis. T lymphocytes, like other cells, are also exposed to damage, which can trigger the so called damage-induced cell death (DICD). It was hypothesized that oxidative stress and chronic antigenic load increasing with age reduced lymphocyte susceptibility to DICD and enhanced a proinflamatory status leading to increased AICD. However, data collected so far are inconsistent and does not support this assumption. Systematic and comprehensive studies are still needed for conclusive elucidation of the role of AICD and DICD in human immunosenescence, including the role of autophagy and necroptosis in the processes. PMID:25843236

  11. Myogenic differentiation of FSHD patient specific induced pluripotent stem cells

    OpenAIRE

    Bosnakovski, Darko

    2012-01-01

    Human induced pluripotent stem (IPS) cells overcome several disadvantages of human embryonic stem cells, including host specificity and ethical issues. Patient-specific IPS cells can be generated from every donor by using different cell types, making them a suitable tool for autologous cell therapy and tissue engineering. IPS cells generated from patients with genetic disorders capture the disease genotype in the cell, making them a good model for studying the pathology of the diseas...

  12. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction of...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  13. Laser-induced lipolysis on adipose cells

    Science.gov (United States)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  14. Characterization of Entamoeba histolytica-induced dephosphorylation in Jurkat cells

    Indian Academy of Sciences (India)

    J E Teixeira; B J Mann

    2002-11-01

    Entamoeba histolytica killing of host cells is contact dependent and mediated by a Gal/GalNAc lectin. Upon contact with amoeba a rapid and extensive dephosphorylation of tyrosine phosphorylated host cell proteins is observed. This effect is mediated by the Gal/GalNAc lectin. However, it requires intact cells, as purified lectin failed to induce dephosphorylation in Jurkat cells. The nonpathogenic, but morphologically identical amoeba, Entamoeba moshkovskii also did not induce dephosphorylation in target cells. Treatment of Jurkat cells with phosphotyrosine phosphatase inhibitors has shown that a host phosphatase is responsible for dephosphorylation. However, it was found that the CD45 phosphotase was not necessary for dephosphorylation of host cell proteins.

  15. HIV transcription is induced with some forms of cell killing

    International Nuclear Information System (INIS)

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct', we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. Γ rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that γ-ray-induced apoptotic death requires function p53, which is missing in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture

  16. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells

    Directory of Open Access Journals (Sweden)

    Rombo, Roman

    2016-04-01

    Full Text Available We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selectiveanti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer.

  17. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  18. Induced stem cells as a novel multiple sclerosis therapy

    Science.gov (United States)

    Xie, Chong; Liu, Yan-qun; Guan, Yang-tai; Zhang, Guang-Xian

    2016-01-01

    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS. PMID:25732737

  19. Molecular mechanisms of TRAIL-induced apoptosis of cancer cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) is a recently identified member of the tumor necrosis factor (TNF) family[1]. Numerous studies indicate that TRAIL can induce apoptosis of cancer cells but not of normal cells, pointing to the possibility of de-veloping TRAIL into a cancer drug[2-4]. This review will summary the molecular mechanisms of TRAIL-induced apoptosis and discuss the questions to be resolved in this field.

  20. Clonal Expansion and Cytotoxicity of TCRVβ Subfamily T Cells Induced by CML and K562 Cells

    Institute of Scientific and Technical Information of China (English)

    YupingZHang; YangqiuLi; ShaohuaChen; LijianYang; GengxinLuo; XueliZhang

    2004-01-01

    OBJECTIVE To investigate the anti-leukemia effect, the distribution and clonal expansion of TCRVβ subfamily T cells in T cells from cord blood and adult peripheral blood induced by CML cells and K562 cells in vitro. METHODS Peripheral blood T cells from one adult donor and 3 cases of cord blood were stimulated with CML cells and K562 cells and further amplified by a suspended T cell-bulk culture,in order to induce CML specific cytotoxic T lymphocytes. The induced T cells were further analyzed for the specific cytotoxicity in CML by LDH assay, the phenotype identification by indirect immunofiuorescence technique and the distribution and clonal expansion of TCRVβ subfamily by using reverse transcriptase-polymerase chain reaction (RT-PCR) and genescan analysis, respectively. RESULTS Oligoclonal and oligoclonal tendency T cells with higher specific cytotoxicity from cord blood and adult peripheral blood could be induced by stimulation with CML cells and K562 cells. CONCLUSIONS Specific cytotoxic T cells for an anti-CML effect could be induced by CML cells and K562 cells .The induced T cells which have the characteristic of specific cytotoxicity against CML cells may come from the clonal expansion of TCRVβ subfamily T cells.

  1. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan)

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  2. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  3. Organic Solar Cells Performances Improvement Induced by Interface Buffer Layers

    OpenAIRE

    Bernède, J. C.; Godoy, A.; Cattin, L; Diaz, F. R.; MORSLI, M; Valle, M. A. del

    2010-01-01

    In the last 22 years that have elapsed since the pioneering work of Tang [Tang, Appl. Phys. Lett., 1986], significant improvement in the fundamental understanding and cells construction have led to efficiencies higher than 6%. The new concept of polymer:fullerene BHJ solar cells has allowed dramatic improvements in devices efficiency. It has induced a healthy competition with the multi-heterojunction devices base on small organic molecules, which induces significant progress in both cells fam...

  4. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    International Nuclear Information System (INIS)

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization

  5. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  6. Induced Pluripotent Stem Cells for Neural Tissue Engineering

    OpenAIRE

    Wang, Aijun; Tang, Zhenyu; Park, In-Hyun; Zhu, Yiqian; Patel, Shyam; Daley, George Q.; Song, Li

    2011-01-01

    Induced pluripotent stem cells (iPSCs) hold great promise for cell therapies and tissue engineering. Neural crest stem cells (NCSCs) are multipotent and represent a valuable system to investigate iPSC differentiation and therapeutic potential. Here we derived NCSCs from human iPSCs and embryonic stem cells (ESCs), and investigated the potential of NCSCs for neural tissue engineering. The differentiation of iPSCs and the expansion of derived NCSCs varied in different cell lines, but all NCSC l...

  7. Modelling familial dysautonomia in human induced pluripotent stem cells

    OpenAIRE

    Lee, Gabsang; Studer, Lorenz

    2011-01-01

    Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of...

  8. Mechanism of heavy ion radiation-induced cancer cell death

    International Nuclear Information System (INIS)

    We previously reported that the carbon beam triggers apoptosis in radio-resistant cancer cell lines via extracellular signal-regulated kinase (ERK)- and mitochondrial Bcl-2 family protein-dependant mechanism. Here, we further examined the further apoptosis-inducing mechanism of carbon beam in two glioma cell lines (T98G, U251). ERK1/2 knockdown experiments revealed that ERK regulates this apoptosis-inducing machinery upstream of mitochondria. Furthermore, we also found that both T98G cell and U251 cell stably expressing dominant-negative ERK2 suppress cell death induced by carbon beam irradiation. We also found proapoptotic PUMA and antiapoptotic Bcl-2 dynamically chang their expression levels corresponding to ERK activation after CB irradiation in U251 cell, and knockdown of PUMA decreased CB-induced U251 cell death. These data suggest that kinase action of ERK is essential for CB-induced glioma cell death, and proapoptotic PUMA and antiapoptotic Bcl-2 might be downstream targets of ERK in CB-induced glioma cell death mechanism. (author)

  9. Reduced Immunogenicity of Induced Pluripotent Stem Cells Derived from Sertoli Cells

    OpenAIRE

    Xiaoying Wang; Jie Qin; Robert Chunhua Zhao; Martin Zenke

    2014-01-01

    Sertoli cells constitute the structural framework in testis and provide an immune-privileged environment for germ cells. Induced pluripotent stem cells (iPS cells) resemble embryonic stem cells (ES cells) and are generated from somatic cells by expression of specific reprogramming transcription factors. Here, we used C57BL/6 (B6) Sertoli cells to generate iPS cells (Ser-iPS cells) and compared the immunogenicity of Ser-iPS cells with iPS cells derived from mouse embryonic fibroblast (MEF-iPS ...

  10. Hexavalent chromium induces chromosome instability in human urothelial cells.

    Science.gov (United States)

    Wise, Sandra S; Holmes, Amie L; Liou, Louis; Adam, Rosalyn M; Wise, John Pierce

    2016-04-01

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. PMID:26908176

  11. Arsenic exposure induces the Warburg effect in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  12. Arsenic exposure induces the Warburg effect in cultured human cells

    International Nuclear Information System (INIS)

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect

  13. Lignin Induces ES Cells to Differentiate into Neuroectodermal Cells through Mediation of the Wnt Signaling Pathway

    OpenAIRE

    Inoue, Yu; Hasegawa, Seiji; Yamada, Takaaki; Date, Yasushi; MIZUTANI, Hiroshi; Nakata, Satoru; Akamatsu, Hirohiko

    2013-01-01

    Embryonic stem cells (ES cells) are characterized by their pluripotency and infinite proliferation potential. Ever since ES cells were first established in 1981, there have been a growing number of studies aimed at clinical applications of ES cells. In recent years, various types of differentiation inducement systems using ES cells have been established. Further studies have been conducted to utilize differentiation inducement systems in the field of regenerative medicine. For cellular treatm...

  14. Generating induced pluripotent stem cell derived endothelial cells and induced endothelial cells for cardiovascular disease modelling and therapeutic angiogenesis.

    Science.gov (United States)

    Clayton, Z E; Sadeghipour, S; Patel, S

    2015-10-15

    Standard therapy for atherosclerotic coronary and peripheral arterial disease is insufficient in a significant number of patients because extensive disease often precludes effective revascularization. Stem cell therapy holds promise as a supplementary treatment for these patients, as pre-clinical and clinical research has shown transplanted cells can promote angiogenesis via direct and paracrine mechanisms. Induced pluripotent stem cells (iPSCs) are a novel cell type obtained by reprogramming somatic cells using exogenous transcription factor cocktails, which have been introduced to somatic cells via viral or plasmid constructs, modified mRNA or small molecules. IPSCs are now being used in disease modelling and drug testing and are undergoing their first clinical trial, but despite recent advances, the inefficiency of the reprogramming process remains a major limitation, as does the lack of consensus regarding the optimum transcription factor combination and delivery method and the uncertainty surrounding the genetic and epigenetic stability of iPSCs. IPSCs have been successfully differentiated into vascular endothelial cells (iPSC-ECs) and, more recently, induced endothelial cells (iECs) have also been generated by direct differentiation, which bypasses the pluripotent intermediate. IPSC-ECs and iECs demonstrate endothelial functionality in vitro and have been shown to promote neovessel growth and enhance blood flow recovery in animal models of myocardial infarction and peripheral arterial disease. Challenges remain in optimising the efficiency, safety and fidelity of the reprogramming and endothelial differentiation processes and establishing protocols for large-scale production of clinical-grade, patient-derived cells. PMID:26123569

  15. Radiation induced mitochondrial biogenesis: limitations of metabolic viability based assays in measuring radiation induced cell death

    International Nuclear Information System (INIS)

    Many techniques based on metabolic viability of cells employing MTT and MTS assay are being widely used to measure the radiation and chemotherapeutics induced cell death, because of their high throughput capability. These assays are based on mitochondrial potential of cells to convert the substrate in to measurable products and remain dependent on this notion that all the cells untreated and treated will have equal mitochondrial content and metabolic potential. However, it is increasingly becoming clear that treatment induced changes in both mitochondrial content and metabolism can influence the metabolic viability of cells and radiation is a potential mitochondrial biogenesis inducer. Therefore, we tested if metabolic viability based assays are true measure of radiation induced cell death using the widely used cell lines like RAW264.7, HEK293, NIH3T3, J774.1, BMG-1, MDAMB231, MCF-7, A549 and HeLa. Cells were irradiated with gamma rays (60Co) and enumerated cell numbers (by hemocytometer) and metabolic viability using MTT assay at 24 and 48 hours after exposure. At all the absorbed doses (0-5 Gy), the extent of reduction in cell number was found to be larger than the decrease in formazan formation in all the cell lines tested. Further, this difference in the cell number and formazan formation varied significantly among the cell lines. To test if the increased formazan formation is due to increased mitochondrial content per cell, we analyzed the radiation induced mitochondrial biogenesis using mitochondria specific dye mitotracker red and found a 1.5 to 2 fold increase in mitochondrial content. These findings suggest that radiation induces mitochondrial biogenesis that enhances the metabolic potential leading to increased formazan formation. Therefore, conclusions drawn on radiation induced cytotoxicity based on metabolic viability assays are likely to be erroneous as it may not correlate with growth inhibition and/or loss of clonogenic survival. (author)

  16. Dendritic cells fused with different pancreatic carcinoma cells induce different T-cell responses

    Directory of Open Access Journals (Sweden)

    Andoh Y

    2013-01-01

    Full Text Available Yoshiaki Andoh,1,2 Naohiko Makino,2 Mitsunori Yamakawa11Department of Pathological Diagnostics, 2Department of Gastroenterology, Yamagata University School of Medicine, Yamagata, JapanBackground: It is unclear whether there are any differences in the induction of cytotoxic T lymphocytes (CTL and CD4+CD25high regulatory T-cells (Tregs among dendritic cells (DCs fused with different pancreatic carcinomas. The aim of this study was to compare the ability to induce cytotoxicity by human DCs fused with different human pancreatic carcinoma cell lines and to elucidate the causes of variable cytotoxicity among cell lines.Methods: Monocyte-derived DCs, which were generated from peripheral blood mononuclear cells (PBMCs, were fused with carcinoma cells such as Panc-1, KP-1NL, QGP-1, and KP-3L. The induction of CTL and Tregs, and cytokine profile of PBMCs stimulated by fused DCs were evaluated.Results: The cytotoxicity against tumor targets induced by PBMCs cocultured with DCs fused with QGP-1 (DC/QGP-1 was very low, even though PBMCs cocultured with DCs fused with other cell lines induced significant cytotoxicity against the respective tumor target. The factors causing this low cytotoxicity were subsequently investigated. DC/QGP-1 induced a significant expansion of Tregs in cocultured PBMCs compared with DC/KP-3L. The level of interleukin-10 secreted in the supernatants of PBMCs cocultured with DC/QGP-1 was increased significantly compared with that in DC/KP-3L. Downregulation of major histocompatibility complex class I expression and increased secretion of vascular endothelial growth factor were observed with QGP-1, as well as in the other cell lines.Conclusion: The present study demonstrated that the cytotoxicity induced by DCs fused with pancreatic cancer cell lines was different between each cell line, and that the reduced cytotoxicity of DC/QGP-1 might be related to the increased secretion of interleukin-10 and the extensive induction of Tregs

  17. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    International Nuclear Information System (INIS)

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells

  18. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Fujisaki, Hitomi; Hattori, Shunji [Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017 (Japan); Tashiro, Shin-ichi [Institute for Clinical and Biomedical Sciences, Kyoto 603-8072 (Japan); Onodera, Satoshi [Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo 194-8543 (Japan); Ikejima, Takashi, E-mail: ikejimat@vip.sina.com [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China)

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  19. Cationic Nanoparticles Induce Nanoscale Disruption in Living Cell Plasma Membranes

    OpenAIRE

    Chen, Jiumei; Hessler, Jessica A.; Putchakayala, Krishna; Panama, Brian K.; Khan, Damian P.; Hong, Seungpyo; Mullen, Douglas G.; DiMaggio, Stassi C.; Som, Abhigyan; Tew, Gregory N.; Lopatin, Anatoli N.; Baker, James R.; Banaszak Holl, Mark M.; Orr, Bradford G

    2009-01-01

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper we show that non-cytotoxic concentrations of cationic nanoparticles induce 30–2000 pA currents in 293A and KB cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm2 in total area....

  20. Immobilization of yeast cells by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Radiation-induced polymerization method was applied to the immobilization of yeast cells. The effects of irradiation, cooling and monomer, which are neccessary for polymerization, were recovered completely by subsequent aerobical incubation of yeast cells. The ethanol productive in immobilized yeast cells increased with the increase of aerobical incubation period. The growth of yeast cells in immobilized yeast cells was indicated. The maximum ethanol productivity in immobilized yeast cell system was around three times as much as that in free yeast cell system. (orig.)

  1. IARS2 silencing induces non-small cell lung cancer cells proliferation inhibition, cell cycle arrest and promotes cell apoptosis.

    Science.gov (United States)

    Yin, J; Liu, W; Li, R; Liu, J; Zhang, Y; Tang, W; Wang, K

    2016-01-01

    The purpose of this study was to investigate the potential role of Ileucyl-tRNA synthetase (IARS2) silencing in non-small cell lung cancer (NSCLC). The silencing of IARS2 in H1299 cells and A549 cells were performed by lentivirus encoding shRNAs. The efficiency of IARS2 silencing was detected by quantitative real time PCR and western blot. The effects of IARS2 silencing on cell growth, cell apoptosis, cell cycle and cell colony formation ability were assessed by cells counting, MTT assay, flow cytometer analysis and soft agar colony formation assay, respectively. Compared with negative control group, IARS2 was significantly knockdown by transfection with lentivirus encoding shRNA of IARS2. The IARS2 silencing significantly inhibited the cells proliferation and cells colony formation ability, induced cell cycle arrest at G1/S phase and promoted cell apoptosis. IARS2 silencing induced NSCLC cells growth inhibition, cell cycle arrest and promoted cell apoptosis. These results suggest that IARS2 may be a novel target for the treatment of NSCLC. PMID:26639235

  2. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    OpenAIRE

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol ...

  3. Microtubule Disruption in Keratinocytes Induces Cell-Cell Adhesion through Activation of Endogenous E-Cadherin

    OpenAIRE

    Kee, Sun-Ho; Steinert, Peter M.

    2001-01-01

    The association of the cytoskeleton with the cadherin–catenin complex is essential for strong cell-cell adhesion in epithelial cells. In this study, we have investigated the effect of microtubule organization on cell-cell adhesion in differentiating keratinocytes. When microtubules of normal human epidermal keratinocytes (NHEKs) grown in low calcium media (0.05 mM) were disrupted with nocodazole or colcemid, cell-cell adhesion was induced through relocalization of the ...

  4. Wogonin Induces Reactive Oxygen Species Production and Cell Apoptosis in Human Glioma Cancer Cells

    Directory of Open Access Journals (Sweden)

    Dah-Yuu Lu

    2012-08-01

    Full Text Available Glioma is the most common primary adult brain tumor with poor prognosis because of the ease of spreading tumor cells to other regions of the brain. Cell apoptosis is frequently targeted for developing anti-cancer drugs. In the present study, we have assessed wogonin, a flavonoid compound isolated from Scutellaria baicalensis Georgi, induced ROS generation, endoplasmic reticulum (ER stress and cell apoptosis. Wogonin induced cell death in two different human glioma cells, such as U251 and U87 cells but not in human primary astrocytes (IC 50 > 100 μM. Wogonin-induced apoptotic cell death in glioma cells was measured by propidine iodine (PI analysis, Tunnel assay and Annexin V staining methods. Furthermore, wogonin also induced caspase-9 and caspase-3 activation as well as up-regulation of cleaved PARP expression. Moreover, treatment of wogonin also increased a number of signature ER stress markers glucose-regulated protein (GRP-78, GRP-94, Calpain I, and phosphorylation of eukaryotic initiation factor-2α (eIF2α. Treatment of human glioma cells with wogonin was found to induce reactive oxygen species (ROS generation. Wogonin induced ER stress-related protein expression and cell apoptosis was reduced by the ROS inhibitors apocynin and NAC (N-acetylcysteine. The present study provides evidence to support the fact that wogonin induces human glioma cell apoptosis mediated ROS generation, ER stress activation and cell apoptosis.

  5. Radiation-induced apoptosis in microvascular endothelial cells.

    OpenAIRE

    Langley, R. E.; Bump, E A; Quartuccio, S. G.; Medeiros, D.; Braunhut, S. J.

    1997-01-01

    The response of the microvasculature to ionizing radiation is thought to be an important factor in the overall response of both normal tissues and tumours. It has recently been reported that basic fibroblast growth factor (bFGF), a potent mitogen for endothelial cells, protects large vessel endothelial cells from radiation-induced apoptosis in vitro. Microvessel cells are phenotypically distinct from large vessel cells. We studied the apoptotic response of confluent monolayers of capillary en...

  6. Heat-induced alterations in the cell nucleus

    International Nuclear Information System (INIS)

    Hyperthermia may kill eukaryotic cells and may also enhance the radiosensitivity of those cells that survive the heat treatment. Clinically, the possible use of hyperthermia as an adjuvant in the radiotherapeutic treatment of cancer needs the understanding of mechanisms that underlay heat-induced cell death and radiosensitization. By in vitro heating of established human (HeLaS3) and rodent (Ehrlich Ascites Tumor and LM fibroblast) cell lines, both killing and radiosensitization were investigated. (author). 1067 refs.; 76 figs.; 19 tabs

  7. The Alpha-Melanocyte Stimulating Hormone Induces Conversion of Effector T Cells into Treg Cells

    Directory of Open Access Journals (Sweden)

    Andrew W. Taylor

    2011-01-01

    Full Text Available The neuropeptide alpha-melanocyte stimulating hormone (α-MSH has an important role in modulating immunity and homeostasis. The production of IFN-γ by effector T cells is suppressed by α-MSH, while TGF-β production is promoted in the same cells. Such α-MSH-treated T cells have immune regulatory activity and suppress hypersensitivity, autoimmune diseases, and graft rejection. Previous characterizations of the α-MSH-induced Treg cells showed that the cells are CD4+ T cells expressing the same levels of CD25 as effector T cells. Therefore, we further analyzed the α-MSH-induced Treg cells for expression of effector and regulatory T-cell markers. Also, we examined the potential for α-MSH-induced Treg cells to be from the effector T-cell population. We found that the α-MSH-induced Treg cells are CD25+  CD4+ T cells that share similar surface markers as effector T cells, except that they express on their surface LAP. Also, the α-MSH treatment augments FoxP3 message in the effector T cells, and α-MSH induction of regulatory activity was limited to the effector CD25+ T-cell population. Therefore, α-MSH converts effector T cells into Treg cells, which suppress immunity targeting specific antigens and tissues.

  8. Sunlight-induced killing of nondividing human cells in culture

    International Nuclear Information System (INIS)

    Nondividing populations of human diploid fibroblasts that are DNA excision repair proficient and repair deficient were exposed to mid-day summer sunlight and their survival determined based on their ability to remain attached to a culture vessel surface. Whereas mid- and far-UV wavelengths and sunlamp radiation cause a gradual degeneration and detachment of cells in a dose-dependent manner, sunlight does not promote cell killing in repair proficient cells. Detachment of repair deficient cells is promoted to a limited extent but only at sunlight exposure times that are low with respect to the amount of DNA damage induced. Repair proficient and deficient cells exposed to sunlight for longer times do not detach. Pyrimidine dimer levels in these sunlight irradiated cells were great enough to have promoted detachment had these levels been induced by UV (254 nm) alone. Other photodamage induced by these exposures evidently inhibits the dimer induced cell degeneration that leads to cell detachment. It was concluded that pyrimidine dimers are responsible for cell killing at short sunlight exposure times (80 min) cells are killed by a different mechanism. (author)

  9. Cell death and cytokine production induced by autoimmunogenic hydrocarbon oils.

    Science.gov (United States)

    Herman, Sonja; Kny, Angelika; Schorn, Christine; Pfatschbacher, Jürgen; Niederreiter, Birgit; Herrmann, Martin; Holmdahl, Rikard; Steiner, Günter; Hoffmann, Markus H

    2012-12-01

    Hydrocarbon oils such as pristane or hexadecane induce arthritis and lupus in rodents sharing clinical and pathological features with the human diseases rheumatoid arthritis and systemic lupus erythematosus, respectively. In pristane-induced lupus in the mouse induction of apoptosis and augmentation of type-I Interferon signalling by pristane have been suggested to contribute to pathology, whereas in pristane-induced arthritis (PIA) in the rat the pathological mechanisms are still elusive. Here we show that pristane induces cell death in rat and human cells. Increased numbers of apoptotic cells were found in draining lymph nodes of pristane-injected rats and increased percentages of apoptotic and necrotic cells were observed in peripheral blood. In addition, neutrophil extracellular trap formation was triggered by pristane and hexadecane in neutrophils. Because levels of interleukin (IL)-1β were elevated in sera of pristane-injected rats, with levels mirroring the course of PIA, we examined the effect of pristane at single cell level in vitro, using rat splenocytes and the human monocytic cell line THP-1. Pristane and other hydrocarbon oils induced IL-1β secretion in THP-1 cells as well as in rat splenocytes. The potassium channel inhibitor glibenclamide partly inhibited IL-1β induction, suggesting involvement of the inflammasome. Elevated levels of IL-1α were also found in supernatants of cells treated with pristane and hexadecane. In conclusion, autoimmunogenic hydrocarbon oils induce various forms of cell death in rat and human cells. The higher serum IL-1β levels in pristane-injected animals might be caused by both inflammasome-dependent and -independent mechanisms, such as passive release from dying-cells and probably extracellular maturation of pro-IL-1β. PMID:22917079

  10. Characterization of T-regulatory cells, induced by immature dendritic cells, which inhibit enteroantigen-reactive colitis-inducing T-cell responses in vitro and in vivo

    DEFF Research Database (Denmark)

    Gad, Monika; Kristensen, Nanna N; Kury, Evelyn;

    2004-01-01

    Regulatory T (Treg) cells, derived from co-cultures of unfractionated CD4(+) T cells and immature dendritic cells (DC), suppress enteroantigen-induced proliferation of CD4(+) CD25(-) T cells. The DC-induced Treg cells are a mixture of CD25(+) (10-20%) and CD25(-) (80-90%) T cells. However, all the...... suppressor activity in vitro and in vivo resides in the CD25(+) T-cell subset. The CD25(+) DC-induced Treg cells can inhibit enteroantigen-induced proliferation in vitro through a transwell membrane, and their function does not appear to depend on previous activation. DC-induced CD25(+) Treg cells display a...... naive phenotype, expressing high levels of CD45RB and l-selectin (CD62L). In addition, the DC-induced Treg cells mediate a stronger suppressive activity than prototype CD25(+) regulatory T cells. The DC-induced Treg cells, and hereof purified CD25(+) and CD25(-) T-cell fractions, were co-injected into...

  11. Radiation-induced genetic effects in germ cells of mammals

    International Nuclear Information System (INIS)

    The aim of the project is to gain information on the effects of ionizing radiation on germ cells of rodents and primates as measured by induced chromosomal translocations. Different aspects of the very significant interspecies differences between the mouse and the rhesus monkey (Macaca mulatta) for translocation induction in spermatogonial stem cells were studied. In addition, possible mechanisms for the well established reduced transmission of induced mouse translocations were investigated. (R.P.) 6 refs

  12. Efficient lysis of rhabdomyosarcoma cells by cytokine-induced killer cells: implications for adoptive immunotherapy after allogeneic stem cell transplantation

    OpenAIRE

    Kuçi, Selim; Rettinger, Eva; Voß, Bernhard; Weber, Gerrit; Stais, Miriam; Kreyenberg, Hermann; Willasch, Andre; Kuçi, Zyrafete; Koscielniak, Ewa; Klöss, Stephan; Laer, Dorothee von; Klingebiel, Thomas; Bader, Peter

    2010-01-01

    Background: Rhabdomyosarcoma is the most common soft tissue sarcoma in childhood and has a poor prognosis. Here we assessed the capability of ex vivo expanded cytokine-induced killer cells to lyse both alveolar and embryonic rhabdomyosarcoma cell lines and investigated the mechanisms involved. Design and Methods: Peripheral blood mononuclear cells from six healthy donors were used to generate and expand cytokine-induced killer cells. The phenotype and composition of these cells were deter...

  13. Generation and function of induced regulatory T cells

    OpenAIRE

    Schmitt, Erica G.; Williams, Calvin B.

    2013-01-01

    CD4+ CD25+ Foxp3+ regulatory T (Treg) cells are essential to the balance between pro- and anti-inflammatory responses. There are two major subsets of Treg cells, natural Treg (nTreg) cells that develop in the thymus, and induced Treg (iTreg) cells that arise in the periphery from CD4+ Foxp3– conventional T (Tconv) cells and can be generated in vitro. Previous work has established that both subsets are required for immunological tolerance. Additionally, in vitro-derived iTreg cells can rees...

  14. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1

    International Nuclear Information System (INIS)

    Cholangiocarcinoma (CCA), a devastating neoplasm, is highly resistant to current chemotherapies. CCA cells frequently overexpress the antiapoptotic protein myeloid cell leukemia-1(Mcl-1), which is responsible for its extraordinary ability to evade cell death. Triptolide, a bioactive ingredient extracted from Chinese medicinal plant, has been shown to inhibit cell proliferation and induce apoptosis in several cancers. CCK-8 assay was performed to detect cell survival rate in vitro. DAPI staining and Flow cytometry were used to analyze apoptosis. Western blot was performed to determine the expression levels of caspase-3, caspase-7, caspase-9, PARP, and Mcl-1. Quantitative real-time PCR and immunofluorescence were used to detect the expression levels of Mcl-1. The nude mice xenograft model was used to evaluate the antitumor effect of triptolide in vivo. Triptolide reduced cell viability in cholangiocarcinoma cell lines in a dose- and time-dependent manner, with IC50 values of 12.6 ± 0.6 nM, 20.5 ± 4.2 nM, and 18.5 ± 0.7 nM at 48 h for HuCCT1, QBC939, and FRH0201 respectively. Triptolide induced apoptosis in CCA cell lines in part through mitochondrial pathway. Using quantitative real-time PCR, western blot and immunofluorescence, we have shown that triptolide downregulates Mcl-1 mRNA and protein levels. Furthermore, triptolide inhibited the CCA growth in vivo. Triptolide has profound antitumor effect on CCA, probably by inducing apoptosis through inhibition of Mcl-1. Triptolide would be a promising therapeutic agent for CCA

  15. Dendritic Cells in the Periphery Control Antigen-Specific Natural and Induced Regulatory T Cells

    OpenAIRE

    Yamazaki, Sayuri; Morita, Akimichi

    2013-01-01

    Dendritic cells (DCs) are specialized antigen-presenting cells that regulate both immunity and tolerance. DCs in the periphery play a key role in expanding naturally occurring Foxp3+ CD25+ CD4+ regulatory T cells (Natural T-regs) and inducing Foxp3 expression (Induced T-regs) in Foxp3− CD4+ T cells. DCs are phenotypically and functionally heterogeneous, and further classified into several subsets depending on distinct marker expression and their location. Recent findings indicate the presence...

  16. Apoptosis in immune cells induced by fission fragment 147Pm

    Institute of Scientific and Technical Information of China (English)

    ZhuShou-Peng; ZhangLan-Sheng; 等

    1997-01-01

    Apoptosis in human acute lymphoblastic leukemia cell line Molt-4 cell and macrophage cell line Ana-1 cell could be induced by fission fragment 147Pm,The cumulative absorption dose of 147Pm in cultural cells through different periods were estimated.By using fluorescence microscopy and microautoradiographic tracing it can be found that Molt-4 and Anal-1 cells internally irradiated by 147Pm,displayed an obvious nuclear fragmentation and a marked phknosis in immune cell nucei,as well as DNA chain fragmentation and apoptotic bodies formation.The microautoradiographic study showed that 147Pm could infiltrate thourgh cell membrane and displayed membrane-seeking condensation in cells.At the same time.the membrane-bounded apoptotic bodies were observed.Experimental results in recent study provide evidence that Molt-4 and Ano-1 immune cells undergo apoptosis while internally irradiated with 147Pm.

  17. Expression of Hyaluronidase by Tumor Cells Induces Angiogenesis in vivo

    Science.gov (United States)

    Liu, Dacai; Pearlman, Eric; Diaconu, Eugenia; Guo, Kun; Mori, Hiroshi; Haqqi, Tariq; Markowitz, Sanford; Willson, James; Sy, Man-Sun

    1996-07-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the ``molecular saboteurs'' to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs.

  18. Lipopolysaccharide induces IFN-γ production in human NK cells

    Directory of Open Access Journals (Sweden)

    Leonid M Kanevskiy

    2013-01-01

    Full Text Available NK cells have been shown to play a regulatory role in sepsis. According to the current view, NK cells become activated via macrophages or dendritic cells primed by lipopolysaccharide (LPS. Recently TLR4 gene expression was detected in human NK cells suggesting the possibility of a direct action of LPS on NK cells. In this study, effects of LPS on NK cell cytokine production and cytotoxicity were studied using highly purified human NK cells. LPS induced IFN-γ production in the presence of IL-2 in cell populations containing >98% CD56+ cells. Surprisingly, in the same experiments LPS decreased NK cell degranulation. No significant expression of markers related to blood dendritic cells, monocytes or T or B lymphocytes in the NK cell preparations was observed; the portions of HLA-DRbright, CD14+, CD3+ and CD20+ cells amounted to less than 0.1% within the cell populations. No more than 0.2% of NK cells were shown to be slightly positive for surface TLR4 in our experimental system, although intracellular staining revealed moderate amounts of TLR4 inside the NK cell population. These cells were negative for surface CD14, the receptor participating in LPS recognition by TLR4. Incubation of NK cells with IL-2 or/and LPS did not lead to an increase in TLR4 surface expression. TLR4–CD56+ NK cells isolated by cell sorting secreted IFN-γ in response to LPS. Antibody to TLR4 did not block the LPS-induced increase in IFN-γ production. We have also shown that Re-form of LPS lacking outer core oligosaccharide and O-antigen induces less cytokine production in NK cells than full length LPS. We speculate that the polysaccharide fragments of LPS molecule may take part in LPS-induced IFN-γ production by NK cells. Collectively our data suggest the existence of a mechanism of LPS direct action on NK cells distinct from established TLR4-mediated signaling.

  19. Progesterone induces adult mammary stem cell expansion.

    Science.gov (United States)

    Joshi, Purna A; Jackson, Hartland W; Beristain, Alexander G; Di Grappa, Marco A; Mote, Patricia A; Clarke, Christine L; Stingl, John; Waterhouse, Paul D; Khokha, Rama

    2010-06-10

    Reproductive history is the strongest risk factor for breast cancer after age, genetics and breast density. Increased breast cancer risk is entwined with a greater number of ovarian hormone-dependent reproductive cycles, yet the basis for this predisposition is unknown. Mammary stem cells (MaSCs) are located within a specialized niche in the basal epithelial compartment that is under local and systemic regulation. The emerging role of MaSCs in cancer initiation warrants the study of ovarian hormones in MaSC homeostasis. Here we show that the MaSC pool increases 14-fold during maximal progesterone levels at the luteal dioestrus phase of the mouse. Stem-cell-enriched CD49fhi cells amplify at dioestrus, or with exogenous progesterone, demonstrating a key role for progesterone in propelling this expansion. In aged mice, CD49fhi cells display stasis upon cessation of the reproductive cycle. Progesterone drives a series of events where luminal cells probably provide Wnt4 and RANKL signals to basal cells which in turn respond by upregulating their cognate receptors, transcriptional targets and cell cycle markers. Our findings uncover a dynamic role for progesterone in activating adult MaSCs within the mammary stem cell niche during the reproductive cycle, where MaSCs are putative targets for cell transformation events leading to breast cancer. PMID:20445538

  20. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor.

    Science.gov (United States)

    Li, Yunyuan; Adomat, Hans; Guns, Emma Tomlinson; Hojabrpour, Payman; Duronio, Vincent; Curran, Terry-Ann; Jalili, Reza Baradar; Jia, William; Delwar, Zahid; Zhang, Yun; Elizei, Sanam Salimi; Ghahary, Aziz

    2016-06-01

    It has long been realized that hematopoietic cells may have the capacity to trans-differentiate into non-lymphohematopoietic cells under specific conditions. However, the mechanisms and the factors for hematopoietic cell trans-differentiation remain unknown. In an in vitro culture system, we found that using a conditioned medium from proliferating fibroblasts can induce a subset of hematopoietic cells to become adherent fibroblast-like cells (FLCs). FLCs are not fibroblasts nor other mesenchymal stromal cells, based on their expression of type-1 collagen, and other stromal cell marker genes. To identify the active factors in the conditioned medium, we cultured fibroblasts in a serum-free medium and collected it for further purification. Using the fractions from filter devices of different molecular weight cut-offs, and ammonium sulfate precipitation collected from the medium, we found the active fraction is a protein. We then purified this fraction by using fast protein liquid chromatography (FPLC) and identified it by mass spectrometer as macrophage colony-stimulating factor (M-CSF). The mechanisms of M-CSF-inducing trans-differentiation of hematopoietic cells seem to involve a tyrosine kinase signalling pathway and its known receptor. The FLCs express a number of stem cell markers including SSEA-1 and -3, OCT3/4, NANOG, and SOX2. Spontaneous and induced differentiation experiments confirmed that FLCs can be further differentiated into cell types of three germ layers. These data indicate that hematopoietic cells can be induced by M-CSF to dedifferentiate to multipotent stem cells. This study also provides a simple method to generate multipotent stem cells for clinical applications. J. Cell. Physiol. 231: 1350-1363, 2016. © 2015 Wiley Periodicals, Inc. PMID:26529564

  1. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  2. Induced pluripotent stem cells, new tools for drug discovery and new hope for stem cell therapies

    OpenAIRE

    Shi, Yanhong

    2009-01-01

    Somatic cell nuclear transfer or therapeutic cloning has provided great hope for stem cell-based therapies. However therapeutic cloning has been experiencing both ethical and technical difficulties. Recent breakthrough studies using a combination of four factors to reprogram human somatic cells into pluripotent stem cells without using embryos or eggs led to an important revolution in stem cell research. Comparative analysis of human induced pluripotent stem cells and human embryonic stem cel...

  3. Endothelial induced EMT in breast epithelial cells with stem cell properties

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla;

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether...... endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of...... keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D...

  4. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    Science.gov (United States)

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016. PMID:25691005

  5. Cell membrane potentials induced during exposure to EMP fields

    Energy Technology Data Exchange (ETDEWEB)

    Gailey, P.C.; Easterly, C.E.

    1994-09-01

    Internal current densities and electric fields induced in the human body during exposure to EMP fields are reviewed and used to predict resulting cell membrane potentials. Using several different approaches, membrane potentials of about 100 mV are predicted. These values are comparable to the static membrane potentials maintained by cells as a part of normal physiological function, but the EMP-induced potentials persist for only about 10 ns. Possible biological implications of EMP-induced membrane potentials including conformational changes and electroporation are discussed.

  6. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells.

    Science.gov (United States)

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-09-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A₂. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  7. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    Directory of Open Access Journals (Sweden)

    So Young Jung

    2015-09-01

    Full Text Available Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death.

  8. Derivation of hair-inducing cell from human pluripotent stem cells.

    Science.gov (United States)

    Gnedeva, Ksenia; Vorotelyak, Ekaterina; Cimadamore, Flavio; Cattarossi, Giulio; Giusto, Elena; Terskikh, Vasiliy V; Terskikh, Alexey V

    2015-01-01

    Dermal Papillae (DP) is a unique population of mesenchymal cells that was shown to regulate hair follicle formation and growth cycle. During development most DP cells are derived from mesoderm, however, functionally equivalent DP cells of cephalic hairs originate from Neural Crest (NC). Here we directed human embryonic stem cells (hESCs) to generate first NC cells and then hair-inducing DP-like cells in culture. We showed that hESC-derived DP-like cells (hESC-DPs) express markers typically found in adult human DP cells (e.g., p-75, nestin, versican, SMA, alkaline phosphatase) and are able to induce hair follicle formation when transplanted under the skin of immunodeficient NUDE mice. Engineered to express GFP, hESC-derived DP-like cells incorporate into DP of newly formed hair follicles and express appropriate markers. We demonstrated that BMP signaling is critical for hESC-DP derivation since BMP inhibitor dorsomorphin completely eliminated hair-inducing activity from hESC-DP cultures. DP cells were proposed as the cell-based treatment for hair loss diseases. Unfortunately human DP cells are not suitable for this purpose because they cannot be obtained in necessary amounts and rapidly loose their ability to induce hair follicle formation when cultured. In this context derivation of functional hESC-DP cells capable of inducing a robust hair growth for the first time shown here can become an important finding for the biomedical science. PMID:25607935

  9. Derivation of hair-inducing cell from human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ksenia Gnedeva

    Full Text Available Dermal Papillae (DP is a unique population of mesenchymal cells that was shown to regulate hair follicle formation and growth cycle. During development most DP cells are derived from mesoderm, however, functionally equivalent DP cells of cephalic hairs originate from Neural Crest (NC. Here we directed human embryonic stem cells (hESCs to generate first NC cells and then hair-inducing DP-like cells in culture. We showed that hESC-derived DP-like cells (hESC-DPs express markers typically found in adult human DP cells (e.g., p-75, nestin, versican, SMA, alkaline phosphatase and are able to induce hair follicle formation when transplanted under the skin of immunodeficient NUDE mice. Engineered to express GFP, hESC-derived DP-like cells incorporate into DP of newly formed hair follicles and express appropriate markers. We demonstrated that BMP signaling is critical for hESC-DP derivation since BMP inhibitor dorsomorphin completely eliminated hair-inducing activity from hESC-DP cultures. DP cells were proposed as the cell-based treatment for hair loss diseases. Unfortunately human DP cells are not suitable for this purpose because they cannot be obtained in necessary amounts and rapidly loose their ability to induce hair follicle formation when cultured. In this context derivation of functional hESC-DP cells capable of inducing a robust hair growth for the first time shown here can become an important finding for the biomedical science.

  10. The process and promotion of radiation-induced cell death

    International Nuclear Information System (INIS)

    Radiation-induced cell death is divided into reproductive and interphase death, whose process can be revealed by time-lapse observations. Pedigree analyses of progenies derived from a surviving progenitor cell have shown that moribund cells appear in clusters among cells which are apparently undamaged (lethal sectoring). Sister cell fusion, which likely results from chromosome bridge, is the most frequently observed cell abnormality leading to reproductive death. While interphase death does not occur unless the dose exceeds 10 Gy for low LET radiation such as X-rays, high-LET radiation is very effective at inducing interphase death (RBE: ≅3 at 230 keV/μm). Expression or fixation of potentially lethal damage (PLD) is closely associated with cell cycle events and enhanced by inducing premature chromosome condensation (PCC) at a nonpermissive temperature in tsBN2 cells with a ts-defect in RCC1 protein (a regulator of chromatin condensation) which monitors the completion of DNA replication. Furthermore, higher-order structural changes in nuclear matrix such as induced by leptomycin B, an inhibitor of CRM1 (chromosome region maintenance) protein, also play an important role in the fixation of PLD. (author)

  11. Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells

    Science.gov (United States)

    Tian, Zuojun; Guo, Fuzheng; Biswas, Sangita; Deng, Wenbin

    2016-01-01

    Great progress has been made regarding the capabilities to modify somatic cell fate ever since the technology for generation of induced pluripotent stem cells (iPSCs) was discovered in 2006. Later, induced neural progenitor cells (iNPCs) were generated from mouse and human cells, bypassing some of the concerns and risks of using iPSCs in neuroscience applications. To overcome the limitation of viral vector induced reprogramming, bioactive small molecules (SM) have been explored to enhance the efficiency of reprogramming or even replace transcription factors (TFs), making the reprogrammed cells more amenable to clinical application. The chemical induced reprogramming process is a simple process from a technical perspective, but the choice of SM at each step is vital during the procedure. The mechanisms underlying cell transdifferentiation are still poorly understood, although, several experimental data and insights have indicated the rationale of cell reprogramming. The process begins with the forced expression of specific TFs or activation/inhibition of cell signaling pathways by bioactive chemicals in defined culture condition, which initiates the further reactivation of endogenous gene program and an optimal stoichiometric expression of the endogenous pluri- or multi-potency genes, and finally leads to the birth of reprogrammed cells such as iPSCs and iNPCs. In this review, we first outline the rationale and discuss the methodology of iPSCs and iNPCs in a stepwise manner; and then we also discuss the chemical-based reprogramming of iPSCs and iNPCs. PMID:27104529

  12. Radiation induced formation of giant cells (Saccharomyces uvarum). Pt. 1

    International Nuclear Information System (INIS)

    X-irradiated yeast cells (Saccharomyces uvarum) grown in liquid media stop mitosis and form giant cells. Chitin ring formation, being a prerequisite for cell separation, was studied by fluorescence microscopy using Calcofluor White, a chitin specific dye. Experiments with inhibitors of DNA synthesis (hydroxyurea) and chitin synthesis (polyoxin D) demonstrate chitin ring formation to be dependent on DNA synthesis, whereas bud formation is independent of DNA synthesis and chitin ring formation respectively. Basing on these results the formation of X-ray induced giant cells implies one DNA replication which in turn induces the formation of only one chitin ring between mother cell and giant bud. Obviously no septum can be formed. Thus cell separation does not occur, but the bud already formed, produces another bud demonstrating that bud formation itself is independent of DNA synthesis. (orig.)

  13. Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells

    International Nuclear Information System (INIS)

    Methylglyoxal (MG) is involved in the pathogenesis of diabetic complications via the formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS). To clarify whether the antidiabetic drug metformin prevents Schwann cell damage induced by MG, we cultured mouse Schwann cells in the presence of MG and metformin. Cell apoptosis was evaluated using Hoechst 33342 nuclear staining, caspase-3 activity, and c-Jun-N-terminal kinase (JNK) phosphorylation. Intracellular ROS formation was determined by flow cytometry, and AMP-activated kinase (AMPK) phosphorylation was also examined. MG treatment resulted in blunted cell proliferation, an increase in the number of apoptotic cells, and the activation of caspase-3 and JNK along with enhanced intracellular ROS formation. All of these changes were significantly inhibited by metformin. No significant activation of AMPK by MG or metformin was observed. Taken together, metformin likely prevents MG-induced apoptotic signals in mouse Schwann cells by inhibiting the formation of AGEs and ROS

  14. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  15. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10−7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10−6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  16. D609 induces vascular endothelial cells and marrow stromal cells differentiation into neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Nan WANG; Chun-qing DU; Shao-shan WANG; Kun XIE; Shang-li ZHANG; Jun-ying MIAO

    2004-01-01

    AIM: To investigate the effect of tricyclodecane-9-yl-xanthogenate (D609) on cell differentiation in vascular endothelial cells (VECs) and marrow stromal cells (MSCs). METHODS: Morphological changes were observed under phase contrast microscope. Electron microscope and immunostaining were used for VECs identification. The expressions of neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) were examined by immunohistochemistry. RESULTS: After 6 h of induction with D609, some VECs showed morphological changes characteristic of neurones. 9 h later, more VECs became neuron-like cells. About 30.8 % of VECs displayed positive NSE (P<0.01), while the expression of GFAP was negative. When MSCs were exposed to D609, the cells displayed neuronal morphologies, such as pyramidal cell bodies and processes formed extensive networks at 3 h. 6 h later, almost all of the cells exhibited a typical neuronal appearance, and 85.6 % of MSCs displayed intensive positive NSE, but GFAP did not express. CONCLUSION: D609 induces VECs and MSCs differentiation into neuron-like cells.

  17. Cisplatin-induced Casepase-3 activation in different tumor cells

    Science.gov (United States)

    Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai

    2008-12-01

    Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.

  18. Alcohol-induced steatosis in liver cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Alcohol-induced fatty liver (steatosis) was believed to result from excessive generation of reducing equivalents from ethanol metabolism, thereby enhancing fat accumulation. Recent findings have revealed a more complex picture in which ethanol oxidation is still required,but specific transcription as well as humoral factors also have important roles. Transcription factors involved include the sterol regulatory element binding protein 1 (SREBP-1)which is activated to induce genes that regulate lipid biosynthesis. Conversely, ethanol consumption causes a general down-regulation of lipid (fatty acid) oxidation, a reflection of inactivation of the peroxisome proliferatoractivated receptor-alpha (PPAR-α) that regulates genes involved in fatty acid oxidation. A third transcription factor is the early growth response-1 (Egr-1), which is strongly induced prior to the onset of steatosis. The activities of all these factors are governed by that of the principal regulatory enzyme, AMP kinase. Important humoral factors, including adiponectin, and tumor necrosis factor-α(TNF-α), also regulate alcohol-induced steatosis. Their levels are affected by alcohol consumption and by each other. This review will summarize the actions of these proteins in ethanol-elicited fatty liver. Because steatosis is now regarded as a significant risk factor for advanced liver pathology, an understanding of the molecular mechanisms in its etiology is essential for development of effective therapies.

  19. Human Vascular Endothelium from Induced Pluripotent Stem Cells

    OpenAIRE

    Adams, William James

    2013-01-01

    The vascular endothelium is a dynamic cellular interface that displays a unique phenotypic plasticity. This plasticity is critical for vascular function and when dysregulated is pathogenic in several diseases. The development of new human endothelial genotype-phenotype studies, personalized vascular medicine efforts and cell based regenerative therapies are limited by the unavailability of patient-specific endothelial cells. Induced pluripotent stem cells (iPSC) offer great promise as a new p...

  20. Natural and Induced T Regulatory Cells in Cancer

    OpenAIRE

    Adeegbe, Dennis O.; Nishikawa, Hiroyoshi

    2013-01-01

    CD4+Foxp3+ T regulatory (Treg) cells control many facets of immune responses ranging from autoimmune diseases, to inflammatory conditions, and cancer in an attempt to maintain immune homeostasis. Natural Treg (nTreg) cells develop in the thymus and constitute a critical arm of active mechanisms of peripheral tolerance particularly to self antigens. A growing body of knowledge now supports the existence of induced Treg (iTreg) cells which may derive from a population of conventional CD4+ T cel...

  1. Quantification of depletion-induced adhesion of Red Blood Cells

    OpenAIRE

    Steffen, Patrick; Verdier, Claude; Wagner, Christian

    2013-01-01

    Red blood cells (RBC) are known to form aggregates in the forms of rouleaux due to the presence of plasma proteins under physiological conditions. Rouleaux formation can be also induced in vitro by the addition of macromolecules to the RBC solution. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly rely on indirect measurements like flow chamber experiments, but on the single cell level data is lacking. Here we present measurements on the d...

  2. Erythropoietin -induced proliferation of gastric mucosal cells

    OpenAIRE

    Itoh, Kazuro; Sawasaki, Yoshio; Takeuchi, Kyoko; Kato, Shingo; Imai, Nobuhiro; Kato, Yoichiro; Shibata, Noriyuki; KOBAYASHI, MAKIO; Moriguchi, Yoshiyuki; Higuchi, Masato; Ishihata, Fumio; Sudoh, Yushi; Miura, Soichiro

    2006-01-01

    AIM: To analyze the localization of erythropoietin receptor on gastric specimens and characterize the effects of erythropoietin on the normal gastric epithelial proliferation using a porcine gastric epithelial cell culture model.

  3. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    International Nuclear Information System (INIS)

    Highlights: ► Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. ► Oxidative stress induces complete mitochondrial fragmentation in Δyfh1 cells. ► Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. ► Inhibition of mitochondrial fission in Δyfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron–sulfur cluster assembly. Yeast cells lacking frataxin (Δyfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in Δyfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  4. Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells

    OpenAIRE

    Ruiz, Sergio; Lopez Contreras, Andres J.; Gabut, Mathieu; Marion, Rosa M.; Guti??rrez Mart??nez, Paula; Bua, Sabela; Ram??rez, Oscar; Olalde, I??igo; Rodrigo Perez, Sara; Li, Han; Marqu??s i Bonet, Tom??s, 1975-; Serrano, Manuel; Blasco, Maria A; Batada, Nizar N; Fern??ndez Capetillo, Oscar

    2015-01-01

    The generation of induced pluripotent stem cells (iPSC) from adult somatic cells is one of the most remarkable discoveries in recent decades. However, several works have reported evidence of genomic instability in iPSC, raising concerns on their biomedical use. The reasons behind the genomic instability observed in iPSC remain mostly unknown. Here we show that, similar to the phenomenon of oncogene-induced replication stress, the expression of reprogramming factors induces replication stress....

  5. Differential effect of baicalein on ionizing radiation induced cell death in normal lymphocytes and lymphoma cells

    International Nuclear Information System (INIS)

    Baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one), a naturally occurring flavone, present in Indian and Chinese medicinal plants has been reported to possess potent antioxidant activity. Previous reports from our laboratory have elucidated the radical scavenging and radioprotective potential of this compound in cell free system. To investigate potential of baicalein as a radioprotector, we have studied its effect on normal lymphocytes and lymphoma cells (EL-4 cells) in presence of radiation. Baicalein protected murine splenic lymphocytes against radiation (4Gy) induced apoptosis as assessed by propidium iodide staining. It inhibited background cell death in lymphocytes whereas, baicalein induced concentration dependent cell death in EL-4 cells and did not protect against radiation induced apoptosis. Interestingly, baicalein scavenged radiation derived ROS (reactive oxygen species) in both the cell types suggesting that, it is not exhibiting differential antioxidant action. Despite scavenging radiation derived ROS, which are principal mediators of radiation induced cell death, baicalein induced cell death in EL-4 cells. To investigate the reason for this differential behavior, we investigated the effect of baicalein on pro-survival molecules viz. ERK and NF-kB. Baicalein induced phosphorylation of ERK in normal lymphocytes in a time dependent manner, but, it did not alter pERK levels in EL-4 cells. Baicalein treatment per se induced degradation of IkBα and increased nuclear accumulation of NF-kB in normal lymphocytes. Whereas, baicalein pre-treatment reduced basal NF-kB levels in EL-4 cells and it also suppressed TNF-α induced nuclear accumulation of NF-kB. This study suggests that, differential regulation of pro-survival transcription factor NF-kB may be playing a role in differential effect of baicalein in normal lymphocytes and lymphoma cells. (author)

  6. Regulatory mechanism of radiation-induced cancer cell death by the change of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo Jin; Jeong, Min Ho; Jang, Ji Yeon [College of Medicine, Donga Univ., Pusan (Korea, Republic of)

    2003-09-01

    In our previous study, we have shown the main cell death pattern induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myelogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herbimycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. K562 cells in exponential growth phase were used for this study. The cells were irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25{mu}M of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. X-irradiated cells were arrested in the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first cell-cycle post-treatment and an increase of cyclin B1 were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent G1 accumulation HMA-induced cell cycle modifications correlated with the increase of cdc2 kinase activity, the decrease of the expressions of cyclins E and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin B1 and cdc25C and cdc2 kinase activity, increased the expression of p16, and sustained senescence and megakaryocytic differentiation. The effects of HMA and genistein on the radiation-induced cell death of K562 cells were closely related to the cell

  7. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Zhu Hongliang; Li Shengli; Yao Xiaobao; Wang Xiaoxia

    2006-01-01

    Objective To establish adult rat auditory epithelial cell culture and try to find precursor cells of auditory hair cells in vitro. Methods With refinement of culture media and techniques, cochlear sensory epithelial cells of adult rat were cultured. Immunocytochemistry and Bromodeoxyuridine (BrdU)labeling were used to detect properties and mitotic status of cultured cells. Results The cultured auditory epithelial cells showed a large, flat epithelial morphotype and expressed F-actin and cytokeratin, a subset of cells generated from auditory epithelium were labeled by calretinin, a specific marker of early hair cell. Conclusion Adult rat auditory epithelium can be induced to generate hair cell-like cells by nature culture, this phenomenon suggests that progenitor cells may exist in rat cochlea and they may give birth to new hair cells. Whether these progenitor cells are tissue specific stem cells is still need more study.

  8. Dracorhodin perchlorate induces the apoptosis of glioma cells.

    Science.gov (United States)

    Chen, Xin; Luo, Junjie; Meng, Linghu; Pan, Taifeng; Zhao, Binjie; Tang, Zhen-Gang; Dai, Yongjian

    2016-04-01

    Dracorhodin perchlorate (Dp), a synthetic analogue of the antimicrobial anthocyanin red pigment, has recently been shown to induce apoptotic cell death in various types of cancer cells. Yet, the inhibitory effect of Dp on human glioma cells remains uninvestigated. Therefore, in the present study, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to detect cell viability and cell cycle progression in glioma U87MG and T98G cells, respectively. Annexin V-FITC/propidium iodide double staining and JC-1 staining were separately applied to determine cellular apoptosis and mitochondrial membrane potential damage in the cells. The expression levels of associated proteins involved in cell cycle progression and apoptosis were measured by western blotting. The activities of caspase‑9/-3 were determined by Caspase-Glo-9/3 assay. The results indicated that Dp treatment significantly inhibited cell proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at the G1/S phase in the U87MG and T98G cells via the upregulation of p53 and p21 protein expression, and simultaneous downregulation of Cdc25A, Cdc2 and P-Cdc2 protein expression. Additionally, Dp treatment led to the loss of cellular mitochondrial membrane potential, and the release of cytochrome c, and strongly induced the occurence of apoptosis. Increased expression levels of Bim and Bax protein and the downregulated expression of Bcl-2 protein were observed. Caspase-9/-3 were activated and their activities were elevated after Dp treatment. These findings indicate that Dp inhibits cell proliferation, induces cell cycle arrest and apoptosis in glioma cells, and is a possible candidate for glioma treatment. PMID:26846469

  9. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  10. Gossypol Induced Cell Death in DU 145 Prostate Cancer Cells

    OpenAIRE

    Kennelly, Susan

    2010-01-01

    Cancer Biology Tumourigenesis is a multistep process which includes the transformation of healthy cells into extremely malignant cells, caused by the disruption of normal tissue homeostasis. Hanahan and Weinberg propose that there are a common set of 'acquired capabilities' that most if not all cancers posses's in order to survive and proliferate despite changes in their normal cell physiology during cancer development (Hanahan and Weinberg, 2000). These "Hallmarks of Cancer", according to...

  11. Acanthamoeba induces cell-cycle arrest in host cells

    OpenAIRE

    Sissons, J.; Alsam, S.; Jayasekera, S.; Kim, K S; Stins, M; Khan, Naveed Ahmed

    2004-01-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed seve...

  12. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    Science.gov (United States)

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells. PMID:25650339

  13. Mechanisms of radiation-induced neoplastic cell transformation

    International Nuclear Information System (INIS)

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table

  14. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    International Nuclear Information System (INIS)

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis

  15. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  16. Oxidative stress in NSC-741909-induced apoptosis of cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2010-04-01

    Full Text Available Abstract Background NSC-741909 is a novel anticancer agent that can effectively suppress the growth of several cell lines derived from lung, colon, breast, ovarian, and kidney cancers. We recently showed that NSC-741909-induced antitumor activity is associated with sustained Jun N-terminal kinase (JNK activation, resulting from suppression of JNK dephosphorylation associated with decreased protein levels of MAPK phosphatase-1. However, the mechanisms of NSC-741909-induced antitumor activity remain unclear. Because JNK is frequently activated by oxidative stress in cells, we hypothesized that reactive oxygen species (ROS may be involved in the suppression of JNK dephosphorylation and the cytotoxicity of NSC-741909. Methods The generation of ROS was measured by using the cell-permeable nonfluorescent compound H2DCF-DA and flow cytometry analysis. Cell viability was determined by sulforhodamine B assay. Western blot analysis, immunofluorescent staining and flow cytometry assays were used to determine apoptosis and molecular changes induced by NSC-741909. Results Treatment with NSC-741909 induced robust ROS generation and marked MAPK phosphatase-1 and -7 clustering in NSC-741909-sensitive, but not resistant cell lines, in a dose- and time-dependent manner. The generation of ROS was detectable as early as 30 min and ROS levels were as high as 6- to 8-fold above basal levels after treatment. Moreover, the NSC-741909-induced ROS generation could be blocked by pretreatment with antioxidants, such as nordihydroguaiaretic acid, aesculetin, baicalein, and caffeic acid, which in turn, inhibited the NSC-741909-induced JNK activation and apoptosis. Conclusion Our results demonstrate that the increased ROS production was associated with NSC-741909-induced antitumor activity and that ROS generation and subsequent JNK activation is one of the primary mechanisms of NSC-741909-mediated antitumor cell activity.

  17. CSR1 induces cell death through inactivation of CPSF3.

    Science.gov (United States)

    Zhu, Z-H; Yu, Y P; Shi, Y-K; Nelson, J B; Luo, J-H

    2009-01-01

    CSR1 (cellular stress response 1), a newly characterized tumor-suppressor gene, undergoes hypermethylation in over 30% of prostate cancers. Re-expression of CSR1 inhibits cell growth and induces cell death, but the mechanism by which CSR1 suppresses tumor growth is not clear. In this study, we screened a prostate cDNA library using a yeast two-hybrid system and found that the cleavage and polyadenylation-specific factor 3 (CPSF3), an essential component for converting heteronuclear RNA to mRNA, binds with high affinity to the CSR1 C terminus. Further analyses determined that the binding motifs for CPSF3 are located between amino acids 440 and 543. The interaction between CSR1 and CPSF3 induced CPSF3 translocation from the nucleus to the cytoplasm, resulting in inhibition of polyadenylation both in vitro and in vivo. Downregulation of CPSF3 using small interfering RNA induced cell death in a manner similar to CSR1 expression. A CSR1 mutant unable to bind to CPSF3 did not alter CPSF3 subcellular distribution, did not inhibit its polyadenylation activity and did not induce cell death. In summary, CSR1 appears to induce cell death through a novel mechanism by hijacking a critical RNA processing enzyme. PMID:18806823

  18. Apoptosis induced by dioscin in Hela cells.

    Science.gov (United States)

    Cai, Jing; Liu, Mingjie; Wang, Zhao; Ju, Yong

    2002-02-01

    Dioscin, a saponin extracted from the root of Polygonatum Zanlanscianense Pamp, markedly inhibited proliferation of Hela cells. The results indicated that Hela cells underwent apoptosis in dose- and time-dependent manners when treated with Dioscin. Caspase-3, -8 and -9 activities were also detected. The low enzymatic activity of caspase-8 and high activity of caspase-9 showed that the mitochondrial pathway was activated in apoptosis. The reduced expression of the survival protein Bcl-2 also confirmed this result. These studies may be significant in finding a new drug to treat human cervical cancer. PMID:11853164

  19. Quantification of depletion-induced adhesion of Red Blood Cells

    CERN Document Server

    Steffen, Patrick; Wagner, Christian

    2012-01-01

    Red blood cells (RBC) are known to form aggregates in the forms of rouleaux due to the presence of plasma proteins under physiological conditions. Rouleaux formation can be also induced in vitro by the addition of macromolecules to the RBC solution. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly rely on indirect measurements like flow chamber experiments, but on the single cell level data is lacking. Here we present measurements on the dextran induced aggregation of red blood cells by use of atomic force microscopy based single cell force spectroscopy (SCFS). The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs was determined. The results are in good agreement with a model based on the depletion effect and former experimental studies.

  20. Quantification of Depletion-Induced Adhesion of Red Blood Cells

    Science.gov (United States)

    Steffen, P.; Verdier, C.; Wagner, C.

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow.

  1. Th1 and Th17 cells induce proliferative glomerulonephritis.

    Science.gov (United States)

    Summers, Shaun A; Steinmetz, Oliver M; Li, Ming; Kausman, Joshua Y; Semple, Timothy; Edgtton, Kristy L; Borza, Dorin-Bogdan; Braley, Hal; Holdsworth, Stephen R; Kitching, A Richard

    2009-12-01

    Th1 effector CD4+ cells contribute to the pathogenesis of proliferative and crescentic glomerulonephritis, but whether effector Th17 cells also contribute is unknown. We compared the involvement of Th1 and Th17 cells in a mouse model of antigen-specific glomerulonephritis in which effector CD4+ cells are the only components of adaptive immunity that induce injury. We planted the antigen ovalbumin on the glomerular basement membrane of Rag1(-/-) mice using an ovalbumin-conjugated non-nephritogenic IgG1 monoclonal antibody against alpha3(IV) collagen. Subsequent injection of either Th1- or Th17-polarized ovalbumin-specific CD4+ effector cells induced proliferative glomerulonephritis. Mice injected with Th1 cells developed progressive albuminuria over 21 d, histologic injury including 5.5 +/- 0.9% crescent formation/segmental necrosis, elevated urinary nitrate, and increased renal NOS2, CCL2, and CCL5 mRNA. Mice injected with Th17 cells developed albuminuria by 3 d; compared with Th1-injected mice, their glomeruli contained more neutrophils and greater expression of renal CXCL1 mRNA. In conclusion, Th1 and Th17 effector cells can induce glomerular injury. Understanding how these two subsets mediate proliferative forms of glomerulonephritis may lead to targeted therapies. PMID:19820122

  2. Cytokine-induced killer cell transplantation: an innovative adoptive therapy

    Directory of Open Access Journals (Sweden)

    Binh Thanh Vu

    2016-03-01

    Full Text Available Cytokine-induced killer (CIK cells areeffector immune cells with anti-tumor potency of T lymphocytes as well as non-major histocompatibility complex restricted elimination of natural killer cells. Preclinical models have shown that CIK cells have strong anti-tumor killing capacity against a variety of blood cancers and solid tumors. Clinical studies confirm the advantages of CIK cells, including the safety of CIK cell therapy in patients with advanced cancer. A preeminent property of CIK cells, which may help them to overcome some of the limitations of other adoptive immunotherapy strategies, is their ability to be expanded ex vivo to high numbers. Their robust in vitro proliferation provides adequate quantity for multiple adoptive infusions. The tumor-killing capacity of CIK cells is mainly based on the interaction between NKG2D molecules on CIK cells and MIC A/B or ULBP molecules on tumor cells. Moreover, CIK cells have a reduced allo-reactivity across HLA-barriers. This review summarizes the clinical applications of CIK cells and updates of combining CIK cells with other therapies. This review highlights the benefits of CIK cell use in clinical treatment of cancer. [Biomed Res Ther 2016; 3(3.000: 533-541

  3. Current progress and prospects of induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Induced pluripotent stem(iPS) cells are derived from somatic cells by ectopic expression of few transcription factors.Like embryonic stem(ES) cells,iPS cells are able to self-renew indefinitely and to differentiate into all types of cells in the body.iPS cells hold great promise for regenerative medicine,because iPS cells circumvent not only immunological rejection but also ethical issues.Since the first report on the derivation of iPS cells in 2006,many laboratories all over the world started research on iPS cells and have made significant progress.This paper reviews recent progress in iPS cell research,including the methods to generate iPS cells,the molecular mechanism of reprogramming in the formation of iPS cells,and the potential applications of iPS cells in cell replacement therapy.Current problems that need to be addressed and the prospects for iPS research are also discussed.

  4. Sulbutiamine counteracts trophic factor deprivation induced apoptotic cell death in transformed retinal ganglion cells.

    Science.gov (United States)

    Kang, Kui Dong; Majid, Aman Shah Abdul; Kim, Kyung-A; Kang, Kyungsu; Ahn, Hong Ryul; Nho, Chu Won; Jung, Sang Hoon

    2010-11-01

    Sulbutiamine is a highly lipid soluble synthetic analogue of vitamin B(1) and is used clinically for the treatment of asthenia. The aim of our study was to demonstrate whether sulbutiamine is able to attenuate trophic factor deprivation induced cell death to transformed retinal ganglion cells (RGC-5). Cells were subjected to serum deprivation for defined periods and sulbutiamine at different concentrations was added to the cultures. Various procedures (e.g. cell viability assays, apoptosis assay, reactive oxygen species analysis, Western blot analysis, flow cytometric analysis, glutathione (GSH) and glutathione-S-transferase (GST) measurement) were used to demonstrate the effect of sulbutiamine. Sulbutiamine dose-dependently attenuated apoptotic cell death induced by serum deprivation and stimulated GSH and GST activity. Moreover, sulbutiamine decreased the expression of cleaved caspase-3 and AIF. This study demonstrates for the first time that sulbutiamine is able to attenuate trophic factor deprivation induced apoptotic cell death in neuronal cells in culture. PMID:20809085

  5. Difference of cell cycle arrests induced by lidamycin in human breast cancer cells.

    Science.gov (United States)

    Liu, Xia; He, Hongwei; Feng, Yun; Zhang, Min; Ren, Kaihuan; Shao, Rongguang

    2006-02-01

    Lidamycin (LDM) is a member of the enediyne antibiotic family. It is undergoing phase I clinical trials in China as a potential chemotherapeutic agent. In the present study, we investigated the mechanism by which LDM induced cell cycle arrest in human breast cancer cells. The results showed that LDM induced G1 arrest in p53 wild-type MCF-7 cells at low concentrations, and caused both G1 and G2/M arrests at higher concentrations. In contrast, LDM induced only G2/M arrest in p53-mutant MCF-7/DOX cells. Western blotting analysis indicated that LDM-induced G1 and G2/M arrests in MCF-7 cells were associated with an increase of p53 and p21, and a decrease of phosphorylated retinoblastoma tumor suppressor protein, cyclin-dependent kinase (Cdk), Cdc2 and cyclin B1 protein levels. However, LDM-induced G2/M arrest in MCF-7/DOX cells was correlated with the reduction of cyclin B1 expression. Further study indicated that the downregulation of cyclin B1 by LDM in MCF-7 cells was associated with decreasing cyclin B1 mRNA levels and promoting protein degradation, whereas it was only due to inducing cyclin B1 protein degradation in MCF-7/DOX cells. In addition, activation of checkpoint kinases Chk1 or Chk2 maybe contributed to LDM-induced cell cycle arrest. Taken together, we provide the first evidence that LDM induces different cell cycle arrests in human breast cancer cells, which are dependent on drug concentration and p53 status. These findings are helpful in understanding the molecular anti-cancer mechanisms of LDM and support its clinical trials. PMID:16428935

  6. Ischemia-induced neural stem/progenitor cells express pyramidal cell markers

    NARCIS (Netherlands)

    Clausen, Martijn; Nakagomi, Takayuki; Nakano-Doi, Akiko; Saino, Orie; Takata, Masashi; Taguchi, Akihiko; Luiten, Paul; Matsuyama, Tomohiro

    2011-01-01

    Adult brain-derived neural stem cells have acquired a lot of interest as an endurable neuronal cell source that can be used for central nervous system repair in a wide range of neurological disorders such as ischemic stroke. Recently, we identified injury-induced neural stem/progenitor cells in the

  7. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  8. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  9. Heterogeneity in predisposition of hepatic cells to be induced into pancreatic endocrine cells by PDX-1

    Institute of Scientific and Technical Information of China (English)

    Shun Lu; Wei-Ping Wang; Xiao-Fei Wang; Zong-Mei Zheng; Ping Chen; Kang-Tao Ma; Chun-Yan Zhou

    2005-01-01

    AIM: The role of Pancreatic and Duodenal Homeobox-1(PDX-1) as a major regulator of pancreatic development determines the function and phenotype of β cell. In this study, potential plasticity of liver cells into pancreatic endocrine cells induced by PDX-1 was evaluated.METHODS: Human hepatoma cell line HepG2 was stably transfected with mammalian expression plasmid pcDNA3-PDX encoding human PDX-1 gene. Ectopic expression of PDX-1 and insulin were detected by RT-PCR,Western blot and/or immunostaining. PDX-1+ HepG2 cells were transplanted under renal capsule of STZ-induced diabetic nude mice (n = 16) to examine the inducing effect in vivo.RESULTS: Exogenous PDX-1 transgene was proved to express effectively in HepG2 cell at both mRNA and protein levels. The expression of endogenous insulin and some βcell-specific differentiation markers and transcription factors were not induced in PDX-1+ HepG2 cells. When transplanted under renal capsule of STZ-induced diabetic nude mice, PDX-1+ HepG2 cells did not generate insulinproducing cells. These data indicated that stable transfected PDX-1 could not convert hepatoma cell line HepG2 to pancreatic cells in vitro or in vivo. Mature hepatocytes might need much more complicated or rigorous conditions to be shifted to insulin-producing cells.CONCLUSION: The expression of exogenous PDX-1 is not sufficient to induce relatively mature hepatocytes differentiating into insulin-producing cells.

  10. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death

    OpenAIRE

    Lilibeth Lanceta; Mattingly, Jacob M.; Chi Li; Eaton, John W.

    2015-01-01

    Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1) but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer) and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by "loose" (probably in...

  11. Characterization of chlorpyrifos-induced apoptosis in placental cells

    International Nuclear Information System (INIS)

    The mechanism by which chlorpyrifos exerts its toxicity in fetal and perinatal animals has yet to be elucidated. Since the placenta is responsible for transport of nutrients and is a major supplier hormone to the fetus, exposure to xenobiotics that alter the function or viability of placenta cells could ostensibly alter the development of the fetus. In this study, JAR cells were used to determine if CPF and the metabolites 3,5,6-trichloro-2-pyridinol (TCP) and chlorpyrifos-oxon (CPO) are toxic to the placenta. Our results indicate that chlorpyrifos (CPF), and its metabolite chlorpyrifos-oxon (CPO) caused a dose-dependent reduction in cellular viability with CPF being more toxic than its metabolites. Chlorpyrifos-induced toxicity was characterized by the loss of mitochondrial potential, the appearance of nuclear condensation and fragmentation, down-regulation of Bcl-2 as well as up-regulation of TNFα and FAS mRNA. Pharmacological inhibition of FAS, nicotinic and TNF-α receptors did not attenuate CPF-induced toxicity. Atropine exhibited minimal ability to reverse toxicity. Furthermore, signal transduction inhibitors PD98059, SP600125, LY294002 and U0126 failed to attenuate toxicity; however, SB202190 (inhibitor of p38α and p38ss MAPK) sensitized cells to CPF-induced toxicity. Pan-caspase inhibitor Q-VD-OPh produced a slight but significant reversal of CPF-induced toxicity indicating that the major caspase pathways are not integral to CPF-induced toxicity. Taken collectively, these results suggest that chlorpyrifos induces apoptosis in placental cells through pathways not dependent on FAS/TNF signaling, activation of caspases or inhibition of cholinesterase. In addition, our data further indicates that activation of p38 MAPK is integral to the protection cells against CPF-induced injury

  12. Therapeutic opportunities: Telomere maintenance in inducible pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gourronc, Francoise A. [Department of Microbiology, University of Iowa (United States); Klingelhutz, Aloysius J., E-mail: al-klingelhutz@uiowa.edu [Department of Microbiology, University of Iowa (United States)

    2012-02-01

    It has been demonstrated that exogenous expression of a combination of transcription factors can reprogram differentiated cells such as fibroblasts and keratinocytes into what have been termed induced pluripotent stem (iPS) cells. These iPS cells are capable of differentiating into all the tissue lineages when placed in the right environment and, in the case of mouse cells, can generate chimeric mice and be transmitted through the germline. Safer and more efficient methods of reprogramming are rapidly being developed. Clearly, iPS cells present a number of exciting possibilities, including disease modeling and therapy. A major question is whether the nuclei of iPS cells are truly rejuvenated or whether they might retain some of the marks of aging from the cells from which they were derived. One measure of cellular aging is the telomere. In this regard, recent studies have demonstrated that telomeres in iPS cells may be rejuvenated. They are not only elongated by reactivated telomerase but they are also epigenetically modified to be similar but not identical to embryonic stem cells. Upon differentiation, the derivative cells turn down telomerase, the telomeres begin to shorten again, and the telomeres and the genome are returned to an epigenetic state that is similar to normal differentiated somatic cells. While these preliminary telomere findings are promising, the overall genomic integrity of reprogrammed cells may still be problematic and further studies are needed to examine the safety and feasibility of using iPS cells in regenerative medicine applications.

  13. Therapeutic opportunities: Telomere maintenance in inducible pluripotent stem cells

    International Nuclear Information System (INIS)

    It has been demonstrated that exogenous expression of a combination of transcription factors can reprogram differentiated cells such as fibroblasts and keratinocytes into what have been termed induced pluripotent stem (iPS) cells. These iPS cells are capable of differentiating into all the tissue lineages when placed in the right environment and, in the case of mouse cells, can generate chimeric mice and be transmitted through the germline. Safer and more efficient methods of reprogramming are rapidly being developed. Clearly, iPS cells present a number of exciting possibilities, including disease modeling and therapy. A major question is whether the nuclei of iPS cells are truly rejuvenated or whether they might retain some of the marks of aging from the cells from which they were derived. One measure of cellular aging is the telomere. In this regard, recent studies have demonstrated that telomeres in iPS cells may be rejuvenated. They are not only elongated by reactivated telomerase but they are also epigenetically modified to be similar but not identical to embryonic stem cells. Upon differentiation, the derivative cells turn down telomerase, the telomeres begin to shorten again, and the telomeres and the genome are returned to an epigenetic state that is similar to normal differentiated somatic cells. While these preliminary telomere findings are promising, the overall genomic integrity of reprogrammed cells may still be problematic and further studies are needed to examine the safety and feasibility of using iPS cells in regenerative medicine applications.

  14. Recombinant soluble TRAIL induces apoptosis of cancer cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    TRAIL is a tumor necrosis factor family member that selectively induces apoptosis of cancer cells but not of normal cells. To develop TRAIL into a potential cancer drug, three different sizes of soluble TRAIL fragments, including sTRAIL(74-281), sTRAIL(95-281) and sTRAIL(101-281), were expressed in E. coli and purified to homogeneity. Apoptosis assays indicated that sTRAIL(95-281) and sTRAIL(101-281), but not sTRAIL(74-281), can potently induce apoptosis of various cancer cell lines in 6 h, suggesting that the N-terminal fragment of aa101 has inhibitory effect on TRAIL-induced apoptosis. Moreover, we found that some cancer cells were resistant to TRAIL and the resistant cells could be converted into sensitive cells by treatment with the protein synthesis inhibitor cycloheximide, suggesting that one or more short-lived proteins are responsible for cells' resistance to TRAIL.

  15. Bax-induced cell death in Candida albicans.

    Science.gov (United States)

    De Smet, Kris; Eberhardt, Ines; Reekmans, Rieka; Contreras, Roland

    2004-12-01

    Bax is a pro-apoptotic member of the Bcl-2 family of proteins involved in the regulation of genetically programmed cell death in mammalian cells. It has been shown that heterologous expression of Bax in several yeast species, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe and Pichia pastoris, also induces cell death. In this study we investigated the effects of Bax expression in the pathogenic yeast Candida albicans. Cell death inducing expression of Bax required a synthetic BAX gene that was codon-optimized for expression in Candida albicans. Expression of this BAX gene resulted in growth inhibition and cell death. By fusing Bax with the yeast enhanced green fluorescent protein of Aequoria victoria, the cell death-inducing effect of Bax was increased due to reduced proteolytic degradation of Bax. Using this fusion protein we showed that, upon expression in C. albicans, Bax co-localizes with the mitochondria. Furthermore, we showed for the first time that expression of Bax in yeast causes the mitochondria, which are normally distributed throughout the cell, to cluster in the perinuclear region. PMID:15565645

  16. Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro

    Directory of Open Access Journals (Sweden)

    Shan Yanchang

    2008-02-01

    Full Text Available Abstract Background Schwann cells (SC which are myelin-forming cells in peripheral nervous system are very useful for the treatment of diseases of peripheral nervous system and central nervous system. However, it is difficult to obtain sufficient large number of SC for clinical use, so alternative cell systems are desired. Results Using a procedure similar to the one used for propagation of neural stem cells, we could induce rat adipose-derived stem cells (ADSC into floating neurospheres. In addition to being able to differentiate into neuronal- and glial-like cells, neurospheres could be induced to differentiate into SC-like cells. SC-like cells were bi- or tri-polar in shape and immunopositive for nestin and SC markers p75, GFAP and S-100, identical to genuine SC. We also found that SC-like cells could induce the differentiation of SH-SY5Y neuroblastoma cells efficiently, perhaps through secretion of soluble substances. We showed further that SC-like cells could form myelin structures with PC12 cell neurites in vitro. Conclusion These findings indicated that ADSC could differentiate into SC-like cells in terms of morphology, phenotype and functional capacities. SC-like cells induced from ADSC may be useful for the treatment of neurological diseases.

  17. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo

    OpenAIRE

    Yadav, Mahesh; Louvet, Cedric; Davini, Dan; Gardner, James M.; Martinez-Llordella, Marc; Bailey-Bucktrout, Samantha; Anthony, Bryan A.; Sverdrup, Francis M; Head, Richard; Kuster, Daniel J.; Ruminski, Peter; Weiss, David; von Schack, David; Bluestone, Jeffrey A.

    2012-01-01

    Foxp3+ CD4+ T helper cells called regulatory T (T reg) cells play a key role in controlling reactivity to self-antigens and onset of autoimmunity. T reg cells either arise in thymus and are called natural T reg (nT reg) cells or are generated in the periphery through induction of Foxp3 and are called inducible T reg (iT reg) cells. The relative contributions of iT reg cells and nT reg cells in peripheral tolerance remain unclear as a result of an inability to separate these two subsets of T r...

  18. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC).

    Science.gov (United States)

    Huh, Sung Woo; Shetty, Asode Ananthram; Ahmed, Saif; Lee, Dong Hwan; Kim, Seok Jung

    2016-01-01

    Degenerative and traumatic articular cartilage defects are common, difficult to treat, and progressive lesions that cause significant morbidity in the general population. There have been multiple approaches to treat such lesions, including arthroscopic debridement, microfracture, multiple drilling, osteochondral transplantation and autologous chondrocyte implantation (ACI) that are currently being used in clinical practice. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) is a single-staged arthroscopic procedure. This method combines a modified microfracture technique with the application of a bone marrow aspirate concentrate (BMAC), hyaluronic acid and fibrin gel to treat articular cartilage defects. We reviewed the current literatures and surgical techniques for mesenchymal cell induced chondrogenesis. PMID:27489409

  19. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Directory of Open Access Journals (Sweden)

    Laila Ziko

    2015-01-01

    Full Text Available Cisplatin (CisPt is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2 cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death. Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death.

  20. Induced pluripotent stem cells, from generation to application: review article

    Directory of Open Access Journals (Sweden)

    Sharif Moradi

    2014-11-01

    Full Text Available Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation, these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells that are derived from embryonic stem cells is allogenic, they face the problem of immune rejection following the transplantation of embryonic stem cell-derived cells into patients. In 2006, researchers from Japan reported the derivation of a new type of pluripotent stem cells which could overcome the problem of immune rejection that is associated with the application of embryonic stem cells. They designated these cells as induced pluripotent stem (iPS cells, because their production was ‘induced’ from differentiated somatic cells using a combination of four embryonic stem cell-associated transcription factors. Importantly, these pluripotent stem cells exhibit all the key features of embryonic stem cells including unlimited self-renewal and multi-lineage differentiation potential, and can pass the most stringent test of pluripotency which is known as the tetraploid (4n complementation. Hence, in addition to bypassing the problem of immune rejection, iPS cells have all of the potential applications of embryonic stem cells, including in developmental studies, toxicology research, drug discovery and disease modeling. Also, considering that they could be generated from patient’s own cells, iPS cells hold great promise in the future of patient-specific cell replacement therapies using pluripotent stem cells. In this review article, we will present a comprehensive review on the how and why of the generation of iPS cell from somatic cells of the body and discuss how they should be characterized in terms of morphologically, pluripotent stem cell behavior, and

  1. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  2. Targeting early B-cell receptor signaling induces apoptosis in leukemic mantle cell lymphoma

    Directory of Open Access Journals (Sweden)

    Boukhiar Mohand-Akli

    2013-02-01

    Full Text Available Abstract Background We previously showed that B-cell receptor (BCR signaling pathways are important for in vitro survival of mantle cell lymphoma (MCL cells. To further identify early BCR-activated signaling pathways involved in MCL cell survival, we focused our study on BCR-proximal kinases such as LYN whose dysregulations could contribute to the aggressive course of MCL. Methods Primary MCL cells were isolated from 14 leukemic patients. Early BCR-induced genes were identified by qRT-PCR array. The basal and BCR-induced phosphorylation of LYN and JNK were evaluated by immunoblottting. Cell survival signals were evaluated by apoptosis using flow cytometry. Results We showed that LYN was constitutively phosphorylated in MCL cell lines and in 9/10 leukemic MCL cases. Treatment with dasatinib or with a specific inhibitor of Src kinases such as PP2 suppressed constitutive LYN activation and increased in vitro spontaneous apoptosis of primary MCL cells. BCR engagement resulted in an increase of LYN phosphorylation leading to activation of c-JUN NH2-terminal kinase (JNK and over-expression of the early growth response gene-1 (EGR-1. Inhibition of JNK with SP600125 induced apoptosis and reduced level of basal and BCR-induced expression of EGR-1. Furthermore, decreasing EGR1 expression by siRNA reduced BCR-induced cell survival. Treatment with PP2 or with dasatinib suppressed BCR-induced LYN and JNK phosphorylation as well as EGR-1 upregulation and is associated with a decrease of cell survival in all cases analysed. Conclusions This study highlights the importance of BCR signaling in MCL cell survival and points out to the efficiency of kinase inhibitors in suppressing proximal BCR signaling events and in inducing apoptosis.

  3. The calcimimetic R-568 induces apoptotic cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Cheng Guangming

    2009-07-01

    Full Text Available Abstract Background Increased serum level of parathyroid hormone (PTH was found in metastatic prostate cancers. Calcimimetic R-568 was reported to reduce PTH expression, to suppress cell proliferation and to induce apoptosis in parathyroid cells. In this study, we investigated the effect of R-568 on cellular survival of prostate cancer cells. Methods Prostate cancer cell lines LNCaP and PC-3 were used in this study. Cellular survival was determined with MTT, trypan blue exclusion and fluorescent Live/Death assays. Western blot assay was utilized to assess apoptotic events induced by R-568 treatment. JC-1 staining was used to evaluate mitochondrial membrane potential. Results In cultured prostate cancer LNCaP and PC-3 cells, R-568 treatment significantly reduced cellular survival in a dose- and time-dependent manner. R-568-induced cell death was an apoptotic event, as evidenced by caspase-3 processing and PARP cleavage, as well as JC-1 color change in mitochondria. Knocking down calcium sensing receptor (CaSR significantly reduced R-568-induced cytotoxicity. Enforced expression of Bcl-xL gene abolished R-568-induced cell death, while loss of Bcl-xL expression led to increased cell death in R-568-treated LNCaP cells,. Conclusion Taken together, our data demonstrated that calcimimetic R-568 triggers an intrinsic mitochondria-related apoptotic pathway, which is dependent on the CaSR and is modulated by Bcl-xL anti-apoptotic pathway.

  4. Inhibition of inducible heat shock protein-70 (hsp72 enhances bortezomib-induced cell death in human bladder cancer cells.

    Directory of Open Access Journals (Sweden)

    Wei Qi

    Full Text Available The proteasome inhibitor bortezomib (Velcade is a promising new agent for bladder cancer therapy, but inducible cytoprotective mechanisms may limit its potential efficacy. We used whole genome mRNA expression profiling to study the effects of bortezomib on stress-induced gene expression in a panel of human bladder cancer cell lines. Bortezomib induced strong upregulation of the inducible HSP70 isoforms HSPA1A and HSPA1B isoforms of Hsp72 in 253J B-V and SW780 (HSPA1A(high cells, but only induced the HSPA1B isoform in UM-UC10 and UM-UC13 (HSPA1A(low cells. Bortezomib stimulated the binding of heat shock factor-1 (HSF1 to the HSPA1A promoter in 253JB-V but not in UM-UC13 cells. Methylation-specific PCR revealed that the HSPA1A promoter was methylated in the HSPA1A(low cell lines (UM-UC10 and UM-UC13, and exposure to the chromatin demethylating agent 5-aza-2'-deoxycytidine restored HSPA1A expression. Overexpression of Hsp72 promoted bortezomib resistance in the UM-UC10 and UM-UC13 cells, whereas transient knockdown of HSPA1B further sensitized these cells to bortezomib, and exposure to the chemical HSF1 inhibitor KNK-437 promoted bortezomib sensitivity in the 253J B-V cells. Finally, shRNA-mediated stable knockdown of Hsp72 in 253J B-V promoted sensitivity to bortezomib in vitro and in tumor xenografts in vivo. Together, our results provide proof-of-concept for using Hsp72 inhibitors to promote bortezomib sensitivity in bladder cancers and suggest that selective targeting of HSPA1B could produce synthetic lethality in tumors that display HSPA1A promoter methylation.

  5. Induced pluripotent stem cells:origins, applications, and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Jing ZHAO; Wen-jie JIANG; Chen SUN; Cong-zhe HOU; Xiao-mei YANG; Jian-gang GAO

    2013-01-01

    Embryonic stem (ES) cells are widely used for different purposes, including gene targeting, celltherapy, tissue repair, organ regeneration, and so on. However, studies and applications of ES cells are hindered by ethical issues regarding cellsources. To circumvent ethical disputes, great efforts have been taken to generate ES cel-like cells, which are not derived from the inner cellmass of blastocyst-stage embryos. In 2006, Yamanaka et al. first re-programmed mouse embryonic fibroblasts into ES cell-like cells cal ed induced pluripotent stem (iPS) cells. About one year later, Yamanaka et al. and Thomson et al. independently reprogrammed human somatic cells into iPS cells. Since the first generation of iPS cells, they have now been derived from quite a few different kinds of celltypes. In particular, the use of peripheral blood facilitates research on iPS cells because of safety, easy availability, and plenty of cellsources. Now iPS cells have been used for celltherapy, disease modeling, and drug discovery. In this review, we describe the generations, applications, potential issues, and future perspectives of iPS cells.

  6. Current progress and prospects of induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    CHEN LingYi; Liu Lin

    2009-01-01

    Induced pluripotent stem (iPS) cells are derived from somatic cells by ectopic expression of few transcription factors. Like embryonic stem (ES) cells, iPS cells are able to self-renew indefinitely and to differentiate into all types of cells in the body. iPS cells hold great promise for regenerative medicine,because iPS ceils circumvent not only immunological rejection but also ethical issues. Since the first report on the derivation of iPS cells in 2006, many laboratories all over the world started research on iPS cells and have made significant progress. This paper reviews recent progress in iPS cell research,Including the methods to generate iPS cells, the molecular mechanism of reprogramming in the formation of iPS ceils, and the potential applications of iPS cells in cell replacement therapy. Current problems that need to be addressed and the prospects for iPS research are also discussed.

  7. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth.

    Science.gov (United States)

    Martin, Claire; Lafosse, Jean-Michel; Malavaud, Bernard; Cuvillier, Olivier

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK. PMID:19932089

  8. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    International Nuclear Information System (INIS)

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  9. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Claire [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); Lafosse, Jean-Michel [CHU Toulouse, Hopital Rangueil, Service d' orthopedie et Traumatologie, Toulouse F-31000 (France); Malavaud, Bernard [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); CHU Toulouse, Hopital Rangueil, Service d' Urologie et de Transplantation Renale, Toulouse F-31000 (France); Cuvillier, Olivier, E-mail: olivier.cuvillier@ipbs.fr [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France)

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  10. Lignin Induces ES Cells to Differentiate into Neuroectodermal Cells through Mediation of the Wnt Signaling Pathway

    Science.gov (United States)

    Inoue, Yu; Hasegawa, Seiji; Yamada, Takaaki; Date, Yasushi; Mizutani, Hiroshi; Nakata, Satoru; Akamatsu, Hirohiko

    2013-01-01

    Embryonic stem cells (ES cells) are characterized by their pluripotency and infinite proliferation potential. Ever since ES cells were first established in 1981, there have been a growing number of studies aimed at clinical applications of ES cells. In recent years, various types of differentiation inducement systems using ES cells have been established. Further studies have been conducted to utilize differentiation inducement systems in the field of regenerative medicine. For cellular treatments using stem cells including ES cells, differentiation induction should be performed in a sufficient manner to obtain the intended cell lineages. Lignin is a high-molecular amorphous material that forms plants together with cellulose and hemicelluloses, in which phenylpropane fundamental units are complexly condensed. Lignin derivatives have been shown to have several bioactive functions. In spite of these findings, few studies have focused on the effects of lignin on stem cells. Our study aimed to develop a novel technology using lignin to effectively induce ES cells to differentiate into neuroectodermal cells including ocular cells and neural cells. Since lignin can be produced at a relatively low cost in large volumes, its utilization is expected for more convenient differentiation induction technologies and in the field of regenerative medicine in the future. PMID:23805217

  11. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolan, E-mail: huxiaolan1998@yahoo.com.cn [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Zhang, Xianqi [The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou (China); Qiu, Shuifeng [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Yu, Daihua; Lin, Shuxin [Fourth Military Medical University, Xi' an (China)

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  12. Ultraviolet-induced cell death is independent of DNA replication in rat kangeroo cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyaji, E.N.; Menck, C.F.M. [Sao Paulo Univ., SP (Brazil). Inst. de Biociencias

    1995-05-01

    Rat kangaroo (Potorous tridactylus) cells have an efficient repair system for photoreactivation of lethal lesions induced by 254 nm UV. However, this ability is lost with increasing time after UV, being completely ineffective after 24 h. Critical events leading to UV-induced cell death must occur within this period of time. DNA synthesis was inhibited by the DNA polymerase inhibitor aphidicolin and the loss of the capability to photorepair lethal lesions was maintained for replicating cells. Similar data were obtained in synchronized cells UV irradiated immediately before S phase. Under the same conditions, the ability to remove cyclobutane pyrimidine dimers by photoreactivation in these cells remained unchanged 24 h after irradiation. These data indicate that the critical events responsible for UV-induced cell death occur in the absence of DNA replication. (author).

  13. Ultraviolet-induced cell death is independent of DNA replication in rat kangeroo cells

    International Nuclear Information System (INIS)

    Rat kangaroo (Potorous tridactylus) cells have an efficient repair system for photoreactivation of lethal lesions induced by 254 nm UV. However, this ability is lost with increasing time after UV, being completely ineffective after 24 h. Critical events leading to UV-induced cell death must occur within this period of time. DNA synthesis was inhibited by the DNA polymerase inhibitor aphidicolin and the loss of the capability to photorepair lethal lesions was maintained for replicating cells. Similar data were obtained in synchronized cells UV irradiated immediately before S phase. Under the same conditions, the ability to remove cyclobutane pyrimidine dimers by photoreactivation in these cells remained unchanged 24 h after irradiation. These data indicate that the critical events responsible for UV-induced cell death occur in the absence of DNA replication. (author)

  14. Cells containing factor XIIIa and pulmonary fibrosis induced by bleomycin.

    OpenAIRE

    Toida, M; Y. Okumura; Takami, T.

    1991-01-01

    To show the clinical importance of cells containing FXIIIa in pulmonary fibrosis induced by bleomycin, the distributions of FXIIIa and collagenous components were investigated immunohistochemically in both normal lung tissues and those affected by bleomycin. In the normal tissues FXIIIa-containing cells were sparse, but they were numerous in the pulmonary fibrotic tissues, especially in the subpleural area and around the blood vessels of alveolar septa, where slight to moderate fibrosis was s...

  15. Induced Pluripotent Stem Cell Lines Derived from Equine Fibroblasts

    OpenAIRE

    Nagy, Kristina; Sung, Hoon-Ki; Zhang, Puzheng; Laflamme, Simon; Vincent, Patrick; Agha-Mohammadi, Siamak; Woltjen, Knut; Monetti, Claudio; Michael, Iacovos Prodromos; Smith, Lawrence Charles; Nagy, Andras

    2011-01-01

    The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure. Equine iPS (EiPS) cells, in addition to bringing promises to the ve...

  16. Shear stress-induced improvement of red blood cell deformability

    OpenAIRE

    Meram, Ece; Yılmaz, Bahar D.; Bas, Ceren; Atac, Nazlı; Yalçın, Ö.; Başkurt, Oguz K.; Meiselman, Herbert J.

    2013-01-01

    Classically, it is known that red blood cell (RBC) deformability is determined by the geometric and material properties of these cells. Experimental evidence accumulated during the last decade has introduced the concept of active regulation of RBC deformability. This regulation is mainly related to altered associations between membrane skeletal proteins and integral proteins, with the latter serving to anchor the skeleton to the lipid matrix. It has been hypothesized that shear stress induces...

  17. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Masaya Nakamura; Hideyuki Okano

    2013-01-01

    Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon,there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science.While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine,safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells.In this review,the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells,and their safety issues in vivo,are outlined.We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.

  18. Bladder cancer cell in co-culture induces human stem cell differentiation to urothelial cells through paracrine FGF10 signaling

    OpenAIRE

    Chung, Seyung S.; Koh, Chester J.

    2013-01-01

    FGF10 is required for embryonic epidermal morphogenesis including brain development, lung morphogenesis, and initiation of limb bud formation. In this study, we investigated the role of FGF10 as a lead induction factor for stem cell differentiation toward urothelial cell. To this end, human multi-potent stem cell in vitro system was employed. Human amniotic fluid stem cells were co-cultured with immortalized bladder cancer lines to induce directed differentiation into urothelial cells. Urothe...

  19. Generation of Pig Induced Pluripotent Stem Cells with a Drug-Inducible System

    Institute of Scientific and Technical Information of China (English)

    Zhao Wu; Jijun Chen; Jiangtao Ren; Lei Bao; Jing Liao; Chun Cui; Linjun Rao; Hui Li; Yijun Gu; Huiming Dai; Hui Zhu; Xiaokun Teng; Lu Cheng; Lei Xiao

    2009-01-01

    Domesticated ungulate pluripotent embryonic stem (ES) cell lines would be useful for generating precise gene-modified animals. To date, many efforts have been made to establish domesticated ungulate pluripotent ES cells from early embryos without success.Here, we report the generation of porcine-induced pluripotent stem (iPS) cells using drug-inducible expression of defined factors.We showed that porcine iPS cells expressed alkaline phosphatase, SSEA3, SSEA4, Tra-1-60, Tra-1-81, Oct3/4, Nanog, Sox2, Rex1 and CDH1. Pig iPS cells expressed high levels of telomerase activity and showed normal karyotypes. These cells could differentiate into cell types of all three germ layers in vitro and in teratomas. Our study reveals properties of porcine pluripotent stem cells that may facilitate the eventual establishment of porcine ES cells. Moreover, the porcine iPS cells produced may be directly useful for the generation of precise gene-modified pigs.

  20. Lysophosphatidate induces chemo-resistance by releasing breast cancer cells from taxol-induced mitotic arrest.

    Directory of Open Access Journals (Sweden)

    Nasser Samadi

    Full Text Available BACKGROUND: Taxol is a microtubule stabilizing agent that arrests cells in mitosis leading to cell death. Taxol is widely used to treat breast cancer, but resistance occurs in 25-69% of patients and it is vital to understand how Taxol resistance develops to improve chemotherapy. The effects of chemotherapeutic agents are overcome by survival signals that cancer cells receive. We focused our studies on autotaxin, which is a secreted protein that increases tumor growth, aggressiveness, angiogenesis and metastasis. We discovered that autotaxin strongly antagonizes the Taxol-induced killing of breast cancer and melanoma cells by converting the abundant extra-cellular lipid, lysophosphatidylcholine, into lysophosphatidate. This lipid stimulates specific G-protein coupled receptors that activate survival signals. METHODOLOGY/PRINCIPAL FINDINGS: In this study we determined the basis of these antagonistic actions of lysophosphatidate towards Taxol-induced G2/M arrest and cell death using cultured breast cancer cells. Lysophosphatidate does not antagonize Taxol action in MCF-7 cells by increasing Taxol metabolism or its expulsion through multi-drug resistance transporters. Lysophosphatidate does not lower the percentage of cells accumulating in G2/M by decreasing exit from S-phase or selective stimulation of cell death in G2/M. Instead, LPA had an unexpected and remarkable action in enabling MCF-7 and MDA-MB-468 cells, which had been arrested in G2/M by Taxol, to normalize spindle structure and divide, thus avoiding cell death. This action involves displacement of Taxol from the tubulin polymer fraction, which based on inhibitor studies, depends on activation of LPA receptors and phosphatidylinositol 3-kinase. CONCLUSIONS/SIGNIFICANCE: This work demonstrates a previously unknown consequence of lysophosphatidate action that explains why autotaxin and lysophosphatidate protect against Taxol-induced cell death and promote resistance to the action of this

  1. Induced pluripotent stem cell technology and stem cell therapy for diabetes (Review)

    OpenAIRE

    DRUMMOND, ROBERT J.; Kunath, Tilo; Mee, P. Joseph; Ross, James A.

    2011-01-01

    Although diabetes can be managed clinically with the use of insulin injections, it remains an incurable and inconvenient disorder. In the long-term, it is associated with a number of clinical complications, such as cardiovascular disease, resulting in a desire for the development of new methodologies to replace defective cells and provide a lasting normality without the need for drug treatment. Stern cells, including induced pluripotent stem cells, offer the possibility of generating cells su...

  2. Protection of Bovine Mammary Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Cell Damage by Resveratrol

    OpenAIRE

    Xiaolu Jin; Kai Wang; Hongyun Liu; Fuliang Hu; Fengqi Zhao; Jianxin Liu

    2016-01-01

    The mammary epithelial cells (MECs) of high-producing dairy cows are likely to be subject to oxidative stress (OS) due to the intensive cell metabolism. The objectives of this study were to investigate the cytoprotective effects of resveratrol against hydrogen peroxide- (H2O2-) induced OS in cultured bovine MECs (MAC-T). Pretreatment of MAC-T cells with resveratrol could rescue the decrease in cell viability and resulted in lower intracellular reactive oxygen species (ROS) accumulation after ...

  3. Generation of induced pluripotent stem cells from human mesenchymal stem cells of parotid gland origin

    OpenAIRE

    Yan, Xing; Xu, Nuo; Meng, Cen; Wang, Bianhong; Yuan, Jinghong; Wang, Caiyun; Li, Yang

    2016-01-01

    The technology to reprogram human somatic cells to pluripotent state allows the generation of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine and autologous transplantation. Here we, for the first time, identified mesenchymal stem cells isolated from parotid gland (hPMSCs) as a suitable candidate for iPSC production. In the present study, hPMSCs were isolated from parotid gland specimens in patients with squamous cell carcinoma of th...

  4. Analysis of cell death inducing compounds

    DEFF Research Database (Denmark)

    Spicker, Jeppe; Pedersen, Henrik Toft; Nielsen, Henrik Bjørn;

    2007-01-01

    Biomarkers for early detection of toxicity hold the promise of improving the failure rates in drug development. In the present study, gene expression levels were measured using full-genome RAE230 version 2 Affymetrix GeneChips on rat liver tissue 48 h after administration of six different compounds......), ornithine aminotransferase (OAT) and Cytochrome P450, subfamily IIC (mephenytoin 4-hydroxylase) (Cyp2C29). RT-PCR for these three genes was performed and four additional compounds were included for validation. The quantitative RT-PCR analysis confirmed the findings based on the microarray data and using the...... three genes a classification rate of 55 of 57 samples was achieved for the classification of not toxic versus toxic. The single most promising biomarker (OAT) alone resulted in a surprisingly 100% correctly classified samples. OAT has not previously been linked to toxicity and cell death in the...

  5. Mipu1 Overexpression Protects Macrophages from oxLDL-Induced Foam Cell Formation and Cell Apoptosis

    OpenAIRE

    Qu, Shun-Lin; Fan, Wen-Jing; Zhang, Chi; Guo, Fang; Han, Dan; Pan, Wen-Jun; Li, Wei; Feng, Da-Ming; JIANG, ZHI-SHENG

    2014-01-01

    Mipu1 (myocardial ischemic preconditioning upregulated protein 1) is a novel N-terminal Kruppel-associated box (KRAB)/C2H2 zinc finger superfamily protein, that displays a powerful effect in protecting H9c2 cells from oxidative stress-induced cell apoptosis. The present study aims to investigate the effect of Mipu1 overexpression on oxidized low-density lipoprotein (oxLDL)-induced foam cell formation, cell apoptosis, and its possible mechanisms. New Zealand healthy rabbits were used to establ...

  6. Oridonin phosphate-induced autophagy effectively enhances cell apoptosis of human breast cancer cells.

    Science.gov (United States)

    Li, Yue; Wang, Ying; Wang, Suihai; Gao, Yanjun; Zhang, Xuefeng; Lu, Chunhua

    2015-01-01

    Oridonin is an active diterpenoid, which was extracted from traditional Chinese herbs and had been widely used in clinical treatment nowadays. Oridonin phosphate is one of the derivatives of oridonin. In the present study, we explored its anti-tumor effect and investigated the molecular mechanism of oridonin phosphate in breast cancer cell lines. Firstly, cell viability was analyzed by MTT assay. The breast cancer cells were treated with increasing concentrations of oridonin phosphate for 24, 48 and 72 h, respectively. The results demonstrated that oridonin phosphate inhibited the proliferation of MDA-MB-436 and MDA-MB-231 cells in a dose- and time-dependent manner. Next, cell apoptosis rate was detected in oridonin phosphate-treated breast cancer cells by Annexin V-FITC/PI dual staining analysis and the data demonstrated that oridonin phosphate induced cell apoptosis of breast cancer cells in time- and dose-dependent manner. Moreover, apoptosis-related proteins were detected by Western blotting analysis. The results showed that the expression level of Bax was up-regulated and the expression level of Bcl-2 was down-regulated. Meanwhile, the level of cleaved caspase-9 was significantly increased when the cells were treated with 40 μM of oridonin phosphate for 48 h, although the expression level of pro-caspase-9 was not obviously changed. All of the data revealed that mitochondrial apoptosis pathway may be involved in the cell apoptosis induced by oridonin phosphate in breast cancer cells. Importantly, the expression levels of autophagy-related protein beclin-1 and LC3-II were significantly higher in oridonin phosphate-treated breast cancer cell lines MDA-MB-436 and MDA-MB-231 for 48 h. Additionally, we further explored the relationship between apoptosis and autophagy specifically induced by oridonin phosphate in breast cancer cells. The result showed that inhibition of autophagy suppressed the cell apoptosis in oridonin phosphate-treated MDA-MB-436 cells. Taken

  7. Apoptosis of smooth muscle cells induced by radiation

    International Nuclear Information System (INIS)

    Objective: To study the effects and mechanism of 188Re on apoptosis of cultured smooth muscle cells (SMCs), and to explore the value of radiation induced SMCs apoptosis for preventing restenosis. Methods: The SMCs cultured in vitro were irradiated by 188Re with different doses. The trypan blue exclusion test, flow cytometry, JAM test, transmission electron microscopy and immunocytochemistry assay were used to investigate the effects of β-particles on apoptosis of SMCs, such as cell viability, cell apoptosis rate, DNA fragmentation, cell ultrastructural changes and related gene expression. Results: There were no significant changes of SMCs viability, cell apoptosis rate, DNA fragmentation and cellular ultrastructure in low-dose irradiation group, compared with control group. High-dose radiation (>2.96 GBq/L) on SMCs showed that viable cell proportion was markedly decreased, while cell apoptosis rate and DNA fragmentation were significantly increased, and cellular ultrastructure was destroyed. The expression of p53, bax gene was up regulated and bcl-2/bax was decreased while SMCs apoptosis occurred. Conclusions: Low-dose radiation on SMCs, which could inhibit completely SMCs proliferation, did not show any effects on cell viability, cell apoptosis rate, cell ultrastructure and DNA fragmentation. High-dose radiation could result in significant SMCs apoptosis. Up-regulated p53, bcl-2 and bax gene took a part in cell apoptosis induced by radiation. Low-dose and low-dose rate radiation appeared to be an ideal intravascular radiotherapy for preventing restenosis, which could not only inhibit SMCs proliferation, but also preserve cell viability and integrity

  8. Tumourigenicity and Immunogenicity of Induced Neural Stem Cell Grafts Versus Induced Pluripotent Stem Cell Grafts in Syngeneic Mouse Brain

    Science.gov (United States)

    Gao, Mou; Yao, Hui; Dong, Qin; Zhang, Hongtian; Yang, Zhijun; Yang, Yang; Zhu, Jianwei; Xu, Minhui; Xu, Ruxiang

    2016-01-01

    Along with the development of stem cell-based therapies for central nervous system (CNS) disease, the safety of stem cell grafts in the CNS, such as induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), should be of primary concern. To provide scientific basis for evaluating the safety of these stem cells, we determined their tumourigenicity and immunogenicity in syngeneic mouse brain. Both iPSCs and embryonic stem cells (ESCs) were able to form tumours in the mouse brain, leading to tissue destruction along with immune cell infiltration. In contrast, no evidence of tumour formation, brain injury or immune rejection was observed with iNSCs, neural stem cells (NSCs) or mesenchymal stem cells (MSCs). With the help of gene ontology (GO) enrichment analysis, we detected significantly elevated levels of chemokines in the brain tissue and serum of mice that developed tumours after ESC or iPSC transplantation. Moreover, we also investigated the interactions between chemokines and NF-κB signalling and found that NF-κB activation was positively correlated with the constantly rising levels of chemokines, and vice versa. In short, iNSC grafts, which lacked any resulting tumourigenicity or immunogenicity, are safer than iPSC grafts. PMID:27417157

  9. Bach1 Induces Endothelial Cell Apoptosis and Cell-Cycle Arrest through ROS Generation

    Science.gov (United States)

    Wang, Xinhong; Liu, Junxu; Jiang, Li; Wei, Xiangxiang; Niu, Cong; Wang, Rui; Zhang, Jianyi; Yao, Kang

    2016-01-01

    The transcription factor BTB and CNC homology 1 (Bach1) regulates genes involved in the oxidative stress response and cell-cycle progression. We have recently shown that Bach1 impairs cell proliferation and promotes apoptosis in cultured endothelial cells (ECs), but the underlying mechanisms are largely uncharacterized. Here we demonstrate that Bach1 upregulation impaired the blood flow recovery from hindlimb ischemia and this effect was accompanied both by increases in reactive oxygen species (ROS) and cleaved caspase 3 levels and by declines in the expression of cyclin D1 in the injured tissues. We found that Bach1 overexpression induced mitochondrial ROS production and caspase 3-dependent apoptosis and its depletion attenuated H2O2-induced apoptosis in cultured human microvascular endothelial cells (HMVECs). Bach1-induced apoptosis was largely abolished when the cells were cultured with N-acetyl-l-cysteine (NAC), a ROS scavenger. Exogenous expression of Bach1 inhibited the cell proliferation and the expression of cyclin D1, induced an S-phase arrest, and increased the expression of cyclin E2, which were partially blocked by NAC. Taken together, our results suggest that Bach1 suppresses cell proliferation and induces cell-cycle arrest and apoptosis by increasing mitochondrial ROS production, suggesting that Bach1 may be a promising treatment target for the treatment of vascular diseases. PMID:27057283

  10. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells.

    Science.gov (United States)

    Freitas, Hercules R; Ferraz, Gabriel; Ferreira, Gustavo C; Ribeiro-Resende, Victor T; Chiarini, Luciana B; do Nascimento, José Luiz M; Matos Oliveira, Karen Renata H; Pereira, Tiago de Lima; Ferreira, Leonardo G B; Kubrusly, Regina C; Faria, Robson X; Herculano, Anderson Manoel; Reis, Ricardo A de Melo

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1-10 mM) showed that 5-10 mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50 mM KCl (labeled as βIII tubulin positive cells). BBG 100 nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70 μM and MK-801 20 μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5 mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  11. Induced maturation of hepatic progenitor cells in vitro

    Directory of Open Access Journals (Sweden)

    Y. Bi

    2013-08-01

    Full Text Available Hepatic progenitor cells (HPCs are a potential cell source for liver cell transplantation but do not function like mature liver cells. We sought an effective and reliable method to induce HPC maturation. An immortalized HP14.5 albumin promoter-driven Gaussian luciferase (ALB-GLuc cell line was established from HPCs isolated from fetal mouse liver of post coitus day 14.5 mice to investigate the effect of induction factors on ALB promoter. HP14.5 parental cells were cultured in DMEM with different combinations of 2% horse serum (HS, 0.1 µM dexamethasone (DEX, 10 ng/mL hepatic growth factor (HGF, and/or 20 ng/mL fibroblast growth factor 4 (FGF4. Trypan blue and crystal violet staining were used to assess cell proliferation with different induction conditions. Expression of hepatic markers was measured by semi-quantitative RT-PCR, Western blot, and immunofluorescence. Glycogen storage and metabolism were detected by periodic acid-Schiff and indocyanine green (ICG staining. GLuc activity indicated ALB expression. The combination of 2% HS+0.1 µM Dex+10 ng/mL HGF+20 ng/mL FGF4 induced the highest ALB-GLuc activity. Cell proliferation decreased in 2% HS but increased by adding FGF4. Upon induction, and consistent with hepatocyte development, DLK, AFP, and CK19 expression decreased, while ALB, CK18, and UGT1A expression increased. The maturity markers tyrosine aminotransferase and apolipoprotein B were detected at days 3 and 6 post-induction, respectively. ICG uptake and glycogen synthesis were detectable at day 6 and increased over time. Therefore, we demonstrated that HPCs were induced to differentiate into functional mature hepatocytes in vitro, suggesting that factor-treated HPCs may be further explored as a means of liver cell transplantation.

  12. The fungicide mancozeb induces toxic effects on mammalian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Paro, Rita [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy); Tiboni, Gian Mario [Department of Medicine and Aging, Section of Reproductive Sciences, University “G. D' Annunzio”, Chieti-Pescara (Italy); Buccione, Roberto [Tumor Cell Invasion Laboratory, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti (Italy); Rossi, Gianna; Cellini, Valerio [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy); Canipari, Rita [Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Embryology, School of Pharmacy and Medicine, “Sapienza” University of Rome, Rome (Italy); Cecconi, Sandra, E-mail: sandra.cecconi@cc.univaq.it [Department of Health Sciences, University of L' Aquila, Via Vetoio, L' Aquila (Italy)

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.

  13. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chetty, Chandramu [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Dontula, Ranadheer [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States); Ganji, Purnachandra Nagaraju [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Gujrati, Meena [Department of Pathology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Lakka, Sajani S., E-mail: slakka@uic.edu [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the

  14. Mercury induces inflammatory mediator release from human mast cells

    Directory of Open Access Journals (Sweden)

    Peterson Erika

    2010-03-01

    Full Text Available Abstract Background Mercury is known to be neurotoxic, but its effects on the immune system are less well known. Mast cells are involved in allergic reactions, but also in innate and acquired immunity, as well as in inflammation. Many patients with Autism Spectrum Disorders (ASD have "allergic" symptoms; moreover, the prevalence of ASD in patients with mastocytosis, characterized by numerous hyperactive mast cells in most tissues, is 10-fold higher than the general population suggesting mast cell involvement. We, therefore, investigated the effect of mercuric chloride (HgCl2 on human mast cell activation. Methods Human leukemic cultured LAD2 mast cells and normal human umbilical cord blood-derived cultured mast cells (hCBMCs were stimulated by HgCl2 (0.1-10 μM for either 10 min for beta-hexosaminidase release or 24 hr for measuring vascular endothelial growth factor (VEGF and IL-6 release by ELISA. Results HgCl2 induced a 2-fold increase in β-hexosaminidase release, and also significant VEGF release at 0.1 and 1 μM (311 ± 32 pg/106 cells and 443 ± 143 pg/106 cells, respectively from LAD2 mast cells compared to control cells (227 ± 17 pg/106 cells, n = 5, p 2 (0.1 μM to the proinflammatory neuropeptide substance P (SP, 0.1 μM had synergestic action in inducing VEGF from LAD2 mast cells. HgCl2 also stimulated significant VEGF release (360 ± 100 pg/106 cells at 1 μM, n = 5, p 6 cells, and IL-6 release (466 ± 57 pg/106 cells at 0.1 μM compared to untreated cells (13 ± 25 pg/106 cells, n = 5, p 2 (0.1 μM to SP (5 μM further increased IL-6 release. Conclusions HgCl2 stimulates VEGF and IL-6 release from human mast cells. This phenomenon could disrupt the blood-brain-barrier and permit brain inflammation. As a result, the findings of the present study provide a biological mechanism for how low levels of mercury may contribute to ASD pathogenesis.

  15. Melatonin and Doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate whether Melatonin has synergistic effects with Doxorubicin in the growth-inhibition and apoptosis-induction of human hepatoma cell lines HepG2 and Bel-7402.METHODS:The synergism of Melatonin and Doxorubicin inhibited the cell growth and induced cell apoptosis in human hepatoma cell lines HepG2 and Bel-7402.Cell viability was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT)assay.Cell apoptosis was evaluated using TUNEL method and flow cytometry.Apoptosis-r...

  16. Inhomogeneity of photo-induced fat cell lipolysis

    Science.gov (United States)

    Doubrovsky, V. A.; Yanina, I. Yu.; Tuchin, V. V.

    2011-03-01

    The effect of optical properties changes of adipose tissue cells in vitro as a result of photoaction was found and investigated. The experimental study of photo-induced post action upon the cells of fat tissue by means of digital microscopy was fulfilled. The computer processing of digital photos obtained gave an opportunity to estimate quantitatively the level of photoaction upon tissue. Optical interpretation of photos obtained proves that the phenomenon observed corresponds to the lipolysis of adipose tissue cells, but without their complete destruction.

  17. Analysis of cell death inducing compounds.

    Science.gov (United States)

    Spicker, Jeppe S; Pedersen, Henrik Toft; Nielsen, Henrik Bjørn; Brunak, Søren

    2007-11-01

    Biomarkers for early detection of toxicity hold the promise of improving the failure rates in drug development. In the present study, gene expression levels were measured using full-genome RAE230 version 2 Affymetrix GeneChips on rat liver tissue 48 h after administration of six different compounds, three toxins (ANIT, DMN and NMF) and three non-toxins (Caeruelein, Dinitrophenol and Rosiglitazone). We identified three gene transcripts with exceptional predictive performance towards liver toxicity and/or changes in histopathology. The three genes were: glucokinase regulatory protein (GCKR), ornithine aminotransferase (OAT) and Cytochrome P450, subfamily IIC (mephenytoin 4-hydroxylase) (Cyp2C29). RT-PCR for these three genes was performed and four additional compounds were included for validation. The quantitative RT-PCR analysis confirmed the findings based on the microarray data and using the three genes a classification rate of 55 of 57 samples was achieved for the classification of not toxic versus toxic. The single most promising biomarker (OAT) alone resulted in a surprisingly 100% correctly classified samples. OAT has not previously been linked to toxicity and cell death in the literature and the novel finding represents a putative hepatotoxicity biomarker. PMID:17503021

  18. Cell Targeting and Magnetically Induced Hyperthermia

    Science.gov (United States)

    Duguet, Etienne; Hardel, Lucile; Vasseur, Sébastien

    With the recent development of efficient and reproducible methods for synthesis, stable aqueous dispersions of individual particles can be prepared, in which the particle sizes can be accurately adjusted from a few nanometers to a few tens of nanometers [1]. Provided that their physical and chemical surface properties can be suitably adapted, these objects are small enough to circulate within the human body without risk of causing an embolus, since the finest capillaries (those of the lungs) have a minimal internal diameter of 5 μm. They can also escape from the blood compartment by windows of diameter around 100 nm in certain epithelia with permeability defects, such as those located in tumours and centers of infection, whereby they may then accumulate in such tissues. Furthermore, the smallest particles can migrate from the cardiovascular system into the lymph system. Finally, under the right conditions, they can enter cells and their various compartments. They should quickly become indispensable in the field of biological labelling, image contrast enhancement, the delivery of active principles, and the treatment of many different pathologies, by virtue of their novel physical properties [2, 3].

  19. The DNA damage-induced cell death response: a roadmap to kill cancer cells.

    Science.gov (United States)

    Matt, Sonja; Hofmann, Thomas G

    2016-08-01

    Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response. PMID:26791483

  20. Induced pluripotent stem cells: Challenges and opportunities for cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Patty eSachamitr

    2014-04-01

    Full Text Available Despite recent advances in cancer treatment over the past 30 years, therapeutic options remain limited and do not always offer a cure for malignancy. Given that tumour associated antigens (TAA are, by definition, self-proteins, the need to productively engage autoreactive T cells remains at the heart of strategies for cancer immunotherapy. These have traditionally focussed on the administration of autologous monocyte-derived dendritic cells (moDC pulsed with TAA, or the ex vivo expansion and adoptive transfer of tumour infiltrating lymphocytes (TIL as a source of TAA-specific cytotoxic T cells (CTL. Although such approaches have shown some efficacy, success has been limited by the poor capacity of moDC to cross-present exogenous TAA to the CD8+ T cell repertoire and the potential for exhaustion of CTL expanded ex vivo. Recent advances in induced pluripotency offer opportunities to generate patient-specific stem cell lines with the potential to differentiate in vitro into cell types whose properties may help address these issues. Here we review recent success in the differentiation of NK cells from human induced pluripotent stem (iPS cells as well as minor subsets of DC with therapeutic potential, including CD141+XCR1+ DC, capable of cross-presenting TAA to naïve CD8+ T cells. Furthermore, we review recent progress in the use of TIL as the starting material for the derivation of iPSC lines, thereby capturing their antigen specificity in a self-renewing stem cell line, from which potentially unlimited numbers of naïve TAA-specific T cells may be differentiated, free of the risks of exhaustion.

  1. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain); Lopez, Mariana; Perez, Francisco J.; Triana, Jorge [Departamento de Quimica, Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigacion del Cancer, 35017 Las Palmas de Gran Canaria (Spain); Leon, Francisco [Instituto de Productos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas, Avda. Astrofisico F. Sanchez 3, 38206 La Laguna, Tenerife (Spain); Estevez, Francisco, E-mail: festevez@dbbf.ulpgc.es [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  2. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells.

    Science.gov (United States)

    Martínez-Moreno, Carlos G; Ávila-Mendoza, José; Wu, Yilun; Arellanes-Licea, Elvira Del Carmen; Louie, Marcela; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (PGH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (PGH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation. PMID:27129619

  3. PDT-treated apoptotic cells induce macrophage synthesis NO

    Science.gov (United States)

    Song, S.; Xing, D.; Zhou, F. F.; Chen, W. R.

    2009-11-01

    Nitric oxide (NO) is a biologically active molecule which has multi-functional in different species. As a second messenger and neurotransmitter, NO is not only an important regulatory factor between cells' information transmission, but also an important messenger in cell-mediated immunity and cytotoxicity. On the other side, NO is involving in some diseases' pathological process. In pathological conditions, the macrophages are activated to produce a large quantity of nitric oxide synthase (iNOS), which can use L-arginine to produce an excessive amount of NO, thereby killing bacteria, viruses, parasites, fungi, tumor cells, as well as in other series of the immune process. In this paper, photofrin-based photodynamic therapy (PDT) was used to treat EMT6 mammary tumors in vitro to induce apoptotic cells, and then co-incubation both apoptotic cells and macrophages, which could activate macrophage to induce a series of cytotoxic factors, especially NO. This, in turn, utilizes macrophages to activate a cytotoxic response towards neighboring tumor cells. These results provided a new idea for us to further study the immunological mechanism involved in damaging effects of PDT, also revealed the important function of the immune effect of apoptotic cells in PDT.

  4. Cell death induced by gamma irradiation of developing skeletal muscle

    International Nuclear Information System (INIS)

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  5. Uranium induces oxidative stress in lung epithelial cells

    International Nuclear Information System (INIS)

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  6. Phorbol esters induce multidrug resistance in human breast cancer cells

    International Nuclear Information System (INIS)

    Mechanisms responsible for broad-based resistance to antitumor drugs derived from natural products (multidrug resistance) are incompletely understood. Agents known to reverse the multidrug-resistant phenotype (verapamil and trifluoperazine) can also inhibit the activity of protein kinase C. When the authors assayed human breast cancer cell lines for protein kinase C activity, they found that enzyme activity was 7-fold higher in the multidrug-resistance cancer cells compared with the control, sensitive parent cells. Exposure of drug-sensitive cells to the phorbol ester phorbol 12,13-dibutyate [P(BtO)2] led to an increase in protein kinase C activity and induced a drug-resistance phenotype, whereas exposure of drug-resistant cells to P(BtO)2 further increased drug resistance. In sensitive cells, this increased resistance was accomplished by a 3.5-fold increased phosphorylation of a 20-kDa particulate protein and a 35-40% decreased intracellular accumulation of doxorubicin and vincristine. P(BtO)2 induced resistance to agents involved in the multidrug-resistant phenotype (doxorubicin and vincristine) but did not affect sensitivity to an unrelated alkylating agent (melphalan). The increased resistance was partially or fully reversible by the calcium channel blocker verapamil and by the calmodulin-antagonist trifluoperazine. These data suggest that stimulation of protein kinase C playus a role in the drug-transport changes in multidrug-resistant cells. This may occur through modulation of an efflux pump by protein phosphorylation

  7. Cholesterol induces proliferation of chicken primordial germ cells.

    Science.gov (United States)

    Chen, Dongyang; Chen, Meijuan; Lu, Zhenping; Yang, Mengmeng; Xie, Long; Zhang, Wenxin; Xu, Huiyan; Lu, Kehuan; Lu, Yangqing

    2016-08-01

    Primordial germ cells (PGCs) are the precursors of sperm and eggs and may serve as suitable cells for use in research in developmental biology and transgenic animals. However, the long-term propagation of PGCs in vitro has so far been plagued by the loss of their germ cell characteristics. This is largely because of the scarcity of knowledge concerning cell division and proliferation in these cells and the poor optimization of the culture medium. The sonic hedgehog (SHH) signaling pathway is involved in proliferation of many types of cells, but little is known about its role in chicken PGCs. The results of the current study indicate that the proliferation of chicken PGCs increases significantly when cholesterol, a molecule that facilitates the trafficking of HH ligands, is supplemented in the culture medium. This effect was attenuated when an SHH antagonist, cyclopamine was added, suggesting the involvement of SHH signaling in this process. The characterization of PGCs treated with cholesterol has shown that these cells express germ-cell-related markers and retain their capability to colonize the embryonic gonad after re-introduction to vasculature of stage-15 HH embryos, indicating that proliferation of PGCs induced by cholesterol does not alter the germ cell characteristics of these cells. PMID:27269880

  8. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    Science.gov (United States)

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes. PMID:19606833

  9. Clostridium perfringens Delta-Toxin Induces Rapid Cell Necrosis

    Science.gov (United States)

    Seike, Soshi; Miyamoto, Kazuaki; Kobayashi, Keiko; Takehara, Masaya; Nagahama, Masahiro

    2016-01-01

    Clostridium perfringens delta-toxin is a β-pore-forming toxin and a putative pathogenic agent of C. perfringens types B and C. However, the mechanism of cytotoxicity of delta-toxin remains unclear. Here, we investigated the mechanisms of cell death induced by delta-toxin in five cell lines (A549, A431, MDCK, Vero, and Caco-2). All cell lines were susceptible to delta-toxin. The toxin caused rapid ATP depletion and swelling of the cells. Delta-toxin bound and formed oligomers predominantly in plasma membrane lipid rafts. Destruction of the lipid rafts with methyl β-cyclodextrin inhibited delta-toxin-induced cytotoxicity and ATP depletion. Delta-toxin caused the release of carboxyfluorescein from sphingomyelin-cholesterol liposomes and formed oligomers; toxin binding to the liposomes declined with decreasing cholesterol content in the liposomes. Flow cytometric assays with annexin V and propidium iodide revealed that delta-toxin treatment induced an elevation in the population of annexin V-negative and propidium iodide-positive cells. Delta-toxin did not cause the fragmentation of DNA or caspase-3 activation. Furthermore, delta-toxin caused damage to mitochondrial membrane permeability and cytochrome c release. In the present study, we demonstrate that delta-toxin produces cytotoxic activity through necrosis. PMID:26807591

  10. Clostridium perfringens Delta-Toxin Induces Rapid Cell Necrosis.

    Directory of Open Access Journals (Sweden)

    Soshi Seike

    Full Text Available Clostridium perfringens delta-toxin is a β-pore-forming toxin and a putative pathogenic agent of C. perfringens types B and C. However, the mechanism of cytotoxicity of delta-toxin remains unclear. Here, we investigated the mechanisms of cell death induced by delta-toxin in five cell lines (A549, A431, MDCK, Vero, and Caco-2. All cell lines were susceptible to delta-toxin. The toxin caused rapid ATP depletion and swelling of the cells. Delta-toxin bound and formed oligomers predominantly in plasma membrane lipid rafts. Destruction of the lipid rafts with methyl β-cyclodextrin inhibited delta-toxin-induced cytotoxicity and ATP depletion. Delta-toxin caused the release of carboxyfluorescein from sphingomyelin-cholesterol liposomes and formed oligomers; toxin binding to the liposomes declined with decreasing cholesterol content in the liposomes. Flow cytometric assays with annexin V and propidium iodide revealed that delta-toxin treatment induced an elevation in the population of annexin V-negative and propidium iodide-positive cells. Delta-toxin did not cause the fragmentation of DNA or caspase-3 activation. Furthermore, delta-toxin caused damage to mitochondrial membrane permeability and cytochrome c release. In the present study, we demonstrate that delta-toxin produces cytotoxic activity through necrosis.

  11. Paclitaxel induces apoptosis in human gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Ju-Ren Zhu

    2003-01-01

    AIM: To investigate the apoptosis in gastric cancer cells induced by paclitaxel, and the relation between this apoptosis and expression of Bcl-2 and Bax.METHODS: In in vitro experiments, MTT assay was used to determine the cell growth inhibitory rate. Transmission electron microscope and TUNEL staining method were used to quantitatively and qualitively detect the apoptosis status of gastric cancer cell line SGC-7901 before and after the paditaxel treatment. Immunohistochemical staining was used to detect the expression of apoptosis-regulated gene Bcl-2and Bax.RESULTS: Paclitaxel inhibited the growth of gastric cancer cell line SGC-7901 in a dose-and time-dependent manner.Paclitaxel induced SGC-7901 cells to undergo apoptosis with typically apoptotic characteristics, including morphological changes of chromatin condensation, chromatin crescent formation, nucleus fragmentation and apoptotic body formation. Paclitaxel could reduce the expression of apoptosis-regulated gene Bcl-2, and improve the expression of apoptosis-regulated gene Bax.CONCLUSION: Paclitaxel is able to induce the apoptosis in gastric cancer. This apoptosis may be mediated by downexpression of apoptosis-regulated gene Bcl-2 and upexpression of apoptosis-regulated gene Bax.

  12. LPS induces pulp progenitor cell recruitment via complement activation.

    Science.gov (United States)

    Chmilewsky, F; Jeanneau, C; Laurent, P; About, I

    2015-01-01

    Complement system, a major component of the natural immunity, has been recently identified as an important mediator of the dentin-pulp regeneration process through STRO-1 pulp cell recruitment by the C5a active fragment. Moreover, it has been shown recently that under stimulation with lipoteichoic acid, a complex component of the Gram-positive bacteria cell wall, human pulp fibroblasts are able to synthesize all proteins required for complement activation. However, Gram-negative bacteria, which are also involved in tooth decay, are known as powerful activators of complement system and inflammation. Here, we investigated the role of Gram-negative bacteria-induced complement activation on the pulp progenitor cell recruitment using lipopolysaccharide (LPS), a major component of all Gram-negative bacteria. Our results show that incubating pulp fibroblasts with LPS induced membrane attack complex formation and C5a release in serum-free fibroblast cultures. The produced C5a binds to the pulp progenitor cells' membrane and induces their migration toward the LPS stimulation chamber, as revealed by the dynamic transwell migration assays. The inhibition of this migration by the C5aR-specific antagonist W54011 indicates that the pulp progenitor migration is mediated by the interaction between C5a and C5aR. Our findings demonstrate, for the first time, a direct interaction between the recruitment of progenitor pulp cells and the activation of complement system generated by pulp fibroblast stimulation with LPS. PMID:25359783

  13. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  14. Pfaffosidic Fraction from Hebanthe paniculata Induces Cell Cycle Arrest and Caspase-3-Induced Apoptosis in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Tereza Cristina da Silva

    2015-01-01

    Full Text Available Hebanthe paniculata roots (formerly Pfaffia paniculata and popularly known as Brazilian ginseng show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A–F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation, p27KIP1 overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction from H. paniculata in HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation and p27KIP1 overexpression, besides induction of apoptosis through caspase-3 activation.

  15. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    International Nuclear Information System (INIS)

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  16. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen-Ming [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Wang, Shih-Wei [Department of Medicine, Mackay Medical College, New Taipei City, Taiwan (China); Lee, Tzong-Huei [Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan (China); Tzeng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua, Taiwan (China); Hsiao, Che-Jen [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Liu, Shih-Chia [Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan (China); Tang, Chih-Hsin, E-mail: chtang@mail.cmu.edu.tw [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan (China); Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan (China)

    2013-10-15

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  17. Pulse mode of laser photodynamic treatment induced cell apoptosis.

    Science.gov (United States)

    Klimenko, Vladimir V; Knyazev, Nickolay A; Moiseenko, Fedor V; Rusanov, Anatoliy A; Bogdanov, Alexey A; Dubina, Michael V

    2016-03-01

    One of the factors limiting photodynamic therapy (PDT) is hypoxia in tumor cells during photodynamic action. PDT with pulse mode irradiation and appropriate irradiation parameters could be more effective in the singlet oxygen generation and tissue re-oxygenation than continuous wave (CW) mode. We theoretically demonstrate differences between the cumulative singlet oxygen concentration in PDT using pulse mode and CW mode of laser irradiation. In vitro experimental results show that photodynamic treatment with pulse mode irradiation has similar cytotoxicity to CW mode and induces mainly cell apoptosis, whereas CW mode induces necrotic cell death. We assume that the cumulative singlet oxygen concentration and the temporal distribution of singlet oxygen are important in photodynamic cytotoxicity and apoptosis initiation. We expect our research may improve irradiation protocols and photodynamic therapy efficiency. PMID:26790610

  18. Human Induced Pluripotent Stem Cell Models of Inherited Cardiovascular Diseases.

    Science.gov (United States)

    Jiang, Wenjian; Lan, Feng; Zhang, Hongjia

    2014-10-16

    Cardiovascular cells derived from patient specific induced Pluripotent Stem Cell (iPSC) harbor gene mutations associated with the pathogenesis of inherited cardiac diseases and congenital heart diseases (CHD). Numerous reports have demonstrated the utilization of human induced Pluripotent Stem Cell (hiPSC) to model cardiac diseases as a means of investigating their underlying mechanisms. So far, they have been shown to investigate the molecular mechanisms of many cardiac disorders, such as long-QT syndrome (LQT), catecholaminergic polymorphic ventricular tachycardia (CPVT), dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), LEOPARD syndrome (LS), arrhythmogenic cardiomyopathy (ACM), Friedreich ataxia (FRDA), Barth syndrome (BTHS), hypoplastic left heart syndrome (HLHS), Marfan syndrome (MFS) and other CHD. This article summarizes the growing body of research related to modeling various cardiac diseases using hiPSCs. Moreover, by reviewing the methods used in previous studies, we propose multiple novel applications of hiPSCs to investigate comprehensive cardiovascular disorders and facilitate drug discovery. PMID:25322695

  19. Depletion induced clustering of red blood cells in microchannels

    Science.gov (United States)

    Wagner, Christian; Brust, Mathias; Podgorski, Thomas; Coupier, Gwennou

    2012-11-01

    The flow properties of blood are determined by the physical properties of its main constituents, the red blood cells (RBC's). At low shear rates RBC's form aggregates, so called rouleaux. Higher shear rates can break them up and the viscosity of blood shows a shear thinning behavior. The physical origin of the rouleaux formation is not yet fully resolved and there are two competing models available. One predicts that the adhesion is induced by bridging of the plasma (macromolecular) proteins in-between two RBC's. The other is based on the depletion effect and thus predicts the absence of macromolecules in-between the cells of a rouleaux. Recent single cell force measurements by use of an AFM support strongly the depletion model. By varying the concentration of Dextran at different molecular weights we can control the adhesions strength. Measurements at low hematocrit in a microfluidic channel show that the number of size of clusters is determined by the depletion induced adhesion strength.

  20. Natural and induced T regulatory cells in cancer.

    Science.gov (United States)

    Adeegbe, Dennis O; Nishikawa, Hiroyoshi

    2013-01-01

    CD4+Foxp3+ T regulatory (Treg) cells control many facets of immune responses ranging from autoimmune diseases, to inflammatory conditions, and cancer in an attempt to maintain immune homeostasis. Natural Treg (nTreg) cells develop in the thymus and constitute a critical arm of active mechanisms of peripheral tolerance particularly to self antigens. A growing body of knowledge now supports the existence of induced Treg (iTreg) cells which may derive from a population of conventional CD4+ T cells. The fork-head transcription factor (Foxp3) typically is expressed by natural CD4+ Treg cells, and thus serves as a marker to definitively identify these cells. On the contrary, there is less consensus on what constitutes iTreg cells as their precise definition has been somewhat elusive. This is in part due to their distinct phenotypes which are shaped by exposure to certain inflammatory or "assault" signals stemming from the underlying immune disorder. The "policing" activity of Treg cells tends to be uni-directional in several pathological conditions. On one end of the spectrum, Treg cell suppressive activity is beneficial by curtailing T cell response against self-antigens and allergens thus preventing autoimmune diseases and allergies. On the other end however, their inhibitory roles in limiting immune response against pseudo-self antigens as in tumors often culminates into negative outcomes. In this review, we focus on this latter aspect of Treg cell immunobiology by highlighting the involvement of nTreg cells in various animal models and human tumors. We further discuss iTreg cells, relationship with their natural counterpart, and potential co-operation between the two in modulating immune response against tumors. Lastly, we discuss studies focusing on these cells as targets for improving anti-tumor immunity. PMID:23874336

  1. Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.

    Directory of Open Access Journals (Sweden)

    Claudia Merkl

    Full Text Available Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4 into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.

  2. Targeted cancer cell death induced by biofunctionalized magnetic nanowires

    KAUST Repository

    Contreras, Maria F.

    2014-02-01

    Magnetic micro and nanomaterials are increasingly interesting for biomedical applications since they possess many advantageous properties: they can become biocompatible, they can be functionalized to target specific cells and they can be remotely manipulated by magnetic fields. The goal of this study is to use antibody-functionalized nickel nanowires (Ab-NWs) as an alternative method in cancer therapy overcoming the limitations of current treatments that lack specificity and are highly cytotoxic. Ab-NWs have been incubated with cancer cells and a 12% drop on cell viability was observed for a treatment of only 10 minutes and an alternating magnetic field of low intensity and low frequency. It is believed that the Ab-NWs vibrate transmitting a mechanical force to the targeted cells inducing cell death. © 2014 IEEE.

  3. Fluopsin C induces oncosis of human breast adenocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Li-sha MA; Chang-you JIANG; Min CUI; Rong LU; Shan-shan LIU; Bei-bei ZHENG; Lin LI

    2013-01-01

    Aim:Fluopsin C,an antibiotic isolated from Pseudomonasjinanesis,has shown antitumor effects on several cancer cell lines.In the current study,the oncotic cell death induced by fluopsin C was investigated in human breast adenocarcinoma cells in vitro.Methods:Human breast adenocarcinoma cell lines MCF-7 and MD-MBA-231 were used.The cytotoxicity was evaluated using MTT assay.Time-lapse microscopy and transmission electron microscopy were used to observe the morphological changes.Cell membrane integrity was assessed with propidium iodide (PI) uptake and lactate dehydrogenase (LDH) assay.Flow cytometry was used to measure reactive oxygen species (ROS) level and mitochondrial membrane potential (△ψm).A multimode microplate reader was used to analyze the intracellular ATP level.The changes in cytoskeletal system were investigated with Western blotting and immunostaining.Results:Fluopsin C (0.5-8 μmol/L) reduced the cell viability in dose-and time-dependent manners.Its IC50 values in MCF-7 and MD-MBA-231 cells at 24 h were 0.9 and 1.03 μmol/L,respectively.Fluopsin C (2 μmol/L) induced oncosis in both the breast adenocarcinoma cells characterized by membrane blebbing and swelling,which was blocked by pretreatment with the pan-caspase inhibitor Z-VAD-fmk.In MCF-7 cells,fluopsin C caused PI uptake into the cells,significantly increased LDH release,induced cytoskeletal system degradation and ROS accumulation,decreased the intracellular ATP level and△ψm.Noticeably,fluopsin C exerted comparable cytotoxicity against the normal human hepatocytes (HL7702) and human mammary epithelial cells with the IC50 values at 24 h of 2.7 and 2.4 μmol/L,respectively.Conclusion:Oncotic cell death was involved in the anticancer effects of fluopsin C on human breast adenocarcinoma cells in vitro.The hepatoxicity of fluopsin C should not be ignored.

  4. Role of TRPM2 in H(2O(2-induced cell apoptosis in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Lei Sun

    Full Text Available Melastatin-like transient receptor potential channel 2 (TRPM2 is an oxidant-sensitive and cationic non-selective channel that is expressed in mammalian vascular endothelium. Here we investigated the functional role of TRPM2 channels in hydrogen peroxide (H(2O(2-induced cytosolic Ca(2+ ([Ca(2+](i elavation, whole-cell current increase, and apoptotic cell death in murine heart microvessel endothelial cell line H5V. A TRPM2 blocking antibody (TM2E3, which targets the E3 region near the ion permeation pore of TRPM2, was developed. Treatment of H5V cells with TM2E3 reduced the [Ca(2+](i rise and whole-cell current change in response to H(2O(2. Suppressing TRPM2 expression using TRPM2-specific short hairpin RNA (shRNA had similar inhibitory effect. H(2O(2-induced apoptotic cell death in H5V cells was examined using MTT assay, DNA ladder formation analysis, and DAPI-based nuclear DNA condensation assay. Based on these assays, TM2E3 and TRPM2-specific shRNA both showed protective effect against H(2O(2-induced apoptotic cell death. TM2E3 and TRPM2-specific shRNA also protect the cells from tumor necrosis factor (TNF-α-induced cell death in MTT assay. In contrast, overexpression of TRPM2 in H5V cells resulted in an increased response in [Ca(2+](i and whole-cell currents to H(2O(2. TRPM2 overexpression also aggravated the H(2O(2-induced apoptotic cell death. Downstream pathways following TRPM2 activation was examined. Results showed that TRPM2 activity stimulated caspase-8, caspase-9 and caspase-3. These findings strongly suggest that TRPM2 channel mediates cellular Ca(2+ overload in response to H(2O(2 and contribute to oxidant-induced apoptotic cell death in vascular endothelial cells. Down-regulating endogenous TRPM2 could be a means to protect the vascular endothelial cells from apoptotic cell death.

  5. Bimodal cell death induced by high radiation doses in the radioresistant sf9 insect cell line

    International Nuclear Information System (INIS)

    Full text: This study was conducted to investigate the mode(s) of cell death induced by high radiation doses in the highly radioresistant Sf9 insect ovarian cell line. Methods: Cells were exposed to γ-radiation doses 200Gy and 500Gy, harvested at various time intervals (6h-72h) following irradiation, and subjected to cell morphology assay, DNA agarose gel electrophoresis, single cell gel electrophoresis (SCGE; comet assay) and Annexin-V labeling for the detection of membrane phosphatidylserine externalization. Cell morphology was assessed in cells entrapped and fixed in agarose gel directly from the cell suspension, thus preventing the possible loss of fragments/ apoptotic bodies. Surviving fraction of Sf9 cells was 0.01 at 200Gy and 98%) undergoing extensive DNA fragmentation at 500Gy, whereas the frequency of cells with DNA fragmentation was considerably less (∼12%) at 200Gy. Conclusions: While the mode of cell death at 200Gy seems to be different from typical apoptosis, a dose of 500Gy induced bimodal cell death, with typical apoptotic as well as the atypical cell death observed at 200Gy

  6. TRICHOSTATIN A INHIBITS PROLIFERATION, INDUCES APOPTOSIS AND CELL CYCLE ARREST IN HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    XU Zhou-min; WANG Yi-qun; MEI Qi; CHEN Jian; DU Jia; WEI Yan; XU Ying-chun

    2006-01-01

    Objective: The histone deacetylase inhibitors (HDACIS) have been shown to inhibit cancer cell proliferation, stimulate apoptosis, an induce cell cycle arrest. Our purpose was to investigate the antiproliferative effects of a HDACI, trichostatin A (TSA), against human cervical cancer cells (HeLa). Methods: HeLa cells were treated in vitro with various concentrations of TSA. The inhibitory effect of TSA on the growth of HeLa cells was measured by MTT assay. To detect the characteristic of apoptosis chromatin condensation, HeLa cells were stained with Hoechst 33258 in the presence of TSA. Induction of cell cycle arrest was studied by flow cytometry. Changes in gene expression of p53, p21Waf1 and p27Kip1 were studied by semiquantitative RT-PCR. Results: TSA inhibited cell growth in a time- and dose-dependent manner. Hoechst 33258 staining assay showed that TSA induced apoptosis. Cell cycle analysis indicated that treatment with TSA decreased the proportion of cells in S phase and increased the proportion of cells in G0/G1 and/or G2/M phases of the cell cycle. This was concomitant with overexpression of genes related to malignant phenotype, including an increase in p53, p21Waf1 and p27Kip1. Conclusion: These results suggest that TSA is effective in inhibiting growth of HeLa cells in vitro. The findings raise the possibility that TSA may prove particularly effective in treatment of cervical cancers.

  7. Lipopolysaccharide-induced multinuclear cells: Increased internalization of polystyrene beads and possible signals for cell fusion

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi-Matsui, Mayumi, E-mail: nakanim@iwate-med.ac.jp; Yano, Shio; Futai, Masamitsu

    2013-11-01

    Highlights: •LPS induces multinuclear cells from murine macrophage-derived RAW264.7 cells. •Large beads are internalized by cells actively fusing to become multinuclear. •The multinuclear cell formation is inhibited by anti-inflammatory cytokine, IL10. •Signal transduction for cell fusion is different from that for inflammation. -- Abstract: A murine macrophage-derived line, RAW264.7, becomes multinuclear on stimulation with lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria. These multinuclear cells internalized more polystyrene beads than mononuclear cells or osteoclasts (Nakanishi-Matsui, M., Yano, S., Matsumoto, N., and Futai, M., 2012). In this study, we analyzed the time courses of cell fusion in the presence of large beads. They were internalized into cells actively fusing to become multinuclear. However, the multinuclear cells once formed showed only low phagocytosis activity. These results suggest that formation of the multinuclear cells and bead internalization took place simultaneously. The formation of multinuclear cells was blocked by inhibitors for phosphoinositide 3-kinase, phospholipase C, calcineurin, and c-Jun N-terminal kinase. In addition, interleukin 6 and 10 also exhibited inhibitory effects. These signaling molecules and cytokines may play a crucial role in the LPS-induced multinuclear cell formation.

  8. In vivo stem cell function of interleukin-3-induced blast cells

    International Nuclear Information System (INIS)

    The treatment of mice with high doses of 5-fluorouracil (5-FU) results in an enrichment of primitive hematopoietic progenitors. Using this procedure, the authors obtained a new class of murine hematopoietic colonies that had very high secondary plating efficiencies in vitro and could differentiate into not only myeloid cells but also into lymphoid lineage cells. The phenotypes of interleukin-3 (IL-3) induced blast colony cells were Thy-1-positive and lineage-marker-negative. They examined whether these blast colony cells contained primitive hematopoietic stem cells in vivo and could reconstitute hematopoietic tissues in lethally irradiated mice. Blast colony cells could generate macroscopic visible spleen colonies on days 8 and 12, and 5 x 10(3) blast cells were sufficient to protect them from lethally irradiation. It was shown that 6 or 8 weeks after transplantation of 5 x 10(3) blast cells, donor male cells were detected in the spleen and thymus of the female recipients but not in the bone marrow by Southern blot analysis using Y-encoded DNA probe. After 10 weeks, bone marrow cells were partially repopulated from donor cells. In a congenic mouse system, donor-derived cells (Ly5.2) were detected in the thymus and spleen 6 weeks after transplantation. Fluorescence-activated cell sorter analyses showed that B cells and macrophages developed from donor cells in the spleen. In the thymus, donor-derived cells were found in CD4, CD8 double-positive, single-positive, and double-negative populations. Reconstitution of bone marrow was delayed and myeloid and lymphoid cells were detected 10 weeks after transplantation. These results indicate that IL-3-induced blast cells contain the primitive hematopoietic stem cells capable of reconstituting hematopoietic organs in lethally irradiated mice

  9. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  10. Nuclear thread bridging the sister cells prior to radiation-induced cell fusion

    International Nuclear Information System (INIS)

    Intercellular protoplasmic bridges between sister cells prior to radiation-induced cell fusion were examined by various methods which included time-lapse photography, chemical staining, autoradiography, and scanning electron microscopy. It was concluded that these bridges contained nuclear material and that fusion occurred mainly as a consequence of chromosome or chromatin bridges

  11. Upregulation of erythropoietin receptor in UT-7/EPO cells inhibits simulated microgravity-induced cell apoptosis

    Science.gov (United States)

    Zou, Li-xue; Cui, Shao-yan; Zhong, Jian; Yi, Zong-chun; Sun, Yan; Fan, Yu-bo; Zhuang, Feng-yuan

    2011-07-01

    Hematopoietic progenitor cell proliferation can be altered in either spaceflight or under simulated microgravity experiments on the ground, however, the underlying mechanism remains unknown. Our previous study showed that exposure of the human erythropoietin (EPO)-dependent leukemia cell line UT-7/EPO to conditions of simulated microgravity significantly inhibited the cellular proliferation rate and induced cell apoptosis. We postulated that the downregulation of the erythropoietin receptor (EPOR) expression in UT-7/EPO cells under simulated microgravity may be a possible reason for microgravity triggered apoptosis. In this paper, a human EPOR gene was transferred into UT-7/EPO cells and the resulting expression of EPOR on the surface of UT-7/EPO cells increased approximately 61% ( p < 0.05) as selected by the antibiotic G418. It was also shown through cytometry assays and morphological observations that microgravity-induced apoptosis markedly decreased in these UT-7/EPO-EPOR cells. Thus, we concluded that upregulation of EPOR in UT-7/EPO cells could inhibit the simulated microgravity-induced cell apoptosis in this EPO dependent cell line.

  12. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  13. AB158. Atorvastatin induces autophagic cell death in prostate cancer cells in vitro

    Science.gov (United States)

    He, Zhenhua; Wang, Zhiping

    2016-01-01

    Objective Although it is well known that apoptosis contributes to cancer cell death, the role of autophagy in cancer cell death has remained in dispute. Atorvastatin has been suggested to exhibit anti-cancer effects. The present study aimed to examine atorvastatin-induced autophagy-associated cell death and the autophagy-associated gene expression profile in the PC3 prostate carcinoma cell line. Methods The atorvastatin-induced process of autophagy in PC3 cells was determined via evaluation of the cellular expression levels of autophagosomal marker light-chain-3 (LC3)-II, using immunoblotting and counting of green fluorescent protein (GFP)-LC3-transfected autophagiccells. Apoptosis was examined by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and an MTT assay was used to evaluate cell viability. Total RNA of PC3 cells was isolated for characterization of the gene expression profile following atorvastatin treatment. Results Atorvastatin treatment of PC3 cells for 24 h increased the expression of GFP-LC3-II by >25% and expression continued for >72 h, while apoptosis was not significantly induced within this time period. Four genes associated with the autophagy machinery were also significantly upregulated. Conclusions In the presence of atorvastatin, autophagy may be unable to abrogate cell damage and may therefore contribute to cellular dysfunction, leading to autophagic/type II programmed cell death. In response to atorvastatin treatment, the expression of genes involved in autophagic mediating pathways may have a role in tumor suppression.

  14. Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism

    International Nuclear Information System (INIS)

    CD147 is a multifunctional transmembrane protein and promotes cancer progression. We found that the anti-human CD147 mouse monoclonal antibody MEM-M6/1 strongly induces necrosis-like cell death in LoVo, HT-29, WiDr, and SW620 colon cancer cells and A2058 melanoma cells, but not in WI-38 and TIG-113 normal fibroblasts. Silencing or overexpression of CD147 in LoVo cells enhanced or decreased the MEM-M6/1 induced cell death, respectively. CD147 is known to form complex with proton-linked monocarboxylate transporters (MCTs), which is critical for lactate transport and intracellular pH (pHi) homeostasis. In LoVo cells, CD147 and MCT-1 co-localized on the cell surface, and MEM-M6/1 inhibited the association of these molecules. MEM-M6/1 inhibited lactate uptake, lactate release, and reduced pHi. Further, the induction of acidification was parallel to the decrease of the glycolytic flux and intracellular ATP levels. These effects were not found in the normal fibroblasts. As cancer cells depend on glycolysis for their energy production, CD147 inhibition might induce cell death specific to cancer cells

  15. Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Caihong Zhou

    2013-02-01

    Full Text Available TTRAP is a multi-functional protein that is involved in multipleaspects of cellular functions including cell proliferation,apoptosis and the repair of DNA damage. Here, we demonstratedthat the lentivirus-mediated overexpression of TTRAPsignificantly inhibited cell growth and induced apoptosis inosteosarcoma cells. The ectopic TTRAP suppressed the growthand colony formation capacity of two osteosarcoma cell lines,U2OS and Saos-2. Cell apoptosis was induced in U2OS cellsand the cell cycle was arrested at G2/M phase in Saos-2 cells.Exogenous expression of TTRAP in serum-starved U2OS andSaos-2 cells induced an increase in caspase-3/-7 activity and adecrease in cyclin B1 expression. In comparison with wild-typeTTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesteraseactivity of TTRAP, in particular TTRAPE152A, showed decreasedinhibitory activity on cell growth. These results may aid inclarifying the physiological functions of TTRAP, especially itsroles in the regulation of cell growth and tumorigenesis. [BMBReports 2013; 46(2: 113-118

  16. IL-2 induces STAT4 activation in primary NK cells and NK cell lines, but not in T cells.

    Science.gov (United States)

    Wang, K S; Ritz, J; Frank, D A

    1999-01-01

    IL-2 exerts potent but distinct functional effects on two critical cell populations of the immune system, T cells and NK cells. Whereas IL-2 leads to proliferation in both cell types, it enhances cytotoxicity primarily in NK cells. In both T cells and NK cells, IL-2 induces the activation of STAT1, STAT3, and STAT5. Given this similarity in intracellular signaling, the mechanism underlying the distinct response to IL-2 in T cells and NK cells is not clear. In this study, we show that in primary NK cells and NK cell lines, in addition to the activation of STAT1 and STAT5, IL-2 induces tyrosine phosphorylation of STAT4, a STAT previously reported to be activated only in response to IL-12 and IFN-alpha. This activation of STAT4 in response to IL-2 is not due to the autocrine production of IL-12 or IFN-alpha. STAT4 activated in response to IL-2 is able to bind to a STAT-binding DNA sequence, suggesting that in NK cells IL-2 is capable of activating target genes through phosphorylation of STAT4. IL-2 induces the activation of Jak2 uniquely in NK cells, which may underlie the ability of IL-2 to activate STAT4 only in these cells. Although the activation of STAT4 in response to IL-2 occurs in primary resting and activated NK cells, it does not occur in primary resting T cells or mitogen-activated T cells. The unique activation of the STAT4-signaling pathway in NK cells may underlie the distinct functional effect of IL-2 on this cell population. PMID:9886399

  17. Carbamazepine induces mitotic arrest in mammalian Vero cells

    International Nuclear Information System (INIS)

    We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells

  18. Curcumin-induced Histone Acetylation in Malignant Hematologic Cells

    Institute of Scientific and Technical Information of China (English)

    Junbin HU; Yan WANG; Yan CHEN

    2009-01-01

    This study investigated the inhibitory effects of curcumin on proliferation of hemato-logical malignant cells in vitro and the anti-tumor mechanism at histone acetylation/histone deacety-lation levels.The effects of curcumin and histone deacetylase inhibitor trichostatin A (TSA) on the growth of Raji cells were tested by MTT assay.The expression of acetylated histone-3 (H3) in Raji,HL60 and K562 cells,and peripheral blood mononuclear cells (PBMCs) treated with curcumin or TSA was detected by immunohistochemistry and FACS.The results showed curcumin inhibited pro-liferation of Raji cells significantly in a time- and dose-dependent fashion,while exhibited low toxic-ity in PBMCs.Curcumin induced up-regulation of the expression of acetylated H3 dose-dependently in all malignant cell lines tested.In conclusion,curcumin inhibited proliferation of Raji cells selec-tively,enhanced the level of acetylated H3 in Raji,HL60,and K562 cells,which acted as a histone deacetylase inhibitor like TSA.Furthermore,up-regulation of H3 acetylation may play an important role in regulating the proliferation of Raji cells.

  19. Derivation, characterization and retinal differentiation of induced pluripotent stem cells

    Indian Academy of Sciences (India)

    Subba Rao Mekala; Vasundhara Vauhini; Usha Nagarajan; Savitri Maddileti; Subhash Gaddipati; Indumathi Mariappan

    2013-03-01

    Millions of people world over suffer visual disability due to retinal dystrophies which can be age-related or a genetic disorder resulting in gradual degeneration of the retinal pigmented epithelial (RPE) cells and photoreceptors. Therefore, cell replacement therapy offers a great promise in treating such diseases. Since the adult retina does not harbour any stem cells, alternative stem cell sources like the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer a great promise for generating different cell types of the retina. Here, we report the derivation of four iPSC lines from mouse embryonic fibroblasts (MEFs) using a cocktail of recombinant retroviruses carrying the genes for Oct4, Sox2, Klf4 and cMyc. The iPS clone MEF-4F3 was further characterized for stemness marker expression and stable reprogramming by immunocytochemistry, FACS and RT-PCR analysis. Methylation analysis of the nanog promoter confirmed the reprogrammed epigenetic state. Pluripotency was confirmed by embryoid body (EB) formation and lineage-specific marker expression. Also, upon retinal differentiation, patches of pigmented cells with typical cobble-stone phenotype similar to RPE cells are generated within 6 weeks and they expressed ZO-1 (tight junction protein), RPE65 and bestrophin (mature RPE markers) and showed phagocytic activity by the uptake of fluorescent latex beads.

  20. Carbamazepine induces mitotic arrest in mammalian Vero cells

    Energy Technology Data Exchange (ETDEWEB)

    Perez Martin, J.M.; Fernandez Freire, P.; Labrador, V. [Departamento de Biologia, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Hazen, M.J. [Departamento de Biologia, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)], E-mail: mariajose.hazen@uam.es

    2008-01-01

    We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells.

  1. ETOPOSIDE INDUCES CHROMOSOMAL ABNORMALITIES IN SPERMATOCYTES AND SPERMATOGONIAL STEM CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, F; Pearson, F S; Bishop, J B; Wyrobek, A J

    2005-07-15

    Etoposide (ET) is a chemotherapeutic agent widely used in the treatment of leukemia, lymphomas and many solid tumors, such as testicular and ovarian cancers, that affect patients in their reproductive years. The purpose of the study was to use sperm FISH analyses to characterize the long-term effects of ET on male germ cells. We used a mouse model to characterize the induction of chromosomal aberrations (partial duplications and deletions) and whole chromosomal aneuploidies in sperm of mice treated with a clinical dose of ET. Semen samples were collected at 25 and 49 days after dosing to investigate the effects of ET on meiotic pachytene cells and spermatogonial stem-cells, respectively. ET treatment resulted in major increases in the frequencies of sperm carrying chromosomal aberrations in both meiotic pachytene (27- to 578-fold) and spermatogonial stem-cells (8- to 16-fold), but aneuploid sperm were induced only after treatment of meiotic cells (27-fold) with no persistent effects in stem cells. These results demonstrate that male meiotic germ cells are considerably more sensitive to ET than spermatogonial stem-cell and that increased frequencies of sperm with structural aberrations persist after spermatogonial stem-cell treatment. These findings predict that patients who undergo chemotherapy with ET may have transient elevations in the frequencies of aneuploid sperm, but more importantly, may have persistent elevations in the frequencies of sperm with chromosomal aberrations, placing them at higher risk for abnormal reproductive outcomes long after the end of their chemotherapy.

  2. Magnetite induces oxidative stress and apoptosis in lung epithelial cells.

    Science.gov (United States)

    Ramesh, Vani; Ravichandran, Prabakaran; Copeland, Clinton L; Gopikrishnan, Ramya; Biradar, Santhoshkumar; Goornavar, Virupaxi; Ramesh, Govindarajan T; Hall, Joseph C

    2012-04-01

    There is an ongoing concern regarding the biocompatibility of nanoparticles with sizes less than 100 nm as compared to larger particles of the same nominal substance. In this study, we investigated the toxic properties of magnetite stabilized with polyacrylate sodium. The magnetite was characterized by X-ray powder diffraction analysis, and the mean particle diameter was calculated using the Scherrer formula and was found to be 9.3 nm. In this study, we treated lung epithelial cells with different concentrations of magnetite and investigated their effects on oxidative stress and cell proliferation. Our data showed an inhibition of cell proliferation in magnetite-treated cells with a significant dose-dependent activation and induction of reactive oxygen species. Also, we observed a depletion of antioxidants, glutathione, and superoxide dismutase, respectively, as compared with control cells. In addition, apoptotic-related protease/enzyme such as caspase-3 and -8 activities, were increased in a dose-dependent manner with corresponding increased levels of DNA fragmentation in magnetite-treated cells compared to than control cells. Together, the present study reveals that magnetite exposure induces oxidative stress and depletes antioxidant levels in the cells to stimulate apoptotic pathway for cell death. PMID:22147200

  3. Sickle Cell Disease Activates Peripheral Blood Mononuclear Cells to Induce Cathepsins K and V Activity in Endothelial Cells

    OpenAIRE

    Platt, Manu O.; Sindhuja Surapaneni; Keegan, Philip M.

    2012-01-01

    Sickle cell disease is a genetic disease that increases systemic inflammation as well as the risk of pediatric strokes, but links between sickle-induced inflammation and arterial remodeling are not clear. Cathepsins are powerful elastases and collagenases secreted by endothelial cells and monocyte-derived macrophages in atherosclerosis, but their involvement in sickle cell disease has not been studied. Here, we investigated how tumor necrosis alpha (TNFα) and circulating mononuclear cell adhe...

  4. Radiation-induced cerebral cell apoptosis in rats

    International Nuclear Information System (INIS)

    Objective: To study the influence of radiation on rat cerebral cells including neurons and gliocytes. Methods: The rats were divided into control group and X-ray radiation groups with different doses. The apoptosis of cells at different time points after radiation was observed by optic microscopy, electron microscopy and DNA agarose gel electrophoresis. The double label method (in situ end-labeling of DNA strand breaks for labeling apoptotic cells, and immunohistochemistry for labeling cell type) was used to label apoptotic neurons and gliocytes cells separately. Results: The distinct morphological features of apoptosis and the DNA fragmentation ladders on agarose gel electrophoresis were seen in radiation groups. The rate of apoptosis in the adult rat brain was low. There were many apoptotic glial cells (about 93%) and a few apoptotic neurons (about 5%) after radiation. The apoptotic rate in high dose group was higher than that in low dose group. Conclusion: Apoptosis can be induced by radiation in rat brain, the apoptotic rate increases with a increasing dose in the range of 2-8 Gy. The gliocytes are more sensitive to radiation-induced apoptosis than the neurons

  5. Molecular Signaling Pathways Mediating Osteoclastogenesis Induced by Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Advanced prostate cancer commonly metastasizes to bone leading to osteoblastic and osteolytic lesions. Although an osteolytic component governed by activation of bone resorbing osteoclasts is prominent in prostate cancer metastasis, the molecular mechanisms of prostate cancer-induced osteoclastogenesis are not well-understood. We studied the effect of soluble mediators released from human prostate carcinoma cells on osteoclast formation from mouse bone marrow and RAW 264.7 monocytes. Soluble factors released from human prostate carcinoma cells significantly increased viability of naïve bone marrow monocytes, as well as osteoclastogenesis from precursors primed with receptor activator of nuclear factor κ-B ligand (RANKL). The prostate cancer-induced osteoclastogenesis was not mediated by RANKL as it was not inhibited by osteoprotegerin (OPG). However inhibition of TGFβ receptor I (TβRI), or macrophage-colony stimulating factor (MCSF) resulted in attenuation of prostate cancer-induced osteoclastogenesis. We characterized the signaling pathways induced in osteoclast precursors by soluble mediators released from human prostate carcinoma cells. Prostate cancer factors increased basal calcium levels and calcium fluctuations, induced nuclear localization of nuclear factor of activated t-cells (NFAT)c1, and activated prolonged phosphorylation of ERK1/2 in RANKL-primed osteoclast precursors. Inhibition of calcium signaling, NFATc1 activation, and ERK1/2 phosphorylation significantly reduced the ability of prostate cancer mediators to stimulate osteoclastogenesis. This study reveals the molecular mechanisms underlying the direct osteoclastogenic effect of prostate cancer derived factors, which may be beneficial in developing novel osteoclast-targeting therapeutic approaches

  6. Characterization of efferent T suppressor cells induced by Paracoccidioides brasiliensis-specific afferent T suppressor cells.

    OpenAIRE

    Jimenez-Finkel, B E; Murphy, J W

    1988-01-01

    Previously, we reported that Paracoccidioides brasiliensis culture filtrate antigen (Pb.Ag) when injected i.v. into mice induces antigen-specific suppressor cells which down-regulate the anti-P. brasiliensis delayed-type hypersensitivity (DTH) response. The suppressor cells are present in both spleens and lymph nodes of Pb.Ag-treated animals and suppress the afferent limb but not the efferent limb of the DTH response to P. brasiliensis. The suppressor cells induced by Pb.Ag are L3T4+ Lyt-1+2-...

  7. 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection

    OpenAIRE

    Jean-FrançoisLaliberté; HuanquanZheng

    2013-01-01

    To successfully infect plants, viruses replicate in an initially infected cell and then move to neighboring cells through plasmodesmata (PDs). However, the nature of the viral entity that crosses over the cell barrier into non-infected ones is not clear. The membrane-associated 6K2 protein of turnip mosaic virus (TuMV) induces the formation of vesicles involved in the replication and intracellular movement of viral RNA. This study shows that 6K2-induced vesicles trafficked towards the plasma ...

  8. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  9. Regeneration of tracheal epithelium using mouse induced pluripotent stem cells.

    Science.gov (United States)

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Otsuki, Koshi; Miyake, Masao; Hazama, Akihiro; Wada, Ikuo; Omori, Koichi

    2016-04-01

    Conclusion The findings demonstrated the potential use of induced pluripotent stem cells for regeneration of tracheal epithelium. Objective Autologous tissue implantation techniques using skin or cartilage are often applied in cases of tracheal defects with laryngeal inflammatory lesions and malignant tumor invasion. However, these techniques are invasive with an unstable clinical outcome. The purpose of this study was to investigate regeneration in a tracheal defect site of nude rats after implantation of ciliated epithelium that was differentiated from induced pluripotent stem cells. Method Embryoid bodies were formed from mouse induced pluripotent stem cells. They were cultured with growth factors for 5 days, and then cultured at the air-liquid interface. The degree of differentiation achieved prior to implantation was determined by histological findings and the results of real-time polymerase chain reaction. Embryoid bodies including ciliated epithelium were embedded into collagen gel that served as an artificial scaffold, and then implanted into nude rats, creating an 'air-liquid interface model'. Histological evaluation was performed 7 days after implantation. Results The ciliated epithelial structure survived on the lumen side of regenerated tissue. It was demonstrated histologically that the structure was composed of ciliated epithelial cells. PMID:26755348

  10. High glucose augments stress-induced apoptosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Wenwen Zhong; Yang Liu; Hui Tian

    2009-01-01

    Hyperglycemia has been identified as one of the important factors involved in the microvascular complications of diabetes, and has been related to increased cardiovascular mortality. Endothelial damage and dysfunction result from diabetes; therefore, the aim of this study was to determine the response of endothelial cells to stressful stimuli, modelled in normal and high glucose concentrations in vitro. Eahy 926 endothelial cells were cultured in 5 mmol/L or 30 mmol/L glucose conditions for a 24 hour period and oxidative stress was induced by exposure to hydrogen peroxide (H2O2) or tumour necrosis factor- α (TNF- α ), following which the protective effect of the glucocorticoid dexamethasone was assessed. Apoptosis, necrosis and cell viability were determined using an ELISA for DNA fragmentation, an enzymatic lactate dehydrogenase assay and an MTT assay, respectively. High glucose significantly increased the susceptibility of Eahy 926 cells to apoptosis in the presence of 500 μmol/L H2O2, above that induced in normal glucose (P<0.02). A reduction of H2O2- and TNF- α -induced apoptosis occurred in both high and low glucose after treatment with dexametha-sone (P<0.05). Conclusion high glucose is effective in significantly augmenting stress caused by H2O2, but not in causing stress alone. These findings suggest a mechanism by which short term hyperglycemia may facilitate and augment endothelial damage.

  11. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  12. Mechanism of T-cell tolerance induced by myeloid-derived suppressor cells1

    OpenAIRE

    Nagaraj, Srinivas; Schrum, Adam G.; Cho, Hyun-Il; Celis, Esteban; Gabrilovich, Dmitry I.

    2010-01-01

    Antigen-specific T-cell tolerance plays a critical role in tumor escape. Recent studies implicated myeloid-derived suppressor cells (MDSC) in the induction of CD8+ T-cell tolerance in tumor-bearing hosts. However, the mechanism of this phenomenon remained unclear. We have found that incubation of antigen-specific CD8+ T cells, with peptide-loaded MDSC, did not induce signaling downstream of TCR. However, it prevented subsequent signaling from peptide-loaded dendritic cells. Using double TCR t...

  13. Requirements for Peptide-induced T Cell Receptor Downregulation on Naive CD8+ T Cells

    OpenAIRE

    Cai, Zeling; Kishimoto, Hidehiro; Brunmark, Anders; Jackson, Michael R.; Peterson, Per A.; Sprent, Jonathan

    1997-01-01

    The requirements for inducing downregulation of α/β T cell receptor (TCR) molecules on naive major histocompatibility complex class I–restricted T cells was investigated with 2C TCR transgenic mice and defined peptides as antigen. Confirming previous results, activation of 2C T cells in response to specific peptides required CD8 expression on the responder cells and was heavily dependent upon costimulation provided by either B7-1 or ICAM-1 on antigen-presenting cells (APC). These stringent re...

  14. Derived vascular endothelial cells induced by mucoepidermoid carcinoma cells: 3-dimensional collagen matrix model*

    OpenAIRE

    Yang, Sen; Guo, Li-Juan; Gao, Qing-hong; Xuan, Ming; Tan, Ke; Zhang, Qiang; Wen, Yu-ming; Wang, Chang-mei; Tang, Xiu-fa; Wang, Xiao-yi

    2010-01-01

    Mucoepidermoid carcinoma undergoes uniquely vigorous angiogenic and neovascularization processes, possibly due to proliferation of vascular endothelial cells (ECs) induced by mucoepidermoid carcinoma cells (MCCs) in their three-dimensional (3D) microenvironment. To date, no studies have dealt with tumor cells and vascular ECs from the same origin of mucoepidermoid carcinoma using the in vitro 3D microenvironment model. In this context, the current research aims to observe neovascularization w...

  15. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  16. Cell-cycle dependent micronucleus formation and mitotic disturbances induced by 5-azacytidine in mammalian cells

    OpenAIRE

    Stopper, Helga; Körber, C.; Schiffmann, D; Caspary, W J

    2012-01-01

    5-Azacytidine was originally developed to treat human myelogenous leukemia. However, interest in this compound has expanded because of reports of its ability to affect cell differentiation and to alter eukaryotic gene expression. In an ongoing attempt to understand the biochemical effects of this compound, we examined the effects of 5-azacytidine on mitosis and on micronucleus formation in mammalian cells. In L5178Y mouse cells, 5-azacytidine induced micronuclei at concentrations at which we ...

  17. Neural-Induced Human Mesenchymal Stem Cells Promote Cochlear Cell Regeneration in Deaf Guinea Pigs

    OpenAIRE

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Jun, Jae Yeoul; Park, Jong-Seong; Jeong, Han-Seong; Cho, Yong-Beom

    2015-01-01

    Objectives In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae. Methods HMSCs were isolated from the bone marrow which was ob...

  18. Induced Differentiation of Adipose-derived Stromal Cells into Myoblasts

    Institute of Scientific and Technical Information of China (English)

    吴桂珠; 郑秀; 江忠清; 王金华; 宋岩峰

    2010-01-01

    This study aimed to induce the differentiation of isolated and purified adipose-derived stromal cells(ADSCs) into myoblasts,which may provide a new strategy for tissue engineering in patients with stress urinary incontinence(SUI).ADSCs,isolated and cultured ex vivo,were identified by flow cytometry and induced to differentiate into myoblasts in the presence of an induction solution consisting of DMEM supplemented with 5-azacytidine(5-aza),5% FBS,and 5% horse serum.Cellular morphology was observed under an i...

  19. Novel self-micellizing anticancer lipid nanoparticles induce cell death of colorectal cancer cells.

    Science.gov (United States)

    Sundaramoorthy, Pasupathi; Baskaran, Rengarajan; Mishra, Siddhartha Kumar; Jeong, Keun-Yeong; Oh, Seung Hyun; Kyu Yoo, Bong; Kim, Hwan Mook

    2015-11-01

    In the present study, we developed a novel drug-like self-micellizing anticancer lipid (SMAL), and investigated its anticancer activity and effects on cell death pathways in human colorectal cancer (CRC) cell lines. Three self-assembled nanoparticles were prepared, namely, SMAL102 (lauramide derivative), SMAL104 (palmitamide derivative), and SMAL108 (stearamide derivative) by a thin-film hydration technique, and were characterized for physicochemical and biological parameters. SMAL102 were nanosized (160.23 ± 8.11 nm) with uniform spherical shape, while SMAL104 and SMAL108 did not form spherical shape but formed large size nanoparticles and irregular in shape. Importantly, SMAL102 showed a cytotoxic effect towards CRC cell lines (HCT116 and HT-29), and less toxicity to a normal colon fibroblast cell line (CCD-18Co). Conversely, SMAL104 and SMAL108 did not have an anti-proliferative effect on CRC cell lines. SMAL102 nanoparticles were actively taken up by CRC cell lines, localized in the cell membrane, and exhibited remarkable cytotoxicity in a concentration-dependent manner. The normal colon cell line showed significantly less cellular uptake and non-cytotoxicity as compared with the CRC cell lines. SMAL102 nanoparticles induced caspase-3, caspase-9, and PARP cleavage in HT-29 cells, indicating the induction of apoptosis; whereas LC3B was activated in HCT116 cells, indicating autophagy-induced cell death. Collectively, these results demonstrate that SMAL102 induced cell death via activation of apoptosis and autophagy in CRC cell lines. The present study could be a pioneer for further preclinical and clinical development of such compounds. PMID:26342325

  20. Tributyltin induces mitochondrial fission through Mfn1 degradation in human induced pluripotent stem cells.

    Science.gov (United States)

    Yamada, Shigeru; Asanagi, Miki; Hirata, Naoya; Itagaki, Hiroshi; Sekino, Yuko; Kanda, Yasunari

    2016-08-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT is also known to cause various forms of cytotoxicity, including neurotoxicity and immunotoxicity. However, TBT toxicity has not been identified in normal stem cells. In the present study, we examined the effects of TBT on cell growth in human induced pluripotent stem cells (iPSCs). We found that exposure to nanomolar concentrations of TBT decreased intracellular ATP levels and inhibited cell viability in iPSCs. Because TBT suppressed energy production, which is a critical function of the mitochondria, we further assessed the effects of TBT on mitochondrial dynamics. Staining with MitoTracker revealed that nanomolar concentrations of TBT induced mitochondrial fragmentation. TBT also reduced the expression of mitochondrial fusion protein mitofusin 1 (Mfn1), and this effect was abolished by knockdown of the E3 ubiquitin ligase membrane-associated RING-CH 5 (MARCH5), suggesting that nanomolar concentrations of TBT could induce mitochondrial dysfunction via MARCH5-mediated Mfn1 degradation in iPSCs. Thus, mitochondrial function in normal stem cells could be used to assess cytotoxicity associated with metal exposure. PMID:27133438

  1. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway.

    Science.gov (United States)

    Lu, Chi; Xie, Conghua

    2016-06-01

    Radiotherapy is an important treatment modality for esophageal cancer; however, the clinical efficacy of radiotherapy is limited by tumor radioresistance. In the present study, we explored the hypothesis that radiation induces tumor cell autophagy as a cytoprotective adaptive response, which depends on liver kinase B1 (LKB1) also known as serine/threonine kinase 11 (STK11). Radiation-induced Eca-109 cell autophagy was found to be dependent on signaling through the LKB1 pathway, and autophagy inhibitors that disrupted radiation-induced Eca-109 cell autophagy increased cell cycle arrest and cell death in vitro. Inhibition of autophagy also reduced the clonogenic survival of the Eca-109 cells. When treated with radiation alone, human esophageal carcinoma xenografts showed increased LC3B and p-LKB1 expression, which was decreased by the autophagy inhibitor chloroquine. In vivo inhibition of autophagy disrupted tumor growth and increased tumor apoptosis when combined with 6 Gy of ionizing radiation. In summary, our findings elucidate a novel mechanism of resistance to radiotherapy in which radiation-induced autophagy, via the LKB1 pathway, promotes tumor cell survival. This indicates that inhibition of autophagy can serve as an adjuvant treatment to improve the curative effect of radiotherapy. PMID:27109915

  2. Marrow fat cell: response to x-ray induced aplasia

    International Nuclear Information System (INIS)

    Adipose tissue is an integral structural component of normal rabbit marrow and is believed to behave primarily as a cushion in response to hemopoietic proliferation, accommodating to changes in hemopoiesis by change in either size or number or both of the fat cells in order to maintain constancy of the marrow volume. To test this hypothesis, aplasia of the right femur of New Zealand white rabbits was induced by x irradiation with 8000 rads; the left unirradiated limb served as control. Twenty-four hours before sacrifice 50 μCi of palmitate-114C was administered intravenously and the marrow of both femurs removed. Samples of perinephric fat were taken for comparison. Fat cell volume, C14 palmitate turnover and fatty acid composition were determined. The total number of fat cells in the entire marrow of both femurs was calculated. The measurements showed no difference in size or fatty acid turnover of the fat cells in the irradiated aplastic marrow from the cells of the control marrow. The number of fat cells in both the irradiated and the unirradiated control femurs was essentially the same. These findings do not support the view that marrow fat cells respond to diminished hematopoiesis by either increase in their volume or number. In addition, the findings suggest that both marrow and subcutaneous fat cells are fairly resistant to high doses of x-ray irradiation

  3. Melatonin Prevents Chemical-Induced Haemopoietic Cell Death

    Directory of Open Access Journals (Sweden)

    Sara Salucci

    2014-04-01

    Full Text Available Melatonin (MEL, a methoxyindole synthesized by the pineal gland, is a powerful antioxidant in tissues as well as within cells, with a fundamental role in ameliorating homeostasis in a number of specific pathologies. It acts both as a direct radical scavenger and by stimulating production/activity of intracellular antioxidant enzymes. In this work, some chemical triggers, with different mechanisms of action, have been chosen to induce cell death in U937 hematopoietic cell line. Cells were pre-treated with 100 µM MEL and then exposed to hydrogen peroxide or staurosporine. Morphological analyses, TUNEL reaction and Orange/PI double staining have been used to recognize ultrastructural apoptotic patterns and to evaluate DNA behavior. Chemical damage and potential MEL anti-apoptotic effects were quantified by means of Tali® Image-Based Cytometer, able to monitor cell viability and apoptotic events. After trigger exposure, chromatin condensation, micronuclei formation and DNA fragmentation have been observed, all suggesting apoptotic cell death. These events underwent a statistically significant decrease in samples pre-treated with MEL. After caspase inhibition and subsequent assessment of cell viability, we demonstrated that apoptosis occurs, at least in part, through the mitochondrial pathway and that MEL interacts at this level to rescue U937 cells from death.

  4. Induced pluripotent stem cell lines derived from equine fibroblasts.

    Science.gov (United States)

    Nagy, Kristina; Sung, Hoon-Ki; Zhang, Puzheng; Laflamme, Simon; Vincent, Patrick; Agha-Mohammadi, Siamak; Woltjen, Knut; Monetti, Claudio; Michael, Iacovos Prodromos; Smith, Lawrence Charles; Nagy, Andras

    2011-09-01

    The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure. Equine iPS (EiPS) cells, in addition to bringing promises to the veterinary field, open up the opportunity to utilize horses for the validation of stem cell based therapies before moving into the human clinical setting. In this study, we report the generation of iPS cells from equine fibroblasts using a piggyBac (PB) transposon-based method to deliver transgenes containing the reprogramming factors Oct4, Sox2, Klf4 and c-Myc, expressed in a temporally regulated fashion. The established iPS cell lines express hallmark pluripotency markers, display a stable karyotype even during long-term culture, and readily form complex teratomas containing all three embryonic germ layer derived tissues upon in vivo grafting into immunocompromised mice. Our EiPS cell lines hold the promise to enable the development of a whole new range of stem cell-based regenerative therapies in veterinary medicine, as well as aid the development of preclinical models for human applications. EiPS cell could also potentially be used to revive recently extinct or currently threatened equine species. PMID:21347602

  5. Radiation-induced mitotic catastrophe in PARG-deficient cells

    International Nuclear Information System (INIS)

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in the regulation of chromatin structure, DNA metabolism, cell division and cell death. Through the hydrolysis of poly(ADP-ribose) (PAR), Poly(ADP-ribose) glyco-hydrolase (PARG) has a crucial role in the control of life-and-death balance following DNA insult. Comprehension of PARG function has been hindered by the existence of many PARG isoforms encoded by a single gene and displaying various subcellular localizations. To gain insight into the function of PARG in response to irradiation, we constitutively and stably knocked down expression of PARG isoforms in HeLa cells. PARG depletion leading to PAR accumulation was not deleterious to undamaged cells and was in fact rather beneficial, because it protected cells from spontaneous single-strand breaks and telomeric abnormalities. By contrast, PARG-deficient cells showed increased radiosensitivity, caused by defects in the repair of single- and double-strand breaks and in mitotic spindle checkpoint, leading to alteration of progression of mitosis. Irradiated PARG-deficient cells displayed centrosome amplification leading to mitotic supernumerary spindle poles, and accumulated aberrant mitotic figures, which induced either polyploidy or cell death by mitotic catastrophe. Our results suggest that PARG could be a novel potential therapeutic target for radiotherapy. (authors)

  6. Porosity at photo-induced fat cell lipolysis

    Science.gov (United States)

    Doubrovsky, V. A.; Yanina, I. Y.; Tuchin, V. V.

    2012-06-01

    The "specific structures" on the fat cells' membranes in vitro as a result of photodynamic treatment was registered. These structures were identified as cytoplasm/oil microdrops flowed out through the pores in the membranes. The impact of Brilliant Green dissolved in water-ethanol solutions and irradiation by a LED lamp on the quantity and size of "specific structures" on the membranes was investigated. It was demonstrated that optical selective action on fat cells sensitized by Brilliant Green led to the growth of "specific structures" (pores) number during the time interval after light exposure. A high degree of correlation between the optical clearing of fat tissue and quantity of "specific structures" (pores) was found. This result proves our early prediction about mechanism of light-induced fat cells' lipolysis via increased cell membrane porosity.

  7. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells.

    Science.gov (United States)

    Senkiv, Julia; Finiuk, Nataliya; Kaminskyy, Danylo; Havrylyuk, Dmytro; Wojtyra, Magdalena; Kril, Iryna; Gzella, Andrzej; Stoika, Rostyslav; Lesyk, Roman

    2016-07-19

    The article presents the synthesis of 5-ene-4-thiazolidinone derivatives with pyrazole core linked by enamine group. The structure and purity of compounds were confirmed by analytical and spectral data including X-ray analysis. Target compounds were screened for their anticancer activity and selective antileukemic action was confirmed. 5-[5-(2-Hydroxyphenyl)-3-phenyl-4,5-dihydropyrazol-1-ylmethylene]-3-(3-acetoxyphenyl)-2-thioxothiazolidin-4-one (compound 1) was selected as most active agent against HL-60 and HL-60/ADR cell lines; IC50 = 118 nM/HL-60 with low toxicity towards pseudonormal cells. The mitochondria-depended apoptosis was identified as the main mode of 1 action. Moreover compound's effect induces G0/G1 arrest of the treated cells and causes inhibition of cell division and is related with activation of ROS production. PMID:27089210

  8. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Klier Ulrike

    2011-09-01

    Full Text Available Abstract Background Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. Methods We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. Results The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested could be observed. Conclusion Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These

  9. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  10. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4(+) effector memory T cells.

    Science.gov (United States)

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-02-01

    CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo. PMID:26111522

  11. Infrasound sensitizes human glioblastoma cells to cisplatin-induced apoptosis.

    Science.gov (United States)

    Rachlin, Kenneth; Moore, Dan H; Yount, Garret

    2013-11-01

    The development of nontoxic agents that can selectively enhance the cytotoxicity of chemotherapy is an important aim in oncology. This study evaluates the ability of infrasound exposure to sensitize glioblastoma cells to cisplatin-induced apoptosis. The infrasound was delivered using a device designed to replicate the unique infrasound emissions measured during external Qigong treatments. Human glioblastoma cell lines harboring wild-type p53 (U87) or mutant p53 (U251, SF210, and SF188) were treated in culture with cisplatin, infrasound emissions, or the combination of the 2 agents. Induction of apoptosis was quantified after 24 hours by flow cytometry following annexin V/propidium iodide staining. Infrasound emissions alone, delivered at moderate levels (~10 mPa) with dynamic frequency content (7-13 Hz), did not induce apoptosis, yet combining infrasound with cisplatin augmented the induction of apoptosis by cisplatin in all the 4 cell lines (P infrasound exposure was quantified by fluorescence microscopy as well as flow cytometry, demonstrating increased cell membrane permeability. The 4 cell lines differed in the degree to which infrasound exposure increased calcein uptake, and these differences were predictive of the extent to which infrasound enhanced cisplatin-induced apoptosis. When exposed to specific frequencies, membrane permeabilization also appeared to be differentially responsive for each cell line, suggesting the potential for selective targeting of tissue types using isolated infrasonic frequencies. Additionally, the pressure amplitudes used in this study were several orders of magnitude less than those used in similar studies involving ultrasound and shock waves. The results of this study provide support for using infrasound to enhance the chemotherapeutic effects of cisplatin in a clinical setting. PMID:23165942

  12. Enhancement of ultrasonically induced cell damage by phthalocyanines in vitro.

    Science.gov (United States)

    Milowska, Katarzyna; Gabryelak, Teresa

    2008-12-01

    In this work, erythrocytes from carp were used as a nucleated cell model to test the hypothesis that the phthalocyanines (zinc--ZnPc and chloroaluminium -AlClPc) enhance ultrasonically induced damage in vitro. In order to confirm and complete our earlier investigation, the influence of ultrasound (US) and phthalocyanines (Pcs) on unresearched cellular components, was studied. Red blood cells were exposed to 1 MHz continuous ultrasound wave (0.61 and/or 2.44 W/cm(2)) in the presence or absence of phthalocyanines (3 microM). To identify target cell damage, we studied hemolysis, membrane fluidity and morphology of erythrocytes. To demonstrate the changes in the fluidity of plasma membrane we used the spectrofluorimetric methods using two fluorescence probes: 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5,-hexatriene (TMA-DPH) and 1,6-diphenyl-1,3,5-hexatriene (DPH). The effect of US and Pcs on nucleated erythrocytes morphology was estimated on the basis of microscopic observation. The enhancement of ultrasonically induced membrane damage by both phthalocyanines was observed in case of hemolysis, and membrane surface fluidity, in comparison to ultrasound. The authors also observed changes in the morphology of erythrocytes. The obtained results support the hypothesis that the Pcs enhance ultrasonically induced cell damage in vitro. Furthermore, the influence of ultrasound on phthalocyanines (Pcs) in medium and in cells was tested. The authors observed changes in the phthalocyanines absorption spectra in the medium and the increase in the intensity of phthalocyanines fluorescence in the cells. These data can suggest changes in the structure of phthalocyanines after ultrasound action. PMID:18495194

  13. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen; Zuhayra, Maaz; Schütze, Stefan; Steckelings, Ulrike Muscha; Recarti, Chiara; Namsolleck, Pawel; Unger, Thomas; Culman, Juraj

    2015-01-01

    -peptide AT2 receptor agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial...... apoptotic pathway, i. e. down-regulation of the Bcl-2 protein, induction of the Bax protein and activation of caspase-3. All quiescent SK-UT-1 cells died within 5 days after treatment with a single dose of C21. C21 was devoid of cytotoxic effects in proliferating SK-UT-1 cells and in quiescent HutSMC. Our...

  14. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E; Issinger, Olaf-Georg; Stenvang, Jan

    2007-01-01

    future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells are...... parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment.......Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance for...

  15. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    International Nuclear Information System (INIS)

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells

  16. Argentatin B Inhibits Proliferation of Prostate and Colon Cancer Cells by Inducing Cell Senescence

    Directory of Open Access Journals (Sweden)

    Ela Alcántara-Flores

    2015-11-01

    Full Text Available Argentatin B has been shown to inhibit the growth of colon HCT-15, and prostate PC-3 cancer cells. However, the mechanism by which argentatin B inhibits cell proliferation is still unknown. We aimed to investigate the mechanism by which argentatin B inhibits cell proliferation. The cell cycle was studied by flow cytometry. Apoptosis was evaluated by Annexin-V-Fluos, and Hoechst 33342 dye staining. Cell senescence was evaluated by proliferation tests, and staining for SA-β-galactosidase. Senescence-related proteins (PCNA, p21, and p27 were analyzed by Western blotting. Potential toxicity of argentatin B was evaluated in CD-1 mice. Its effect on tumor growth was tested in a HCT-15 and PC-3 xenograft model. Argentatin B induced an increment of cells in sub G1, but did not produce apoptosis. Proliferation of both cell lines was inhibited by argentatin B. Forty-three percent HCT-15, and 66% PC-3 cells showed positive SA-β-galactosidase staining. The expression of PCNA was decreased, p21 expression was increased in both cell lines, but p27 expression increased only in PC-3 cells after treatment. Administration of argentatin B to healthy mice did not produce treatment-associated pathologies. However, it restricted the growth of HCT-15 and PC-3 tumors. These results indicate that treatment with argentatin B induces cell senescence.

  17. Induced pluripotent stem cells: from Nobel Prizes to clinical applications.

    Science.gov (United States)

    Rashid, S Tamir; Alexander, Graeme J M

    2013-03-01

    Advances in basic hepatology have been constrained for many years by the inability to culture primary hepatocytes in vitro, until just over five years ago when the scientific playing field was changed beyond recognition with the demonstration that human skin fibroblasts could be reprogrammed to resemble embryonic cells. The reprogrammed cells, known as induced pluripotent stem cells (iPSCs), were then shown to have the capacity to re-differentiate into almost any human cell type, including hepatocytes. The unlimited number and isogenic nature of the cells that can be generated from tiny fragments of tissue have massive implications for the study of human liver diseases in vitro. Of more immediate clinical importance were recent data demonstrating precision gene therapy on patient specific iPSCs, which opens up the real and exciting possibility of autologous hepatocyte transplantation as a substitute for allogeneic whole liver transplantation, which has been an effective approach to end-stage liver disease, but one that has now been outstripped by demand. In this review, we describe the historical development, current technology and potential clinical applications of induced pluripotency, concluding with a perspective on possible future directions in this dynamic field. PMID:23131523

  18. Chlorambucil effectively induces deletion mutations in mouse germ cells.

    OpenAIRE

    Russell, L B; Hunsicker, P R; Cacheiro, N L; Bangham, J W; Russell, W. L.; Shelby, M D

    1989-01-01

    The chemotherapeutic agent chlorambucil was found to be more effective than x-rays or any chemical investigated to date in inducing high yields of mouse germ-line mutations that appear to be deletions or other structural changes. Induction of mutations involving seven specific loci was studied after exposures of various male germ-cell stages to chlorambucil at 10-25 mg/kg. A total of 60,750 offspring was scored. Mutation rates in spermatogonial stem cells were not significantly increased over...

  19. CSR1 induces cell death through inactivation of CPSF3

    OpenAIRE

    Zhu, Z-H; Yu, YP; Shi, Y-K; Nelson, JB; Luo, J-H

    2008-01-01

    CSR1 (cellular stress response 1), a newly characterized tumor-suppressor gene, undergoes hypermethylation in over 30% of prostate cancers. Re-expression of CSR1 inhibits cell growth and induces cell death, but the mechanism by which CSR1 suppresses tumor growth is not clear. In this study, we screened a prostate cDNA library using a yeast two-hybrid system and found that the cleavage and polyadenylation-specific factor 3 (CPSF3), an essential component for converting heteronuclear RNA to mRN...

  20. Hypoxia preconditioning protects corneal stromal cells against induced apoptosis

    OpenAIRE

    Xing, Dongmei; Sun, Xingcai; Li, Jinhua; CUI, MIAO; Tan-Allen, Kah; Bonanno, Joseph A

    2005-01-01

    The purpose of this study, was to determine whether hypoxia preconditioning can protect corneal stromal cells from UV stress and cytokine mediated apoptosis. Two models were implemented. First, primary cultured bovine corneal fibroblasts were preconditioned with 0.5–1.5% O2 for 4 hr and stressed with UV-irradiation or stimulation of Fas receptor. Second, bovine eyes were preconditioned with 0.5% O2 for 4 hr and stressed by epithelial scraping to induce anterior keratocyte apoptosis. Cell fate...

  1. Murine Lung Cancer Induces Generalized T Cell Exhaustion

    Science.gov (United States)

    Mittal, Rohit; Chen, Ching-Wen; Lyons, John D; Margoles, Lindsay M; Liang, Zhe; Coopersmith, Craig M; Ford, Mandy L

    2015-01-01

    Background Cancer is known to modulate tumor-specific immune responses by establishing a micro-environment that leads to the upregulation of T cell inhibitory receptors, resulting in the progressive loss of function and eventual death of tumor-specific T cells. However, the ability of cancer to impact the functionality of the immune system on a systemic level is much less well characterized. Because cancer is known to predispose patients to infectious complications including sepsis, we hypothesized that the presence of cancer alters pathogen-directed immune responses on a systemic level. Materials and Methods We assessed systemic T cell coinhibitory receptor expression, cytokine production, and apoptosis in mice with established subcutaneous lung cancer tumors and in unmanipulated mice without cancer. Results Results indicated that the frequencies of PD-1+, BTLA+, and 2B4+ cells in both the CD4+ and CD8+ T cell compartments were increased in mice with localized cancer relative to non-cancer controls, and the frequencies of both CD4+ and CD8+ T cells expressing multiple different inhibitory receptors was increased in cancer animals relative to non-cancer controls. Additionally, 2B4+CD8+ T cells in cancer mice exhibited reduced IL-2 and IFN-γ, while BTLA+CD8+ T cells in cancer mice exhibited reduced IL-2 and TNF. Conversely, CD4+ T cells in cancer animals demonstrated an increase in the frequency of Annexin V+ apoptotic cells. Conclusion Taken together, these data suggest that the presence of cancer induces systemic T cell exhaustion and generalized immune suppression. PMID:25748104

  2. Irradiation of human thymic stromal cells induces a diminution of T cell precursor proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Bertho, J.M.; Van der Meeren, A. [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Coulombel, L. [Institut Gustave Roussy, 94 - Villejuif (France)

    1997-03-01

    Very little is known concerning the effects of ionizing radiation on the supportive function of the thymic microenvironment in the regeneration of a fully competent T lymphocyte population after irradiation. The data available suggest that irradiation of the thymus may have short-term effects on the thymus and long-term effects on peripheral blood T lymphocytes. We have recently developed an in vitro model of thymic stromal cell cultures (TSCC). These TSCC contained 30-50% thymic epithelial cells (TEC), 50-70% fibro-blastoid cells (TF), and 1-5% macrophages and dendritic cells. This model was used to study effects of ionizing radiation on human thymic microenvironment. TSCC were irradiated at a dose of 10 Grays (gamma rays, {sup 60}Co source, dose rate 1 Gy/mn) or sham-irradiated. Sorted autologous T cell precursors were seeded onto TSCC 24 hours after irradiation. Proliferation of T cell precursors was assessed by numerating non-adherent cells in the supernatant of TSCC twice a week. Results show that irradiation of TSCC induced a diminution in the number of T cell precursor harvested from the cultures either in the presence or in the absence of interleukin-7 (IL-7) and stem cell factor (SCF). This diminished number of cells harvested appeared as early as day 4, and remained constant during 21-day culture period. The results showed that the number of stromal cells after irradiation remained constant until day 21. We have generated supernatants (SN) from irradiated TSCC in order to test the presence of negative regulators or the decrease of activating factors. Results showed that SN from irradiated TSCC were able to induce a decrease in the number of harvested T cells. Overall, the results provides the first direct demonstration that irradiation of thymic microenvironment induced modifications in its supportive function for T cell precursor proliferation. (N.C.)

  3. Irradiation of human thymic stromal cells induces a diminution of T cell precursor proliferation

    International Nuclear Information System (INIS)

    Very little is known concerning the effects of ionizing radiation on the supportive function of the thymic microenvironment in the regeneration of a fully competent T lymphocyte population after irradiation. The data available suggest that irradiation of the thymus may have short-term effects on the thymus and long-term effects on peripheral blood T lymphocytes. We have recently developed an in vitro model of thymic stromal cell cultures (TSCC). These TSCC contained 30-50% thymic epithelial cells (TEC), 50-70% fibro-blastoid cells (TF), and 1-5% macrophages and dendritic cells. This model was used to study effects of ionizing radiation on human thymic microenvironment. TSCC were irradiated at a dose of 10 Grays (gamma rays, 60Co source, dose rate 1 Gy/mn) or sham-irradiated. Sorted autologous T cell precursors were seeded onto TSCC 24 hours after irradiation. Proliferation of T cell precursors was assessed by numerating non-adherent cells in the supernatant of TSCC twice a week. Results show that irradiation of TSCC induced a diminution in the number of T cell precursor harvested from the cultures either in the presence or in the absence of interleukin-7 (IL-7) and stem cell factor (SCF). This diminished number of cells harvested appeared as early as day 4, and remained constant during 21-day culture period. The results showed that the number of stromal cells after irradiation remained constant until day 21. We have generated supernatants (SN) from irradiated TSCC in order to test the presence of negative regulators or the decrease of activating factors. Results showed that SN from irradiated TSCC were able to induce a decrease in the number of harvested T cells. Overall, the results provides the first direct demonstration that irradiation of thymic microenvironment induced modifications in its supportive function for T cell precursor proliferation. (N.C.)

  4. Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα.

    Science.gov (United States)

    Bueno, C; Sardina, J L; Di Stefano, B; Romero-Moya, D; Muñoz-López, A; Ariza, L; Chillón, M C; Balanzategui, A; Castaño, J; Herreros, A; Fraga, M F; Fernández, A; Granada, I; Quintana-Bustamante, O; Segovia, J C; Nishimura, K; Ohtaka, M; Nakanishi, M; Graf, T; Menendez, P

    2016-03-01

    B cells have been shown to be refractory to reprogramming and B-cell-derived induced pluripotent stem cells (iPSC) have only been generated from murine B cells engineered to carry doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) cassette in every tissue and from EBV/SV40LT-immortalized lymphoblastoid cell lines. Here, we show for the first time that freshly isolated non-cultured human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20+ B cells can be reprogrammed to iPSCs carrying complete VDJH immunoglobulin (Ig) gene monoclonal rearrangements using non-integrative tetracistronic, but not monocistronic, OSKM-expressing Sendai Virus. Co-expression of C/EBPα with OSKM facilitates iPSC generation from both CB- and PB-derived B cells. We also demonstrate that myeloid cells are much easier to reprogram than B and T lymphocytes. Differentiation potential back into the cell type of their origin of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is not skewed, suggesting that their differentiation does not seem influenced by 'epigenetic memory'. Our data reflect the actual cell-autonomous reprogramming capacity of human primary B cells because biased reprogramming was avoided by using freshly isolated primary cells, not exposed to cytokine cocktails favoring proliferation, differentiation or survival. The ability to reprogram CB/PB-derived primary human B cells offers an unprecedented opportunity for studying developmental B lymphopoiesis and modeling B-cell malignancies. PMID:26500142

  5. Radiation-induced spindle cell sarcoma: A rare case report

    Directory of Open Access Journals (Sweden)

    Khan Mubeen

    2009-01-01

    Full Text Available Ionizing radiation has been known to induce malignant transformation in human beings. Radiation-induced sarcomas are a late sequel of radiation therapy. Most sarcomas have been reported to occur after exposure to a radiation dose of 55 Gray (Gy and above, with a dose ranging from 16 to 112 Gys. Spindle cell sarcomas, arising after radiotherapy given to treat the carcinoma of head and neck region is a very uncommon sequel. This is a rare case report of spindle cell sarcoma of left maxilla, in a 24-year-old male, occurring as a late complication of radiotherapy with Cobalt-60 given for the treatment of retinoblastoma of the left eye 21 years back.

  6. Role of Kupffer Cells in Thioacetamide-Induced Cell Cycle Dysfunction

    Directory of Open Access Journals (Sweden)

    Mirandeli Bautista

    2011-09-01

    Full Text Available It is well known that gadolinium chloride (GD attenuates drug-induced hepatotoxicity by selectively inactivating Kupffer cells. In the present study the effect of GD in reference to cell cycle and postnecrotic liver regeneration induced by thioacetamide (TA in rats was studied. Two months male rats, intraveously pretreated with a single dose of GD (0.1 mmol/Kg, were intraperitoneally injected with TA (6.6 mmol/Kg. Samples of blood and liver were obtained from rats at 0, 12, 24, 48, 72 and 96 h following TA intoxication. Parameters related to liver damage were determined in blood. In order to evaluate the mechanisms involved in the post-necrotic regenerative state, the levels of cyclin D and cyclin E as well as protein p27 and Proliferating Cell Nuclear Antigen (PCNA were determined in liver extracts because of their roles in the control of cell cycle check-points. The results showed that GD significantly reduced the extent of necrosis. Noticeable changes were detected in the levels of cyclin D1, cyclin E, p27 and PCNA when compared to those induced by thioacetamide. Thus GD pre-treatment reduced TA-induced liver injury and accelerated the postnecrotic liver regeneration. These results demonstrate that Kupffer cells are involved in TA-induced liver and also in the postnecrotic proliferative liver states.

  7. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    Directory of Open Access Journals (Sweden)

    Tzuu-Yuan Huang

    2012-01-01

    Full Text Available Demethoxycurcumin (DMC; a curcumin-related demethoxy compound has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP, DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

  8. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    António Rego

    2014-08-01

    Full Text Available Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria.

  9. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo.

    OpenAIRE

    D. Liu; Pearlman, E.; Diaconu, E.; Guo, K.; Mori, H.; Haqqi, T; Markowitz, S; Willson, J; Sy, M S

    1996-01-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorect...

  10. Fructose Induces the Inflammatory Molecule ICAM-1 in Endothelial Cells

    OpenAIRE

    Glushakova, Olena; Kosugi, Tomoki; Roncal, Carlos; Mu, Wei; Heinig, Marcelo; Cirillo, Pietro; Sánchez-Lozada, Laura G.; Richard J Johnson; Nakagawa, Takahiko

    2008-01-01

    Epidemiologic studies have linked fructose intake with the metabolic syndrome, and it was recently reported that fructose induces an inflammatory response in the rat kidney. Here, we examined whether fructose directly stimulates endothelial inflammatory processes by upregulating the inflammatory molecule intercellular adhesion molecule-1 (ICAM-1). When human aortic endothelial cells were stimulated with physiologic concentrations of fructose, ICAM-1 mRNA and protein expression increased in a ...

  11. Resveratrol Induces Glioma Cell Apoptosis through Activation of Tristetraprolin

    OpenAIRE

    Ryu, Jinhyun; Yoon, Nal Ae; Seong, Hyemin; Jeong, Joo Yeon; Kang, Seokmin; Park, Nammi; Choi, Jungil; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Park, Jae-Yong; Park, Jeong Woo; Kang, Sang Soo

    2015-01-01

    Tristetraprolin (TTP) is an AU-rich elements (AREs)-binding protein, which regulates the decay of AREs-containing mRNAs such as proto-oncogenes, anti-apoptotic genes and immune regulatory genes. Despite the low expression of TTP in various human cancers, the mechanism involving suppressed expression of TTP is not fully understood. Here, we demonstrate that Resveratrol (3,5,4′-trihydroxystilbene, Res), a naturally occurring compound, induces glioma cell apoptosis through activation of tristetr...

  12. Vitamin E Modulates Cigarette Smoke Extract-induced Cell Apoptosis in Mouse Embryonic Cells

    Directory of Open Access Journals (Sweden)

    Zhao-Li Chen, Jian Tao, Jie Yang, Zhen-Li Yuan, Xing-Hua Liu, Min Jin, Zhi-Qiang Shen, Lu Wang, Hai-Feng Li, Zhi-Gang Qiu, Jing-Feng Wang, Xin-Wei Wang, Jun-Wen Li

    2011-01-01

    Full Text Available Vitamin E (VE can effectively prevent occurrence of lung cancer caused by passive smoking in mice. However, whether VE prevents smoking-induced cytotoxicity remains unclear. In this study, a primary culture of embryonic lung cells (ELCs was used to observe the cytotoxic effects of cigarette smoke extract (CSE, including its influence on cell survival, cell cycle, apoptosis, and DNA damage, and also to examine the effects of VE intervention on CSE-induced cytotoxicity. Our results showed that CSE could significantly inhibit the survival of ELCs with dose- and time-dependent effects. Furthermore, CSE clearly disturbed the cell cycle of ELCs by decreasing the proportion of cells at the S and G2/M phases and increasing the proportion of cells at the G0/G1 phase. CSE promoted cell apoptosis, with the highest apoptosis rate reaching more than 40%. CSE also significantly caused DNA damage of ELCs. VE supplementation could evidently inhibit or reverse the cytotoxic effects of CSE in a dose- and time-dependent manner. The mechanism of CSE effects on ELCs and that of VE intervention might involve the mitochondrial pathway of cytochrome c-mediated caspase activation. Our study validate that VE plays a clearly protective effect against CSE-induced cytotoxicity in mouse embryonic lung cells.

  13. Autophagy Accompanied with Bisdemethoxycurcumin-induced Apoptosis in Non-small Cell Lung Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    XU Jin Hong; YANG He Ping; ZHOU Xiang Dong; WANG Hai Jing; GONG Liang; TANG Chun Lan

    2015-01-01

    Objective To investigate the effects of bisdemethoxycurcumin (BDMC) on non-small cell lung cancer (NSCLC) cell line, A549, and the highly metastatic lung cancer 95D cells. Methods CCK-8 assay was used to assess the effect of BDMC on cytotoxicity. Flow cytometry was used to evaluate apoptosis. Western blot analysis, electron microscopy, and quantification of GFP-LC3 punctuates were used to test the effect of BDMC on autophagy and apoptosis of lung cancer cells. Results BDMC inhibited the viability of NSCLC cells, but had no cytotoxic effects on lung small airway epithelial cells (SAECs). The apoptotic cell death induced by BDMC was accompanied with the induction of autophagy in NSCLC cells. Blockage of autophagy by the autophagy inhibitor 3-methyladenine (3-MA) repressed the growth inhibitory effects and induction of apoptosis by BDMC. In addition, BDMC treatment significantly decreased smoothened (SMO) and the transcription factor glioma-associated oncogene 1 (Gli1) expression. Furthermore, depletion of Gli1 by siRNA and cyclopamine (a specific SMO inhibitor) induced autophagy. Conclusion Aberrant activation of Hedgehog (Hh) signaling has been implicated in several human cancers, including lung cancers. The present findings provide direct evidence that BDMC-induced autophagy plays a pro-death role in NSCLC, in part, by inhibiting Hedgehog signaling.

  14. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    International Nuclear Information System (INIS)

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer

  15. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Xu, Chuan [Division of Scientific Research and Training, General Hospital of PLA Chengdu Military Area Command, Chengdu, Sichuan 610083 (China); Wang, Mei; Wang, Qinrui [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Zhou, Zhansong, E-mail: zhouzhans@sina.com [Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Xiang, Zhonghuai [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China)

    2014-03-28

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

  16. Laser Light Induced Photosensitization Of Lymphomas Cells And Normal Bone Marrow Cells

    Science.gov (United States)

    Gulliya, Kirpal S.; Pervaiz, Shazib; Nealon, Don G.; VanderMeulen, David L.

    1988-06-01

    Dye mediated, laser light induced photosensitization was tested in an in vitro model for its efficacy in eliminating the contaminating tumor cells for ex vivo autologous bone marrow purging. Daudi and U-937 cells (3 x 106/ml) in RPMI-1640 supplemented with 0.25% human albumin were mixed with 20 µg/ml and 25 µg/ml of MC-540, respectively. These cell-dye mixtures were then exposed to 514 nm argon laser light. Identical treatment was given to the normal bone marrow cells. Viability was determined by the trypan blue exclusion method. Results show that at 31.2 J/cm2 irradiation, 99.9999% Daudi cells were killed while 87% of the normal bone marrow cells survived. No regrowth of Daudi cells was observed for 30 days in culture. However, a light dose of 93.6 J/cm2 was required to obtain 99.999% U-937 cell kill with 80% normal bone marrow cell survival. Mixing of irradiated bone marrow cells with an equal number of lymphoma cells did not interfere with the photodynamic killing of lymphoma cells. Exposure of cells to low doses of recombinant interferon-alpha prior to photodynamic therapy increased the viability of lymphoma cells.

  17. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  18. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  19. Mechanisms of cell accumulation induced by Mycobacterium bovis BCG

    Directory of Open Access Journals (Sweden)

    Octávio Menezes-de-Lima-Júnior

    1997-12-01

    Full Text Available Mycobacteria, specially Mycobacterium tuberculosis are among the micro-organisms that are increasing dramatically the number of infections with death, all over the world. A great number of animal experimental models have been proposed to investigate the mechanisms involved in the host response against these intracellular parasites. Studies of airway infection in guinea-pigs and rabbits, as well as, in mice intravenously infected with BCG have made an important contribution to our understanding of the virulence, pathogenesis and the immunology of mycobacterial infections. Although, there are few models to study the mechanisms of the initial inflammatory process induced by the first contact with the Mycobacteria, and the relevance of the acute generation of inflammatory mediators, cytokines and leukocyte infiltration to the development of the mycobacterial infection. In this work we reviewed our results obtained with a model of M. bovis BCG-induced pleurisy in mice, describing the mechanisms involved in the leukocyte influx induced by BCG at 24 hr. Different mechanisms appear to be related with the influx of neutrophils, eosinophils and mononuclear cells and distinct inflammatory mediators, cytokines and adhesion molecules are involved in the BCG-induced cell accumulation.

  20. Paclitaxel sensitizes gastric cancer cells to TRAIL-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Objective:Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds promise for cancer therapy as it has unique capacity to selectively trigger apoptosis in cancer cells. We reported here that paclitaxel sensitized gastric cancer cells to TRAIL-induced apoptosis.Methods: After drug exposure, apoptosis rate and caspase activation were examined. Various proteins were detected by western blot. Several interventions, including pharmacological inhibitors and siRNA transfection were used. hTe growth inhibition of tumors was evaluated in SGC-7901-implanted nude mice model.Results:We found gastric cancer cellsshowed a mixed response to TRAIL. Combined treatment with paclitaxel markedly enhanced TARIL-induced apoptosis in vitro and in vivo. The underlying mechanisms involved in synergistical activation of caspase proteins, up-regulation of receptors, down-regulation of antiapoptotic proteins and inactivation of MAPKs.Conclusion:TRAIL-induced cytotoxicity and apoptosis can be synergistically enhanced by paclitaxel, suggesting the therapeutic potential of combining TARIL plus paclitaxel in gastric cancer treatment.

  1. PDT-induced apoptosis in arterial smooth muscles cells

    Science.gov (United States)

    Nyamekye, Isaac; Renick, R.; Gilbert, C.; McEwan, Jean R.; Evan, G.; Bishop, Christopher C. R.; Bown, Stephen G.

    1995-03-01

    PDT kills smooth muscle cells (SMC) in vivo and thus prevents intimal hyperplasia after angioplasty. It causes little inflammation and structural integrity of the artery is not compromised. We have studied the process of the SMC death in vitro. Cultured rat SMC (cell line sv40 ATCC) were sensitized with aluminum disulphonated phthalocyanine (AlS2Pc), and then irradiated with 675 nm laser light (2.5 J/cm2). Controls were studied using only sensitizer or laser for treatment. The cells were incubated and the dying process observed with a time lapse video and microscope system. PDT caused a characteristic pattern of death. Cells lost contact with neighbors, shrank, and showed hyperactivity and membrane ruffling. The cells imploded into active and condensed membrane bound vesicles which were terminally reduced to residual bodies. These are the morphological changes of apoptosis. The control cells which were given AlS2Pc alone or laser alone showed no death. PDT induced cultured arterial SMC death by apoptosis rather than necrosis. An apoptotic mechanism of cell death in vivo would explain the relative lack of inflammation and local tissue destruction in the face of massive death.

  2. Maitotoxin-induced myocardial cell injury: Calcium accumulation followed by ATP depletion precedes cell death

    International Nuclear Information System (INIS)

    Maitotoxin, the most potent marine toxin, is known to increase the uptake and the accumulation of Ca2+ into cells, and was used in the present study to investigate the mechanisms of myocardial cell damage induced by Ca2+ overload. In cultured cardiomyocytes, isolated from 2-day-old rats, maitotoxin affected cell viability, as indicated by the leakage of the cytosolic enzyme lactate dehydrogenase (LDH) and of radiolabeled adenine nucleotides into the extracellular medium. Maitotoxin-induced leakage of LDH steadily increased between 30 min and 24 hr, and was preceded by a marked depletion of intracellular ATP. Addition of maitotoxin resulted in a rapid influx of extracellular Ca2+, as detected by preincubating the cells in the presence of 45Ca; this effect evolved in a few minutes, thus preceding the signs of cell death. Cytosolic levels of free Ca2+ ([Ca2+]i) were monitored by loading freshly isolated, suspended cardiomyocytes with the intracellular fluorescent probe fura-2; in these cells, maitotoxin induced a dose-dependent increase in [Ca2+]i, with a lag phase of less than a minute. All these effects of maitotoxin were inhibited by reducing Ca2+ concentration in the culture medium or by incubating the cells with the calcium-channel blocking drug verapamil. It is thus demonstrated that maitotoxin-induced cardiotoxicity is secondary to an inordinate influx of Ca2+ into the cells. It is also suggested that, in those conditions that lead to an inordinate accumulation of Ca2+ into myocardial cells, the unmatched demands of energy and the depletion of ATP play a primary role in the irreversible stage of cell damage

  3. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Corinne A Lee-Kubli; Paul Lu

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell ther-apies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.

  4. Glycyrrhetinic Acid Inhibits Cell Growth and Induces Apoptosis in Ovarian Cancer A2780 Cells

    Directory of Open Access Journals (Sweden)

    Venus Haghshenas

    2014-10-01

    Full Text Available Purpose: Accumulating evidence indicates that glycyrrhizin (GZ and its hydrolyzed metabolite 18-β glycyrrhetinic acid (GA exhibit anti-inflammatory and anticancer activities. The objective of this study was to examine the in vitro cytotoxic activity of GA on human ovarian cancer A2780 cells. Methods: A2780 cells were cultured in RPMI1640 containing 10% fetal bovine serum. Cells were treated with different doses of GA and cell viability and proliferation were detected by dye exclusion and 3-bis-(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide (XTT assays. Apoptosis induction and expression of Fas and Fas ligand (FasL were analyzed by flow cytometry. Results: We observed that GA decreases cell viability and suppressed cells proliferation in a dose-dependent manner as detected by dye-exclusion and XTT assayes. In addition, our flow cytometry data show that GA not only induces apoptosis in A2780 cells but also upregulates both Fas and FasL on these cells in a dose-dependent manner. Conclusion: we demonstrate that GA causes cell death in A2780 cells by inducing apoptosis.

  5. Sesamol protects human embryonic kidney cells from radiation induced cell death: a potential radioprotective agent

    International Nuclear Information System (INIS)

    Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. In our earlier studies, we have demonstrated that sesamol protected DNA (plasmid and calf thymus) and V79 cells from radiation induced cell death and the effect was higher (DMF=2) in comparison to melatonin (DMF=1.3). This prompted us to study, sesamol mediated radioprotection in detail to understand the mechanism of action. We have chosen human embryonic kidney (HEK) cells to understand the mechanism of radioprotection. The HEK cells were treated with sesamol before exposure of g rays (60Co teletherapy, Bhabhatron II) in the radiation dose range 0-7 Gy for clonogenic survival. Toxicity, antioxidant enzyme activity other biochemical assays were performed. Flow cytometric analysis (FACS Calibre, BD, USA) was used to determine the apoptotic population and mitochondrial membrane potential (Rh 123, JC-1). ROS was determined using DCFHDA. Cell cycle analysis, caspase 3 activity and cytochrome C were also measured. Results suggested that sesamol protected HEK cells from cell death. The dose modifying factor for sesamol was 1.3, whereas the alpha protection factor was 2. Sesamol inhibited radiation induced cell cycle arrest in G2/M phase; ROS generation and depolarization of mitochondrial membrane potential and caspase-3 activity. Sesamol inhibited damage of critical cellular components (protein, lipids, membrane and amino acid) and maintained the redox status of cells. The results will be helpful in understanding the mechanistic aspects and development of sesamol based radioprotector. (author)

  6. Human Vδ2+ γδ T cells differentially induce maturation, cytokine production and alloreactive T cell stimulation by dendritic cells and B cells

    OpenAIRE

    Andreea ePetrasca; Doherty, Derek G.

    2014-01-01

    Human γδ T cells expressing the Vγ9Vδ2 T cell receptor can induce maturation of dendritic (DC) into antigen-presenting cells (APC) and B cells into antibody-secreting plasma cells. Since B cells are capable of presenting antigens to T cells, we investigated if Vγ9Vδ2 T cells can influence antigen presentation by these cells. We report that Vδ2 T cells induced expression of CD86, HLA-DR and CD40 by B cells and stimulated the release of IL-4, IL-6, TNF-α, and IgG, IgA and IgM. Vγ9Vδ2 T cells al...

  7. Production of dendritic cells and cytokine-induced killer cells from banked umbilical cord blood samples

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2015-11-01

    Full Text Available Umbilical cord blood (UCB is considered to be a source of hematopoietic stem cells (HSCs. All UCB banks have recently become interested in the isolation and storage of HSCs for the treatment of hematological diseases. However, UCB was also recently confirmed as a source of immune cells for immunotherapy such as dendritic cells (DCs and cytokine-induced killer cells (CIKs. This study aimed to exploit this source of immune cells in banked UCB samples. After collection of UCB samples, mononuclear cells (MNCs containing stem cells, progenitor cells, and mature cells were isolated by Ficoll-Hypaque-based centrifugation. The MNCs were subjected to freezing and thawing according to a previously published protocol. The banked MNCs were used to produce DCs and CIKs. To produce DCs, MNCs were induced in RPMI 1640 medium supplemented with GM-CSF (50 ng/ml and IL-4 (40 ng/ml for 14 days. To produce CIKs, MNCs were induced in RPMI 1640 medium supplemented an anti-CD3 monoclonal antibody, IL-3, and GMC-SF for 21 and ndash;28 days. Both DCs and CIKs were evaluated for their phenotypes and functions according to previously published protocols. The results showed that banked UCB samples can be successfully used to produce functional DCs and CIKs. These samples are valuable sources of immune cells for immunotherapy. The present results suggest that banked UCB samples are useful not only for stem cell isolation, but also for immune cell production. [Biomed Res Ther 2015; 2(11.000: 402-408

  8. MG132, a proteasome inhibitor, induces apoptosis in tumor cells.

    Science.gov (United States)

    Guo, Na; Peng, Zhilan

    2013-03-01

    The balance between cell proliferation and apoptosis is critical for normal development and for the maintenance of homeostasis in adult organisms. Disruption of this balance has been implicated in a large number of disease processes, ranging from autoimmunity and neurodegenerative disorders to cancer. The ubiquitin-proteasome pathway, responsible for mediating the majority of intracellular proteolysis, plays a crucial role in the regulation of many normal cellular processes, including the cell cycle, differentiation and apoptosis. Apoptosis in cancer cells is closely connected with the activity of ubiquitin-proteasome pathway. The peptide-aldehyde proteasome inhibitor MG132 (carbobenzoxyl-L-leucyl-L-leucyl-L-leucine) induces the apoptosis of cells by a different intermediary pathway. Although the pathway of induction of apoptosis is different, it plays a crucial role in anti-tumor treatment. There are many cancer-related molecules in which the protein levels present in cells are regulated by a proteasomal pathway; for example, tumor inhibitors (P53, E2A, c-Myc, c-Jun, c-Fos), transcription factors (transcription factor nuclear factor-kappa B, IκBα, HIFI, YYI, ICER), cell cycle proteins (cyclin A and B, P27, P21, IAP1/3), MG132 induces cell apoptosis through formation of reactive oxygen species or the upregulation and downregulation of these factors, which is ultimately dependent upon the activation of the caspase family of cysteine proteases. In this article we review the mechanism of the induction of apoptosis in order to provide information required for research. PMID:22897979

  9. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2012-01-31

    BACKGROUND: Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines. METHODS: MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting. RESULTS: Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug. CONCLUSION: Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.

  10. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2009-10-06

    Background:Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines.Methods:MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting.Results:Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug.Conclusion:Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.British Journal of Cancer advance online publication, 6 October 2009; doi:10.1038\\/sj.bjc.6605308 www.bjcancer.com.

  11. Primary stimulation by dendritic cells induces antiviral proliferative and cytotoxic T cell responses in vitro

    OpenAIRE

    1989-01-01

    We used well-gassed hanging drop (20 microliters) cultures with high concentrations of purified T cells from normal BALB/c mice to examine whether dendritic cells (DC) can induce primary antiviral proliferative T cell responses and generate virus-specific CTL. We found that DC exposed to infectious influenza virus in vitro or in vivo in small numbers (0.1-1%) resulted in strong proliferation of responder T cells within 3 d, and this was strongly inhibited by antibodies to class II MHC molecul...

  12. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective

    Institute of Scientific and Technical Information of China (English)

    Gaoyang Liang; Yi Zhang

    2013-01-01

    Pluripotent stem cells,like embryonic stem cells (ESCs),have specialized epigenetic landscapes,which are important for pluripotency maintenance.Transcription factor-mediated generation of induced pluripotent stem cells (iPSCs)requires global change of somatic cell epigenetic status into an ESC-like state.Accumulating evidence indicates that epigenetic mechanisms not only play important roles in the iPSC generation process,but also affect the properties of reprogrammed iPSCs.Understanding the roles of various epigenetic factors in iPSC generation contributes to our knowledge of the reprogramming mechanisms.

  13. Induced differentiation of cancer cells: second generation potent hybrid polar compounds target cell cycle regulators

    International Nuclear Information System (INIS)

    Hybrid polar compounds are potent inducers of differentiation of a wide variety of cancer transformed cells. Hexamethylene bisacetamide (HMBA) has been used as a prototype of these compounds to investigate their mechanism of action. Employing murine erythroleukemia (MEL) cells as a model, three characteristics of inducer-mediated commitment to terminal differentiation were demonstrated: (I) induced commitment was stochastic, requiring up to 5 cell cycles to recruit essentially all cells to commit to growth arrest in G1; (II) inducers caused a prolongation of the initial G1; and (III) the hybrid polar compounds induced a wide variety of transformed cells to terminal differentiation. These findings suggested that the rate limiting factor or factors for induction by these agents may be at the level of protein(s) regulating G1-to-S progression, which are common to most eukaryotic cells. It was found that HMBA induced a profound suppression of cyclin dependent kinase, cdk4, which reflected a marked decrease in stability of the protein, and is a critical change in the pathway of induced differentiation. HMBA also induced an increase in pRB and in the active, underphosphorylated form of this protein, an increase in the pRB related protein, p107, and an increase in the cyclin dependent kinase inhibitor, p21. Further, the free form of the transcription factor, E2F, was markedly decreased within hours of exposure of transformed cells to HMBA and found to complex with p107 and cdk 2. A phase II clinical trial was conducted using HMBA to treat patients with myelodysplastic syndrome (MDS) or acute myelogenous leukemia. Of 28 patients, 9 patients achieved a complete or partial remission lasting from 1 to 16 months. These clinical studies also provided direct evidence that HMBA induces differentiation of transformed cells in patients. In four separate courses of treatment with HMBA, a patient with MDS and the monosomy 7 karyotype marking the malignant clone of bone marrow blast

  14. Mesenchymal Stem Cells and Induced Pluripotent Stem Cells as Therapies for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    2015-04-01

    Full Text Available Multiple sclerosis (MS is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC and induced pluripotent stem cell (iPSCs derived precursor cells can modulate the autoimmune response in the central nervous system (CNS and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  15. The immunodominant myeloperoxidase T-cell epitope induces local cell-mediated injury in antimyeloperoxidase glomerulonephritis.

    Science.gov (United States)

    Ooi, Joshua D; Chang, Janet; Hickey, Michael J; Borza, Dorin-Bogdan; Fugger, Lars; Holdsworth, Stephen R; Kitching, A Richard

    2012-09-25

    Microscopic polyangiitis is an autoimmune small-vessel vasculitis that often manifests as focal and necrotizing glomerulonephritis and renal failure. Antineutrophil cytoplasmic Abs (ANCAs) specific for myeloperoxidase (MPO) play a role in this disease, but the role of autoreactive MPO-specific CD4(+) T cells is uncertain. By screening overlapping peptides of 20 amino acids spanning the MPO molecule, we identified an immunodominant MPO CD4(+) T-cell epitope (MPO(409-428)). Immunizing C57BL/6 mice with MPO(409-428) induced focal necrotizing glomerulonephritis similar to that seen after whole MPO immunization, when MPO was deposited in glomeruli. Transfer of an MPO(409-428)-specific CD4(+) T-cell clone to Rag1(-/-) mice induced focal necrotizing glomerulonephritis when glomerular MPO deposition was induced either by passive transfer of MPO-ANCA and LPS or by planting MPO(409-428) conjugated to a murine antiglomerular basement membrane mAb. MPO(409-428) also induced biologically active anti-MPO Abs in mice. The MPO(409-428) epitope has a minimum immunogenic core region of 11 amino acids, MPO(415-426), with several critical residues. ANCA-activated neutrophils not only induce injury but lodged the autoantigen MPO in glomeruli, allowing autoreactive anti-MPO CD4(+) cells to induce delayed type hypersensitivity-like necrotizing glomerular lesions. These studies identify an immunodominant MPO T-cell epitope and redefine how effector responses can induce injury in MPO-ANCA-associated microscopic polyangiitis. PMID:22955884

  16. Aire-Overexpressing Dendritic Cells Induce Peripheral CD4+ T Cell Tolerance

    Science.gov (United States)

    Li, Dongbei; Li, Haijun; Fu, Haiying; Niu, Kunwei; Guo, Yantong; Guo, Chuan; Sun, Jitong; Li, Yi; Yang, Wei

    2015-01-01

    Autoimmune regulator (Aire) can promote the ectopic expression of peripheral tissue-restricted antigens (TRAs) in thymic medullary epithelial cells (mTECs), which leads to the deletion of autoreactive T cells and consequently prevents autoimmune diseases. However, the functions of Aire in the periphery, such as in dendritic cells (DCs), remain unclear. This study’s aim was to investigate the effect of Aire-overexpressing DCs (Aire cells) on the functions of CD4+ T cells and the treatment of type 1 diabetes (T1D). We demonstrated that Aire cells upregulated the mRNA levels of the tolerance-related molecules CD73, Lag3, and FR4 and the apoptosis of CD4+ T cells in STZ-T1D mouse-derived splenocytes. Furthermore, following insulin stimulation, Aire cells decreased the number of CD4+ IFN-γ+ T cells in both STZ-T1D and WT mouse-derived splenocytes and reduced the expression levels of TCR signaling molecules (Ca2+ and p-ERK) in CD4+ T cells. We observed that Aire cells-induced CD4+ T cells could delay the development of T1D. In summary, Aire-expressing DCs inhibited TCR signaling pathways and decreased the quantity of CD4+IFN-γ+ autoreactive T cells. These data suggest a mechanism for Aire in the maintenance of peripheral immune tolerance and provide a potential method to control autoimmunity by targeting Aire. PMID:26729097

  17. Changes of PIG3 Expression and Cell Cycle of AHH-1 Cells Induced by Fast Neutrons

    Institute of Scientific and Technical Information of China (English)

    SUI; Li; MA; Nan-ru; KONG; Fu-quan; WANG; Xiao; ZHANG; Xiao-ling; CHEN; Hong-tao

    2013-01-01

    Biological dosimeter has unique advantages for the detection of human body damage induced by nuclear radiation.PIG3 is DNA damage inducible gene located downstream of the p53(tumor suppressor gene),which appears at the early stage after radiation and is associated with cell apoptosis.PIG3expression can be measured by modern molecular biological technology and is suitable for quick doses

  18. Okadaic acid inhibits cell multiplication and induces apoptosis in a549 cells, a human lung adenocarcinoma cell line

    OpenAIRE

    Wang, Renjun; Lv, Lili; Zhao, Yunfeng; Yang, Nana

    2014-01-01

    This essay aims to research the effect of okadaic acid (OA) on A549 cell multiplication, and cell apoptosis induced by OA was observed by cell morphology. MTT assay, trypan blue exclusion test (TBET), Giemsa staining method and acridine orange (AO) fluorescence staining assay were applied. The results of cell survival evaluated by TBET and colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) showed: The number of A549 cells was decreased in a dose-depende...

  19. Different Types of Cell Death Induced by Enterotoxins

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Hong

    2010-08-01

    Full Text Available The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed.

  20. Aloe-emodin-induced apoptosis in human gastric carcinoma cells.

    Science.gov (United States)

    Chen, Sheng-Hsuan; Lin, Kai-Yuan; Chang, Chun-Chao; Fang, Chia-Lang; Lin, Chih-Ping

    2007-11-01

    The purpose of this study was to investigate the anticancer effect of aloe-emodin, an anthraquinone compound present in the leaves of Aloe vera, on two distinct human gastric carcinoma cell lines, AGS and NCI-N87. We demonstrate that aloe-emodin induced cell death in a dose- and time-dependent manner. Noteworthy is that the AGS cells were generally more sensitive than the NCI-N87 cells. Aloe-emodin caused the release of apoptosis-inducing factor and cytochrome c from mitochondria, followed by the activation of caspase-3, leading to nuclear shrinkage and apoptosis. In addition, exposure to aloe-emodin suppressed the casein kinase II activity in a time-dependent manner and was accompanied by a reduced phosphorylation of Bid, a downstream substrate of casein kinase II and a pro-apoptotic molecule. These preclinical studies suggest that aloe-emodin represents a suitable and novel chemotherapeutic drug candidate for the treatment of human gastric carcinoma. PMID:17637488

  1. Baicalein induces programmed cell death in Candida albicans.

    Science.gov (United States)

    Dai, Bao-Di; Cao, Ying-Ying; Huang, Shan; Xu, Yong-Gang; Gao, Ping-Hui; Wang, Yan; Jiang, Yuan-Ying

    2009-08-01

    Recent evidence has revealed the occurrence of an apoptotic phenotype in Candida albicans that is inducible with environmental stresses such as acetic acid, hydrogen peroxide, and amphotericin B. In the present study, we found that the Chinese herbal medicine Baicalein (BE), which was one of the skullcapflavones, can induce apoptosis in C. albicans. The apoptotic effects of BE were detected by flow cytometry using Annexin V-FITC and DAPI, and it was confirmed by transmission electron microscopy analysis. After exposure to 4 microg/ml BE for 12 h, about 10% of C. albicans cells were apoptotic. Both the increasing intracellular levels of reactive oxygen species (ROS) and upregulation of some redox-related genes (CAP1, SOD2, TRR1) were observed. Furthermore, we compared the survivals of CAP1 deleted, wild-type, and overexpressed strains and found that Cap1p attenuated BE-initiated cell death, which was coherent with a higher mRNA level of the CAP1 gene. In addition, the mitochondrial membrane potential of C. albicans cells changed significantly ( palbicans cells, and the apoptosis was associated with the breakdown of mitochondrial membrane potential. PMID:19734718

  2. Globular adiponectin induces differentiation and fusion of skeletal muscle cells

    Institute of Scientific and Technical Information of China (English)

    Tania Fiaschi; Domenico Cirelli; Giuseppina Comito; Stefania Gelmini; Giampietro Ramponi; Maria Serio; Paola Chiarugi

    2009-01-01

    The growing interest in skeletal muscle regeneration is associated with the opening of new therapeutic strategies for muscle injury after trauma, as well as several muscular degenerative pathologies, including dystrophies, muscu-lar atrophy, and cachexia. Studies focused on the ability of extracellular factors to promote myogenesis are therefore highly promising. We now report that an adipocyte-derived factor, globular adiponectin (gAd), is able to induce mus-cle gene expression and cell differentiation, gAd, besides its well-known ability to regulate several metabolic func-tions in muscle, including glucose uptake and consumption and fatty acid catabolism, is able to block cell cycle entry of myoblasts, to induce the expression of specific skeletal muscle markers such as myosin heavy chain or eaveolin-3, as well as to provoke cell fusion into multinucleated syneytia and, finally, muscle fibre formation, gAd exerts its pro-differentiative activity through redox-dependent activation of p38, Akt and 5'-AMP-activated protein kinase path-ways. Interestingly, differentiating myoblasts are autocrine for adiponectiu, and the mimicking of pro-inflammatory settings or exposure to oxidative stress strongly increases the production of the hormone from differentiating cells. These data suggest a novel function of adiponectin, directly coordinating the myogenic differentiation program and serving an autocrine function during skeletal myogenesis.

  3. Autophagy Inhibitor Chloroquine Enhanced the Cell Death Inducing Effect of the Flavonoid Luteolin in Metastatic Squamous Cell Carcinoma Cells

    OpenAIRE

    Verschooten, Lien; Barrette, Kathleen; Van Kelst, Sofie; Rubio Romero, Noemí; Proby, Charlotte; de Vos, Rita; Agostinis, Patrizia; Garmyn, Marjan

    2012-01-01

    Background Flavonoids are widely proposed as very interesting compounds with possible chemopreventive and therapeutic capacities. Methods & Results In this study, we showed that in vitro treatment with the flavonoid Luteolin induced caspase-dependent cell death in a model of human cutaneous squamous cell carcinoma (SCC) derived cells, representing a matched pair of primary tumor and its metastasis. Notably, no cytotoxic effects were observed in normal human keratinocytes when treated with sim...

  4. Neuroprotective effects of pramipexole against tunicamycin-induced cell death in PC12 cells.

    Science.gov (United States)

    Nakayama, Hitoshi; Zhao, Jing; Ei-Fakhrany, Amany; Isosaki, Minoru; Satoh, Hiroyasu; Kyotani, Yoji; Yoshizumi, Masanori

    2009-12-01

    1. Pramipexole (PPX), a dopamine D2 and D3 receptor agonist, exerts neuroprotective effects via both dopamine receptor-mediated and non-dopaminergic mechanisms. In the present study, we demonstrate that PPX reduces the toxicity of tunicamycin, a typical endoplasmic reticulum (ER) stressor, in PC12h cells, a subline of PC12 cells. 2. The PC12h cells were treated with 300 micromol / L PPX in the presence of 0.5 micromol / L tunicamycin for 24 h. The neuroprotective effects of PPX against tunicamycin-induced cell death were evaluated using 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays, Hoechst 33258 staining and western blot analysis. 3. Tunicamycin (0.2, 0.3 and 0.5 microg / mL) dose-dependently decreased MTT activity and increased LDH release from PC12h cells. Treatment with 300 micromol / L PPX rescued the tunicamycin-induced decrease in cell viability. 4. Spiperone (10 micromol / L), a dopamine D2 and D4 receptor antagonist, had no effect on PPX neuroprotection against tunicamycin in these cells. Marker proteins of ER stress and apoptosis are known to be upregulated by tunicamycin, but we detected no significant effects of PPX on these factors. 5. In conclusion, we speculate that a combination of several mechanisms may be involved in PPX-induced neuroprotection. PMID:19515063

  5. Lipid peroxidation and cell death mechanisms in pulmonary epithelial cells induced by peroxynitrite and nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Yuan-Soon [School of Medical Technology, Taipei Medical University, Taipei (Taiwan); Liou, Hung-Bin; Lin, Yu-Ping; Guo, How-Ran; Ho, Sheng-Yow; Lee, Ching-Chang; Wang, Ying-Jan [Department of Environmental and Occupational Health, National Cheng Kung University Medical College, 138 Sheng-Li Road, Tainan (Taiwan); Lin, Jen-Kun; Pan, Min-Hsiung [Institute of Biochemistry, National Taiwan University, Medical College, Taipei (Taiwan); Jeng, Jiiang-Huei [School of Dentistry, National Taiwan University and Hospital, Medical College, Taipei (Taiwan)

    2002-08-01

    Nitric oxide (NO) is an environmental pollutant found in smog and cigarette smoke. Recently, NO has been discovered to act as a molecular messenger, mediating various physiological functions. However, when an excess of NO is present, cytotoxic and mutagenic effects can also be induced. The reaction of NO with superoxide results in the formation of peroxynitrite (ONOO{sup -}), which decomposes into the hydroxyl radical and nitrogen dioxide. Both of them are potent oxidant species that may initiate and propagate lipid peroxidation. In the present study, we examined the effects of NO and ONOO{sup -} on the induction of lipid peroxidation and cell death mechanisms in rats and in A549 pulmonary epithelial cells. The results showed that ONOO{sup -} is able to induce lipid peroxidation in pulmonary epithelial cells in a dose-dependent manner. 8-Epi-prostaglandin F{sub 2{alpha}} can serve as a good biomarker of lipid peroxidation both in vitro and in vivo. Postmitotic apoptosis was found in A549 cells exposed to NO, whereas ONOO{sup -} induced cell death more characteristic of necrosis than apoptosis. Apoptosis that occurred in cells may be related to the dysfunction of mitochondria, the release of cytochrome c into cytosol, and the activation of caspase-9. The relationship between caspase activation and the cleavage of other death substrates during postmitotic apoptosis in A549 cells needs further investigation. (orig.)

  6. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  7. Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation

    International Nuclear Information System (INIS)

    Au nanorings (NRIs), which have the localized surface plasmon resonance (LSPR) wavelength around 1058 nm, either with or without linked antibodies, are applied to SAS oral cancer cells for cell inactivation through the LSPR-induced photothermal effect when they are illuminated by a laser of 1065 nm in wavelength. Different incubation times of cells with Au NRIs are considered for observing the variations of cell uptake efficiency of Au NRI and the threshold laser intensity for cell inactivation. In each case of incubation time, the cell sample is washed for evaluating the total Au NRI number per cell adsorbed and internalized by the cells based on inductively coupled plasma mass spectrometry measurement. Also, the Au NRIs remaining on cell membrane are etched with KI/I2 solution to evaluate the internalized Au NRI number per cell. The threshold laser intensities for cell inactivation before washout, after washout, and after KI/I2 etching are calibrated from the circular area sizes of inactivated cells around the illuminated laser spot center with various laser power levels. By using Au NRIs with antibodies, the internalized Au NRI number per cell increases monotonically with incubation time up to 24 h. However, the number of Au NRI remaining on cell membrane reaches a maximum at 12 h in incubation time. The cell uptake behavior of an Au NRI without antibodies is similar to that with antibodies except that the uptake NRI number is significantly smaller and the incubation time for the maximum NRI number remaining on cell membrane is delayed to 20 h. By comparing the threshold laser intensities before and after KI/I2 etching, it is found that the Au NRIs remaining on cell membrane cause more effective cancer cell inactivation, when compared with the internalized Au NRIs. (paper)

  8. Bacterial Cell Wall-Induced Arthritis: Chemical Composition and Tissue Distribution of Four Lactobacillus Strains

    OpenAIRE

    Šimelyte, Egle; Rimpiläinen, Marja; Lehtonen, Leena; Zhang, Xiang; Toivanen, Paavo

    2000-01-01

    To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls...

  9. Arecoline induced cell cycle arrest, apoptosis, and cytotoxicity to human endothelial cells.

    Science.gov (United States)

    Tseng, Shuei-Kuen; Chang, Mei-Chi; Su, Cheng-Yao; Chi, Lin-Yang; Chang, Jenny Zwei-Ching; Tseng, Wan-Yu; Yeung, Sin-Yuet; Hsu, Ming-Lun; Jeng, Jiiang-Huei

    2012-08-01

    Betel quid (BQ) chewing is a common oral habit in South Asia and Taiwan. BQ consumption may increase the risk of oral squamous cell carcinoma (OSCC), oral submucous fibrosis (OSF), and periodontitis as well as systemic diseases (atherosclerosis, hypertension, etc.). However, little is known about the toxic effect of BQ components on endothelial cells that play important roles for angiogenesis, carcinogenesis, tissue fibrosis, and cardiovascular diseases. EAhy 926 (EAHY) endothelial cells were exposed to arecoline, a major BQ alkaloid, for various time periods. Cytotoxicity was estimated by 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. The cell cycle distribution of EAHY cells residing in sub-G0/G1, G0/G1, S-, and G2/M phases was analyzed by propidium iodide staining of cellular DNA content and flow cytometry. Some EAHY cells retracted, became round-shaped in appearance, and even detached from the culture plate after exposure to higher concentrations of arecoline (> 0.4 mM). At concentrations of 0.4 and 0.8 mM, arecoline induced significant cytotoxicity to EAHY cells. At similar concentrations, arecoline induced G2/M cell cycle arrest and increased sub-G0/G1 population, a hallmark of apoptosis. Interestingly, prolonged exposure to arecoline (0.1 mM) for 12 and 21 days significantly suppressed the proliferation of EAHY cells, whereas EAHY cells showed adaptation and survived when exposed to 0.05 mM arecoline. These results suggest that BQ components may contribute to the pathogenesis of OSF and BQ chewing-related cardiovascular diseases via toxicity to oral or systemic endothelial cells, leading to impairment of vascular function. During BQ chewing, endothelial damage may be induced by areca nut components and associate with the pathogenesis of OSF, periodontitis, and cardiovascular diseases. PMID:21847594

  10. Carrageenan Induces Cell Cycle Arrest in Human Intestinal Epithelial Cells in Vitro1–3

    Science.gov (United States)

    Bhattacharyya, Sumit; Borthakur, Alip; Dudeja, Pradeep K.; Tobacman, Joanne K.

    2016-01-01

    Multiple studies in animal models have shown that the commonly used food additive carrageenan (CGN) induces inflammation and intestinal neoplasia. We performed the first studies to determine the effects of CGN exposure on human intestinal epithelial cells (IEC) in tissue culture and tested the effect of very low concentrations (1–10 mg/L) of undegraded, high-molecular weight CGN. These concentrations of CGN are less than the anticipated exposure of the human colon to CGN from the average Western diet. In the human colonic epithelial cell line NCM460 and in primary human colonic epithelial cells that were exposed to CGN for 1–8 d, we found increased cell death, reduced cell proliferation, and cell cycle arrest compared with unexposed control cells. After 6–8 d of CGN exposure, the percentage of cells reentering G0–G1 significantly decreased and the percentages of cells in S and G2-M phases significantly increased. Increases in activated p53, p21, and p15 followed CGN exposure, consistent with CGN-induced cell cycle arrest. Additional data, including DNA ladder, poly ADP ribose polymerase Western blot, nuclear DNA staining, and activities of caspases 3 and 7, indicated no evidence of increased apoptosis following CGN exposure and were consistent with CGN-induced necrotic cell death. These data document for the first time, to our knowledge, marked adverse effects of low concentrations of CGN on survival of normal human IEC and suggest that CGN exposure may have a role in development of human intestinal pathology. PMID:18287351

  11. Mast Cells Contribute to Porphyromonas gingivalis-induced Bone Loss.

    Science.gov (United States)

    Malcolm, J; Millington, O; Millhouse, E; Campbell, L; Adrados Planell, A; Butcher, J P; Lawrence, C; Ross, K; Ramage, G; McInnes, I B; Culshaw, S

    2016-06-01

    Periodontitis is a chronic inflammatory and bone-destructive disease. Development of periodontitis is associated with dysbiosis of the microbial community, which may be caused by periodontal bacteria, such as Porphyromonas gingivalis Mast cells are sentinels at mucosal surfaces and are a potent source of inflammatory mediators, including tumor necrosis factors (TNF), although their role in the pathogenesis of periodontitis remains to be elucidated. This study sought to determine the contribution of mast cells to local bone destruction following oral infection with P. gingivalis Mast cell-deficient mice (Kit(W-sh/W-sh)) were protected from P. gingivalis-induced alveolar bone loss, with a reduction in anti-P. gingivalis serum antibody titers compared with wild-type infected controls. Furthermore, mast cell-deficient mice had reduced expression of Tnf, Il6, and Il1b mRNA in gingival tissues compared with wild-type mice. Mast cell-engrafted Kit(W-sh/W-sh) mice infected with P. gingivalis demonstrated alveolar bone loss and serum anti-P. gingivalis antibody titers equivalent to wild-type infected mice. The expression of Tnf mRNA in gingival tissues of Kit(W-sh/W-sh) mice was elevated following the engraftment of mast cells, indicating that mast cells contributed to the Tnf transcript in gingival tissues. In vitro, mast cells degranulated and released significant TNF in response to oral bacteria, and neutralizing TNF in vivo abrogated alveolar bone loss following P. gingivalis infection. These data indicate that mast cells and TNF contribute to the immunopathogenesis of periodontitis and may offer therapeutic targets. PMID:26933137

  12. Dendritic Cells from Oral Cavity Induce Foxp3+ Regulatory T Cells upon Antigen Stimulation

    OpenAIRE

    Yamazaki, Sayuri; Maruyama, Akira; Okada, Kohei; Matsumoto, Misako; Morita, Akimichi; Seya, Tsukasa

    2012-01-01

    Evidence is accumulating that dendritic cells (DCs) from the intestines have the capacity to induce Foxp3+CD4+ regulatory T cells (T-regs) and regulate immunity versus tolerance in the intestines. However, the contribution of DCs to controlling immunity versus tolerance in the oral cavity has not been addressed. Here, we report that DCs from the oral cavity induce Foxp3+ T-regs as well as DCs from intestine. We found that oral-cavity-draining cervical lymph nodes contained higher frequencies ...

  13. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  14. Iron metabolism and cell membranes. III. Iron-induced alterations in HeLa cells.

    Science.gov (United States)

    Jauregui, H. O.; Bradford, W. D.; Arstila, A. U.; Kinney, T. D.; Trump, B. F.

    1975-01-01

    The morphologic characteristics of acute iron loading were studied in HeLa cells incubated in an iron-enriched Eagle's medium containing 500 mug/ml of iron. Chemical studies showed that ferritin synthesis was rapidly induced and the concentration of intracellular ferritin increased up to 72 hours. Closely coupled with an increase in HeLa cell ferritin was a marked decrease in the rate of cell multiplication. The significant ultrastructural findings of iron-induced HeLa cell injury are characterized by the appearance of both autophagic multivesicular and residual bodies over the first 72 hours of iron incubation. The prominence of multivesicular bodies was noted after only 4 hours' incubation, with iron and myelin figures first appearing after 6 hours. Thus, the partial arrest of cell multiplication was associated with an increase in cytoplasmic residual bodies containing iron and other debris. The distribution of intracellular ferritin within HeLa cells differs significantly from the distribution described previously in hepatic parenchymal cells. In HeLa cells, ferritin particles were confined to lysosomal vesicles and were not identified in cell sap, endoplasmic reticulum, or Golgi apparatus. Images Figure 8 Figure 1 Figure 9 Figure 10 Figure 11 Figure 12 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1155583

  15. The anti-cell death FNK protein protects cells from death induced by freezing and thawing

    International Nuclear Information System (INIS)

    The FNK protein, constructed from anti-apoptotic Bcl-xL with enhanced activity, was fused with the protein transduction domain (PTD) of the HIV/Tat protein to mediate the delivery of FNK into cells. The fusion protein PTD-FNK was introduced into chondrocytes in isolated articular cartilage-bone sections, cultured neurons, and isolated bone marrow mononuclear cells to evaluate its ability to prevent cell death induced by freezing and thawing. PTD-FNK protected the cells from freeze-thaw damage in a concentration-dependent manner. Addition of PTD-FNK with conventional cryoprotectants (dimethyl sulfoxide and hydroxyethyl starch) increased surviving cell numbers around 2-fold compared with controls treated only with the cryoprotectants. Notably, PTD-FNK allowed CD34+ cells among bone marrow mononuclear cells to survive more efficiently (12-fold more than the control cells) from two successive freeze-thaw cycles. Thus, PTD-FNK prevented cell death induced by freezing and thawing, suggesting that it provides for the successful cryopreservation of biological materials

  16. Mitofusin-2 protects against cold stress-induced cell injury in HEK293 cells

    International Nuclear Information System (INIS)

    Mitochondrial impairment is hypothesized to contribute to cell injury during cold stress. Mitochondria fission and fusion are closely related in the function of the mitochondria, but the precise mechanisms whereby these processes regulate cell injury during cold stress remain to be determined. HEK293 cells were cultured in a cold environment (4.0 ± 0.1 oC) for 2, 4, 8, or 12 h. Western blot analyses showed that these cells expressed decreased fission-related protein Drp1 and increased fusion-related protein Mfn2 at 4 h; meanwhile, electron microscopy analysis revealed large and long mitochondrial morphology within these cells, indicating increased mitochondrial fusion. With silencing of Mfn2 but not of Mfn1 by siRNA promoted cold-stress-induced cell death with decreased ATP production in HEK293 cells. Our results show that increased expression of Mfn2 and mitochondrial fusion are important for mitochondrial function as well as cell survival during cold stress. These findings have important implications for understanding the mechanisms of mitochondrial fusion and fission in cold-stress-induced cell injury.

  17. The business of exploiting induced pluripotent stem cells.

    Science.gov (United States)

    Prescott, Catherine

    2011-08-12

    Induced pluripotent stem cells (iPS cells) can be exploited for both research and clinical applications. The first part of this review seeks to provide an understanding of the financial drivers and key elements of a successful business strategy that underpin a company focused on developing iPS-related products and services targeted at the research market. The latter part of the review highlights some of the reasons as to why the reprogramming of somatic cells is currently being used to develop cell-based models to screen for small molecules with drug-like properties rather than to develop cell-based regenerative medicines per se. The latter may be used to repair or replace a patient's damaged cells and thereby have the potential to 'cure' a disease and, in doing so, prevent or delay the onset of associated medical conditions. However, the cost of an expensive regenerative medicine and time to accrue any benefit linked to a decrease in co-morbidity expenditure may not outweigh the benefit for a healthcare community that has finite resources. The implications of this are discussed together with evidence that the UK National Institute for Health and Clinical Excellence (NICE) and the National Health Service (NHS) have established a precedent for a cost-sharing strategy with the pharmaceutical industry. PMID:21727138

  18. Ionizing radiation induces heritable disruption of epithelial cell interactions

    International Nuclear Information System (INIS)

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, β-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization

  19. Apoptosis in Raji cell line induced by influenza A virus

    Institute of Scientific and Technical Information of China (English)

    李虹; 肖丽英; 李华林; 李婉宜; 蒋中华; 张林; 李明远

    2003-01-01

    Objective To study the apoptotic effects of influenza A virus on the Raji cell line. Methods Cultured Raji cells were infected with influenza A virus at a multiplicity of infection (m.o.i) of 20 and the effects of apoptosis were detected at different time points post infection using the following methods: electron microscope, DNA agarose gel electrophoresis, PI stained flow cytometry (FCM) and Annexin-V FITC/PI stained FCM.Results Raji cells infected with influenza A virus showed changes of morphology apoptotis, DNA agarose electrophoresis also demonstrated a ladder-like pattern of DNA fragments in a time-dependent manner. PI stained FCM showed "apoptosis peak" and FITC/PI stained FCM showed apoptotic cells. Quantitative analysis indicated that the percentage of apoptotic Raji cells increased after infection, and cycloheximide (CHX), an eukaryotic transcription inhibitor, could effectively inhibit the apoptotic effects of influenza A virus in vitro.Conclusions Influenza A virus can induce apoptosis in Raji cell line suggesting that it may lead to a potential method for tumor therapy.

  20. Estimating intercellular surface tension by laser-induced cell fusion

    International Nuclear Information System (INIS)

    Intercellular surface tension is a key variable in understanding cellular mechanics. However, conventional methods are not well suited for measuring the absolute magnitude of intercellular surface tension because these methods require determination of the effective viscosity of the whole cell, a quantity that is difficult to measure. In this study, we present a novel method for estimating the intercellular surface tension at single-cell resolution. This method exploits the cytoplasmic flow that accompanies laser-induced cell fusion when the pressure difference between cells is large. Because the cytoplasmic viscosity can be measured using well-established technology, this method can be used to estimate the absolute magnitudes of tension. We applied this method to two-cell-stage embryos of the nematode Caenorhabditis elegans and estimated the intercellular surface tension to be in the 30–90 µN m−1 range. Our estimate was in close agreement with cell–medium surface tensions measured at single-cell resolution. (communication)

  1. Mechanisms involved in alternariol-induced cell cycle arrest

    International Nuclear Information System (INIS)

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15–30 μM almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 μM) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 μM for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  2. Mechanisms involved in alternariol-induced cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Solhaug, A., E-mail: Anita.Solhaug@vetinst.no [Norwegian Veterinary Institute, Oslo (Norway); Vines, L.L. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Ivanova, L.; Spilsberg, B. [Norwegian Veterinary Institute, Oslo (Norway); Holme, J.A. [Norwegian Institute of Public Health, Division of Environmental Medicine, Oslo (Norway); Pestka, J. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Collins, A. [University of Oslo, Department of Nutrition, Faculty of Medicine, Oslo (Norway); Eriksen, G.S. [Norwegian Veterinary Institute, Oslo (Norway)

    2012-10-15

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30 {mu}M almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 {mu}M) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 {mu}M for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  3. Effects of hypoxia-inducible factor-1α on radiation-induced autophagic cell death in breast cancer cells

    International Nuclear Information System (INIS)

    Objective: To study the effects of hypoxia-inducible factor-1α (HIF-1α) on radiation-induced autophagic cell death in breast cancer cells. Methods: MCF-7 cells were divided into four groups:control (normoxia,21% Oxygen),irradiation (8 Gy X-rays), hypoxia (Cobalt chloride, CoCl2) and irradiation with hypoxia (CoCl2). 150 μmol/L CoCl2 was utilized to induce hypoxic conditions. Western blot was applied to detect the expression of HIF-1α and MAPLC3. MDC and Hoechst staining were used to detect autophagy and apoptosis. Radiosensitivity was detected by cloning formation. The short hairpin interfering RNA (shRNA) retroviral transduction particles targeting HIF-1α was transfected into MCF-7 cells to establish HIF-1α knockdown cells, then the radiosensibility, autophagy and apoptosis were detected. Results: Compared with control group and irradiation group,the protein level of HIF-1 increased obviously in the normoxia, irradiation, hypoxia and irradiation with hypoxia groups, and the values were 0, 0, 1.00, 1.89, respectively. The expression levels of MAPLC3 were markedly up-regulated in irradiation, hypoxia and irradiation with hypoxia groups as compared with control, and the ratios of LC3Ⅱ/LC3Ⅰ were 1.15, 1.73, 2.38 and 3.60, respectively. The radiosensitivity of MCF-7 cells decreased in the following order:normoxia with 3MA > normoxia > hypoxia with 3MA > hypoxia. HIF-1α knockdown cell (pSUPER-HIF-1α Ri) and vector control were constructed. After treatment with CoCl2, survival fraction of MCF-7-pSUPER was significantly higher than that of control (t=3.080, 6.946, 6.658, 6.380, P<0.05), and radiosensitivity was down-regulated after irradiation,but there was no significant difference between normoxia and hypoxia in survival fraction of MCF-7-pSUPER-HIF-1α Ri. After treatment of irradiation or hypoxia, the autophagic fractions in MCF-7-pSUPER-HIF-1α Ri significantly decreased, reduced by 21.1%, 25.5%, 15.5%, respectively (t=4.635, 4.738, 6.354, P<0.05) as

  4. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Ngalame, Ntube N. Olive; Waalkes, Michael P., E-mail: waalkes@niehs.nih.gov

    2013-12-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the

  5. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    International Nuclear Information System (INIS)

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the relationship

  6. Break-induced replication repair of damaged forks induces genomic duplications in human cells

    OpenAIRE

    Costantino, L.; Sotiriou, S. K.; Rantala, J. K.; Magin, S.; Mladenov, E.; Helleday, T.; Haber, J E; Iliakis, G.; Kallioniemi, O P; Halazonetis, T D

    2013-01-01

    In budding yeast, one-ended DNA double-strand breaks (DSBs) and damaged replication forks are repaired by break-induced replication (BIR), a homologous recombination pathway that requires the Pol32 subunit of DNA polymerase delta. DNA replication stress is prevalent in cancer, but BIR has not been characterized in mammals. In a cyclin E overexpression model of DNA replication stress, POLD3, the human ortholog of POL32, was required for cell cycle progression and processive DNA synthesis. Segm...

  7. Revving up natural killer cells and cytokine-induced killer cells against hematological malignancies

    Directory of Open Access Journals (Sweden)

    Gianfranco ePittari

    2015-05-01

    Full Text Available Natural killer (NK cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors (KIR, NK Group 2 member D (NKG2D, NKG2A/CD94, NKp46 and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols.Cytokine-induced killer (CIK cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming.NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies.

  8. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    OpenAIRE

    Aoshiba K; Nagai A

    2003-01-01

    Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inapprop...

  9. Cell Stress Induces Upregulation of Osteopontin via the ERK Pathway in Type II Alveolar Epithelial Cells

    OpenAIRE

    Aki Kato; Takafumi Okura; Chizuru Hamada; Seigo Miyoshi; Hitoshi Katayama; Jitsuo Higaki; Ryoji Ito

    2014-01-01

    Osteopontin (OPN) is a multifunctional protein that plays important roles in cell growth, differentiation, migration and tissue fibrosis. In human idiopathic pulmonary fibrosis and murine bleomycin-induced lung fibrosis, OPN is upregulated in type II alveolar epithelial cells (AEC II). However, the mechanism of OPN induction in AEC II is not fully understood. In this study, we demonstrate the molecular mechanism of OPN induction in AEC II and elucidate the functions of OPN in AEC II and lung ...

  10. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  11. Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death

    Directory of Open Access Journals (Sweden)

    Colpo Anna

    2010-10-01

    Full Text Available Abstract Background Glycogen Synthase Kinase-3 (GSK-3 α and β are two serine-threonine kinases controlling insulin, Wnt/β-catenin, NF-κB signaling and other cancer-associated transduction pathways. Recent evidence suggests that GSK-3 could function as growth-promoting kinases, especially in malignant cells. In this study, we have investigated GSK-3α and GSK-3β function in multiple myeloma (MM. Methods GSK-3 α and β expression and cellular localization were investigated by Western blot (WB and immunofluorescence analysis in a panel of MM cell lines and in freshly isolated plasma cells from patients. MM cell growth, viability and sensitivity to bortezomib was assessed upon treatment with GSK-3 specific inhibitors or transfection with siRNAs against GSK-3 α and β isoforms. Survival signaling pathways were studied with WB analysis. Results GSK-3α and GSK-3β were differently expressed and phosphorylated in MM cells. Inhibition of GSK-3 with the ATP-competitive, small chemical compounds SB216763 and SB415286 caused MM cell growth arrest and apoptosis through the activation of the intrinsic pathway. Importantly, the two inhibitors augmented the bortezomib-induced MM cell cytotoxicity. RNA interference experiments showed that the two GSK-3 isoforms have distinct roles: GSK-3β knock down decreased MM cell viability, while GSK-3α knock down was associated with a higher rate of bortezomib-induced cytotoxicity. GSK-3 inhibition caused accumulation of β-catenin and nuclear phospho-ERK1, 2. Moreover, GSK-3 inhibition and GSK-3α knockdown enhanced bortezomib-induced AKT and MCL-1 protein degradation. Interestingly, bortezomib caused a reduction of GSK-3 serine phosphorylation and its nuclear accumulation with a mechanism that resulted partly dependent on GSK-3 itself. Conclusions These data suggest that in MM cells GSK-3α and β i play distinct roles in cell survival and ii modulate the sensitivity to proteasome inhibitors.

  12. Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death

    International Nuclear Information System (INIS)

    Glycogen Synthase Kinase-3 (GSK-3) α and β are two serine-threonine kinases controlling insulin, Wnt/β-catenin, NF-κB signaling and other cancer-associated transduction pathways. Recent evidence suggests that GSK-3 could function as growth-promoting kinases, especially in malignant cells. In this study, we have investigated GSK-3α and GSK-3β function in multiple myeloma (MM). GSK-3 α and β expression and cellular localization were investigated by Western blot (WB) and immunofluorescence analysis in a panel of MM cell lines and in freshly isolated plasma cells from patients. MM cell growth, viability and sensitivity to bortezomib was assessed upon treatment with GSK-3 specific inhibitors or transfection with siRNAs against GSK-3 α and β isoforms. Survival signaling pathways were studied with WB analysis. GSK-3α and GSK-3β were differently expressed and phosphorylated in MM cells. Inhibition of GSK-3 with the ATP-competitive, small chemical compounds SB216763 and SB415286 caused MM cell growth arrest and apoptosis through the activation of the intrinsic pathway. Importantly, the two inhibitors augmented the bortezomib-induced MM cell cytotoxicity. RNA interference experiments showed that the two GSK-3 isoforms have distinct roles: GSK-3β knock down decreased MM cell viability, while GSK-3α knock down was associated with a higher rate of bortezomib-induced cytotoxicity. GSK-3 inhibition caused accumulation of β-catenin and nuclear phospho-ERK1, 2. Moreover, GSK-3 inhibition and GSK-3α knockdown enhanced bortezomib-induced AKT and MCL-1 protein degradation. Interestingly, bortezomib caused a reduction of GSK-3 serine phosphorylation and its nuclear accumulation with a mechanism that resulted partly dependent on GSK-3 itself. These data suggest that in MM cells GSK-3α and β i) play distinct roles in cell survival and ii) modulate the sensitivity to proteasome inhibitors

  13. MYELIN BASIC PROTEIN-PRIMED T CELLS INDUCE NEUROTROPHINS IN GLIAL CELLS VIA α5β3 INTEGRIN

    OpenAIRE

    Roy, Avik; Liu, Xiaojuan; Pahan, Kalipada

    2007-01-01

    Increasing the level of neurotrophins within the CNS may have therapeutic efficacy in patients with various neurological diseases. Earlier we have demonstrated that myelin basic protein (MBP)-primed T cells induce the expression of various proinflammatory molecules in glial cells via cell-to-cell contact. Here we describe that after Th2 polarization by gemfibrozil or other drugs, MBP-primed T cells induced the expression of neurotrophic molecules such as, brain-derived neurotrophic factor (BD...

  14. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells

    International Nuclear Information System (INIS)

    There are increasing concerns regarding the relative safety of chlorpyrifos (CPF) to various facets of the environment. Although published works suggest that CPF is relatively safe in adult animals, recent evidence indicates that juveniles, both animals and humans, may be more sensitive to CPF toxicity than adults. In young animals, CPF is neurotoxic and mechanistically interferes with cellular replication and cellular differentiation, which culminates in the alteration of synaptic neurotransmission in neurons. However, the effects of CPF on glial cells are not fully elucidated. Here we report that chlorpyrifos is toxic to oligodendrocyte progenitors. In addition, CPF produced dose-dependent increases in 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA) and dihydroethidium (DHE) fluorescence intensities relative to the vehicle control. Moreover, CPF toxicity is associated with nuclear condensation and elevation of caspase 3/7 activity and Heme oxygenase-1 mRNA expression. Pan-caspase inhibitor QVDOPh and cholinergic receptor antagonists' atropine and mecamylamine failed to protect oligodendrocyte progenitors from CPF-induced injury. Finally, glutathione (GSH) depletion enhanced CPF-induced toxicity whereas nitric oxide synthetase inhibitor L-NAME partially protected progenitors and the non-specific antioxidant vitamin E (alpha-tocopherol) completely spared cells from injury. Collectively, this data suggests that CPF induced toxicity is independent of cholinergic stimulation and is most likely caused by the induction of oxidative stress.

  15. Maitotoxin-induced cell death cascade in bovine aortic endothelial cells: divalent cation specificity and selectivity.

    Science.gov (United States)

    Wisnoskey, Brian J; Estacion, Mark; Schilling, William P

    2004-08-01

    The maitotoxin (MTX)-induced cell death cascade in bovine aortic endothelial cells (BAECs), a model for Ca(2+) overload-induced toxicity, reflects three sequential changes in plasmalemmal permeability. MTX initially activates Ca(2+)-permeable, nonselective cation channels (CaNSC) and causes a massive increase in cytosolic free Ca(2+) concentration ([Ca(2+)](i)). This is followed by the opening of large endogenous cytolytic/oncotic pores (COP) that allow molecules ionomycin and were significantly delayed in BAPTA-loaded cells. Experiments at the single-cell level revealed that Ba(2+) not only delayed the time to cell lysis but also caused desynchronization of the lytic phase. Last, membrane blebs, which were numerous and spherical in Ca(2+)-containing solutions, were poorly defined and greatly reduced in number in the presence of Ba(2+). Taken together, these results suggest that intracellular high-affinity Ca(2+)-binding proteins are involved in the MTX-induced changes in plasmalemmal permeability that are responsible for cell demise. PMID:15044153

  16. Effects of Huangqi (Hex) on Inducing Cell Differentiation and Cell Death in K562 and HEL Cells

    Institute of Scientific and Technical Information of China (English)

    Xaio-Dong CHENG; Chun-Hui HOU; Xue-Jun ZHANG; Heng-Yue XIE; Wei-Ying ZHOU; Lei YANG; Shu-Bing ZHANG; Ruo-Lan QIAN

    2004-01-01

    Huangqi(Astragalus membranaceus),a traditional Chinese medicine,has been used to ameliorate side effects of cancer chemotherapy in China.However,little is known about its molecular mechanisms.Here we show that induction ofK562 or HEL cells with 1.5 mg/mi of Huangqi(Hex)(Components extracted from Huangqi)for 3-5 d results in the expression of ?-globin gene in both cell lines and leads to terminal differentiation.Moreover,the apoptosis in HEL cells can be induced by increasing concentration of Huangqi(Hex)to 4.5 mg/ml for 3-5 d.Upregulation ofApaf-1,caspase-3 and acetylcholinesterase(AChE)in HEL cells may playa crucial role in the process of apoptosis.The prospect of inducing expression of adult(β)globin gene and apoptosis selectively in cancer cells is obviously attractive from a therapeutic point of view.

  17. Delayed luminescence to monitor programmed cell death induced by berberine on thyroid cancer cells

    Science.gov (United States)

    Scordino, Agata; Campisi, Agata; Grasso, Rosaria; Bonfanti, Roberta; Gulino, Marisa; Iauk, Liliana; Parenti, Rosalba; Musumeci, Francesco

    2014-11-01

    Correlation between apoptosis and UVA-induced ultraweak photon emission delayed luminescence (DL) from tumor thyroid cell lines was investigated. In particular, the effects of berberine, an alkaloid that has been reported to have anticancer activities, on two cancer cell lines were studied. The FTC-133 and 8305C cell lines, as representative of follicular and anaplastic thyroid human cancer, respectively, were chosen. The results show that berberine is able to arrest cell cycle and activate apoptotic pathway as shown in both cell lines by deoxyribonucleic acid fragmentation, caspase-3 cleavage, p53 and p27 protein overexpression. In parallel, changes in DL spectral components after berberine treatment support the hypothesis that DL from human cells originates mainly from mitochondria, since berberine acts especially at the mitochondrial level. The decrease of DL blue component for both cell lines could be related to the decrease of intra-mitochondrial nicotinamide adenine dinucleotide and may be a hallmark of induced apoptosis. In contrast, the response in the red spectral range is different for the two cell lines and may be ascribed to a different iron homeostasis.

  18. Molecular signatures induced by interleukin-2 on peripheral blood mononuclear cells and T cell subsets

    Directory of Open Access Journals (Sweden)

    Stroncek David

    2006-06-01

    Full Text Available Experimentally, interleukin-2 (IL-2 exerts complex immunological functions promoting the proliferation, survival and activation of T cells on one hand and inducing immune regulatory mechanisms on the other. This complexity results from a cross talk among immune cells which sways the effects of IL-2 according to the experimental or clinical condition tested. Recombinant IL-2 (rIL-2 stimulation of peripheral blood mononuclear cells (PBMC from 47 donors of different genetic background induced generalized T cell activation and anti-apoptotic effects. Most effects were dependent upon interactions among immune cells. Specialized functions of CD4 and CD8 T cells were less dependent upon and often dampened by the presence of other PBMC populations. In particular, cytotoxic T cell effector function was variably affected with a component strictly dependent upon the direct stimulation of CD8 T cells in the absence of other PBMC. This observation may provide a roadmap for the interpretation of the discrepant biological activities of rIL-2 observed in distinct pathological conditions or treatment modalities.

  19. 2-Methoxyestradiol induces cell cycle arrest and apoptosis of nasopharyngeal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Ning-ning ZHOU; Xiao-feng ZHU; Jun-ming ZHOU; Man-zhi LI; Xiao-shi ZHANG; Peng HUANG; Wen-qi JIANG

    2004-01-01

    AIM: To investigate 2-methoxyestradiol induced apoptosis and its mechanism of action in CNE2 cell lines.METHODS: CNE2 cells were cultured in RPMI-1640 medium and treated with 2-methoxyestradiol in different concentrations. MTT assay was used to detect growth inhibition. Flow cytometry and DNA ladders were used to detect apoptosis. Western blotting was used to observe the expression of p53, p21WAF1, Bax, and Bcl-2 protein.RESULTS: 2-methoxyestradiol inhibited proliferation of nasopharyngeal carcinoma CNE2 cells with IC50 value of2.82 μrnol/L. The results of flow cytometry showed an accumulation of CNE2 cells in G2/M phase in response to2-methoxyestradiol. Treatment of CNE2 cells with 2-methoxyestradiol resulted in DNA fragmentation. The expression levels of protein p53 and Bcl-2 decreased following 2-methoxyestradiol treatment in CNE2 cells, whereas Bax and p21WAF1 protein expression were unaffected after treatment with 2-methoxyestradiol. CONCLUSION:These results suggest that 2-methoxyestradiol induced cell cycle arrest at G2/M phase and apoptosis of CNE2 cells which was associated to Bcl-2 down-regulation.

  20. Seven cases of radiation-induced cutaneous squamous cell carcinoma

    International Nuclear Information System (INIS)

    We report 7 cases of radiation-induced skin cancer. The diagnosis was based on the history of radiotherapy for benign skin diseases (5 cases) and of occupational exposures to medical doctors (2 cases). All cases were squamous cell carcinomas which arose from chronic radiodermatitis. The estimated latent period of these tumors ranged from 6 to 64 years, with an average of 29.9 years. After surgical treatments of the lesions, no local recurrences were observed in all cases. Benign skin diseases had sometimes been treated with low-energy radiation before the 1960s. Considering the estimated latent period, the peak time point of developing risk of radiation-induced skin cancer by such treatment has been already passed, however, the danger of it should not be ignored in future. In association with multiplicity of radiation usage, occupational exposure of radiation may develop the risk of occurrence of skin cancer in future. Therefore, we should recognize that radiation-induced skin cancer is not in the past. In the cases of chronic skin diseases showing warty keratotic growth, erosion and ulcer, we should include chronic radio-dermatitis in the differential diagnosis. It is necessary to recall all patients about the history of radiotherapy or radiation exposure. Rapid histopathological examination is mandatory because of the suspicion of radiation-induced skin cancer. (author)

  1. Estrogen induces Vav1 expression in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Ming-juan Du

    Full Text Available Vav1, a guanine nucleotide exchange factor (GEF for Rho family GTPases, is a hematopoietic protein involved in a variety of cellular events. In recent years, aberrant expression of Vav1 has been reported in non-hematopoietic cancers including human breast cancer. It remains to be answered how Vav1 is expressed and what Vav1 does in its non-resident tissues. In this study, we aimed to explore the mechanism for Vav1 expression in breast cancer cells in correlation with estrogen-ER pathway. We not only verified the ectopic expression of Vav1 in human breast cancer cell lines, but also observed that Vav1 expression was induced by 17β-estradiol (E2, a typical estrogen receptor (ER ligand, in ER-positive cell lines. On the other hand, Tamoxifen, a selective estrogen receptor modulator (SERM, and ICI 182,780, an ER antagonist, suppressed the expression of Vav1. The estrogen receptor modulating Vav1 expression was identified to be α form, not β. Furthermore, treatment of E2 increased the transcription of vav1 gene by enhancing the promoter activity, though there was no recognizable estrogen response element (ERE. Nevertheless, two regions at the vav1 gene promoter were defined to be responsible for E2-induced activation of vav1 promoter. Chromatin immunoprecipitation (ChIP and co-immunoprecipitation (Co-IP analyses suggested that ERα might access to the vav1 promoter via interacting with transcription factors, c-Myb and ELF-1. Consequently, the enhanced expression of Vav1 led to the elevation of Cyclin D1 and the progression of cell cycle. The present study implies that estrogen-ER modulates the transcription and expression of Vav1, which may contribute to the proliferation of cancerous cells.

  2. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  3. Neisseria lactamica selectively induces mitogenic proliferation of the naive B cell pool via cell surface Ig.

    Science.gov (United States)

    Vaughan, Andrew T; Brackenbury, Louise S; Massari, Paola; Davenport, Victoria; Gorringe, Andrew; Heyderman, Robert S; Williams, Neil A

    2010-09-15

    Neisseria lactamica is a commensal bacteria that colonizes the human upper respiratory tract mucosa during early childhood. In contrast to the closely related opportunistic pathogen Neisseria meningitidis, there is an absence of adaptive cell-mediated immunity to N. lactamica during the peak age of carriage. Instead, outer membrane vesicles derived from N. lactamica mediate a B cell-dependent proliferative response in mucosal mononuclear cells that is associated with the production of polyclonal IgM. We demonstrate in this study that this is a mitogenic human B cell response that occurs independently of T cell help and any other accessory cell population. The ability to drive B cell proliferation is a highly conserved property and is present in N. lactamica strains derived from diverse clonal complexes. CFSE staining of purified human tonsillar B cells demonstrated that naive IgD(+) and CD27(-) B cells are selectively induced to proliferate by outer membrane vesicles, including the innate CD5(+) subset. Neither purified lipooligosaccharide nor PorB from N. lactamica is likely to be responsible for this activity. Prior treatment of B cells with pronase to remove cell-surface Ig or treatment with BCR-specific Abs abrogated the proliferative response to N. lactamica outer membrane vesicles, suggesting that this mitogenic response is dependent upon the BCR. PMID:20709949

  4. Nitric oxide-induced signalling in rat lacrimal acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia Karen; Tritsaris, K.; Dissing, S.

    2002-01-01

    using the fluorescent NO indicator 4,5-diaminofluorescein (DAF-2). We initiated investigations by adding NO from an external source by means of the NO-donor, S-nitroso-N-acetyl-penicillamine (SNAP). Cellular concentrations of cyclic guanosine 5'-phosphate (cGMP) ([cGMP]) were measured by...... radioimmunoassay (RIA), and we found that SNAP induced a fast increase in the [cGMP], amounting to 350% of the [cGMP] in resting cells. Moreover, addition of SNAP and elevating [cGMP] in fura-2 loaded lacrimal acinar cells, resulted in a cGMP-dependent protein kinase-mediated release of Ca2+ from intracellular......-adrenergic stimulation and not by a rise in [Ca2+]i alone.   We show that in rat lacrimal acinar cells, NO and cGMP induce Ca2+ release from intracellular stores via G kinase activation. However, the changes in [Ca2+]i are relatively small, suggesting that this pathway plays a modulatory role in Ca2+ signalling, thus...

  5. Ergosterol-Induced Sesquiterpenoid Synthesis in Tobacco Cells

    Directory of Open Access Journals (Sweden)

    Ian A. Dubery

    2012-02-01

    Full Text Available Plants have the ability to continuously respond to microbial signals in their environment. One of these stimuli is a steroid from fungal membranes, ergosterol, which does not occur in plants, but acts as a pathogen-associated molecular pattern molecule to trigger defence mechanisms. Here we investigated the effect of ergosterol on the secondary metabolites in tobacco (Nicotiana tabacum cells by profiling the induced sesquiterpenoids. Suspensions of tobacco cells were treated with different concentrations (0–1,000 nM of ergosterol and incubated for different time periods (0–24 h. Metabolites were extracted with a selective dispersive liquid-liquid micro-extraction method. Thin layer chromatography was used as a screening method for identification of sesquiterpenoids in tobacco extracts. Liquid chromatography coupled to mass spectrometry was used for quantitative and qualitative analyses. The results showed that ergosterol triggered differential changes in the metabolome of tobacco cells, leading to variation in the biosynthesis of secondary metabolites. Metabolomic analysis through principal component analysis-scores plots revealed clusters of sample replicates for ergosterol treatments of 0, 50, 150, 300 and 1,000 nM and time-dependent variation at 0, 6, 12, 18 and 24 h. Five bicyclic sesquiterpenoid phytoalexins, capsidiol, lubimin, rishitin, solavetivone and phytuberin, were identified as being ergosterol-induced, contributing to the altered metabolome.

  6. Ergosterol-induced sesquiterpenoid synthesis in tobacco cells.

    Science.gov (United States)

    Tugizimana, Fidele; Steenkamp, Paul A; Piater, Lizelle A; Dubery, Ian A

    2012-01-01

    Plants have the ability to continuously respond to microbial signals in their environment. One of these stimuli is a steroid from fungal membranes, ergosterol, which does not occur in plants, but acts as a pathogen-associated molecular pattern molecule to trigger defence mechanisms. Here we investigated the effect of ergosterol on the secondary metabolites in tobacco (Nicotiana tabacum) cells by profiling the induced sesquiterpenoids. Suspensions of tobacco cells were treated with different concentrations (0-1,000 nM) of ergosterol and incubated for different time periods (0-24 h). Metabolites were extracted with a selective dispersive liquid-liquid micro-extraction method. Thin layer chromatography was used as a screening method for identification of sesquiterpenoids in tobacco extracts. Liquid chromatography coupled to mass spectrometry was used for quantitative and qualitative analyses. The results showed that ergosterol triggered differential changes in the metabolome of tobacco cells, leading to variation in the biosynthesis of secondary metabolites. Metabolomic analysis through principal component analysis-scores plots revealed clusters of sample replicates for ergosterol treatments of 0, 50, 150, 300 and 1,000 nM and time-dependent variation at 0, 6, 12, 18 and 24 h. Five bicyclic sesquiterpenoid phytoalexins, capsidiol, lubimin, rishitin, solavetivone and phytuberin, were identified as being ergosterol-induced, contributing to the altered metabolome. PMID:22322447

  7. Hydrogen peroxide produced by oral Streptococci induces macrophage cell death.

    Directory of Open Access Journals (Sweden)

    Nobuo Okahashi

    Full Text Available Hydrogen peroxide (H2O2 produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 human macrophage cell line at multiplicities of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited the cytotoxic effect of S. oralis. S. oralis deletion mutants lacking the spxB gene, which encodes pyruvate oxidase, and are therefore deficient in H2O2 production, showed reduced cytotoxicity toward THP-1 macrophages. Furthermore, H2O2 alone was capable of inducing cell death. The cytotoxic effect seemed to be independent of inflammatory responses, because H2O2 was not a potent stimulator of tumor necrosis factor-α production in macrophages. These results indicate that streptococcal H2O2 plays a role as a cytotoxin, and is implicated in the cell death of infected human macrophages.

  8. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  9. Cell-specific synaptic plasticity induced by network oscillations.

    Science.gov (United States)

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg Rp; Dugladze, Tamar; Gloveli, Tengis

    2016-01-01

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner. PMID:27218453

  10. Oxidative stress induces senescence in human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated β-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  11. Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology

    Science.gov (United States)

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A.

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  12. Radiation-induced chromosomal instability in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  13. Mesenchymal stem cells reduce the irradiation induced lung injury

    International Nuclear Information System (INIS)

    Objective: To evaluate the role of mesenchymal stem cells (MSCs) derived from mouse bone and embryo dorsal aorta (DA) area in the treatment of irradiation induced lung injury of mouse model. Methods: The mice were divided into four groups as normal control group, irradiation group,bone MSCs treatment group and DA MSCs treatment group. Immunohistochemical Analysis of lung tissue was observed after 9 months of treatment. Results: Fibrosis and alveolar infiltration were scored in each group. The score for fibrosis and alveolar is 0. 17 in normal control group, 2 in irradiation group, 1 in bone MSCs treat group and 1.38 in DA MSCs treat group. Conclusion: The extent of irradiation Induced Lung Injury could be reduced thorough the treatment of MSCs derived from mouse bone and embryos dorsal aorta ( DA ) area. (authors)

  14. The Cell Nucleus in Physiological and Experimentally Induced Hypometabolism

    Science.gov (United States)

    Malatesta, M.

    The main problem for manned space mission is, at present, represented by the mass penalty associated to the human presence. An efficient approach could be the induction of a hypometabolic stasis in the astronauts, thus drastically reducing the physical and psychological requirements of the crew. On the other hand, in the wild, a reduction in resource consumptions physiologi- cally occurs in certain animals which periodically enter hibernation, a hypometabolic state in which both the energy need and energy offer are kept at a minimum. During the last twelve years, we have been studying different tissues of hibernating dormice, with the aim of analyzing their features during the euthermia -hibernation-arousal cycle as well as getting insight into the mechanisms allowing adaptation to hypometabolism. We paid particular attention to the cell nucleus, as it is the site of chief metabolic functions, such as DNA replication and RNA transcription. Our observations revealed no significant modification in the basic features of cell nuclei during hibernation; however, the cell nuclei of hibernating dormice showed unusual nuclear bodies containing molecules involved in RNA pathways. Therefore, we supposed that they could represent storage/assembly sites of several factors for processing some RNA which could be slowly synthesised during hibernation and rapidly and abundantly released in early arousal in order to meet the increased metabolic needs of the cell. The nucleolus also underwent structural and molecular modifications during hibernation, maybe to continue important nucleolar functions, or, alternatively, permit a most efficient reactivation upon arousal. On the basis of the observations made in vivo , we recently tried to experimentally induce a reversible hypometabolic state in in vitro models, using cell lines derived from hibernating and non-hibernating species. By administering the synthetic opioid DADLE, we could significantly reduce both RNA transcrip- tion and

  15. Serum Amyloid A Induces Inflammation, Proliferation and Cell Death in Activated Hepatic Stellate Cells.

    Science.gov (United States)

    Siegmund, Sören V; Schlosser, Monika; Schildberg, Frank A; Seki, Ekihiro; De Minicis, Samuele; Uchinami, Hiroshi; Kuntzen, Christian; Knolle, Percy A; Strassburg, Christian P; Schwabe, Robert F

    2016-01-01

    Serum amyloid A (SAA) is an evolutionary highly conserved acute phase protein that is predominantly secreted by hepatocytes. However, its role in liver injury and fibrogenesis has not been elucidated so far. In this study, we determined the effects of SAA on hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Serum amyloid A potently activated IκB kinase, c-Jun N-terminal kinase (JNK), Erk and Akt and enhanced NF-κB-dependent luciferase activity in primary human and rat HSCs. Serum amyloid A induced the transcription of MCP-1, RANTES and MMP9 in an NF-κB- and JNK-dependent manner. Blockade of NF-κB revealed cytotoxic effects of SAA in primary HSCs with signs of apoptosis such as caspase 3 and PARP cleavage and Annexin V staining. Serum amyloid A induced HSC proliferation, which depended on JNK, Erk and Akt activity. In primary hepatocytes, SAA also activated MAP kinases, but did not induce relevant cell death after NF-κB inhibition. In two models of hepatic fibrogenesis, CCl4 treatment and bile duct ligation, hepatic mRNA levels of SAA1 and SAA3 were strongly increased. In conclusion, SAA may modulate fibrogenic responses in the liver in a positive and negative fashion by inducing inflammation, proliferation and cell death in HSCs. PMID:26937641

  16. Differentiation patterns of mouse embryonic stem cells and induced pluripotent stem cells into neurons.

    Science.gov (United States)

    Nakamura, Mai; Kamishibahara, Yu; Kitazawa, Ayako; Kawaguchi, Hideo; Shimizu, Norio

    2016-05-01

    Mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have the ability to differentiate in vitro into various cell lineages including neurons. The differentiation of these cells into neurons has potential applications in regenerative medicine. Previously, we reported that a chick dorsal root ganglion (DRG)-conditioned medium (CM) promoted the differentiation of mouse ES and iPS cells into neurons. Here, we used real-time PCR to investigate the differentiation patterns of ES and iPS cells into neurons when DRG-CM was added. DRG-CM promoted the expression levels of βIII-tubulin gene (a marker of postmitotic neurons) in ES and iPS cells. ES cells differentiated into neurons faster than iPS cells, and the maximum peaks of gene expression involved in motor, sensory, and dopaminergic neurons were different. Rho kinase (ROCK) inhibitors could be very valuable at numerous stages in the production and use of stem cells in basic research and eventual cell-based therapies. Thus, we investigated whether the addition of a ROCK inhibitor Y-27632 and DRG-CM on the basis of the differentiation patterns promotes the neuronal differentiation of ES cells. When the ROCK inhibitor was added to the culture medium at the initial stages of cultivation, it stimulated the neuronal differentiation of ES cells more strongly than that stimulated by DRG-CM. Moreover, the combination of the ROCK inhibitor and DRG-CM promoted the neuronal differentiation of ES cells when the ROCK inhibitor was added to the culture medium at day 3. The ROCK inhibitor may be useful for promoting neuronal differentiation of ES cells. PMID:25354731

  17. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  18. Single-cell analysis defines the divergence between the innate lymphoid cell lineage and lymphoid tissue-inducer cell lineage.

    Science.gov (United States)

    Ishizuka, Isabel E; Chea, Sylvestre; Gudjonson, Herman; Constantinides, Michael G; Dinner, Aaron R; Bendelac, Albert; Golub, Rachel

    2016-03-01

    The precise lineage relationship between innate lymphoid cells (ILCs) and lymphoid tissue-inducer (LTi) cells is poorly understood. Using single-cell multiplex transcriptional analysis of 100 lymphoid genes and single-cell cultures of fetal liver precursor cells, we identified the common proximal precursor to these lineages and found that its bifurcation was marked by differential induction of the transcription factors PLZF and TCF1. Acquisition of individual effector programs specific to the ILC subsets ILC1, ILC2 and ILC3 was initiated later, at the common ILC precursor stage, by transient expression of mixed ILC1, ILC2 and ILC3 transcriptional patterns, whereas, in contrast, the development of LTi cells did not go through multilineage priming. Our findings provide insight into the divergent mechanisms of the differentiation of the ILC lineage and LTi cell lineage and establish a high-resolution 'blueprint' of their development. PMID:26779601

  19. Uronyl 2-O sulfotransferase potentiates Fgf2-induced cell migration.

    Science.gov (United States)

    Nikolovska, Katerina; Spillmann, Dorothe; Seidler, Daniela G

    2015-02-01

    Fibroblast growth factor 2 (Fgf2) is involved in several biological functions. Fgf2 requires glycosaminoglycans, like chondroitin and dermatan sulfates (hereafter denoted CS/DS) as co-receptors. CS/DS are linear polysaccharides composed of repeating disaccharide units [-4GlcUAb1-3-GalNAc-b1-] and [-4IdoUAa1-3-GalNAc-b1-],which can be sulfated. Uronyl 2-O-sulfotransferase (Ust)introduces sulfation at the C2 of IdoUA and GlcUA resulting inover-sulfated units. Here, we investigated the role of Ust-mediated CS/DS 2-O sulfation in Fgf2-induced cell migration. We found that CHO-K1 cells overexpressing Ust contain significantly more CS/DS2-O sulfated units, whereas Ust knockdown abolished CS/DS 2-O sulfation. These structural differences in CS/DS resulted in altered Fgf2 binding and increased phosphorylation of ERK1/2 (also known as MAPK3 and MAPK1, respectively). As a functional consequence of CS/DS 2-O sulfation and altered Fgf2 binding, cell migration and paxillin activation were increased. Inhibition of sulfation, knockdown of Ust and inhibition of FgfR resulted in reduced migration. Similarly, in 3T3 cells Fgf2 treatment increased migration, which was abolished by Ust knockdown. The proteoglycan controlling the CHO migration was syndecan 1. Knockdown of Sdc1 in CHO-K1 cells overexpressing Ust abolished cell migration.We conclude that the presence of distinctly sulfated CS/DS can tune the Fgf2 effect on cell migration. PMID:25480151

  20. Sulforaphane induces DNA single strand breaks in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sestili, Piero, E-mail: piero.sestili@uniurb.it [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Paolillo, Marco [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Lenzi, Monia [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy); Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Fimognari, Carmela [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-07-07

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 {mu}M SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value

  1. Focused ultrasound induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    GUO Qian; JIANG Li-xin; HU Bing

    2012-01-01

    Background The incidence and mortality rate of pancreatic cancer have increased dramatically in China over recent decades.Focused ultrasound (FU) has been somewhat successful in treating pancreatic cancer.The purpose of this study was to investigate apoptosis in pancreatic cancer cells induced by FU.Methods Suspension of human pancreatic carcinoma cell line PaTu 8988t was radiated by FU,using five doses with different radiation parameters and patterns,including one blank control.Temperature increase of the cell suspension was monitored.Cell apoptosis and death after FU radiation was observed using fluorescence microscopy and was tested by flow cytometer at 3,6,12,24,and 48 hours after ultrasound radiation.Results The maximum cell suspension temperatures following five radiation doses were 28°C,(42.20±2.17)°C,(50.80±0.84)°C,(55.80±2.17)°C,and (65.20±3.11)°C; differences between the doses were statistically significant (P <0.05).The apoptosis rate peaked at 24 hours after radiation,at (0.56±0.15)%,(1.28±0.16)%,(1.84±0.29)%,(5.74±1.15)%,and (2.00±0.84)% for the five doses; differences between the doses were statistically significant (P <0.05).Between doses 1-4,cell apoptosis rates increased as the Tmax increased.In dose 5,as the Tmax was above 60°C,the apoptosis rate decreased.Conclusion Sub-threshold thermal exposures of FU radiation with a continuous radiation pattern could result in higher oercentage of apoptosed cells.

  2. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno

    2013-01-01

    Full Text Available Background. Although pathological involvements of diabetic polyneuropathy (DPN have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.

  3. Acute ethanol exposure inhibits silencing of cerebellar Golgi cell firing induced by granule cell axon input

    Directory of Open Access Journals (Sweden)

    Paolo eBotta

    2014-02-01

    Full Text Available Golgi cells (GoCs are specialized interneurons that provide inhibitory input to granule cells in the cerebellar cortex. GoCs are pacemaker neurons that spontaneously fire action potentials, triggering spontaneous inhibitory postsynaptic currents in granule cells and also contributing to the generation tonic GABAA receptor-mediated currents in granule cells. In turn, granule cell axons provide feedback glutamatergic input to GoCs. It has been shown that high frequency stimulation of granule cell axons induces a transient pause in GoC firing in a type 2-metabotropic glutamate receptor (mGluR2-dependent manner. Here, we investigated the effect ethanol on the pause of GoC firing induced by high frequency stimulation of granule cell axons. GoC electrophysiological recordings were performed in parasagittal cerebellar vermis slices from postnatal day 23 to 26 rats. Loose-patch cell-attached recordings revealed that ethanol (40 mM reversibly decreases the pause duration. An antagonist of mGluR2 reduced the pause duration but did not affect the effect of ethanol. Whole-cell voltage-clamp recordings showed that currents evoked by an mGluR2 agonist were not significantly affected by ethanol. Perforated-patch experiments in which hyperpolarizing and depolarizing currents were injected into GoCs demonstrated that there is an inverse relationship between spontaneous firing and pause duration. Slight inhibition of the Na+/K+ pump mimicked the effect of ethanol on pause duration. In conclusion, ethanol reduces the granule cell axon-mediated feedback mechanism by reducing the input responsiveness of GoCs. This would result in a transient increase of GABAA receptor-mediated inhibition of granule cells, limiting information flow at the input stage of the cerebellar cortex.

  4. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Athanasia D Panopoulos; Margaret Lutz; W Travis Berggren; Kun Zhang; Ronald M Evans; Gary Siuzdak; Juan Carlos Izpisua Belmonte; Oscar Yanes; SergioRuiz; Yasuyuki S Kida; Dinh Diep; Ralf Tautenhahn; Aida Herrerias; Erika M Batchelder; Nongluk Plongthongkum

    2012-01-01

    Metabolism is vital to every aspect of cell function,yet the metabolome of induced pluripotent stem cells (iPSCs)remains largely unexplored.Here we report,using an untargeted metabolomics approach,that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells,and that is characterized by changes in metabolites involved in cellular respiration.Examination of cellular bioenergetics corroborated with our metabolomic analysis,and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency.Interestingly,the bioenergetics of various somatic cells correlated with their reprogramming efficiencies.We further identified metabolites that differ between iPSCs and ESCs,which revealed novel metabolic pathways that play a critical role in regulating somatic cell reprogramming.Our findings are the first to globally analyze the metabolome of iPSCs,and provide mechanistic insight into a new layer of regulation involved in inducing pluripotency,and in evaluating iPSC and ESC equivalence.

  5. Mechanisms involved in ceramide-induced cell cycle arrest in human hepatocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Xiao-Wen Lv; Jie-Ping Shi; Xiao-Song Hu

    2007-01-01

    AIM:To investigate the effect of ceramide on the cell cycle in human hepatocarcinoma Bel7402 cells.Possible molecular mechanisms were explored.METHODS:[3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide(MTT)assay,plasmid transfection,reporter assay,FACS and Western blotting analyses were employed to investigate the effect and the related molecular mechanisms of C2-ceramide on the cell cycle of Bel7402 cells.RESULTS:C2-ceramide was found to inhibit the growth of Bel7402 cells by inducing cell cycle arrest.During the process,the expression of p21 protein increased,while that of cyclinD1,phospho-ERK1/2 and c-myc decreased.Furthermore,the level of CDK7 was downregulated,while the transcriptional activity of PPARγ was upregulated.Addition of GW9662,which is a PPARγ specific antagonist,could reserve the modulation action on CDK7.CONCLUSION:Our results support the hypothesis that cell cycle arrest induced by C2-ceramide may be mediated via accumulation of p21 and reduction of cyclinD1 and CDK7,at least partly,through PPARγ activation.The ERK signaling pathway was involved in this process.

  6. Tea pigments induce cell-cycle arrest and apoptosis in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Xu-Dong Jia; Chi Han; Jun-Shi Chen

    2005-01-01

    AIM: To investigate the molecular mechanisms by which tea pigments exert preventive effects on liver carcinogenesis.METHODS: HepG2 cells were seeded at a density of 5×105/well in six-well culture dishes and incubated overnight. The cells then were treated with various concentrations of tea pigments over 3 d, harvested by trypsinization, and counted using a hemocytometer. Flow cytometric analysis was performed by a flow cytometer after propidium iodide labeling. Bcl-2 and p21WAF1 proteins were determined by Western blotting. In addition, DNA laddering assay was performed on treated and untreated cultured HepG2 cells.RESULTS: Tea pigments inhibited the growth of HepG2 cells in a dose-dependent manner. Flow-cytometric analysis showed that tea pigments arrested cell cycle progression at G1 phase. DNA laddering was used to investigate apoptotic cell death, and the result showed that 100 mg/L of tea pigments caused typical DNA laddering. Our study also showed that tea pigments induced upregulation of p21WAF1 protein and downregulation of Bcl-2 protein.CONCLUSION: Tea pigments induce cell-cycle arrest and apoptosis. Tea pigments may be used as an ideal chemopreventive agent.

  7. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  8. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  9. DNA From Dead Cancer Cells Induces TLR9-Mediated Invasion and Inflammation In Living Cancer Cells

    Science.gov (United States)

    Tuomela, Johanna; Sandholm, Jouko; Kaakinen, Mika; Patel, Ankita; Kauppila, Joonas H.; Ilvesaro, Joanna; Chen, Dongquan; Harris, Kevin W.; Graves, David; Selander, Katri S.

    2014-01-01

    TLR9 is a cellular DNA-receptor, which is widely expressed in breast and other cancers. Although synthetic TLR9-ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology has remained unclear. We show here that living cancer cells uptake DNA from chemotherapy-killed cancer cells. We discovered that such DNA induces TLR9- and cathepsin-mediated invasion in living cancer cells. To study whether this phenomenon contributes to treatment responses, triple negative, human MDA-MB-231 breast cancer cells stably expressing control or TLR9 siRNA were inoculated orthotopically into nude mice. The mice were treated with vehicle or doxorubicin. The tumor groups exhibited equal decreases in size in response to doxorubicin. However, while the weights of vehicle-treated mice were similar, mice bearing control siRNA tumors became significantly more cachectic in response to doxorubicin, as compared with similarly treated mice bearing TLR9 siRNA tumors, suggesting a TLR9-mediated inflammation at the site of the tumor. In conclusion, our findings propose that DNA released from chemotherapy-killed cancer cells has significant influence on TLR9-mediated biological effects in living cancer cells. Through these mechanisms, tumor TLR9 expression may affect treatment responses to chemotherapy. PMID:24212717

  10. The involvement of mitochondrial apoptotic pathway in eugenol-induced cell death in human glioblastoma cells.

    Science.gov (United States)

    Liang, Wei-Zhe; Chou, Chiang-Ting; Hsu, Shu-Shong; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Tseng, Hui-Wen; Kuo, Chun-Chi; Jan, Chung-Ren

    2015-01-01

    Eugenol, a natural phenolic constituent of clove oil, has a wide range of applications in medicine as a local antiseptic and anesthetic. However, the effect of eugenol on human glioblastoma is unclear. This study examined whether eugenol elevated intracellular free Ca(2+) levels ([Ca(2+)]i) and induced apoptosis in DBTRG-05MG human glioblastoma cells. Eugenol evoked [Ca(2+)]i rises which were reduced by removing extracellular Ca(2+). Eugenol-induced [Ca(2+)]i rises were not altered by store-operated Ca(2+) channel blockers but were inhibited by the PKC inhibitor GF109203X and the transient receptor potential channel melastatin 8 (TRPM8) antagonist capsazepine. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished eugenol-induced [Ca(2+)]i rises. The phospholipase C (PLC) inhibitor U73122 significantly inhibited eugenol-induced [Ca(2+)]i rises. Eugenol killed cells which were not reversed by prechelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Eugenol induced apoptosis through increasing reactive oxygen species (ROS) production, decreasing mitochondrial membrane potential, releasing cytochrome c and activating caspase-9/caspase-3. Together, in DBTRG-05MG cells, eugenol evoked [Ca(2+)]i rises by inducing PLC-dependent release of Ca(2+) from the endoplasmic reticulum and caused Ca(2+) influx possibly through TRPM8 or PKC-sensitive channels. Furthermore, eugenol induced the mitochondrial apoptotic pathway. PMID:25455450

  11. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool.

    Science.gov (United States)

    Mesa, Kailin R; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Y; Brown, Samara; Gonzalez, David G; Blagoev, Krastan B; Haberman, Ann M; Greco, Valentina

    2015-06-01

    Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  12. Niche induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool

    Science.gov (United States)

    Mesa, Kailin R.; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Yang; Brown, Samara; Gonzalez, David; Blagoev, Krastan B.; Haberman, Ann M.; Greco, Valentina

    2015-01-01

    Summary Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression)1,2. Contrary to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration3. Here we show by intravital microscopy in live mice4–6 that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbors. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through TGFβ activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviors and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  13. Selective cell targeting and lineage tracing of human induced pluripotent stem cells using recombinant avian retroviruses.

    Science.gov (United States)

    Hildebrand, Laura; Seemann, Petra; Kurtz, Andreas; Hecht, Jochen; Contzen, Jörg; Gossen, Manfred; Stachelscheid, Harald

    2015-12-01

    Human induced pluripotent stem cells (hiPSC) differentiate into multiple cell types. Selective cell targeting is often needed for analyzing gene function by overexpressing proteins in a distinct population of hiPSC-derived cell types and for monitoring cell fate in response to stimuli. However, to date, this has not been possible, as commonly used viruses enter the hiPSC via ubiquitously expressed receptors. Here, we report for the first time the application of a heterologous avian receptor, the tumor virus receptor A (TVA), to selectively transduce TVA(+) cells in a mixed cell population. Expression of the TVA surface receptor via genetic engineering renders cells susceptible for infection by avian leucosis virus (ALV). We generated hiPSC lines with this stably integrated, ectopic TVA receptor gene that expressed the receptor while retaining pluripotency. The undifferentiated hiPSC(TVA+) as well as their differentiating progeny could be infected by recombinant ALV (so-called RCAS virus) with high efficiency. Due to incomplete receptor blocking, even sequential infection of differentiating or undifferentiated TVA(+) cells was possible. In conclusion, the TVA/RCAS system provides an efficient and gentle gene transfer system for hiPSC and extends our possibilities for selective cell targeting and lineage tracing studies. PMID:26109426

  14. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells

    Science.gov (United States)

    Chowdhury, Farhan; Na, Sungsoo; Li, Dong; Poh, Yeh-Chuin; Tanaka, Tetsuya S.; Wang, Fei; Wang, Ning

    2010-01-01

    Growing evidence suggests that physical microenvironments and mechanical stresses, in addition to soluble factors, help direct mesenchymal-stem-cell fate. However, biological responses to a local force in embryonic stem cells remain elusive. Here we show that a local cyclic stress through focal adhesions induced spreading in mouse embryonic stem cells but not in mouse embryonic stem-cell-differentiated cells, which were ten times stiffer. This response was dictated by the cell material property (cell softness), suggesting that a threshold cell deformation is the key setpoint for triggering spreading responses. Traction quantification and pharmacological or shRNA intervention revealed that myosin II contractility, F-actin, Src or cdc42 were essential in the spreading response. The applied stress led to oct3/4 gene downregulation in mES cells. Our findings demonstrate that cell softness dictates cellular sensitivity to force, suggesting that local small forces might have far more important roles in early development of soft embryos than previously appreciated.

  15. Genistein inhibits cell invasion and motility by inducing cell differentiation in murine osteosarcoma cell line LM8

    Directory of Open Access Journals (Sweden)

    Nakamura Atsushi

    2012-09-01

    . Treatment of LM8 cells with genistein induced morphological changes, markedly decreased the formation of multilayer masses of cells, and markedly increased the expression of osteocalcin mRNA. Conclusions Genistein decreased invasive and motile potential by inducing cell differentiation in LM8 cells. Genistein may be useful as an anti-metastatic drug for osteosarcoma through its differentiation-inducing effects.

  16. Differentiation of bone mesenchymal stem cells into hepatocyte-like cells induced by liver tissue homogenate.

    Science.gov (United States)

    Xing, X K; Feng, H G; Yuan, Z Q

    2016-01-01

    This study investigated the efficacy and feasibility of inducing the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into hepatocyte-like cells in vitro using Sprague Dawley rats, as a model of hepatocyte generation for cell transplantation. BMSCs were isolated and grown using the adherent method and exposed to 5 or 10% liver tissue homogenate, before being collected for analysis after 0, 7, 14, and 21 days. Immunofluorescence and western blotting were employed to detect the liver-specific markers a-fetoprotein (AFP) and albumin (ALB). Supernatant urea content was also measured to verify that differentiation had been induced. After 7 days in the presence of 10% liver tissue homogenate, BMSCs demonstrated hepatocyte-like morphological characteristics, and with prolonged culture time, liver-specific markers were gradually produced at levels indicating cell maturation. AFP expression peaked at 14 days then began to decrease, while both urea and ALB levels increased with induction time. Overall, marker expression in the 5% homogenate group was less than or equal to the 10% group at each time point. Thus, in a rat model, liver tissue homogenate obtained from partial hepatectomy can induce the differentiation of BMSCs into hepatocyte-like cells. This method is simple, feasible, and has remarkable real-world application potential. PMID:27525848

  17. INSULIN INDUCES NITRIC OXIDE PRODUCTION IN BOVINEAORTIC ENDOTHELIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To examine the effects of insulin on cell proliferation, nitric oxide (NO) release and nitric oxide synthase (NOS) gene expression in bovine aortic endothelial cells ( BAEC ) . Methods The mi togenesis was assessed by MTT method; the products of NO in the culture media, by Griess reaction; and the levels of NOS mRNA in BAEC , by RT/PCR tech nique. Results BAEC were not responsive to the growth-promoting effects of insulin. Stimulation with insulin resulted a dose-dependent rise of NO in the culture supernatants 2h later, with a maximum at 12~24h and a decline at 24h. This rise was inhibited by an inhibitor of NOS (L-NAME). NOS mRNA increased slightly in BAEC without statistical significance. Conelu sion The study suggested that the insulin-induced NO release might be caused directly by NOS activation.

  18. Light-Induced Degradation of Thin Film Silicon Solar Cells

    Science.gov (United States)

    Hamelmann, F. U.; Weicht, J. A.; Behrens, G.

    2016-02-01

    Silicon-wafer based solar cells are still domination the market for photovoltaic energy conversion. However, most of the silicon is used only for mechanical stability, while only a small percentage of the material is needed for the light absorption. Thin film silicon technology reduces the material demand to just some hundred nanometer thickness. But even in a tandem stack (amorphous and microcrystalline silicon) the efficiencies are lower, and light-induced degradation is an important issue. The established standard tests for characterisation are not precise enough to predict the performance of thin film silicon solar cells under real conditions, since many factors do have an influence on the degradation. We will show some results of laboratory and outdoor measurements that we are going to use as a base for advanced modelling and simulation methods.

  19. Cell alterations induced by a biotherapic for influenza

    Directory of Open Access Journals (Sweden)

    José Nelson Couceiro

    2011-07-01

    Full Text Available Introduction: Influenza viruses have been responsible for highly contagious acute respiratory illnesses with high mortality, mainly in the elderly, which encourages the development of new drugs for the treatment of human flu. The biotherapics are medicines prepared from biological products, which are not chemically defined. They are compounded following the homeopathic procedures indicated for infectious diseases with known etiology [1]. Aim: The purpose of the present study is to verify cellular alterations induced by a biotherapic prepared from the infectious influenza A virus. Methodology: This biotherapic was prepared for this study in the homeopathic potency of 30X according to the Brazilian Homeopathic Pharmacopeia [2]. The concentration of 10% was not cytotoxic to cells, as verified by neutral red assay. The cellular alterations observed in MDCK cells were analyzed by optical microscopy for the quantification of mitosis, nucleoli and lipid bodies. The mitochondrial activity was assessed by MTT assay and the phosphosfructokinase-1 (PFK-1 enzyme activity was analyzed on the MDCK cells treated for 5, 10 and 30 days. Macrophages J778.G8 were treated with this biotherapic to evaluate the immunostimulatory cytokine release. Results: The cellular alterations observed in MDCK cells were verified by optical microscopy. The number of lipid bodies present in MDCK cells stimulated for 10 days was significantly lower (p <0.05 when compared to controls. The biotherapic significantly increased (p <0.05 the number of mitosis and the mitochondrial activity of MDCK cells stimulated for 10 and 30 days. These changes were confirmed by a significant reduction (p <0.05 on the PFK-1 activity. These results suggest that the biotherapic was able to activate the Krebs cycle and pentose-phosphate metabolism to the generation of amino acids and nucleotides, situations common to cells whose rate of mitosis is increased. The quantification of immunostimulatory

  20. Autophagy Alleviates Melamine-Induced Cell Death in PC12 Cells Via Decreasing ROS Level.

    Science.gov (United States)

    Wang, Hui; Gao, Na; Li, Zhigui; Yang, Zhuo; Zhang, Tao

    2016-04-01

    Since melamine was illegally added to raw milk for increasing the apparent protein content, such a scandal has not been quite blown out. Previous studies showed that melamine induced apoptosis and oxidative damage in both in vivo and in vitro experiments. It is well known that autophagy is closely related to oxidative stress. In the present study, we examined whether autophagy played an important role in protecting PC12 cells, which were damaged by melamine. Immunofluorescence assay showed that melamine enhanced the number of punctuate dot, indicating the increase of autophagosomes. Western blot assay presented that melamine significantly elevated the expression level of autophagy markers including LC3-II/LC3-I ratio, beclin-1, and Atg 7. Rapamycin further enhanced the effect, whereas 3-methyadenine (3-MA) inhibited it. MTT assay exhibited that rapamycin significantly enhanced the cell viability (P < 0.01), while 3-MA considerably reduced it in melamine-treated PC12 cells (P < 0.01). Furthermore, flow cytometry assay showed that rapamycin considerably reduced the reactive oxygen species (ROS) level of the cells (P < 0.01), but 3-MA increased the generation of ROS (P < 0.01). Additionally, the superoxide dismutase (SOD) activity was notably increased by rapamycin in melamine-treated PC12 cells (P < 0.01), while the activity of which was prominently decreased by 3-MA (P < 0.01). Malondialdehyde (MDA) assay showed that rapamycin remarkably decreased the MDA level of the cells (P < 0.05), while 3-MA increased it (P < 0.01). Consequently, this study demonstrated that autophagy protected PC12 cells from melamine-induced cell death via inhibiting the excessive generation of ROS. Regulating autophagy may become a new targeted therapy to relieve the damage induced by melamine. PMID:25724280

  1. Neisseria gonorrhoeae induced disruption of cell junction complexes in epithelial cells of the human genital tract.

    Science.gov (United States)

    Rodríguez-Tirado, Carolina; Maisey, Kevin; Rodríguez, Felipe E; Reyes-Cerpa, Sebastián; Reyes-López, Felipe E; Imarai, Mónica

    2012-03-01

    Pathogenic microorganisms, such as Neisseria gonorrhoeae, have developed mechanisms to alter epithelial barriers in order to reach subepithelial tissues for host colonization. The aim of this study was to examine the effects of gonococci on cell junction complexes of genital epithelial cells of women. Polarized Ishikawa cells, a cell line derived from endometrial epithelium, were used for experimental infection. Infected cells displayed a spindle-like shape with an irregular distribution, indicating potential alteration of cell-cell contacts. Accordingly, analysis by confocal microscopy and cellular fractionation revealed that gonococci induced redistribution of the adherens junction proteins E-cadherin and its adapter protein β-catenin from the membrane to a cytoplasmic pool, with no significant differences in protein levels. In contrast, gonococcal infection did not induce modification of either expression or distribution of the tight junction proteins Occludin and ZO-1. Similar results were observed for Fallopian tube epithelia. Interestingly, infected Ishikawa cells also showed an altered pattern of actin cytoskeleton, observed in the form of stress fibers across the cytoplasm, which in turn matched a strong alteration on the expression of fibronectin, an adhesive glycoprotein component of extracellular matrix. Interestingly, using western blotting, activation of the ERK pathway was detected after gonococcal infection while p38 pathway was not activated. All effects were pili and Opa independent. Altogether, results indicated that gonococcus, as a mechanism of pathogenesis, induced disruption of junction complexes with early detaching of E-cadherin and β-catenin from the adherens junction complex, followed by a redistribution and reorganization of actin cytoskeleton and fibronectin within the extracellular matrix. PMID:22146107

  2. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells.

    Science.gov (United States)

    Yoshie, Susumu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Ikeda, Masakazu; Nomoto, Yukio; Wada, Ikuo; Omori, Koichi

    2016-05-01

    Airway epithelial cells derived from induced pluripotent stem (iPS) cells are expected to be a useful source for the regeneration of airway epithelium. Our preliminary study of embryoid body (EB) formation and the air-liquid interface (ALI) method suggested that mouse iPS cells can differentiate into airway epithelial cells. However, whether the cells generated from mouse iPS cells had the character and phenotype of native airway epithelial cells remained uninvestigated. In this study, we generated airway epithelial cells from EBs by culturing them under serum-free conditions supplemented with Activin and bFGF and by the ALI method and characterized the iPS cell-derived airway epithelial cells in terms of their gene expression, immunoreactivity, morphology, and function. Analysis by quantitative real-time reverse transcription-polymerase chain reaction(RT-PCR) revealed that the expression of the undifferentiated cell marker Nanog decreased time-dependently after the induction of differentiation, whereas definitive endoderm markers Foxa2 and Cxcr4 were transiently up-regulated. Thereafter, the expression of airway epithelium markers such as Tubb4a, Muc5ac, and Krt5 was detected by RT-PCR and immunostaining. The formation of tight junctions was also confirmed by immunostaining and permeability assay. Analysis by hematoxylin and eosin staining and scanning electron microscopy indicated that the cells generated from mouse iPS cells formed airway-epithelium-like tissue and had cilia, the movement of which was visualized and observed to be synchronized. These results demonstrate that the airway epithelial cells generated by our method have native characteristics and open new perspectives for the regeneration of injured airway epithelium. PMID:26590823

  3. Prolactin-inducible proteins in human breast cancer cells

    International Nuclear Information System (INIS)

    The mechanism of action of prolactin in target cells and the role of prolactin in human breast cancer are poorly understood phenomena. The present study examines the effect of human prolactin (hPRL) on the synthesis of unique proteins by a human breast cancer cell line, T-47D, in serum-free medium containing bovine serum albumin. [35S]Methionine-labeled proteins were analysed by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and fluorography. Treatment of cells with hPRL (1-1000 ng/ml) and hydrocortisone (1 microgram/ml) for 36 h or longer resulted in the synthesis and secretion of three proteins having molecular weights of 11,000, 14,000, and 16,000. Neither hPRL nor hydrocortisone alone induced these proteins. Of several other peptide hormones tested, only human growth hormone, a hormone structurally and functionally similar to hPRL, could replace hPRL in causing protein induction. These three proteins were, therefore, referred to as prolactin-inducible proteins (PIP). Each of the three PIPs was purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and specific antibodies were generated to them in rabbits. By immunoprecipitation and immunoblotting (Western blot) of proteins secreted by T-47D cells, it was demonstrated that the three PIPs were immunologically identical to one another. In addition, the 16-kDa and 14-kDa proteins (PIP-16 and PIP-14), and not the 11-kDa protein (PIP-11), incorporated [3H]glycosamine. Furthermore, 2-deoxyglucose (2 mM) and tunicamycin (0.5 micrograms/ml), two compounds known to inhibit glycosylation, blocked the production of PIP-16 and PIP-14, with a concomitant increase in the accumulation of PIP-11

  4. Tualang Honey Promotes Apoptotic Cell Death Induced by Tamoxifen in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Nik Soriani Yaacob

    2013-01-01

    Full Text Available Tualang honey (TH is rich in flavonoids and phenolic acids and has significant anticancer activity against breast cancer cells comparable to the effect of tamoxifen (TAM, in vitro. The current study evaluated the effects of TH when used in combination with TAM on MCF-7 and MDA-MB-231 cells. We observed that TH promoted the anticancer activity of TAM in both the estrogen receptor-(ER-responsive and ER-nonresponsive human breast cancer cell lines. Flow cytometric analyses indicated accelerated apoptosis especially in MDA-MB-231 cells and with the involvement of caspase-3/7, -8 and -9 activation as shown by fluorescence microscopy. Depolarization of the mitochondrial membrane was also increased in both cell lines when TH was used in combination with TAM compared to TAM treatment alone. TH may therefore be a potential adjuvant to be used with TAM for reducing the dose of TAM, hence, reducing TAM-induced adverse effects.

  5. Propionibacterium acnes inhibits FOXM1 and induces cell cycle alterations in human primary prostate cells

    DEFF Research Database (Denmark)

    Sayanjali, Behnam; Christensen, Gitte J M; Al-Zeer, Munir A;

    2016-01-01

    Propionibacterium acnes has been detected in diseased human prostate tissue, and cell culture experiments suggest that the bacterium can establish a low-grade inflammation. Here, we investigated its impact on human primary prostate epithelial cells. Microarray analysis confirmed the inflammation......-inducing capability of P. acnes but also showed deregulation of genes involved in the cell cycle. qPCR experiments showed that viable P. acnes downregulates a master regulator of cell cycle progression, FOXM1. Flow cytometry experiments revealed that P. acnes increases the number of cells in S-phase. We tested the...... hypothesis that a P. acnes-produced berninamycin-like thiopeptide is responsible for this effect, since it is related to the FOXM1 inhibitor siomycin. The thiopeptide biosynthesis gene cluster was strongly expressed; it is present in subtype IB of P. acnes, but absent from type IA, which is most abundant on...

  6. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Fangfang Lang

    Full Text Available Resveratrol (trans-3,4,5'-trihydroxystilbene is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3 was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.

  7. Mipu1 overexpression protects macrophages from oxLDL-induced foam cell formation and cell apoptosis.

    Science.gov (United States)

    Qu, Shun-Lin; Fan, Wen-Jing; Zhang, Chi; Guo, Fang; Han, Dan; Pan, Wen-Jun; Li, Wei; Feng, Da-Ming; Jiang, Zhi-Sheng

    2014-12-01

    Mipu1 (myocardial ischemic preconditioning upregulated protein 1) is a novel N-terminal Kruppel-associated box (KRAB)/C2H2 zinc finger superfamily protein, that displays a powerful effect in protecting H9c2 cells from oxidative stress-induced cell apoptosis. The present study aims to investigate the effect of Mipu1 overexpression on oxidized low-density lipoprotein (oxLDL)-induced foam cell formation, cell apoptosis, and its possible mechanisms. New Zealand healthy rabbits were used to establish atherosclerosis model, and serum levels of triglycerides, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol were detected by an automatic biochemical analyzer. Sudan IV staining was used to detect atherosclerotic lesions. The RAW264.7 macrophage cell line was selected as the experimental material. Oil red O staining, high-performance liquid chromatography, and Dil-labeled lipoprotein were used to detect cholesterol accumulation qualitatively and quantitatively, respectively. Flow cytometry was used to determine cell apoptosis. Real-time quantitative polymerase chain reaction (PCR) was used to detect the mRNA expression of the main proteins that are associated with the transport of cholesterol, such as ABCA1, ABCG1, SR-BI, and CD36. Western blot analysis was used to detect the protein expression of Mipu1. There were atherosclerotic lesions in the high-fat diet group with Sudan IV staining. High-fat diet decreased Mipu1 expression and increased CD36 expression significantly at the 10th week compared with standard-diet rabbits. Mipu1 overexpression decreased oxLDL-induced cholesterol accumulation, oxLDL uptake, cell apoptosis, and cleaved caspase-3. Mipu1 overexpression inhibited the oxLDL-induced CD36 mRNA and protein expression, but it did not significantly inhibit the mRNA expression of ABCA1, ABCG1, and SR-BI. Mipu1 overexpression inhibits oxLDL-induced foam cell formation and cell apoptosis. Mipu1 overexpression reduces the

  8. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    International Nuclear Information System (INIS)

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury

  9. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  10. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    Science.gov (United States)

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions. PMID:26200842

  11. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells

    Directory of Open Access Journals (Sweden)

    Wu Jian

    2012-08-01

    Full Text Available Abstract Background Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Results Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide and late apoptotic cells (Annexin V+/PI+ increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Conclusions Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells.

  12. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Science.gov (United States)

    Marcos-Campos, I.; Asín, L.; Torres, T. E.; Marquina, C.; Tres, A.; Ibarra, M. R.; Goya, G. F.

    2011-05-01

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH2 + ) or negative (COOH - ) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  13. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    International Nuclear Information System (INIS)

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH2+) or negative (COOH-) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  14. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Campos, I; AsIn, L; Torres, T E; Tres, A; Ibarra, M R; Goya, G F [Instituto de Nanociencia de Aragon (INA), Mariano Esquillor s/n, CP 50018, Zaragoza (Spain); Marquina, C, E-mail: goya@unizar.es [Condensed Matter Department, Sciences Faculty, University of Zaragoza, 50009 (Spain)

    2011-05-20

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH{sub 2}{sup +}) or negative (COOH{sup -}) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  15. Titanium dioxide particle – induced goblet cell hyperplasia : association with mast cells and IL-13

    Directory of Open Access Journals (Sweden)

    Kim Soo-Ho

    2005-04-01

    Full Text Available Abstract Background Inhalation of particles aggravates respiratory symptoms including mucus hypersecretion in patients with chronic airway disease and induces goblet cell hyperplasia (GCH in experimental animal models. However, the underlying mechanisms remain poorly understood. Methods To understand this, the numbers of goblet cells, Muc5ac (+ expressing epithelial cells and IL-13 expressing mast cells were measured in the trachea of sham or TiO2 particles – treated rats using periodic acid-Schiff, toluidine blue and immunohistochemical staining. RT-PCR for Muc-1, 2 and 5ac gene transcripts was done using RNA extracted from the trachea. Differential cell count and IL-13 levels were measured in bronchoalveolar lavage (BAL fluid. In pretreatment groups, cyclophosphamide (CPA or dexamethasone (DEX was given before instillation of TiO2. TiO2 treatment markedly increased Muc5ac mRNA expression, and Muc5ac (+ or PAS (+ epithelial cells 48 h following treatment. Results The concentration of IL-13 in BAL fluids was higher in TiO2 treated – rats when compared to those in sham rats (p 2 treated – rats (p 0.05. In contrast, pretreatment with dexamethasone (DEX diminished the percentage of PAS (+ cells and the levels of IL-13 (p 2 treatment increased the IL-13 (+ mast cells (p 0.05. In addition there were significant correlations of IL-13 (+ rate of mast cells in the trachea with IL-13 concentration in BAL fluid (p 2 treated rats (p Conclusion In conclusion, TiO2 instillation induces GCH and Muc5ac expression, and this process may be associated with increased production of IL-13 by mast cells.

  16. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lagadec, Chann [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Vlashi, Erina [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Pajonk, Frank, E-mail: fpajonk@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  17. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    International Nuclear Information System (INIS)

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells

  18. HIV-Induced Epigenetic Alterations in Host Cells.

    Science.gov (United States)

    Abdel-Hameed, Enass A; Ji, Hong; Shata, Mohamed Tarek

    2016-01-01

    Human immunodeficiency virus (HIV), a member of the Retroviridae family, is a positive-sense, enveloped RNA virus. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS) has two major types, HIV-1 and HIV-2 In HIV-infected cells the single stranded viral RNA genome is reverse transcribed and the double-stranded viral DNA integrates into the cellular DNA, forming a provirus. The proviral HIV genome is controlled by the host epigenetic regulatory machinery. Cellular epigenetic regulators control HIV latency and reactivation by affecting the chromatin state in the vicinity of the viral promoter located to the 5' long terminal repeat (LTR) sequence. In turn, distinct HIV proteins affect the epigenotype and gene expression pattern of the host cells. HIV-1 infection of CD4(+) T cells in vitro upregulated DNMT activity and induced hypermethylation of distinct cellular promoters. In contrast, in the colon mucosa and peripheral blood mononuclear cells from HIV-infected patients demethylation of the FOXP3 promoter was observed, possibly due to the downregulation of DNA methyltransferase 1. For a curative therapy of HIV infected individuals and AIDS patients, a combination of antiretroviral drugs with epigenetic modifying compounds have been suggested for the reactivation of latent HIV-1 genomes. These epigenetic drugs include histone deacetylase inhibitors (HDACI), histone methyltransferase inhibitors (HMTI), histone demethylase inhibitors, and DNA methyltransferase inhibitors (DNMTI). PMID:26659262

  19. Wogonoside induces autophagy-related apoptosis in human glioblastoma cells.

    Science.gov (United States)

    Zhang, Li; Wang, Handong; Cong, Zixiang; Xu, Jianguo; Zhu, Jianhong; Ji, Xiangjun; Ding, Ke

    2014-09-01

    Wogonoside, a bioactive flavonoid extracted from the root of Scutellaria baicalensis Georgi, has shown preclinical anticancer efficacy in various cancer models. However, the effects of wogonoside on glioblastoma cells remain unclear. In the present study, we found that wogonoside exhibited a cytotoxic effect on human glioblastoma cells. The suppression of cell viability was due to the induction of mitochondrial apoptosis. Furthermore, the presence of autophagic hallmarks, including an increase in punctate microtubule associated protein 1 light chain 3 (LC3) dots, changes in cellular morphology and increased levels of autophagy-related proteins were observed in the wogonoside-treated cells. Wogonoside treatment also enhanced autophagic flux as reflected by the increased acidic vesicular organelle (AVO) formation, p62 degradation and LC3 turnover. Notably, blockade of autophagy by a chemical inhibitor or RNA interference decreased the anticancer effect of wogonoside. In addition, the p38 mitogen-activated protein kinase (MAPK) signaling pathway, the phosphatidylinositide 3-kinase/protein kinase B/mammalian target of rapamycin/p70S6 kinase (PI3K/AKT/mTOR/p70S6K) signaling pathway and reactive oxygen species (ROS) participated in wogonoside-induced autophagy and apoptosis. These findings support the initiation of further studies of wogonoside as a candidate for the treatment of human malignant glioma. PMID:24970553

  20. MicroRNAs in Hyperglycemia Induced Endothelial Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Maskomani Silambarasan

    2016-04-01

    Full Text Available Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional. In this study, we investigated the miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose concentrations (5, 10, 25 and 40 mM glucose and at various time intervals (6, 12, 24 and 48 h. miRNA microarray analyses showed that there is a correlation between hyperglycemia induced endothelial dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression showed that the majority of the affected biological pathways appeared to be associated to endothelial cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a to increase gradually with increasing concentration of glucose. These miRNAs were also found to be involved in endothelial dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p, can be correlated to endothelial cell apoptosis.

  1. Modeling Neurological Disorders by Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Tanut Kunkanjanawan

    2011-01-01

    Full Text Available Studies of human brain development are critical as research on neurological disorders have been progressively advanced. However, understanding the process of neurogenesis through analysis of the early embryo is complicated and limited by a number of factors, including the complexity of the embryos, availability, and ethical constrains. The emerging of human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs has shed light of a new approach to study both early development and disease pathology. The cells behave as precursors of all embryonic lineages; thus, they allow tracing the history from the root to individual branches of the cell lineage tree. Systems for neural differentiation of hESCs and iPSCs have provided an experimental model that can be used to augment in vitro studies of in vivo brain development. Interestingly, iPSCs derived from patients, containing donor genetic background, have offered a breakthrough approach to study human genetics of neurodegenerative diseases. This paper summarizes the recent reports of the development of iPSCs from patients who suffer from neurological diseases and evaluates the feasibility of iPSCs as a disease model. The benefits and obstacles of iPSC technology are highlighted in order to raising the cautions of misinterpretation prior to further clinical translations.

  2. Generation of induced pluripotent stem cells from domestic goats.

    Science.gov (United States)

    Sandmaier, Shelley E S; Nandal, Anjali; Powell, Anne; Garrett, Wesley; Blomberg, Leann; Donovan, David M; Talbot, Neil; Telugu, Bhanu P

    2015-09-01

    The creation of genetically modified goats provides a powerful approach for improving animal health, enhancing production traits, animal pharming, and for ensuring food safety all of which are high-priority goals for animal agriculture. The availability of goat embryonic stem cells (ESCs) that are characteristically immortal in culture would be of enormous benefit for developing genetically modified animals. As an alternative to long-sought goat ESCs, we generated induced pluripotent stem cells (iPSC) by forced expression of bovine POU5F1, SOX2, MYC, KLF4, LIN-28, and NANOG reprogramming factors in combination with a MIR302/367 cluster, delivered by lentiviral vectors. In order to minimize integrations, the reprogramming factor coding sequences were assembled with porcine teschovirus-1 2A (P2A) self-cleaving peptides that allowed for tri-cistronic expression from each vector. The lentiviral-transduced cells were cultured on irradiated mouse feeder cells in a semi-defined, serum-free medium containing fibroblast growth factor (FGF) and/or leukemia inhibitory factor (LIF). The resulting goat iPSC exhibit cell and colony morphology typical of human and mouse ESCs-that is, well-defined borders, a high nuclear-to-cytoplasmic ratio, a short cell-cycle interval, alkaline phosphatase expression, and the ability to generate teratomas in vivo. Additionally, these goat iPSC demonstrated the ability to differentiate into directed lineages in vitro. These results constitute the first steps in establishing integration and footprint-free iPSC from ruminants. Mol. Reprod. Dev. 82: 709-721, 2015. © 2015 Wiley Periodicals, Inc. PMID:26118622

  3. Bcl-2 Knockdown Accelerates T Cell Receptor-Triggered Activation-Induced Cell Death in Jurkat T Cells

    OpenAIRE

    Lee, Yun-Jung; Won, Tae Joon; Hyung, Kyeong Eun; Lee, Mi Ji; Moon, Young-hye; Lee, Ik Hee; Go, Byung Sung; Hwang, Kwang Woo

    2014-01-01

    Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-...

  4. Understanding Cell Shape Phenotypes Associated with Stem Cell Differentiation Induced by Topographical Cues of Nanofiber Microenvironment

    Science.gov (United States)

    Chen, Desu; Sarkar, Sumona; Losert, Wolfgang

    It is increasingly important to understand cell responses to bioinspired material structures and topographies designed to guide cell functional alterations. In this study, we investigated association between early stage cell morphological response and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) induced by poly(ɛ-caprolactone) (PCL) nanofiber scaffolds (PCL-NF). Accounting for both multi-parametric complexity and biological heterogeneity, we developed an analysis framework based on support vector machines and a multi-cell level averaging method (supercell) to determine the most pronounced cell shape features describing shape phenotypes of cells in PCL-NF compared to cells on flat PCL films. We found that smaller size and more dendritic shape were the major morphological responses of hBMSCs to PCL-NF on day 1 of cell culture. Further, we investigated the shape phenotypes of hBMSCs in PCL-NF of different fiber densities to monitor the transition between 2-D and 3-D topographies. We tracked the genotypic, phenotypic and morphological responses of hBMSCs to different fiber densities at multiple time points to identify correlations between hBMSCs differentiation and early stage morphology in PCL-NF scaffolds.

  5. Supernatant of Bone Marrow Mesenchymal Stromal Cells Induces Peripheral Blood Mononuclear Cells Possessing Mesenchymal Features

    Directory of Open Access Journals (Sweden)

    Gang Hu, Jun-jun Xu, Zhi-hong Deng, Jie Feng, Yan Jin

    2011-01-01

    Full Text Available Increasing evidence shows that some cells from peripheral blood fibroblast-like mononuclear cells have the capacity to differentiate into mesenchymal lineages. However, the insufficiency of these cells in the circulation challenges the cell isolation and subsequently limits the clinical application of these cells. In the present study, the peripheral blood mononuclear cells (pbMNCs were isolated from wound animals and treated with the supernatant of bone marrow mesenchymal stromal cells (bmMSCs. Results showed these pbMNCs were fibroblast-like, had stromal morphology, were negative for CD34 and CD45, but positive for Vimentin and Collagen I, and had the multipotency to differentiate into adipocytes and osteoblasts. We named these induced peripheral blood-derived mesenchymal stromal cells (ipbMSCs. Skin grafts in combination with ipbMSCs and collagen I were applied for wound healing, and results revealed ipbMSC exhibited similar potency and effectiveness in the promotion of wound healing to the bmMSCs. Hereafter, we speculate that the mixture of growth factors and chemokines secreted by bmMSCs may play an important roles in the induction of the proliferation and mesenchymal differentiation of mononuclear cells. Our results are clinically relevant because it provide a new method for the acquisition of MSCs which can be used as a candidate for the wound repair.

  6. TGF-β-Induced Regulatory T Cells Directly Suppress B Cell Responses through a Noncytotoxic Mechanism.

    Science.gov (United States)

    Xu, Anping; Liu, Ya; Chen, Weiqian; Wang, Julie; Xue, Youqiu; Huang, Feng; Rong, Liming; Lin, Jin; Liu, Dahai; Yan, Mei; Li, Quan-Zhen; Li, Bin; Song, Jianxun; Olsen, Nancy; Zheng, Song Guo

    2016-05-01

    Foxp3(+) regulatory T cells (Treg) playing a crucial role in the maintenance of immune tolerance and prevention of autoimmune diseases consist of thymus-derived naturally occurring CD4(+)Foxp3(+) Treg cells (nTreg) and those that can be induced ex vivo with TGF-β (iTreg). Although both Treg subsets share similar phenotypes and functional characteristics, they also have potential biologic differences on their biology. The role of iTreg in regulating B cells remains unclear so far. The suppression assays of Treg subsets on activation, proliferation, and Abs production of B cells were measured using a Treg and B cell coculture system in vitro. Transwell and Ab blockade experiments were performed to assess the roles of cell contact and soluble cytokines. Treg were adoptively transferred to lupus mice to assess in vivo effects on B cells. Like nTreg, iTreg subset also directly suppressed activation and proliferation of B cells. nTreg subset suppressed B cell responses through cytotoxic manner related to expression of granzyme A, granzyme B, and perforin, whereas the role of iTreg subset on B cells did not involve in cytotoxic action but depending on TGF-β signaling. Furthermore, iTreg subset can significantly suppress Ab produced by lupus B cells in vitro. Comparison experiments using autoantibodies microarrays demonstrated that adoptive transfer of iTreg had a superior effect than nTreg subset on suppressing lupus B cell responses in vivo. Our data implicate a role and advantage of iTreg subset in treating B cell-mediated autoimmune diseases, boosting the translational potential of these findings. PMID:27001954

  7. Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line

    Institute of Scientific and Technical Information of China (English)

    Jing-Pin Lin; Jai-Sing Yang; Jau-Hong Lee; Wen-Tsong Hsieh; Jing-Gung Chung

    2006-01-01

    AIM: To investigate the relationship between the inhibited growth (cytotoxic activity) of berberine and apoptotic pathway with its molecular mechanism of action.METHODS: The in vitro cytotoxic techniques were complemented by cell cycle analysis and determination of sub-G1 for apoptosis in human gastric carcinoma SNU-5 cells. Percentage of viable cells, cell cycle, and sub-G1 group (apoptosis) were examined and determined by the flow cytometric methods. The associated proteins for cell cycle arrest and apoptosis were examined by Western blotting.RESULTS: For SNU-5 cell line, the IC (50) was found to be 48 μmol/L of berberine. In SNU-5 cells treated with 25-200 μmol/L berberine, G2/M cell cycle arrest was observed which was associated with a marked increment of the expression of p53, Wee1 and CDk1 proteins and decreased cyclin B. A concentration-dependent decrease of cells in G0/G1 phase and an increase in G2/M phase were detected. In addition, apoptosis detected as sub-G0 cell population in cell cycle measurement was proved in 25-200 μmol/L berberine-treated cells by monitoring the apoptotic pathway. Apoptosis was identified by sub-G0 cell population, and upregulation of Bax, downregulation of Bcl-2, release of Ca2+, decreased the mitochondrial membrane potential and then led to the release of mitochondrial cytochrome C into the cytoplasm and caused the activation of caspase-3, and finally led to the occurrence of apoptosis.CONCLUSION: Berberine induces p53 expression and leads to the decrease of the mitochondrial membrane potential, Cytochrome C release and activation of caspase-3 for the induction of apoptosis.

  8. Current-Induced Transistor Sensorics with Electrogenic Cells

    Directory of Open Access Journals (Sweden)

    Peter Fromherz

    2016-04-01

    Full Text Available The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand–activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned.

  9. Current-Induced Transistor Sensorics with Electrogenic Cells.

    Science.gov (United States)

    Fromherz, Peter

    2016-01-01

    The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand-activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned. PMID:27120627

  10. Degradation of organometallic perovskite solar cells induced by trap states

    Science.gov (United States)

    Song, Dandan; Ji, Jun; Li, Yaoyao; Li, Guanying; Li, Meicheng; Wang, Tianyue; Wei, Dong; Cui, Peng; He, Yue; Mbengue, Joseph Michel

    2016-02-01

    The degradation of organometallic perovskite solar cells (PSCs) is the key bottleneck hampering their development, which is typically ascribed to the decomposition of perovskite (CH3NH3PbI3). In this work, the degradation of PSCs is observed to be significant, with the decrease in efficiency from 18.2% to 11.5% in ambient air for 7 days. However, no obvious decomposition or structural evolution of the perovskite was observed, except the notable degradation phenomenon of the device. The degradation of PSCs derives from deteriorated photocurrent and fill factor, which are proven to be induced by increased trap states for enlarged carrier recombination in degraded PSCs. The increased trap states in PSCs over storage time are probably induced by the increased defects at the surface of perovskite. The trap states induced degradation provides a physical insight into the degradation mechanisms of PSCs. Moreover, as the investigations were performed on real PSCs instead of individual perovskite films, the findings here present one of their actual degradation mechanisms.

  11. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi-Wei [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Wu, Chun-Ying [Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Yen-Ting [Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan (China); Kao, Jun-Kai [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Pediatrics, Children' s Hospital, Changhua Christian Hospital, Changhua, Taiwan (China); Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Husan-Wen [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chang, Chuan-Hsun [Department of Surgical Oncology, Cheng Hsin General Hospital, Taipei, Taiwan (China); Department of Nutrition Therapy, Cheng Hsin General Hospital, Taipei, Taiwan (China); School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan (China); Liang, Shu-Mei [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chen, Yi-Ju [Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Huang, Jau-Ling [Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan (China); Shieh, Jeng-Jer, E-mail: shiehjj@vghtc.gov.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  12. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    International Nuclear Information System (INIS)

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status

  13. Generation of Human Lens Epithelial-Like Cells From Patient-Specific Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Li, Dan; Qiu, Xiaodi; Yang, Jin; Liu, Tianjin; Luo, Yi; Lu, Yi

    2016-12-01

    Cataractogenesis begins from the dynamic lens epithelial cells (LECs) and adjacent fiber cells. LECs derived from cell lines cannot maintain the crystalline expression as the primary LECs. The current study aimed to efficiently generate large numbers of human LECs from patient-specific induced pluripotent stem cells (iPSCs). Anterior lens capsules were collected from cataract surgery and were used to culture primary hLECs. iPSCs were induced from these primary hLECs by lentiviral transduction of Oct4, Sox2, Klf4, and c-Myc. Then, the generated iPSCs were re-differentiated into hLECs by the 3-step addition of defined factor combinations (Noggin, BMP4/7, bFGF, and EGF) modified from an established method. During the re-differentiation process, colonies of interest were isolated using a glass picking tool and cloning cylinders based on the colony morphology. After two steps of isolation, populations of LEC-like cells (LLCs) were generated and identified by the expression of lens marker genes by qPCR, western blot and immunofluorescence staining. The study introduced a modified protocol to isolate LLCs from iPSCs by defined factors in a short time frame. This technique could be useful for mechanistic studies of lens-related diseases. J. Cell. Physiol. 231: 2555-2562, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991066

  14. A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Fat-Moon Suk

    2013-01-01

    Full Text Available Activating transcription factor-(ATF- 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002 is a Taiwanese propolin G (PPG derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose polymerase (PARP. GS-002 also induced endoplasmic reticular (ER stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78, growth arrest- and DNA damage-inducible gene 153 (GADD153, phosphorylated eukaryotic initiation factor 2α (eIF2α, phosphorylated protein endoplasmic-reticular-resident kinase (PERK, and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

  15. Smac mimetic sensitizes renal cell carcinoma cells to interferon-α-induced apoptosis.

    Science.gov (United States)

    Reiter, Michael; Eckhardt, Ines; Haferkamp, Axel; Fulda, Simone

    2016-05-28

    The prognosis of metastatic or relapsed renal cell carcinoma (RCC) is still very poor, highlighting the need for new treatment strategies. Here, we identify a cooperative antitumor activity of interferon-α (IFNα) together with the Smac mimetic BV6 that antagonizes antiapoptotic IAP proteins. BV6 and IFNα act together to reduce cell viability and to induce apoptosis in various RCC cell lines. Molecular studies revealed that BV6/IFNα co-treatment triggers apoptosis independently of autocrine/paracrine Tumor Necrosis Factor (TNF)α signaling, since the TNFα-blocking antibody Enbrel fails to rescue cell death. Importantly, knockdown of Receptor-Interacting Protein (RIP)1 significantly decreases BV6/IFNα-mediated apoptosis, whereas the RIP1 kinase inhibitor necrostatin-1 (Nec-1) provides no protection. This demonstrates that RIP1 protein is critically required for BV6/IFNα-induced apoptosis, while RIP1 kinase activity is dispensable, pointing to a scaffold function of RIP1. Consistently, BV6 and IFNα cooperate to trigger the interaction of RIP1, Fas-Associated Death Domain protein (FADD) and caspase-8 to form a cytosolic cell death complex that drives caspase activation. Addition of the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) significantly protects RCC cells against BV6/IFNα-induced apoptosis, demonstrating that caspase activity is required for apoptosis. In conclusion, the combination approach of IFNα and BV6 represents a promising strategy for cooperative induction of apoptosis in RCC cells, which warrants further investigation. PMID:26912071

  16. Human Dendritic Cells Induce the Differentiation of Interleukin-21-producing T Follicular Helper-like Cells through Interleukin-12

    Science.gov (United States)

    Schmitt, Nathalie; Morita, Rimpei; Bourdery, Laure; Bentebibel, Salah Eddine; Zurawski, Sandra M.; Banchereau, Jacques; Ueno, Hideki

    2009-01-01

    Summary T follicular helper (Tfh) cells help development of antibody responses via Interleukin-21 (IL-21). Here we show that activated human dendritic cells (DCs) induced naïve CD4+ T cells to become IL-21-producing Tfh-like cells through IL-12. CD4+ T cells primed with IL-12 induced B cells to produce immunoglobulins in a fashion dependent on IL-21 and inducible costimulator (ICOS), thus sharing fundamental characteristics with Tfh cells. The induction of Tfh-like cells by activated DCs was inhibited by neutralizing IL-12. IL-12 induced two different IL-21-producers: IL-21+IFN-γ+T-bet+ Th1 cells and IL-21+IFN-γ-T-bet- non-Th1 cells, in a manner dependent on signal transducer and activator of transcription (STAT)4. IL-12 also regulated IL-21 secretion by memory CD4+ T cells. Thus, IL-12 produced by activated DCs regulates antibody responses via developing IL-21-producing Tfh-like cells, and inducing IL-21 secretion from memory CD4+ T cells. These data suggest that the developmental pathway of Tfh cells differs between mice and humans, which have considerable implications for vaccine development. PMID:19592276

  17. Loss of inducible photorepair in a frog cell line hypersensitive to solar UV light

    International Nuclear Information System (INIS)

    The induction of enzymatic photorepair (EPR) in ICR 2A frog cells and a derived mutant cell line DRP36 hypersensitive to solar UV was studied. Using clonogenic assays, when induced wild-type cells demonstrated an 8-fold increase of EPR the mutant cells displayed a near-background level of inducible EPR. The constitutive EPR in mutant cells, however, was the same as in wild-type cells. A mixed culture of ICR 2A and DRP36 cells showed an intermediate inducible EPR depending upon the cell ratio. Inducible EPR was also detected at the DNA level in wild-type cells, but not in mutant cells. 29 refs.; 2 figs.; 2 tabs

  18. Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Ira O Racoma

    Full Text Available Glioblastoma is the most aggressive and common type of malignant brain tumor in humans, with a median survival of 15 months. There is a great need for more therapies for the treatment of glioblastoma. Naturally occurring phytochemicals have received much scientific attention because many exhibit potent tumor killing action. Thymoquinone (TQ is the bioactive compound of the Nigella sativa seed oil. TQ has anti-oxidant, anti-inflammatory and anti-neoplastic actions with selective cytotoxicity for human cancer cells compared to normal cells. Here, we show that TQ selectively inhibits the clonogenicity of glioblastoma cells as compared to normal human astrocytes. Also, glioblastoma cell proliferation could be impaired by chloroquine, an autophagy inhibitor, suggesting that glioblastoma cells may be dependent on the autophagic pathway for survival. Exposure to TQ caused an increase in the recruitment and accumulation of the microtubule-associated protein light chain 3-II (LC3-II. TQ also caused an accumulation of the LC3-associated protein p62, confirming the inhibition of autophagy. Furthermore, the levels of Beclin-1 protein expression were unchanged, indicating that TQ interferes with a later stage of autophagy. Finally, treatment with TQ induces lysosome membrane permeabilization, as determined by a specific loss of red acridine orange staining. Lysosome membrane permeabilization resulted in a leakage of cathepsin B into the cytosol, which mediates caspase-independent cell death that can be prevented by pre-treatment with a cathepsin B inhibitor. TQ induced apoptosis, as determined by an increase in PI and Annexin V positive cells. However, apoptosis appears to be caspase-independent due to failure of the caspase inhibitor z-VAD-FMK to prevent cell death and absence of the typical apoptosis related signature DNA fragmentation. Inhibition of autophagy is an exciting and emerging strategy in cancer therapy. In this vein, our results describe a

  19. Autophagic Cell Death and Apoptosis Jointly Mediate Cisatracurium Besylate-Induced Cell Injury

    Directory of Open Access Journals (Sweden)

    Haixia Zhuang

    2016-04-01

    Full Text Available Cisatracurium besylate is an ideal non-depolarizing muscle relaxant which is widely used in clinical application. However, some studies have suggested that cisatracurium besylate can affect cell proliferation. Moreover, its specific mechanism of action remains unclear. Here, we found that the number of GFP-LC3 (green fluoresent protein-light chain 3 positive autophagosomes and the rate of mitochondria fracture both increased significantly in drug-treated GFP-LC3 and MitoDsRed stable HeLa cells. Moreover, cisatracurium promoted the co-localization of LC3 and mitochondria and induced formation of autolysosomes. Levels of mitochondrial proteins decreased, which were reversed by the lysosome inhibitor Bafinomycin A1. Similar results with evidence of dose-dependent effects were found in both HeLa and Human Umbilical Vein Endothelial Cells (HUVECs. Cisatracurium lowered HUVEC viability to 0.16 (OD490 at 100 µM and to 0.05 (OD490 after 48 h in vitro; it increased the cell death rate to 56% at 100 µM and to 60% after 24 h in a concentration- and time-dependent manner (p < 0.01. Cell proliferation decreased significantly by four fold in Atg5 WT (wildtype MEF (mouse embryonic fibroblast (p < 0.01 but was unaffected in Atg5 KO (Knockout MEF, even upon treatment with a high dose of cisatracurium. Cisatracurium induced significant increase in cell death of wild-type MEFs even in the presence of the apoptosis inhibitor zVAD. Thus, we conclude that activation of both the autophagic cell death and cell apoptosis pathways contributes to cisatracurium-mediated cell injury.

  20. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells.

    Science.gov (United States)

    Rhee, Marie; Lee, Seung-Hwan; Kim, Ji-Won; Ham, Dong-Sik; Park, Heon-Seok; Yang, Hae Kyung; Shin, Ju-Young; Cho, Jae-Hyoung; Kim, Young-Bum; Youn, Byung-Soo; Sul, Hei Sook; Yoon, Kun-Ho

    2016-01-01

    The preadipocyte factor 1 (Pref-1) is involved in the proliferation and differentiation of various precursor cells. However, the intracellular signaling pathways that control these processes and the role of Pref-1 in the pancreas remain poorly understood. Here, we showed that Pref-1 induces insulin synthesis and secretion via two independent pathways. The overexpression of Pref-1 activated MAPK signaling, which induced nucleocytoplasmic translocation of FOXO1 and PDX1 and led to the differentiation of human pancreatic ductal cells into β-like cells and an increase in insulin synthesis. Concurrently, Pref-1 activated Akt signaling and facilitated insulin secretion. A proteomics analysis identified the Rab43 GTPase-activating protein as a downstream target of Akt. A serial activation of both proteins induced various granular protein syntheses which led to enhanced glucose-stimulated insulin secretion. In a pancreatectomised diabetic animal model, exogenous Pref-1 improved glucose homeostasis by accelerating pancreatic ductal and β-cell regeneration after injury. These data establish a novel role for Pref-1, opening the possibility of applying this molecule to the treatment of diabetes. PMID:27044861

  1. Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Dequan Li

    2016-01-01

    Full Text Available Background. Systemic inflammatory response syndrome (SIRS accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs, as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA to assess the activity of BMSCs to suppress the inflammation induced by lipopolysaccharide (LPS in human umbilical cord endothelial cells (HUVECs and alveolar macrophages. Results. Our results demonstrated that LPS caused an inflammatory response in alveolar macrophages and HUVECs, increased permeability of HUVEC, upregulated expression of toll-like receptor (TLR 2, TLR4, phosphorylated p65, downregulated release of IL10, and promoted release of TNF-α in both cells. Coculture with BMSCs attenuated all of these activities induced by LPS in the two tested cell types. Conclusions. Together, our results demonstrate that BMSCs dosage dependently attenuates the inflammation damage of alveolar macrophages and HUVECs induced by LPS.

  2. Inhibition of telomerase causes vulnerability to endoplasmic reticulum stress-induced neuronal cell death.

    Science.gov (United States)

    Hosoi, Toru; Nakatsu, Kanako; Shimamoto, Akira; Tahara, Hidetoshi; Ozawa, Koichiro

    2016-08-26

    Endoplasmic reticulum (ER) stress is implicated in several diseases, such as cancer and neurodegenerative diseases. In the present study, we investigated the possible involvement of telomerase in ER stress-induced cell death. ER stress-induced cell death was ameliorated in telomerase reverse transcriptase (TERT) over-expressing MCF7 cells (MCF7-TERT cell). Telomerase specific inhibitor, BIBR1532, reversed the inhibitory effect of TERT on ER stress-induced cell death in MCF7-TERT cells. These findings suggest that BIBR1532 may specifically inhibit telomerase activity, thereby inducing cell death in ER stress-exposed cells. TERT was expressed in the SH-SY5Y neuroblastoma cell line. To analyze the possible involvement of telomerase in ER stress-induced neuronal cell death, we treated SH-SY5Y neuroblastoma cells with BIBR1532 and analyzed ER stress-induced cell death. We found that BIBR1532 significantly enhanced the ER stress-induced neuronal cell death. These findings suggest that inhibition of telomerase activity may enhance vulnerability to neuronal cell death caused by ER stress. PMID:27443785

  3. Toxico-genomics of uranium-induced cell stress

    International Nuclear Information System (INIS)

    The possibility of exposure of workers or population to materials originating from nuclear fuel process is a major concern worldwide. The radiological hazards have been the matter of intensive research for decades, and are consequently well understood. However, the chemical toxicity of most compounds originating from the nuclear industry certainly requires further research. In this respect, uranium is an interesting model since, due to its very long half-life, it is not considered as a major radiological hazard. At large concentrations, it induces harmful effects on human health, at the level of the respiratory system in case of inhalation, of kidneys and bones after entering into the blood-stream (Bleise et al. 2003). The kidney functional regions most at risk to injury are the proximal tubule and, to a lesser extent, the glomerulus (Leggett 1989). However, the consequences of chronic uranium exposure at very low concentration are largely unknown. In particular, the conservation of response mechanisms and/or adaptative mechanisms at such low levels are still to be demonstrated. The use of mics methodologies in the pharmaceutical industry has demonstrated its tremendous potential and allowed great progress to be made both in the understanding of the pathogenesis and in the design of novel treatments. Today, these methods invest the field of toxicology by measuring global changes in biological samples exposed to toxic agents (Hamadeh et al. 2002). This approach pursues three goals: (i) the improvement of the knowledge of mechanisms ruling toxicity, (ii) the research of a signature of each toxicant i.e. a minimal number of genes or proteins able to distinguish between an exposed state and a normal state in a biological system, (iii) the research of proteins as early bio-markers of effect. With these goals in mind, we used transcriptomics and proteomics to analyze human cultured cells exposed to uranyl containing media. To identify robust targets, we compared several

  4. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    International Nuclear Information System (INIS)

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  5. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Wen [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hsieh, Bau-Shan; Cheng, Hsiao-Ling [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hu, Yu-Chen [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chang, Wen-Tsan [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Division of Hepatobiliarypancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan (China); Chang, Kee-Lung, E-mail: Chang.KeeLung@msa.hinet.net [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  6. Forskolin and the meiosis inducing substance synergistically initiate meiosis in fetal male germ cells

    DEFF Research Database (Denmark)

    Byskov, A G; Fenger, M; Westergaard, L;

    1993-01-01

    We have shown that Meiosis Inducing Substance (MIS) and forskolin synergistically and dose dependently induce meiosis in germ cells of cultured fetal mouse testes. We used a bioassay which consists of fetal mouse testes and ovaries cultured for 6 days. In this study MIS media are spent culture...... fixed, squashed, and DNA-stained. In these preparations germ cells and somatic cells can be distinguished, and the number of germ cells in the different stages of meiosis is counted as is the number of somatic cells in mitosis. MIS activity is defined to be present in a medium when meiosis is induced in...... male germ cells during culture. We found that MIS media as well as forskolin induced meiosis in fetal male germ cells in a dose-dependent manner. In addition, MIS media and forskolin acted synergistically by inducing meiosis. Female germ cells seem to be unaffected by the various culture media. These...

  7. Dysfunction of Murine Dendritic Cells Induced by Incubation with Tumor Cells

    Institute of Scientific and Technical Information of China (English)

    Fengguang Gao; Xin Hui; Xianghuo He; Dafang Wan; Jianren Gu

    2008-01-01

    In vivo studies showed that dendritic cell (DC) dysfunction occurred in tumor microcnvironment. As tumors were composed of many kinds of cells, the direct effects of tumor cells on immature DCs (imDCs) are needed for further studies in vitro. In the present study, bone marrow-derived imDCs were incubated with lymphoma, hepatoma and menaloma cells in vitro and surface molecules in imDCs were determined by flow cytometry. Then, imDCs incubated with tumor cells or control imDCs were further pulsed with tumor lysates and then incubated with splenocytes to perform mixed lymphocyte reaction. The DC-dependent tumor antigen-specific T cell proliferation,and IL-12 secretion were determined by flow cytometry, and enzyme-linked immunosorbent assay respectively.Finally, the DC-dependent tumor-associated antigen-specific CTL was determined by enzyme-linked immunospot assay. The results showed that tumor cell-DC incubation down-regulated the surface molecules in imDCs, such as CD80, CD54, CDllb, CD11a and MHC class Ⅱ molecules. The abilities of DC-dependent antigen-specific T cell proliferation and IL-12 secretion were also decreased by tumor cell incubation in vitro. Most importantly, the ability for antigenic-specific CTL priming of DCs was also decreased by incubation with tumor cells. In the present in vitro study demonstrated that the defective abilities of DCs induced by tumor cell co-incubation and the co-incubation system might be useful for future study of tumor-immune cells direct interaction and for drug screen of immune-modulation.

  8. Evaluation of Cytotoxicity and Cell Death Induced In Vitro by Saxitoxin in Mammalian Cells.

    Science.gov (United States)

    Melegari, Silvia P; de Carvalho Pinto, Cátia R S; Moukha, Serge; Creppy, Edmond E; Matias, William G

    2015-01-01

    Since the cyanotoxin saxitoxin (STX) is a neurotoxin and induces ecological changes in aquatic environments, a potential risk to public and environmental health exists. However, data on STX-mediated cytotoxic and genotoxic effects are still scare. In order to gain a better understanding of the effects of this toxin, the cytotoxic and genotoxic potential of STX was examined in two mammalian cell lines. Neuro 2A (N2A), a neuroblastoma mouse cell line, and Vero cell line, derived from Vero green monkey kidney cells, were exposed to several concentrations of STX ranging from 0.5 to 64 nM to determine cell viability, induction of apoptosis (DNA fragmentation assay), and formation of micronuclei (MN) (cytokinesis-block micronucleus assay; CBMN) following 24 h of incubation. The half maximal effective concentration (EC50) values for STX calculated in cell viability tests were 1.01 nM for N2A and 0.82 nM for Vero cells. With increasing STX concentration there was evidence of DNA fragmentation indicating apoptosis induction in Vero cells with a 50% increase in DNA fragmentation compared to control at the highest STX concentration tested (3 nM). The results demonstrated no significant changes in the frequency of micronucleated binucleated cells in N2A and Vero cells exposed to STX, indicating the absence of genotoxicity under these test conditions. There was no apparent cellular necrosis as evidenced by a lack of formation of multinucleated cells. In conclusion, data reported herein demonstrate that STX produced death of both cell types tested through an apoptotic process. PMID:26436995

  9. Auxin-induced modifications of cell wall polysaccharides in cat coleoptile segments. Effect of galactose

    International Nuclear Information System (INIS)

    Galactose inhibits auxin-induced cell elongation in oat coleoptile segments. Cell elongation induced by exogenously applied auxin is controlled by factors such as auxin uptake, cell wall loosening, osmotic concentration of sap and hydraulic conductivity. However, galactose does not have any effect on these factors. The results discussed in this paper led to the conclusion that galactose does not affect cell wall loosening which controls rapid growth, but inhibits cell wall synthesis which is required to maintain long-term growth

  10. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats

    OpenAIRE

    Jiang, Ting-Shuai; Cai, Li; Ji, Wei-Ying; Hui, Yan-Nian; Wang, Yu-Sheng; Hu, Dan; Zhu, Jie

    2010-01-01

    Purpose To explore the feasibility of bone marrow mesenchymal stem cells (MSCs) transdifferentiating into corneal epithelial cells in a limbal stem cell deficiency (LSCD) model in rats. Methods Rat MSCs were isolated and purified using a gradient isolation procedure. The cells were induced by rat corneal stromal cells (CSCs) in a transwell co-culture system. The induced MSCs were identified by immunofluorescence staining, flow cytometry, and scanning electron microscopy (SEM). A corneal LSCD ...

  11. Multiplexed quantitative high content screening reveals that cigarette smoke condensate induces changes in cell structure and function through alterations in cell signaling pathways in human bronchial cells

    International Nuclear Information System (INIS)

    Human bronchial cells are one of the first cell types exposed to environmental toxins. Toxins often activate nuclear factor-κB (NF-κB) and protein kinase C (PKC). We evaluated the hypothesis that cigarette smoke condensate (CSC), the particulate fraction of cigarette smoke, activates PKC-α and NF-κB, and concomitantly disrupts the F-actin cytoskeleton, induces apoptosis and alters cell function in BEAS-2B human bronchial epithelial cells. Compared to controls, exposure of BEAS-2B cells to doses of 30 μg/ml CSC significantly activated PKC-α, while CSC doses above 20 μg/ml CSC significantly activated NF-κB. As NF-κB was activated, cell number decreased. CSC treatment of BEAS-2B cells induced a decrease in cell size and an increase in cell surface extensions including filopodia and lamellipodia. CSC treatment of BEAS-2B cells induced F-actin rearrangement such that stress fibers were no longer prominent at the cell periphery and throughout the cells, but relocalized to perinuclear regions. Concurrently, CSC induced an increase in the focal adhesion protein vinculin at the cell periphery. CSC doses above 30 μg/ml induced a significant increase in apoptosis in BEAS-2B cells evidenced by an increase in activated caspase 3, an increase in mitochondrial mass and a decrease in mitochondrial membrane potential. As caspase 3 increased, cell number decreased. CSC doses above 30 μg/ml also induced significant concurrent changes in cell function including decreased cell spreading and motility. CSC initiates a signaling cascade in human bronchial epithelial cells involving PKC-α, NF-κB and caspase 3, and consequently decreases cell spreading and motility. These CSC-induced alterations in cell structure likely prevent cells from performing their normal function thereby contributing to smoke-induced diseases.

  12. Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr286 in squamous cell carcinoma

    International Nuclear Information System (INIS)

    Differentiation-inducing factors (DIFs) are morphogens which induce cell differentiation in Dictyostelium. We reported that DIF-1 and DIF-3 inhibit proliferation and induce differentiation in mammalian cells. In this study, we investigated the effect of DIF-1 on oral squamous cell carcinoma cell lines NA and SAS, well differentiated and poorly differentiated cell lines, respectively. Although DIF-1 did not induce the expression of cell differentiation makers in these cell lines, it inhibited the proliferation of NA and SAS in a dose-dependent manner by restricting the cell cycle in the G0/G1 phase. DIF-1 induced cyclin D1 degradation, but this effect was prevented by treatment with lithium chloride and SB216763, the inhibitors of glycogen synthase kinase-3β (GSK-3β). Depletion of endogenous GSK-3β by RNA interference also attenuated the effect of DIF-1 on cyclin D1 degradation. Therefore, we investigated the effect of DIF-1 on GSK-3β and found that DIF-1 dephosphorylated GSK-3β on Ser9 and induced the nuclear translocation of GSK-3β, suggesting that DIF-1 activated GSK-3β. Then, we examined the effect of DIF-1 on cyclin D1 mutants (Thr286Ala, Thr288Ala, and Thr286/288Ala). We revealed that Thr286Ala and Thr286/288Ala mutants were highly resistant to DIF-1-induced degradation compared with wild-type cyclin D1, indicating that the phosphorylation of Thr286 was critical for cyclin D1 degradation induced by DIF-1. These results suggest that DIF-1 induces degradation of cyclin D1 through the GSK-3β-mediated phosphorylation of Thr286

  13. Radiation-induced cell disintegrations in cultured rat hepatoma cells JTC 2

    International Nuclear Information System (INIS)

    Disintegration of hepatoma cells of rat were recorded by time lapse cinemicrography for more than 5 days and about 1000 pedigrees were analyzed. Five generations were followed up in control and 2 or 3 generations in irradiated cells. Cells were attached on vessel wall spreading themselves in intermitotic phase while they stood up from the wall in mitotic phase taking a roun form. When a cell disintegrates in interphase the disintegration is called D sub( s) and one in mitotic period D sub( r). The frequency of D sub( s)S' is about 3 times as much as D sub( r)S'. An age of a disintegrated cell in generation 1 and 2 was measured as the previous mitosis was age 0. Generation times of the comparable generations of surviving sister branches of the same pedigrees were used as controls. Most disintegration took place at the same age with surviving sisters indicating a determined, not at random, age of cell death. A cell in an initial state flowed to any one of the following states with or without irradiation; surviving, disintegrated, end cell or escaping out of observation field. A single exposure of 400 to 900 R induced a typical reproductive death but effective extinction of clones was observed only in small pedigrees. Temporary hypothermia and hyperthermia immediately after exposure had no remarkable lethal effects on several early generations. (author)

  14. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells

    LENUS (Irish Health Repository)

    Ryan, Ruth CM

    2011-10-24

    Abstract Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3\\/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.

  15. Alginate gelation-induced cell death during laser-assisted cell printing

    International Nuclear Information System (INIS)

    Modified laser-induced forward transfer has emerged as a promising bioprinting technique. Depending on the operating conditions and cell properties, laser cell printing may cause cell injury and even death, which should be carefully elucidated for it to be a viable technology. This study has investigated the effects of alginate gelation, gelation time, alginate concentration, and laser fluence on the post-transfer cell viability of NIH 3T3 fibroblasts. Sodium alginate and calcium chloride are used as the gel precursor and gel reactant solution to form cell-laden alginate microspheres. It is found that the effects of gelation depend on the duration of gelation. Two-minute gelation is observed to increase the cell viability after 24 h incubation, mainly due to the protective cushion effect of the forming gel membrane during droplet landing. Despite the cushion effect from 10 min gelation, it is observed that the cell viability decreases after 24 h incubation because of the forming thick gel membrane that reduces nutrient and oxygen diffusion from the culture medium. In addition, the cell viability after 24 h incubation decreases as the laser fluence or alginate concentration increases. (paper)

  16. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  17. Ion implantation induced nanotopography on titanium and bone cell adhesion

    International Nuclear Information System (INIS)

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm2) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  18. Radiation induced cell death in cervical squamous cell carcinoma. An immunohistochemical and ultrastructural study

    International Nuclear Information System (INIS)

    To study the process of cell death in cervical squamous cell carcinoma (SCC) after radiation, an ultrastructural and immunohistochemical study was performed. Paraffin-embedded tissue blocks of biopsy samples pre- and post-radiation stage III SCC (n=15) were collected. Irradiation caused varying ultrastructural changes including nuclear and cytoplasmic disorganization suggesting cell necrosis. Immunohistochemically, the pre-radiation specimens showed no positive reaction for tumor necrosis factor-alpha (TNF-α), tumor necrosis factor-receptor (TNF-γ) or Fas. C-fos, p53 and bcl-2 showed positive reactions in only a few non-irradiated specimens. All of the irradiated specimens showed a positive reaction for TNF-α, and variable positive reactions were observed for TNF-γ, Fas, p53, c-fos and bcl-2. These results suggest that TNF-α, TNF-γ, and c-fos are responsible for radiation induced cell death in cervical SCC. (author)

  19. UVB radiation induced effects on cells studied by FTIR spectroscopy

    CERN Document Server

    Di Giambattista, Lucia; Gaudenzi, S; Pozzi, D; Grandi, M; Morrone, S; Silvestri, I; Castellano, A Congiu; 10.1007/s00249-009-0446-9

    2010-01-01

    We have made a preliminary analysis of the results about the eVects on tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose of 310 mJ/cm^2) with and without a vegetable mixture. In the present study, we have used two techniques: Fourier transform infrared spectroscopy (FTIR) and flow cytometry. FTIR spectroscopy has the potential to provide the identiWcation of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The second technique has allowed us to perform measurements of cytotoxicity and to assess the percentage of apoptosis. We already studied the induction of apoptotic process in the same cell line by UVB radiation; in particular, we looked for correspondences and correlations between FTIR spetroscopy and flow cytometry data finding three highly probable spectroscopic markers of apoptosis (Pozzi et al. in Radiat Res 168:698-705, 2007). In the present work, the results have shown significant changes ...

  20. Radiation-induced recovery processes in cultured marsupial cells

    International Nuclear Information System (INIS)

    The ultraviolet sensitivity of Potorous tridactylus male kidney (PtK-2) cells is markedly increased by post irradiation treatment for 24 h with 5 μM emetine of with 5 μM cycloheximide or with the RNA polymerase II inhibitor 5,6-dichloro-1-β-ribofuranosylbenzimidazole at 50 μM. All 3 treatments give the same sensitivity, while unirradiated cells are little affected. Shortening the time of treatment, of delaying application of the drugs decreases their effects on the same time schedule. Preiiradiation of cells, with no drug treatment in the following 8 h, diminishes the sensitivity to a subsequent irradiation with protein synthesis blocked afterwards. Photoreactivation immediately following such preiiradiation eliminated its desensitizing effect. Inhibiting protein synthesis after irradiation also markedly reduces the frequency of UV-induced mutants in the surviving population. These facts suggest that gene expression in the period following iradiation facilitates recovery from radiation damage, with an increased probability of mutation, reminiscent of the 'SOS response' in Escherichia coli. (author). 29 refs.; 5 figs.; 3 tabs

  1. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Vanessa M. Doulames

    2016-04-01

    Full Text Available Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury.

  2. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury.

    Science.gov (United States)

    Doulames, Vanessa M; Plant, Giles W

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient's own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI-even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  3. Shear-Induced Nitric Oxide Production by Endothelial Cells.

    Science.gov (United States)

    Sriram, Krishna; Laughlin, Justin G; Rangamani, Padmini; Tartakovsky, Daniel M

    2016-07-12

    We present a biochemical model of the wall shear stress-induced activation of endothelial nitric oxide synthase (eNOS) in an endothelial cell. The model includes three key mechanotransducers: mechanosensing ion channels, integrins, and G protein-coupled receptors. The reaction cascade consists of two interconnected parts. The first is rapid activation of calcium, which results in formation of calcium-calmodulin complexes, followed by recruitment of eNOS from caveolae. The second is phosphorylation of eNOS by protein kinases PKC and AKT. The model also includes a negative feedback loop due to inhibition of calcium influx into the cell by cyclic guanosine monophosphate (cGMP). In this feedback, increased nitric oxide (NO) levels cause an increase in cGMP levels, so that cGMP inhibition of calcium influx can limit NO production. The model was used to predict the dynamics of NO production by an endothelial cell subjected to a step increase of wall shear stress from zero to a finite physiologically relevant value. Among several experimentally observed features, the model predicts a highly nonlinear, biphasic transient behavior of eNOS activation and NO production: a rapid initial activation due to the very rapid influx of calcium into the cytosol (occurring within 1-5 min) is followed by a sustained period of activation due to protein kinases. PMID:27410748

  4. Legionella pneumophila induces human beta Defensin-3 in pulmonary cells

    Directory of Open Access Journals (Sweden)

    Hippenstiel Stefan

    2010-07-01

    Full Text Available Abstract Background Legionella pneumophila is an important causative agent of severe pneumonia in humans. Human alveolar epithelium and macrophages are effective barriers for inhaled microorganisms and actively participate in the initiation of innate host defense. The beta defensin-3 (hBD-3, an antimicrobial peptide is an important component of the innate immune response of the human lung. Therefore we hypothesize that hBD-3 might be important for immune defense towards L. pneumophila. Methods We investigated the effects of L. pneumophila and different TLR agonists on pulmonary cells in regard to hBD-3 expression by ELISA. Furthermore, siRNA-mediated inhibition of TLRs as well as chemical inhibition of potential downstream signaling molecules was used for functional analysis. Results L. pneumophila induced release of hBD-3 in pulmonary epithelium and alveolar macrophages. A similar response was observed when epithelial cells were treated with different TLR agonists. Inhibition of TLR2, TLR5, and TLR9 expression led to a decreased hBD-3 expression. Furthermore expression of hBD-3 was mediated through a JNK dependent activation of AP-1 (c-Jun but appeared to be independent of NF-κB. Additionally, we demonstrate that hBD-3 elicited a strong antimicrobial effect on L. pneumophila replication. Conclusions Taken together, human pulmonary cells produce hBD-3 upon L. pneumophila infection via a TLR-JNK-AP-1-dependent pathway which may contribute to an efficient innate immune defense.

  5. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Owa C

    2013-09-01

    Full Text Available Chie Owa, Michael E Messina Jr, Reginald HalabyDepartment of Biology, Montclair State University, Montclair, NJ, USABackground: Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3.Methods: MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells.Results: These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability.Conclusion: Our results suggest that further studies are warranted to investigate triptolide's potential as an anticancer therapeutic agent.Keywords: triptolide, MCF-7 breast cancer cells, apoptosis, lysosomes, lysosomal membrane permeabilization (LMP

  6. Necdin modulates proliferative cell survival of human cells in response to radiation-induced genotoxic stress

    International Nuclear Information System (INIS)

    The finite replicative lifespan of cells, termed cellular senescence, has been proposed as a protective mechanism against the proliferation of oncogenically damaged cells, that fuel cancer. This concept is further supported by the induction of premature senescence, a process which is activated when an oncogene is expressed in normal primary cells as well as following intense genotoxic stresses. Thus, deregulation of genes that control this process, like the tumor suppressor p53, may contribute to promoting cancer by allowing cells to bypass senescence. A better understanding of the genes that contribute to the establishment of senescence is therefore warranted. Necdin interacts with p53 and is also a p53 target gene, although the importance of Necdin in the p53 response is not clearly understood. In this study, we first investigated Necdin protein expression during replicative senescence and premature senescence induced by gamma irradiation and by the overexpression of oncogenic RasV12. Gain and loss of function experiments were used to evaluate the contribution of Necdin during the senescence process. Necdin expression declined during replicative aging of IMR90 primary human fibroblasts or following induction of premature senescence. Decrease in Necdin expression seemed to be a consequence of the establishment of senescence since the depletion of Necdin in human cells did not induce a senescence-like growth arrest nor a flat morphology or SA-β-galactosidase activity normally associated with senescence. Similarly, overexpression of Necdin did not affect the life span of IMR90 cells. However, we demonstrate that in normal human cells, Necdin expression mimicked the effect of p53 inactivation by increasing radioresistance. This result suggests that Necdin potentially attenuate p53 signaling in response to genotoxic stress in human cells and supports similar results describing an inhibitory function of Necdin over p53-dependent growth arrest in mice

  7. Lipopolysaccharide-activated microglial-induced neuroglial cell differentiation in bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang Luo; Chunlin Ge; Yan Ren; Hongmei Yu; Zhe Wu; Qiushuang Wang; Chaodong Zhang

    2008-01-01

    BACKGROUND: Microglia are very sensitive to environmental changes, often becoming activated by pathological conditions. Activated microglia can exert a dual role in injury and repair in various diseases of the central nervous system, including cerebral ischemia, Parkinson's disease, and Alzheimer's disease. OBJECTIVE: An immortal microglial cell line, BV2, was treated with varying concentrations of lipopolysaccharide (LPS) to induce a pathological situation. Supernatant was harvested and incubated with bone marrow mesenchymal stem cells and, concomitantly, bone marrow mesenchymal stem cell differentiation was observed. DESIGN: A controlled observation, in vitro experiment. SETTING: Department of Neurology, First Affiliated Hospital of China Medical University. MATERIALS: Five male 2-3-week-old Sprague Dawley rats were purchased from Animal Laboratory Center of China Medical University and included in this study. The protocol was performed in accordance with ethical guidelines for the use and care of animals. The microglial cell line BV2 was produced by Cell Research Institute of Chinese Academy of Sciences. LPS was produced by Sigma Company, USA. METHODS: This study was performed in the Central Laboratory of China Medical University from September 2006 to March 2007. Rat femoral and tibial bone marrow was collected for separation and primary culture of bone marrow mesenchymal stem cells. Bone marrow mesenchymal stem cell cultures were divided into 5 groups: control group, non-activated group, as well as low-, medium-, and high-dose LPS groups. In the control group, bone marrow mesenchymal stem cells were cultured with Dulbecco's modified Eagle's medium (DMEM) supplemented with fetal bovine serum (volume fraction 0.1). In the non-activated group, bone marrow mesenchymal stem cells were incubated with non-activated BV2 supernatant. In the low-, medium-, and high-dose LPS groups, bone marrow mesenchymal stem cells were incubated with LPS (0.01, 0.1 and 1

  8. HIV-1 Vpr-induced cell death in Schizosaccharomyces pombe is reminiscent of apoptosis

    Institute of Scientific and Technical Information of China (English)

    Sylvain Huard; Mingzhong Chen; Kristen E Burdette; Csaba Fenyvuesvolgyi; Min Yu; Robert T Elder; Richard Y Zhao

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell death in mammalian and fission yeast cells,suggesting that Vpr may affect a conserved cellular process. It is unclear,however,whether Vpr-induced yeast cell death mimics Vpr-mediated apoptosis in mammalian cells. We have recently identified a number of Vpr suppressors that not only suppress Vpr-induced cell death in fission yeast,but also block Vpr-induced apoptosis in mammalian cells. These findings suggest that Vpr-induced cell death in yeast may resemble some of the apoptotic processes of mammalian cells.The goal of this study was to develop and validate a fission yeast model system for future studies of apoptosis. Similar to Vpr-induced apoptosis in mammalian cells,we show here that Vpr in fission yeast promotes phosphatidylserine externalization and induces hyperpolarization of mitochondria,leading to changes of mitochondrial membrane potential. Moreover,Vpr triggers production of reactive oxygen species (ROS),indicating that the apoptotic-like cell death might be mediated by ROS. Interestingly,Vpr induces unique morphologic changes in mitochondria that may provide a simple marker for measuring the apoptotic-like process in fission yeast. To verify this possibility,we tested two Vpr suppressors (EF2 and Hspl6) that suppress Vpr-induced apoptosis in mammalian cells in addition to a newly identified Vpr suppressor (Skp1). All three proteins abolished cell death mediated by Vpr and restored normal mitochondrialmorphology in the yeast cells. In conclusion,Vpr-induced cell death in fission yeast resembles the mammalian apoptotic process. Fission yeast may thus potentially be used as a simple model organism for the future study of the apoptotic-like process induced by Vpr and other proapoptotic agents.

  9. Research of TGF-beta1 Inducing Lung Adencarcinoma PC9 Cells to Mesenchymal Cells Transition

    OpenAIRE

    Chen, Xiaofeng; Wang, Heyong; Zhang, Lei; Zhang, Huijun

    2010-01-01

    Background and objective It has been proven that epithelial-mesenchymal transition (EMT) not only correlated with embryonic development but also could promote tumor invasion and metastasis. Transforming growth factor beta-1 (TGF-β1) has been identified as the main inducer of tumor EMT. The aim of this study was to investigate the effects of TGF-β1 on EMT and PI3K/AKT signaling pathway in lung adencarcinoma PC9 cells. Methods Cultured PC9 cells were treated with different concentrations of TGF...

  10. Myt3 suppression sensitizes islet cells to high glucose-induced cell death via Bim induction.

    Science.gov (United States)

    Tennant, B R; Vanderkruk, B; Dhillon, J; Dai, D; Verchere, C B; Hoffman, B G

    2016-01-01

    Diabetes is a chronic disease that results from the body's inability to properly control circulating blood glucose levels. The loss of glucose homoeostasis can arise from a loss of β-cell mass because of immune-cell-mediated attack, as in type 1 diabetes, and/or from dysfunction of individual β-cells (in conjunction with target organ insulin resistance), as in type 2 diabetes. A better understanding of the transcriptional pathways regulating islet-cell survival is of great importance for the development of therapeutic strategies that target β-cells for diabetes. To this end, we previously identified the transcription factor Myt3 as a pro-survival factor in islets following acute suppression of Myt3 in vitro. To determine the effects of Myt3 suppression on islet-cell survival in vivo, we used an adenovirus to express an shRNA targeting Myt3 in syngeneic optimal and marginal mass islet transplants, and demonstrate that suppression of Myt3 impairs the function of marginal mass grafts. Analysis of grafts 5 weeks post-transplant revealed that grafts transduced with the shMyt3 adenovirus contained ~20% the number of transduced cells as grafts transduced with a control adenovirus. In fact, increased apoptosis and significant cell loss in the shMyt3-transduced grafts was evident after only 5 days, suggesting that Myt3 suppression sensitizes islet cells to stresses present in the early post-transplant period. Specifically, we find that Myt3 suppression sensitizes islet cells to high glucose-induced cell death via upregulation of the pro-apoptotic Bcl2 family member Bim. Taken together these data suggest that Myt3 may be an important link between glucotoxic and immune signalling pathways. PMID:27195679

  11. Dendritic cells induce antigen-specific regulatory T cells that prevent graft versus host disease and persist in mice

    OpenAIRE

    Sela, Uri; Olds, Peter; Park, Andrew; Schlesinger, Sarah J.; Steinman, Ralph M.

    2011-01-01

    Foxp3+ regulatory T cells (T reg cells) effectively suppress immunity, but it is not determined if antigen-induced T reg cells (iT reg cells) are able to persist under conditions of inflammation and to stably express the transcription factor Foxp3. We used spleen cells to stimulate the mixed leukocyte reaction (MLR) in the presence of transforming growth factor β (TGF-β) and retinoic acid. We found that the CD11chigh dendritic cell fraction was the most potent at inducing high numbers of allo...

  12. The role of constitutive and inducible processes in the response of human squamous cell carcinoma cell lines to ionizing radiation

    International Nuclear Information System (INIS)

    The inherent radiation sensitivity of the cells within a tumor is thought to contribute to the success or failure of radiation therapy. In vitro studies have shown that differences in the radiation sensitivity of squamous cell carcinoma cell lines reflect alterations in DNA repair. These alterations result from constitutive changes in chromosome organization, not radiation-inducible processes. While inducible responses may play some role in the radiation response of tumor cells, there is no evidence for their involvement in inherent differences in tumor cell radiosensitivity or in the success or failure of radiotherapy of squamous cell carcinomas. 21 refs., 1 fig., 1 tab

  13. CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells.

    Science.gov (United States)

    Yamazaki, Sayuri; Dudziak, Diana; Heidkamp, Gordon F; Fiorese, Christopher; Bonito, Anthony J; Inaba, Kayo; Nussenzweig, Michel C; Steinman, Ralph M

    2008-11-15

    Foxp3(+)CD25(+)CD4(+) regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-beta- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen. We find that CD8(+) DEC-205/CD205(+) DCs, but not the major fraction of CD8(-) DC inhibitory receptor-2 (DCIR2)(+) DCs, induce functional Foxp3(+) Treg from Foxp3(-) precursors in the presence of low doses of Ag but without added TGF-beta. CD8(+)CD205(+) DCs preferentially express TGF-beta, and the induction of Treg by these DCs in vitro is blocked by neutralizing Ab to TGF-beta. In contrast, CD8(-)DCIR2(+) DCs better induce Foxp3(+) Treg when exogenous TGF-beta is supplied. In vivo, CD8(+)CD205(+) DCs likewise preferentially induce Treg from adoptively transferred, Ag-specific DO11.10 RAG(-/-) Foxp3(-)CD4(+) T cells, whereas the CD8(-)DCIR2(+) DCs better stimulate natural Foxp3(+) Treg. These results indicate that a subset of DCs in spleen, a systemic lymphoid organ, is specialized to differentiate peripheral Foxp3(+) Treg, in part through the endogenous formation of TGF-beta. Targeting of Ag to these DCs might be useful for inducing Ag-specific Foxp3(+) Treg for treatment of autoimmune diseases, transplant rejection, and allergy. PMID:18981112

  14. The Effects of Brazilian Green Propolis against Excessive Light-Induced Cell Damage in Retina and Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Hiromi Murase

    2013-01-01

    Full Text Available Background. We investigated the effects of Brazilian green propolis and its constituents against white light- or UVA-induced cell damage in mouse retinal cone-cell line 661W or human skin-derived fibroblast cells (NB1-RGB. Methods. Cell damage was induced by 3,000lx white light for 24 h or 4/10 J/cm2 UVA exposure. Cell viability was assessed by Hoechst33342 and propidium iodide staining or by tetrazolium salt (WST-8 cell viability assay. The radical scavenging activity of propolis induced by UVA irradiation in NB1-RGB cells was measured using a reactive-oxygen-species- (ROS- sensitive probe CM-H2DCFDA. Moreover, the effects of propolis on the UVA-induced activation of p38 and extracellular signal-regulated kinase (ERK were examined by immunoblotting. Results. Treatment with propolis and two dicaffeoylquinic acids significantly inhibited the decrease in cell viability induced by white light in 661W. Propolis and its constituents inhibited the decrease in cell viability induced by UVA in NB1-RGB. Moreover, propolis suppressed the intracellular ROS production by UVA irradiation. Propolis also inhibited the levels of phosphorylated-p38 and ERK by UVA irradiation. Conclusion. Brazilian green propolis may become a major therapeutic candidate for the treatment of AMD and skin damage induced by UV irradiation.

  15. Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas.

    Science.gov (United States)

    Lounnas, Nadia; Rosilio, Célia; Nebout, Marielle; Mary, Didier; Griessinger, Emmanuel; Neffati, Zouhour; Chiche, Johanna; Spits, Hergen; Hagenbeek, Thijs J; Asnafi, Vahid; Poulsen, Sally-Ann; Supuran, Claudiu T; Peyron, Jean-François; Imbert, Véronique

    2013-06-01

    The membrane-bound carboni