WorldWideScience

Sample records for cells produce electricity

  1. Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae

    International Nuclear Information System (INIS)

    Lobato, Justo; González del Campo, Araceli; Fernández, Francisco J.; Cañizares, Pablo; Rodrigo, Manuel A.

    2013-01-01

    Highlights: • An algae cathode of a MFC has been used without artificial mediators or catalysts. • To perform a lagooning wastewater treatment coupled with energy-producing MFC. • The producing electricity operates under day/night irradiation cycles, is shown. - Abstract: The paper focused on the start-up and performance characterisation of a new type of microbial fuel cell (MFC), in which an algae culture was seeded in the cathodic chamber to produce the oxygen required to complete the electrochemical reactions of the MFC, thus circumventing the need for a mechanical aerator. The system did not use mediators or high cost catalysts and it can be started-up easily using a straightforward three-stage procedure. The start-up consists of the separate production of the electricity-producing microorganisms and the algae cultures (stage I), replacement of the mechanical aeration system by the algae culture (stage II) and a change in the light dosage from a continuous input to a dynamic day/night profile. The MFC was operated under a regime of 12 h light and 12 h dark and was also operated in batch and continuous substrate-feeding modes. The same cell voltage was achieved when the cathode compartment was operated with air supplied by aerators, which means that this configuration can perform as well as the traditional one. The results also show the influence of both the organic load and light irradiation on electricity production and demonstrate that this type MFC is a robust and promising technology that can be considered as a first approach to perform a lagooning wastewater treatment with microbial fuel cells

  2. DOES ELECTRIC CAR PRODUCE EMISSIONS?

    Directory of Open Access Journals (Sweden)

    Vladimír RIEVAJ

    2017-03-01

    Full Text Available This article focuses on the comparison of the amount of emissions produced by vehicles with a combustion engine and electric cars. The comparison, which is based on the LCA factor results, indicates that an electric car produces more emissions than a vehicle with combustion engine. The implementation of electric cars will lead to an increase in the production of greenhouse gases.

  3. Electricity production from microbial fuel cell by using yeast

    International Nuclear Information System (INIS)

    Vorasingha, A.; Souvakon, C.; Boonchom, K.

    2006-01-01

    The continuous search for methods to generate electricity from renewable sources such as water, solar energy, wind, nuclear or chemicals was discussed with particular focus on attaining the full power of the microbial fuel cell (MFC). Under ideal environmental conditions, the only byproducts of a biofuel cell would be water and carbon dioxide (CO 2 ). The production of energy from renewables such as biomass is important for sustainable development and reducing global emissions of CO 2 . Hydrogen can also be an important component of an energy infrastructure that reduces CO 2 emissions if the hydrogen is produced from renewable sources and used in fuel cells. Hydrogen gas can be biologically produced at high concentration from the fermentation of high sugar substrates such as glucose and sucrose. Some of the issues of MFC design were addressed, including the use of cheap substrates to derive microbial electricity. In the MFC, yeast donates electrons to a chemical electron mediator, which in turn transfers the electrons to an electrode, producing electricity. Experimental results showed that glucose yielded the highest peak voltage, but a semi-processed sugar and molasses were similar to glucose in the electricity production pattern. It was noted that this technology is only at the research stages, and more research is needed before household microbial fuel cells can be made available for producing power for prolonged periods of time. Future research efforts will focus on increasing the efficiency, finding alternatives to hazardous electron mediators and finding new microbes. 12 refs., 6 figs

  4. Systems and methods for producing electrical discharges in compositions

    KAUST Repository

    Cha, Min; Zhang, Xuming; Chung, Suk-Ho

    2015-01-01

    Systems and methods configured to produce electrical discharges in compositions, such as those, for example, configured to produce electrical discharges in compositions that comprise mixtures of materials, such as a mixture of a material having a

  5. Systems and methods for producing electrical discharges in compositions

    KAUST Repository

    Cha, Min Suk

    2015-09-03

    Systems and methods configured to produce electrical discharges in compositions, such as those, for example, configured to produce electrical discharges in compositions that comprise mixtures of materials, such as a mixture of a material having a high dielectric constant and a material having a low dielectric constant (e.g., a composition of a liquid having a high dielectric constant and a liquid having a low dielectric constant, a composition of a solid having a high dielectric constant and a liquid having a low dielectric constant, and similar compositions), and further systems and methods configured to produce materials, such as through material modification and/or material synthesis, in part, resulting from producing electrical discharges in compositions.

  6. Electron-Beam Produced Air Plasma: Optical and Electrical Diagnostics

    Science.gov (United States)

    Vidmar, Robert; Stalder, Kenneth; Seeley, Megan

    2006-10-01

    High energy electron impact excitation is used to stimulate optical emissions that quantify the measurement of electron beam current. A 100 keV 10-ma electron beam source is used to produce air plasma in a test cell at a pressure between 1 mTorr and 760 Torr. Optical emissions originating from the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm are observed. Details on calibration using signals from an isolated transmission window and a Faraday plate are discussed. Results using this technique and other electrical signal are presented.

  7. Ability of sea-water bacterial consortium to produce electricity and denitrify water

    Science.gov (United States)

    Maruvada, Nagasamrat V. V.; Tommasi, Tonia; Kaza, Kesava Rao; Ruggeri, Bernardo

    Sea is a store house for varied types of microbes with an ability to reduce and oxidize substances like iron, sulphur, carbon dioxide, etc. Most of these processes happen in the sea water environment, but can be applied for purification of wastewater. In the present paper, we discuss the use of a consortium of seawater bacteria in a fuel cell to produce electricity by oxidizing organic matter and reducing nitrates. We also discuss how the growth of the bacterial consortium can lead to an increased electricity production and decreased diffusional resistance in the cell. The analysis was done using electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). Here, we use bicarbonate buffered solution, which is the natural buffering agent found in sea. We show that the seawater bacterial consortium can be used in both the anode and cathode parts of the cell. The results confirm the adaptability of the seawater bacteria to different environments and can be used for various applications. Heritage, Erasmus Mundus Programme, European Commission.

  8. Lightning-produced NOx in an explicit electrical scheme: a STERAO case study

    Science.gov (United States)

    Barthe, C.; Pinty, J.; Mari, C.

    2006-12-01

    An explicit lightning-produced nitrogen oxide scheme has been implemented in the French mesoscale model Meso-NH. The electrical scheme simulates explicitly the whole electric charge life cycle: charge separation, transfer, transport and neutralization by lightning flashes. The frequency and the 3D morphology of the lightning flashes are reproduced realistically. Therefore, fresh nitrogen oxide molecules can be added along the complex flash path as a function of the pressure, as suggested by results from laboratory experiments. No integral constraint on the total LNOx production at the cloud scale is added. The scheme is tested on the 10 July 1996, STERAO (Stratosphere-Troposphere Experiment-Radiation, Aerosols, and Ozone) storm. The model reproduces many features of the observed increase of electrical activity and LNOx flux through the anvil between the multicell and supercell stages. A large amount of LNOx is selectively produced in the upper part of the cells close to the updraft cores. Instantaneous peak concentrations exceed a few ppbv, as observed. The computed flux of NOx across the anvil compares favorably with the observations. The NOx production is estimated to 36 moles per lightning flash.

  9. Process for production of electrical energy from the neutralization of acid and base in a bipolar membrane cell

    International Nuclear Information System (INIS)

    Walther, J.F.

    1982-01-01

    Electrical energy is generated from acid-base neutralization reactions in electrodialytic cells. Permselective bipolar membranes in these cells are contacted on their cation selective faces by aqueous acid streams and on their anion-selective faces by aqueous base streams. Spontaneous neutralization reactions between the basic anions and acidic cations through the bipolar membranes produce electrical potential differences between the acid and base streams. These potential differences are transmitted to electrodes to produce electrical energy which is withdrawn from the cell

  10. Optimal contracts for wind power producers in electricity markets

    KAUST Repository

    Bitar, E.; Giani, A.; Rajagopal, R.; Varagnolo, D.; Khargonekar, P.; Poolla, K.; Varaiya, P.

    2010-01-01

    This paper is focused on optimal contracts for an independent wind power producer in conventional electricity markets. Starting with a simple model of the uncertainty in the production of power from a wind turbine farm and a model for the electric

  11. Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  12. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the

  13. Electroendocytosis is driven by the binding of electrochemically produced protons to the cell's surface.

    Directory of Open Access Journals (Sweden)

    Nadav Ben-Dov

    Full Text Available Electroendocytosis involves the exposure of cells to pulsed low electric field and is emerging as a complementary method to electroporation for the incorporation of macromolecules into cells. The present study explores the underlying mechanism of electroendocytosis and its dependence on electrochemical byproducts formed at the electrode interface. Cell suspensions were exposed to pulsed low electric field in a partitioned device where cells are spatially restricted relative to the electrodes. The cellular uptake of dextran-FITC was analyzed by flow cytometery and visualized by confocal microscopy. We first show that uptake occurs only in cells adjacent to the anode. The enhanced uptake near the anode is found to depend on electric current density rather than on electric field strength, in the range of 5 to 65 V/cm. Electrochemically produced oxidative species that impose intracellular oxidative stress, do not play any role in the stimulated uptake. An inverse dependence is found between electrically induced uptake and the solution's buffer capacity. Electroendocytosis can be mimicked by chemically acidifying the extracellular solution which promotes the enhanced uptake of dextran polymers and the uptake of plasmid DNA. Electrochemical production of protons at the anode interface is responsible for inducing uptake of macromolecules into cells exposed to a pulsed low electric field. Expanding the understanding of the mechanism involved in electric fields induced drug-delivery into cells, is expected to contribute to clinical therapy applications in the future.

  14. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

    Science.gov (United States)

    Brown, Gerald V.; Choi, Benjamin B.

    2005-01-01

    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  15. Estimating cell capacity for multi-cell electrical energy system

    Science.gov (United States)

    Hashemi, Iman Ahari

    A Multi-Cell Electrical Energy System is a set of batteries that are connected in series. The series batteries provide the required voltage necessary for the contraption. After using the energy that is provided by the batteries, some cells within the system tend to have a lower voltage than the other cells. Also, other factors, such as the number of times a battery has been charged or discharged, how long it has been within the system and many other factors, result in some cells having a lesser capacity compared to the other cells within the system. The outcome is that it lowers the required capacity that the electrical energy system is required to provide. By having an unknown cell capacity within the system, it is unknown how much of a charge can be provided to the system so that the cells are not overcharged or undercharged. Therefore, it is necessary to know the cells capacity within the system. Hence, if we were dealing with a single cell, the capacity could be obtained by a full charge and discharge of the cell. In a series system that contains multiple cells a full charging or discharging cannot happen as it might result in deteriorating the structure of some cells within the system. Hence, to find the capacity of a single cell within an electrical energy system it is required to obtain a method that can estimate the value of each cell within the electrical energy system. To approach this method an electrical energy system is required. The electrical energy system consists of rechargeable non-equal capacity batteries to provide the required energy to the system, a battery management system (BMS) board to monitor the cells voltages, an Arduino board that provides the required communication to BMS board, and the PC, and a software that is able to deliver the required data obtained from the Arduino board to the PC. The outcome, estimating the capacity of a cell within a multi-cell system, can be used in many battery related technologies to obtain unknown

  16. Metabolic Syndrome Remodels Electrical Activity of the Sinoatrial Node and Produces Arrhythmias in Rats

    Science.gov (United States)

    Albarado-Ibañez, Alondra; Avelino-Cruz, José Everardo; Velasco, Myrian; Torres-Jácome, Julián; Hiriart, Marcia

    2013-01-01

    In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of “metabolic syndrome rats”, compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats. PMID:24250786

  17. Potential of Reversible Solid Oxide Cells as Electricity Storage System

    Directory of Open Access Journals (Sweden)

    Paolo Di Giorgio

    2016-08-01

    Full Text Available Electrical energy storage (EES systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES, and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC working in both fuel cell and electrolysis modes could be a cost effective and highly efficient EES, but are not yet ready for the market. In fact, using the system in fuel cell mode produces high temperature heat that can be recovered during electrolysis, when a heat source is necessary. Before ReSOCs can be used as EES systems, many problems have to be solved. This paper presents a new ReSOC concept, where the thermal energy produced during fuel cell mode is stored as sensible or latent heat, respectively, in a high density and high specific heat material and in a phase change material (PCM and used during electrolysis operation. The study of two different storage concepts is performed using a lumped parameters ReSOC stack model coupled with a suitable balance of plant. The optimal roundtrip efficiency calculated for both of the configurations studied is not far from 70% and results from a trade-off between the stack roundtrip efficiency and the energy consumed by the auxiliary power systems.

  18. Realization of Quasi-Omnidirectional Solar Cells with Superior Electrical Performance by All-Solution-Processed Si Nanopyramids.

    Science.gov (United States)

    Zhong, Sihua; Wang, Wenjie; Tan, Miao; Zhuang, Yufeng; Shen, Wenzhong

    2017-11-01

    Large-scale (156 mm × 156 mm) quasi-omnidirectional solar cells are successfully realized and featured by keeping high cell performance over broad incident angles (θ), via employing Si nanopyramids (SiNPs) as surface texture. SiNPs are produced by the proposed metal-assisted alkaline etching method, which is an all-solution-processed method and highly simple together with cost-effective. Interestingly, compared to the conventional Si micropyramids (SiMPs)-textured solar cells, the SiNPs-textured solar cells possess lower carrier recombination and thus superior electrical performances, showing notable distinctions from other Si nanostructures-textured solar cells. Furthermore, SiNPs-textured solar cells have very little drop of quantum efficiency with increasing θ, demonstrating the quasi-omnidirectional characteristic. As an overall result, both the SiNPs-textured homojunction and heterojunction solar cells possess higher daily electric energy production with a maximum relative enhancement approaching 2.5%, when compared to their SiMPs-textured counterparts. The quasi-omnidirectional solar cell opens a new opportunity for photovoltaics to produce more electric energy with a low cost.

  19. Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode

    International Nuclear Information System (INIS)

    Lai, Chi-Yung; Wu, Chih-Hung; Meng, Chui-Ting; Lin, Chi-Wen

    2017-01-01

    Highlights: • A laccase-producing fungus on cathode of MFC was used to enhance degradation of azo dye. • Laccase-producing fungal cathodes performed better than laccase-free control cathodes. • A maximum power density of 13.38 mW/m"2 and an >90% decolorization of acid orange 7 were obtained. • Growing a fungal culture with continuous laccase production improved MFC’s electricity generation. - Abstract: Wood-degrading white-rot fungi produce many extracellular enzymes, including the multi-copper oxidative enzyme laccase (EC 1.10.3.2). Laccase uses atmospheric oxygen as the electron acceptor to catalyze a one-electron oxidation reaction of phenolic compounds and therefore has the potential to simultaneously act as a cathode catalyst in a microbial fuel cell (MFC) and degrade azo dye pollutants. In this study, the laccase-producing white-rot fungus Ganoderma lucidum BCRC 36123 was planted on the cathode surface of a single-chamber MFC to degrade the azo dye acid orange 7 (AO7) synergistically with an anaerobic microbial community in the anode chamber. In a batch culture, the fungus used AO7 as the sole carbon source and produced laccase continuously, reaching a maximum activity of 20.3 ± 0.3 U/L on day 19 with a 77% decolorization of the dye (50 mg/L). During MFC operations, AO7 in the anolyte diffused across a layer of polyvinyl alcohol-hydrogel that separated the cathode membrane from the anode chamber, and served as a carbon source to support the growth of, and production of laccase by, the fungal mycelium that was planted on the cathode. In such MFCs, laccase-producing fungal cathodes outperformed laccase-free controls, yielding a maximum open-circuit voltage of 821 mV, a closed-circuit voltage of 394 mV with an external resistance of 1000 Ω, a maximum power density of 13.38 mW/m"2, a maximum current density of 33 mA/m"2, and a >90% decolorization of AO7. This study demonstrates the feasibility of growing a white-rot fungal culture with continuous

  20. Using electricity options to hedge against financial risks of power producers

    DEFF Research Database (Denmark)

    Pineda Morente, Salvador; Conejo, Antonio J.

    2013-01-01

    or unexpected unit failures faced by power producers. A multi-stage stochastic model is described in this tutorial paper to determine the optimal forward and option contracting decisions for a risk-averse power producer. The key features of electricity options to reduce both price and availability risks......As a consequence of competition in electricity markets, a wide variety of financial derivatives have emerged to allow market agents to hedge against risks. Electricity options and forward contracts constitute adequate instruments to manage the financial risks pertaining to price volatility...

  1. Storing the Electric Energy Produced by an AC Generator

    Science.gov (United States)

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  2. Developments in batteries and fuel cells for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ahmed, R.

    2013-01-01

    Due to ever increasing threats of climate change, urban air pollution and costly and depleting oil and gas sources a lot of work is being done for the development of electric vehicles. Hybrid electric vehicles, plug-in hybrid electric vehicles and all electric vehicles are powered by batteries or by hydrogen and fuel cells are the main types of vehicles being developed. Main types of batteries which can be used for electric vehicles are lead-acid, Ni-Cd, Nickel-Metal-Hybrid ( NiMH) and Lithium-ion (Li-ion) batteries which are discussed and compared. Lithium ion battery is the mostly used battery. Developments in the lithium ion batteries are discussed and reviewed. Redox flow batteries are also potential candidates for electric vehicles and are described. Hybrid electric vehicles can reduce fuel consumption considerably and is a good midterm solution. Electric and hybrid electric vehicles are discussed. Electric vehicles are necessary to mitigate the effects of pollution and dependence on oil. For all the electric vehicles there are two options: batteries and fuel Cells. Batteries are useful for small vehicles and shorter distances but for vehicle range greater than 150 km fuel cells are superior to batteries in terms of cost, efficiency and durability even using natural gas and other fuels in addition to hydrogen. Ultimate solution for electric vehicles are hydrogen and fuel cells and this opinion is also shared by most of the automobile manufacturers. Developments in fuel cells and their applications for automobiles are described and reviewed. Comparisons have been done in the literature between batteries and fuel cells and are described. (author)

  3. Fuel Cell Electric Bus Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Bus Evaluations Fuel Cell Electric Bus Evaluations NREL's technology validation team evaluates fuel cell electric buses (FCEBs) to provide comprehensive, unbiased evaluation results of fuel cell bus early transportation applications for fuel cell technology. Buses operate in congested areas where

  4. Dynamic modelling of a De Nora fuel cell intended for the electric vehicle

    International Nuclear Information System (INIS)

    Poirot-Crouvezier, J.-P.; Baurens, P.; Levrard, D.

    2000-01-01

    Recent progress in fuel cells (proton membrane exchange) has gained interest in the electricity generation in particular for electric vehicles. So far the vehicles demonstrate the feasibility of the technique. After a limited number of demonstrations, the energy source will be indispensable. In general, one cannot speak about a single cell, but a stacking of cells. The system must be able to be supplied with reactants, evacuate products, and produce heat and usable electricity. A fuel cell is inevitably a system of many components that interact with one another. The overall operation of the assembly depends on the associated sub-systems. In the case of the application to automobiles, the driving behaviour must be analysed to ensure the system function can be simulated to obtain the correct characteristics. For instance, an essential study would be the dynamic function of successive accelerations and decelerations

  5. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    DEFF Research Database (Denmark)

    Thygesen, Anders; Poulsen, Finn Willy; Angelidaki, Irini

    2011-01-01

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation...... in 95% degradation of the xylan and glucan. The study demonstrates that lignocellulosic hydrolysate can be used for co-treatment with domestic wastewater for power generation in microbial fuel cells....... density with the hydrolysate was higher than the one with only xylan (120 mW m−2) and carboxylic acids as fuel. The higher power density can be caused by the presence of phenolic compounds in the hydrolysates, which could mediate electron transport. Electricity generation with the hydrolysate resulted...

  6. Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Yuko eGoto

    2015-04-01

    Full Text Available The effects of graphene oxide (GO on electricity generation in soil microbial fuel cells (SMFCs and plant microbial fuel cell (PMFCs were investigated. GO at concentrations ranging from 0 to 1.9 g•kg-1 was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity generation in GO-SMFCs containing 1.0 g•kg-1 of GO was 40 ± 19 mW•m-2, which was significantly higher than the value of 6.6 ± 8.9 mW•m-2 generated from GO-free SMFCs (p -2 of electricity after 27 days of operation. Collectively, this study demonstrates that GO added to soil can be microbially reduced in soil, and facilitates electron transfer to the anode in both SMFCs and PMFCs.

  7. Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Min, Booki; Huang, L.

    2009-01-01

    Electricity generation from wheat straw hydrolysate and the microbial ecology of electricity producing microbial communities developed in two chamber microbial fuel cells (MFCs) were investigated. Power density reached 123 mW/m2 with an initial hydrolysate concentration of 1000 mg-COD/L while...

  8. The decision making of an electric power producer

    International Nuclear Information System (INIS)

    Giger, F.

    2002-01-01

    How can choose an electric power producer when he has to decide an investment of a supplementary power plant? Which were the criteria to choose a small or a medium power reactor? In this framework, the economical profitability, the technical feasibility and the associated risks are discussed. (A.L.B.)

  9. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2010-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treatment of sewage sludge and simultaneous generate electricity. Stable power generation (145±5 mW/m2) was produced continuously from raw sewage sludge for 5.5 days. The corresponding total chemical oxygen demand (TCOD) removal efficiency...... of an effective system to treatment of sewage sludge and simultaneous recover energy....

  10. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2011-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145± 5 mW/m2, 470 Ω) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190±5 mW/m2. The corresponding total...... system to treat sewage sludge and simultaneously recover energy....

  11. Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil

    Science.gov (United States)

    Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin

    2018-03-01

    Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.

  12. Pricing Electricity in Pools With Wind Producers

    DEFF Research Database (Denmark)

    Morales González, Juan Miguel; Conejo, A. J.; Kai Liu

    2012-01-01

    This paper considers an electricity pool that includes a significant number of wind producers and is cleared through a network-constrained auction, one day in advance and on an hourly basis. The hourly auction is formulated as a two-stage stochastic programming problem, where the first stage...... represents the clearing of the market and the second stage models the system operation under a number of plausible wind production realizations. This formulation co-optimizes energy and reserve, and allows deriving both pool energy prices and balancing energy prices. These prices result in both cost recovery...... for producers and revenue reconciliation. A case study of realistic size is used to illustrate the functioning of the proposed pricing scheme....

  13. Finite element method (FEM) model of the mechanical stress on phospholipid membranes from shock waves produced in nanosecond electric pulses (nsEP)

    Science.gov (United States)

    Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.

    2015-03-01

    The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.

  14. Improving the cathode of a microbial fuel cell for efficient electricity production

    NARCIS (Netherlands)

    Heijne, ter A.

    2010-01-01

    The worldwide demand for energy is increasing. At the same time, energy rich wastewaters are currently purified by oxygen supply, which costs a lot of energy. The Microbial Fuel Cell is a new technology that offers advantages in both directions: it produces electricity while purifying wastewaters.

  15. Fuel Cell Equivalent Electric Circuit Parameter Mapping

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Zhou, Fan; Andreasen, Søren Juhl

    In this work a simple model for a fuel cell is investigated for diagnostic purpose. The fuel cell is characterized, with respect to the electrical impedance of the fuel cell at non-faulty conditions and under variations in load current. Based on this the equivalent electrical circuit parameters can...

  16. Optimal contracts for wind power producers in electricity markets

    KAUST Repository

    Bitar, E.

    2010-12-01

    This paper is focused on optimal contracts for an independent wind power producer in conventional electricity markets. Starting with a simple model of the uncertainty in the production of power from a wind turbine farm and a model for the electric energy market, we derive analytical expressions for optimal contract size and corresponding expected optimal profit. We also address problems involving overproduction penalties, cost of reserves, and utility of additional sensor information. We obtain analytical expressions for marginal profits from investing in local generation and energy storage. ©2010 IEEE.

  17. Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy.

    Science.gov (United States)

    Yu, Binglan; Muenster, Stefan; Blaesi, Aron H; Bloch, Donald B; Zapol, Warren M

    2015-07-01

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation and is an effective therapy for treating pulmonary hypertension in adults and children. In the United States, the average cost of 5 days of inhaled NO for persistent pulmonary hypertension of the newborn is about $14,000. NO therapy involves gas cylinders and distribution, a complex delivery device, gas monitoring and calibration equipment, and a trained respiratory therapy staff. The objective of this study was to develop a lightweight, portable device to serve as a simple and economical method of producing pure NO from air for bedside or portable use. Two NO generators were designed and tested: an offline NO generator and an inline NO generator placed directly within the inspiratory line. Both generators use pulsed electrical discharges to produce therapeutic range NO (5 to 80 parts per million) at gas flow rates of 0.5 to 5 liters/min. NO was produced from air, as well as gas mixtures containing up to 90% O2 and 10% N2. Potentially toxic gases produced in the plasma, including nitrogen dioxide (NO2) and ozone (O3), were removed using a calcium hydroxide scavenger. An iridium spark electrode produced the lowest ratio of NO2/NO. In lambs with acute pulmonary hypertension, breathing electrically generated NO produced pulmonary vasodilation and reduced pulmonary arterial pressure and pulmonary vascular resistance index. In conclusion, electrical plasma NO generation produces therapeutic levels of NO from air. After scavenging to remove NO2 and O3 and filtration to remove particles, electrically produced NO can provide safe and effective treatment of pulmonary hypertension. Copyright © 2015, American Association for the Advancement of Science.

  18. Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion.

    Science.gov (United States)

    Xin, Xiaodong; Ma, Yingqun; Liu, Yu

    2018-05-01

    A food waste resourceful process was developed by integrating the ultra-fast hydrolysis and microbial fuel cells (MFCs) for energy and resource recovery. Food waste was first ultra-fast hydrolyzed by fungal mash rich in hydrolytic enzymes in-situ produced from food waste. After which, the separated solids were readily converted to biofertilizer, while the liquid was fed to MFCs for direct electricity generation with a conversion efficiency of 0.245 kWh/kg food waste. It was estimated that about 192.5 million kWh of electricity could be produced from the food waste annually generated in Singapore, together with 74,390 tonnes of dry biofertilizer. Compared to anaerobic digestion, the proposed approach was more environmentally friendly and economically viable in terms of both electricity conversion and process cost. It is expected that this study may lead to the paradigm shift in food waste management towards ultra-fast concurrent recovery of resource and electricity with zero-solid discharge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Simulation of producers behaviour in the electricity market by evolutionary games

    Energy Technology Data Exchange (ETDEWEB)

    Menniti, Daniele; Pinnarelli, Anna; Sorrentino, Nicola [Department of Electronic, Computer and System Science, University of Calabria (Italy)

    2008-03-15

    Simulation of the electricity market participant's behaviour is important for producers and consumers to determine their bidding strategies and for regulating the market rules. In literature, for this aim a lot of papers suggest to use the well-known theory of non-cooperative games and the concept of Nash equilibrium. Unfortunately they cannot be applied in an easy way when a multi-players game has to be considered to simulate the operation of the electricity market. In this paper, the authors suggest to use the new theory of evolutionary games and the concept of near Nash equilibrium to simulate the electricity market in the presence of more than two producers. In particular, an opportune genetic algorithm has been developed; from the results reported in the paper, it is clear that this algorithm can be usefully utilised. (author)

  20. Simulation of producers behaviour in the electricity market by evolutionary games

    International Nuclear Information System (INIS)

    Menniti, Daniele; Pinnarelli, Anna; Sorrentino, Nicola

    2008-01-01

    Simulation of the electricity market participant's behaviour is important for producers and consumers to determine their bidding strategies and for regulating the market rules. In literature, for this aim a lot of papers suggest to use the well-known theory of non-cooperative games and the concept of Nash equilibrium. Unfortunately they cannot be applied in an easy way when a multi-players game has to be considered to simulate the operation of the electricity market. In this paper, the authors suggest to use the new theory of evolutionary games and the concept of near Nash equilibrium to simulate the electricity market in the presence of more than two producers. In particular, an opportune genetic algorithm has been developed; from the results reported in the paper, it is clear that this algorithm can be usefully utilised. (author)

  1. Electricity Storage and the Hydrogen-Chlorine Fuel Cell

    Science.gov (United States)

    Rugolo, Jason Steven

    Electricity storage is an essential component of the transforming energy marketplace. Its absence at any significant scale requires that electricity producers sit ready to respond to every flick of a switch, constantly adjusting power production to meet demand. The dispatchable electricity production technologies that currently enable this type of market are growing unpopular because of their carbon emissions. Popular methods to move away from fossil fuels are wind and solar power. These sources also happen to be the least dispatchable. Electricity storage can solve that problem. By overproducing during sunlight to store energy for evening use, or storing during windy periods for delivery in future calm ones, electricity storage has the potential to allow intermittent renewable sources to constitute a large portion of our electricity mix. I investigate the variability of wind in Chapter 2, and show that the variability is not significantly reduced by geographically distributing power production over the entire country of the Netherlands. In Chapter 3, I calculate the required characteristics of a linear-response, constant activity storage technology to map wind and solar production scenarios onto several different supply scenarios for a range of specified system efficiencies. I show that solid electrode batteries have two orders of magnitude too little energy per unit power to be well suited for renewable balancing and emphasize the value of the modular separation between the power and energy components of regenerative fuel cell technologies. In Chapter 4 I introduce the regenerative hydrogen-chlorine fuel cell (rHCFC), which is a specific technology that shows promise for the above applications. In collaboration with Sustainable Innovations, we have made and tested 6 different rHCFCs. In order to understand the relative importance of the different inefficiencies in the rHCFC, Chapter 5 introduces a complex temperature and concentration dependent model of the r

  2. Real options and a large producer: the case of electricity markets

    International Nuclear Information System (INIS)

    Keppo, J.

    2003-01-01

    In this paper we extend the real option theory to consider the situation of a large producer and we employ the model to electricity markets. This is important because many producers in these markets affect the market supply and, therefore, also the electricity price. This production price effect influences not only on the assets that the energy company owns but also on its investment opportunities. We show that this production's price effect has to be considered in the investment analysis if the company is not able to hedge the price effect in the financial markets and if there is no competition on the investment opportunity. (author)

  3. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected

  4. Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dawei [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China); Li, Yi, E-mail: envly@hhu.edu.cn [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China); Li Puma, Gianluca, E-mail: g.lipuma@lboro.ac.uk [Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Lianos, Panagiotis [Department of Chemical Engineering, University of Patras, 26500 Patras (Greece); Wang, Chao; Wang, Peifang [Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xi Kang Road #1, Nanjing 210098 (China)

    2017-02-05

    Highlights: • Polymer capped TiO{sub 2} photoanode consumes photogenerated holes. • Heavy metals reduce on the cathode according to their reduction potentials. • Simultaneous recovery of heavy metals and production of electricity. • Industrial wastewater treatment and production of renewable energy. - Abstract: The feasibility of simultaneous recovery of heavy metals from wastewater (e.g., acid mining and electroplating) and production of electricity is demonstrated in a novel photoelectrochemical cell (PEC). The photoanode of the cell bears a nanoparticulate titania (TiO{sub 2}) film capped with the block copolymer [poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)] hole scavenger, which consumed photogenerated holes, while the photogenerated electrons transferred to a copper cathode reducing dissolved metal ions and produced electricity. Dissolved silver Ag{sup +}, copper Cu{sup 2+}, hexavalent chromium as dichromate Cr{sub 2}O{sub 7}{sup 2−} and lead Pb{sup 2+} ions in a mixture (0.2 mM each) were removed at different rates, according to their reduction potentials. Reduced Ag{sup +}, Cu{sup 2+} and Pb{sup 2+} ions produced metal deposits on the cathode electrode which were mechanically recovered, while Cr{sub 2}O{sub 7}{sup 2−} reduced to the less toxic Cr{sup 3+} in solution. The cell produced a current density J{sub sc} of 0.23 mA/cm{sup 2}, an open circuit voltage V{sub oc} of 0.63 V and a maximum power density of 0.084 mW/cm{sup 2}. A satisfactory performance of this PEC for the treatment of lead-acid battery wastewater was observed. The cathodic reduction of heavy metals was limited by the rate of electron-hole generation at the photoanode. The PEC performance decreased by 30% after 9 consecutive runs, caused by the photoanode progressive degradation.

  5. Renewable energies - Industrials, produce your own electricity

    International Nuclear Information System (INIS)

    Moragues, Manuel

    2016-01-01

    As a public bidding has been launched at the initiative of the French government on self-consumption in industrial and office building sites, this article discusses this issue of self-production and consumption, and its perspectives. Professionals and individuals could be interested in the recent evolutions as it was before more interesting to sell the produced photovoltaic electricity to EDF than to consume it. Some industries (warehouses, supermarkets, oil production, and airport) have already implemented this solution, and its development could boost the use of photovoltaic panels

  6. Strategic bidding for wind power producers in electricity markets

    International Nuclear Information System (INIS)

    Sharma, Kailash Chand; Bhakar, Rohit; Tiwari, H.P.

    2014-01-01

    Highlights: • Game theoretic bidding strategy approach developed to optimize wind power producers bids. • Rival behavior modeled through Stochastic Cournot model. • Location based dual imbalance price mechanism proposed to obtain imbalance charges. • Proposed approach evaluated using two realistic case studies. • Proposed approach increases profit of strategic wind power producers significantly. - Abstract: In evolving electricity markets, wind power producers (WPPs) would increase their profit through strategic bidding. However, generated power by WPPs is highly random, which may result into heavy imbalance charges. In markets dominated by wind generators, they would optimize their offered bids, considering rival behavior. In oligopolistic day-ahead electricity markets, this strategic behavior can be represented as a Stochastic Cournot model. Wind uncertainty is represented by scenarios generated using Auto Regressive Moving Average (ARMA) model. With a consideration of wind power uncertainty and imbalance charges, strategic WPPs can maximize their expected payoff or profit through the proposed Nash equilibrium based bidding strategy. Nash equilibrium is obtained using payoff matrix approach. Proposed approach is evaluated on two realistic case studies considering different technical constraints. Obtained results shows that proposed bidding strategy mechanism offers quantum increase in profit for WPPs, when their behavior is modeled in a game theoretic framework. Flexibility of approach offers opportunities for its extension to associated challenges

  7. Inhibition of brain tumor cell proliferation by alternating electric fields

    International Nuclear Information System (INIS)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun; Koh, Eui Kwan

    2014-01-01

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  8. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  9. A market for green certificates may cause less green electricity to be produced

    International Nuclear Information System (INIS)

    Haugneland, Petter

    2004-01-01

    The Norwegian government wants to establish in 2006 a market for trading with green certificates which will be issued to producers of new renewable electricity. These certificates will be sold to the consumers, which will be instructed to by a certain amount of green electricity. In 2005 a market will be established for trading with emission quotas of greenhouse gases; in this market, power producers and other industry that emits greenhouse gases must buy emission permits. Some experts, however, say that a market for trading with green certificates may at worst give less production of green electricity, counter to the intention. But a quota system may indirectly increase the production of green electricity, and at the same time one avoids many of the inconveniences involved in a green certificate market

  10. Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells.

    Science.gov (United States)

    Ganeva, Valentina; Galutzov, Bojidar; Teissie, Justin

    2014-02-01

    The application of rectangular electric pulses, with 0.1-2 ms duration and field intensity of 2.5-4.5 kV/cm, to yeast suspension mediates liberation of cytoplasmic proteins without cell lysis. The aim of this study was to evaluate the effect of pulsed electric field with similar parameters on cell wall porosity of different yeast species. We found that electrically treated cells become more susceptible to lyticase digestion. In dependence on the strain and the electrical conditions, cell lysis was obtained at 2-8 times lower enzyme concentration in comparison with control untreated cells. The increase of the maximal lysis rate was between two and nine times. Furthermore, when applied at low concentration (1 U/ml), the lyticase enhanced the rate of protein liberation from electropermeabilized cells without provoking cell lysis. Significant differences in the cell surface of control and electrically treated cells were revealed by scanning electron microscopy. Data presented in this study allow us to conclude that electric field pulses provoke not only plasma membrane permeabilization, but also changes in the cell wall structure, leading to increased wall porosity.

  11. Fuel cell cars in a microgrid for synergies between hydrogen and electricity networks

    International Nuclear Information System (INIS)

    Alavi, Farid; Park Lee, Esther; Wouw, Nathan van de; De Schutter, Bart; Lukszo, Zofia

    2017-01-01

    Highlights: • A novel concept of a flexible energy system that uses fuel cell cars as dispatchable power plants. • Synergies between hydrogen and electricity networks by operating of fuel cell cars in a microgrid. • A robust min-max model predictive control scheme for optimal dispatch of the fuel cell cars. • A novel model predictive control scheme to govern the system operation. - Abstract: Fuel cell electric vehicles convert chemical energy of hydrogen into electricity to power their motor. Since cars are used for transport only during a small part of the time, energy stored in the on-board hydrogen tanks of fuel cell vehicles can be used to provide power when cars are parked. In this paper, we present a community microgrid with photovoltaic systems, wind turbines, and fuel cell electric vehicles that are used to provide vehicle-to-grid power when renewable power generation is scarce. Excess renewable power generation is used to produce hydrogen, which is stored in a refilling station. A central control system is designed to operate the system in such a way that the operational costs are minimized. To this end, a hybrid model for the system is derived, in which both the characteristics of the fuel cell vehicles and their traveling schedules are considered. The operational costs of the system are formulated considering the presence of uncertainty in the prediction of the load and renewable energy generation. A robust min-max model predictive control scheme is developed and finally, a case study illustrates the performance of the designed system.

  12. Magnetically insulated fission electric cells for direct energy conversion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Seidel, D.B.; Lipinski, R.J.; Rochau, G.E.; Brown, L.C.

    2003-01-01

    The principles of fission electric cells are reviewed. A detailed Monte Carlo model of the efficiency of a fission electric cell is presented and a theory of magnetically insulated fission electric cells (MIFECs) is developed. It is shown that the low operating voltages observed in previous MIFEC experiments were due to nonoptimal magnetic field profiles. Improved magnetic field profiles are presented. It is further shown that the large electric field present in a MIFEC limits the structure of the cathode and can lead to a displacement instability of the cathode toward the anode. This instability places constraints on the number of cells that can be strung together without some external cathode support. The large electric field stress also leads to electrical surface breakdown of the cathode. It is shown that this leads to the formation of a virtual cathode resulting in geometry constraints for spherical cells. Finally it is shown that the requirements of magnetic insulation and high efficiency leads to very low average density of the fissile material. Thus a reactor using fission electric cells for efficient direct energy conversion will be large and require a very large number of cells. This could be mitigated somewhat by the use of exotic fuels

  13. Communication calls produced by electrical stimulation of four structures in the guinea pig brain

    Science.gov (United States)

    Green, David B.; Shackleton, Trevor M.; Grimsley, Jasmine M. S.; Zobay, Oliver; Palmer, Alan R.

    2018-01-01

    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation. PMID:29584746

  14. Communication calls produced by electrical stimulation of four structures in the guinea pig brain.

    Directory of Open Access Journals (Sweden)

    David B Green

    Full Text Available One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus. By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG, hypothalamus, amygdala, and anterior cingulate cortex (ACC. Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.

  15. Communication calls produced by electrical stimulation of four structures in the guinea pig brain.

    Science.gov (United States)

    Green, David B; Shackleton, Trevor M; Grimsley, Jasmine M S; Zobay, Oliver; Palmer, Alan R; Wallace, Mark N

    2018-01-01

    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.

  16. Cost estimate of electricity produced by TPV

    Science.gov (United States)

    Palfinger, Günther; Bitnar, Bernd; Durisch, Wilhelm; Mayor, Jean-Claude; Grützmacher, Detlev; Gobrecht, Jens

    2003-05-01

    A crucial parameter for the market penetration of TPV is its electricity production cost. In this work a detailed cost estimate is performed for a Si photocell based TPV system, which was developed for electrically self-powered operation of a domestic heating system. The results are compared to a rough estimate of cost of electricity for a projected GaSb based system. For the calculation of the price of electricity, a lifetime of 20 years, an interest rate of 4.25% per year and maintenance costs of 1% of the investment are presumed. To determine the production cost of TPV systems with a power of 12-20 kW, the costs of the TPV components and 100 EUR kW-1el,peak for assembly and miscellaneous were estimated. Alternatively, the system cost for the GaSb system was derived from the cost of the photocells and from the assumption that they account for 35% of the total system cost. The calculation was done for four different TPV scenarios which include a Si based prototype system with existing technology (etasys = 1.0%), leading to 3000 EUR kW-1el,peak, an optimized Si based system using conventional, available technology (etasys = 1.5%), leading to 900 EUR kW-1el,peak, a further improved system with future technology (etasys = 5%), leading to 340 EUR kW-1el,peak and a GaSb based system (etasys = 12.3% with recuperator), leading to 1900 EUR kW-1el,peak. Thus, prices of electricity from 6 to 25 EURcents kWh-1el (including gas of about 3.5 EURcents kWh-1) were calculated and compared with those of fuel cells (31 EURcents kWh-1) and gas engines (23 EURcents kWh-1).

  17. Hybrid fuel cells technologies for electrical microgrids

    Energy Technology Data Exchange (ETDEWEB)

    San Martin, Jose Ignacio; Zamora, Inmaculada; San Martin, Jose Javier; Aperribay, Victor; Eguia, Pablo [Department of Electrical Engineering, University of the Basque Country, Alda. de Urquijo, s/n, 48013 Bilbao (Spain)

    2010-09-15

    Hybrid systems are characterized by containing two or more electrical generation technologies, in order to optimize the global efficiency of the processes involved. These systems can present different operating modes. Besides, they take into account aspects that not only concern the electrical and thermal efficiencies, but also the reduction of pollutant emissions. There is a wide range of possible configurations to form hybrid systems, including hydrogen, renewable energies, gas cycles, vapour cycles or both. Nowadays, these technologies are mainly used for energy production in electrical microgrids. Some examples of these technologies are: hybridization processes of fuel cells with wind turbines and photovoltaic plants, cogeneration and trigeneration processes that can be configured with fuel cell technologies, etc. This paper reviews and analyses the main characteristics of electrical microgrids and the systems based on fuel cells for polygeneration and hybridization processes. (author)

  18. Residual heat use generated by a 12 kW fuel cell in an electric vehicle heating system

    International Nuclear Information System (INIS)

    Colmenar-Santos, Antonio; Alberdi-Jiménez, Lucía; Nasarre-Cortés, Lorenzo; Mora-Larramona, Joaquín

    2014-01-01

    A diesel or gasoline vehicle heating is produced by the heat of the engine coolant liquid. Nevertheless, electric vehicles, due to the fact that electric motor transform directly electricity into mechanical energy through electromagnetic interactions, do not generate this heat so other method of providing it has to be developed. This study introduces the system developed in a fuel cell electric vehicle (lithium-ion battery – fuel cell) with residual heat use. The fuel cell electric vehicle is driven by a 12 kW PEM (proton exchange membrane) fuel cell. This fuel cell has an operating temperature around 50 °C. The residual heat generated was originally wasted by interaction with the environment. The new developed heating system designed integrates the heat generated by the fuel cell into the heating system of the vehicle, reducing the global energy consumption and improving the global efficiency as well. - Highlights: • Modification of heating system was done by introducing the residual heat from fuel cell. • Maximum heat achieved by the heating radiator of 9.27 kW. • Reduction of the heat dissipation by the fuel cell cooling system 1.5 kW. • Total efficiency improvement of 20% with an autonomy increase of 21 km

  19. Electrical control of calcium oscillations in mesenchymal stem cells using microsecond pulsed electric fields.

    Science.gov (United States)

    Hanna, Hanna; Andre, Franck M; Mir, Lluis M

    2017-04-20

    Human mesenchymal stem cells are promising tools for regenerative medicine due to their ability to differentiate into many cellular types such as osteocytes, chondrocytes and adipocytes amongst many other cell types. These cells present spontaneous calcium oscillations implicating calcium channels and pumps of the plasma membrane and the endoplasmic reticulum. These oscillations regulate many basic functions in the cell such as proliferation and differentiation. Therefore, the possibility to mimic or regulate these oscillations might be useful to regulate mesenchymal stem cells biological functions. One or several electric pulses of 100 μs were used to induce Ca 2+ spikes caused by the penetration of Ca 2+ from the extracellular medium, through the transiently electropermeabilized plasma membrane, in human adipose mesenchymal stem cells from several donors. Attached cells were preloaded with Fluo-4 AM and exposed to the electric pulse(s) under the fluorescence microscope. Viability was also checked. According to the pulse(s) electric field amplitude, it is possible to generate a supplementary calcium spike with properties close to those of calcium spontaneous oscillations, or, on the contrary, to inhibit the spontaneous calcium oscillations for a very long time compared to the pulse duration. Through that inhibition of the oscillations, Ca 2+ oscillations of desired amplitude and frequency could then be imposed on the cells using subsequent electric pulses. None of the pulses used here, even those with the highest amplitude, caused a loss of cell viability. An easy way to control Ca 2+ oscillations in mesenchymal stem cells, through their cancellation or the addition of supplementary Ca 2+ spikes, is reported here. Indeed, the direct link between the microsecond electric pulse(s) delivery and the occurrence/cancellation of cytosolic Ca 2+ spikes allowed us to mimic and regulate the Ca 2+ oscillations in these cells. Since microsecond electric pulse delivery

  20. Novel electrical energy storage system based on reversible solid oxide cells: System design and operating conditions

    Science.gov (United States)

    Wendel, C. H.; Kazempoor, P.; Braun, R. J.

    2015-02-01

    Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.

  1. Stability of electric characteristics of solar cells for continuous power supply

    Directory of Open Access Journals (Sweden)

    Stojanović Nebojša M.

    2015-01-01

    Full Text Available This paper investigates the output characteristics of photovoltaic solar cells working in hostile working conditions. Examined cells, produced by different innovative procedures, are available in the market. The goal was to investigate stability of electric characteristics of solar cells, which are used today in photovoltaic solar modules for charging rechargeable batteries which, coupled with batteries, supply various electronic systems such as radio repeaters on mountains tops, airplanes, mobile communication stations and other remote facilities. Charging of rechargeable batteries requires up to 25 % higher voltage compared to nominal output voltage of the battery. This paper presents results of research of solar cells, which also apply to cases in which continuous power supply is required. [Projekat Ministarstva nauke Republike Srbije, br. III 171007

  2. Electrically conductive, immobilized bioanodes for microbial fuel cells

    International Nuclear Information System (INIS)

    Ganguli, R; Dunn, B

    2012-01-01

    The power densities of microbial fuel cells with yeast cells as the anode catalyst were significantly increased by immobilizing the yeast in electrically conductive alginate electrodes. The peak power densities measured as a function of the electrical conductivity of the immobilized electrodes show that although power increases with rising electrical conductivity, it tends to saturate beyond a certain point. Changing the pH of the anode compartment at that point seems to further increase the power density, suggesting that proton transport limitations and not electrical conductivity will limit the power density from electrically conductive immobilized anodes. (paper)

  3. Performance of the electrical generator cell by the ferrous alloys of printed circuit board scrap and Iron Metal 1020

    Science.gov (United States)

    Sahan, Y.; Sudarsono, S.; Silviana, E.; Chairul; Wisrayetti

    2018-04-01

    Galvani cell is one of thealternative energy. This cell can be used as an electric resources. In this research, the generator cell was designed and builds to generate the electric. The generator cell consisted of the iron metal 1020 were used as anode, the ferrous alloys of printed circuit board scrapwas then used as chatode, and NaCl solution as an electrolyte. The aim of this research is to estimate the performance of this generator cell by using variation of NaCl concentration (i.e. 1%, 3%, 5%, 7%, and 9%) with the electrodes pair ( 1 and 8 pairs). The performance of the cell was measured with a multi tester equipment and a LED bulb (5-watt 3Volt). The Results shown that the generator cell can produce the electric power of 3.679 Volt maximally by using NaCl 9% and 8 electrode pairs applied for this condition.

  4. Electricity generation from the mud by using microbial fuel cell

    Directory of Open Access Journals (Sweden)

    Idris Sitinoor Adeib

    2016-01-01

    Full Text Available Microbial fuel cells (MFCs is a bio-electrochemical device that harnesses the power of respiring microbes to convert organic substrates directly into electrical energy. This is achieved when bacteria transfer electrons to an electrode rather than directly to an electron acceptor. Their technical feasibility has recently been proven and there is great enthusiasm in the scientific community that MFCs could provide a source of “green electricity”. Microbial fuel cells work by allowing bacteria to do what they do best, oxidize and reduce organic molecules. Bacterial respiration is basically one big redox reaction in which electrons are being moved around. The objective is to generate electricity throughout the biochemical process using chemical waste basically sludge, via microbial fuel cells. The methodology includes collecting sludge from different locations, set up microbial fuel cells with the aid of salt bridge and observing the results in voltage measurement. The microbial fuel cells consist of two chambers, iron electrodes, copper wire, air pump (to increase the efficiency of electron transfer, water, sludge and salt bridge. After several observations, it is seen that this MFC can achieve up until 202 milivolts (0.202volts with the presence of air pump. It is proven through the experiments that sludge from different locations gives different results in term of the voltage measurement. This is basically because in different locations of sludge contain different type and amount of nutrients to provide the growth of bacteria. Apart from that, salt bridge also play an important role in order to transport the proton from cathode to anode. A longer salt bridge will give a higher voltage compared to a short salt bridge. On the other hand, the limitations that this experiment facing is the voltage that being produced did not last long as the bacteria activity slows down gradually and the voltage produced are not really great in amount. Lastly to

  5. Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2014-08-01

    Full Text Available The Biomass Research Centre, section of CIRIAF, has recently developed a biomass boiler (300 kW thermal powered, fed by the poultry manure collected in a nearby livestock. All the thermal requirements of the livestock will be covered by the heat produced by gas combustion in the gasifier boiler. Within the activities carried out by the research project ENERPOLL (Energy Valorization of Poultry Manure in a Thermal Power Plant, funded by the Italian Ministry of Agriculture and Forestry, this paper aims at studying an upgrade version of the existing thermal plant, investigating and analyzing the possible applications for electricity production recovering the exceeding thermal energy. A comparison of Organic Rankine Cycle turbines and Stirling engines, to produce electricity from gasified poultry waste, is proposed, evaluating technical and economic parameters, considering actual incentives on renewable produced electricity.

  6. Displacement damage analysis and modified electrical equivalent circuit for electron and photon-irradiated silicon solar cells

    Science.gov (United States)

    Arjhangmehr, Afshin; Feghhi, Seyed Amir Hossein

    2014-10-01

    Solar modules and arrays are the conventional energy resources of space satellites. Outside the earth's atmosphere, solar panels experience abnormal radiation environments and because of incident particles, photovoltaic (PV) parameters degrade. This article tries to analyze the electrical performance of electron and photon-irradiated mono-crystalline silicon (mono-Si) solar cells. PV cells are irradiated by mono-energetic electrons and poly-energetic photons and immediately characterized after the irradiation. The mean degradation of the maximum power (Pmax) of silicon solar cells is presented and correlated using the displacement damage dose (Dd) methodology. This method simplifies evaluation of cell performance in space radiation environments and produces a single characteristic curve for Pmax degradation. Furthermore, complete analysis of the results revealed that the open-circuit voltage (Voc) and the filling factor of mono-Si cells did not significantly change during the irradiation and were independent of the radiation type and fluence. Moreover, a new technique is developed that adapts the irradiation-induced effects in a single-cell equivalent electrical circuit and adjusts its elements. The "modified circuit" is capable of modeling the "radiation damage" in the electrical behavior of mono-Si solar cells and simplifies the designing of the compensation circuits.

  7. Effect of Shock Waves Generated by Pulsed Electric Discharges in Water on Yeast Cells and Virus Particles

    Science.gov (United States)

    Girdyuk, A. E.; Gorshkov, A. N.; Egorov, V. V.; Kolikov, V. A.; Snetov, V. N.; Shneerson, G. A.

    2018-02-01

    The aim of this study is to determine the optimal parameters of the electric pulses and shock waves generated by them for the soft destruction of the virus and yeast envelopes with no changes in the structure of antigenic surface albumin and in the cell morphology in order to use them to produce antivirus vaccines and in biotechnology. The pulse electric discharges in water have been studied for different values of amplitude, pulse duration and the rate of the rise in the current. A mathematical model has been developed to estimate the optimal parameters of pulsed electric charges and shock waves for the complete destruction of the yeast cell envelopes and virus particles at a minimum of pulses.

  8. Fuel Cell Electric Vehicles: Paving the Way to Commercial Success -

    Science.gov (United States)

    Continuum Magazine | NREL Fuel Cell Electric Vehicles: Paving the Way to Commercial Success Powered by a fuel cell system with light-weight, high-pressure hydrogen tanks, an electric motor, a nickel -metal-hydride battery, and a power-control unit, the Toyota fuel cell electric vehicle has zero tailpipe

  9. Producing methane, methanol and electricity from organic waste of fermentation reaction using novel microbes.

    Science.gov (United States)

    Dhiman, Saurabh Sudha; Shrestha, Namita; David, Aditi; Basotra, Neha; Johnson, Glenn R; Chadha, Bhupinder S; Gadhamshetty, Venkataramana; Sani, Rajesh K

    2018-06-01

    Residual solid and liquid streams from the one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process were treated with two separate biochemical routes for renewable energy transformation. The solid residual stream was subjected to thermophilic anaerobic digestion (TAD), which produced 95 ± 7 L methane kg -1 volatile solid with an overall energy efficiency of 12.9 ± 1.7%. A methanotroph, Methyloferula sp., was deployed for oxidation of mixed TAD biogas into methanol. The residual liquid stream from CRUDE process was used in a Microbial Fuel Cell (MFC) to produce electricity. Material balance calculations confirmed the integration of biochemical routes (i.e. CRUDE, TAD, and MFC) for developing a sustainable approach of energy regeneration. The current work demonstrates the utilization of different residual streams originated after food waste processing to release minimal organic load to the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Development of high-performance ER gel produced by electric-field assisted molding

    International Nuclear Information System (INIS)

    Kakinuma, Y; Aoyama, T; Anzai, H

    2009-01-01

    Electro-rheological gel (ERG) is a novel functional elastomer whose surface frictional and adhesive property varies according to the intensity of applied electric field. This peculiar phenomenon is named as Electro-adhesive effect. A generated shear stress of ERG under applied electric field is approximately 30∼40 times higher than that of ERF because of high adhesive strength. However, the performances of ERG vary widely due to its surface condition, especially density and distribution of ER particles at the surface. In order to stabilize and improve the performance of ERG, the electric- filed assisted molding process is proposed as the producing method of ERG. In this study, first, the principle of electro-adhesive effect is theoretically investigated. Second, a high-performance ERG produced by the proposed process, in which ER particles are aligned densely at the surface, is developed and its performance is evaluated experimentally. As the experimental result, the high-performance ERG shows twice higher shear stress than the conventional ERG.

  11. Development of high-performance ER gel produced by electric-field assisted molding

    Energy Technology Data Exchange (ETDEWEB)

    Kakinuma, Y; Aoyama, T [Department of System Design Engineering, Keio University, 3-14-1 Hiyoshi Kouhoku-ku Yokohama (Japan); Anzai, H [Fujikura kasei Co., Ltd. 2-6-15 Shibakouen, Minato-ku, Tokyo (Japan)], E-mail: kakinuma@sd.keio.ac.jp

    2009-02-01

    Electro-rheological gel (ERG) is a novel functional elastomer whose surface frictional and adhesive property varies according to the intensity of applied electric field. This peculiar phenomenon is named as Electro-adhesive effect. A generated shear stress of ERG under applied electric field is approximately 30{approx}40 times higher than that of ERF because of high adhesive strength. However, the performances of ERG vary widely due to its surface condition, especially density and distribution of ER particles at the surface. In order to stabilize and improve the performance of ERG, the electric- filed assisted molding process is proposed as the producing method of ERG. In this study, first, the principle of electro-adhesive effect is theoretically investigated. Second, a high-performance ERG produced by the proposed process, in which ER particles are aligned densely at the surface, is developed and its performance is evaluated experimentally. As the experimental result, the high-performance ERG shows twice higher shear stress than the conventional ERG.

  12. Endocannabinoid release modulates electrical coupling between CCK cells connected via chemical and electrical synapses in CA1

    Directory of Open Access Journals (Sweden)

    Jonathan eIball

    2011-11-01

    Full Text Available Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholesystokinin (CCK interneurons which co-express cannbinoid type-1 (CB1 receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labelling in acute slices of rat hippocampus at P18-20 days. CA1 stratum radiatum CCK Schaffer collateral associated (SCA cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released IPSPs that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5M resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI, maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization.

  13. Brazilian hybrid electric fuel cell bus

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P.E.V.; Carreira, E.S. [Coppe-Federal Univ. of Rio de Janeiro (Brazil). Hydrogen Lab.

    2010-07-01

    The first prototype of a hybrid electric fuel cell bus developed with Brazilian technology is unveiled. It is a 12 m urban-type, low-floor, air-conditioned bus that possesses three doors, air suspension, 29 seats and reversible wheelchair site. The bus body was built based on a double-deck type monoblock vehicle that is able to sustain important load on its roof. This allowed positioning of the type 3 hydrogen tanks and the low weight traction batteries on the roof of the vehicles without dynamic stabilization problems. A novel hybrid energy configuration was designed in such a way that the low-power (77 kWe) fuel cell works on steady-state operation mode, not responding directly to the traction motor load demand. The rate of kinetic energy regeneration upon breaking was optimized by the use of an electric hybrid system with predominance of batteries and also by utilizing supercapacitors. The electric-electronic devices and the security control softwares for the auxiliary and traction systems were developed in-house. The innovative hybrid-electric traction system configuration led to the possibility to decrease the fuel cell power, with positive impact on weight and system volume reduction, as well as to significantly decrease the hydrogen consumption. (orig.)

  14. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    Science.gov (United States)

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  15. Endocannabinoid Release Modulates Electrical Coupling between CCK Cells Connected via Chemical and Electrical Synapses in CA1

    Science.gov (United States)

    Iball, Jonathan; Ali, Afia B.

    2011-01-01

    Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholecystokinin (CCK) interneurons which co-express cannabinoid type-1 (CB1) receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labeling in acute slices of rat hippocampus at P18–20 days. CA1 stratum radiatum CCK Schaffer collateral-associated cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released inhibitory postsynaptic potential (IPSPs) that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5 μM) resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI), maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization. PMID

  16. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    Science.gov (United States)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  17. Fuel Cell Electric Vehicle Composite Data Products | Hydrogen and Fuel

    Science.gov (United States)

    Cells | NREL Vehicle Composite Data Products Fuel Cell Electric Vehicle Composite Data Products The following composite data products (CDPs) focus on current fuel cell electric vehicle evaluations Cell Operation Hour Groups CDP FCEV 39, 2/19/16 Comparison of Fuel Cell Stack Operation Hours and Miles

  18. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    Science.gov (United States)

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in

  19. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  20. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  1. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).

    Science.gov (United States)

    Strik, David P B T B; Terlouw, Hilde; Hamelers, Hubertus V M; Buisman, Cees J N

    2008-12-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.

  2. Manipulation of red blood cells with electric field

    Science.gov (United States)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  3. Cheap electricity with autonomous solar cell systems

    International Nuclear Information System (INIS)

    Ouwens, C.D.

    1993-01-01

    A comparison has been made between the costs of an autonomous solar cell system and a centralized electricity supply system. In both cases investment costs are the main issue. It is shown that for households in densely populated sunny areas, the use of autonomous solar cell systems is - even with today's market prices - only as expensive or even cheaper than a grid connection, as long as efficient electric appliances are used. The modular nature of solar cell systems makes it possible to start with any number of appliances, depending on the amount of money available to be spent. (author)

  4. Composition of Mineral Produced by Dental Mesenchymal Stem Cells.

    Science.gov (United States)

    Volponi, A A; Gentleman, E; Fatscher, R; Pang, Y W Y; Gentleman, M M; Sharpe, P T

    2015-11-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. © International & American Associations for Dental Research 2015.

  5. Electrical coupling between A17 cells enhances reciprocal inhibitory feedback to rod bipolar cells.

    Science.gov (United States)

    Elgueta, Claudio; Leroy, Felix; Vielma, Alex H; Schmachtenberg, Oliver; Palacios, Adrian G

    2018-02-15

    A17 amacrine cells are an important part of the scotopic pathway. Their synaptic varicosities receive glutamatergic inputs from rod bipolar cells (RBC) and release GABA onto the same RBC terminal, forming a reciprocal feedback that shapes RBC depolarization. Here, using patch-clamp recordings, we characterized electrical coupling between A17 cells of the rat retina and report the presence of strongly interconnected and non-coupled A17 cells. In coupled A17 cells, evoked currents preferentially flow out of the cell through GJs and cross-synchronization of presynaptic signals in a pair of A17 cells is correlated to their coupling degree. Moreover, we demonstrate that stimulation of one A17 cell can induce electrical and calcium transients in neighboring A17 cells, thus confirming a functional flow of information through electrical synapses in the A17 coupled network. Finally, blocking GJs caused a strong decrease in the amplitude of the inhibitory feedback onto RBCs. We therefore propose that electrical coupling between A17 cells enhances feedback onto RBCs by synchronizing and facilitating GABA release from inhibitory varicosities surrounding each RBC axon terminal. GJs between A17 cells are therefore critical in shaping the visual flow through the scotopic pathway.

  6. Kyoto Protocol, constraint or opportunity for coal based electricity producers

    International Nuclear Information System (INIS)

    Balasoiu, Constantin; Alecu, Sorin

    2006-01-01

    Coming into force of Kyoto Protocol (KP) in February 2005, as a result of its signing by Russian Federation, created the lawfulness of its provisions and mechanisms in order to reduce the average emission of Greenhouse Gases (GHG) at a global level down to 5.2 %. Passing this environment problem from a constrained area (regulations, directives) to an opportunity area (business) created the possibility that the achievement of KP objectives to be not an exclusive financial task of 'polluting actors', but opened the opportunity of bringing on stage all the necessary elements of a modern business environment: banks, investments from founds companies, consultants, buyers, sellers, stocks exchange. Until now, the investments and emissions transactions based by KP mechanisms at the worldwide level was focused on renewable energy area. Because for the most of countries, including Romania, the production of electricity based on fossil fuels (special coal) is one of the main option, bringing the KP mechanisms in operation in this area is difficult for at least two reasons: - the investments are huge; - the emissions reduction is not spectacular. In these circumstances, this paper gives an overview of the present GHG emission market, transaction mechanisms on this market and of the ways through which coal based electricity producers from Romania can access this market. We consider that the filtration of the information in this area from electricity producer point of view makes the content of this paper a good start for a new approach of environment management and its conversion from constraint (financial resources consumer) to opportunity ( financial resources producer). The paper contains are as follows: 1. Kyoto Protocol at a glance; 2. Emission trading mechanisms; 2.1. Transaction mechanisms under KP; 2.1.1. Joint Implementation (JI); 2.1.2 Clean Development Mechanism (CDM); 2.1.3. Emissions Trading (ET); 2.2. Other transactions mechanisms; 2.2.1. European Union Emissions

  7. Financial Health of electricity producers. What strategies to the crisis?

    International Nuclear Information System (INIS)

    Aristide, Adrien; Gobert, Yann; Bailey, Christopher

    2017-02-01

    This publication reports an analysis of the financial situation of 15 European electric power producing companies which represent 55 per cent of the electricity production. In a crisis context (decrease of turnover and of EBITDA between 2013 and 2015), three strategies seem to emerge: a model based on renewable production, orientation towards renewable production, and focus on an operational efficiency of the energy mix. As the installed production capacity has increased, electric power consumption has decreased. Thus, the financial situation of power utilities is strongly affected by the economic context, and companies are trying to maintain their financial ratios (control of financial debt and preservation of asset profitability) while they are facing a loss of confidence from investors as revealed by their performance on the stock exchange market. In response, they diversify their activities and redefine their strategy as mentioned here above. These elements are first presented with commented graphs, and then more precisely discussed

  8. Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work

    Science.gov (United States)

    vehicles. Hydrogen car image Key Components of a Hydrogen Fuel Cell Electric Car Battery (auxiliary): In an Using Hydrogen? Fuel Cell Electric Vehicles Work Using Hydrogen? to someone by E-mail Share Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work Using Hydrogen? on Facebook Tweet about

  9. Electric stimulus duration alters network-mediated responses depending on retinal ganglion cell type

    Science.gov (United States)

    Im, Maesoon; Werginz, Paul; Fried, Shelley I.

    2018-06-01

    Objective. To improve the quality of artificial vision that arises from retinal prostheses, it is important to bring electrically-elicited neural activity more in line with the physiological signaling patterns that arise normally in the healthy retina. Our previous study reported that indirect activation produces a closer match to physiological responses in ON retinal ganglion cells (RGCs) than in OFF cells (Im and Fried 2015 J. Physiol. 593 3677-96). This suggests that a preferential activation of ON RGCs would shape the overall retinal response closer to natural signaling. Recently, we found that changes to the rate at which stimulation was delivered could bias responses towards a stronger ON component (Im and Fried 2016a J. Neural Eng. 13 025002), raising the possibility that changes to other stimulus parameters can similarly bias towards stronger ON responses. Here, we explore the effects of changing stimulus duration on the responses in ON and OFF types of brisk transient (BT) and brisk sustained (BS) RGCs. Approach. We used cell-attached patch clamp to record RGC spiking in the isolated rabbit retina. Targeted RGCs were first classified as ON or OFF type by their light responses, and further sub-classified as BT or BS types by their responses to both light and electric stimuli. Spiking in targeted RGCs was recorded in response to electric pulses with durations varying from 5 to100 ms. Stimulus amplitude was adjusted at each duration to hold total charge constant for all experiments. Main results. We found that varying stimulus durations modulated responses differentially for ON versus OFF cells: in ON cells, spike counts decreased significantly with increasing stimulus duration while in OFF cells the changes were more modest. The maximum ratio of ON versus OFF responses occurred at a duration of ~10 ms. The difference in response strength for BT versus BS cells was much larger in ON cells than in OFF cells. Significance. The stimulation rates preferred by

  10. Analysis of Electrical Characteristics of Thin Film Photovoltaic Cells

    Science.gov (United States)

    Kasick, Michael P.

    2004-01-01

    Solar energy is the most abundant form of energy in many terrestrial and extraterrestrial environments. Often in extraterrestrial environments sunlight is the only readily available form of energy. Thus the ability to efficiently harness solar energy is one of the ultimate goals in the design of space power systems. The essential component that converts solar energy into electrical energy in a solar energy based power system is the photovoltaic cell. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While silicon is a well understood technology and yields high efficiency, there are inherent disadvantages to using single crystal materials. The requirements of weight, large planar surfaces, and high manufacturing costs make large silicon cells prohibitively expensive for use in certain applications. Because of silicon s disadvantages, there is considerable ongoing research into alternative photovoltaic technologies. In particular, thin film photovoltaic technologies exhibit a promising future in space power systems. While they are less mature than silicon, the better radiation hardness, reduced weight, ease of manufacturing, low material cost, and the ability to use virtually any exposed surface as a substrate makes thin film technologies very attractive for space applications. The research group lead by Dr. Hepp has spent several years researching copper indium disulfide as an absorber material for use in thin film photovoltaic cells. While the group has succeeded in developing a single source precursor for CuInS2 as well as a unique method of aerosol assisted chemical vapor deposition, the resulting cells have not achieved adequate efficiencies. While efficiencies of 11 % have been demonstrated with CuInS2 based cells, the cells produced by this group have shown efficiencies of approximately 1 %. Thus, current research efforts are turning towards the analysis of the individual layers of these cells, as well as the junctions between

  11. One kilometer (1 km) electric solar wind sail tether produced automatically.

    Science.gov (United States)

    Seppänen, Henri; Rauhala, Timo; Kiprich, Sergiy; Ukkonen, Jukka; Simonsson, Martin; Kurppa, Risto; Janhunen, Pekka; Hæggström, Edward

    2013-09-01

    We produced a 1 km continuous piece of multifilament electric solar wind sail tether of μm-diameter aluminum wires using a custom made automatic tether factory. The tether comprising 90,704 bonds between 25 and 50 μm diameter wires is reeled onto a metal reel. The total mass of 1 km tether is 10 g. We reached a production rate of 70 m/24 h and a quality level of 1‰ loose bonds and 2‰ rebonded ones. We thus demonstrated that production of long electric solar wind sail tethers is possible and practical.

  12. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Damián Hernández

    2016-01-01

    Full Text Available Background. Human induced pluripotent stem cells (iPSCs are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.

  13. Distributed generation system with PEM fuel cell for electrical power quality improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, D.; Beites, L.F.; Blazquez, F. [Department of Electrical Engineering, ETSII, Escuela de Ingenieros Industriales, Universidad Politecnica de Madrid, C/ Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Ballesteros, J.C. [Endesa Generacion, S.A. c/ Ribera de Loira 60, 28042 Madrid (Spain)

    2008-08-15

    In this paper, a physical model for a distributed generation (DG) system with power quality improvement capability is presented. The generating system consists of a 5 kW PEM fuel cell, a natural gas reformer, hydrogen storage bottles and a bank of ultra-capacitors. Additional power quality functions are implemented with a vector-controlled electronic converter for regulating the injected power. The capabilities of the system were experimentally tested on a scaled electrical network. It is composed of different lines, built with linear inductances and resistances, and taking into account both linear and non-linear loads. The ability to improve power quality was tested by means of different voltage and frequency perturbations produced on the physical model electrical network. (author)

  14. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Strik, David P.B.T.B.; Terlouw, Hilde; Hamelers, Hubertus V.M.; Buisman, Cees J.N. [Wageningen Univ. (Netherlands). Sub-Dept. of Environmental Technology

    2008-12-15

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m{sup 2} projected anode surface area and a maximum power production of 110 mW/m{sup 2} surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products. (orig.)

  15. Analytical Formulation of the Electric Field Induced by Electrode Arrays: Towards Automated Dielectrophoretic Cell Sorting

    Directory of Open Access Journals (Sweden)

    Vladimir Gauthier

    2017-08-01

    Full Text Available Dielectrophoresis is defined as the motion of an electrically polarisable particle in a non-uniform electric field. Current dielectrophoretic devices enabling sorting of cells are mostly controlled in open-loop applying a predefined voltage on micro-electrodes. Closed-loop control of these devices would enable to get advanced functionalities and also more robust behavior. Currently, the numerical models of dielectrophoretic force are too complex to be used in real-time closed-loop control. The aim of this paper is to propose a new type of models usable in this framework. We propose an analytical model of the electric field based on Fourier series to compute the dielectrophoretic force produced by parallel electrode arrays. Indeed, this method provides an analytical expression of the electric potential which decouples the geometrical factors (parameter of our system, the voltages applied on electrodes (input of our system, and the position of the cells (output of our system. Considering the Newton laws on each cell, it enables to generate easily a dynamic model of the cell positions (output function of the voltages on electrodes (input. This dynamic model of our system is required to design the future closed-loop control law. The predicted dielectrophoretic forces are compared to a numerical simulation based on finite element model using COMSOL software. The model presented in this paper enables to compute the dielectrophoretic force applied to a cell by an electrode array in a few tenths of milliseconds. This model could be consequently used in future works for closed-loop control of dielectrophoretic devices.

  16. Chaotic electrical activity of living β-cells in the mouse pancreatic islet

    Science.gov (United States)

    Kanno, Takahiro; Miyano, Takaya; Tokuda, Isao; Galvanovskis, Juris; Wakui, Makoto

    2007-02-01

    To test for chaotic dynamics of the insulin producing β-cell and explore its biological role, we observed the action potentials with the perforated patch clamp technique, for isolated cells as well as for intact cells of the mouse pancreatic islet. The time series obtained were analyzed using nonlinear diagnostic algorithms associated with the surrogate method. The isolated cells exhibited short-term predictability and visible determinism, in the steady state response to 10 mM glucose, while the intact cells did not. In the latter case, determinism became visible after the application of a gap junction inhibitor. This tendency was enhanced by the stimulation with tolbutamide. Our observations suggest that, thanks to the integration of individual chaotic dynamics via gap junction coupling, the β-cells will lose memory of fluctuations occurring at any instant in their electrical activity more rapidly with time. This is likely to contribute to the functional stability of the islet against uncertain perturbations.

  17. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Yoav, Hadar, E-mail: benyoav@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Amzel, Tal [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Sternheim, Marek [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel); Belkin, Shimshon [Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Rubin, Adi [Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, 69978 (Israel); Shacham-Diamand, Yosi [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Freeman, Amihay [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel)

    2011-11-01

    Highlights: > We present an electrochemical whole-cell biochip that can apply electric fields. > We examine the integration of cells on a biochip using electrophoretic deposition. > The effect of electric fields on the whole-cell biosensor has been demonstrated. > Relatively short DC electric pulse improves the performance of whole-cell biosensors. > Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that relatively

  18. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    International Nuclear Information System (INIS)

    Ben-Yoav, Hadar; Amzel, Tal; Sternheim, Marek; Belkin, Shimshon; Rubin, Adi; Shacham-Diamand, Yosi; Freeman, Amihay

    2011-01-01

    Highlights: → We present an electrochemical whole-cell biochip that can apply electric fields. → We examine the integration of cells on a biochip using electrophoretic deposition. → The effect of electric fields on the whole-cell biosensor has been demonstrated. → Relatively short DC electric pulse improves the performance of whole-cell biosensors. → Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that

  19. Electrical stimulation with periodic alternating intervals stimulates neuronal cells to produce neurotrophins and cytokines through activation of mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yamamoto, Kenta; Yamamoto, Toshiro; Honjo, Kenichi; Ichioka, Hiroaki; Oseko, Fumishige; Kishida, Tsunao; Mazda, Osam; Kanamura, Narisato

    2015-12-01

    Peripheral neuropathy is a representative complication of dental surgery. Electrical therapy, based on electrical stimulation with periodic alternating intervals (ES-PAI), may promote nerve regeneration after peripheral nerve injury in a non-invasive manner, potentially providing an effective therapy for neuropathy. This study aimed to analyze the molecular mechanisms underlying the nerve recovery stimulated by ES-PAI. In brief, ES-PAI was applied to a neuronal cell line, Neuro2A, at various intensities using the pulse generator apparatus, FREUDE. Cell viability, neurotrophin mRNA expression, and cytokine production were examined using a tetrazolium-based assay, real-time RT-PCR, and ELISA, respectively. Mitogen-activated protein kinase (MAPK) signaling was assessed using flow cytometry. It was found that ES-PAI increased the viability of cells and elevated expression of nerve growth factor (NGF) and neurotrophin-3 (NT-3); ESPAI also augmented vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) expression, which was restored by addition of p38 inhibitors. Phosphorylation of p38 and extracellular signal-regulated kinase 1/2 (ERK-1/2) was augmented by ES-PAI. Hence, ES-PAI may ameliorate peripheral neuropathy by promoting neuronal cell proliferation and production of neurogenic factors by activating p38 and ERK-1/2 pathways. © 2015 Eur J Oral Sci.

  20. Electric power self-producers and the support of emergent supplying by concessionaire

    International Nuclear Information System (INIS)

    Dastre, L.D.; Sebusiani, L.R.; Arantes, R.L.; Placido, R.; Vieira, F.O.; Janotta, W.R.

    1990-01-01

    The electric energy supplying to self-producers has particular features due to its load behavior impressed by the industrial process load itself. This matter is regulated by the National Division of Water Sources and Electric Power - DNAEE since late 1985. Nevertheless the entry of new and different price versions at marginal costs - such as the Green Rate -stressed relative pricing adjustments on regular rates as well as on emergent ones, which is going to allow unusual commercial fronts and is going to demand a continuous managerial attention on those supplying modes. (author)

  1. In vitro oocyte culture and somatic cell nuclear transfer used to produce a live-born cloned goat.

    Science.gov (United States)

    Ohkoshi, Katsuhiro; Takahashi, Seiya; Koyama, Shin-Ichiro; Akagi, Satoshi; Adachi, Noritaka; Furusawa, Tadashi; Fujimoto, Jun-Ichiro; Takeda, Kumiko; Kubo, Masanori; Izaike, Yoshiaki; Tokunaga, Tomoyuki

    2003-01-01

    The use of an in vitro culture system was examined for production of somatic cells suitable for nuclear transfer in the goat. Goat cumulus-oocyte complexes were incubated in tissue culture medium TCM-199 supplemented with 10% fetal bovine serum (FBS) for 20 h. In vitro matured (IVM) oocytes were enucleated and used as karyoplast recipients. Donor cells obtained from the anterior pituitary of an adult male were introduced into the perivitelline space of enucleated IVM oocytes and fused by an electrical pulse. Reconstituted oocytes were cultured in chemically defined medium for 9 days. Two hundred and twenty-eight oocytes (70%) were fused with donor cells. After in vitro culture, seven somatic cell nuclear transfer (SCNT) oocytes (3%) developed to the blastocyst stage. SCNT embryos were transferred to the oviducts of recipient females (four 8-cell embryos per female) or uterine horn (two blastocysts per female). One male clone (NT1) was produced at day 153 from an SCNT blastocyst and died 16 days after birth. This study demonstrates that nuclear transferred goat oocytes produced using an in vitro culture system could develop to term and that donor anterior pituitary cells have the developmental potential to produce term offspring. In this study, it suggested that the artificial control of endocrine system in domestic animal might become possible by the genetic modification to anterior pituitary cells.

  2. Intermediate Temperature Hybrid Fuel Cell System for the Conversion of Natural to Electricity and Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Theodore [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-22

    This goal of this project was to develop a new hybrid fuel cell technology that operates directly on natural gas or biogas to generate electrical energy and to produce ethane or ethylene from methane, the main component of natural gas or biogas, which can be converted to a liquid fuel or high-value chemical using existing process technologies. By taking advantage of the modularity and scalability of fuel cell technology, this combined fuel cell/chemical process technology targets the recovery of stranded natural gas available at the well pad or biogas produced at waste water treatment plants and municipal landfills by converting it to a liquid fuel or chemical. By converting the stranded gas to a liquid fuel or chemical, it can be cost-effectively transported to market thus allowing the stranded natural gas or biogas to be monetized instead of flared, producing CO2, a greenhouse gas, because the volumes produced at these locations are too small to be economically recovered using current gas-to-liquids process technologies.

  3. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  4. Low-frequency electrical stimulation induces the proliferation and differentiation of peripheral blood stem cells into Schwann cells.

    Science.gov (United States)

    Gu, Xudong; Fu, Jianming; Bai, Jing; Zhang, Chengwen; Wang, Jing; Pan, Wenping

    2015-02-01

    Functional recovery after peripheral nerve injury remains a tough problem at present. Specifically, a type of glial cell exists in peripheral nerves that promotes axonal growth and myelin formation and secretes various active substances, such as neurotrophic factors, extracellular matrix and adherence factors. These substances have important significance for the survival, growth and regeneration of nerve fibers. Numerous recent studies have shown that electrical stimulation can increase the number of myelinated nerve fibers. However, whether electrical stimulation acts on neurons or Schwann cells has not been verified in vivo. This study investigates low-frequency electrical stimulation-induced proliferation and differentiation of peripheral blood stem cells into Schwann cells and explores possible mechanisms. Peripheral blood stem cells from Sprague-Dawley rats were primarily cultured. Cells in passage 3 were divided into 4 groups: a low-frequency electrical stimulation group (20 Hz, 100 μs, 3 V), a low-frequency electrical stimulation+PD98059 (blocking the extracellular signal-regulated kinase [ERK] signaling pathway) group, a PD98059 group and a control group (no treatment). After induction, the cells were characterized. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliumbromide assay was employed to measure the absorbance values at 570 nm in the 4 groups. A Western blot assay was used to detect the expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) in each group. No significant difference in cell viability was detected before induction. Peripheral blood stem cells from the 4 groups differentiated into Schwann cells. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels were highest in the low-frequency electrical stimulation group and lowest in the ERK blockage group. Phosphorylated ERK 1/2, cyclin D1 and CDK4 protein levels in the low-frequency electrical stimulation+ERK blockage group were lower than those in the low-frequency electrical

  5. IL-9-Producing Mast Cell Precursors and Food Allergy

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0517 TITLE: IL-9-Producing Mast Cell Precursors and Food Allergy PRINCIPAL INVESTIGATOR: Dr. Simon P. Hogan PhD...IL-9-Producing Mast Cell Precursors and Food Allergy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yui Hsi Wang, Sunil...threatening anaphylaxis. We have identified a novel multi-functional IL-9-producing mucosal mast cells (MMC9s) that produce large amounts of IL-9, IL

  6. Fuel cells for electricity generation from carbonaceous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ledjeff-Hey, K; Formanski, V; Roes, J [Gerhard-Mercator- Universitaet - Gesamthochschule Duisburg, Fachbereich Maschinenbau/Fachgebiet Energietechnik, Duisburg (Germany); Heinzel, A [Fraunhofer Inst. for Solar Energy Systems (ISE), Freiburg (Germany)

    1998-09-01

    Fuel cells, which are electrochemical systems converting chemical energy directly into electrical energy with water and heat as by-products, are of interest as a means of generating electricity which is environmentally friendly, clean and highly efficient. They are classified according to the electrolyte used. The main types of cell in order of operating temperature are described. These are: alkaline fuel cells, the polymer electrolyte membrane fuel cell (PEMFC); the phosphoric acid fuel cell (PAFC); the molten carbonate fuel cell (MCFC); the solid oxide fuel cell (SOFC). Applications depend on the type of cell and may range from power generation on a large scale to mobile application in cars or portable systems. One of the most promising options is the PEM-fuel cell stack where there has been significant improvement in power density in recent years. The production from carbonaceous fuels and purification of the cell fuel, hydrogen, is considered. Of the purification methods available, hydrogen separation by means of palladium alloy membranes seems particular effective in reducing CO concentrations to the low levels required for PEM cells. (UK)

  7. Electric terminal performance and characterization of solid oxide fuel cells and systems

    Science.gov (United States)

    Lindahl, Peter Allan

    Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated

  8. Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shuyu Yao

    2010-02-01

    Full Text Available Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vgamma2Vdelta2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNgamma-producing Vgamma2Vdelta2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNgamma neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vgamma2Vdelta2 T-cell-driven IFNgamma-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vgamma2Vdelta2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.

  9. Opportunities for PEM fuel cell commercialization : fuel cell electric vehicle demonstration in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Chemical Engineering

    2006-07-01

    The research and development activities devoted to the development of the proton exchange membrane fuel cell (PEMFC) were discussed with reference to its application in the fuel cell electric vehicle (FCEV). In the past decade, PEMFC technology has been successfully applied in both the automobile and residential sector worldwide. In China, more than one billion RMB yuan has been granted by the Chinese government to develop PEM fuel cell technology over the past 5 years, particularly for commercialization of the fuel cell electric vehicle (FCEV). The City of Shanghai has played a significant role in the FCEV demonstration with involvement by Shanghai Auto Industrial Company (SAIC), Tongji University, Shanghai Jiaotong University, and Shanghai Shenli High Tech Co. Ltd. These participants were involved in the development and integration of the following components into the FCEV: fuel cell engines, batteries, FCEV electric control systems, and primary materials for the fuel cell stack. During the course of the next five year-plan (2006-2010), Shanghai will promote the commercialization of FCEV. More than one thousand FCEVs will be manufactured and an FCEV fleet will be in operation throughout Shanghai City by 2010.

  10. Performance of a Fuel-Cell-Powered, Small Electric Airplane Assessed

    Science.gov (United States)

    Berton, Jeffrey J.

    2004-01-01

    Rapidly emerging fuel-cell-power technologies may be used to launch a new revolution of electric propulsion systems for light aircraft. Future small electric airplanes using fuel cell technologies hold the promise of high reliability, low maintenance, low noise, and - with the exception of water vapor - zero emissions. An analytical feasibility and performance assessment was conducted by NASA Glenn Research Center's Airbreathing Systems Analysis Office of a fuel-cell-powered, propeller-driven, small electric airplane based on a model of the MCR-01 two-place kitplane (Dyn'Aero, Darois, France). This assessment was conducted in parallel with an ongoing effort by the Advanced Technology Products Corporation and the Foundation for Advancing Science and Technology Education. Their project - partially funded by a NASA grant - is to design, build, and fly the first manned, continuously propelled, nongliding electric airplane. In our study, an analytical performance model of a proton exchange membrane (PEM) fuel cell propulsion system was developed and applied to a notional, two-place light airplane modeled after the MCR-01 kitplane. The PEM fuel cell stack was fed pure hydrogen fuel and humidified ambient air via a small automotive centrifugal supercharger. The fuel cell performance models were based on chemical reaction analyses calibrated with published data from the fledgling U.S. automotive fuel cell industry. Electric propeller motors, rated at two shaft power levels in separate assessments, were used to directly drive a two-bladed, variable-pitch propeller. Fuel sources considered were compressed hydrogen gas and cryogenic liquid hydrogen. Both of these fuel sources provided pure, contaminant-free hydrogen for the PEM cells.

  11. Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator

    Energy Technology Data Exchange (ETDEWEB)

    Bau, S., E-mail: sebastien.bau@inrs.fr; Witschger, O. [Laboratoire de Metrologie des Aerosols, Institut National de Recherche et de Securite, INRS (France); Gensdarmes, F. [IRSN, Laboratoire de Physique et de Metrologie des Aerosols, Institut de Radioprotection et de Surete Nucleaire (France); Thomas, D. [LSGC/CNRS, Nancy Universite, Laboratoire des Sciences du Genie Chimique (France); Borra, J.-P. [Equipe Decharges Electriques et Procedes Aerosols, Laboratoire de Physique des Gaz et des Plasmas (France)

    2010-08-15

    A nanoparticle generator based on the principle of electrical discharge (PALAS GFG-1000) was used to produce nanoparticles of different chemical natures. The fractions of electrically neutral particles were then measured by means of a Spectrometre de Mobilite Electrique Circulaire (SMEC, i.e. radial-flow mobility analyzer) for different operating conditions. The experimental results were compared with the theoretical values calculated from the Fuchs extended charge equilibrium model for spherical particles and agglomerates. For the smallest particles (below 20 nm), the deviations observed remain below 10%, and tend towards 20% for larger particles (over 35 nm).

  12. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes.

    Science.gov (United States)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2013-12-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Electroporation of Mammalian Cells by Nanosecond Electric Field Oscillations and its Inhibition by the Electric Field Reversal

    Science.gov (United States)

    2015-09-08

    Report 3. DATES COVERED (From – To) March 2013 to July 2015 4. TITLE AND SUBTITLE Electroporation of mammalian cells by nanosecond electric field...Prescribed by ANSI Std. Z39.18 1Scientific RepoRts | 5:13818 | DOi: 10.1038/srep13818 www.nature.com/scientificreports Electroporation of mammalian cells...first to demonstrate that mammalian cells can be electroporated by damped sine wave electric stimuli of nanosecond duration. By comparing the

  14. A comparison of hydrogen-fueled fuel cells and combustion engines for electric utility applications

    International Nuclear Information System (INIS)

    Schoenung, S.M.

    2000-01-01

    Hydrogen-fueled systems have been proposed for a number of stationary electric generation applications including remote power generation, load management, distribution system peak shaving, and reliability or power quality enhancement. Hydrogen fueling permits clean, low pollution operation. This is particularly true for systems that use hydrogen produced from electrolysis, rather than the reforming of hydrocarbon fuels. Both fuel cells and combustion engines are suitable technologies for using hydrogen in many electric utility applications. This paper presents results from several studies performed for the U.S. Department of Energy Hydrogen Program. A comparison between the two technologies shows that, whereas fuel cells are somewhat more energy efficient, combustion engine technology is less expensive. In this paper, a comparison of the two technologies is presented, with an emphasis on distributed power and power quality applications. The special case of a combined distributed generation I hydrogen refueling station is also addressed. The comparison is made on the basis of system costs and benefits, but also includes a comparison of technology status: power ratings and response time. A discussion of pollutant emissions and pollutant control strategies is included. The results show those electric utility applications for which each technology is best suited. (author)

  15. Robust Optimization of the Self- scheduling and Market Involvement for an Electricity Producer

    KAUST Repository

    Lima, Ricardo

    2015-01-01

    This work address the optimization under uncertainty of the self-scheduling, forward contracting, and pool involvement of an electricity producer operating a mixed power generation station, which combines thermal, hydro and wind sources, and uses a two-stage adaptive robust optimization approach. In this problem the wind power production and the electricity pool price are considered to be uncertain, and are described by uncertainty convex sets. Two variants of a constraint generation algorithm are proposed, namely a primal and dual version, and they are used to solve two case studies based on two different producers. Their market strategies are investigated for three different scenarios, corresponding to as many instances of electricity price forecasts. The effect of the producers’ approach, whether conservative or more risk prone, is also investigated by solving each instance for multiple values of the so-called budget parameter. It was possible to conclude that this parameter influences markedly the producers’ strategy, in terms of scheduling, profit, forward contracting, and pool involvement. Regarding the computational results, these show that for some instances, the two variants of the algorithms have a similar performance, while for a particular subset of them one variant has a clear superiority

  16. Robust Optimization of the Self- scheduling and Market Involvement for an Electricity Producer

    KAUST Repository

    Lima, Ricardo

    2015-01-07

    This work address the optimization under uncertainty of the self-scheduling, forward contracting, and pool involvement of an electricity producer operating a mixed power generation station, which combines thermal, hydro and wind sources, and uses a two-stage adaptive robust optimization approach. In this problem the wind power production and the electricity pool price are considered to be uncertain, and are described by uncertainty convex sets. Two variants of a constraint generation algorithm are proposed, namely a primal and dual version, and they are used to solve two case studies based on two different producers. Their market strategies are investigated for three different scenarios, corresponding to as many instances of electricity price forecasts. The effect of the producers’ approach, whether conservative or more risk prone, is also investigated by solving each instance for multiple values of the so-called budget parameter. It was possible to conclude that this parameter influences markedly the producers’ strategy, in terms of scheduling, profit, forward contracting, and pool involvement. Regarding the computational results, these show that for some instances, the two variants of the algorithms have a similar performance, while for a particular subset of them one variant has a clear superiority

  17. Dynamic behavior of gasoline fuel cell electric vehicles

    Science.gov (United States)

    Mitchell, William; Bowers, Brian J.; Garnier, Christophe; Boudjemaa, Fabien

    As we begin the 21st century, society is continuing efforts towards finding clean power sources and alternative forms of energy. In the automotive sector, reduction of pollutants and greenhouse gas emissions from the power plant is one of the main objectives of car manufacturers and innovative technologies are under active consideration to achieve this goal. One technology that has been proposed and vigorously pursued in the past decade is the proton exchange membrane (PEM) fuel cell, an electrochemical device that reacts hydrogen with oxygen to produce water, electricity and heat. Since today there is no existing extensive hydrogen infrastructure and no commercially viable hydrogen storage technology for vehicles, there is a continuing debate as to how the hydrogen for these advanced vehicles will be supplied. In order to circumvent the above issues, power systems based on PEM fuel cells can employ an on-board fuel processor that has the ability to convert conventional fuels such as gasoline into hydrogen for the fuel cell. This option could thereby remove the fuel infrastructure and storage issues. However, for these fuel processor/fuel cell vehicles to be commercially successful, issues such as start time and transient response must be addressed. This paper discusses the role of transient response of the fuel processor power plant and how it relates to the battery sizing for a gasoline fuel cell vehicle. In addition, results of fuel processor testing from a current Renault/Nuvera Fuel Cells project are presented to show the progress in transient performance.

  18. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Julie Kirkegaard

    2014-08-01

    Full Text Available This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes in electrical properties compared with non-treated cells. We found that our microfluidic system was able to distinguish between treated and non-treated cells. Furthermore, we utilize a model for electrical impedance spectroscopy in order to perform a theoretical study to clarify our results. This study focuses on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy.

  19. Electrically induced release of acetylcholine from denervated Schwann cells.

    Science.gov (United States)

    Dennis, M J; Miledi, R

    1974-03-01

    1. Focal electrical stimulation of Schwann cells at the end-plates of denervated frog muscles elicited slow depolarizations of up to 30 mV in the muscle fibres. This response is referred to as a Schwann-cell end-plate potential (Schwann-e.p.p.).2. Repeated stimulation sometimes evoked further Schwann-e.p.p.s, but they were never sustained for more than 30 pulses. Successive e.p.p.s varied in amplitude and time course independently of the stimulus.3. The Schwann-e.p.p.s were reversibly blocked by curare, suggesting that they result from a release of acetylcholine (ACh) by the Schwann cells.4. ACh release by electrical stimulation did not seem to occur in quantal form and was not dependent on the presence of calcium ions in the external medium; nor was it blocked by tetrodotoxin.5. Stimulation which caused release of ACh also resulted in extensive morphological disruption of the Schwann cells, as seen with both light and electron microscopy.6. It is concluded that electrical stimulation of denervated Schwann cells causes break-down of the cell membrane and releases ACh, presumably in molecular form.

  20. Using Fuel Cells to Increase the Range of Battery Electric Vehicles | News

    Science.gov (United States)

    | NREL Using Fuel Cells to Increase the Range of Battery Electric Vehicles Using Fuel Cells to significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell -Duty Battery Electric Vehicles through the Use of Hydrogen Fuel Cells"-presented at the Society of

  1. The electrical properties of auditory hair cells in the frog amphibian papilla.

    Science.gov (United States)

    Smotherman, M S; Narins, P M

    1999-07-01

    The amphibian papilla (AP) is the principal auditory organ of the frog. Anatomical and neurophysiological evidence suggests that this hearing organ utilizes both mechanical and electrical (hair cell-based) frequency tuning mechanisms, yet relatively little is known about the electrophysiology of AP hair cells. Using the whole-cell patch-clamp technique, we have investigated the electrical properties and ionic currents of isolated hair cells along the rostrocaudal axis of the AP. Electrical resonances were observed in the voltage response of hair cells harvested from the rostral and medial, but not caudal, regions of the AP. Two ionic currents, ICa and IK(Ca), were observed in every hair cell; however, their amplitudes varied substantially along the epithelium. Only rostral hair cells exhibited an inactivating potassium current (IA), whereas an inwardly rectifying potassium current (IK1) was identified only in caudal AP hair cells. Electrically tuned hair cells exhibited resonant frequencies from 50 to 375 Hz, which correlated well with hair cell position and the tonotopic organization of the papilla. Variations in the kinetics of the outward current contribute substantially to the determination of resonant frequency. ICa and IK(Ca) amplitudes increased with resonant frequency, reducing the membrane time constant with increasing resonant frequency. We conclude that a tonotopically organized hair cell substrate exists to support electrical tuning in the rostromedial region of the frog amphibian papilla and that the cellular mechanisms for frequency determination are very similar to those reported for another electrically tuned auditory organ, the turtle basilar papilla.

  2. Bioaugmentation for Electricity Generation from Corn Stover Biomass Using Microbial Fuel Cells

    KAUST Repository

    Wang, Xin

    2009-08-01

    Corn stover is usually treated by an energy-intensive or expensive process to extract sugars for bioenergy production. However, it is possible to directly generate electricity from corn stover in microbial fuel cells (MFCs) through the addition of microbial consortia specifically acclimated for biomass breakdown. A mixed culture that was developed to have a high saccharification rate with corn stover was added to singlechamber, air-cathode MFCs acclimated for power production using glucose. The MFC produced a maximum power of 331 mW/ m 2 with the bioaugmented mixed culture and corn stover, compared to 510 mW/m2 using glucose. Denaturing gradient gel electrophoresis (DGGE) showed the communities continued to evolve on both the anode and corn stover biomass over 60 days, with several bacteria identified including Rhodopseudomonas palustris. The use of residual solids from the steam exploded corn stover produced 8% more power (406 mW/m2) than the raw corn stover. These results show that it is possible to directly generate electricity from waste corn stover in MFCs through bioaugmentation using naturally occurring bacteria. © 2009 American Chemical Society.

  3. Efficient Differentiation of Mouse Embryonic Stem Cells into Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Szu-Hsiu Liu

    2012-01-01

    Full Text Available Embryonic stem (ES cells are a potential source of a variety of differentiated cells for cell therapy, drug discovery, and toxicology screening. Here, we present an efficacy strategy for the differentiation of mouse ES cells into insulin-producing cells (IPCs by a two-step differentiation protocol comprising of (i the formation of definitive endoderm in monolayer culture by activin A, and (ii this monolayer endoderm being induced to differentiate into IPCs by nicotinamide, insulin, and laminin. Differentiated cells can be obtained within approximately 7 days. The differentiation IPCs combined application of RT-PCR, ELISA, and immunofluorescence to characterize phenotypic and functional properties. In our study, we demonstrated that IPCs produced pancreatic transcription factors, endocrine progenitor marker, definitive endoderm, pancreatic β-cell markers, and Langerhans α and δ cells. The IPCs released insulin in a manner that was dose dependent upon the amount of glucose added. These techniques may be able to be applied to human ES cells, which would have very important ramifications for treating human disease.

  4. Direct measurement of macroscopic electric fields produced by collective effects in electron-impact experiments

    International Nuclear Information System (INIS)

    Velotta, R.; Avaldi, L.; Camilloni, R.; Giammanco, F.; Spinelli, N.; Stefani, G.

    1996-01-01

    The macroscopic electric field resulting from the space charge produced in electron-impact experiments has been characterized by using secondary electrons of well-defined energy (e.g., Auger or autoionizing electrons) as a probe. It is shown that the measurement of the kinetic-energy shifts suffered by secondary electrons is a suitable tool for the analysis of the self-generated electric field in a low-density plasma. copyright 1996 The American Physical Society

  5. Miniaturized Integrated Platform for Electrical and Optical Monitoring of Cell Cultures

    Directory of Open Access Journals (Sweden)

    Costin Brasoveanu

    2012-08-01

    Full Text Available The following paper describes the design and functions of a miniaturized integrated platform for optical and electrical monitoring of cell cultures and the necessary steps in the fabrication and testing of a silicon microchip Micro ElectroMechanical Systems (MEMS-based technology for cell data recording, monitoring and stimulation. The silicon microchip consists of a MEMS machined device containing a shank of 240 μm width, 3 mm long and 50 μm thick and an enlarged area of 5 mm × 5 mm hosting the pads for electrical connections. Ten platinum electrodes and five sensors are placed on the shank and are connected with the external electronics through the pads. The sensors aim to monitor the pH, the temperature and the impedance of the cell culture. The electrodes are bidirectional and can be used both for electrical potential recording and stimulation of cells. The fabrication steps are presented, along with the electrical and optical characterization of the system. The target of the research is to develop a new and reconfigurable platform according to the particular applications needs, as a tool for the biologist, chemists and medical doctors working is the field of cell culture monitoring in terms of growth, maintenance conditions, reaction to electrical or chemical stimulation (drugs, toxicants, etc.. HaCaT (Immortalised Human Keratinocyte cell culture has been used for demonstration purposes in order to provide information on the platform electrical and optical functions.

  6. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    Science.gov (United States)

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  7. The Use of Boron-doped Diamond Electrode on Yeast-based Microbial Fuel Cell for Electricity Production

    Science.gov (United States)

    Hanzhola, G.; Tribidasari, A. I.; Endang, S.

    2018-01-01

    The dependency of fossil energy in Indonesia caused the crude oil production to be drastically decreased since 2001, while energy consumption increased. In addition, The use of fossil energy can cause several environmental problems. Therefore, we need an alternative environment-friendly energy as solution for these problems. A microbial fuel cell is one of the prospective alternative source of an environment-friendly energy source to be developed. In this study, Boron-doped diamond electrode was used as working electrode and Candida fukuyamaensis as biocatalyst in microbial fuel cell. Different pH of anode compartment (pH 6.5-7.5) and mediator concentration (10-100 μM) was used to produce an optimal electricity. MFC was operated for 3 hours. During operation, the current and voltage density was measured with potensiostat. The maximum power and current density are 425,82 mW/m2 and 440 mA/m2, respectively, for MFC using pH 7.5 at anode compartment without addition of methylene blue. The addition of redox mediator is lowering the produced electricity because of its anti microbial properties that can kill the microbe.

  8. Microbial fuel cells for direct electrical energy recovery from urban wastewaters.

    Science.gov (United States)

    Capodaglio, A G; Molognoni, D; Dallago, E; Liberale, A; Cella, R; Longoni, P; Pantaleoni, L

    2013-01-01

    Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode. The MFC was fed with different types of substrates. This study evaluates the MFC behaviour, in terms of organic matter removal efficiency, which reached 86% (on average) with a hydraulic retention time of 150 hours. The MFC produced an average power density of 13.2 mW/m(3), with a Coulombic efficiency ranging from 0.8 to 1.9%. The amount of data collected allowed an accurate analysis of the repeatability of MFC electrochemical behaviour, with regards to both COD removal kinetics and electric energy production.

  9. Life cycle environmental impacts of electricity from biogas produced by anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Alessandra eFusi

    2016-03-01

    Full Text Available The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry and tomato waste as feedstocks and co-generating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system which uses animal slurry is the best option, except for the marine and terrestrial eco-toxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and

  10. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion.

    Science.gov (United States)

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating

  11. Life Cycle Environmental Impacts of Electricity from Biogas Produced by Anaerobic Digestion

    Science.gov (United States)

    Fusi, Alessandra; Bacenetti, Jacopo; Fiala, Marco; Azapagic, Adisa

    2016-01-01

    The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating

  12. Generation of electrical defects in ion beam assisted deposition of Cu(In,Ga)Se2 thin film solar cells

    International Nuclear Information System (INIS)

    Zachmann, H.; Puttnins, S.; Daume, F.; Rahm, A.; Otte, K.

    2011-01-01

    Thin films of Cu(In,Ga)Se 2 (CIGS) absorber layers for thin film solar cells have been manufactured on polyimide foil in a low temperature, ion beam assisted co-evaporation process. In the present work a set of CIGS thin films was produced with varying selenium ion energy. Solar cell devices have been manufactured from the films and characterized via admittance spectroscopy and capacitance-voltage profiling to determine the influence of the selenium ion energy on the electric parameters of the solar cells. It is shown that the impact of energetic selenium ions in the CIGS deposition process leads to a change in the activation energy and defect density and also in the spatial distribution of electrically active defects. For the interpretation of the results two defect models are taken into account.

  13. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation.

    Science.gov (United States)

    Niessen, J; Schröder, U; Harnisch, F; Scholz, F

    2005-01-01

    To exploit the fermentative hydrogen generation and direct hydrogen oxidation for the generation of electric current from the degradation of cellulose. Utilizing the metabolic activity of the mesophilic anaerobe Clostridium cellulolyticum and the thermophilic Clostridium thermocellum we show that electricity generation is possible from cellulose fermentation. The current generation is based on an in situ oxidation of microbially synthesized hydrogen at platinum-poly(tetrafluoroaniline) (Pt-PTFA) composite electrodes. Current densities of 130 mA l(-1) (with 3 g cellulose per litre medium) were achieved in poised potential experiments under batch and semi-batch conditions. The presented results show that electricity generation is possible by the in situ oxidation of hydrogen, product of the anaerobic degradation of cellulose by cellulolytic bacteria. For the first time, it is shown that an insoluble complex carbohydrate like cellulose can be used for electricity generation in a microbial fuel cell. The concept represents a first step to the utilization of macromolecular biomass components for microbial electricity generation.

  14. The B cell death function of obinutuzumab-HDEL produced in plant (Nicotiana benthamiana L. is equivalent to obinutuzumab produced in CHO cells.

    Directory of Open Access Journals (Sweden)

    Jin Won Lee

    Full Text Available Plants have attracted attention as bio-drug production platforms because of their economical and safety benefits. The preliminary efficacy of ZMapp, a cocktail of antibodies produced in N. benthamiana (Nicotiana benthamiana L., suggested plants may serve as a platform for antibody production. However, because the amino acid sequences of the Fab fragment are diverse and differences in post-transcriptional processes between animals and plants remain to be elucidated, it is necessary to confirm functional equivalence of plant-produced antibodies to the original antibody. In this study, Obinutuzumab, a third generation anti-CD20 antibody, was produced in N. benthamiana leaves (plant-obinutuzumab and compared to the original antibody produced in glyco-engineered Chinese hamster ovary (CHO cells (CHO-obinutuzumab. Two forms (with or without an HDEL tag were generated and antibody yields were compared. The HDEL-tagged form was more highly expressed than the non-HDEL-tagged form which was cleaved in the N-terminus. To determine the equivalence in functions of the Fab region between the two forms, we compared the CD20 binding affinities and direct binding induced cell death of a CD20-positive B cells. Both forms showed similar CD20 binding affinities and direct cell death of B cell. The results suggested that plant-obinutuzumab was equivalent to CHO-obinutuzumab in CD20 binding, cell aggregation, and direct cell death via binding. Therefore, our findings suggest that Obinutuzumab is a promising biosimilar candidate that can be produced efficiently in plants.

  15. Environmental implications of electricity purchase from independent power producers: a case study from Thailand

    International Nuclear Information System (INIS)

    Rabin Shrestha; Ram M Shrestha

    2003-01-01

    This paper analyses the effect on the environment of electricity purchase from independent power producers (IPPs) in the case of Thailand. The environmental implication is evaluated in terms of the net change in emission of air pollutants with electricity purchase from IPPs by a utility. The main finding of the study is that electricity purchase from a non-dispatchable IPP plant based on coal-fired generation would increase the net emissions compared with that without the purchase from IPPs. The study also shows that the lower plant factor of the IPP plant would also increase the emission of air pollutants. Furthermore, with non-dispatchable IPP plants, the total emission of air pollutants would increase, whereas with dispatchable IPP plants the total emission would decrease with the level of electricity purchases. (author)

  16. Heat and electricity generating methods

    International Nuclear Information System (INIS)

    Buter, J.

    1977-01-01

    A short synopsis on the actual methods of heating of lodgings and of industrial heat generation is given. Electricity can be generated in steam cycles heated by burning of fossil fuels or by nuclear energy. A valuable contribution to the electricity economy is produced in the hydroelectric power plants. Besides these classical methods, also the different procedures of direct electricity generation are treated: thermoelectric, thermionic, magnetohydrodynamic power sources, solar and fuel cells. (orig.) [de

  17. Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H2 /N2 Fuel Cell.

    Science.gov (United States)

    Milton, Ross D; Cai, Rong; Abdellaoui, Sofiene; Leech, Dónal; De Lacey, Antonio L; Pita, Marcos; Minteer, Shelley D

    2017-03-01

    Nitrogenases are the only enzymes known to reduce molecular nitrogen (N 2 ) to ammonia (NH 3 ). By using methyl viologen (N,N'-dimethyl-4,4'-bipyridinium) to shuttle electrons to nitrogenase, N 2 reduction to NH 3 can be mediated at an electrode surface. The coupling of this nitrogenase cathode with a bioanode that utilizes the enzyme hydrogenase to oxidize molecular hydrogen (H 2 ) results in an enzymatic fuel cell (EFC) that is able to produce NH 3 from H 2 and N 2 while simultaneously producing an electrical current. To demonstrate this, a charge of 60 mC was passed across H 2  /N 2 EFCs, which resulted in the formation of 286 nmol NH 3  mg -1 MoFe protein, corresponding to a Faradaic efficiency of 26.4 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  19. Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells

    Science.gov (United States)

    Sanos, Stephanie L; Vonarbourg, Cedric; Mortha, Arthur; Diefenbach, Andreas

    2011-01-01

    It is rapidly emerging that the defence system of innate lymphocytes is more diverse than previously recognized. In addition to natural killer (NK) cells, lymphoid tissue inducer (LTi) cells, and natural helper cells have now been identified. LTi cells are developmentally dependent on the orphan transcription factor RORγt and instruct lymph node development during embryogenesis. More recently, it has become evident, that in addition to their role for lymph organ development, LTi cells are also potent producers of cytokines such as interleukin-22 (IL-22) and IL-17 in adult mice. In addition to LTi cells, another RORγt-dependent innate lymphocyte subset co-expressing RORγt and NK cell receptors (NKRs) has been identified. These NKR+ RORγt+ cells are also potent producers of IL-22 but it is unclear whether they are part of the NK cell or LTi cell lineage. This review will highlight recent progress in understanding development and function of innate IL-22-producing lymphocyte subsets. PMID:21391996

  20. Simulation study of a PEM fuel cell system fed by hydrogen produced by partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ozdogan, S [Marmara University, Faculty of Engineering, Istanbul (Turkey); Ersoz, A; Olgun, H [TUBITAK Marmara Research Center, Energy Systems and Environmental Research Institute, Kocaeli (Turkey)

    2003-09-01

    Within the frame of sustainable development, efficient and clean, if possible zero emission energy production technologies are of utmost importance in various sectors such as utilities, industry, households and transportation. Low-temperature fuel cell systems are suitable for powering transportation systems such as automobiles and trucks in an efficient and low-emitting manner. Proton exchange membrane (PEM) fuel cell systems constitute the most promising low temperature fuel cell option being developed globally. PEM fuel cells generate electric power from air and hydrogen or from a hydrogen rich gas via electrochemical reactions. Water and waste heat are the only by-products of PEM fuel cells. There is great interest in converting current hydrocarbon based common transportation fuels such as gasoline and diesel into hydrogen rich gases acceptable by PEM fuel cells. Hydrogen rich gases can be produced from conventional transportation fuels via various reforming technologies. Steam reforming, partial oxidation and auto-thermal reforming are the three major reforming technologies. In this paper, we discuss the results of a simulation study for a PEM fuel cell with partial oxidation. The Aspen HYSYS 3.1 code has been used for simulation purposes. Two liquid hydrocarbon fuels have been selected to investigate the effect of average molecular weights of hydrocarbons, on the fuel processing efficiency. The overall system efficiency depends on the fuel preparation and fuel cell efficiencies as well as on the heat integration within the system. It is desired to investigate the overall system efficiencies for net electrical power production at 100 kW considering bigger scale transport applications. Results indicate that fuel properties, fuel preparation system operating parameters and PEM fuel cell polarization curve characteristics all affect the overall system efficiency. (authors)

  1. Electrical Guidance of Human Stem Cells in the Rat Brain

    Directory of Open Access Journals (Sweden)

    Jun-Feng Feng

    2017-07-01

    Full Text Available Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies.

  2. The effect of weather uncertainty on the financial risk of green electricity producers under various renewable policies

    Energy Technology Data Exchange (ETDEWEB)

    Nagl, Stephan

    2013-06-15

    In recent years, many countries have implemented policies to incentivize renewable power generation. In this paper, we analyze the variance in profits of renewable-based electricity producers due to weather uncertainty under a 'feed-in tariff' policy, a 'fixed bonus' incentive and a 'renewable quota' obligation. In a first step, we discuss the price effects of fluctuations in the feed-in from renewables and their impact on the risk for green electricity producers. In a second step, we numerically solve the problem by applying a spatial stochastic equilibrium model to the European electricity market. The simulation results allow us to discuss the variance in profits under the different renewable support mechanisms and how different technologies are affected by weather uncertainty. The analysis suggests that wind producers benefit from market integration, whereas producers from biomass and solar plants face a larger variance in profits. Furthermore, the simulation indicates that highly volatile green certificate prices occur when introducing a renewable quota obligation without the option of banking and borrowing. Thus, all renewable producers face a higher variance in profits, as the price effect of weather uncertainty on green certificates overcompensates the negatively correlated fluctuations in production and prices.

  3. Targeting development of incretin-producing cells increases insulin secretion

    DEFF Research Database (Denmark)

    Petersen, Natalia; Reimann, Frank; van Es, Johan H

    2015-01-01

    the number of intestinal L cells, which produce GLP-1, is an alternative strategy to augment insulin responses and improve glucose tolerance. Blocking the NOTCH signaling pathway with the γ-secretase inhibitor dibenzazepine increased the number of L cells in intestinal organoid-based mouse and human culture...... of the development of incretin-producing cells in the intestine has potential as a therapeutic strategy to improve glycemic control....

  4. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    DEFF Research Database (Denmark)

    Kirkegaard, Julie; Clausen, Casper Hyttel; Rodriguez-Trujíllo, Romén

    2014-01-01

    This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes...... on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy....

  5. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  6. Human Cells as Platform to Produce Gamma-Carboxylated Proteins.

    Science.gov (United States)

    de Sousa Bomfim, Aline; de Freitas, Marcela Cristina Corrêa; Covas, Dimas Tadeu; de Sousa Russo, Elisa Maria

    2018-01-01

    The gamma-carboxylated proteins belong to a family of proteins that depend on vitamin K for normal biosynthesis. The major representative gamma-carboxylated proteins are the coagulation system proteins, for example, factor VII, factor IX, factor X, prothrombin, and proteins C, S, and Z. These molecules have harbored posttranslational modifications, such as glycosylation and gamma-carboxylation, and for this reason they need to be produced in mammalian cell lines. Human cells lines have emerged as the most promising alternative to the production of gamma-carboxylated proteins. In this chapter, the methods to generate human cells as a platform to produce gamma-carboxylated proteins, for example the coagulation factors VII and IX, are presented. From the cell line modification up to the vitamin K adaptation of the produced cells is described in the protocols presented in this chapter.

  7. Electrical stimulation enhances cell migration and integrative repair in the meniscus

    Science.gov (United States)

    Yuan, Xiaoning; Arkonac, Derya E.; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been applied towards the repair of articular tissues in the laboratory and clinical settings for over seventy years. We focus on healing of the meniscus, a tissue essential to knee function with limited innate repair potential, which has been largely unexplored in the context of electrical stimulation. Here we demonstrate for the first time that electrical stimulation enhances meniscus cell migration and integrative tissue repair. We optimize pulsatile direct current electrical stimulation parameters on cells at the micro-scale, and apply these to healing of full-thickness defects in explants at the macro-scale. We report increased expression of the adenosine A2b receptor in meniscus cells after stimulation at the micro- and macro-scale, and propose a role for A2bR in meniscus electrotransduction. Taken together, these findings advance our understanding of the effects of electrical signals and their mechanisms of action, and contribute to developing electrotherapeutic strategies for meniscus repair. PMID:24419206

  8. Dynamical analysis of uterine cell electrical activity model.

    Science.gov (United States)

    Rihana, S; Santos, J; Mondie, S; Marque, C

    2006-01-01

    The uterus is a physiological system consisting of a large number of interacting smooth muscle cells. The uterine excitability changes remarkably with time, generally quiescent during pregnancy, the uterus exhibits forceful synchronized contractions at term leading to fetus expulsion. These changes characterize thus a dynamical system susceptible of being studied through formal mathematical tools. Multiple physiological factors are involved in the regulation process of this complex system. Our aim is to relate the physiological factors to the uterine cell dynamic behaviors. Taking into account a previous work presented, in which the electrical activity of a uterine cell is described by a set of ordinary differential equations, we analyze the impact of physiological parameters on the response of the model, and identify the main subsystems generating the complex uterine electrical activity, with respect to physiological data.

  9. The role of co-located storage for wind power producers in conventional electricity markets

    KAUST Repository

    Bitar, E.; Rajagopal, R.; Khargonekar, P.; Poolla, K.

    2011-01-01

    In this paper we study the problem of optimizing contract offerings for an independent wind power producer (WPP) participating in conventional day-ahead forward electricity markets for energy. As wind power is an inherently variable source of energy

  10. Nanosecond electric pulses trigger actin responses in plant cells

    International Nuclear Information System (INIS)

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-01-01

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  11. Marking and quantifying IL-17A-producing cells in vivo.

    Directory of Open Access Journals (Sweden)

    April E Price

    Full Text Available Interleukin (IL-17A plays an important role in host defense against a variety of pathogens and may also contribute to the pathogenesis of autoimmune diseases. However, precise identification and quantification of the cells that produce this cytokine in vivo have not been performed. We generated novel IL-17A reporter mice to investigate expression of IL-17A during Klebsiella pneumoniae infection and during experimental autoimmune encephalomyelitis, conditions previously demonstrated to potently induce IL-17A production. In both settings, the majority of IL-17A was produced by non-CD4(+ T cells, particularly γδ T cells, but also invariant NKT cells and other CD4(-CD3ε(+ cells. As measured in dual-reporter mice, IFN-γ-producing Th1 cells greatly outnumbered IL-17A-producing Th17 cells throughout both challenges. Production of IL-17A by cells from unchallenged mice or by non-T cells under any condition was not evident. Administration of IL-1β and/or IL-23 elicited rapid production of IL-17A by γδ T cells, invariant NKT cells and other CD4(-CD3ε(+ cells in vivo, demonstrating that these cells are poised for rapid cytokine production and likely comprise the major sources of this cytokine during acute immunologic challenges.

  12. Cultivating Insect Cells To Produce Recombinant Proteins

    Science.gov (United States)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  13. Crystallization of Fe83B17 amorphous alloy by electric pulses produced by a capacitor discharge

    International Nuclear Information System (INIS)

    Georgarakis, Konstantinos; Dudina, Dina V.; Mali, Vyacheslav I.; Anisimov, Alexander G.; Bulina, Natalia V.; Moreira Jorge, Alberto Jr.; Yavari, Alain R.

    2015-01-01

    Heating of conductive materials by electric current is used in many technological processes. Application of electric pulses to metallic glasses induces their fast crystallization, which is an interesting and complex phenomenon. In this work, crystallization of the Fe 83 B 17 amorphous alloy induced by pulses of electric current produced has been studied using X-ray diffraction and transmission electron microscopy. Ribbons of the alloy were directly subjected to single pulses of electric current 250 μs long formed by a capacitor discharge. As the value of ∫I 2 dt was increased from 0.33 to 2.00 A 2 s, different crystallization stages could be observed. The crystallization began through the formation of the nuclei of α-Fe. At high values of ∫I 2 dt, α-Fe and tetragonal and orthorhombic Fe 3 B and Fe 23 B 6 were detected in the crystallized ribbons with crystallites of about 50 nm. Thermal annealing of the ribbons at 600 C for 2 min resulted in the formation of α-Fe and tetragonal Fe 3 B. It was concluded that pulses of electric current produced by a capacitor discharge induced transformation of the Fe 83 B 17 amorphous phase into metastable crystalline products. (orig.)

  14. Host cells and methods for producing isoprenyl alkanoates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  15. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.

    Directory of Open Access Journals (Sweden)

    Ryo Kurita

    Full Text Available Transfusion of red blood cells (RBCs is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs.

  16. Towards an integrated system for bio-energy: hydrogen production by Escherichia coli and use of palladium-coated waste cells for electricity generation in a fuel cell.

    Science.gov (United States)

    Orozco, R L; Redwood, M D; Yong, P; Caldelari, I; Sargent, F; Macaskie, L E

    2010-12-01

    Escherichia coli strains MC4100 (parent) and a mutant strain derived from this (IC007) were evaluated for their ability to produce H(2) and organic acids (OAs) via fermentation. Following growth, each strain was coated with Pd(0) via bioreduction of Pd(II). Dried, sintered Pd-biomaterials ('Bio-Pd') were tested as anodes in a proton exchange membrane (PEM) fuel cell for their ability to generate electricity from H(2). Both strains produced hydrogen and OAs but 'palladised' cells of strain IC007 (Bio-Pd(IC007)) produced ~threefold more power as compared to Bio-Pd(MC4100) (56 and 18 mW respectively). The power output used, for comparison, commercial Pd(0) powder and Bio-Pd made from Desulfovibrio desulfuricans, was ~100 mW. The implications of these findings for an integrated energy generating process are discussed.

  17. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior.

    Science.gov (United States)

    Ahadian, Samad; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2013-01-01

    There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering.

  18. Mechanical and electrical properties of red blood cells using optical tweezers

    International Nuclear Information System (INIS)

    Fontes, A; Castro, M L Barjas; Brandão, M M; Fernandes, H P; Huruta, R R; Costa, F F; Saad, S T O; Thomaz, A A; Pozzo, L Y; Barbosa, L C; Cesar, C L

    2011-01-01

    Optical tweezers are a very sensitive tool, based on photon momentum transfer, for individual, cell by cell, manipulation and measurements, which can be applied to obtain important properties of erythrocytes for clinical and research purposes. Mechanical and electrical properties of erythrocytes are critical parameters for stored cells in transfusion centers, immunohematological tests performed in transfusional routines and in blood diseases. In this work, we showed methods, based on optical tweezers, to study red blood cells and applied them to measure apparent overall elasticity, apparent membrane viscosity, zeta potential, thickness of the double layer of electrical charges and adhesion in red blood cells

  19. Local authorities and electricity producers and distributors in France before the nationalization

    International Nuclear Information System (INIS)

    Fernandez, A.

    2008-01-01

    From the start, the cooperation between power companies and local authorities was unavoidable and necessary. Cities, holding the licensing authority, could achieve a kind of power to direct the electrical economy - a role that was reinforced when electricity was acknowledged as a public interest service - while they were, as potential public lighting consumers, a business partners to emerging power companies. However, not many local authorities handled electricity management directly in France. There were ideological and legal restrictions, until 1917, or even 1926, to direct management company incorporation. Yet the financial factor - the issue of the cost of setting up or taking over the operation - was also important : there may be like a 'city optimum' that very few cities could play. Undoubtedly, failing private investors, there were a little more city or inter-city companies in rural areas, after the Government decided to subsidize them in the Twenties. By the way considering the logic of the electrical economy, city companies, even in major cities, had to count on private producers to ensure most of their supplies. In the Thirties, the Federation Nationale des Collectivites Concedantes et Regies acted as a pressure group to defend the cities' interests against power companies that were mainly engaging in a relationship with the Government. (author)

  20. Promotion of electricity produced from renewable energy sources - Strategic objective of the Romania energy policy

    International Nuclear Information System (INIS)

    Sandulescu, Alexandru; Stanciulescu, Georgeta; Jisa, Mihaela; Stanciu, Nadina

    2006-01-01

    The paper presents different types of support schemes for promoting electricity produced from renewable energy sources in some countries from European Union and details concerning the primary and secondary legislation developed in Romania in the field of promotion of electricity produced from renewable energy sources, making a rehearse of the acts issued. Romania has a clear regulatory framework in the field of promoting E-RES, the green certificates market becoming operational from November 2005, when the first green certificates transaction session organised by SC OPCOM SA took place. With hydro energy being exception from the rule, the Romanian RES potential is almost unused, existing the possibility for promotion some efficient investments in units which produce E-RES, turning to good account to the best emplacements. Although the achievements in using RES are still modest, taking into consideration the attention of numerous investors and the way that the support scheme worked until now, with advantages for the existing E-RES producers, it is expected an acceleration of the rhythm of appearance of new investments. In order to actuate the investors attention, a stronger involvement of the local authorities is necessary, for identifying and promoting the most efficient RES using projects

  1. Electrolyte for a lithium/thionyl chloride electric cell, a method of preparing said electrolyte and an electric cell which includes said electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gabano, J.

    1983-03-01

    An electrolyte for an electric cell whose negative active material is constituted by lithium and whose positive active material is constituted by thionyl chloride. The electrolyte contains at least one solvent and at least one solute, said solvent being thionyl chloride and said solute being chosen from the group which includes lithium tetrachloroaluminate and lithium hexachloroantimonate. According to the invention said electrolyte further includes a complex chosen from the group which includes AlCl/sub 3/,SO/sub 2/ and SbCl/sub 5/,SO/sub 2/. The voltage rise of electric cells which include such an electrolyte takes negligible time.

  2. Cells and methods for producing fatty alcohols

    Science.gov (United States)

    Pfleger, Brian F.; Youngquist, Tyler J.

    2017-07-18

    Recombinant cells and methods for improved yield of fatty alcohols. The recombinant cells harbor a recombinant thioesterase gene, a recombinant acyl-CoA synthetase gene, and a recombinant acyl-CoA reductase gene. In addition, a gene product from one or more of an acyl-CoA dehydrogenase gene, an enoyl-CoA hydratase gene, a 3-hydroxyacyl-CoA dehydrogenase gene, and a 3-ketoacyl-CoA thiolase gene in the recombinant cells is functionally deleted. Culturing the recombinant cells produces fatty alcohols at high yields.

  3. B-cell exposure to self-antigen induces IL-10 producing B cells as well as IL-6- and TNF-α-producing B-cell subsets in healthy humans

    DEFF Research Database (Denmark)

    Langkjær, Anina; Kristensen, Birte; Hansen, Bjarke E

    2012-01-01

    Human B cells are able to secrete IL-10 after stimulation with mitogens, but their ability to produce IL-10 and regulate T-cell responses after stimulation with self-antigens is unclear. We co-cultured thyroglobulin-pulsed B cells from healthy donors with autologous T cells and observed production...... of IL-10 and TGF-β, in addition to TNF-α and IL-6. Pulsing with foreign antigen, tetanus toxoid (TT), induced a Th1-response with minimal IL-10 production. After thyroglobulin-pulsing, 1.10±0.50% of B cells and 1.00±0.20% of CD4(+) T cells produced IL-10, compared to 0.29±0.19% of B cells (P=0.01) and 0.......13±0.15% of CD4(+) T cells (P=0.006) following TT-pulsing. Thyroglobulin-stimulated, IL-10-secreting B cells were enriched within CD5(+) and CD24(high) cells. While thyroglobulin-pulsed B cells induced only modest proliferation of CD4(+) T cells, B cells pulsed with TT induced vigorous proliferation. Thus, B...

  4. Massachusetts Fuel Cell Bus Project: Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-22

    The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.

  5. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells.

    Science.gov (United States)

    Kim, Jung Rae; Jung, Sok Hee; Regan, John M; Logan, Bruce E

    2007-09-01

    Two different microbial fuel cell (MFC) configurations were investigated for electricity production from ethanol and methanol: a two-chambered, aqueous-cathode MFC; and a single-chamber direct-air cathode MFC. Electricity was generated in the two-chamber system at a maximum power density typical of this system (40+/-2 mW/m2) and a Coulombic efficiency (CE) ranging from 42% to 61% using ethanol. When bacteria were transferred into a single-chamber MFC known to produce higher power densities with different substrates, the maximum power density increased to 488+/-12 mW/m2 (CE = 10%) with ethanol. The voltage generated exhibited saturation kinetics as a function of ethanol concentration in the two-chambered MFC, with a half-saturation constant (Ks) of 4.86 mM. Methanol was also examined as a possible substrate, but it did not result in appreciable electricity generation. Analysis of the anode biofilm and suspension from a two-chamber MFC with ethanol using 16S rDNA-based techniques indicated that bacteria with sequences similar to Proteobacterium Core-1 (33.3% of clone library sequences), Azoarcus sp. (17.4%), and Desulfuromonas sp. M76 (15.9%) were significant members of the anode chamber community. These results indicate that ethanol can be used for sustained electricity generation at room temperature using bacteria on the anode in a MFC.

  6. The development on electric discharge machine for hot cell usage

    International Nuclear Information System (INIS)

    Ahn, Sang Bok; Kim, Young Suk; Park, Dae Kyu; Choo, Yong Sun; Oh, Wan Ho

    1998-06-01

    The electric discharge machine(EDM) was developed for hot cell usages in IMEF. This machine will be used to fabricate specimen directly from irradiated components from NPP's. The detailed contents are as follows; 1. Outline of electric discharge machine 2. Specimen shape to be fabricated by EDM 3. Technical specification to manufacture EDM 4. Installation EDM in hot cell 5. Optimum discharge conditions to fabricate specimens from CANDU tube. (author). 4 tabs., 20 figs

  7. Electricity generation from palm oil tree empty fruit bunch (EFB) using dual chamber microbial fuel cell (MFC)

    Science.gov (United States)

    Ghazali, N. F.; Mahmood, N. A. B. N.; Ibrahim, K. A.; Muhammad, S. A. F. S.; Amalina, N. S.

    2017-06-01

    Microbial fuel cell (MFC) has been discovered and utilized in laboratory scale for electricity production based on microbial degradation of organic compound. However, various source of fuel has been tested and recently complex biomass such as lignocellulose biomass has been focused on. In the present research, oil palm tree empty fruit bunch (EFB) has been tested for power production using dual chamber MFC and power generation analysis has been conducted to address the performance of MFC. In addition, two microorganisms (electric harvesting microbe and cellulose degrading microbe) were used in the MFC operation. The analysis include voltage produced, calculated current and power. The first section in your paper

  8. Electrical Resistance of Nb$_{3}$Sn/Cu Splices Produced by Electromagnetic Pulse Technology and Soft Soldering

    CERN Document Server

    Schoerling, D; Scheuerlein, C; Atieh, S; Schaefer, R

    2011-01-01

    The electrical interconnection of Nb$_{3}$Sn/Cu strands is a key issue for the construction of Nb$_{3}$Sn based damping ring wigglers and insertion devices for third generation light sources. We compare the electrical resistance of Nb$_{3}$Sn/Cu splices manufactured by solid state welding using Electromagnetic Pulse Technology (EMPT) with that of splices produced by soft soldering with two different solders. The resistance of splices produced by soft soldering depends strongly on the resistivity of the solder alloy at the operating temperature. By solid state welding splice resistances below 10 nOhm can be achieved with 1 cm strand overlap length only, which is about 4 times lower than the resistance of Sn96Ag4 soldered splices with the same overlap length. The comparison of experimental results with Finite Element simulations shows that the electrical resistance of EMPT welded splices is determined by the resistance of the stabilizing copper between the superconducting filaments and confirms that welding of ...

  9. The German Market for photovoltaic (solar-produced electricity)

    International Nuclear Information System (INIS)

    1999-06-01

    In preparation for reducing the CO2 emission and in so living up to the Kyoto-protocol with the succeeding changes, renewable energy has - including photovoltaic - got an increasing importance in the world over - especially in Germany. If the technical potentials in Germany are utilized optimally, then 75% of the total German electricity production with photovoltaic are covered. At the moment it is only about 1 per thousand. There is a political will to promote photovoltaic in Germany, which results in high account prices and different plant supporting programmes. In the coming 6 years the official aim is that a minimum of 100.000 photovoltaic power plants are installed with an average capacitate for 3 kWp. The competition for the market is hard. There are many national and international suppliers, so the co-operations between the large German producers seem to be obvious. (EHS)

  10. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1985-01-01

    A systematic study of the properties of various polymer pottant materials and of the electrochemical corrosion mechanisms in solar cell materials is required for advancing the technology of terrestrial photovoltaic modules. The items of specific concern in this sponsored research activity involve: (1) kinetics of plasticizer loss in PVB, (2) kinetics of water absorption and desorption in PVB, (3) kinetics of water absorption and desorption in EVA, (4) the electrical properties at PVB as a function of temperature and humidity, (5) the electrical properties of EVA as a function of temperature and humidity, (6) solar cell corrosion characteristics, (7) water absorption effects in PVB and EVA, and (8) ion implantation and radiation effects in PVB and EVA.

  11. Vibration produced by hand-held olive electrical harvesters

    Directory of Open Access Journals (Sweden)

    Emanuele Cerruto

    2012-09-01

    Full Text Available The paper reports the results of some laboratory and field tests aimed at assessing the acceleration levels transmitted to the hand-arm system by electric portable harvesters for olive. Four harvesting heads, different for shape and kinematic system, and five bars, different for diameter, length and material (aluminium and carbon fibre, were used in assembling eleven harvesters. The vibrations were measured in two points, next to the handgrips. The laboratory tests allowed the evaluation of the acceleration levels in standard controlled conditions, while the field tests allowed the assessing of the effects of the tree canopy with respect to the no load running. The laboratory tests showed that in reducing the vibration level plays a major role the kinematic system of the harvesting head and then the bar material. The classical flap-type harvester produced accelerations of around 20 m/s2, while by using a harvesting head with two parts in opposite movement, the accelerations were lowered to about 6 m/s2. The use of carbon fibres for the bars, besides the reduction in weight, produced also a reduction in acceleration (from 21 to 16 m/s2. The field tests proved that the tree canopy had a negative effect on the vibrations transmitted to the hand-arm system, especially when the aluminium bar of small diameter was used.

  12. Possible use of Fe/CO2 fuel cells for CO2 mitigation plus H2 and electricity production

    International Nuclear Information System (INIS)

    Rau, Greg H.

    2004-01-01

    The continuous oxidation of scrap iron in the presence of a constant CO 2 -rich waste gas stream and water is evaluated as a means of sequestering anthropogenic CO 2 as well as generating hydrogen gas and electricity. The stoichiometry of the net reaction, Fe 0 + CO 2 + H 2 O → FeCO 3 + H 2 , and assumptions about reaction rates, reactant and product prices/values and overhead costs suggest that CO 2 might be mitigated at a net profit in excess of $30/tonne CO 2 . The principle profit center of the process would be hydrogen production, alone providing a gross income of >$160/tonne CO 2 reacted. However, the realization of such fuel cell economics depends on a number of parameters including: (1) the rate at which the reaction can be sustained, (2) the areal and volumetric density with which H 2 and electricity can be produced, (3) the purity of the H 2 produced, (4) the transportation costs of the reactants (Fe, CO 2 and H 2 O) and products (FeCO 3 or Fe(HCO 3 ) 2 ) to/from the cells and (5) the cost/benefit trade-offs of optimizing the preceding variables in a given market and regulatory environment. Because of the carbon intensity of conventional iron metal production, a net carbon sequestration benefit for the process can be realized only when waste (rather than new) iron and steel are used as electrodes and/or when Fe(HCO 3 ) 2 is the end product. The used electrolyte could also provide a free source of Fe 2+ ions for enhancing iron-limited marine photosynthesis and, thus, greatly increasing the CO 2 sequestration potential of the process. Alternatively, the reaction of naturally occurring iron oxides (iron ore) with CO 2 can be considered for FeCO 3 formation and sequestration, but this foregoes the benefits of hydrogen and electricity production. Use of Fe/CO 2 fuel cells would appear to be particularly relevant for fossil fuel gasification/steam reforming systems given the highly concentrated CO 2 they generate and given the existing infrastructure they

  13. Electrical properties of conducting loads produced from polyaniline deposited in natural fibers and nanoclays

    International Nuclear Information System (INIS)

    Kosenhoski, Dirlaine; Saade, Wesley; Pinto, Camila P.; Becker, Daniela; Dalmolin, Carla; Pachekoski, Wagner M.

    2015-01-01

    Conducting polymers are known for their excellent magnetic and electrical properties, but they still are an expensive and limited choice to their use as a conducting load for composite materials. An alternative to optimize the electrical conductivity of polymeric composites is the deposition of a conducting polymer on materials already used as loads, as the deposition on natural fibers or the encapsulation of polymeric chains in the voids of host structures. In this work, bananastem fiber and montmorillonite nanoclay (MMT) were used as host structures for polyaniline synthesis in order to produce conducting loads. Samples were characterized by FT-IR and X-Rays Diffraction in order to confirm the formation of polyanilina / bananastem fibers or polyanilina / nanoclays loads. Influence on the electrical properties of the composites were evaluated by Electrochemical Impedance Spectroscopy (EIS), showing the maintenance of the electric conductivity of polyaniline and its potential use as a load for the formation of conducting composites. (author)

  14. Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-05-01

    Full Text Available The objective of this study was to investigate the cooling performance characteristics of an electrical air conditioning system using R744 as an alternative of R-134a for a fuel cell electric vehicle. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a fuel cell electric vehicle, an electrical air conditioning system using R744 was developed and tested under various operating conditions according to both inlet air conditions of the gas cooler and evaporator and compressor speed. The cooling capacity and coefficient of performance (COP forcooling of the tested air conditioning system were up to 6.4 kW and 2.5, respectively. In addition, the electrical air conditioning system with R744 using an inverter driven compressor showed better performance than the conventional air conditioning system with R-134a under the same operating conditions. The observed cooling performance of the developed electrical air conditioning system was found to be sufficient for cooling loads under various real driving conditions for a fuel cell electric vehicle.

  15. Targeting of histamine producing cells by EGCG: a green dart against inflammation?

    Science.gov (United States)

    Melgarejo, Esther; Medina, Miguel Angel; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2010-09-01

    The human body is made of some 250 different cell types. From them, only a small subset of cell types is able to produce histamine. They include some neurons, enterochromaffin-like cells, gastrin-containing cells, mast cells, basophils, and monocytes/macrophages, among others. In spite of the reduced number of these histamine-producing cell types, they are involved in very different physiological processes. Their deregulation is related with many highly prevalent, as well as emergent and rare diseases, mainly those described as inflammation-dependent pathologies, including mastocytosis, basophilic leukemia, gastric ulcer, Crohn disease, and other inflammatory bowel diseases. Furthermore, oncogenic transformation switches some non-histamine-producing cells to a histamine producing phenotype. This is the case of melanoma, small cell lung carcinoma, and several types of neuroendocrine tumors. The bioactive compound epigallocatechin-3-gallate (EGCG), a major component of green tea, has been shown to target histamine-producing cells producing great alterations in their behavior, with relevant effects on their proliferative potential, as well as their adhesion, migration, and invasion potentials. In fact, EGCG has been shown to have potent anti-inflammatory, anti-tumoral, and anti-angiogenic effects and to be a potent inhibitor of the histamine-producing enzyme, histidine decarboxylase. Herein, we review the many specific effects of EGCG on concrete molecular targets of histamine-producing cells and discuss the relevance of these data to support the potential therapeutic interest of this compound to treat inflammation-dependent diseases.

  16. The hillsides would allow to produce electric power from renewable source

    International Nuclear Information System (INIS)

    Laby, F.

    2006-09-01

    A solar tower is a renewable energy plant, designed to channel the air warmed by the sun, in order to produce electric power by the use of turbines. It is composed of a giant greenhouse with a chimney in its center. The capacity of this system is proportional to the chimney high. That is the reason why french engineers proposed to use the hillsides to build chimneys of many kilometers high. The project and some technical informations are provided in this paper. (A.L.B.)

  17. Electrical Differentiation of Mesenchymal Stem Cells into Schwann-Cell-Like Phenotypes Using Inkjet-Printed Graphene Circuits.

    Science.gov (United States)

    Das, Suprem R; Uz, Metin; Ding, Shaowei; Lentner, Matthew T; Hondred, John A; Cargill, Allison A; Sakaguchi, Donald S; Mallapragada, Surya; Claussen, Jonathan C

    2017-04-01

    Graphene-based materials (GBMs) have displayed tremendous promise for use as neurointerfacial substrates as they enable favorable adhesion, growth, proliferation, spreading, and migration of immobilized cells. This study reports the first case of the differentiation of mesenchymal stem cells (MSCs) into Schwann cell (SC)-like phenotypes through the application of electrical stimuli from a graphene-based electrode. Electrical differentiation of MSCs into SC-like phenotypes is carried out on a flexible, inkjet-printed graphene interdigitated electrode (IDE) circuit that is made highly conductive (sheet resistance electrically stimulated/treated (etMSCs) display significant enhanced cellular differentiation and paracrine activity above conventional chemical treatment strategies [≈85% of the etMSCs differentiated into SC-like phenotypes with ≈80 ng mL -1 of nerve growth factor (NGF) secretion vs. 75% and ≈55 ng mL -1 for chemically treated MSCs (ctMSCs)]. These results help pave the way for in vivo peripheral nerve regeneration where the flexible graphene electrodes could conform to the injury site and provide intimate electrical simulation for nerve cell regrowth. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Host cells and methods for producing diacid compounds

    Energy Technology Data Exchange (ETDEWEB)

    Steen, Eric J.; Fortman, Jeffrey L.; Dietrich, Jeffrey A.; Keasling, Jay D.

    2018-04-24

    The present invention provides for a method of producing one or more fatty acid derived dicarboxylic acids in a genetically modified host cell which does not naturally produce the one or more derived fatty acid derived dicarboxylic acids. The invention provides for the biosynthesis of dicarboxylic acid ranging in length from C3 to C26. The host cell can be further modified to increase fatty acid production or export of the desired fatty acid derived compound, and/or decrease fatty acid storage or metabolism.

  19. In vitro effects of direct current electric fields on adipose-derived stromal cells.

    Science.gov (United States)

    Hammerick, Kyle E; Longaker, Michael T; Prinz, Fritz B

    2010-06-18

    Endogenous electric fields play an important role in embryogenesis, regeneration, and wound repair and previous studies have shown that many populations of cells, leukocytes, fibroblasts, epithelial cells, and endothelial cells, exhibit directed migration in response to electric fields. As regenerative therapies continue to explore ways to control mesenchymal progenitor cells to recreate desirable tissues, it is increasingly necessary to characterize the vast nature of biological responses imposed by physical phenomena. Murine adipose-derived stromal cells (mASCs) migrated toward the cathode in direct current (DC) fields of physiologic strength and show a dose dependence of migration rate to stronger fields. Electric fields also caused mASCs to orient perpendicularly to the field vector and elicited a transient increase in cytosolic calcium. Additionally, their galvanotactic response appears to share classic chemotactic signaling pathways that are involved in the migration of other cell types. Galvanotaxis is one predominant result of electric fields on mASCs and it may be exploited to engineer adult stem cell concentrations and locations within implanted grafts or toward sites of wound repair. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  20. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    Science.gov (United States)

    Goudarzi, A. M.; Mazandarani, P.; Panahi, R.; Behsaz, H.; Rezania, A.; Rosendahl, L. A.

    2013-07-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is augmented by two devices. An electric fan can increase the air-to-fuel ratio in order to increase the system's efficiency and decrease air pollution by providing complete combustion of wood. In addition, thermoelectric generators (TEGs) produce power that can be used to satisfy all basic needs. In this study, a water-based cooling system is designed to increase the efficiency of the TEGs and also produce hot water for residential use. Through a range of tests, an average of 7.9 W was achieved by a commercial TEG with substrate area of 56 mm × 56 mm, which can produce 14.7 W output power at the maximum matched load. The total power generated by the stove is 166 W. Also, in this study a reasonable ratio of fuel to time is described for residential use. The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water, and essential heat for warming the room and cooking.

  1. Endogenous electric fields as guiding cue for cell migration

    Science.gov (United States)

    Funk, Richard H. W.

    2015-01-01

    This review covers two topics: (1) “membrane potential of low magnitude and related electric fields (bioelectricity)” and (2) “cell migration under the guiding cue of electric fields (EF).”Membrane potentials for this “bioelectricity” arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the “electric” interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions. PMID:26029113

  2. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2015-02-01

    In diabetes mellitus type 1, beta cells are mostly destroyed; while in diabetes mellitus type 2, beta cells are reduced by 40% to 60%. We hope that soon, stem cells can be used in diabetes therapy via pancreatic beta cell replacement. Induced pluripotent stem cells are a kind of stem cell taken from an adult somatic cell by "stimulating" certain genes. These induced pluripotent stem cells may be a promising source of cell therapy. This study sought to produce isletlike clusters of insulin-producing cells taken from induced pluripotent stem cells. A human-induced pluripotent stem cell line was induced into isletlike clusters via a 4-step protocol, by adding insulin, transferrin, and selenium (ITS), N2, B27, fibroblast growth factor, and nicotinamide. During differentiation, expression of pancreatic β-cell genes was evaluated by reverse transcriptase-polymerase chain reaction; the morphologic changes of induced pluripotent stem cells toward isletlike clusters were observed by a light microscope. Dithizone staining was used to stain these isletlike clusters. Insulin produced by these clusters was evaluated by radio immunosorbent assay, and the secretion capacity was analyzed with a glucose challenge test. Differentiation was evaluated by analyzing the morphology, dithizone staining, real-time quantitative polymerase chain reaction, and immunocytochemistry. Gene expression of insulin, glucagon, PDX1, NGN3, PAX4, PAX6, NKX6.1, KIR6.2, and GLUT2 were documented by analyzing real-time quantitative polymerase chain reaction. Dithizone-stained cellular clusters were observed after 23 days. The isletlike clusters significantly produced insulin. The isletlike clusters could increase insulin secretion after a glucose challenge test. This work provides a model for studying the differentiation of human-induced pluripotent stem cells to insulin-producing cells.

  3. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  4. Effects of Induced Electric Fields on Tissues and Cells

    Science.gov (United States)

    Sequin, Emily Katherine

    Cancer remains a substantial health burden in the United States. Traditional treatments for solid malignancies may include chemotherapy, radiation therapy, targeted therapies, or surgical resection. Improved surgical outcomes coincide with increased information regarding the tumor extent in the operating room. Furthermore, pathological examination and diagnosis is bettered when the pathologist has additional information about lesion locations on the large resected specimens from which they take a small sample for microscopic evaluation. Likewise, cancer metastasis is a leading cause of cancer death. Fully understanding why a particular tumor becomes metastatic as well as the mechanisms of cell migration are critical to both preventing metastasis and treating it. This dissertation utilizes the complex interactions of induced electric fields with tissues and cells to meet two complementary research goals. First, eddy currents are induced in tissues using a coaxial eddy current probe (8mm diameter) in order to distinguish tumor tissue from surrounding normal tissue to address the needs of surgeons performing curative cancer resections. Measurements on animal tissue phantoms characterize the eddy current measurement finding that the effective probing area corresponds to about twice the diameter of the probe and that the specimen temperature must be constant for reliable measurements. Measurements on ten fresh tissue specimens from human patients undergoing surgical resection for liver metastases from colorectal cancer showed that the eddy current measurement technique can be used to differentiate tumors from surrounding liver tissue in a non-destructive, non-invasive manner. Furthermore, the differentiation between the tumor and normal tissues required no use of contrast agents. Statistically significant differences between eddy current measurements in three tissue categories, tumor, normal, and interface, were found across patients using a Tukey's pairwise comparison

  5. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    International Nuclear Information System (INIS)

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae; Uhm, Sang Jun; Lee, Hoon Taek

    2010-01-01

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  6. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae [Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Uhm, Sang Jun [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Lee, Hoon Taek, E-mail: htl3675@konkuk.ac.kr [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2010-07-09

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  7. Alternating current electric field effects on neural stem cell viability and differentiation.

    Science.gov (United States)

    Matos, Marvi A; Cicerone, Marcus T

    2010-01-01

    Methods utilizing stem cells hold tremendous promise for tissue engineering applications; however, many issues must be worked out before these therapies can be routinely applied. Utilization of external cues for preimplantation expansion and differentiation offers a potentially viable approach to the use of stem cells in tissue engineering. The studies reported here focus on the response of murine neural stem cells encapsulated in alginate hydrogel beads to alternating current electric fields. Cell viability and differentiation was studied as a function of electric field magnitude and frequency. We applied fields of frequency (0.1-10) Hz, and found a marked peak in neural stem cell viability under oscillatory electric fields with a frequency of 1 Hz. We also found an enhanced propensity for astrocyte differentiation over neuronal differentiation in the 1 Hz cultures, as compared to the other field frequencies we studied. Published 2010 American Institute of Chemical Engineers

  8. Toward Highly Efficient Nanostructured Solar Cells Using Concurrent Electrical and Optical Design

    KAUST Repository

    Wang, Hsin-Ping

    2017-07-11

    Recent technological advances in conventional planar and microstructured solar cell architectures have significantly boosted the efficiencies of these devices near the corresponding theoretical values. Nanomaterials and nanostructures have promising potential to push the theoretical limits of solar cell efficiency even higher using the intrinsic advantages associated with these materials, including efficient photon management, rapid charge transfer, and short charge collection distances. However, at present the efficiency of nanostructured solar cells remains lower than that of conventional solar devices due to the accompanying losses associated with the employment of nanomaterials. The concurrent design of both optical and electrical components will presumably be an imperative route toward breaking the present-day limit of nanostructured solar cells. This review summarizes the losses in traditional solar cells, and then discusses recent advances in applications of nanotechnology to solar devices from both optical and electrical perspectives. Finally, a rule for nanostructured solar cells by concurrently engineering the optical and electrical design is devised. Following these guidelines should allow for exceeding the theoretical limit of solar cell efficiency soon.

  9. A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X., E-mail: yan.xing@jaea.go.jp; Noguchi, H.; Sato, H.; Tachibana, Y.; Kunitomi, K.; Hino, R.

    2014-05-01

    Alternative energy products are being considered by the Middle East countries for both consumption and export. Electricity, water, and hydrogen produced not from oil and gas are amongst those desirable. A hybrid nuclear production system, GTHTR300C, under development in JAEA can achieve this regional strategic goal. The system is based on a 600 MWt HTGR and equipped to cogenerate electricity by gas turbine and seawater desalination by using only the nuclear plant waste heat. Hydrogen is produced via a thermochemical water-splitting process driven by the reactor's 950 °C heat. Additionally process steam may be produced for industrial uses. An example is shown of manufacturing soda ash, an internationally traded commodity, from using the steam produced and the brine discharged from desalination. The nuclear reactor satisfies nearly all energy requirements for the hybrid generations without emitting CO{sub 2}. The passive safety of the reactor as described in the paper permits proximity of siting the reactor with the production facilities to enhance energy transmission. Production flowsheet of the GTHTR300C is given for up to 300 MWe electricity, 58 t/day hydrogen, 56,000 m{sup 3}/day potable water, 3500 t/day steam, and 1000 t/day soda ash. The production thermal efficiency reaches 88%.

  10. Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer : An exergy analysis of different system designs

    NARCIS (Netherlands)

    Fernandes, A.A.; Woudstra, T.; van Wijk, A.J.M.; Verhoef, L.A.; Purushothaman Vellayani, A.

    2016-01-01

    Delft University of Technology, under its "Green Village" programme, has an initiative to build a power plant (car parking lot) based on the fuel cells used in vehicles for motive power. It is a trigeneration system capable of producing electricity, heat, and hydrogen. It comprises three main

  11. A Game Theoretical Approach Based Bidding Strategy Optimization for Power Producers in Power Markets with Renewable Electricity

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-05-01

    Full Text Available In a competitive electricity market with substantial involvement of renewable electricity, maximizing profits by optimizing bidding strategies is crucial to different power producers including conventional power plants and renewable ones. This paper proposes a game-theoretic bidding optimization method based on bi-level programming, where power producers are at the upper level and utility companies are at the lower level. The competition among the multiple power producers is formulated as a non-cooperative game in which bidding curves are their strategies, while uniform clearing pricing is considered for utility companies represented by an independent system operator. Consequently, based on the formulated game model, the bidding strategies for power producers are optimized for the day-ahead market and the intraday market with considering the properties of renewable energy; and the clearing pricing for the utility companies, with respect to the power quantity from different power producers, is optimized simultaneously. Furthermore, a distributed algorithm is provided to search the solution of the generalized Nash equilibrium. Finally, simulation results were performed and discussed to verify the feasibility and effectiveness of the proposed non-cooperative game-based bi-level optimization approach.

  12. NREL Scientists Report First Solar Cell Producing More Electrons In

    Science.gov (United States)

    measured in operating quantum dot solar cells at low light intensity; these cells showed significant power Photocurrent Than Solar Photons Entering Cell | News | NREL NREL Scientists Report First Solar Cell Producing More Electrons In Photocurrent Than Solar Photons Entering Cell News Release: NREL

  13. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    International Nuclear Information System (INIS)

    Lee, Duu-Jong; Lee, Chin-Yu; Chang, Jo-Shu

    2012-01-01

    Highlights: ► We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. ► Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. ► The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. ► The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  14. Treatment and electricity harvesting from sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-reducing mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duu-Jong, E-mail: cedean@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (China); Lee, Chin-Yu [Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture. Black-Right-Pointing-Pointer Sulfate-reducing bacteria and anode-respiring bacteria were enriched in anodic biofilms. Black-Right-Pointing-Pointer The MFC effectively remove sulfate to elementary sulfur in the presence of lactate. Black-Right-Pointing-Pointer The present device can treat sulfate laden wastewaters with electricity harvesting. - Abstract: Anaerobic treatment of sulfate-laden wastewaters can produce excess sulfide, which is corrosive to pipelines and is toxic to incorporated microorganisms. This work started up microbial fuel cell (MFC) using enriched sulfate-reducing mixed culture as anodic biofilms and applied the so yielded MFC for treating sulfate or sulfide-laden wastewaters. The sulfate-reducing bacteria in anodic biofilm effectively reduced sulfate to sulfide, which was then used by neighboring anode respiring bacteria (ARB) as electron donor for electricity production. The presence of organic carbons enhanced MFC performance since the biofilm ARB were mixotrophs that need organic carbon to grow. The present device introduces a route for treating sulfate laden wastewaters with electricity harvesting.

  15. Schwann cell response on polypyrrole substrates upon electrical stimulation.

    Science.gov (United States)

    Forciniti, Leandro; Ybarra, Jose; Zaman, Muhammad H; Schmidt, Christine E

    2014-06-01

    Current injury models suggest that Schwann cell (SC) migration and guidance are necessary for successful regeneration and synaptic reconnection after peripheral nerve injury. The ability of conducting polymers such as polypyrrole (PPy) to exhibit chemical, contact and electrical stimuli for cells has led to much interest in their use for neural conduits. Despite this interest, there has been very little research on the effect that electrical stimulation (ES) using PPy has on SC behavior. Here we investigate the mechanism by which SCs interact with PPy in the presence of an electric field. Additionally, we explored the effect that the adsorption of different serum proteins on PPy upon the application of an electric field has on SC migration. The results indicate an increase in average displacement of the SC with ES, resulting in a net anodic migration. Moreover, indirect effects of protein adsorption due to the oxidation of the film upon the application of ES were shown to have a larger effect on migration speed than on migration directionality. These results suggest that SC migration speed is governed by an integrin- or receptor-mediated mechanism, whereas SC migration directionality is governed by electrically mediated phenomena. These data will prove invaluable in optimizing conducting polymers for their different biomedical applications such as nerve repair. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Method of forming an electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  17. [In vitro generation of insulin-producing cells from the neonatal rat bone marrow mesenchymal stem cells].

    Science.gov (United States)

    Li, Xiaohu; Huang, Haiyan; Liu, Xirong; Xia, Hongxia; Li, Mincai

    2015-03-01

    To observe the differentiation of the neonatal rat bone marrow mesenchymal stem cells (MSCs) into insulin-producing cells and detect the expressions of insulin, pancreatic duodenal homebox-1 (PDX-1) and nestin. MSCs were isolated from the neonatal rats and cultured in the modified medium composed of 10 μg/L human epidermal growth factor (EGF), 10 μg/L basic fibroblast growth factor (bFGF), 10 μg/L hepatocyte growth factor (HGF), 10 μg/L human B cell regulin, 20 mmol/L nicotinamide and 20 g/L B27. After the induction, the mRNA expressions of insulin, PDX-1 and nestin were examined by reverse transcription-PCR, and the insulin, PDX-1 and nestin protein levels were detected by immunocytochemistry. The insulin and PDX-1 mRNA expressions increased and the nestin mRNA expression decreased in the differentiation of the neonatal rat MSCs into insulin-producing cells. The nestin, PDX-1 and insulin proteins were co-expressed in insulin-producing cells. MSCs can be induced to differentiate into insulin-producing cells.

  18. Fuel Cell Electric Vehicles: Drivers and Impacts of Adoption.

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Rebecca Sobel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); West, Todd H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manley, Dawn K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    We present scenario and parametric analyses of the US light duty vehicle (LDV) stock, sim- ulating the evolution of the stock in order to assess the potential role and impacts of fuel cell electric vehicles (FCEVs). The analysis probes the competition of FCEVs with other LDVs and the effects of FCEV adoption on LDV fuel use and emissions. We parameterize commodity and technology prices in order to explore the sensitivities of FCEV sales and emissions to oil, natural gas, battery technology, fuel cell technology, and hydrogen produc- tion prices. We additionally explore the effects of vehicle purchasing incentives for FCEVs, identifying potential impacts and tipping points. Our analyses lead to the following conclu- sions: (1) In the business as usual scenario, FCEVs comprise 7% of all new LDV sales by 2050. (2) FCEV adoption will not substantially impact green house gas emissions without either policy intervention, significant increases in natural gas prices, or technology improve- ments that motivate low carbon hydrogen production. (3) FCEV technology cost reductions have a much greater potential for impact on FCEV sales than hydrogen fuel cost reductions. (4) FCEV purchasing incentives must be both substantial and sustained in order to motivate lasting changes to FCEV adoption.

  19. Influence of the pH value of anthocyanins on the electrical properties of dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Irén Juhász Junger

    2017-03-01

    Full Text Available In recent years the harvesting of renewable energies became of great importance. This led to a rapid development of dye-sensitized solar cells which can be produced from low-purity materials. The best electrical properties are provided by cells prepared using synthetical, ruthenium based dyes. Unfortunately, most of them are toxic and expensive. The anthocyanins extracted for example from hibiscus flowers yield a more cost-effective and eco-friendly alternative to toxic dyes, however, with a loss of solar cell efficiency. In this article the possibility of improvement of the conversion efficiency by modification of the pH value of the dye is investigated. By decrease of the pH value, an increase of efficiency by a factor of two was achieved.

  20. Electricity Generation by Single- and Double Chamber Membrane ...

    African Journals Online (AJOL)

    Waste biomass is a cheap and relatively abundant source of microbes capable of producing electri-cal current. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy. Application of Microbial Fuel Cells (MFCs) may represent a ...

  1. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles.

    Science.gov (United States)

    Hwang, Jenn-Jiang; Hu, Jia-Sheng; Lin, Chih-Hong

    2015-01-01

    The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery's state of charge (SOC). This approach improves the quick loss problem of the system's SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  2. Human Liver Cells Expressing Albumin and Mesenchymal Characteristics Give Rise to Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Irit Meivar-Levy

    2011-01-01

    Full Text Available Activation of the pancreatic lineage in the liver has been suggested as a potential autologous cell replacement therapy for diabetic patients. Transcription factors-induced liver-to-pancreas reprogramming has been demonstrated in numerous species both in vivo and in vitro. However, human-derived liver cells capable of acquiring the alternate pancreatic repertoire have never been characterized. It is yet unknown whether hepatic-like stem cells or rather adult liver cells give rise to insulin-producing cells. Using an in vitro experimental system, we demonstrate that proliferating adherent human liver cells acquire mesenchymal-like characteristics and a considerable level of cellular plasticity. However, using a lineage-tracing approach, we demonstrate that insulin-producing cells are primarily generated in cells enriched for adult hepatic markers that coexpress both albumin and mesenchymal markers. Taken together, our data suggest that adult human hepatic tissue retains a substantial level of developmental plasticity, which could be exploited in regenerative medicine approaches.

  3. Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system

    International Nuclear Information System (INIS)

    Greijer, Helena; Karlson, Lennart; Lindquist, Sten-Eric; Hagfeldt, Anders

    2001-01-01

    A Life Cycle Assessment, LCA, of a nanocrystalline dye sensitised solar cell (ncDSC) system has been performed, according to the ISO14040 standard. In brief, LCA is a tool to analyse the total environment impact of a product or system from cradle to grave. Six different weighing methods were used to rank and select the significant environmental aspects to study further. The most significant environmental aspects according to the weighing methods are emission of sulphur dioxide and carbon dioxide. Carbon dioxide emission was selected as the environmental indicator depending on the growing attention on the global warming effect. In an environmental comparison of electricity generation from a ncDSC system and a natural gas/combined cycle power plant, the gas power plant would result in 450 g CO 2 /kWh and the ncDSC system in between 19-47 g CO 2 /wWh. The latter can be compared with 42 g CO 2 /kWh, according to van Brummelen et al. 'Life Cycle Assessment of Roof Integrated Solar Cell Systems, (Report: Department of Science, Technology and Society, Utrecht University, The Netherlands, 1994)' for another thin film solar cell system made of amorphous silicon. The most significant activity/component contributing to environmental impact over the life cycle of the ncDSC system is the process energy for producing the solar cell module. Secondly comes the components; glass substrate, frame and junction box. The main improvement from an environmental point of view of the current technology would be an increase in the conversion efficiency from solar radiation to electricity generation and still use low energy demanding production technologies. Also the amount of material in the solar cell system should be minimised and designed to maximise recycling. (Author)

  4. Potential of reversible solid oxide cells as electricity storage system

    OpenAIRE

    Di Giorgio, Paolo; Desideri, Umberto

    2016-01-01

    Electrical energy storage (EES) systems allow shifting the time of electric power generation from that of consumption, and they are expected to play a major role in future electric grids where the share of intermittent renewable energy systems (RES), and especially solar and wind power plants, is planned to increase. No commercially available technology complies with all the required specifications for an efficient and reliable EES system. Reversible solid oxide cells (ReSOC) working in both ...

  5. The Use of Phytochemicals to Effectively Produce Biofuel from Rhizophora mangle

    Science.gov (United States)

    Singhal, M.; Brinker, R.

    2015-12-01

    After successfully determining the presence of phytochemicals in both the Common Crabgrass (Digitaria ischaemum), and North American Dandelion (Taxacum officinale) , my research focused on the effects of specific phytochemicals, Luteolin from crabgrass and Taxasterol from dandelion, on electrical energy yield from a hydrogen fuel cell. Improvements in hydrogen fuel cell efficiency and cost are sought. By use of red mangrove (Rhizophora mangle) propagules as an oxygen source the effects of Luteolin and Taxasterol could be tested as a means to optimize hydrogen fuel cells. The methodology began with physical chemical extraction, then proceeded with separation by column chromatography, and ended with fuel cell testing of the isolated phytochemicals. Published retention factor values were used to isolate Luteolin (.66) and Taxasterol (.30). In order to test electrical energy yield, the amount of current produced by the fuel cell was measured in microamperes (μA[RB1] ) over five minutes for both the three control and three experimental group trials for both experimental groups each. The largest ampere value collected from Luteolin group was 4.3 μA, while the largest value collected from Taxasterol group was 2.5 μA. Out of both experimental groups, taraxsterol had the smallest range, showing more consistency between the control and corresponding experimental groups tested. My hypothesis was not supported. Luteolin treated fuel cell produced a larger electrical energy yield than did fuel cells treated with Taxasterol. [RB1]I found μ by selecting "insert symbol", then looking at Greek symbols.

  6. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    Science.gov (United States)

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  7. [Fluorescence polarization used to investigate the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field].

    Science.gov (United States)

    Zhang, Ying; Zeng, Xin-An; Wen, Qi-Biao; Li, Lin

    2008-01-01

    To know the lethal mechanism of microorganisms under pulsed electric field treatment, the relationship between the inactivation of Saccharomyces cerevisiae (CICC1308) cell and the permeability and fluidity changes of its cell membrane treated by pulsed electric field (0-25 kV x cm(-1), 0-266 ms) was investigated. With 1,6-diphenyl-1,3,5-hexatriene (DPH) used as a probe, the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field was expressed by fluorescence polarization. Results showed that the cell membrane fluidity decreases when the electric flied strength is up to 5 kV x cm(-1), and decreases with the increase in electric field strength and treatment time. The plate counting method and ultraviolet spectrophotometer were used to determine the cell viability and to investigate the cell membrane permeability, respectively, treated by pulsed electric field. Results showed that the lethal ratio and the content of protein and nucleic acid leaked from intracellular plasma increased with the increase in the electric field strength and the extension of treatment time. Even in a quite lower electric field of 5 kV x cm(-1) with a tiny microorganism lethal level, the increase in UV absorption value and the decrease in fluidity were significant. It was demonstrated that the cell membrane fluidity decreases with the increase in lethal ratio and cell membrane permeability. The viscosity of cell membrane increases with the decrease in fluidity. These phenomena indicated that cell membrane is one of the most key sites during the pulsed electric field treatment, and the increased membrane permeability and the decreased cell membrane fluidity contribute to the cell death.

  8. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Czubak, Paweł; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek; Putowski, Lechosław

    2014-01-01

    Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells.

  9. Nanoparticle mediated ablation of breast cancer cells using a nanosecond pulsed electric field

    Science.gov (United States)

    Burford, Christopher

    In the past, both nanomaterials and various heating modalities have been researched as means for treating cancers. However, many of the current methodologies have the flaws of inconsistent tumor ablation and significant destruction of healthy cells. Based on research performed using constant radiofrequency electric fields and metallic nanoparticles (where cell necrosis is induced by the heating of these nanoparticles) we have developed a modality that simlarly uses functionalized metallic nanoparticles, specific for the T47D breast cancer cell line, and nanosecond pulsed electric fields as the hyperthermic inducer. Using both iron oxide and gold nanoparticles the results of our pilot studies indicated that up to 90% of the cancer cells were ablated given the optimal treatment parameters. These quantities of ablated cells were achieved using a cumulative exposure time 6 orders of magnitude less than most in vitro radiofrequency electric field studies.

  10. The role of co-located storage for wind power producers in conventional electricity markets

    KAUST Repository

    Bitar, E.

    2011-06-01

    In this paper we study the problem of optimizing contract offerings for an independent wind power producer (WPP) participating in conventional day-ahead forward electricity markets for energy. As wind power is an inherently variable source of energy and is difficult to predict, we explore the extent to which co-located energy storage can be used to improve expected profit and mitigate the the financial risk associated with shorting on the offered contracts. Using a simple stochastic model for wind power production and a model for the electricity market, we show that the problem of determining optimal contract offerings for a WPP with co-located energy storage can be solved using convex programming.

  11. Visible light to electrical energy conversion using photoelectrochemical cells

    Science.gov (United States)

    Wrighton, Mark S. (Inventor); Ellis, Arthur B. (Inventor); Kaiser, Steven W. (Inventor)

    1983-01-01

    Sustained conversion of low energy visible or near i.r. light (>1.25 eV) to electrical energy has been obtained using wet photoelectrochemical cells where there are no net chemical changes in the system. Stabilization of n-type semi-conductor anodes of CdS, CdSe, CdTe, GaP, GaAs and InP to photoanodic dissolution is achieved by employing selected alkaline solutions of Na.sub.2 S, Na.sub.2 S/S, Na.sub.2 Se, Na.sub.2 Se/Se, Na.sub.2 Te and Na.sub.2 Te/Te as the electrolyte. The oxidation of (poly) sulfide, (poly)selenide or (poly)telluride species occurs at the irradiated anode, and reduction of polysulfide, polyselenide or polytelluride species occurs at the dark Pt cathode of the photoelectrochemical cell. Optical to electrical energy conversion efficiencies approaching 15% at selected frequencies have been observed in some cells. The wavelength for the onset of photocurrent corresponds to the band gap of the particular anode material used in the cell.

  12. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.

    Science.gov (United States)

    Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y

    2016-03-17

    In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.

  13. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death.

    Directory of Open Access Journals (Sweden)

    Mamata Gurung

    Full Text Available Gram-negative bacteria produce outer membrane vesicles that play a role in the delivery of virulence factors to host cells. However, little is known about the membrane-derived vesicles (MVs produced by gram-positive bacteria. The present study examined the production of MVs from Staphylococcus aureus and investigated the delivery of MVs to host cells and subsequent cytotoxicity. Four S. aureus strains tested, two type strains and two clinical isolates, produced spherical nanovesicles during in vitro culture. MVs were also produced during in vivo infection of a clinical S. aureus isolate in a mouse pneumonia model. Proteomic analysis showed that 143 different proteins were identified in the S. aureus-derived MVs. S. aureus MVs were interacted with the plasma membrane of host cells via a cholesterol-rich membrane microdomain and then delivered their component protein A to host cells within 30 min. Intact S. aureus MVs induced apoptosis of HEp-2 cells in a dose-dependent manner, whereas lysed MVs neither delivered their component into the cytosol of host cells nor induced cytotoxicity. In conclusion, this study is the first report that S. aureus MVs are an important vehicle for delivery of bacterial effector molecules to host cells.

  14. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    Directory of Open Access Journals (Sweden)

    Seong Gyu Jeon

    Full Text Available Specific intestinal microbiota has been shown to induce Foxp3(+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+ dendritic cells (DCs mediated B. breve-induced development of IL-10-producing T cells. CD103(+ DCs from Il10(-/-, Tlr2(-/-, and Myd88(-/- mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+ DCs failed to induce IL-10 production from co-cultured Il27ra(-/- T cells. B. breve treatment of Tlr2(-/- mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+ T cells from wild-type mice, but not Il10(-/- mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  15. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon.

    Science.gov (United States)

    Jeon, Seong Gyu; Kayama, Hisako; Ueda, Yoshiyasu; Takahashi, Takuya; Asahara, Takashi; Tsuji, Hirokazu; Tsuji, Noriko M; Kiyono, Hiroshi; Ma, Ji Su; Kusu, Takashi; Okumura, Ryu; Hara, Hiromitsu; Yoshida, Hiroki; Yamamoto, Masahiro; Nomoto, Koji; Takeda, Kiyoshi

    2012-01-01

    Specific intestinal microbiota has been shown to induce Foxp3(+) regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103(+) dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103(+) DCs from Il10(-/-), Tlr2(-/-), and Myd88(-/-) mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103(+) DCs failed to induce IL-10 production from co-cultured Il27ra(-/-) T cells. B. breve treatment of Tlr2(-/-) mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103(+) DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4(+) T cells from wild-type mice, but not Il10(-/-) mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.

  16. Modeling electrically active viscoelastic membranes.

    Directory of Open Access Journals (Sweden)

    Sitikantha Roy

    Full Text Available The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism.

  17. Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Oncel, S.; Vardar-Sukan, F. [Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir (Turkey)

    2011-01-01

    Photo-biologically produced hydrogen by Chlamydomonas reinhardtii is integrated with a proton exchange (PEM) fuel cell for online electricity generation. To investigate the fuel cell efficiency, the effect of hydrogen production on the open circuit fuel cell voltage is monitored during 27 days of batch culture. Values of volumetric hydrogen production, monitored by the help of the calibrated water columns, are related with the open circuit voltage changes of the fuel cell. From the analysis of this relation a dead end configuration is selected to use the fuel cell in its best potential. After the open circuit experiments external loads are tested for their effects on the fuel cell voltage and current generation. According to the results two external loads are selected for the direct usage of the fuel cell incorporating with the photobioreactors (PBR). Experiments with the PEM fuel cell generate a current density of 1.81 mA cm{sup -2} for about 50 h with 10 {omega} load and 0.23 mA cm{sup -2} for about 80 h with 100 {omega} load. (author)

  18. A Novel Range-Extended Strategy for Fuel Cell/Battery Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jenn-Jiang Hwang

    2015-01-01

    Full Text Available The range-extended electric vehicle is proposed to improve the range anxiety drivers have of electric vehicles. Conventionally, a gasoline/diesel generator increases the range of an electric vehicle. Due to the zero-CO2 emission stipulations, utilizing fuel cells as generators raises concerns in society. This paper presents a novel charging strategy for fuel cell/battery electric vehicles. In comparison to the conventional switch control, a fuzzy control approach is employed to enhance the battery’s state of charge (SOC. This approach improves the quick loss problem of the system’s SOC and thus can achieve an extended driving range. Smooth steering experience and range extension are the main indexes for development of fuzzy rules, which are mainly based on the energy management in the urban driving model. Evaluation of the entire control system is performed by simulation, which demonstrates its effectiveness and feasibility.

  19. Thermal constitutive matrix applied to asynchronous electrical machine using the cell method

    Science.gov (United States)

    Domínguez, Pablo Ignacio González; Monzón-Verona, José Miguel; Rodríguez, Leopoldo Simón; Sánchez, Adrián de Pablo

    2018-03-01

    This work demonstrates the equivalence of two constitutive equations. One is used in Fourier's law of the heat conduction equation, the other in electric conduction equation; both are based on the numerical Cell Method, using the Finite Formulation (FF-CM). A 3-D pure heat conduction model is proposed. The temperatures are in steady state and there are no internal heat sources. The obtained results are compared with an equivalent model developed using the Finite Elements Method (FEM). The particular case of 2-D was also studied. The errors produced are not significant at less than 0.2%. The number of nodes is the number of the unknowns and equations to resolve. There is no significant gain in precision with increasing density of the mesh.

  20. Light induced electrical and macroscopic changes in hydrogenated polymorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Roca i Cabarrocas P.

    2012-07-01

    Full Text Available We report on light-induced electrical and macroscopic changes in hydrogenated polymorphous silicon (pm-Si:H PIN solar cells. To explain the particular light-soaking behavior of such cells – namely an increase of the open circuit voltage (Voc and a rapid drop of the short circuit current density (Jsc – we correlate these effects to changes in hydrogen incorporation and structural properties in the layers of the cells. Numerous techniques such as current-voltage characteristics, infrared spectroscopy, hydrogen exodiffusion, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and spectroscopic ellipsometry are used to study the light-induced changes from microscopic to macroscopic scales (up to tens of microns. Such comprehensive use of complementary techniques lead us to suggest that light-soaking produces the diffusion of molecular hydrogen, hydrogen accumulation at p-layer/substrate interface and localized delamination of the interface. Based on these results we propose that light-induced degradation of PIN solar cells has to be addressed from not only as a material issue, but also a device point of view. In particular we bring experimental evidence that localized delamination at the interface between the p-layer and SnO2 substrate by light-induced hydrogen motion causes the rapid drop of Jsc.

  1. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    Energy Technology Data Exchange (ETDEWEB)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  2. Fuel cell cars in a microgrid for synergies between hydrogen and electricity networks

    NARCIS (Netherlands)

    Alavi, F.; Park Lee, H.; van de Wouw, N.; De Schutter, B.H.K.; Lukszo, Z.

    2017-01-01

    Fuel cell electric vehicles convert chemical energy of hydrogen into electricity to power their motor. Since cars are used for transport only during a small part of the time, energy stored in the on-board hydrogen tanks of fuel cell vehicles can be used to provide power when cars are parked. In

  3. Fuel cell cars in a microgrid for synergies between hydrogen and electricity networks

    NARCIS (Netherlands)

    Alavi, F.; Park Lee, E.; van de Wouw, N.; de Schutter, B.; Lukszo, Z.

    2017-01-01

    Fuel cell electric vehicles convert chemical energy of hydrogen into electricity to power their motor. Since cars are used for transport only during a small part of the time, energy stored in the on-board hydrogen tanks of fuel cell vehicles can be used to provide power when cars are parked. In this

  4. Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension.

    Science.gov (United States)

    Wu, Jing; Montaniel, Kim Ramil C; Saleh, Mohamed A; Xiao, Liang; Chen, Wei; Owens, Gary K; Humphrey, Jay D; Majesky, Mark W; Paik, David T; Hatzopoulos, Antonis K; Madhur, Meena S; Harrison, David G

    2016-02-01

    Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts; however, other cells, including resident and bone marrow-derived stem cell antigen positive (Sca-1(+)) cells and endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1(+) progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension. We also found that bone marrow-derived cells represent more than half of the matrix-producing cells in hypertension, and that one-third of these are Sca-1(+). Cell sorting and lineage-tracing studies showed that cells of endothelial origin contribute to no more than one fourth of adventitial collagen I(+) cells, whereas those of vascular smooth muscle lineage do not contribute. Our findings indicate that Sca-1(+) progenitor cells and bone marrow-derived infiltrating fibrocytes are major sources of arterial fibrosis in hypertension. Endothelial to mesenchymal transition likely also contributes, albeit to a lesser extent and pre-existing resident fibroblasts represent a minority of aortic collagen-producing cells in hypertension. This study shows that vascular stiffening represents a complex process involving recruitment and transformation of multiple cells types that ultimately elaborate adventitial extracellular matrix. © 2015 American Heart Association, Inc.

  5. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  6. Pancreatic β-Cell Electrical Activity and Insulin Secretion: of Mice and Men

    Science.gov (United States)

    Rorsman, Patrik; Ashcroft, Frances M

    2018-01-01

    The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycaemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM. PMID:29212789

  7. Human pluripotent stem cell-derived erythropoietin-producing cells ameliorate renal anemia in mice.

    Science.gov (United States)

    Hitomi, Hirofumi; Kasahara, Tomoko; Katagiri, Naoko; Hoshina, Azusa; Mae, Shin-Ichi; Kotaka, Maki; Toyohara, Takafumi; Rahman, Asadur; Nakano, Daisuke; Niwa, Akira; Saito, Megumu K; Nakahata, Tatsutoshi; Nishiyama, Akira; Osafune, Kenji

    2017-09-27

    The production of erythropoietin (EPO) by the kidneys, a principal hormone for the hematopoietic system, is reduced in patients with chronic kidney disease (CKD), eventually resulting in severe anemia. Although recombinant human EPO treatment improves anemia in patients with CKD, returning to full red blood cell production without fluctuations does not always occur. We established a method to generate EPO-producing cells from human induced pluripotent stem cells (hiPSCs) by modifying previously reported hepatic differentiation protocols. These cells showed increased EPO expression and secretion in response to low oxygen conditions, prolyl hydroxylase domain-containing enzyme inhibitors, and insulin-like growth factor 1. The EPO protein secreted from hiPSC-derived EPO-producing (hiPSC-EPO) cells induced the erythropoietic differentiation of human umbilical cord blood progenitor cells in vitro. Furthermore, transplantation of hiPSC-EPO cells into mice with CKD induced by adenine treatment improved renal anemia. Thus, hiPSC-EPO cells may be a useful tool for clarifying the mechanisms of EPO production and may be useful as a therapeutic strategy for treating renal anemia. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  9. Ex Vivo Assay of Electrical Stimulation to Rat Sciatic Nerves: Cell Behaviors and Growth Factor Expression.

    Science.gov (United States)

    Du, Zhiyong; Bondarenko, Olexandr; Wang, Dingkun; Rouabhia, Mahmoud; Zhang, Ze

    2016-06-01

    Neurite outgrowth and axon regeneration are known to benefit from electrical stimulation. However, how neuritis and their surroundings react to electrical field is difficult to replicate by monolayer cell culture. In this work freshly harvested rat sciatic nerves were cultured and exposed to two types of electrical field, after which time the nerve tissues were immunohistologically stained and the expression of neurotrophic factors and cytokines were evaluated. ELISA assay was used to confirm the production of specific proteins. All cell populations survived the 48 h culture with little necrosis. Electrical stimulation was found to accelerate Wallerian degeneration and help Schwann cells to switch into migratory phenotype. Inductive electrical stimulation was shown to upregulate the secretion of multiple neurotrophic factors. Cellular distribution in nerve tissue was altered upon the application of an electrical field. This work thus presents an ex vivo model to study denervated axon in well controlled electrical field, bridging monolayer cell culture and animal experiment. It also demonstrated the critical role of electrical field distribution in regulating cellular activities. © 2015 Wiley Periodicals, Inc.

  10. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  11. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B. [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  12. Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination.

    Science.gov (United States)

    Dermol, Janja; Miklavčič, Damijan

    2014-12-01

    High voltage electric pulses cause electroporation of the cell membrane. Consequently, flow of the molecules across the membrane increases. In our study we investigated possibility to predict the percentage of the electroporated cells in an inhomogeneous electric field on the basis of the experimental results obtained when cells were exposed to a homogeneous electric field. We compared and evaluated different mathematical models previously suggested by other authors for interpolation of the results (symmetric sigmoid, asymmetric sigmoid, hyperbolic tangent and Gompertz curve). We investigated the density of the cells and observed that it has the most significant effect on the electroporation of the cells while all four of the mathematical models yielded similar results. We were able to predict electroporation of cells exposed to an inhomogeneous electric field based on mathematical modeling and using mathematical formulations of electroporation probability obtained experimentally using exposure to the homogeneous field of the same density of cells. Models describing cell electroporation probability can be useful for development and presentation of treatment planning for electrochemotherapy and non-thermal irreversible electroporation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis

    International Nuclear Information System (INIS)

    Li, Mengyu; Zhang, Xiongwen; Li, Guojun

    2016-01-01

    Battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) are increasingly prevalent in the transportation sector due to growing concerns about climate change, urban air pollution and oil dependence. This theoretical study reports the results of well-to-wheel (WTW) analyses for BEVs and FCEVs in different energy resource and technology pathways in China in terms of fossil energy use, total energy use and greenhouse gas (GHG) emissions. The energy types include coal, natural gas, renewable energy and nuclear energy resources. Special attention is given to the effects of vehicle heating loads on the WTW performances of BEVs and FCEVs. Energy use and GHG emissions reductions from BEVs and FCEVs in different pathways are examined and compared to those of gasoline-based internal engine vehicles (ICEVs). When considering the cabin heating load in vehicles, FCEVs using natural gas as the energy source outperformed all the BEVs in terms of total energy use and GHG emissions. FCEVs adopting new energy-based pathways can achieve the same WTW efficiencies as BEVs, and these efficiencies may be even higher if the hydrogen used by FCEVs is produced by the pathways of solar-solid oxide electrolysis cell (SOEC) systems, solar-thermochemical systems or nuclear-SOEC systems. - Highlights: • A well-to-wheel analysis is performed for electric vehicle technologies in China. • The effects of cabin heating on well-to-wheel performances are investigated. • The performances of different electric vehicle pathways are presented in detail. • FCEVs with natural gas pathways outperformed BEVs.

  14. 2009 Fuel Cell Market Report, November 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  15. Polarized Th2 like cells, in the absence of Th0 cells, are responsible for lymphocyte produced IL-4 in high IgE-producer schistosomiasis patients

    Directory of Open Access Journals (Sweden)

    Soares-Silveira Alda

    2002-07-01

    Full Text Available Abstract Background Human resistance to re-infection with S. mansoni is correlated with high levels of anti-soluble adult worm antigens (SWAP IgE. Although it has been shown that IL-4 and IL-5 are crucial in establishing IgE responses in vitro, the active in vivo production of these cytokines by T cells, and the degree of polarization of Th2 vs. Th0 in human schistosomiasis is not known. To address this question, we determined the frequency of IL-4 and IFN-γ or IL-5 and IL-2 producing lymphocytes from schistosomiasis patients with high or low levels of IgE anti-SWAP. Results Our analysis showed that high and low IgE-producers responded equally to schistosomiasis antigens as determined by proliferation. Moreover, patients from both groups displayed similar percentages of circulating lymphocytes. However, high IgE-producers had an increased percentage of activated CD4+ T cells as compared to the low IgE-producers. Moreover, intracellular cytokine analysis, after short-term stimulation with anti-CD3/CD28 mAbs, showed that IgE high-producers display an increase in the percentage of T lymphocytes expressing IL-4 and IL-5 as compared to IgE low-responders. A coordinate control of the frequency of IL-4 and IL-5 producing lymphocytes in IgE high, but not IgE low-responders, was observed. Conclusions High IgE phenotype human schistosomiasis patients exhibit a coordinate regulation of IL-4 and IL-5 producing cells and the lymphocyte derived IL-4 comes from true polarized Th2 like cells, in the absence of measurable Th0 cells as measured by co-production of IL-4 and IFN-γ.

  16. AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6

    International Nuclear Information System (INIS)

    Miles, S.A.; Rezai, A.R.; Salazar-Gonzalez, J.F.; Meyden, M.V.; Stevens, R.H.; Mitsuyasu, R.T.; Martinez-Maza, O.; Logan, D.M.; Taga, Tetsuya; Hirano, Toshio; Kishimoto, Tadamitsu

    1990-01-01

    Cell lines derived from Kaposi sarcoma lesions of patients with AIDS (AIDS-KS cells) produce several cytokines, including an endothelial cell growth factor, interleukin 1β, and basic fibroblast growth factor. Since exposure to human immunodeficiency virus increases interleukin 6 (IL-6) production in monocytes and endothelial cells produce IL-6, the authors examined IL-6 expression and response in AIDS-KS cell lines and IL-6 expression in AIDS Kaposi sarcoma tissue. The AIDS-KS cell lines (N521J and EKS3) secreted large amounts of immunoreactive and biologically active IL-6. The authors found both IL-6 and IL-6 receptor (IL-6-R) RNA by slot blot hybridization analysis of AIDS-KS cells. The IL-6-R was functional, as [ 3 H]thymidine incorporation by AIDS-KS cells increased significantly after exposure to human recombinant IL-6 (hrIL-6) at >10 units/ml. When AIDS-KS cells (EKS3) were exposed to IL-6 antisense oligonucleotide, cellular proliferation decreased by nearly two-thirds, with a corresponding decrease in the production of IL-6. These results show that both IL-6 and IL-6-R are produced by AIDS-KS cells and that IL-6 is required for optimal AIDS-KS cell proliferation, and they suggest that IL-6 is an autocrine growth factor for AIDS-KS cells

  17. Integrative Modeling of Electrical Properties of Pacemaker Cardiac Cells

    Science.gov (United States)

    Grigoriev, M.; Babich, L.

    2016-06-01

    This work represents modeling of electrical properties of pacemaker (sinus) cardiac cells. Special attention is paid to electrical potential arising from transmembrane current of Na+, K+ and Ca2+ ions. This potential is calculated using the NaCaX model. In this respect, molar concentration of ions in the intercellular space which is calculated on the basis of the GENTEX model is essential. Combined use of two different models allows referring this approach to integrative modeling.

  18. Simultaneous electricity production and antibiotics removal by microbial fuel cells.

    Science.gov (United States)

    Zhou, Ying; Zhu, Nengwu; Guo, Wenying; Wang, Yun; Huang, Xixian; Wu, Pingxiao; Dang, Zhi; Zhang, Xiaoping; Xian, Jinchan

    2018-04-07

    The removal of antibiotics is crucial for improvement of water quality in animal wastewater treatment. In this paper, the performance of microbial fuel cell (MFC) in terms of degradation of typical antibiotics was investigated. Electricity was successfully produced by using sludge supernatant mixtures and synthesized animal wastewater as inoculation in MFC. Results demonstrated that the stable voltage, the maximum power density and internal resistance of anaerobic self-electrolysis (ASE) -112 and ASE-116 without antibiotics addition were 0.574 V, 5.78 W m -3 and 28.06 Ω, and 0.565 V, 5.82 W m -3 and 29.38 Ω, respectively. Moreover, when adding aureomycin, sulfadimidine, roxithromycin and norfloxacin into the reactors, the performance of MFC was inhibited (0.51 V-0.41 V), while the output voltage was improved with the decreased concentration of antibiotics. However, the removal efficiency of ammonia nitrogen (NH 3 -N) and total phosphorus (TP) were both obviously enhanced. Simultaneously, LC-MS analysis showed that the removal efficiency of aureomycin, roxithromycin and norfloxacin were all 100% and the removal efficiency of sulfadimidine also reached 99.9%. These results indicated that antibiotics displayed significantly inhibitions for electricity performance but improved the quality of water simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Intraportal injection of insulin-producing cells generated from human bone marrow mesenchymal stem cells decreases blood glucose level in diabetic rats.

    Science.gov (United States)

    Tsai, Pei-Jiun; Wang, Hwai-Shi; Lin, Chi-Hung; Weng, Zen-Chung; Chen, Tien-Hua; Shyu, Jia-Fwu

    2014-01-01

    We studied the process of trans-differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) into insulin-producing cells. Streptozotocin (STZ)-induced diabetic rat model was used to study the effect of portal vein transplantation of these insulin-producing cells on blood sugar levels. The BM-MSCs were differentiated into insulin-producing cells under defined conditions. Real-time PCR, immunocytochemistry and glucose challenge were used to evaluate in vitro differentiation. Flow cytometry showed that hBM-MSCs were strongly positive for CD44, CD105 and CD73 and negative for hematopoietic markers CD34, CD38 and CD45. Differentiated cells expressed C-peptide as well as β-cells specific genes and hormones. Glucose stimulation increased C-peptide secretion in these cells. The insulin-producing, differentiated cells were transplanted into the portal vein of STZ-induced diabetic rats using a Port-A catheter. The insulin-producing cells were localized in the liver of the recipient rat and expressed human C-peptide. Blood glucose levels were reduced in diabetic rats transplanted with insulin-producing cells. We concluded that hBM-MSCs could be trans-differentiated into insulin-producing cells in vitro. Portal vein transplantation of insulin-producing cells alleviated hyperglycemia in diabetic rats.

  20. Standard Test Method for Electrical Performance of Photovoltaic Cells Using Reference Cells Under Simulated Sunlight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of the electrical performance of a photovoltaic cell under simulated sunlight by means of a calibrated reference cell procedure. 1.2 Electrical performance measurements are reported with respect to a select set of standard reporting conditions (SRC) (see Table 1) or to user-specified conditions. 1.2.1 The SRC or user-specified conditions include the cell temperature, the total irradiance, and the reference spectral irradiance distribution. 1.3 This test method is applicable only to photovoltaic cells with a linear response over the range of interest. 1.4 The cell parameters determined by this test method apply only at the time of test, and imply no past or future performance level. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this s...

  1. Conceptual design of a sodium sulfur cell for US electric van batteries

    Science.gov (United States)

    Binden, Peter J.

    1993-05-01

    A conceptual design of an advanced sodium/sulfur cell for US electric-van applications has been completed. The important design factors included specific physical and electrical requirements, service life, manufacturability, thermal management, and safety. The capacity of this cell is approximately the same as that for the PB cell being developed by Silent Power Limited (10 Ah). The new cell offers a 50% improvement in energy capacity and nearly a 100% improvement in peak power over the existing PB cells. A battery constructed with such cells would significantly exceed the USABC's mid-term performance specifications. In addition, a similar cell and battery design effort was completed for an advanced passenger car application. A battery using the van cell would have nearly 3 times the energy compared to lead-acid batteries, yet weigh 40% less; a present-day battery using a cell specifically designed for this car would provide 50% more energy in a package 60% smaller and 50% lighter.

  2. Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types.

    Science.gov (United States)

    Gianulis, Elena C; Labib, Chantelle; Saulis, Gintautas; Novickij, Vitalij; Pakhomova, Olga N; Pakhomov, Andrei G

    2017-05-01

    Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0-2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD 50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.

  3. The active electric sense of weakly electric fish: from electric organ discharge to sensory processing and behaviour

    Directory of Open Access Journals (Sweden)

    Krahe Rüdiger

    2016-01-01

    Full Text Available Sensory systems have been shaped by evolution to extract information that is relevant for decision making. In order to understand the mechanisms used by sensory systems for filtering the incoming stream of sensory input, it is important to have a quantitative understanding of the natural sensory scenes that are to be processed. Weakly electric fish lead a rather cryptic nocturnal life in often turbid tropical rainforest streams. They produce electric discharges and sense perturbations of their selfgenerated electric field for prey detection and navigation, and also use their active sense for communication in the context of courtship and aggression. The fact that they produce their electric signals throughout day and night permits the use of electrode arrays to track the movements of multiple individual fish and monitor their communication interactions, thus offering a window into their electrosensory world. This approach yields unprecedented access to information on the biology of these fishes and also on the statistical properties of the sensory scenes that are to be processed by their electrosensory system. The electrosensory system shares many organizational features with other sensory systems, in particular, the use of multiple topographic maps. In fact, the sensory surface (the skin is represented in three parallel maps in the hindbrain, with each map covering the receptor organ array with six different cell types that project to the next higher level of processing. Thus, the electroreceptive body surface is represented a total of 18 times in the hindbrain, with each representation having its specific filter properties and degree of response plasticity. Thus, the access to the sensory world of these fish as well as the manifold filtering of the sensory input makes these fish an excellent model system for exploring the cell-intrinsic and network characteristics underlying the extraction of behaviourally relevant sensory information.

  4. Electrical properties of multilayer (DLC-TiC) films produced by pulsed laser deposition

    Science.gov (United States)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Nima, Zeid A.; Kelly, Nigel; Watanabe, Fumiya; Biris, Alexandru S.

    2018-04-01

    In this work, pulsed laser deposition was used to produce a multilayer diamond like carbon (ML (DLC-TiC)) thin film. The ML (DLC-TiC) films were deposited on Si (100) and glass substrates at various substrate temperatures in the range of 20-450 °C. Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy were utilized to characterize the prepared films. Raman analysis revealed that as the substrate temperature increased, the G-peak position shifted to a higher raman shift and the full width at half maximum of the G and D bands decreased. XPS analysis indicated a decrease in sp3/sp2 ratio and an increase in Ti-C bond intensity when the substrate temperature was increased. Additionally, the surface roughness of ML (DLC-TiC) filmswas affected by the type and temperature of the substrate. The electrical measurement results indicated that the electrical resistivity of the ML (DLC-TiC) film deposited on Si and glass substrates showed the same behavior-the resistivity decreased when substrate temperature increased. Furthermore, the ML (DLC-TiC) films deposited on silicon showed lower electrical resistivity, dropping from 8.39E-4 Ω-cm to 5.00E-4 Ω-cm, and, similarly, the films on the glass substrate displayed a drop in electrical resistivity from 1.8E-2 Ω-cm to 1.2E-3 Ω-cm. These enhanced electrical properties indicate that the ML (DLC-TiC) films have widespread potential as transducers for biosensors in biological research; electrochemical electrodes, because these films can be chemically modified; biocompatible coatings for medicals tools; and more.

  5. The fuel cell and the electrical vehicle; La pile a combustible et la voiture electrique

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, J C [Universite Pierre et Marie Curie, 75 - Paris (France)

    1999-01-01

    The fuel cell is an electrochemical generator able to transform directly the chemical energy of a gaseous fuel (hydrogen, natural gas, coke gas or methanol...) with a combustive (oxygen for example) in electricity, heat, water and carbon dioxide. This article briefly describes at first the history of the fuel cell and after its working principle with the main reasons of its present development. Indeed, the fuel cell could be an alternative to the batteries for the electrically powered vehicles but also for other applications demanding autonomous electrical supply. The different types of fuel cells are described with their own performances. The proton exchange membrane fuel cells (PEMFC) are more specially described. Examples of polymer membranes with their performances are given. The different programs in the EC and in the world are described as well as their applications in different domains such as the electrical powered car. (authors) 10 refs.

  6. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  7. Extrinsic Factors Involved in the Differentiation of Stem Cells into Insulin-Producing Cells: An Overview

    Directory of Open Access Journals (Sweden)

    Rebecca S. Y. Wong

    2011-01-01

    Full Text Available Diabetes mellitus is a chronic disease with many debilitating complications. Treatment of diabetes mellitus mainly revolves around conventional oral hypoglycaemic agents and insulin replacement therapy. Recently, scientists have turned their attention to the generation of insulin-producing cells (IPCs from stem cells of various sources. To date, many types of stem cells of human and animal origins have been successfully turned into IPCs in vitro and have been shown to exert glucose-lowering effect in vivo. However, scientists are still faced with the challenge of producing a sufficient number of IPCs that can in turn produce sufficient insulin for clinical use. A careful choice of stem cells, methods, and extrinsic factors for induction may all be contributing factors to successful production of functional beta-islet like IPCs. It is also important that the mechanism of differentiation and mechanism by which IPCs correct hyperglycaemia are carefully studied before they are used in human subjects.

  8. Photovoltaic cell electrical heating system for removing snow on panel including verification.

    Science.gov (United States)

    Weiss, Agnes; Weiss, Helmut

    2017-11-16

    Small photovoltaic plants in private ownership are typically rated at 5 kW (peak). The panels are mounted on roofs at a decline angle of 20° to 45°. In winter time, a dense layer of snow at a width of e.g., 10 cm keeps off solar radiation from the photovoltaic cells for weeks under continental climate conditions. Practically, no energy is produced over the time of snow coverage. Only until outside air temperature has risen high enough for a rather long-time interval to allow partial melting of snow; the snow layer rushes down in an avalanche. Following this proposal, snow removal can be arranged electrically at an extremely positive energy balance in a fast way. A photovoltaic cell is a large junction area diode inside with a threshold voltage of about 0.6 to 0.7 V (depending on temperature). This forward voltage drop created by an externally driven current through the modules can be efficiently used to provide well-distributed heat dissipation at the cell and further on at the glass surface of the whole panel. The adhesion of snow on glass is widely reduced through this heating in case a thin water film can be produced by this external short time heating. Laboratory experiments provided a temperature increase through rated panel current of more than 10 °C within about 10 min. This heating can initiate the avalanche for snow removal on intention as described before provided the clamping effect on snow at the edge of the panel frame is overcome by an additional heating foil. Basics of internal cell heat production, heating thermal effects in time course, thermographic measurements on temperature distribution, power circuit opportunities including battery storage elements and snow-removal under practical conditions are described.

  9. Biological fuel-cell converts sugar into electric power; Biologinen polttokenno muuttaa sokerin saehkoeksi

    Energy Technology Data Exchange (ETDEWEB)

    Kinnunen, L.

    1994-12-31

    The Automation Technology Laboratory at the Helsinki University of Technology has developed a fuel-cell which produces electric power and water from glucose. The fuel-cell opens new possibilities for utilization of biologically disintegrable matter, e.g. different kinds of carbage, in power generation. The glucose is converted in the reactor by baking yeast into a metabolite, which is feeded into the fuel-cell of volume 55 ml. Graphite, wound into the nickel wire net, is used as anode in the system. Porous graphite is used as cathode. Anode and cathode are separated from each other by ion- exchange membrane, which is penetrable by hydrogen iones, but not by salt solution of the cathode half-cell. The metabolite is oxidized at the anode, donating electrons and hydrogen iones to the ande. The electrones flow through the circuit into the cathode there they react with hydrogen iones and oxygen feeded through the cathode to form water. The fuel-cell, based on direct oxygenation-reduction, has operated without any disturbances for 280 hours. The efficiency, calculated from the heating value of the glucose, is 44 %, which is better than that of the chemical fuel-cells. The disadvantage of the biological reactions is the low speed of them, so the current densities of the cell still remain into the class 2.0 W/m{sup 2}, which is about 1.0 % of that of the developed phosphoric acid fuel-cells

  10. The enhanced efficiency of graphene-silicon solar cells by electric field doping.

    Science.gov (United States)

    Yu, Xuegong; Yang, Lifei; Lv, Qingmin; Xu, Mingsheng; Chen, Hongzheng; Yang, Deren

    2015-04-28

    The graphene-silicon (Gr-Si) Schottky junction solar cell has been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the low Gr-Si Schottky barrier height largely limits the power conversion efficiency of Gr-Si solar cells. Here, we demonstrate that electric field doping can be used to tune the work function of a Gr film and therefore improve the photovoltaic performance of the Gr-Si solar cell effectively. The electric field doping effects can be achieved either by connecting the Gr-Si solar cell to an external power supply or by polarizing a ferroelectric polymer layer integrated in the Gr-Si solar cell. Exploration of both of the device architecture designs showed that the power conversion efficiency of Gr-Si solar cells is more than twice of the control Gr-Si solar cells. Our study opens a new avenue for improving the performance of Gr-Si solar cells.

  11. Enhanced Electricity Generation by Using Cheese Whey Wastewater in A Single-chamber Membrane Less Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hassan A.Z. Al-Fetlawi

    2018-02-01

    Full Text Available Microbial fuel cells (MFCs are biochemical-catalyzed systems in which electricity is produced by oxidizing  biodegradable organic matters in presence of  bacteria. Many places suffer from lack of electricity infrastructure or even existence" ,"but in the same area  there is wastewater that can be used to generate clean energy". "A batch system single chamber  and  membrane-less microbial fuel cell is designed with wastewater as inoculum and fuel in the same time(before adding cheese whey at pH =7±0.4 and an operating temperature of 30 0C ". Wastewater samples are collected from the Al-Delmaj marsh site at an initial chemical oxygen demand concentration of 862 mg/l and pH of 7.8 (reduced to 7±0.4 in all experiments by adding HCL acid. Rectangular sheets of graphite and smooth surface carbon fiber of 42 cm2 surface area used for anode and cathode electrodes. The obtained results indicated that the cell performance for the cell using graphite for anode and cathode electrodes is better than that using the carbon fiber of smooth surface .the obtained  open circuit voltage and power per unit surface area (for graphite  were" 190 mV and 5.95 mW/m2 respectively ."Cheese whey as substrate was used to enhance the performance of cell to  439 mV OCV and 121.9mW/m2  maximum power density" .

  12. High-quality laser-produced proton beam realized by the application of a synchronous RF electric field

    International Nuclear Information System (INIS)

    Nakamura, Shu; Ikegami, Masahiro; Iwashita, Yoshihisa; Shirai, Toshiyuki; Tongu, Hiromu; Souda, Hikaru; Noda, Akira; Daido, Hiroyuki; Mori, Michiaki; Kado, Masataka; Sagisaka, Akito; Ogura, Koichi; Nishiuchi, Mamiko; Orimo, Satoshi; Hayashi, Yukio; Yogo, Akifumi; Pirozhkov, Alexander S.; Bulanov, Sergei V.; Esirkepov, Timur; Nagashima, Akira; Kimura, Toyoaki; Tajima, Toshiki; Takeuchi, Takeshi; Fukumi, Atsushi; Li, Zhong

    2007-01-01

    A short-pulse (∼210fs) high-power (∼1 TW) laser was focused on a tape target 3 and 5 μm in thickness to a size of 11 x 15 μm 2 with an intensity of 3 x 10 17 W/cm 2 . Protons produced by this laser with an energy spread of 100% were found to be improved to create peaks in the energy distribution with a spread of ∼7% by the application of the RF electric field with an amplitude of ±40kV synchronous to the pulsed laser. This scheme combines the conventional RF acceleration technique with laser-produced protons for the first time. It is possible to be operated up to 10 Hz, and is found to have good reproducibility for every laser shot with the capability of adjusting the peak positions by control of the relative phase between the pulsed laser and the RF electric field. (author)

  13. Development of a high-titer retrovirus producer cell line capable of gene transfer into rhesus monkey hematopoietic stem cells

    International Nuclear Information System (INIS)

    Bodine, D.M.; McDonagh, K.T.; Brandt, S.J.; Ney, P.A.; Agricola, B.; Byrne, E.; Nienhuis, A.W.

    1990-01-01

    Retroviral-mediated gene transfer into primitive hematopoietic cells has been difficult to achieve in large-animal models. The authors have developed an amphotropic producer clone that generates >10 10 recombinant retroviral particles (colony-forming units) per ml of culture medium. Autologous rhesus monkey bone marrow cells were cocultured with either high or low titer producer clones for 4-6 days and reinfused into sublethally irradiated animals. The proviral genome was detected in blood and bone-marrow cells from all three animals reconstituted with cells cocultured with the high-titer producer cells. In contrast, three animals reconstituted with bone marrow cocultured with the low-titer producer clone exhibited no evidence of gene transfer

  14. Interaction among competitive producers in the electricity market: An iterative market model for the strategic management of thermal power plants

    International Nuclear Information System (INIS)

    Carraretto, Cristian; Zigante, Andrea

    2006-01-01

    The liberalization of the electricity sector requires utilities to develop sound operation strategies for their power plants. In this paper, attention is focused on the problem of optimizing the management of the thermal power plants belonging to a strategic producer that competes with other strategic companies and a set of smaller non-strategic ones in the day-ahead market. The market model suggested here determines an equilibrium condition over the selected period of analysis, in which no producer can increase profits by changing its supply offers given all rivals' bids. Power plants technical and operating constraints are considered. An iterative procedure, based on the dynamic programming, is used to find the optimum production plans of each producer. Some combinations of power plants and number of producers are analyzed, to simulate for instance the decommissioning of old expensive power plants, the installation of new more efficient capacity, the severance of large dominant producers into smaller utilities, the access of new producers to the market. Their effect on power plants management, market equilibrium, electricity quantities traded and prices is discussed. (author)

  15. On the possibility of producing alumina ceramic with a slight electrical conductivity

    CERN Document Server

    Caspers, Fritz

    1989-01-01

    Antistatic alumina ceramic is desirable for certain particle accelerator applications. In general, highly insulating surface close to a charged particle beam must be avoided in order to prevent the formation of ion pockets and other unwanted electrical effects. For the AA vacuum chamber (UHV), an antistatic ferrite has been produced and successfully installed. The fabrication of antistatic alumina might be possible in a similar way. By using certain metal oxides in the cement, which holds the alumina particles together, a slight conductivity could be obtained after the firing and sintering process, without deteriorating the mechanical and outgassing properties of the alumina compound.

  16. Differentiation of insulin-producing cells from human neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuichi Hori

    2005-04-01

    Full Text Available BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals that regulate in vivo pancreatic islet development, form clusters of glucose-responsive insulin-producing cells (IPCs. During in vitro differentiation of neural progenitor cells with this novel method, genes encoding essential known in vivo regulators of pancreatic islet development were expressed. Following transplantation into immunocompromised mice, IPCs released insulin C-peptide upon glucose challenge, remained differentiated, and did not form detectable tumors. CONCLUSION: Production of IPCs solely through extracellular factor modulation in the absence of genetic manipulations may promote strategies to derive transplantable islet-replacement tissues from human neural progenitor cells and other types of multipotent human stem cells.

  17. Lightning-produced NOx in an explicit electrical scheme tested in a Stratosphere-Troposphere Experiment: Radiation, Aerosols, and Ozone case study

    Science.gov (United States)

    Barthe, Christelle; Pinty, Jean-Pierre; Mari, CéLine

    2007-02-01

    An explicit lightning-produced nitrogen oxide (LNOx) scheme has been implemented in a 3-D mesoscale model. The scheme is based on the simulation of the electrical state of the cloud and provides a prediction of the temporal and spatial distribution of the lightning flashes. The frequency and the 3-D morphology of the lightning flashes are captured realistically so fresh nitrogen oxide molecules can be added along the complex flash path as a function of the pressure, as suggested by results from laboratory experiments. The scheme is tested on the 10 July 1996 Stratosphere-Troposphere Experiment: Radiation, Aerosols, and Ozone (STERAO) storm. The model reproduces many features of the observed increase of electrical activity and LNOx flux density between the multicell and supercell stages. LNOx dominates the NOx budget in the upper part of the cells with instantaneous peak concentrations exceeding 4 ppbv, as observed. The computed flux of NOx across the anvil shows a mean value of 6 mol m-2 s-1 during the last 90 min of the simulation. This value is remarkably stable and compares favorably with the observations.

  18. Characterization of solar cells for space applications. Volume 11: Electrical characteristics of 2 ohm-cm, 228 micron wraparound solar cells as a function of intensity, temperature, and irradiation. [for solar electric propulsion

    Science.gov (United States)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Weiss, R. S.

    1980-01-01

    Parametric characterization data on Spectrolab 2 by 4 cm, 2 ohm/cm, 228 micron thick wraparound cell, a candidate for the Solar Electric Propulsion Mission, are presented. These data consist of the electrical characteristics of the solar cell under a wide range of temperature and illumination intensity combinations of the type encountered in space applications.

  19. Effect of bionic electrical stimulation on the differentiation of embryonic stem cells into cardiomyocytes in the presence myocardial cells in vitro

    Directory of Open Access Journals (Sweden)

    Li-na ZHENG

    2011-08-01

    Full Text Available Objective To investigate the effects of electrical stimulation on the differentiation of embryonic stem cells(ESCs into cardiomyocytes in the presence of myocardial cells in vitro.Methods ESCs and neonate rat cardiomyocytes were isolated and cultured.These cells of primary culture were divided into 5 groups according to whether or not electric stimulation was given and the presence of cardiomyocytes: control group,stimulation group,cardiomyocytes group,stimulation+ cardiomyocyte conditioned medium group,and stimulation+cardiomyocytes group.Expression of troponin T(cTnT in the differentiated cells from ESCs was examined by immunofluoresence on the 5th,7th and 14th day.Results In the group co-cultured with myocardial cell and electrical stimulation,the differentiating ratio of cardiomyocytes derived from ESCs and expressing cTnT was 40.00%±2.39%,and it was higher than that in control group(2.00%±1.60%,stimulation group(3.00%±2.00%,cardiomyocytes group(28.70%±4.06%,stimulation+cardiomyocyte conditioned medium group(17.10%±2.23%,P < 0.05.Conclusion Bionic electric stimulation promotes the differentiation of ESCs into cardiomyocyte in a microenvironment consisting of myocardial cells.

  20. A Biophysical Model of Electrical Activity in Human β-Cells.

    OpenAIRE

    Pedersen, Morten Gram

    2010-01-01

    Electrical activity in pancreatic β-cells plays a pivotal role in glucose-stimulated insulin secretion by coupling metabolism to calcium-triggered exocytosis. Mathematical models based on rodent data have helped in understanding the mechanisms underlying the electrophysiological patterns observed in laboratory animals. However, human β-cells differ in several aspects, and in particular in their electrophysiological characteristics, from rodent β-cells. Hence, from a clinical perspective and t...

  1. Photoactivated Fuel Cells (PhotoFuelCells. An alternative source of renewable energy with environmental benefits

    Directory of Open Access Journals (Sweden)

    Stavroula Sfaelou

    2016-03-01

    Full Text Available This work is a short review of Photoactivated Fuel Cells, that is, photoelectrochemical cells which consume an organic or inorganic fuel to produce renewable electricity or hydrogen. The work presents the basic features of photoactivated fuel cells, their modes of operation, the materials, which are frequently used for their construction and some ideas of cell design both for electricity and solar hydrogen production. Water splitting is treated as a special case of photoactivated fuel cell operation.

  2. Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear renewable electrical grids

    International Nuclear Information System (INIS)

    Forsberg, Charles

    2013-01-01

    A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production. -- Highlights: •A system is proposed to meet variable hourly to seasonal electricity demand. •Variable solar and wind electricity sent to the grid. •Base-load nuclear plants send variable steam for electricity and hybrid systems. •Hybrid energy systems can economically absorb gigawatts of variable steam. •Hybrid systems include geothermal heat storage, hydrogen, and shale-oil production

  3. Electricity generation using white and red wine lees in air cathode microbial fuel cells

    Science.gov (United States)

    Pepe Sciarria, Tommy; Merlino, Giuseppe; Scaglia, Barbara; D'Epifanio, Alessandra; Mecheri, Barbara; Borin, Sara; Licoccia, Silvia; Adani, Fabrizio

    2015-01-01

    Microbial fuel cell (MFC) is a useful biotechnology to produce electrical energy from different organic substrates. This work reports for the first time results of the application of single chamber MFCs to generate electrical energy from diluted white wine (WWL) and red wine (RWL) lees. Power obtained was of 8.2 W m-3 (262 mW m-2; 500 Ω) and of 3.1 W m-3 (111 mW m-2; 500Ω) using white and red wine lees, respectively. Biological processes lead to a reduction of chemical oxygen (TCOD) and biological oxygen demand (BOD5) of 27% and 83% for RWL and of 90% and 95% for WWL, respectively. These results depended on the degradability of organic compounds contained, as suggest by BOD5/TCOD of WWL (0.93) vs BOD5/TCOD of RWL (0.33), and to the high presence of polyphenols in RWL that inhibited the process. Coulombic efficiency (CE) of 15 ± 0%, for WWL, was in line with those reported in the literature for other substrates, i.e. CE of 14.9 ± 11.3%. Different substrates led to different microbial consortia, particularly at the anode. Bacterial species responsible for the generation of electricity, were physically connected to the electrode, where the direct electron transfer took place.

  4. Virus-like particle of Macrobrachium rosenbergii nodavirus produced in Spodoptera frugiperda (Sf9) cells is distinctive from that produced in Escherichia coli.

    Science.gov (United States)

    Kueh, Chare Li; Yong, Chean Yeah; Masoomi Dezfooli, Seyedehsara; Bhassu, Subha; Tan, Soon Guan; Tan, Wen Siang

    2017-03-01

    Macrobrachium rosenbergii nodavirus (MrNV) is a virus native to giant freshwater prawn. Recombinant MrNV capsid protein has been produced in Escherichia coli, which self-assembled into virus-like particles (VLPs). However, this recombinant protein is unstable, degrading and forming heterogenous VLPs. In this study, MrNV capsid protein was produced in insect Spodoptera frugiperda (Sf9) cells through a baculovirus system. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the recombinant protein produced by the insect cells self-assembled into highly stable, homogenous VLPs each of approximately 40 nm in diameter. Enzyme-linked immunosorbent assay (ELISA) showed that the VLPs produced in Sf9 cells were highly antigenic and comparable to those produced in E. coli. In addition, the Sf9 produced VLPs were highly stable across a wide pH range (2-12). Interestingly, the Sf9 produced VLPs contained DNA of approximately 48 kilo base pairs and RNA molecules. This study is the first report on the production and characterization of MrNV VLPs produced in a eukaryotic system. The MrNV VLPs produced in Sf9 cells were about 10 nm bigger and had a uniform morphology compared with the VLPs produced in E. coli. The insect cell production system provides a good source of MrNV VLPs for structural and immunological studies as well as for host-pathogen interaction studies. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:549-557, 2017. © 2016 American Institute of Chemical Engineers.

  5. Imbalance between IL-17A-Producing Cells and Regulatory T Cells during Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Yuehua Hu

    2014-01-01

    Full Text Available Immune responses and inflammation are key elements in the pathogenesis of ischemic stroke (IS. Although the involvement of IL-17A in IS has been demonstrated using animal models, the involvement of IL-17A and IL-17-secreting T cell subsets in IS patients has not been verified, and whether the balance of Treg/IL-17-secreting T cells is altered in IS patients remains unknown. In the present study, we demonstrated that the proportion of peripheral Tregs and the levels of IL-10 and TGF-β were reduced in patients with IS compared with controls using flow cytometry (FCM, real-time PCR, and ELISA assays. However, the proportions of Th17 and γδ T cells, the primary IL-17A-secreting cells, increased dramatically, and these effects were accompanied by increases in the levels of IL-17A, IL-23, IL-6, and IL-1β in IS patients. These studies suggest that the increase in IL-17A-producing cells and decrease in Treg cells might contribute to the pathogenesis of IS. Manipulating the balance between Tregs and IL-17A-producing cells might be helpful for the treatment of IS.

  6. Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact

    Science.gov (United States)

    Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT; Johnsen, Richard [New Fairfield, CT

    2007-04-10

    An assembly for storing electrolyte in a carbonate fuel cell is provided. The combination of a soft, compliant and resilient cathode current collector and an inactive anode part including a foam anode in each assembly mitigates electrical contact loss during operation of the fuel cell stack. In addition, an electrode reservoir in the positive end assembly and an electrode sink in the negative end assembly are provided, by which ribbed and flat cathode members inhibit electrolyte migration in the fuel cell stack.

  7. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Anton Francesch, Judit

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  8. Biphasic electrical targeting plays a significant role in schwann cell activation.

    Science.gov (United States)

    Kim, In Sook; Song, Yun Mi; Cho, Tae Hyung; Pan, Hui; Lee, Tae Hyung; Kim, Sung June; Hwang, Soon Jung

    2011-05-01

    Electrical stimulation (ES) is a promising technique for axonal regeneration of peripheral nerve injuries. However, long-term, continuous ES in the form of biphasic electric current (BEC) to stimulate axonal regeneration has rarely been attempted and the effects of BEC on Schwann cells are unknown. We hypothesized that long-term, continuous ES would trigger the activation of Schwann cells, and we therefore investigated the effect of BEC on the functional differentiation of primary human mesenchymal stromal cells (hMSCs) into Schwann cells, as well as the activity of primary Schwann cells. Differentiation of hMSCs into Schwann cells was determined by coculture with rat pheochromocytoma cells (PC12 cell line). We also investigated the in vivo effects of long-term ES (4 weeks) on axonal outgrowth of a severed sciatic nerve with a 7-mm gap after retraction of the nerve ends in rats by implanting an electronic device to serve as a neural conduit. PC12 cells cocultured with hMSCs electrically stimulated during culture in Schwann cell differentiation medium (Group I) had longer neurites and a greater percentage of PC12 cells were neurite-sprouting than when cocultured with hMSCs cultured in growth medium (control group) or unstimulated hMSCs in the same culture conditions as used for Group I (Group II). Group I cells showed significant upregulation of Schwann cell-related neurotrophic factors such as nerve growth factor and glial-derived neurotrophic factor compared to Group II cells at both the mRNA and protein levels. Primary Schwann cells responded to continuous BEC with increased proliferation and the induction of nerve growth factor and glial-derived neurotrophic factor, similar to Group I cells, and in addition, induction of brain-derived neurotrophic factor was observed. Immunohistochemical investigation of sciatic nerve regenerates revealed that BEC increased axonal outgrowth significantly. These results demonstrate that BEC enhanced the functional activity of

  9. Batteries and fuel cells for emerging electric vehicle markets

    Science.gov (United States)

    Cano, Zachary P.; Banham, Dustin; Ye, Siyu; Hintennach, Andreas; Lu, Jun; Fowler, Michael; Chen, Zhongwei

    2018-04-01

    Today's electric vehicles are almost exclusively powered by lithium-ion batteries, but there is a long way to go before electric vehicles become dominant in the global automotive market. In addition to policy support, widespread deployment of electric vehicles requires high-performance and low-cost energy storage technologies, including not only batteries but also alternative electrochemical devices. Here, we provide a comprehensive evaluation of various batteries and hydrogen fuel cells that have the greatest potential to succeed in commercial applications. Three sectors that are not well served by current lithium-ion-powered electric vehicles, namely the long-range, low-cost and high-utilization transportation markets, are discussed. The technological properties that must be improved to fully enable these electric vehicle markets include specific energy, cost, safety and power grid compatibility. Six energy storage and conversion technologies that possess varying combinations of these improved characteristics are compared and separately evaluated for each market. The remainder of the Review briefly discusses the technological status of these clean energy technologies, emphasizing barriers that must be overcome.

  10. Electrical Stimulation of Schwann Cells Promotes Sustained Increases in Neurite Outgrowth

    OpenAIRE

    Koppes, Abigail N.; Nordberg, Andrea L.; Paolillo, Gina M.; Goodsell, Nicole M.; Darwish, Haley A.; Zhang, Linxia; Thompson, Deanna M.

    2013-01-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite ou...

  11. Half a dollar per kWh and still cheap electricity

    International Nuclear Information System (INIS)

    Daey Ouwens, C.

    1991-01-01

    An analysis for the costs of electricity produced by an autonomous solar cell system in combination with efficient electric appliances, as they are used in houses and small offices, is presented. If efficient appliances are used, an average household will use about 700 kWh per year, compared to about 3000 kWh it is using on average at present. Efficient appliances, however, are more expensive. The extra cost per kWh saved is about the same as the cost of the fuel needed to produce a kWh in a power plant. The 700 kWh per year can be produced by an autonomous solar cell system with an area of 3 m 2 (efficiency 19%). The analysis is valid roughly for the area between 40 o northern and southern latitude. A comparison has been made between the total costs of a grid connection and the costs of an autonomous solar cell system. If all costs are capitalized and compiled, a grid connection will amount to about $6,000 (fuel costs are not included). The costs of a solar cell system producing 700 kWh per year are about the same or even lower. The modular nature of solar cell systems makes it possible to start with a certain number of appliances, depending on the amount of money one can spend. 6 tabs., 2 refs

  12. Electrical and optical properties of thin indium tin oxide films produced by pulsed laser ablation in oxygen or rare gas atmospheres

    DEFF Research Database (Denmark)

    Thestrup, B.; Schou, Jørgen; Nordskov, A.

    1999-01-01

    Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate temperatu......Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate...

  13. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers.

    Science.gov (United States)

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Zhang, Quanyu; Luo, Zhuojing

    2010-04-01

    Electrical stimulation (ES) can dramatically enhance neurite outgrowth through conductive polymers and accelerate peripheral nerve regeneration in animal models of nerve injury. Therefore, conductive tissue engineering graft in combination with ES is a potential treatment for neural injuries. Conductive tissue engineering graft can be obtained by seeding Schwann cells on conductive scaffold. However, when ES is applied through the conductive scaffold, the impact of ES on Schwann cells has never been investigated. In this study, a biodegradable conductive composite made of conductive polypyrrole (PPy, 2.5%) and biodegradable chitosan (97.5%) was prepared in order to electrically stimulate Schwann cells. The tolerance of Schwann cells to ES was examined by a cell apoptosis assay. The growth of the cells was characterized using DAPI staining and a MTT assay. mRNA and protein levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in Schwann cells were assayed by RT-PCR and Western blotting, and the amount of NGF and BDNF secreted was determined by an ELISA assay. The results showed that the PPy/chitosan membranes supported cell adhesion, spreading, and proliferation with or without ES. Interestingly, ES applied through the PPy/chitosan composite dramatically enhanced the expression and secretion of NGF and BDNF when compared with control cells without ES. These findings highlight for the first time the possibility of enhancing nerve regeneration in conductive scaffolds through ES-increased neurotrophin secretion.

  14. Yeast cell inactivation related to local heating induced by low-intensity electric fields with long-duration pulses.

    Science.gov (United States)

    Guyot, Stéphane; Ferret, Eric; Boehm, Jean-Baptiste; Gervais, Patrick

    2007-01-25

    The effects of electric field (EF) treatments on Saccharomyces cerevisiae viability were investigated using a PG200 electroporator (Hoefer Scientific Instrument, San Fransisco, CA, USA) with specific attention to induced thermal effects on cell death. Lethal electric fields (1.5 kV cm(-1) for 5 s) were shown to cause heat variations in the cell suspension medium (water+glycerol), while corresponding classical thermal treatments at equivalent temperatures had no effect on the cells viability. Variations of the electrical conductivity of the intra- and extracellular matrix caused by ions and solutes transfer across the membrane were shown to be involved in the observed heating. The results permitted to build a theoretical model for the temperature variations induced by electric fields. Using this model and the electrical conductivity of the different media, a plausible explanation of the cell death induced by low-intensity electric fields with long-duration pulses has been proposed. Indeed, cell mortality could in part be caused by direct and indirect effects of electric fields. Direct effects are related to well known electromechanical phenomena, whereas indirect effects are related to secondary thermal stress caused by plasma membrane thermoporation. This thermoporation was attributed to electrical conductivity variations and the corresponding intracellular heating.

  15. Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2015-03-01

    Full Text Available Electroporation is a physical method to increase permeabilization of cell membrane by electrical pulses. Carbon nanotubes (CNTs can potentially act like “lighting rods” or exhibit direct physical force on cell membrane under alternating electromagnetic fields thus reducing the required field strength. A cell poration/ablation system was built for exploring these effects of CNTs in which two-electrode sets were constructed and two perpendicular electric fields could be generated sequentially. By applying this system to breast cancer cells in the presence of multi-walled CNTs (MWCNTs, the effective pulse amplitude was reduced to 50 V/cm (main field/15 V/cm (alignment field at the optimized pulse frequency (5 Hz of 500 pulses. Under these conditions instant cell membrane permeabilization was increased to 38.62%, 2.77-fold higher than that without CNTs. Moreover, we also observed irreversible electroporation occurred under these conditions, such that only 39.23% of the cells were viable 24 h post treatment, in contrast to 87.01% cell viability without presence of CNTs. These results indicate that CNT-enhanced electroporation has the potential for tumour cell ablation by significantly lower electric fields than that in conventional electroporation therapy thus avoiding potential risks associated with the use of high intensity electric pulses.

  16. Electrical safety of commercial Li-ion cells based on NMC and NCA technology compared to LFP technology

    OpenAIRE

    Brand, Martin; Gläser, Simon; Geder, Jan; Menacher, Stefan; Obpacher, Sebastian; Jossen, Andreas; Quinger, Daniel

    2013-01-01

    Since a laptop caught fire in 2006 at the latest, Li-ion cells were considered as more dangerous than other accumulators [1]. Recent incidents, such as the one involving a BYD e6 electric taxi [2] or the Boeing Dreamliner [3], give rise to questions concerning the safety of L#i-ion cells. This is a crucial point, since Li-ion cells are increasingly integrated in all kinds of (electric) vehicles. Therefore the economic success of hybrid electric vehicles (HEV) and battery electric vehicles (BE...

  17. Ontogeny and localization of the cells produce IL-2 in healthy animals.

    Science.gov (United States)

    Yamamoto, Mutsumi; Seki, Yoichi; Iwai, Kazuyuki; Ko, Iei; Martin, Alicia; Tsuji, Noriko; Miyagawa, Shuji; Love, Robert B; Iwashima, Makio

    2013-03-01

    IL-2 is a growth factor for activated T cells and is required for maintenance of naturally arising regulatory T cells (nTregs). Mice defective in IL-2/IL-2 receptor signaling pathways have impaired nTregs and suffer from lymphoproliferative disorders, suggesting that IL-2 is present and functional in healthy animals. However, the cellular source of IL-2 is currently unknown. To determine which cells produce IL-2 in healthy animals, we established mice carrying cre gene knock in at the il-2 locus (termed IL-2(cre)). When IL-2(cre) mice were crossed with EGFP reporter mice, EGFP was exclusively expressed by a fraction of CD4 T cells present in both lymphoid and non-lymphoid tissues. Live imaging of IL-2(cre) mice that carry the luciferase reporter showed concentrated localization of luciferase(+) cells in Peyer's patches. These cells were not observed in new born mice but appeared within 3days after birth. Reduction of antigen receptor repertoire by transgene expression reduced their number, indicating that recognition of environmental antigens is necessary for generation of these IL-2 producers in healthy animals. A substantial fraction of EGFP(+) cells also produce IL-10 and IFN-γ, a characteristic profile of type 1 regulatory T cells (Tr1). The data suggest that a group of Tr1 cells have addition roles in immune homeostasis by producing IL-2 along with other cytokines and help maintaining Tregs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP.

    Directory of Open Access Journals (Sweden)

    Caleb C Roth

    Full Text Available Nanosecond electrical pulse (nsEP exposure activates signaling pathways, produces oxidative stress, stimulates hormone secretion, causes cell swelling and induces apoptotic and necrotic death. The underlying biophysical connection(s between these diverse cellular reactions and nsEP has yet to be elucidated. Using global genetic analysis, we evaluated how two commonly studied cell types, U937 and Jurkat, respond to nsEP exposure. We hypothesized that by studying the genetic response of the cells following exposure, we would gain direct insight into the stresses experienced by the cell and in turn better understand the biophysical interaction taking place during the exposure. Using Ingenuity Systems software, we found genes associated with cell growth, movement and development to be significantly up-regulated in both cell types 4 h post exposure to nsEP. In agreement with our hypothesis, we also found that both cell lines exhibit significant biological changes consistent with mechanical stress induction. These results advance nsEP research by providing strong evidence that the interaction of nsEPs with cells involves mechanical stress.

  19. Possibility for simultaneous electricity generation and bioremediation by using Candida melibiosica yeast in biofuel cell

    International Nuclear Information System (INIS)

    Hubenova, Yolina; Georgiev, Danail; Mitov, Mario

    2013-01-01

    Recently, we have proved that Candida melibiosica 2491 yeast strain possesses electrogenic properties and could be used as a biocatalyst in yeast-based biofuel cells. In this paper we demonstrate that when the yeast is cultivated under polarization conditions in a biofuel cell its phytase activity exceeds that obtained during cultivation in a conventional bioreactor. Furthermore, there is a correlation between the yeast phytase activity and the electrical characteristic of the biofuel cell during the different yeast growth phases. The obtained results reveal a possibility for application of C.melibiosica for simultaneous electricity generation and bioremediation of hardly degradable polyphosphates, especially in the regions with intensive stock-farming. Keywords: Biofuel cells, yeast, Candida melibiosica, electricity generation, bioremediation

  20. Mast Cells Produce a Unique Chondroitin Sulfate Epitope.

    Science.gov (United States)

    Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S

    2016-02-01

    The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells. © 2016 The Histochemical Society.

  1. Generation of Electricity Using Spartina Patens with Stainless Steel Current Collectors in a Plant-Microbial Fuel Cell

    Science.gov (United States)

    Narula, Deep

    At present, the global energy infrastructure is highly dependent on (i) non-renewable fossil fuels with significant emissions of greenhouse gasses (ii) green fuels such as bioethanol and biodiesel with impact on current agricultural practices competing with food production for arable lands, fertilizers, also requiring additional energy input. Plant-based microbial fuel cell (PMFC) technology can be found as a promising alternative to produce electricity without any side effects with an advantage of using sunlight as an energy source. In the present study, we developed PMFCs using Spartina patens, a marshland grass, abundantly available in the coastal regions of the USA. Figure 1 is a schematic for a PMFC with the anode and cathode compartments where others have used carbon-based electrodes for current collection. In contrast, we attempted to utilize stainless steel wires with more surface area to enhance the current collection in the anode compartment as well as to increase the rate of reduction in the cathode chamber and thereby increase the amount of electricity produced. The study will give results on the periodic use of Spartina patens in PMFC along with the porous stainless steel electrodes which have never been employed in PMFCs before.

  2. Method for producing textured substrates for thin-film photovoltaic cells

    Science.gov (United States)

    Lauf, Robert J.

    1994-01-01

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.

  3. Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement

    Science.gov (United States)

    Zhang, Linjie; Liu, Jiasheng; Jia, Yue; Zhang, Hao; Song, Zhenfei; Jia, Suotang

    2018-03-01

    The geometry effect of a vapor cell on the metrology of a microwave electric field is investigated. Based on the splitting of the electromagnetically induced transparency spectra of cesium Rydberg atoms in a vapor cell, high-resolution spatial distribution of the microwave electric field strength is achieved for both a cubic cell and a cylinder cell. The spatial distribution of the microwave field strength in two dimensions is measured with sub-wavelength resolution. The experimental results show that the shape of a vapor cell has a significant influence on the abnormal spatial distribution because of the Fabry–Pérot effect inside a vapor cell. A theoretical simulation is obtained for different vapor cell wall thicknesses and shows that a restricted wall thickness results in a measurement fluctuation smaller than 3% at the center of the vapor cell. Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA03044200 and 2016YFF0200104), the National Natural Science Foundation of China (Grant Nos. 91536110, 61505099, and 61378013), and the Fund for Shanxi “331 Project” Key Subjects Construction, China.

  4. ELECTROMOTIVE FORCE, EMF (CELLS)

    Energy Technology Data Exchange (ETDEWEB)

    Archer, M.D.; Feldberg, S.W.

    1998-09-16

    The voltage or electric potential difference across the terminals of a cell when no current is drawn from it. The emf of a cell is the sum of the electric potential differences (PDs) produced by a separation of charges (electrons or ions) that can occur at each phase boundary (or interface) in the cell. The magnitude of each PD depends on the chemical nature of the two contacting phases. Thus, at the interface between two different metals, some electrons will have moved from the metal with a higher free energy of electrons to the metal with a lower free energy of electrons. The resultant charge separation will produce a PD (just as charge separation produces a voltage across a capacitor) that, at equilibrium, exactly opposes further electron flow. Similarly, PDs can be produced when electrons partition across a metal/solution interface or metal/solid interface, and when ions partition across a solution/membrane/solution interface.

  5. Economical-environmental assessment on technologies producing electric energy

    International Nuclear Information System (INIS)

    Najafzadeh, K.

    2000-01-01

    Currently, the electric power industry is undergoing substantial regulatory and organizational change with respect to economical and environmental aspects. Under these circumstances, with utilization of analytic hierarchy process (AHP) concept, we consider the assessment of Technologies producing energy from financial and pollution viewpoint. AHP techniques is one of the efficient methods in analysis of complex and multi-criteria problems, which has plenty of applications. General pattern of this assessment has been introduced, and the main goal is determining of overall priority weights for each technology. With using this pattern, overall priority weights has been determined for thermal, combined cycle and Gas turbine plants. It has been cleared that relative priority of these plants will change, if relative priority of assessment criterions changes. For application of this approach, capital budgeting process and selection of some suitable technologies among the alternatives candidate for construction have been presented. In this process the objective is to maximize the sum of overall priority weights of technologies which have been identified from AHP. Constraints are about the construction budget and annual budget for emission allowances. This process is in the integer programming IP form an has been applied to three kind of power plants with reasonable assumptions

  6. Turning Sunlight into Electricity-Inorganic Solar Cells and Beyond

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Turning Sunlight into Electricity - Inorganic Solar Cells and Beyond. A K Shukla. Volume 16 Issue 12 December 2011 pp 1294-1302. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Implementation and validation of synthetic inertia support employing series produced electric vehicles

    DEFF Research Database (Denmark)

    Rezkalla, Michel M.N.; Martinenas, Sergejus; Zecchino, Antonio

    2017-01-01

    The high integration of renewable energy resources (inverter connected) replacing conventional generation reduces the available rotational inertia in the power system. This introduces the need for faster regulation services including synthetic inertia services. These services could potentially...... be provided by electric vehicles due to their fast response capability. This work evaluates and experimentally shows the capability and limits of EVs in providing synthetic inertia services. Three series produced EVs are used during the experiment. The results show the performance of the EVs in providing...... synthetic inertia. It shows also that, on the contrary of synchronous inertia, synthetic inertia might lead to unstable frequency behavior....

  8. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  9. Correspondence between visual and electrical input filters of ON and OFF mouse retinal ganglion cells

    Science.gov (United States)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2017-08-01

    Objective. Over the past two decades retinal prostheses have made major strides in restoring functional vision to patients blinded by diseases such as retinitis pigmentosa. Presently, implants use single pulses to activate the retina. Though this stimulation paradigm has proved beneficial to patients, an unresolved problem is the inability to selectively stimulate the on and off visual pathways. To this end our goal was to test, using white noise, voltage-controlled, cathodic, monophasic pulse stimulation, whether different retinal ganglion cell (RGC) types in the wild type retina have different electrical input filters. This is an important precursor to addressing pathway-selective stimulation. Approach. Using full-field visual flash and electrical and visual Gaussian noise stimulation, combined with the technique of spike-triggered averaging (STA), we calculate the electrical and visual input filters for different types of RGCs (classified as on, off or on-off based on their response to the flash stimuli). Main results. Examining the STAs, we found that the spiking activity of on cells during electrical stimulation correlates with a decrease in the voltage magnitude preceding a spike, while the spiking activity of off cells correlates with an increase in the voltage preceding a spike. No electrical preference was found for on-off cells. Comparing STAs of wild type and rd10 mice revealed narrower electrical STA deflections with shorter latencies in rd10. Significance. This study is the first comparison of visual cell types and their corresponding temporal electrical input filters in the retina. The altered input filters in degenerated rd10 retinas are consistent with photoreceptor stimulation underlying visual type-specific electrical STA shapes in wild type retina. It is therefore conceivable that existing implants could target partially degenerated photoreceptors that have only lost their outer segments, but not somas, to selectively activate the on and off

  10. Cooling system and climate control of fuel cell electric vehicle (FCEV)

    Energy Technology Data Exchange (ETDEWEB)

    Ap, N.S. [Valeo Engine Cooling, La Varriere (France); Cloarec, M.; Rouveyre, L. [PSA-Renault, Trappes (France)

    2000-07-01

    This paper described the special thermal aspects of the fuel cell electric vehicle (FCEV) program established in 1999 by the combined efforts of the two French car manufacturers PSA and Renault. One of the objectives of the program was to examine the climate control and particularly the air conditioning in the passenger compartment which had not been previously studied. The heat dissipation of FCEV is in the order of 2.5 to 3 times higher than that of a comparable internal combustion engine vehicle (ICEV). In addition, the fuel cell powertrain has two temperature levels. The first level is high for the fuel cell stack and the second is low for the electrical, electronic components and other auxiliaries. This paper presented and described each component of two cooling loops along with the heat performance of each type. The first cooling loop used de-ionized water as a coolant, and the second made use of an ethylene-glycol-water mixture as a coolant. The air conditioning capability is a major aspect of the FCEV thermal management. The electrical source availability creates the condition to introduce an enhanced comfort level. Both winter preheating and summer precooling are possible. refs., figs.

  11. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Jafarian, Arefeh; Taghikhani, Mohammad; Abroun, Saeid; Pourpak, Zahra; Allahverdi, Amir; Soleimani, Masoud

    2014-07-01

    Allogenic islet transplantation is a most efficient approach for treatment of diabetes mellitus. However, the scarcity of islets and long term need for an immunosuppressant limits its application. Recently, cell replacement therapies that generate of unlimited sources of β cells have been developed to overcome these limitations. In this study we have described a stage specific differentiation protocol for the generation of insulin producing islet-like clusters from human bone marrow mesenchymal stem cells (hBM-MSCs). This specific stepwise protocol induced differentiation of hMSCs into definitive endoderm, pancreatic endoderm and pancreatic endocrine cells that expressed of sox17, foxa2, pdx1, ngn3, nkx2.2, insulin, glucagon, somatostatin, pancreatic polypeptide, and glut2 transcripts respectively. In addition, immunocytochemical analysis confirmed protein expression of the above mentioned genes. Western blot analysis discriminated insulin from proinsulin in the final differentiated cells. In derived insulin producing cells (IPCs), secreted insulin and C-peptide was in a glucose dependent manner. We have developed a protocol that generates effective high-yield human IPCs from hBM-MSCs in vitro. These finding suggest that functional IPCs generated by this procedure can be used as a cell-based approach for insulin dependent diabetes mellitus.

  12. Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase

    Science.gov (United States)

    Novo, Juliana Branco; Morganti, Ligia; Moro, Ana Maria; Paes Leme, Adriana Franco; Serrano, Solange Maria de Toledo; Raw, Isaias; Ho, Paulo Lee

    2012-01-01

    Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84 million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr−) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (~64 and 59 kDa) and secreted (63–69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditional methods of screening high-producing recombinant cells may represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources. PMID:23091360

  13. Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase

    Directory of Open Access Journals (Sweden)

    Juliana Branco Novo

    2012-01-01

    Full Text Available Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher’s patients, which reaches the order of $ 84 million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr− cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (~64 and 59 kDa and secreted (63–69 kDa form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditional methods of screening high-producing recombinant cells may represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.

  14. The generation of pollution-free electrical power from solar energy.

    Science.gov (United States)

    Cherry, W. R.

    1971-01-01

    Projections of the U.S. electrical power demands over the next 30 years indicate that the U.S. could be in grave danger from power shortages, undesirable effluence, and thermal pollution. An appraisal of nonconventional methods of producing electrical power is conducted, giving particular attention to the conversion of solar energy into commercial quantities of electrical power by solar cells. It is found that 1% of the land area of the 48 states could provide the total electrical power requirements of the U.S. in the year 1990. The ultimate method of generating vast quantities of electrical power would be from a series of synchronous satellites which beam microwave power back to earth to be used wherever needed. Present high manufacturing costs of solar cells could be substantially reduced by using massive automated techniques employing abundant low cost materials.

  15. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J., E-mail: gregory.offer@imperial.ac.u [Department Earth Science Engineering, Imperial College London, SW7 2AZ London (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Howey, D.A. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom); Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ London (United Kingdom)

    2011-04-15

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: {yields} Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. {yields} The optimum size for a PHEV battery is between 5 and 15 kWh. {yields} Current behaviour decreases percentage electric only miles for larger vehicles. {yields} Low carbon electricity favours larger battery sizes as long as carbon is priced. {yields} Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  16. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    International Nuclear Information System (INIS)

    Offer, G.J.; Contestabile, M.; Howey, D.A.; Clague, R.; Brandon, N.P.

    2011-01-01

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: → Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. → The optimum size for a PHEV battery is between 5 and 15 kWh. → Current behaviour decreases percentage electric only miles for larger vehicles. → Low carbon electricity favours larger battery sizes as long as carbon is priced. → Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  17. Cell percolation model for electrical conduction of granular superconducting composites. 2

    International Nuclear Information System (INIS)

    Horvath, G.; Bankuti, J.

    1990-01-01

    The percolation of the electrical conductivity of the uniform cells is studied in an in-situ elongated granular superconducting composite on the basis of the uniform cell model improved previously. The critical temperatures are determined in the macroscopic superconducting state of the two- and the three-dimensional composites. (author)

  18. Recycling of aluminum to produce green energy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Lopez Benites, Wendy; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico)

    2005-07-15

    High-purity hydrogen gas was generated from the chemical reaction of aluminum with sodium hydroxide. Several molar relations of sodium hydroxide/aluminum were investigated in this study. The experimental results showed that hydrogen yields are acceptable and its purity was good enough to be used in a proton exchange membrane (PEM) fuel cell to produce electricity. An estimation of the amount of energy produced from the reaction of 100 aluminum cans with caustic soda showed that the hydrogen production is feasible to be scaled up to reach up to 5kWh in a few hours. This study is environmentally friendly and also shows that green energy can be produced from aluminum waste at a low cost.

  19. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    Science.gov (United States)

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  20. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo.

    Science.gov (United States)

    Agulnick, Alan D; Ambruzs, Dana M; Moorman, Mark A; Bhoumik, Anindita; Cesario, Rosemary M; Payne, Janice K; Kelly, Jonathan R; Haakmeester, Carl; Srijemac, Robert; Wilson, Alistair Z; Kerr, Justin; Frazier, Mauro A; Kroon, Evert J; D'Amour, Kevin A

    2015-10-01

    The PEC-01 cell population, differentiated from human embryonic stem cells (hESCs), contains pancreatic progenitors (PPs) that, when loaded into macroencapsulation devices (to produce the VC-01 candidate product) and transplanted into mice, can mature into glucose-responsive insulin-secreting cells and other pancreatic endocrine cells involved in glucose metabolism. We modified the protocol for making PEC-01 cells such that 73%-80% of the cell population consisted of PDX1-positive (PDX1+) and NKX6.1+ PPs. The PPs were further differentiated to islet-like cells (ICs) that reproducibly contained 73%-89% endocrine cells, of which approximately 40%-50% expressed insulin. A large fraction of these insulin-positive cells were single hormone-positive and expressed the transcription factors PDX1 and NKX6.1. To preclude a significant contribution of progenitors to the in vivo function of ICs, we used a simple enrichment process to remove remaining PPs, yielding aggregates that contained 93%-98% endocrine cells and 1%-3% progenitors. Enriched ICs, when encapsulated and implanted into mice, functioned similarly to the VC-01 candidate product, demonstrating conclusively that in vitro-produced hESC-derived insulin-producing cells can mature and function in vivo in devices. A scaled version of our suspension culture was used, and the endocrine aggregates could be cryopreserved and retain functionality. Although ICs expressed multiple important β cell genes, the cells contained relatively low levels of several maturity-associated markers. Correlating with this, the time to function of ICs was similar to PEC-01 cells, indicating that ICs required cell-autonomous maturation after delivery in vivo, which would occur concurrently with graft integration into the host. Type 1 diabetes (T1D) affects approximately 1.25 million people in the U.S. alone and is deadly if not managed with insulin injections. This paper describes the production of insulin-producing cells in vitro and a new

  1. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  2. The regulation of function, growth and survival of GLP-1-producing L-cells

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Holst, Jens Juul; Kappe, Camilla

    2016-01-01

    that regulate the growth, survival and function of these cells are largely unknown. We recently showed that prolonged exposure to high concentrations of the fatty acid palmitate induced lipotoxic effects, similar to those operative in insulin-producing cells, in an in vitro model of GLP-1-producing cells...... absorption and disposal, as well as cell proliferation and survival. In Type 2 Diabetes (T2D) reduced plasma levels of GLP-1 have been observed, and plasma levels of GLP-1, as well as reduced numbers of GLP-1 producing cells, have been correlated to obesity and insulin resistance. Increasing endogenous...... secretion of GLP-1 by selective targeting of the molecular mechanisms regulating secretion from the L-cell has been the focus of much recent research. An additional and promising strategy for enhancing endogenous secretion may be to increase the L-cell mass in the intestinal epithelium, but the mechanisms...

  3. An estimation of the capacity to produce hydrogen by wasted hydroelectric energy for the three largest Brazilian hydroelectric

    Energy Technology Data Exchange (ETDEWEB)

    Padilha, Janine C.; Trindade, Leticia G. da; Souza, Roberto F. de [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. of Chemistry], Email: janine@iq.ufrgs.br; Miguel, Marcelo [Itaipu Binacional, Foz do Iguacu, PR (Brazil)

    2010-07-01

    The use of water wasted in hydroelectric plants as normalization dam excess, which constitute a hydrodynamic potential useful to generate electric energy which can be subsequently used to produce hydrogen and its subsequent consumption in fuel cells has been considered as an alternative for hydraulic energy-rich countries like Brazil. The case is examined in which all the water wasted in the hydroelectric plants, spilled by dam gates to maintain acceptable water levels, from the 3 largest Brazilian hydroelectric plants was used to produce hydrogen. During the year of 2008, the electric energy produced from this utilization would have been equivalent to 52.8 TWh, an amount that corresponds to an increase of ca. 15% of the total electric energy produced in the country. Furthermore, if this amount of hydrogen was used in the replacement of internal combustion vehicles by fuel cells, this would have prevented the production of 2.26 x 10{sup 7} ton of Co{sub 2} per year. This plan would also significantly decrease production and release of greenhouse gases. (author)

  4. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  5. Nanostructured Polyaniline Coating on ITO Glass Promotes the Neurite Outgrowth of PC 12 Cells by Electrical Stimulation.

    Science.gov (United States)

    Wang, Liping; Huang, Qianwei; Wang, Jin-Ye

    2015-11-10

    A conducting polymer polyaniline (PANI) with nanostructure was synthesized on indium tin oxide (ITO) glass. The effect of electrical stimulation on the proliferation and the length of neurites of PC 12 cells was investigated. The dynamic protein adsorption on PANI and ITO surfaces in a cell culture medium was also compared with and without electrical stimulation. The adsorbed proteins were characterized using SDS-PAGE. A PANI coating on ITO surface was shown with 30-50 nm spherical nanostructure. The number of PC 12 cells was significantly greater on the PANI/ITO surface than on ITO and plate surfaces after cell seeding for 24 and 36 h. This result confirmed that the PANI coating is nontoxic to PC 12 cells. The electrical stimulation for 1, 2, and 4 h significantly enhanced the cell numbers for both PANI and ITO conducting surfaces. Moreover, the application of electrical stimulation also improved the neurite outgrowth of PC 12 cells, and the number of PC 12 cells with longer neurite lengths increased obviously under electrical stimulation for the PANI surface. From the mechanism, the adsorption of DMEM proteins was found to be enhanced by electrical stimulation for both PANI/ITO and ITO surfaces. A new band 2 (around 37 kDa) was observed from the collected adsorbed proteins when PC 12 cells were cultured on these surfaces, and culturing PC 12 cells also seemed to increase the amount of band 1 (around 90 kDa). When immersing PANI/ITO and ITO surfaces in a DMEM medium without a cell culture, the number of band 3 (around 70 kDa) and band 4 (around 45 kDa) proteins decreased compared to that of PC 12 cell cultured surfaces. These results are valuable for the design and improvement of the material performance for neural regeneration.

  6. The European Union: When the Commission and Governments put the Future of Electricity Producers at Stake

    International Nuclear Information System (INIS)

    Lesourne, Jacques

    2016-01-01

    RWE, EON, EDF, ENGIE and other large utilities are in financial turmoil. This situation, which would have been unlikely twenty years ago, is related to several failures in governance within the EU as well as to global evolutions. This Edito Energie analyses the situation of large European electricity producers in light of the European energy policy

  7. Emulating the electrical activity of the neuron using a silicon oxide RRAM cell

    Directory of Open Access Journals (Sweden)

    Adnan eMehonic

    2016-02-01

    Full Text Available In recent years, formidable effort has been devoted to exploring the potential of Resistive RAM (RRAM devices to model key features of biological synapses. This is done to strengthen the link between neuro-computing architectures and neuroscience, bearing in mind the extremely low power consumption and immense parallelism of biological systems. Here we demonstrate the feasibility of using the RRAM cell to go further and to model aspects of the electrical activity of the neuron. We focus on the specific operational procedures required for the generation of controlled voltage transients, which resemble spike-like responses. Further, we demonstrate that RRAM devices are capable of integrating input current pulses over time to produce thresholded voltage transients. We show that the frequency of the output transients can be controlled by the input signal, and we relate recent models of the redox-based nanoionic resistive memory cell to two common neuronal models, the Hodgkin-Huxley (HH conductance model and the leaky integrate-and-fire model. We employ a simplified circuit model to phenomenologically describe voltage transient generation.

  8. Emulating the Electrical Activity of the Neuron Using a Silicon Oxide RRAM Cell

    Science.gov (United States)

    Mehonic, Adnan; Kenyon, Anthony J.

    2016-01-01

    In recent years, formidable effort has been devoted to exploring the potential of Resistive RAM (RRAM) devices to model key features of biological synapses. This is done to strengthen the link between neuro-computing architectures and neuroscience, bearing in mind the extremely low power consumption and immense parallelism of biological systems. Here we demonstrate the feasibility of using the RRAM cell to go further and to model aspects of the electrical activity of the neuron. We focus on the specific operational procedures required for the generation of controlled voltage transients, which resemble spike-like responses. Further, we demonstrate that RRAM devices are capable of integrating input current pulses over time to produce thresholded voltage transients. We show that the frequency of the output transients can be controlled by the input signal, and we relate recent models of the redox-based nanoionic resistive memory cell to two common neuronal models, the Hodgkin-Huxley (HH) conductance model and the leaky integrate-and-fire model. We employ a simplified circuit model to phenomenologically describe voltage transient generation. PMID:26941598

  9. Electricity Production and Characterization of High-Strength Industrial Wastewaters in Microbial Fuel Cell.

    Science.gov (United States)

    Cetinkaya, Afsin Y; Ozdemir, Oguz Kaan; Demir, Ahmet; Ozkaya, Bestami

    2017-06-01

    Microbial fuel cells (MFCs) convert electrochemical energy into electrical energy immediately and have a big potential usage for the same time wastewater treatment and energy recovery via electro-active microorganisms. However, MFCs must be efficiently optimized due to its limitations such as high cost and low power production. Finding new materials to increase the cell performance and reduce cost for MFC anodes is mandatory. In the first step of this study, different inoculation sludges such as anaerobic gum industry wastewater, anaerobic brewery wastewater and anaerobic phosphate were tested, and MFC that was set up with anaerobic gum industry wastewater inoculation sludge exhibited the highest performance. In the second step of this study, various wastewaters such as chocolate industry, gum industry and slaughterhouse industry were investigated for anode bacteria sources. Several electrochemical techniques have been employed to elucidate how wastewaters affect the MFCs' performance. Among all the mentioned wastewaters, the best performance was achieved by the MFCs fed with slaughterhouse wastewater; this device produced a maximum power density of 267 mW·m -2 .

  10. Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells.

    Science.gov (United States)

    Ki, Dongwon; Parameswaran, Prathap; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2015-11-01

    The aim of this study was to investigate the combination of two technologies - pulsed electric field (PEF) pre-treatment and semi-continuous pre-fermentation of primary sludge (PS) - to produce volatile fatty acids (VFAs) as the electron donor for microbial electrolysis cells (MECs). Pre-fermentation with a 3-day solids retention time (SRT) led to the maximum generation of VFAs, with or without pretreatment of the PS through pulsed-electric-fields (PEF). PEF treatment before fermentation enhanced the accumulation of the preferred VFA, acetate, by 2.6-fold. Correspondingly, MEC anodes fed with centrate from 3-day pre-fermentation of PEF-treated PS had a maximum current density ∼3.1 A/m(2), which was 2.4-fold greater than the control pre-fermented centrate. Over the full duration of batch MEC experiments, using pre-fermented centrate led to successful performance in terms of Coulombic efficiency (95%), Coulombic recovery (80%), and COD-removal efficiency (85%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fuel cell systems

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  12. CCT`s in a deregulated environment: A producer`s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, R.F. Jr.; Fayssoux, J.O. [Duke Power Co., Charlotte, NC (United States)

    1997-12-31

    The US electric industry will be deregulated (or substantially re-regulated) within 5 years. Several states, including California, Rhode Island, and New Hampshire, already have passed legislation to introduce competition into the electric markets before the year 2000. As this trend sweeps across the country, the resulting competitive market for generation will reward the lowest cost producers and force high cost producers out of the market. As a result, at least in the short run, it may be very difficult for new power plants employing Clean Coal Technologies (CCTs) to compete. This paper discusses a producer`s perspective of the new competitive market, and suggests several short and long term strategies and niches for CCTs.

  13. Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers

    Directory of Open Access Journals (Sweden)

    Jung-Joon Cha

    2016-01-01

    Full Text Available Senescence of cardiac myocytes is frequently associated with heart diseases. To analyze senescence in cardiac myocytes, a number of biomarkers have been isolated. However, due to the complex nature of senescence, multiple markers are required for a single assay to accurately depict complex physiological changes associated with senescence. In single cells, changes in both cytoplasm and cell membrane during senescence can affect the changes in electrical impedance. Based on this phenomenon, we developed MEDoS, a novel microelectrochemical impedance spectroscopy for diagnosis of senescence, which allows us to precisely measure quantitative changes in electrical properties of aging cells. Using cardiac myocytes isolated from 3-, 6-, and 18-month-old isogenic zebrafish, we examined the efficacy of MEDoS and showed that MEDoS can identify discernible changes in electrical impedance. Taken together, our data demonstrated that electrical impedance in cells at different ages is distinct with quantitative values; these results were comparable with previously reported ones. Therefore, we propose that MEDoS be used as a new biomarker-independent methodology to obtain quantitative data on the biological senescence status of individual cells.

  14. A supply function model for representing the strategic bidding of the producers in constrained electricity markets

    International Nuclear Information System (INIS)

    Bompard, Ettore; Napoli, Roberto; Lu, Wene; Jiang, Xiuchen

    2010-01-01

    The modeling of the bidding behaviour of the producer is a key-point in the modeling and simulation of the competitive electricity markets. In our paper, the linear supply function model is applied so as to find the Supply Function Equilibrium analytically. It also proposed a new and efficient approach to find SFEs for the network constrained electricity markets by finding the best slope of the supply function with the help of changing the intercept, and the method can be applied on the large systems. The approach proposed is applied to study IEEE-118 bus test systems and the comparison between bidding slope and bidding intercept is presented, as well, with reference to the test system. (author)

  15. Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus.

    Science.gov (United States)

    Gingerich, Aaron; Pang, Lan; Hanson, Jarod; Dlugolenski, Daniel; Streich, Rebecca; Lafontaine, Eric R; Nagy, Tamás; Tripp, Ralph A; Rada, Balázs

    2016-01-01

    Our aim was to study whether an extracellular, oxidative antimicrobial mechanism inherent to tracheal epithelial cells is capable of inactivating influenza H1N2 virus. Epithelial cells were isolated from tracheas of male Sprague-Dawley rats. Both primary human and rat tracheobronchial epithelial cells were differentiated in air-liquid interface cultures. A/swine/Illinois/02860/09 (swH1N2) influenza A virions were added to the apical side of airway cells for 1 h in the presence or absence of lactoperoxidase or thiocyanate. Characterization of rat epithelial cells (morphology, Duox expression) occurred via western blotting, PCR, hydrogen peroxide production measurement and histology. The number of viable virions was determined by plaque assays. Statistical difference of the results was analyzed by ANOVA and Tukey's test. Our data show that rat tracheobronchial epithelial cells develop a differentiated, polarized monolayer with high transepithelial electrical resistance, mucin production and expression of dual oxidases. Influenza A virions are inactivated by human and rat epithelial cells via a dual oxidase-, lactoperoxidase- and thiocyanate-dependent mechanism. Differentiated air-liquid interface cultures of rat tracheal epithelial cells provide a novel model to study airway epithelium-influenza interactions. The dual oxidase/lactoperoxidase/thiocyanate extracellular oxidative system producing hypothiocyanite is a fast and potent anti-influenza mechanism inactivating H1N2 viruses prior to infection of the epithelium.

  16. Specific Intensity Direct Current (DC) Electric Field Improves Neural Stem Cell Migration and Enhances Differentiation towards βIII-Tubulin+ Neurons

    Science.gov (United States)

    Zhao, Huiping; Steiger, Amanda; Nohner, Mitch; Ye, Hui

    2015-01-01

    Control of stem cell migration and differentiation is vital for efficient stem cell therapy. Literature reporting electric field–guided migration and differentiation is emerging. However, it is unknown if a field that causes cell migration is also capable of guiding cell differentiation—and the mechanisms for these processes remain unclear. Here, we report that a 115 V/m direct current (DC) electric field can induce directional migration of neural precursor cells (NPCs). Whole cell patching revealed that the cell membrane depolarized in the electric field, and buffering of extracellular calcium via EGTA prevented cell migration under these conditions. Immunocytochemical staining indicated that the same electric intensity could also be used to enhance differentiation and increase the percentage of cell differentiation into neurons, but not astrocytes and oligodendrocytes. The results indicate that DC electric field of this specific intensity is capable of promoting cell directional migration and orchestrating functional differentiation, suggestively mediated by calcium influx during DC field exposure. PMID:26068466

  17. Influence of the Ambient Temperature, to the Hydrogen Fuel Cell Functioning

    OpenAIRE

    POPOVICI Ovidiu; HOBLE Dorel Anton

    2012-01-01

    The reversible fuel cell can be used to produce hydrogen. The hydrogen is further the chemical energy source to produce electrical energy using the fuel cell. The ambient temperature will influence theparameters of the hydrogen fuel cell.

  18. Performance of Microbial Fuel Cell for Wastewater Treatment and Electricity Generation

    Directory of Open Access Journals (Sweden)

    Z Yavari

    2013-06-01

    Full Text Available Renewable energy will have an important role as a resource of energy in the future. Microbial fuel cell (MFC is a promising method to obtain electricity from organic matter andwastewater treatment simultaneously. In a pilot study, use of microbial fuel cell for wastewater treatment and electricity generation investigated. The bacteria of ruminant used as inoculums. Synthetic wastewater used at different organic loading rate. Hydraulic retention time was aneffective factor in removal of soluble COD and more than 49% removed. Optimized HRT to achieve the maximum removal efficiency and sustainable operation could be regarded 1.5 and 2.5 hours. Columbic efficiency (CE affected by organic loading rate (OLR and by increasing OLR, CE reduced from 71% to 8%. Maximum voltage was 700mV. Since the microbial fuel cell reactor considered as an anaerobic process, it may be an appropriate alternative for wastewater treatment

  19. Electric Characterization and Modeling of Microfluidic-Based Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Adriano Sacco

    2012-01-01

    Full Text Available The electric response to an external periodic voltage of small amplitude of dye-sensitized solar cells (DSCs made up with an alternative architecture has been investigated. DSCs have been fabricated with a reversible sealing structure, based on microfluidic concepts, with a precise control on the geometric parameters of the active chamber. Cells with different electrolyte thicknesses have been characterized, without varying the thickness of the TiO2 layer, both under illumination and in dark conditions. Measurements of the electric impedance have been performed in the presence of an external bias ranging from 0 V to 0.8 V. The experimental data have been analyzed in terms of a transmission line model, with two transport channels. The results show that the photovoltaic performances of the microfluidic cell are comparable with those obtained in irreversibly sealed structures, actually demonstrating the reliability of the proposed device.

  20. Emergent strategies of electricity producers

    Energy Technology Data Exchange (ETDEWEB)

    Van der Woerd, F.; Lise, W.; Becker, G.

    2004-10-15

    The EU-funded research project EMELIE (Electricity Market Liberalisation In Europe) wants to provide a sound analysis of the economic and environmental impacts of the liberalisation process of the European electricity markets. The EMELIE model simulates various market scenarios. The companies in the EMELIE model are assumed to have a relatively simple strategy, i.e. profit maximisation, which is constrained by trade limitation, emission quota, and available production capacity for various technologies. The Institute for Environmental Studies (IVM) took the initiative to start a complementary line of research. At a more detailed level, we investigated business strategies from the perspective of the companies themselves: What is their dominant strategy in the process of liberalisation? Why do they behave like that? What will be the likely strategy of dominant companies in the years to come? And last but not least: how does this most likely strategy fit into the stylised EMELIE scenarios? In our analysis, we use theories about business behaviour, like the Portfolio Analysis of the Boston Consulting Group and Porter's Typology of Business Strategies. We also consider two theories that relate to company-authority interactions: Williamson's New Institutional Economics that compares market failures with government failures and Tinbergen's Theory of Economic Policy, that warns for exaggerated expectations of a single policy instrument, in this case market liberalisation. We observe that the liberalisation process has brought about a wave of mergers and acquisitions, resulting in concentrated markets. Concentration Standards of Competition Authorities decide on maximum concentration levels, not the market itself. The trend towards market concentration originates because dominant companies want to avoid price competition and consider strategic market behaviour in their best interest. These expansionist' companies prefer proven production technologies with

  1. Emergent strategies of electricity producers

    International Nuclear Information System (INIS)

    Van der Woerd, F.; Lise, W.; Becker, G.

    2004-10-01

    The EU-funded research project EMELIE (Electricity Market Liberalisation In Europe) wants to provide a sound analysis of the economic and environmental impacts of the liberalisation process of the European electricity markets. The EMELIE model simulates various market scenarios. The companies in the EMELIE model are assumed to have a relatively simple strategy, i.e. profit maximisation, which is constrained by trade limitation, emission quota, and available production capacity for various technologies. The Institute for Environmental Studies (IVM) took the initiative to start a complementary line of research. At a more detailed level, we investigated business strategies from the perspective of the companies themselves: What is their dominant strategy in the process of liberalisation? Why do they behave like that? What will be the likely strategy of dominant companies in the years to come? And last but not least: how does this most likely strategy fit into the stylised EMELIE scenarios? In our analysis, we use theories about business behaviour, like the Portfolio Analysis of the Boston Consulting Group and Porter's Typology of Business Strategies. We also consider two theories that relate to company-authority interactions: Williamson's New Institutional Economics that compares market failures with government failures and Tinbergen's Theory of Economic Policy, that warns for exaggerated expectations of a single policy instrument, in this case market liberalisation. We observe that the liberalisation process has brought about a wave of mergers and acquisitions, resulting in concentrated markets. Concentration Standards of Competition Authorities decide on maximum concentration levels, not the market itself. The trend towards market concentration originates because dominant companies want to avoid price competition and consider strategic market behaviour in their best interest. These expansionist' companies prefer proven production technologies with low variable costs

  2. B-cell infiltration and frequency of cytokine producing cells differ between localized and disseminated human cutaneous leishmaniases

    Directory of Open Access Journals (Sweden)

    MGS Vieira

    2002-10-01

    Full Text Available Biopsies from human localized cutaneous lesions (LCL n = 7 or disseminated lesions (DL n = 8 cases were characterized according to cellular infiltration,frequency of cytokine (IFN-g, TNF-alpha or iNOS enzyme producing cells. LCL, the most usual form of the disease with usually one or two lesions, exhibits extensive tissue damage. DL is a rare form with widespread lesions throughout the body; exhibiting poor parasite containment but less tissue damage. We demonstrated that LCL lesions exhibit higher frequency of B lymphocytes and a higher intensity of IFN-gamma expression. In both forms of the disease CD8+ were found in higher frequency than CD4+ T cells. Frequency of TNF-alpha and iNOS producing cells, as well as the frequency of CD68+ macrophages, did not differ between LCL and DL. Our findings reinforce the link between an efficient control of parasite and tissue damage, implicating higher frequency of IFN-gamma producing cells, as well as its possible counteraction by infiltrated B cells and hence possible humoral immune response in situ.

  3. Mucin-producing signet ring cell adenoma of the thyroid

    Directory of Open Access Journals (Sweden)

    Gulwani Hanni

    2008-10-01

    Full Text Available Signet ring cell adenoma of the thyroid, though rare, is well documented. This change is chiefly due to intracellular accumulation of thyroglobulin that appears mucinous. Awareness of this entity is important as it may closely simulate a metastatic mucin-secreting signet ring cell carcinoma. Although the mucinous material in signet ring cells has been reported to stain positive with thyroglobulin, in some cases it may not be so. We herein describe a rare case of a 46-year-old man who was hypothyroid and the mass removed from the thyroid showed a mucin-producing signet ring cell adenoma of the thyroid.

  4. The insertion perspective of electric power independent producer in the Brazilian electric power sector; A perspectiva da insercao do produtor independente de energia eletrica no setor eletrico brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Borelli, Alessio Bento; Bermann, Celio [Sao Paulo Univ., SP (Brazil). Programa Interunidades de Pos-Graduacao em Energia]. E-mail: mborelli@netpoint.com.br; cbermann@iee.usp.br

    1999-07-01

    The central issue of debate was the need to align the energy sector's options and organization with changing global patterns of economic and social development, characterized by the increasing role played by the private sector, greater integration in the world economy, and new economic and social priorities such as efficiency, decentralization, deregulation, and a closer attention to environmental issues. The aim of this work is to evaluate the electric power independent producer participation in Brazilian electric power sector.

  5. Ethane dehydrogenation over nano-Cr{sub 2}O{sub 3} anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xian-Zhu; Luo, Xiao-Xiong; Luo, Jing-Li; Chuang, Karl T.; Sanger, Alan R. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G2G6 (Canada); Krzywicki, Andrzej [NOVA Chemicals Corp., Calgary, Alberta T2P5C6 (Canada)

    2011-02-01

    Ethane and electrical power are co-generated in proton ceramic fuel cell reactors having Cr{sub 2}O{sub 3} nanoparticles as anode catalyst, BaCe{sub 0.8}Y{sub 0.15}Nd{sub 0.05}O{sub 3-{delta}} (BCYN) perovskite oxide as proton conducting ceramic electrolyte, and Pt as cathode catalyst. Cr{sub 2}O{sub 3} nanoparticles are synthesized by a combustion method. BaCe{sub 0.8}Y{sub 0.15}Nd{sub 0.05}O{sub 3-{delta}} (BCYN) perovskite oxides are obtained using a solid state reaction. The power density increases from 51 mW cm{sup -2} to 118 mW cm{sup -2} and the ethylene yield increases from about 8% to 31% when the operating temperature of the solid oxide fuel cell reactor increases from 650 C to 750 C. The fuel cell reactor and process are stable at 700 C for at least 48 h. Cr{sub 2}O{sub 3} anode catalyst exhibits much better coke resistance than Pt and Ni catalysts in ethane fuel atmosphere at 700 C. (author)

  6. Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.

    Science.gov (United States)

    Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre

    2017-01-01

    Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.

  7. Generation of a transplantable erythropoietin-producer derived from human mesenchymal stem cells.

    Science.gov (United States)

    Yokoo, Takashi; Fukui, Akira; Matsumoto, Kei; Ohashi, Toya; Sado, Yoshikazu; Suzuki, Hideaki; Kawamura, Tetsuya; Okabe, Masataka; Hosoya, Tatsuo; Kobayashi, Eiji

    2008-06-15

    Differentiation of autologous stem cells into functional transplantable tissue for organ regeneration is a promising regenerative therapeutic approach for cancer, diabetes, and many human diseases. Yet to be established, however, is differentiation into tissue capable of producing erythropoietin (EPO), which has a critical function in anemia. We report a novel EPO-producing organ-like structure (organoid) derived from human mesenchymal stem cells. Using our previously established relay culture system, a human mesenchymal stem cell-derived, human EPO-competent organoid was established in rat omentum. The organoid-derived levels of human EPO increased in response to anemia induced by rapid blood withdrawal. In addition, the presence of an organoid in rats suppressed for native (rat) EPO production enhanced recovery from anemia when compared with control animals lacking the organoid. Together these results confirmed the generation of a stem cell-derived organoid that is capable of producing EPO and sensitive to physiological regulation.

  8. Hyper-dendritic nanoporous zinc foam anodes, methods of producing the same, and methods for their use

    Science.gov (United States)

    Steingart, Daniel A.; Chamoun, Mylad; Hertzberg, Benjamin; Davies, Greg; Hsieh, Andrew G.

    2018-02-13

    Disclosed are hyper-dendritic nanoporous zinc foam electrodes, viz., anodes, methods of producing the same, and methods for their use in electrochemical cells, especially in rechargeable electrical batteries.

  9. Perceived Annoyance to Noise Produced by a Distributed Electric Propulsion High Lift System

    Science.gov (United States)

    Palumbo, Dan; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem

    2016-01-01

    Results of a psychoacoustic test performed to understand the relative annoyance to noise produced by several configurations of a distributed electric propulsion high lift system are given. It is found that the number of propellers in the system is a major factor in annoyance perception. This is an intuitive result as annoyance increases, in general, with frequency, and, the blade passage frequency of the propellers increases with the number of propellers. Additionally, the data indicate that having some variation in the blade passage frequency from propeller-to-propeller is beneficial as it reduces the high tonality generated when all the propellers are spinning in synchrony at the same speed. The propellers can be set to spin at different speeds, but it was found that allowing the motor controllers to drift within 1% of nominal settings produced the best results (lowest overall annoyance). The methodology employed has been demonstrated to be effective in providing timely feedback to designers in the early stages of design development.

  10. Study questions environmental impact of fuel-cell vehicles

    Science.gov (United States)

    Stafford, Ned

    2015-09-01

    Fuel-cell electric vehicles are seen by many as an environmentally friendly technology that can reduce greenhousegas emissions by producing no harmful emissions. But a new study has found that overall a fuel cell electric vehicle has about the same negative environmental impact as a luxury sports car.

  11. Quantification of residual host cell DNA in adenoviral vectors produced on PER.C6 cells

    NARCIS (Netherlands)

    Gijsbers, Linda; Koel, Björn; Weggeman, Miranda; Goudsmit, Jaap; Havenga, Menzo; Marzio, Giuseppe

    2005-01-01

    Recombinant adenoviral vectors for gene therapy and vaccination are routinely prepared on cultures of immortalized cells, allowing the production of vector batches of high titer and consistent quality. Quantification of residual DNA from the producing cell line is part of the purity tests for

  12. Programmed death-1 receptor suppresses γ-IFN producing NKT cells in human tuberculosis.

    Science.gov (United States)

    Singh, Amar; Dey, Aparajit Ballav; Mohan, Anant; Mitra, Dipendra Kumar

    2014-05-01

    IFN-γ biased Th1 effector immune response is crucial for containment of Mycobacterium tuberculosis infection. Various T cell subsets with regulatory function dictate the generation of Th1 like cells. NKT cells are a specialized T cell subset known to be activated early in immune response and control T cell response via release of immunoregulatory cytokines like IFN-γ, IL-4 and IL-10. M. tuberculosis, with abundance of its cell wall lipids may potently activate NKT cells resulting in cytokine production and PD-1 expression. In this study, among 49 treatment naive active pulmonary tuberculosis patients, we found a higher percentage of PD1(+) NKT cells correlating with sputum bacillary load. Furthermore, blocking PD-1 increased the number of IFN-γ producing NKT cells by inhibiting their apoptosis. Moreover, peripheral frequency of NKT cells declined with therapy suggesting their role in host T cell response. In this study, we concluded that PD-1 preferentially induces apoptosis of IFN-γ producing NKT cells while sparing NKT cells that produce IL-4. Such a polarized NKT cell function may impose a Th2 bias on the ensuing effector T cell response leading to inefficient clearance of M. tuberculosis. Inhibiting PD-1 may therefore alter the T cell response in favor of the host by rescuing type 1 NKT cells from apoptosis and boosting Th1 effector T cell functions against M. tuberculosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Test experiences with the DaimlerChrysler: Fuel cell electric vehicle NECAR

    Directory of Open Access Journals (Sweden)

    Friedlmeier Gerardo

    2002-01-01

    Full Text Available The DalmlerChrysler fuel cell electric vehicle NECAR 4, a hydrogen-fueled zero-emission compact car based on the A-Class of Mercedes-Benz, is described. Test results obtained on the road and on the dynamometer are presented. These and other results show the high technological maturity reliability and durability already achieved with fuel cell technology.

  14. Test experiences with the DaimlerChrysler: Fuel cell electric vehicle NECAR

    OpenAIRE

    Friedlmeier Gerardo; Friedrich J.; Panik F.

    2002-01-01

    The DalmlerChrysler fuel cell electric vehicle NECAR 4, a hydrogen-fueled zero-emission compact car based on the A-Class of Mercedes-Benz, is described. Test results obtained on the road and on the dynamometer are presented. These and other results show the high technological maturity reliability and durability already achieved with fuel cell technology.

  15. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells.

    Science.gov (United States)

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Abdel-Rahman, Engy A; Reda, Asmaa M; Ali, Sameh S; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; Ismail, Hossam El-Din A; El-Badri, Nagwa; Ghoneim, Mohamed A

    2017-01-01

    The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion . BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  16. Renewable energy to produce electricity; Nuevas fuentes de energia para producir electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas Tovar, Roberto; Lopez Rios, Serafin [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1996-05-01

    There are several new energy sources to produce electricity. One of them is the wind energy, which has reached huge commercialization in worldwide. There are in Mexico some zones with high speed wind, which can be used in a short term. This has been proved by the wind pilot power plant of La Venta, Oaxaca, where production costs of US 4.3 cents per kilowatt-hour (kWh) have been obtained. These costs are among the lowest in the world. By the other hand, among the main uses of solar energy, including both thermal and photovoltaic techniques, the biggest thermo-solar utility, with 350 megawatts (MW) of capacity, is remarkable. This is the plant located in the Mojave Desert, California, USA. In Mexico there is big potential, which can make an important contribution to supplies of electricity. Biomass is another important renewable source, particularly the use of solid municipal waste, the livestock and the wood waste. Finally, other alternate technique is represented by the fuel cells, though it is not properly renewable. However, considering its modular and low environmental impact characteristics, it can get a wide commercial development in the next decade. [Espanol] Existen diversas fuentes nuevas de energia para generar electricidad. Entre ellas, la energia eolica es una de las tecnologias alternas que mayor comercializacion ha alcanzado a nivel mundial. Mexico posee zonas con vientos de velocidades altas en las que su aplicacion puede ser inmediata, como lo prueba la experiencia obtenida con la central piloto de La Venta, Oaxaca, en donde se han alcanzado costos de produccion de 4.3 centavos de dolar por kilowatt-hora (kWh), de los mas bajos a nivel internacional. Por otra parte, entre las principales aplicaciones de la energia solar, en sus tecnologias termica y fotovoltaica, destaca el mayor de los aprovechamientos termosolares, con 350 megawatts de capacidad (MW), localizado en el desierto de Mojave, en California, EUA. En Mexico hay un gran potencial

  17. The battle between battery and fuel cell powered electric vehicles : A BWM approach

    NARCIS (Netherlands)

    van de Kaa, G.; Scholten, D.J.; Rezaei, J.; Milchram, C.

    2017-01-01

    The transition to a more sustainable personal transportation sector requires the widespread adoption of electric vehicles. However, a dominant design has not yet emerged and a standards battle is being fought between battery and hydrogen fuel cell powered electric vehicles. The aim of this paper

  18. Electric systems failures produced by CG lightning in Eastern Amazonia

    Directory of Open Access Journals (Sweden)

    Ana Paula Paes dos Santos

    2014-12-01

    Full Text Available Operational records of power outages of the electric energy distribution systems in eastern Amazonia presented a large number of events attributed to lightning strikes, during the 2006 to 2009 period. The regional electricity concessionary data were compared to actual lightning observations made by SIPAM's LDN system, over two areas where operational sub systems of transmission lines are installed. Statistical relations were drawn between the monthly lightning occurrence density and the number of power outages of the electric systems for both areas studied. The results showed that, although with some delays between these variables peaks, the number of power disruptions has a tendency to follow the behavior of the lightning occurrence densities variations. The numerical correlations were positive and may be useful to the transmission lines maintenance crews at least for the Belém-Castanhal electricity distribution sub system. Evidence was found, that the SST's over certain areas of the Pacific and Atlantic Oceans, influence convection over the area of interest, and may help to prognosticate the periods of intense electric storms, requiring repair readiness for the regional electric systems.

  19. Electrical, thermal and abusive tests on lithium thionyl chloride cells

    Science.gov (United States)

    Frank, H. A.

    1980-04-01

    Electrical characterizations, thermal characterizations, and outer limits tests of lithium thionyl chloride cells are discussed. Graphs of energy density vs power density and heat rate vs time are presented along with results of forced reversal and high rate discharge tests.

  20. Mathematical modeling of electrical activity of uterine muscle cells.

    Science.gov (United States)

    Rihana, Sandy; Terrien, Jeremy; Germain, Guy; Marque, Catherine

    2009-06-01

    The uterine electrical activity is an efficient parameter to study the uterine contractility. In order to understand the ionic mechanisms responsible for its generation, we aimed at building a mathematical model of the uterine cell electrical activity based upon the physiological mechanisms. First, based on the voltage clamp experiments found in the literature, we focus on the principal ionic channels and their cognate currents involved in the generation of this electrical activity. Second, we provide the methodology of formulations of uterine ionic currents derived from a wide range of electrophysiological data. The model is validated step by step by comparing simulated voltage-clamp results with the experimental ones. The model reproduces successfully the generation of single spikes or trains of action potentials that fit with the experimental data. It allows analyzing ionic channels implications. Likewise, the calcium-dependent conductance influences significantly the cellular oscillatory behavior.

  1. Comparative analysis between a PEM fuel cell and an internal combustion engine driving an electricity generator: Technical, economical and ecological aspects

    International Nuclear Information System (INIS)

    Braga, Lúcia Bollini; Silveira, Jose Luz; Evaristo da Silva, Marcio; Machin, Einara Blanco; Pedroso, Daniel Travieso; Tuna, Celso Eduardo

    2014-01-01

    In the recent years the fuel cells have received much attention. Among various technologies, the Proton Exchange Membrane Fuel Cell (PEMFC) is currently the most appropriate and is used in several vehicles prototype. A comparative technical, economical and ecological analysis between an Internal Combustion Engine fueled with Diesel driving an electricity Generator (ICE-G) and a PEMFC fed by hydrogen produced by ethanol steam reforming was performed. The technical analysis showed the advantages of the PEMFC in comparison to the ICE-G based in energetic and exergetic aspects. The economic analysis shows that fuel cells are not economic competitive when compared to internal combustion engine driving an electricity generator with the same generation capacity; it will only be economically feasible in a long term; due to the large investments required. The environmental analysis was based on concepts of CO 2 equivalent, pollution indicator and ecological efficiency. Different to the ICE-G system, the Fuel Cell does not emit pollutants directly and the emission related to this technology is linked mainly with hydrogen production. The ecological efficiency of PEMFC was 96% considering the carbon dioxide cycle, for ICE-G system this parameter reach 51%. -- Highlights: • The exergetic efficiency of ICE-G was 22% and for the fuel cell was 40%. • The PEM fuel cell at long-term become economically competitive compared to ICE-G. • The ecological efficiency of PEM fuel cell was 96% and Diesel ICE-G was 51%

  2. Downregulation of IL-17-producing T cells is associated with regulatory T cell expansion and disease progression in chronic lymphocytic leukemia.

    Science.gov (United States)

    Jadidi-Niaragh, Farhad; Ghalamfarsa, Ghasem; Memarian, Ali; Asgarian-Omran, Hossein; Razavi, Seyed Mohsen; Sarrafnejad, Abdolfattah; Shokri, Fazel

    2013-04-01

    Little is known about the immunobiology of interleukin-17 (IL-17)-producing T cells and regulatory T cells (Treg) in chronic lymphocytic leukemia (CLL). In this study, the frequencies of Th17, Tc17, and CD39(+) Treg cells were enumerated in peripheral T cells isolated from 40 CLL patients and 15 normal subjects by flow cytometry. Our results showed a lower frequency of Th17 and Tc17 cells in progressive (0.99 ± 0.12 % of total CD3(+)CD4(+) cells; 0.44 ± 0.09 % of total CD8(+) cells) compared to indolent patients (1.57 ± 0.24 %, p = 0.042; 0.82 ± 0.2 %, p = 0.09) and normal subjects (1.78 ± 0.2 %, p = 0.003; 0.71 ± 0.09 %, p = 0.04). Decrease in IL-17-producing T cells was associated with CD39(+) Treg cells expansion. Variation of IL-17-producing cells and Treg cells in indolent and progressive patients was neither associated to the expression levels of Th1- and Th2-specific transcription factors T-bet and GATA-3 nor to the frequencies of IFN-γ and IL-4-producing CD4(+) T cells in a selected number of samples. Additionally, suppressive potential of CD4(+) Treg was similar in CLL patients and normal subjects. Our data indicate that progression of CLL is associated with downregulation of IL-17-producing T cells and expansion of Treg cells, implying contribution of these subsets of T cells in the progression of CLL.

  3. Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems

    International Nuclear Information System (INIS)

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2004-01-01

    This investigation examines the economics of producing electricity from proton-exchange membrane (PEM) fuel cell systems under various conditions, including the possibility of using fuel cell vehicles (FCVs) to produce power when they are parked at office buildings and residences. The analysis shows that the economics of both stationary fuel cell and FCV-based power vary significantly with variations in key input variables such as the price of natural gas, electricity prices, fuel cell and reformer system costs, and fuel cell system durability levels. The 'central case' results show that stationary PEM fuel cell systems can supply electricity for offices and homes in California at a net savings when fuel cell system costs reach about $6000 for a 5 kW home system ($1200/kW) and $175,000 for a 250 kW commercial system ($700/kW) and assuming somewhat favorable natural gas costs of $6/GJ at residences and $4/GJ at commercial buildings. Grid-connected FCVs in commercial settings can also potentially supply electricity at competitive rates, in some cases producing significant annual benefits. Particularly attractive is the combination of net metering along with time-of-use electricity rates that allow power to be supplied to the utility grid at the avoided cost of central power plant generation. FCV-based power at individual residences does not appear to be as attractive, at least where FCV power can only be used directly or banked with the utility for net metering and not sold in greater quantity, due to the low load levels at these locations that provide a poor match to automotive fuel cell operation, higher natural gas prices than are available at commercial settings, and other factors

  4. Influence of the Ambient Temperature, to the Hydrogen Fuel Cell Functioning

    Directory of Open Access Journals (Sweden)

    POPOVICI Ovidiu

    2012-10-01

    Full Text Available The reversible fuel cell can be used to produce hydrogen. The hydrogen is further the chemical energy source to produce electrical energy using the fuel cell. The ambient temperature will influence theparameters of the hydrogen fuel cell.

  5. Cells exposed to nanosecond electrical pulses exhibit biomarkers of mechanical stress

    Science.gov (United States)

    Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Moen, Erick K.; Glickman, Randolph D.

    2015-03-01

    Exposure of cells to very short (stressors on a cell, including electrical, electro-chemical, and mechanical stress. Thus, nsEP exposure is not a "clean" insult, making determination of the mechanism of nanoporation quite difficult. We hypothesize that nsEP exposure creates acoustic shock waves capable of causing nanoporation. Microarray analysis of primary adult human dermal fibroblasts (HDFa) exposed to nsEP, indicated several genes associated with mechanical stress were selectively upregulated 4 h post exposure. The idea that nanoporation is caused by external mechanical force from acoustic shock waves has, to our knowledge, not been investigated. This work will critically challenge the existing paradigm that nanoporation is caused solely by an electric-field driven event and could provide the basis for a plausible explanation for electroporation.

  6. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Sahba Mobini

    2017-01-01

    Full Text Available Background Electrical stimulation (ES has been successfully used to treat bone defects clinically. Recently, both cellular and molecular approaches have demonstrated that ES can change cell behavior such as migration, proliferation and differentiation. Methods In the present study we exposed rat bone marrow- (BM- and adipose tissue- (AT- derived mesenchymal stem cells (MSCs to direct current electrical stimulation (DC ES and assessed temporal changes in osteogenic differentiation. We applied 100 mV/mm of DC ES for 1 h per day for three, seven and 14 days to cells cultivated in osteogenic differentiation medium and assessed viability and calcium deposition at the different time points. In addition, expression of osteogenic genes, Runx2, Osteopontin, and Col1A2 was assessed in BM- and AT-derived MSCs at the different time points. Results Results showed that ES changed osteogenic gene expression patterns in both BM- and AT-MSCs, and these changes differed between the two groups. In BM-MSCs, ES caused a significant increase in mRNA levels of Runx2, Osteopontin and Col1A2 at day 7, while in AT-MSCs, the increase in Runx2 and Osteopontin expression were observed after 14 days of ES. Discussion This study shows that rat bone marrow- and adipose tissue-derived stem cells react differently to electrical stimuli, an observation that could be important for application of electrical stimulation in tissue engineering.

  7. Embryonic stem-like cells derived from in vitro produced bovine blastocysts

    Directory of Open Access Journals (Sweden)

    Erika Regina Leal de Freitas

    2011-06-01

    Full Text Available The aim of this work was to study the derivation of bovine embryonic stem-like (ES-like cells from the inner cell mass (ICM of in vitro produced blastocysts. The ICMs were mechanically isolated and six out of seventeen (35% ICMs could attach to a monolayer of murine embryonic fibroblasts (MEF. Ten days after, primary outgrowths were mechanically dissected into several small clumps and transferred to a new MEF layer. Cells were further propagated and passaged by physical dissociation over a 60 days period. The pluripotency of the bovine ES-like cells was confirmed by RT-PCR of Oct-4 and STAT-3 gene markers. The colonies were weakly stained for alkaline phosphatase and the mesoderm and endoderm differentiation gene markers such as GATA-4 and Flk-1, respectively, were not expressed. Embryoid bodies were spontaneously formed at the seventh passage. Results showed that bovine ES-like cells could be obtained and passaged by mechanical procedures from the fresh in vitro produced blastocysts.

  8. Electric wind produced by surface plasma actuators: a new dielectric barrier discharge based on a three-electrode geometry

    International Nuclear Information System (INIS)

    Moreau, Eric; Sosa, Roberto; Artana, Guillermo

    2008-01-01

    Active flow control is a rapidly developing topic because the associated industrial applications are of immense importance, particularly for aeronautics. Among all the flow control methods, such as the use of mechanical flaps or wall jets, plasma-based devices are very promising devices. The main advantages of such systems are their robustness, their simplicity, their low-power consumption and that they allow a real-time control at high frequency. This paper deals with an experimental study about the electric wind produced by a surface discharge based on a three-electrode geometry. This new device is composed of a typical two-electrode surface barrier discharge excited by an AC high voltage, plus a third electrode at which a DC high voltage is applied in order to extend the discharge region and to accelerate the ion drift velocity. In the first part the electrical current of these different surface discharges is presented and discussed. This shows that the current behaviour depends on the DC component polarity. The second part is dedicated to analysing the electric wind characteristics through Schlieren visualizations and to measuring its time-averaged velocity with a Pitot tube sensor. The results show that an excitation of the electrodes with an AC voltage plus a positive DC component can significantly modify the topology of the electric wind produced by a single DBD. In practice, this DC component allows us to increase the value of the maximum induced velocity (up to +150% at a few centimetres downstream of the discharge) and the plasma extension, to enhance the depression occurring above the discharge region and to increase the discharge-induced mass flow rate (up to +100%), without increasing the electrical power consumption

  9. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    International Nuclear Information System (INIS)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-01-01

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1 + or nestin + stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU + cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU + cells, very few are mash1 + or nestin + stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1 + microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition

  10. A hepatocellular carcinoma cell line producing mature hepatitis B viral particles

    International Nuclear Information System (INIS)

    Fellig, Yakov; Almogy, Gidon; Galun, Eithan; Ketzinel-Gilad, Mali

    2004-01-01

    Current in vitro models for hepatitis B virus (HBV) are based on human hepatoblastoma cell lines transfected with HBV genome. The objective of this work was to develop an in vitro, hepatocellular carcinoma (HCC)-based system supporting HBV full replication and producing mature viral particles. The FLC4 human HCC cell line was stably transfected with a plasmid carrying a head-to-tail dimer of the adwHBV genome. One of the clones, FLC4A10 II , exhibited prolonged expression of HBV, as was demonstrated by secreted levels of HBsAg, HBeAg, and HBV DNA in the culture medium of the growing cells. Furthermore, the cells produced HBV particles that were detected by a cesium chloride density gradient performed on the culture medium. Analysis by Southern blot revealed that HBV DNA has integrated into the FLC4A10 II cell genome. The presence of HBV in the FLC4A10 II cells did not cause alterations in cell morphology and the cells continued to resemble mature hepatocytes. They do exhibit a high mitotic activity. The new HBV stably transfected cell line, FLC4A10 II , can serve as an important tool for further exploration of HBV host-pathogen interaction, viral life cycle, and for assessing new antiviral agents

  11. Temporal structure of an electric signal produced upon interaction of radiation from a HF laser with the bottom surface of a water column

    International Nuclear Information System (INIS)

    Andreev, Sergei N; Kazantsev, S Yu; Kononov, I G; Pashinin, Pavel P; Firsov, K N

    2009-01-01

    Generation of an electric signal is investigated when a HF-laser pulse interacts with the lower surface of a water column in a cell with a bottom transparent to laser radiation, while the upper surface of the water column remains open. The electric signal exhibits a temporal structure of two spikes spaced by time τ which is linearly dependent on the laser output energy. It is found that the value of τ (up to 1.3 ms) is an order of magnitude greater than the time during which the vapour pressure in a cavity produced due to the volume explosive boiling of water in the exposed area is greater than the atmospheric pressure. The second spike was determined to appear upon the collapse of the vapour cavity. A mathematical model is constructed that explains the motion of the water column above the vapour cavity taking into account the temporal evolution of the vapour pressure above it. It is shown that the prolonged lifetime of the vapour cavity after the decrease in the vapour pressure down to the atmospheric value is caused by the inertial motion of the water column acquiring the velocity at the initial stage of the cavity expansion. The calculated time of the water column motion agrees well with the experimental time interval between the spikes of an electric signal. (interaction of laser radiation with matter)

  12. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, David; Goodyear, Abbey [Florida State University, Department of Chemistry and Biochemistry (United States); Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T. [Florida State University, Institute of Molecular Biophysics (United States); Logan, Timothy M., E-mail: tlogan@fsu.ed [Florida State University, Department of Chemistry and Biochemistry (United States)

    2010-10-15

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-{sup 13}C-glucose and {sup 15}N-glutamate as labeled precursors. This study suggests that uniformly {sup 15}N,{sup 13}C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  13. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    International Nuclear Information System (INIS)

    Skelton, David; Goodyear, Abbey; Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T.; Logan, Timothy M.

    2010-01-01

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U- 13 C-glucose and 15 N-glutamate as labeled precursors. This study suggests that uniformly 15 N, 13 C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  14. On the economics of PURPA auctions. [Contracts between utilities and electricity producers in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Bolle, Friedel (Energiewirtschaftliches Inst. an der Univ. zu Koeln (Germany))

    1991-04-01

    It is shown that, under certain conditions, Public Utility Regulatory Policies Act (PURPA) auctions in the USA theoretically lead to efficient contracts between utilities and producers of electricity. In contrast to normal auctions bidders compete with (potentially non-linear) revenue functions and with non-price attributes. In practice, there are tremendous difficulties in the evaluation of bids which result from the long duration of contracts and from the necessity to evaluate risks and non-price attributes. (author).

  15. Modelling and design optimization of low speed fuel cell - battery hybrid electric vehicles. Paper no. IGEC-1-125

    International Nuclear Information System (INIS)

    Guenther, M.; Dong, Z.

    2005-01-01

    A push for electric vehicles has occurred in the past several decades due to various concerns about air pollution and the contribution of emissions to global climate change. Although electric cars and buses have been the focus of much of electric vehicle development, smaller vehicles are used extensively for transportation and utility purposes in many countries. In order to explore the viability of fuel cell - battery hybrid electric vehicles, empirical fuel cell system data has been incorporated into the NREL's vehicle design and simulation tool, ADVISOR (ADvanced Vehicle SimulatOR), to predict the performance of a low-speed, fuel cell - battery electric vehicle through MATLAB Simulink. The modelling and simulation provide valuable feedback to the design optimization of the fuel cell power system. A sampling based optimization algorithm was used to explore the viability and options of a low cost design for urban use. (author)

  16. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies

    International Nuclear Information System (INIS)

    Ye Ling; Lin Jianguo; Sun Yuliang; Bennouna, Soumaya; Lo, Michael; Wu Qingyang; Bu Zhigao; Pulendran, Bali; Compans, Richard W.; Yang Chinglai

    2006-01-01

    Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity of Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection

  17. Optimization of culture conditions and electricity generation using Geobacter sulfurreducens in a dual-chambered microbial fuel-cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi-Sun; Lee, Yu-jin [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of)

    2010-12-15

    The promise of generating electricity from the oxidation of organic substances using metal-reducing bacteria is drawing attention as an alternate form of bio-technology with positive environmental implications. In this study, we examined various experimental factors to obtain the maximum power output in a dual-chamber mediator-less microbial fuel-cell (MFC) using Geobacter sulfurreducens and acetate as an electron donor in a semi-continuous mode. The G. sulfurreducens culture conditions were optimized in a nutrient buffer containing 20 mM of acetate and 50 mM of fumarate at pH 6.8 and 30 C. For use in the MFC system, electrodes were made with carbon paper (area: 11.5 cm{sup 2}) and spaced 1.5 cm apart. Once the MFC was inoculated with the pre-cultured G. sulfurreducens in the anode chamber and while air was continuously sparged to the cathode chamber, the cells produced electricity stably over 60 days with the regular addition of 20 mM acetate, generating the maximum power density of 7 mW/m{sup 2} with a 5000 and ohm; load. The current output was significantly increased, by 1.6 times after 20 days of incubation under the same experimental conditions, when the carbon-paper anode was coated with carbon nanotubes. (author)

  18. Technology Status and Expected Greenhouse Gas Emissions of Battery, Plug-In Hybrid, and Fuel Cell Electric Vehicles

    Science.gov (United States)

    Lipman, Timothy E.

    2011-11-01

    Electric vehicles (EVs) of various types are experiencing a commercial renaissance but of uncertain ultimate success. Many new electric-drive models are being introduced by different automakers with significant technical improvements from earlier models, particularly with regard to further refinement of drivetrain systems and important improvements in battery and fuel cell systems. The various types of hybrid and all-electric vehicles can offer significant greenhouse gas (GHG) reductions when compared to conventional vehicles on a full fuel-cycle basis. In fact, most EVs used under most condition are expected to significantly reduce lifecycle GHG emissions. This paper reviews the current technology status of EVs and compares various estimates of their potential to reduce GHGs on a fuel cycle basis. In general, various studies show that battery powered EVs reduce GHGs by a widely disparate amount depending on the type of powerplant used and the particular region involved, among other factors. Reductions typical of the United States would be on the order of 20-50%, depending on the relative level of coal versus natural gas and renewables in the powerplant feedstock mix. However, much deeper reductions of over 90% are possible for battery EVs running on renewable or nuclear power sources. Plug-in hybrid vehicles running on gasoline can reduce emissions by 20-60%, and fuel cell EV reduce GHGs by 30-50% when running on natural gas-derived hydrogen and up to 95% or more when the hydrogen is made (and potentially compressed) using renewable feedstocks. These are all in comparison to what is usually assumed to be a more advanced gasoline vehicle "baseline" of comparison, with some incremental improvements by 2020 or 2030. Thus, the emissions from all of these EV types are highly variable depending on the details of how the electric fuel or hydrogen is produced.

  19. AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal

    International Nuclear Information System (INIS)

    Sun Xiudong; Pei Yanbo; Yao Fengfeng; Zhang Jianlong; Hou Chunfeng

    2007-01-01

    Photorefractive gratings were produced in a C 60 -doped nematic liquid crystal cell under the application of two coherent beams and a nonbiased sinusoidal ac electric field. The beam coupling and diffraction of the ac electric field assisted gratings were studied systematically. A stable asymmetric energy transference was obtained. Diffraction was observed when the angle (between the normal of the cell and the bisector of the writing beams) was 0 0 , and the dependence of diffraction efficiency on the peak-to-peak value of the ac voltage was similar to that at an incidence angle of 45 0 , suggesting that the role of the ac field was to facilitate the charge separation, and the space-charge field (SCF) originated predominantly from the diffusion of the ac electric field assisted photo-induced carriers under the application of nonuniform illumination and an applied ac field. The grating was produced by director reorientation induced by the cooperation of the SCF and the applied ac electric field. A self-erasing phenomenon was observed in this cell. An explanation in terms of the movement of two kinds of carriers with opposite signs was proposed

  20. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation.

    Science.gov (United States)

    Tanino, Takanori; Nara, Youhei; Tsujiguchi, Takuya; Ohshima, Takayuki

    2013-08-01

    The coproduction of a useful material and electricity via a novel application of microbial fuel cell (MFC) technology to oxidative fermentation was investigated. We focused on vinegar production, i.e., acetic acid fermentation, as an initial and model useful material that can be produced by oxidative fermentation in combination with MFC technology. The coproduction of acetic acid and electricity by applying MFC technology was successfully demonstrated by the simultaneous progress of acetic acid fermentation and electricity generation through a series of repeated batch fermentations. Although the production rate of acetic acid was very small, it increased with the number of repeated batch fermentations that were conducted. We obtained nearly identical (73.1%) or larger (89.9%) acetic acid yields than that typically achieved by aerated fermentation (75.8%). The open-cycle voltages measured before and after fermentation increased with the total fermentation time and reached a maximum value of 0.521 V prior to the third batch fermentation. The maximum current and power densities measured in this study (19.1 μA/cm² and 2.47 μW/cm², respectively) were obtained after the second batch fermentation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. A novel approach for in vitro studies applying electrical fields to cell cultures by transformer-like coupling.

    Science.gov (United States)

    Hess, R; Neubert, H; Seifert, A; Bierbaum, S; Hart, D A; Scharnweber, D

    2012-12-01

    The purpose of this study was to develop a new apparatus for in vitro studies applying low frequency electrical fields to cells without interfering side effects like biochemical reactions or magnetic fields which occur in currently available systems. We developed a non-invasive method by means of the principle of transformer-like coupling where the magnetic field is concentrated in a toroid and, therefore, does not affect the cell culture. Next to an extensive characterization of the electrical field parameters, initial cell culture studies have focused on examining the response of bone marrow-derived human mesenchymal stem cells (MSCs) to pulsed electrical fields. While no significant differences in the proliferation of human MSCs could be detected, significant increases in ALP activity as well as in gene expression of other osteogenic markers were observed. The results indicate that transformer-like coupled electrical fields can be used to influence osteogenic differentiation of human MSCs in vitro and can pose a useful tool in understanding the influence of electrical fields on the cellular and molecular level.

  2. Indole-3-Acetic Acid Is Produced by Emiliania huxleyi Coccolith-Bearing Cells and Triggers a Physiological Response in Bald Cells.

    Science.gov (United States)

    Labeeuw, Leen; Khey, Joleen; Bramucci, Anna R; Atwal, Harjot; de la Mata, A Paulina; Harynuk, James; Case, Rebecca J

    2016-01-01

    Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host.

  3. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    Science.gov (United States)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  4. Do we really need to differentiate mesenchymal stem cells into insulin-producing cells for attenuation of the autoimmune responses in type 1 diabetes: immunoprophylactic effects of precursors to insulin-producing cells.

    Science.gov (United States)

    Sharma, Anshu; Rani, Rajni

    2017-07-12

    Type 1 diabetes (T1D) is a multifactorial autoimmune disorder where pancreatic beta cells are lost before the clinical manifestations of the disease. Administration of mesenchymal stem cells (MSCs) or MSCs differentiated into insulin-producing cells (IPCs) have yielded limited success when used therapeutically. We have evaluated the immunoprophylactic potentials of precursors to insulin-producing cells (pIPCs) and IPCs in nonobese diabetic (NOD) mice to ask a basic question: do we need to differentiate MSCs into IPCs or will pIPCs suffice to attenuate autoimmune responses in T1D? Bone marrow-derived MSCs from Balb/c mice were characterized following the International Society for Cellular Therapy (ISCT) guidelines. MSCs cultured in high-glucose media for 11 to 13 passages were characterized for the expression of pancreatic lineage genes using real-time polymerase chain reaction. Expression of the PDX1 gene in pIPCs was assessed using Western blot and fluorescence-activated cell sorting (FACS). Triple-positive MSCs were differentiated into IPCs using a three-step protocol after sorting them for cell surface markers, i.e. CD29, CD44, and SCA-1. Nonobese diabetic mice were administered pIPCs, IPCs, or phosphate-buffered saline (PBS) into the tail vein at weeks 9 or 10 and followed-up for 29-30 weeks for fasting blood glucose levels. Two consecutive blood sugar levels of more than 250 mg/dl were considered diabetic. MSCs grown in high-glucose media for 11 to 13 passages expressed genes of the pancreatic lineage such as PDX1, beta2, neurogenin, PAX4, Insulin, and glucagon. Furthermore, Western blot and FACS analysis for PDX-1, a transcription factor necessary for beta cell maturation, confirmed that these cells were precursors of insulin-producing cells (pIPCs). NOD mice administered with pIPCs were better protected from developing diabetes with a protective efficacy of 78.4% (p cells seem to have better potential to arrest autoimmune response in type 1 diabetes when

  5. CD4(+) T cells producing interleukin (IL)-17, IL-22 and interferon-? are major effector T cells in nickel allergy

    DEFF Research Database (Denmark)

    Dyring Andersen, Beatrice; Skov, Lone; Løvendorf, Marianne B

    2013-01-01

    the frequencies of CD4(+) , CD8(+) and γδ T cells producing IL-17, IL-22 and interferon (IFN)-γ in the blood and skin from nickel-allergic patients. Patients/materials/methods Blood samples were collected from 14 patients and 17 controls, and analysed by flow cytometry. Biopsies were taken from 5 patients and 6......-allergic patients, there was massive cellular infiltration dominated by CD4(+) T cells producing IL-17, IL-22 and IFN-γ in nickel-challenged skin but not in vehicle-challenged skin. Conclusion CD4(+) T cells producing IL-17, IL-22 and IFN-γ are important effector cells in the eczematous reactions of nickel......Background It has been suggested that interleukin (IL)-17 and IL-22 play important roles in the elicitation of human allergic contact dermatitis; however, the frequencies of T cell subtypes producing IL-17 and IL-22 in human allergic contact dermatitis are unknown. Objectives To determine...

  6. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2017-01-01

    Full Text Available The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs, for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs, was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  7. Hybrid-mode interleaved boost converter design for fuel cell electric vehicles

    International Nuclear Information System (INIS)

    Wen, Huiqing; Su, Bin

    2016-01-01

    Highlights: • A high power interleaved boost converter is designed for a 150 kW high-power fuel cell electric vehicle application. • A hybrid-mode scheme is used: Mode I and mode II are used with each boost converter operating in continuous conduction mode and discontinuous conduction mode. • Boundary conditions for different modes are determined with respect to switching duty ratio and load conditions. • With the proposed scheme, the power density is improved by 44.2% and 34.3% in terms of the converter volume and weight. - Abstract: For Fuel Cell Electric Vehicles, DC-DC power converters are essential to provide energy storage buffers between fuel cell stacks and the traction system because fuel cells show characteristics of low-voltage high-current output and wide output voltage variation. This paper presents a hybrid-mode two-phase interleaved boost converter for fuel cell electric vehicle application in order to improve the power density, minimize the input current ripple, and enhance the system efficiency. Two operation modes are adopted in the practical design: mode I and mode II are used with each boost converter operating in continuous conduction mode and discontinuous conduction mode. The operation, design and control of the interleaved boost converter for different operating modes are discussed with their equivalent circuits. The boundary conditions are distinguished with respect to switching duty ratio and load conditions. Transitions between continuous conduction mode and discontinuous conduction mode are illustrated for the whole duty ratio range. The expressions for inductor current ripple, input current ripple and output voltage ripple are derived and verified by simulation and experimental tests. The efficiency and power density improvements are illustrated to verify the effectiveness of the proposed design scheme.

  8. Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective

    Science.gov (United States)

    Bayramoglu, Bihter; Toubiana, David; van Vliet, Simon; Inglis, R. Fredrik; Shnerb, Nadav; Gillor, Osnat

    2017-02-01

    Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells’ close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies—or bet-hedging—as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population.

  9. ECONOMIC AND ENVIRONMENTAL ASPECTS ASSOCIATED WITH THE TECHNOLOGIES FOR ELECTRICITY PRODUCTION FROM CONVENTIONAL SOURCES AND MEASURES TO MITIGATE THE PRODUCED IMPACTS

    Directory of Open Access Journals (Sweden)

    PAUL CALANTER

    2015-12-01

    Full Text Available The electricity sector represents the sector with the greatest impact in terms of producing climate change, mainly due to the greenhouse gas emissions generated through the burning of fossil fuels. It is not however the only negative aspect associated to the classic technologies of electricity production. This paper aims to assess the economic and environmental aspects associated to the technologies for the electricity production from conventional sources and as a conclusion of the research it will also propose certain specific measures designed to mitigate their impacts. Therefore, the analysis will focus on economic issues, such as limited resources of fuels and the significant fluctuation in fuel prices, low energy efficiency, environmental protection expenditures and health issues as a result of the pollution generated by the electricity production and environmental aspects related primarily to the burning of fossil fuels, but also to extraction, transport and storage, aspects concerning the management of waste generated by the energy sector or to the risks associated with the process of producing electricity. In the final part of the paper a few measures will be proposed to mitigate the impact on the environment and economic development of such technologies, as well as increasing energy efficiency, promoting renewable sources of energy, carbon dioxide capture and storage, limiting deforestation, afforestation or the prevention of accidents in the energy sector.

  10. AMTEC thermo-electric conversion. Final report; AMTEC termo-elektrisk konvertering. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H

    1994-10-15

    The aim was to gain experience on how to produce Alkali Metal Thermo-Electric-Converter (AMTEC) cells, for the demonstration of their principles and potentials, as a basis for future commercialization. These cells should be able to present an efficient and direct conversion of thermal energy to electric energy. The system is based on an electro-chemical concentration cell built around a {beta}`` aluminium oxide membrane that separates the two chambers. This material is a good conductor of sodium and a bad conductor of electrons, and it is this property which is taken advantage of. In the two chambers of the cell is found saturated sodium vapour at two temperatures. The motive power is the expansion over the membrane where the sodium ions are transported through it whilst the electrons are forced through the outer cycle. This concept is described in detail in addition to the choice of materials, performance testing and results. It was found possible to produce AMTEC electrodes via serigraphic feeding. The strengths and weaknesses of the finished product are illuminated. (AB) (10 refs.)

  11. Lucifer Yellow uptake by CHO cells exposed to magnetic and electric pulses

    OpenAIRE

    Miklavčič, Damijan; Towhidi, Leila; Firoozabadi, S. M. P.; Mozdarani, Hossein

    2015-01-01

    Background The cell membrane acts as a barrier that hinders free entrance of most hydrophilic molecules into the cell. Due to numerous applications in medicine, biology and biotechnology, the introduction of impermeant molecules into biological cells has drawn considerable attention in the past years. One of the most famous methods in this field is electroporation, in which electric pulses with high intensity and short duration are applied to the cells. The aim of our study was to investigate...

  12. Ultrastructural changes produced in Ehrlich ascites carcinoma cells by ultraviolet-visible radiation in the presence of melanins

    Energy Technology Data Exchange (ETDEWEB)

    Lea, P.J.; Pawlowski, A.; Persad, S.D.; Menon, I.A.; Haberman, H.F.

    1988-01-01

    Irradiation of Ehrlich ascites carcinoma (EAC) cells in the presence of pheomelanin, i.e., red hair melanin (RHM), has been reported to produce extensive cell lysis. Irradiation in the presence of eumelanin, i.e., black hair melanin (BHM), or irradiation in the absence of either type of melanin did not produce this effect. We observed that RHM particles penetrated the cell membrane without apparent structural damage to the cell or the cell membrane. Irradiation of the cells in the absence of melanin did not produce any changes in the ultrastructure of the cells. Incubation of the cells in the dark in the presence of RHM produced only minor structural, mainly cytoplasmic changes. Irradiation of the cells in the presence of RHM produced extensive ultrastructural changes prior to complete cell lysis; these changes were more severe than the effects of incubation of the cells in the dark in the presence of RHM. When the cells incubated in the dark or irradiated in the presence of latex particles or either one of the eumelanins particles, viz. BHM or synthetic dopa melanin, these particles did not penetrate into the cells or produce any ultrastructural changes. These particles were in fact not even ingested by the cells.

  13. Min-Max control of fuel-cell-car-based smart energy systems

    NARCIS (Netherlands)

    Alavi, F.; van de Wouw, N.; de Schutter, B.

    2016-01-01

    Recently, the idea of using fuel cell vehicles as the future way of producing electricity has emerged. A fuel cell car has all the necessary devices on board to convert the chemical energy of hydrogen into electricity. This paper considers a scenario where a parking lot for fuel cell cars acts as a

  14. Min-max control of fuel-cell-car-based smart energy systems

    NARCIS (Netherlands)

    Alavi, F.; van de Wouw, N.; De Schutter, B.H.K.; Rantzer, Anders; Bagterp Jørgensen, John; Stoustrup, Jakob

    2016-01-01

    Recently, the idea of using fuel cell vehicles as the future way of producing electricity has emerged. A fuel cell car has all the necessary devices on board to convert the chemical energy of hydrogen into electricity. This paper considers a scenario where a parking lot for fuel cell cars acts as a

  15. A holistic approach to thermodynamic analysis of photo-thermo-electrical processes in a photovoltaic cell

    International Nuclear Information System (INIS)

    Bicer, Yusuf; Dincer, Ibrahim; Zamfirescu, Calin

    2016-01-01

    Highlights: • A novel approach for energy and exergy analyses of a photovoltaic cell is presented. • Photonic, thermal and electrical sub-processes are identified. • The irreversibilities caused by the photo-thermo-electrical processes are assessed. • Energy and exergy efficiencies are determined for comparison purposes. - Abstract: In this study, a novel approach for energy and exergy analyses of a photovoltaic (PV) cell is presented, and the exergy destructions within the relevant optical, thermal and electrical processes are quantified. The present study uses a holistic approach to cover all processes and their interactions inside a PV cell; such as photonic: photons transmission, reflection and spectral absorption, background (blackbody) radiation emission at cell temperature; electrical: electron excitation to create a photocurrent, electron-hole recombination, electrical power transmission to an external load; and thermal: internal heat generation by shunt and series resistances, and heat dissipation by conduction-convection. A physical model which considers the highly complex interaction and interdependence among these processes is introduced based on energy and exergy balances completed by writing various constitutive equations, including correlations for the convective heat transfer coefficient and the photocurrent dependence of the spectral distribution of the quantum efficiency. The irreversibilities caused by the processes are assessed in terms of their relative magnitudes of the exergy destructions. The largest exergy destruction occurs in PV generator-photo current generation process followed by wafer-light absorption process. The overall energy and exergy efficiencies are then determined based on the novel model for seven different atmospheric and ecological conditions. The lowest and highest exergy efficiencies of the PV cell are calculated as 9.3% and 14% for two sample locations as Oshawa in Canada and Emirdag in Turkey, respectively

  16. miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2014-09-01

    This paper focuses on the development of renewable sources of isletreplacement tissue for the treatment of type I diabetes mellitus. Placental tissue-derived mesenchymal stem cells (MSCs) are a promising source for regenerative medicine due to their plasticity and easy availability. They have the potential to differentiate into insulin-producing cells. miR-375 is a micro RNA that is expressed in the pancreas and involved in islet development. Human placental decidua basalis MSCs (PDB-MSCs) were cultured from full-term human placenta. The immunophenotype of the isolated cells was checked for CD90, CD105, CD44, CD133 and CD34 markers. The MSCs (P3) were chemically transfected with hsa-miR-375. Total RNA was extracted 4 and 6 days after transfection. The expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, and glucagon genes were evaluated using real-time qPCR. On day 6, we tested the potency of the clusters in response to the high glucose challenge and assessed the presence of insulin and NGN3 proteins via immunocytochemistry. Flow cytometry analysis confirmed that more than 90% of the cells were positive for CD90, CD105 and CD44 and negative for CD133 and CD34. Morphological changes were followed from day 2. Cell clusters formed during day 6. Insulin-producing clusters showed a deep red color with DTZ. The expression of pancreatic-specific transcription factors increased remarkably during the four days after transfection and significantly increased on day 7. The clusters were positive for insulin and NGN3 proteins, and C-peptide and insulin secretion increased in response to changes in the glucose concentration (2.8 mM and 16.7 mM). In conclusion, the MSCs could be programmed into functional insulin-producing cells by transfection of miR-375.

  17. Electrical efficiency losses occurred by the air compressor for PEMFC

    International Nuclear Information System (INIS)

    Haubrock, J.; Heideck, G.; Styczynski, Z.

    2006-01-01

    Fuel Cells are characterised by a high efficiency and comparatively small emissions. Depending on their partial load behaviour and their high efficiency, Fuel Cells are well suited for net connected or isolated autonomous energy generators for thermal and electricity power production. Proton Exchange Membrane (PEM) Fuel Cell systems need several external components to produce electricity and thermal power. However, the high theoretical degree of efficiency of 83% is decreased by these components. To reach higher fuel utilisation it is necessary to reduce the energy consumption of these components. In this study, the influence of the air supply compressor on the fuel utilisation is investigated and an optimization strategy was developed. The results were reviewed by a real test set up using an autonomous PEM Fuel Cell system. (authors)

  18. The development of microfabricated biocatalytic fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi; Karube, Isao [University of Tokyo (Japan). Research Center for Advanced Science and Technology

    1999-02-01

    The production of electricity by biocatalytic fuel cells has been feasible for almost two decades and can produce electric power at a practical level. These fuel cells use immobilized microorganisms or enzymes as catalysts, and glucose as a fuel. A microfabricated enzyme battery has recently been made that is designed to function as a power supply for microsurgery robots or artificial organs. (author)

  19. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    Science.gov (United States)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  20. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    Science.gov (United States)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  1. Cost modelling of electricity producing hot dry rock (HDR) geothermal systems in the UK

    International Nuclear Information System (INIS)

    Doherty, P.S.

    1992-03-01

    A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. (Author)

  2. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  3. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  4. Effect of inner and outer hair cell lesions on electrically evoked otoacoustic emissions.

    Science.gov (United States)

    Reyes, S; Ding, D; Sun, W; Salvi, R

    2001-08-01

    When the cochlea is stimulated by a sinusoidal current, the inner ear emits an acoustic signal at the stimulus frequency, termed the electrically evoked otoacoustic emission (EEOAE). Recent studies have found EEOAEs in birds lacking outer hair cells (OHCs), raising the possibility that other types of hair cells, including inner hair cells (IHCs), may generate EEOAEs. To determine the relative contribution of IHCs and OHCs to the generation of the EEOAE, we measured the amplitude of EEOAEs, distortion product otoacoustic emissions (DPOAEs), the cochlear microphonic (CM) and the compound action potential (CAP) in normal chinchillas and chinchillas with IHC lesions or IHC plus OHC lesions induced by carboplatin. Selective IHC loss had little or no effect on CM amplitude and caused a slight reduction in mean DPOAE amplitude. However, IHC loss resulted in a massive reduction in CAP amplitude. Importantly, selective IHC lesions did not reduce EEOAE amplitude, but instead, EEOAE amplitude increased at high frequencies. When both IHCs and OHCs were destroyed, the amplitude of the CM, DPOAE and EEOAE all decreased. The increase in EEOAE amplitude seen with IHC loss may be due to (1) loss of tonic efferent activity to the OHCs, (2) change in the mechanical properties of the cochlea or (3) elimination of EEOAEs produced by IHCs in phase opposition to those from OHCs.

  5. Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus.

    Science.gov (United States)

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-02-28

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet beta-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced with AAV which is containing furin-cleavable human preproinsulin gene to generate insulin-producing cells as surrogate beta-cells for the type 1 diabetes therapy. In the rAAV production procedure, rAAV was generated by transfection of AD293 cells. Human mesenchymal stems cells were transduced using rAAV with a various multiplicity of infection. Transduction of recombinant AAV was also tested using beta-galactosidse expression. Cell viability was determined by using MTT assay to evaluate the toxicity of the transduction procedure. Expression and production of Insulin were tested using reverse transcriptase-polymerase chain reaction and immunocytochemistry. Secretion of human insulin and C-peptide from the cells was assayed using enzyme-linked immunosorbent assay. Production of insulin and C-peptide from the test group represented a higher increase compared to the control group. In this study, we examined generation of insulin-producing cells from mesenchymal stem cells by genetic engineering for diabetes therapy. This work might be valuable to the field of tissue engineering for diabetes treatment.

  6. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 12: Fuel cells. [energy conversion efficiency of, for use in electric power plants

    Science.gov (United States)

    Warde, C. J.; Ruka, R. J.; Isenberg, A. O.

    1976-01-01

    A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.

  7. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater.

    Science.gov (United States)

    Wen, Qing; Wu, Ying; Cao, Dianxue; Zhao, Lixin; Sun, Qian

    2009-09-01

    Electricity production and modeling of microbial fuel cell (MFC) from continuous beer brewery wastewater was studied in this paper. A single air-cathode MFC was constructed, carbon fiber was used as anode and diluted brewery wastewater (COD=626.58 mg/L) as substrate. The MFC displayed an open-circuit voltage of 0.578 V and a maximum power density of 9.52 W/m(3) (264 mW/m(2)). Using the model based on polarization curve, various voltage losses were quantified. At current density of 1.79 A/m(2), reaction kinetic loss and mass transport loss both achieved to 0.248 V; while ohmic loss was 0.046 V. Results demonstrated that it was feasible and stable for producing bioelectricity from brewery wastewater; while the most important factors which influenced the performance of the MFC are reaction kinetic loss and mass transport loss.

  8. Electricity from biomass

    International Nuclear Information System (INIS)

    Price, B.

    1998-11-01

    Electricity from biomass assesses the potential of biomass electricity for displacing other more polluting power sources and providing a relatively clean and ecologically friendly source of energy; discusses its environmental and economic effects, while analysing political and institutional initiatives and constraints; evaluates key factors, such as energy efficiency, economics, decentralisation and political repurcussions; considers the processes and technologies employed to produce electricity from biomass; and discusses the full range of incentives offered to producers and potential producers and the far-reaching implications it could have for industry, society and the environment. (author)

  9. Characterisation of insulin-producing cells differentiated from tonsil derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, So-Yeon; Kim, Ye-Ryung; Park, Woo-Jae; Kim, Han Su; Jung, Sung-Chul; Woo, So-Youn; Jo, Inho; Ryu, Kyung-Ha; Park, Joo-Won

    2015-01-01

    Tonsil-derived (T-) mesenchymal stem cells (MSCs) display mutilineage differentiation potential and self-renewal capacity and have potential as a banking source. Diabetes mellitus is a prevalent disease in modern society, and the transplantation of pancreatic progenitor cells or various stem cell-derived insulin-secreting cells has been suggested as a novel therapy for diabetes. The potential of T-MSCs to trans-differentiate into pancreatic progenitor cells or insulin-secreting cells has not yet been investigated. We examined the potential of human T-MSCs to trans-differentiate into pancreatic islet cells using two different methods based on β-mercaptoethanol and insulin-transferin-selenium, respectively. First, we compared the efficacy of the two methods for inducing differentiation into insulin-producing cells. We demonstrated that the insulin-transferin-selenium method is more efficient for inducing differentiation into insulin-secreting cells regardless of the source of the MSCs. Second, we compared the differentiation potential of two different MSC types: T-MSCs and adipose-derived MSCs (A-MSCs). T-MSCs had a differentiation capacity similar to that of A-MSCs and were capable of secreting insulin in response to glucose concentration. Islet-like clusters differentiated from T-MSCs had lower synaptotagmin-3, -5, -7, and -8 levels, and consequently lower secreted insulin levels than cells differentiated from A-MSCs. These results imply that T-MSCs can differentiate into functional pancreatic islet-like cells and could provide a novel, alternative cell therapy for diabetes mellitus. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  10. AC electric field induced dipole-based on-chip 3D cell rotation.

    Science.gov (United States)

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-07

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  11. Study of the combined action of gamma radiation and static electric fields in human cells

    International Nuclear Information System (INIS)

    Moron, Michelle Mendes

    2008-01-01

    The basic principle of radiotherapy is the one of maximizing damage to the tumor, while minimizing it in neighboring health tissues. Several strategies have been worked out aiming at increasing cellular radiosensitivity, and among them is the use of exogenous fields. Our goal in this work is the study in human cells of the effect resulting from the association of irradiation with exposure to exogenous static electric fields. The T47D cell line of breast cancer cells was irradiated with gammas in the 0 - 8 Gy doses range. The corresponding survival curve provided information on the radiosensitivity of this cell line. The rate of cell deaths per Gray in the 0 - 8 Gy range exhibited a maximum at 2 Gy, which corresponds to the most efficient irradiation dose. The viability of this T47D cells exposed to both gamma radiation and 1.250 V/cm static electric field (SEF) was about 12% lower than when only irradiated. The sole exposure of the cells to SEF by 24 and 72 hours didn't induce toxicity. Immunofluorescence runs carried out in irradiated normal MRC5 cell line of human lung fibroblast, without and with exposition to a SEF, have quantified the expression of the y- H2AX histone. The amount of phosphorylated histones was approximately 40% higher after irradiation with 2 Gy plus exposure to a SEF by 1 hour, showing that the electric field negatively interfered in the repairing process of the DNA double strand breaks. The flow cytometry analysis with FACS allowed the investigation of a possible interference of radiation and SEF in the cell distributions among the cellular cycle phases. It was found that in T47D cells treated with 1 and 2 Gy by 24 hours the SEF also negatively interfered in the DNA repairing process, as evidenced by the higher accumulation of cells in the S phase. Therefore, it would be possible to conclude that static and exogenous electric fields are able of negatively interfering in the cellular repair and, presumably, in DNA repair. (author)

  12. Profitability of producing electricity in nuclear power plants

    International Nuclear Information System (INIS)

    Marecki, J.

    2001-01-01

    In the first part of this paper, the method used in energy economics to calculate the annual costs of electricity generation is described. The procedure of discounting these costs for complex time distributions of costs and effects is also presented. Hence the principles of choosing the optimum variant from different solutions having the same or not the same effects are determined. Subsequently, the conditions of competitiveness are formulated for nuclear power plants in comparison with other energy options. As example, the the results of calculating total annual costs of electricity generation in various (coal-fired, gas-fired and nuclear) power plants are given for two different values of the discount rate: 5% and 10%. (author)

  13. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  14. Electric power production contra electricity savings

    International Nuclear Information System (INIS)

    Schleisner, L.; Grohnheit, P.E.; Soerensen, H.

    1991-01-01

    The expansion of electricity-producing plants has, in Denmark until now, taken place in accordance with the demand for electricity. Recently, it has been suggested that the cost of the further development of such systems is greater than the cost of instigating and carrying out energy conservation efforts. The aim of the project was to evaluate the consequences for power producing plants of a reduction of the electricity consumption of end-users. A method for the analysis of the costs involved in the system and operation of power plants contra the costs that are involved in saving electricity is presented. In developing a model of this kind, consideration is given to the interplay of the individual saving project and the existing or future electricity supply. Thus it can be evaluated to what extent it would be advisable to substitute investments in the development of the capacity of the power plants with investments in the reduction of electricity consumption by the end users. This model is described in considerable detail. It will be tested in representative situations and locations throughout the Nordic countries. (AB) 17 refs

  15. The electricity market

    International Nuclear Information System (INIS)

    2015-01-01

    After a first part proposing predictions for electricity production and consumption for 2016, for the turnovers of electricity suppliers and producers, an indication of important recent important events regarding enterprises belonging to the sector, and a dashboard of the sector activity, an annual report proposes a detailed overview of trends and of the competition context for the electricity market. It identifies the main market opportunities for electricity suppliers, identifies eight determining factors for the sector activity, gives an overview of the sector context evolution between 2004 and 2014 (temperatures, rainfalls, manufacturing industry production, housing and office building stock, projected housing and office building). It analyses the evolution of the sector activity by presenting and commenting various activity indicators and financial performance of electricity producers. It analyses the sector economic structure: evolution of the economic fabric, presentation of various structural characteristics (cross-border exchanges, production capacities per energy source, nuclear plant fleet, thermal plant fleet, location, electricity supply market). It proposes a presentation of the various actors and of their respective market shares, and presentations of groups, electricity suppliers, and electricity producers. It indicates highlights and presents various rankings of the main enterprises in 2014

  16. Silver-free Metallization Technology for Producing High Efficiency, Industrial Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Lynne M [Technic Inc; Munoz, Krystal [Technic Inc.; Karas, Joseph [Arizona State Univ., Tempe, AZ (United States); Bowden, Stuart [Arizona State Univ., Tempe, AZ (United States); Rand, James A; Gallegos, Anthony [Technic Inc.; Tyson, Tom [Technic Inc.; Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2018-03-30

    The goal of this project is to provide a commercially viable Ag-free metallization technology that will both reduce cost and increase efficiency of standard silicon solar cells. By removing silver from the front grid metallization and replacing it with lower cost nickel, copper, and tin metal, the front grid direct materials costs will decrease. This reduction in material costs should provide a path to meeting the Sunshot 2020 goal of $1 / WDC. As of today, plated contacts are not widely implemented in large scale manufacturing. For organizations that wish to implement pilot scale manufacturing, only two equipment choices exist. These equipment manufacturers do not supply plating chemistry. The main goal of this project is to provide a chemistry and equipment solution to the industry that enables reliable manufacturing of plated contacts marked by passing reliability results and higher efficiencies than silver paste front grid contacts. To date, there have been several key findings that point to plated contacts performing equal to or better than the current state of the art silver paste contacts. Poor adhesion and reliability concerns are a few of the hurdles for plated contacts, specifically plated nickel directly on silicon. A key finding of the Phase 1 budget period is that the plated contacts have the same adhesion as the silver paste controls. This is a huge win for plated contacts. With very little optimization work, state of the art electrical results for plated contacts on laser ablated lines have been demonstrated with efficiencies up to 19.1% and fill factors ~80% on grid lines 40-50 um wide. The silver paste controls with similar line widths demonstrate similar electrical results. By optimizing the emitter and grid design for the plated contacts, it is expected that the electrical performance will exceed the silver paste controls. In addition, cells plated using Technic chemistry and equipment pass reliability testing; i.e. 1000 hours damp heat and 200

  17. Inhibition of osteoclastogenesis by osteoblast-like cells genetically engineered to produce interleukin-10.

    Science.gov (United States)

    Fujioka, Kazuki; Kishida, Tsunao; Ejima, Akika; Yamamoto, Kenta; Fujii, Wataru; Murakami, Ken; Seno, Takahiro; Yamamoto, Aihiro; Kohno, Masataka; Oda, Ryo; Yamamoto, Toshiro; Fujiwara, Hiroyoshi; Kawahito, Yutaka; Mazda, Osam

    2015-01-16

    Bone destruction at inflamed joints is an important complication associated with rheumatoid arthritis (RA). Interleukin-10 (IL-10) may suppress not only inflammation but also induction of osteoclasts that play key roles in the bone destruction. If IL-10-producing osteoblast-like cells are induced from patient somatic cells and transplanted back into the destructive bone lesion, such therapy may promote bone remodeling by the cooperative effects of IL-10 and osteoblasts. We transduced mouse fibroblasts with genes for IL-10 and Runx2 that is a crucial transcription factor for osteoblast differentiation. The IL-10-producing induced osteoblast-like cells (IL-10-iOBs) strongly expressed osteoblast-specific genes and massively produced bone matrix that were mineralized by calcium phosphate in vitro and in vivo. Culture supernatant of IL-10-iOBs significantly suppressed induction of osteoclast from RANKL-stimulated Raw264.7 cells as well as LPS-induced production of inflammatory cytokine by macrophages. The IL-10-iOBs may be applicable to novel cell-based therapy against bone destruction associated with RA. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. In vitro generation of functional insulin-producing cells from lipoaspirated human adipose tissue-derived stem cells.

    Science.gov (United States)

    Mohamad Buang, Mohamad Lizan; Seng, Heng Kien; Chung, Lee Han; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2012-01-01

    Tissue engineering strategy has been considered as an alternative treatment for diabetes mellitus due to lack of permanent pharmaceutical treatment and islet donors for transplantation. Various cell lines have been used to generate functional insulin-producing cells (IPCs) including progenitor pancreatic cell lines, embryonic stem cells (ESCs), umbilical cord blood stem cells (UCB-SCs), adult bone marrow stem cells (BMSCs), and adipose tissue-derived stem cells (ADSCs). Human ADSCs from lipoaspirated abdominal fat tissue was differentiated into IPCs following a two-step induction protocol based on a combination of alternating high and low glucose, nicotinamide, activin A and glucagon-like peptide 1 (GLP-1) for a duration of 3 weeks. During differentiation, histomorphological changes of the stem cells towards pancreatic β-islet characteristics were observed via light microscope and transmission electron microscope (TEM). Dithizone (DTZ) staining, which is selective towards IPCs, was used to stain the new islet-like cells. Production of insulin hormone by the cells was analyzed via enzyme-linked immunosorbent assay (ELISA), whereas its hormonal regulation was tested via a glucose challenge test. Histomorphological changes of the differentiated cells were noted to resemble pancreatic β-cells, whereas DTZ staining positively stained the cells. The differentiated cells significantly produced human insulin as compared to the undifferentiated ADSCs, and its production was increased with an increase of glucose concentration in the culture medium. These initial data indicate that human lipoaspirated ADSCs have the potential to differentiate into functional IPCs, and could be used as a therapy to treat diabetes mellitus in the future. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  19. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    International Nuclear Information System (INIS)

    Rosinski, M.; Badziak, B.; Parys, P.; Wolowski, J.; Pisarek, M.

    2009-01-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:∼0.5 J, power density: 10 10 W/cm 2 ) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES

  20. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength

    DEFF Research Database (Denmark)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania

    2015-01-01

    death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. METHODS: In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability...... was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. RESULTS: Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (p...-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. GENERAL SIGNIFICANCE: This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials....

  1. IL-17-producing NKT cells depend exclusively on IL-7 for homeostasis and survival.

    Science.gov (United States)

    Webster, K E; Kim, H-O; Kyparissoudis, K; Corpuz, T M; Pinget, G V; Uldrich, A P; Brink, R; Belz, G T; Cho, J-H; Godfrey, D I; Sprent, J

    2014-09-01

    Natural killer T (NKT) cells are innate-like T cells that rapidly recognize pathogens and produce cytokines that shape the ensuing immune response. IL-17-producing NKT cells are enriched in barrier tissues, such as the lung, skin, and peripheral lymph nodes, and the factors that maintain this population in the periphery have not been elucidated. Here we show that NKT17 cells deviate from other NKT cells in their survival requirements. In contrast to conventional NKT cells that are maintained by IL-15, RORγt(+) NKT cells are IL-15 independent and instead rely completely on IL-7. IL-7 initiates a T-cell receptor-independent (TCR-independent) expansion of NKT17 cells, thus supporting their homeostasis. Without IL-7, survival is dramatically impaired, yet residual cells remain lineage committed with no downregulation of RORγt evident. Their preferential response to IL-7 does not reflect enhanced signaling through STAT proteins, but instead is modulated via the PI3K/AKT/mTOR signaling pathway. The ability to compete for IL-7 is dependent on high-density IL-7 receptor expression, which would promote uptake of low levels of IL-7 produced in the non-lymphoid sites of lung and skin. This dependence on IL-7 is also reported for RORγt(+) innate lymphoid cells and CD4(+) Th17 cells, and suggests common survival requirements for functionally similar cells.

  2. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  3. Contamination of infectious RD-114 virus in vaccines produced using non-feline cell lines.

    Science.gov (United States)

    Yoshikawa, Rokusuke; Sato, Eiji; Miyazawa, Takayuki

    2011-01-01

    All domestic cats have a replication-competent endogenous retrovirus, termed RD-114 virus, in their genome and several feline cell lines produce RD-114 viruses. Recently, we found that a portion of live attenuated feline and canine vaccines produced using feline cell lines was contaminated with infectious RD-114 viruses. In this study, we expanded our survey and examined canine vaccines produced using 'non-feline' cell lines. Consequently, we found two vaccines containing RD-114 viral RNA by reverse transcriptase (RT)-polymerase chain reaction (PCR) and real-time RT-PCR. We also confirmed the presence of infectious RD-114 virus in the vaccines by the LacZ marker rescue assay and PCR to detect proviral DNA in TE671 cells (human rhabdomyosarcoma cells) inoculated with the vaccines. It is impossible to investigate the definitive cause of contamination with RD-114 virus; however, we suspect that a seed canine parvovirus type 2 was contaminated with RD-114 virus, because many canine parvoviruses have been isolated and attenuated using feline cell lines. To exclude RD-114 virus from live attenuated vaccines, we must pay attention to the contamination of seed viruses with RD-114 virus in addition to avoiding feline cell lines producing RD-114 virus when manufacturing vaccines. Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  4. Aircraft Fuel Cell Power Systems

    Science.gov (United States)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  5. High numbers of IL-2-producing CD8+ T cells during viral infection: correlation with stable memory development

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2002-01-01

    that IL-2-producing cells appear slightly delayed compared with the majority of IFN-gamma producing cells, and the relative frequency of the IL-2-producing subset increases with transition into the memory phase. In contrast to acute immunizing infection, few IL-2-producing cells are generated during...... chronic LCMV infection. Furthermore, in MHC class II-deficient mice, which only transiently control LCMV infection, IL-2-producing CD8+ T cells are initially generated, but by 4 weeks after infection this subset has nearly disappeared. Eventually the capacity to produce IFN-gamma also becomes impaired...

  6. Effect of process parameters on the dynamic behavior of polymer electrolyte membrane fuel cells for electric vehicle applications

    Directory of Open Access Journals (Sweden)

    A.A. Abd El Monem

    2014-03-01

    Full Text Available This paper presents a dynamic mathematical model for Polymer Electrolyte Membrane “PEM” fuel cell systems to be used for electric vehicle applications. The performance of the fuel cell, depending on the developed model and taking the double layer charging effect into account, is investigated with different process parameters to evaluate their effect on the unit behavior. Thus, it will be easy to develop suitable controllers to regulate the unit operation, which encourages the use of fuel cells especially with electric vehicles applications. The steady-state performance of the fuel cell is verified using a comparison with datasheet data and curves provided by the manufacturer. The results and conclusions introduced in this paper provide a base for further investigation of fuel cells-driven dc motors for electric vehicle.

  7. Device for inserting and removing electric plug in socket- using remote handling apparatus inside radioactive hot cell

    International Nuclear Information System (INIS)

    Chevallereau, R.; Galmard, Y.

    1994-01-01

    A device for pushing an electric plug into a supply socket inside a radioactive hot cell and for withdrawing the plug after use of the appliance attached to it, comprises a pair of pivotally mounted arms. It can be used inside radioactive hot cells, to insert and put in and put off electric plugs

  8. Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film.

    Science.gov (United States)

    Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun

    2009-09-01

    A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

  9. Pleural mesothelial cells promote expansion of IL-17-producing CD8+ T cells in tuberculous pleural effusion.

    Science.gov (United States)

    Li, X; Zhou, Q; Yang, W B; Xiong, X Z; Du, R H; Zhang, J C

    2013-05-01

    IL-17-producing CD8(+) T lymphocytes (Tc17 cells) have recently been detected in many cancers and autoimmune diseases. However, the possible implication of Tc17 cells in tuberculous pleural effusion remains unclarified. In this study, distribution and phenotypic features of Tc17 cells in both tuberculous pleural effusion (TPE) and peripheral blood from patients with tuberculosis were determined. The effects of proinflammatory cytokines and local accessory cells (pleural mesothelial cells) on Tc17 cell expansion were also explored. We found that TPE contained more Tc17 cells than the blood. Compared with IFN-γ-producing CD8(+) T cells, Tc17 cells displayed higher expression of chemokine receptors (CCRs) and lower expression of cytotoxic molecules. In particularly, Tc17 cells in TPE exhibited high expression levels of CCR6, which could migrate in response to CCL20. Furthermore, IL-1β, IL-6, IL-23, or their various combinations could promote Tc17 cell expansion from CD8(+) T cells, whereas the proliferative response of Tc17 cells to above cytokines was lower than that of Th17 cells. Pleural mesothelial cells (PMCs) were able to stimulate Tc17 cell expansion via cell contact in an IL-1β/IL-6/IL-23 independent fashion. Thus this study demonstrates that Tc17 cells marks a subset of non-cytotoxic, CCR6(+) CD8(+) T lymphocytes with low proliferative capacity. The overrepresentation of Tc17 cells in TPE may be due to Tc17 cell expansion stimulated by pleural proinflammatory cytokines and to recruitment of Tc17 cells from peripheral blood. Additionally, PMCs may promote the production of IL-17 by CD8(+) T cells at sites of TPE via cell-cell interactions.

  10. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    Science.gov (United States)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  11. Electric field with bipolar structure during magnetic reconnection without a guide field

    Science.gov (United States)

    Guo, Jun

    2014-05-01

    We present a study on the polarized electric field during the collisionless magnetic reconnection of antiparallel fields using two dimensional particle-in-cell simulations. The simulations demonstrate clearly that electron holes and electric field with bipolar structure are produced during magnetic reconnection without a guide field. The electric field with bipolar structure can be found near the X-line and on the separatrix and the plasma sheet boundary layer, which is consistent with the observations. These structures will elongate electron's time staying in the diffusion region. In addition, the electric fields with tripolar structures are also found in our simulation.

  12. The effects of low frequency electrical stimulation on satellite cell activity in rat skeletal muscle during hindlimb suspension

    Directory of Open Access Journals (Sweden)

    Zhang Hong-Yu

    2010-11-01

    Full Text Available Abstract Background The ability of skeletal muscle to grow and regenerate is dependent on resident stem cells called satellite cells. It has been shown that chronic hindlimb unloading downregulates the satellite cell activity. This study investigated the role of low-frequency electrical stimulation on satellite cell activity during a 28 d hindlimb suspension in rats. Results Mechanical unloading resulted in a 44% reduction in the myofiber cross-sectional area as well as a 29% and 34% reduction in the number of myonuclei and myonuclear domains, respectively, in the soleus muscles (P vs the weight-bearing control. The number of quiescent (M-cadherin+, proliferating (BrdU+ and myoD+, and differentiated (myogenin+ satellite cells was also reduced by 48-57% compared to the weight-bearing animals (P P Conclusion This study shows that electrical stimulation partially attenuated the decrease in muscle size and satellite cells during hindlimb unloading. The causal relationship between satellite cell activation and electrical stimulation remain to be established.

  13. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.

    Science.gov (United States)

    Chaudhuri, Swades K; Lovley, Derek R

    2003-10-01

    Abundant energy, stored primarily in the form of carbohydrates, can be found in waste biomass from agricultural, municipal and industrial sources as well as in dedicated energy crops, such as corn and other grains. Potential strategies for deriving useful forms of energy from carbohydrates include production of ethanol and conversion to hydrogen, but these approaches face technical and economic hurdles. An alternative strategy is direct conversion of sugars to electrical power. Existing transition metal-catalyzed fuel cells cannot be used to generate electric power from carbohydrates. Alternatively, biofuel cells in which whole cells or isolated redox enzymes catalyze the oxidation of the sugar have been developed, but their applicability has been limited by several factors, including (i) the need to add electron-shuttling compounds that mediate electron transfer from the cell to the anode, (ii) incomplete oxidation of the sugars and (iii) lack of long-term stability of the fuel cells. Here we report on a novel microorganism, Rhodoferax ferrireducens, that can oxidize glucose to CO(2) and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator. Growth is supported by energy derived from the electron transfer process itself and results in stable, long-term power production.

  14. Aplikasi Sistem Fuel Cell Sebagai Energi Ramah Lingkungan Di Sektor Transportasi Dan Pembangkit

    OpenAIRE

    Hasan, Achmad

    2007-01-01

    Fuel cell is a device which is purposed to convert chemical energy into electric energy and produce water as side result. Fuel cell technology doesn't produce emission and doesn't make noises and also as environmental friendly energy has a high efficiency until 45% in fuel conversion to electricity, and it can be higher until 60% – 80% if it isco-generation. A fuel processing system converts hydrocarbon or other organic fuels to hydrogen of composition and purity suitable for fuel cell operat...

  15. APLIKASI SISTEM FUEL CELL SEBAGAI ENERGI RAMAH LINGKUNGAN DI SEKTOR TRANSPORTASI DAN PEMBANGKIT

    OpenAIRE

    Hasan, Achmad

    2011-01-01

    Fuel cell is a device which is purposed to convert chemical energy into electric energy and produce water as side result. Fuel cell technology doesn’t produce emission and doesn’t make noises and also as environmental friendly energy has a high efficiency until 45% in fuel conversion to electricity, and it can be higher until 60% – 80% if it isco-generation. A fuel processing system converts hydrocarbon or other organic fuels to hydrogen of composition and purity suitable for fuel cell operat...

  16. Stable producer cell lines for adeno-associated virus (AAV) assembly.

    Science.gov (United States)

    Chadeuf, Gilliane; Salvetti, Anna

    2010-10-01

    Stable producer cell lines containing both the rep and cap genes and recombinant adeno-associated virus (rAAV) vectors can be infected with a helper virus to provide reliable and efficient production of rAAV stocks. However, the development of these cell lines is time-consuming. The procedure described here is therefore recommended only for studies requiring the production of high amounts of rAAV, such as preclinical studies performed in large animals.

  17. Fuel cells, present, future and their impact in the oil industry

    International Nuclear Information System (INIS)

    Baez Baez, Victor; Rodriguez, Valmore

    1999-01-01

    During the last years it has been shown the necessity in developing new devices to produce more efficient and clean energy. Fuel cells are efficient electrochemical devices that produce electricity with very low emissions. It is expected to use those devices for stationary and road transportation applications and in portable power units for electrical or electronic equipment. In fact, the car makers are doing great efforts to introduce vehicles powered by fuel cells, to the market by years 2003-2004. At the same time, the characteristics of the fuel cells made those devices excellent for produce combine power and heat in stationary applications. In this work, we examine which fuel cell technologies are best suited to which applications. It will also compare the advantages and disadvantages of using fuel cell, the state of the art of fuel cells in different applications and the progress needed for them to become competitive

  18. Parameterization of electrical equivalent circuits for pem fuel cells; Parametrierung elektrischer Aequivalentschaltbilder von PEM Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Haubrock, J.

    2007-12-13

    Fuel cells are a very promising technology for energy conversion. For optimization purpose, useful simulation tools are needs. Simulation tools should simulate the static and dynamic electrical behaviour and the models should parameterized by measurment results which should be done easily. In this dissertation, a useful model for simulating a pem fuel cell is developed. the model should parametrizes by V-I curve measurment and by current step respond. The model based on electrical equivalent circuits and it is shown, that it is possible to simulate the dynamic behaviour of a pem fuel cell stack. The simulation results are compared by measurment results. (orig.)

  19. The decision making of an electric power producer; Les elements de decision d'un producteur d'electricite

    Energy Technology Data Exchange (ETDEWEB)

    Giger, F. [Electricite de France (EDF), Serv. Strategie Production Valorisation, 93 - Saint Denis (France)

    2002-07-01

    How can choose an electric power producer when he has to decide an investment of a supplementary power plant? Which were the criteria to choose a small or a medium power reactor? In this framework, the economical profitability, the technical feasibility and the associated risks are discussed. (A.L.B.)

  20. Multiple growth hormone-binding proteins are expressed on insulin-producing cells

    DEFF Research Database (Denmark)

    Møldrup, A; Billestrup, N; Thorn, N A

    1989-01-01

    The insulin-producing rat islet tumor cell line, RIN-5AH, expresses somatogen binding sites and responds to GH by increased proliferation and insulin production. Affinity cross-linking shows that RIN-5AH cells contain two major GH-binding subunits of Mr 100-130K (110K), which appear to exist as d....... It is concluded that the RIN-5AH cells have multiple GH-binding proteins which may mediate signals for either proliferation and/or insulin production....

  1. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro.

    Directory of Open Access Journals (Sweden)

    Holger A Russ

    Full Text Available Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT. Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells.Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2 using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation.These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug

  2. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Atsushi eKouzuma

    2015-06-01

    Full Text Available Shewanella oneidensis MR-1 is a facultative anaerobe that respires using a variety of inorganic and organic compounds. MR-1 is also capable of utilizing extracellular solid materials, including anodes in microbial fuel cells (MFCs, as electron acceptors, thereby enabling electricity generation. As MFCs have the potential to generate electricity from biomass waste and wastewater, MR-1 has been extensively studied to identify the molecular systems that are involved in electricity generation in MFCs. These studies have demonstrated the importance of extracellular electron-transfer pathways that electrically connect the quinone pool in the cytoplasmic membrane to extracellular electron acceptors. Electricity generation is also dependent on intracellular catabolic pathways that oxidize electron donors, such as lactate, and regulatory systems that control the expression of genes encoding the components of catabolic and electron-transfer pathways. In addition, recent findings suggest that cell-surface polymers, e.g., exopolysaccharides, and secreted chemicals, which function as electron shuttles, are also involved in electricity generation. Despite these advances in our knowledge on the extracellular electron-transfer processes in MR-1, further efforts are necessary to fully understand the underlying intra- and extra-cellular molecular systems for electricity generation in MFCs. We suggest that investigating how MR-1 coordinates these systems to efficiently transfer electrons to electrodes and conserve electrochemical energy for cell proliferation is important for establishing the biological bases for MFCs.

  3. Braking energy regeneration control of a fuel cell hybrid electric bus

    International Nuclear Information System (INIS)

    Zhang, Junzhi; Lv, Chen; Qiu, Mingzhe; Li, Yutong; Sun, Dongsheng

    2013-01-01

    Highlights: • A braking energy regeneration system has been designed for a fuel cell bus. • Control strategy coordinating energy efficiency and brake safety is proposed. • The system and control strategy proposed are experimentally verified. • Based on test results, energy efficiency of the FCB is improved greatly. - Abstract: This paper presents the braking energy regeneration control of a fuel cell hybrid electric bus. The configuration of the regenerative braking system based on a pneumatic braking system was proposed. To recapture the braking energy and improve the fuel economy, a control strategy coordinating the regenerative brake and the pneumatic brake was designed and applied in the FCHB. Brake safety was also guaranteed by the control strategy when the bus encounters critical driving situations. Fuel economy tests were carried out under China city bus typical driving cycle. And hardware-in-the-loop tests of the brake safety of the FCHB under proposed control strategy were also accomplished. Test results indicate that the present approach provides an improvement in fuel economy of the fuel cell hybrid electric bus and guarantees the brake safety in the meantime

  4. Microbial Fuel Cells using Mixed Cultures of Wastewater for Electricity Generation

    International Nuclear Information System (INIS)

    Zain, S.M; Roslani, N.S.; Hashim, R.; Anuar, N.; Suja, F.; Basi, N.E.A.; Anuar, N.; Daud, W.R.W.

    2011-01-01

    Fossil fuels (petroleum, natural gas and coal) are the main resources for generating electricity. However, they have been major contributors to environmental problems. One potential alternative to explore is the use of microbial fuel cells (MFCs), which generate electricity using microorganisms. MFCs uses catalytic reactions activated by microorganisms to convert energy preserved in the chemical bonds between organic molecules into electrical energy. MFC has the ability to generate electricity during the wastewater treatment process while simultaneously treating the pollutants. This study investigated the potential of using different types of mixed cultures (raw sewage, mixed liquor from the aeration tank and return waste activated sludge) from an activated sludge treatment plant in MFCs for electricity generation and pollutant removals (COD and total kjeldahl nitrogen, TKN). The MFC in this study was designed as a dual-chambered system, in which the chambers were separated by a Nafion TM membrane using a mixed culture of wastewater as a bio catalyst. The maximum power density generated using activated sludge was 9.053 mW/ cm 2 , with 26.8 % COD removal and 40 % TKN removal. It is demonstrated that MFC offers great potential to optimize power generation using mixed cultures of wastewater. (author)

  5. The acquisition of mechano-electrical transducer current adaptation in auditory hair cells requires myosin VI

    NARCIS (Netherlands)

    Marcotti, Walter; Corns, Laura F.; Goodyear, Richard J.; Rzadzinska, Agnieszka K.; Avraham, Karen B.; Steel, Karen P.; Richardson, Guy P.; Kros, Corne J.

    2016-01-01

    The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano-electrical transducer (MET) channels. The MET currents decline during steady stimuli; this is termed adaptation and ensures they

  6. Design of an Actinide-Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low-Cost Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Weaver, Kevan Dean; Davis, Cliff Bybee; MIT folks

    2000-07-01

    The purpose of this Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) University Research Consortium (URC) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, material compatibility, plant engineering, and coolant activation. In the area of core neutronic design, the reactivity vs. burnup and discharge isotopics of both non-fertile and fertile fuels were evaluated. An innovative core for pure actinide burning that uses streaming, fertile-free fuel assemblies was studied in depth. This particular core exhibits excellent reactivity performance upon coolant voiding, even for voids that occur in the core center, and has a transuranic (TRU) destruction rate that is comparable to the proposed accelerator transmutation of waste (ATW) facility. These studies suggest that a core can be designed to achieve a long life while maintaining safety and minimizing waste. In the area of material compatibility studies, an experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials has been designed and built at the INEEL. The INEEL forced-convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The corrosion cell is being used to test steel that is commercially available in the United States to temperatures above 650°C. Progress in plant engineering was made for two reactor concepts, one utilizing an indirect cycle with heat exchangers and the other utilizing a direct-contact steam cycle. The evaluation of the

  7. Electric system management through hydrogen production - A market driven approach in the French context

    International Nuclear Information System (INIS)

    Mansilla, C.; Dautremont, S.; Thais, F.; Louyrette, J.; Martin, J.; Albou, S.; Barbieri, G.; Collignon, N.; Bourasseau, C.; Salasc, B.; Valentin, S.

    2012-01-01

    Hydrogen is usually presented as a promising energy carrier that has a major role to play in low carbon transportation, through the use of fuel cells. However, such a development is not expected in the short term. In the meantime, hydrogen may also contribute to reduce carbon emissions in diverse sectors among which methanol production. Methanol can be produced by combining carbon dioxide and hydrogen, hence facilitating carbon dioxide emission mitigation while providing a beneficial tool to manage the electric system, if hydrogen is produced by alkaline electrolysis operated in a variable way driven by the spot and balancing electricity markets. Such a concept is promoted by the VItESSE project (Industrial and Energy value of CO 2 through Efficient use of CO 2 -free electricity - Electricity Network System Control and Electricity Storage). Through the proposed market driven approach, hydrogen production offers a possibility to help managing the electric system, together with an opportunity to reduce hydrogen production costs. (authors)

  8. A direct and at nanometer scale study of electrical charge distribution on membranes of alive cells

    Directory of Open Access Journals (Sweden)

    Marlière Christian

    2016-01-01

    Full Text Available In this paper is presented an innovative method to map in-vivo and at nanometer scale the electrical charge distribution on membranes of alive cells. It relies on a new atomic force microscopy (AFM mode based on an electro-mechanical coupling effect. Furthermore, an additional electrical signal detected by both the deflection of the AFM cantilever and simultaneous direct current measurements was detected at low scanning rates. It was attributed to the detection of the current stemming from ionic channels. It opens a new way to directly investigate in situ biological electrical surface processes involved in bacterial adhesion, biofilm formation, microbial fuel cells, etc.

  9. Structural characterization of proteoglycans produced by testicular peritubular cells and Sertoli cells

    International Nuclear Information System (INIS)

    Skinner, M.K.; Fritz, I.B.

    1985-01-01

    The structural characteristics of proteoglycans produced by seminiferous peritubular cells and by Sertoli cells are defined. Peritubular cells secrete two proteoglycans designated PC I and PC II. PC I is a high molecular mass protein containing chondroitin glycosaminoglycan (GAG) chains (maximum 70 kDa). PC II has a protein core of 45 kDa and also contains chondroitin GAG chains (maximum 70 kDa). Preliminary results imply that PC II may be a degraded or processed form of PC I. Sertoli cells secrete two different proteoglycans, designated SC I and SC II. SC I is a large protein containing both chondroitin (maximum 62 kDa) and heparin (maximum 15 kDa) GAG chains. Results obtained suggest that this novel proteoglycan contains both chondroitin and heparin GAG chains bound to the same core protein. SC II has a 50-kDa protein core and contains chondroitin (maximum 25 kDa) GAG chains. A proteoglycan obtained from extracts of Sertoli cells is described which contains heparin (maximum 48 kDa) GAG chains. In addition, Sertoli cells secrete a sulfoprotein, SC III, which is not a proteoglycan. The stimulation by follicle-stimulating hormone of the incorporation of [ 35 S]SO 2 ) -4 ) into moieties secreted by Sertoli cells is shown to represent an increased production or sulfation of SC III, and not an increased production or sulfation of proteoglycans. Results are discussed in relation to the possible functions of proteoglycans in the seminiferous tubule

  10. Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    The work presented in this paper examines the use of pure hydrogen fuelled high temperature polymer electrolyte membrane (HTPEM) fuel cell stacks in an electrical car, charging a Li-ion battery pack. The car is equipped with two branches of two series coupled 1 kW fuel cell stacks which...... are connected directly parallel to the battery pack during operation. This enables efficient charging of the batteries for increased driving range. With no power electronics used, the fuel cell stacks follow the battery pack voltage, and charge the batteries passively. This saves the electrical and economical...... losses related to these components and their added system complexity. The new car battery pack consists of 23 Li-ion battery cells and the charging and discharging are monitored by a battery management system (BMS) which ensures safe operating conditions for the batteries. The direct connection...

  11. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells

    Science.gov (United States)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei

    2013-06-01

    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  12. Gene probes to detect cross-culture contamination in hormone producing cell lines

    DEFF Research Database (Denmark)

    Matsuba, I; Lernmark, A; Madsen, Ole Dragsbæk

    1988-01-01

    hamster insulin gene. Karyotyping confirmed the absence of human chromosomes in the Clone-16 cells while sizes, centromere indices, and banding patterns were identical to Syrian hamster fibroblasts. We conclude that the insulin-producing Clone-16 cells are of Syrian hamster origin and demonstrate...

  13. Autophagy is essential for the differentiation of porcine PSCs into insulin-producing cells.

    Science.gov (United States)

    Ren, Lipeng; Yang, Hong; Cui, Yanhua; Xu, Shuanshuan; Sun, Fen; Tian, Na; Hua, Jinlian; Peng, Sha

    2017-07-01

    Porcine pancreatic stem cells (PSCs) are seed cells with potential use for diabetes treatment. Stem cell differentiation requires strict control of protein turnover and lysosomal digestion of organelles. Autophagy is a highly conserved process that controls the turnover of organelles and proteins within cells and contributes to the balance of cellular components. However, whether autophagy plays roles in PSC differentiation remains unknown. In this study, we successfully induced porcine PSCs into insulin-producing cells and found that autophagy was activated during the second induction stage. Inhibition of autophagy in the second stage resulted in reduced differentiational efficiency and impaired glucose-stimulated insulin secretion. Moreover, the expression of active β-catenin increased while autophagy was activated but was suppressed when autophagy was inhibited. Therefore, autophagy is essential to the formation of insulin-producing cells, and the effects of autophagy on differentiation may be regulated by canonical Wnt signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells.

    Science.gov (United States)

    Hakim, Farzana; Kaitsuka, Taku; Raeed, Jamiruddin Mohd; Wei, Fan-Yan; Shiraki, Nobuaki; Akagi, Tadayuki; Yokota, Takashi; Kume, Shoen; Tomizawa, Kazuhito

    2014-04-04

    Pluripotent stem cells have potential applications in regenerative medicine for diabetes. Differentiation of stem cells into insulin-producing cells has been achieved using various protocols. However, both the efficiency of the method and potency of differentiated cells are insufficient. Oxygen tension, the partial pressure of oxygen, has been shown to regulate the embryonic development of several organs, including pancreatic β-cells. In this study, we tried to establish an effective method for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells by culturing under high oxygen (O2) conditions. Treatment with a high O2 condition in the early stage of differentiation increased insulin-positive cells at the terminus of differentiation. We found that a high O2 condition repressed Notch-dependent gene Hes1 expression and increased Ngn3 expression at the stage of pancreatic progenitors. This effect was caused by inhibition of hypoxia-inducible factor-1α protein level. Moreover, a high O2 condition activated Wnt signaling. Optimal stage-specific treatment with a high O2 condition resulted in a significant increase in insulin production in both mouse embryonic stem cells and human iPSCs and yielded populations containing up to 10% C-peptide-positive cells in human iPSCs. These results suggest that culturing in a high O2 condition at a specific stage is useful for the efficient generation of insulin-producing cells.

  15. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Kim Yeon-Gu

    2012-05-01

    Full Text Available Abstract Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES was introduced for using two green fluorescence protein (GFP fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.

  16. Antigen-specific human NKT cells from tuberculosis patients produce IL-21 to help B cells for the production of immunoglobulins.

    Science.gov (United States)

    Wu, Changyou; Li, Zitao; Fu, Xiaoying; Yu, Sifei; Lao, Suihua; Yang, Binyan

    2015-10-06

    Natural killer T (NKT) cells from mouse and human play an important role in the immune responses against Mycobacterium tuberculosis. However, the function of CD3(+)TCRvβ11(+) NKT cells at the local site of M. tuberculosis infection remains poorly defined. In the present study, we found that after stimulation with M. tuberculosis antigens, NKT cells isolated from tuberculosis (TB) pleural fluid mononuclear cells (PFMCs) produced IL-21 and other cytokines including IFN-γ, TNF-α, IL-2 and IL-17. IL-21-expressing NKT cells in PFMCs displayed effector memory phenotype, expressing CD45RO(high)CD62L(low)CCR7(low). Moreover, NKT cells expressed high levels of CXCR5 and all of IL-21-expressing NKT cells co-expressed CXCR5. The frequency of BCL-6-expression was higher in IL-21-expressing but not in non-IL-21-expressing CD3(+)TCRvβ11(+) NKT cells. Sorted CD3(+)TCRvβ11(+) NKT cells from PFMCs produced IFN-γ and IL-21 after stimulation, which expressed CD40L. Importantly, CD3(+)TCRvβ11(+) NKT cells provided help to B cells for the production of IgG and IgA. Taken together, our data demonstrate that CD3(+)TCRvβ11(+) NKT cells from a local site of M. tuberculosis infection produce IL-21, express CXCR5 and CD40L, help B cells to secrete IgG and IgA, and may participate in local immune responses against M. tuberculosis infection.

  17. A Practical Circuit-based Model for State of Health Estimation of Li-ion Battery Cells in Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Long

    2011-08-23

    In this thesis the development of the state of health of Li-ion battery cells under possible real-life operating conditions in electric cars has been characterised. Furthermore, a practical circuit-based model for Li-ion cells has been developed that is capable of modelling the cell voltage behaviour under various operating conditions. The Li-ion cell model can be implemented in simulation programs and be directly connected to a model of the rest of the electronic system in electric vehicles. Most existing battery models are impractical for electric vehicle system designers and require extensive background knowledge of electrochemistry to be implemented. Furthermore, many models do not take the effect of regenerative braking into account and are obtained from testing fully charged cells. However, in real-life applications electric vehicles are not always fully charged and utilise regenerative braking to save energy. To obtain a practical circuit model based on real operating conditions and to model the state of health of electric vehicle cells, numerous 18650 size LiFePO4 cells have been tested under possible operating conditions. Capacity fading was chosen as the state of health parameter, and the capacity fading of different cells was compared with the charge processed instead of cycles. Tests have shown that the capacity fading rate is dependent on temperature, charging C-rate, state of charge and depth of discharge. The obtained circuit model is capable of simulating the voltage behaviour under various temperatures and C-rates with a maximum error of 14mV. However, modelling the effect of different temperatures and C-rates increases the complexity of the model. The model is easily adjustable and the choice is given to the electric vehicle system designer to decide which operating conditions to take into account. By combining the test results for the capacity fading and the proposed circuit model, recommendations to optimise the battery lifetime are proposed.

  18. The fuel cell yesterday, today and tomorrow

    Directory of Open Access Journals (Sweden)

    Stanojević Dušan D.

    2005-01-01

    Full Text Available The fuel cell has some characteristics of a battery carrying out direct chemical conversion into electric energy. In relation to classical systems used for chemical energy conversion into electric power, through heat energy and mechanical operation, the fuel cell has considerably higher efficiency. The thermo-mechanical conversion of chemical into electric energy, in thermal power plants is carried out with 30% efficiency, while the efficiency of chemical conversion into electric energy, using a fuel cell is up to 60%. With the exception of the space programme, the commercial usage of the fuel cell did not exist up to 1990, when the most developed countries started extensive financial support of this source of energy. By 1995, more than a hundred fuel cells were installed in the process of electricity generation in Europe, USA and Japan, while nowadays there are thousands of installations, of efficient energetic capacity. Because of its superior characteristics, the fuel cell compared to other commercial electric energy producers, fulfills the most important condition - it does not pollute or if it does, the level is minimal. With such characteristics the fuel cell can help solve the growing conflict between the further economic development of mankind and the preservation of a clean and healthy natural environment.

  19. The Effects of Nonuniform Illumination on the Electrical Performance of a Single Conventional Photovoltaic Cell

    Directory of Open Access Journals (Sweden)

    Damasen Ikwaba Paul

    2015-01-01

    Full Text Available Photovoltaic (PV concentrators are a promising approach for lowering PV electricity costs in the near future. However, most of the concentrators that are currently used for PV applications yield nonuniform flux profiles on the surface of a PV module which in turn reduces its electrical performance if the cells are serially connected. One way of overcoming this effect is the use of PV modules with isolated cells so that each cell generates current that is proportional to the energy flux absorbed. However, there are some cases where nonuniform illumination also exists in a single cell in an isolated cells PV module. This paper systematically studied the effect of nonuniform illumination on various cell performance parameters of a single monocrystalline standard PV cell at low and medium energy concentration ratios. Furthermore, the effect of orientation, size, and geometrical shapes of nonuniform illumination was also investigated. It was found that the effect of nonuniform illumination on various PV cell performance parameters of a single standard PV cell becomes noticeable at medium energy flux concentration whilst the location, size, and geometrical shape of nonuniform illumination have no effect on the performance parameters of the cell.

  20. Device for monitoring cell voltage

    Science.gov (United States)

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  1. Intense picosecond pulsed electric fields induce apoptosis through a mitochondrial-mediated pathway in HeLa cells

    Science.gov (United States)

    HUA, YUAN-YUAN; WANG, XIAO-SHU; ZHANG, YU; YAO, CHEN-GUO; ZHANG, XI-MING; XIONG, ZHENG-AI

    2012-01-01

    The application of pulsed electric fields (PEF) is emerging as a new technique for tumor therapy. Picosecond pulsed electric fields (psPEF) can be transferred to target deep tissue non-invasively and precisely, but the research of the biological effects of psPEF on cells is limited. Electric theory predicts that intense psPEF will target mitochondria and lead to changes in transmembrane potential, therefore, it is hypothesized that it can induce mitochondrial-mediated apoptosis. HeLa cells were exposed to psPEF in this study to investigate this hypothesis. MTT assay demonstrated that intense psPEF significantly inhibited the proliferation of HeLa cells in a dose-dependent manner. Typical characteristics of apoptosis in HeLa cells were observed, using transmission electron microscopy. Loss of mitochondrial transmembrane potential was explored using laser scanning confocal microscopy with Rhodamine-123 (Rh123) staining. Furthermore, the mitochondrial apoptotic events were also confirmed by western blot analysis for the release of cytochrome C and apoptosis-inducing factor from mitochondria into the cytosol. In addition, activation of caspase-3, caspase-9, upregulation of Bax, p53 and downregulation of Bcl-2 were observed in HeLa cells also indicating apoptosis. Taken together, these results demonstrate that intense psPEF induce cell apoptosis through a mitochondrial-mediated pathway. PMID:22307872

  2. Regulation of allergic airway inflammation by adoptive transfer of CD4+ T cells preferentially producing IL-10.

    Science.gov (United States)

    Matsuda, Masaya; Doi, Kana; Tsutsumi, Tatsuya; Fujii, Shinya; Kishima, Maki; Nishimura, Kazuma; Kuroda, Ikue; Tanahashi, Yu; Yuasa, Rino; Kinjo, Toshihiko; Kuramoto, Nobuyuki; Mizutani, Nobuaki; Nabe, Takeshi

    2017-10-05

    Anti-inflammatory pharmacotherapy for asthma has mainly depended on the inhalation of glucocorticoids, which non-specifically suppress immune responses. If the anti-inflammatory cytokine interleukin (IL)-10 can be induced by a specific antigen, asthmatic airway inflammation could be suppressed when individuals are exposed to the antigen. The purpose of this study was to develop cellular immunotherapeutics for atopic diseases using IL-10-producing CD4 + T cells. Spleen cells isolated from ovalbumin (OVA)-sensitized mice were cultured with the antigen, OVA and growth factors, IL-21, IL-27 and TGF-β for 7 days. After the 7-day culture, the CD4 + T cells were purified using a murine CD4 magnetic beads system. When the induced CD4 + T cells were stimulated by OVA in the presence of antigen-presenting cells, IL-10 was preferentially produced in vitro. When CD4 + T cells were adoptively transferred to OVA-sensitized mice followed by intratracheal OVA challenges, IL-10 was preferentially produced in the serum and bronchoalveolar lavage fluid in vivo. IL-10 production coincided with the inhibition of eosinophilic airway inflammation and epithelial mucus plugging. Most of the IL-10-producing CD4 + T cells were negative for Foxp3 and GATA-3, transcription factors of naturally occurring regulatory T cells and Th2 cells, respectively, but double positive for LAG-3 and CD49b, surface markers of inducible regulatory T cells, Tr1 cells. Collectively, most of the induced IL-10-producing CD4 + T cells could be Tr1 cells, which respond to the antigen to produce IL-10, and effectively suppressed allergic airway inflammation. The induced Tr1 cells may be useful for antigen-specific cellular immunotherapy for atopic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Graphene-Based Flexible Micrometer-Sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.; Qaisi, Ramy M.; Hussain, Muhammad Mustafa

    2013-01-01

    Microbial fuel cells harvest electrical energy produced by bacteria during the natural decomposition of organic matter. We report a micrometer-sized microbial fuel cell that is able to generate nanowatt-scale power from microliters of liquids

  4. Electrically Reversible Redox-Switchable Polydopamine Films for Regulating Cell Behavior

    International Nuclear Information System (INIS)

    Tan, Guoxin; Liu, Yan; Wu, Yuxuan; Ouyang, Kongyou; Zhou, Lei; Yu, Peng; Liao, Jinwen; Ning, Chengyun

    2017-01-01

    Highlights: • The phenolic/quinone groups on polydopamine can redox-switchable reversible under electrical stimulation. • The quinone groups on PDA (oxidized PDA) enhanced cell spreading and proliferation. • The phenolic groups on PDA (reduced PDA) induced cell differentiation. - Abstract: Switchable surfaces that respond to external stimuli are important for regulating cell behavior. The results herein suggest that the redox process of polydopamine (PDA) is a switching reaction between oxidized polydopamine and reduced polydopamine, involving an interconversion of coupled two-proton (2H + ) and two-electron (2e − ) processes. The redox-switchable reversible surface potential arising from the potential-tunable redox reaction of the phenolic and quinone groups on PDA on titanium induced both cell adhesion and spreading. In vitro experiments demonstrated that the quinone groups on PDA greatly enhanced pre-osteoblasts MC3T3-E1 cell spreading and proliferation. Phenolic groups enhanced the induction of differentiation. The proposed methodology may allow further investigation of switchable surfaces for biological and medical applications.

  5. Experimental investigation of solid oxide fuel cells using biomass gasification producer gases

    Energy Technology Data Exchange (ETDEWEB)

    Norheim, Arnstein

    2005-07-01

    The main objective of this thesis is theoretical and experimental investigations related to utilisation of biomass gasification producer gases as fuel for Solid Oxide Fuel Cells (SOFC). Initial fundamental steps towards a future system of combined heat and power production based on biomass gasification and SOFC are performed and include: 1) Theoretical modeling of the composition of biomass gasification producer gases. 2) Experimental investigation of SOFC performance using biomass gasification producer gas as fuel. 3) Experimental investigation of SOFC performance using biomass gasification producer gas containing high sulphur concentration. The modeling of the composition of gasifier producer gas was performed using the program FactSage. The main objective was to investigate the amount and speciation of trace species in the producer gases as several parameters were varied. Thus, the composition at thermodynamic equilibrium of sulphur, chlorine, potassium, sodium and compounds of these were established. This was done for varying content of the trace species in the biomass material at different temperatures and fuel utilisation i.e. varying oxygen content in the producer gas. The temperature interval investigated was in the range of normal SOFC operation. It was found that sulphur is expected to be found as H2S irrespective of temperature and amount of sulphur. Only at very high fuel utilisation some S02 is formed. Important potassium containing compounds in the gas are gaseous KOH and K. When chlorine is present, the amount of KOH and K will decrease due to the formation of KCI. The level of sodium investigated here was low, but some Na, NaOH and NaCl is expected to be formed. Below a certain temperature, condensation of alkali rich carbonates may occur. The temperature at which condensation begins is mainly depending on the amount of potassium present; the condensation temperature increases with increasing potassium content. In the first experimental work

  6. ELECTRIC POTENIAL CELLS AT THE DIVERTED TOKAMAK SEPARATRIX

    International Nuclear Information System (INIS)

    SCHAFFER, M.J.; PORTER, G.D.; BOEDO, J.A.; BRAY, B.D.; HSIEH, C.L.; MOYER, R.A.; ROGNLIEN, T.D.; STANGEBY, P.C.; WATKINS, J.G.

    2000-01-01

    OAK-B135 Two-dimensional measurements by probes and Thomson scattering reveal unanticipated electric potential and electron pressure (p e ) maxima near the divertor X-point in L-mode plasmas in the DIII-D tokamak. The potential hill (∼ 50 V) drives E x B circulation (potential cell) of particles, energy and toroidal momentum around the X-point and in and out across the magnetic separatrix. Modeling by the UEDGE two-dimensional edge transport code with plasma drifts shows similar X-point potential and pressure hills. The code predicts additional drift-driven nonuniformity poloidally around the separatrix. Potential cells in UEDGE arise from parallel (to B) viscous stress acting on the Pfirsch-Schlueter ion return flow of the (del)B drift. These experimental and theoretical results demonstrate that the boundary layer just inside the separatrix of low power tokamak plasmas can be far from poloidal uniformity. They speculate that separatrix potential cells might be a major feature of L-mode edge transport and their suppression an important feature of H-mode

  7. Electric potential cells at the diverted tokamak separatrix

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, Michael J.; Bray, Bruce D.; Hsieh, Chung-Lih [General Atomics, San Diego, California (United States); Porter, Gary D.; Rognlien, Thomas D. [Lawrence Livermore National Laboratory, Livermore, California (United States); Boedo, Jose A.; Moyer, Richard A. [University of California, San Diego, California (United States); Stangeby, Peter C. [Univ. of Toronto, Toronto (Canada); Watkins, Jonathan G. [Sandia National Laboratories, Albuquerque, New Mexico (United States)

    2001-07-01

    Two-dimensional measurements by probes and Thomson scattering reveal unanticipated electric potential and electron pressure (p{sub e}) maxima near the divertor X-point in L-mode plasmas in the DIII-D tokamak. The potential hill ({approx}100 V) drives ExB circulation ('potential cell') of particles, energy and toroidal momentum around the X-point and in and out across the magnetic separatrix. Modeling by the UEDGE two-dimensional edge transport code with plasma drifts shows similar X-point potential and pressure hills. The code predicts additional drift-driven nonuniformity poloidally around the separatrix. Potential cells in UEDGE arises from parallel (to B) viscous stress acting on the Pfirsch-Schlueter ion return flow of the {nabla}B drift. These experimental and theoretical results demonstrate that the boundary layer just inside the separatrix of low power tokamak plasmas can be far from poloidal uniformity. We speculate that separatrix potential cells might be a major feature of L-mode edge transport and their suppression an important feature of H-mode. (author)

  8. Electric potential cells at the diverted tokamak separatrix

    International Nuclear Information System (INIS)

    Schaffer, Michael J.; Bray, Bruce D.; Hsieh, Chung-Lih; Porter, Gary D.; Rognlien, Thomas D.; Boedo, Jose A.; Moyer, Richard A.; Stangeby, Peter C.; Watkins, Jonathan G.

    2001-01-01

    Two-dimensional measurements by probes and Thomson scattering reveal unanticipated electric potential and electron pressure (p e ) maxima near the divertor X-point in L-mode plasmas in the DIII-D tokamak. The potential hill (∼100 V) drives ExB circulation ('potential cell') of particles, energy and toroidal momentum around the X-point and in and out across the magnetic separatrix. Modeling by the UEDGE two-dimensional edge transport code with plasma drifts shows similar X-point potential and pressure hills. The code predicts additional drift-driven nonuniformity poloidally around the separatrix. Potential cells in UEDGE arises from parallel (to B) viscous stress acting on the Pfirsch-Schlueter ion return flow of the ∇B drift. These experimental and theoretical results demonstrate that the boundary layer just inside the separatrix of low power tokamak plasmas can be far from poloidal uniformity. We speculate that separatrix potential cells might be a major feature of L-mode edge transport and their suppression an important feature of H-mode. (author)

  9. Differentiation of Human Mesenchymal Stem Cells into Insulin Producing Cells by Using A Lentiviral Vector Carrying PDX1.

    Science.gov (United States)

    Allahverdi, Amir; Abroun, Saied; Jafarian, Arefeh; Soleimani, Masoud; Taghikhani, Mohammad; Eskandari, Fatemeh

    2015-01-01

    Type I diabetes is an immunologically-mediated devastation of insulin producing cells (IPCs) in the pancreatic islet. Stem cells that produce β-cells are a new promising tool. Adult stem cells such as mesenchymal stem cells (MSCs) are self renewing multi potent cells showing capabilities to differentiate into ectodermal, mesodermal and endodermal tissues. Pancreatic and duodenal homeobox factor 1 (PDX1) is a master regulator gene required for embryonic development of the pancreas and is crucial for normal pancreatic islets activities in adults. We induced the over-expression of the PDX1 gene in human bone marrow MSCs (BM-MSCs) by Lenti-PDX1 in order to generate IPCs. Next, we examine the ability of the cells by measuring insulin/c-peptide production and INSULIN and PDX1 gene expressions. After transduction, MSCs changed their morphology at day 5 and gradually differentiated into IPCs. INSULIN and PDX1 expressions were confirmed by real time polymerase chain reaction (RT-PCR) and immunostaining. IPC secreted insulin and C-peptide in the media that contained different glucose concentrations. MSCs differentiated into IPCs by genetic manipulation. Our result showed that lentiviral vectors could deliver PDX1 gene to MSCs and induce pancreatic differentiation.

  10. Can Lucifer Yellow Indicate Correct Permeability of Biological Cell Membrane under An Electric and Magnetic Field?

    OpenAIRE

    Tahereh Pourmirjafari Firoozabadi; Zeinab Shankayi; Azam Izadi; Seyed Mohammad Pourmirjafari Firoozabadi

    2015-01-01

    The effect of external magnetic and electric fields, in the range of electroporation and magnetoporation, on Lucifer Yellow (LY) fluorescence in the absence of cells is studied. Electric-field-induced quenching and magnetic field-induced increase are observed for fluorescence intensity of LY. Regard to the fact that the variation of field-induced fluorescence, even in the absence of cells, can be observed, the application of LY, as a marker, is debatable in electroporation and magnetoporation...

  11. Cost modelling of electricity-producing hot dry rock (HDR) geothermal systems in the United Kingdom

    International Nuclear Information System (INIS)

    Doherty, P.; Harrison, R.

    1995-01-01

    A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. The geometrical arrangement and the shape of the reservoir constitute major uncertainties in HDR systems. Their effect on temperature has a major influence on system performance, and therefore a range of theoretically possible geometries have been studied and the importance of geometrical effects on HDR electricity costs assessed. The most cost effective HDR arrangement in terms of optimized volumes and flow rates has been investigated for a world-wide range of thermal settings. The main conclusions from this study suggests that for HDR electricity to be economic, thermal gradients of 55 o C/km and above, well depths of 5 km or less, and production fluid temperatures of 210 o C and above are required. (UK)

  12. Residential Fuel Cell Demonstration Handbook: National Rural Electric Cooperative Association Cooperative Research Network

    Energy Technology Data Exchange (ETDEWEB)

    Torrero, E.; McClelland, R.

    2002-07-01

    This report is a guide for rural electric cooperatives engaged in field testing of equipment and in assessing related application and market issues. Dispersed generation and its companion fuel cell technology have attracted increased interest by rural electric cooperatives and their customers. In addition, fuel cells are a particularly interesting source because their power quality, efficiency, and environmental benefits have now been coupled with major manufacturer development efforts. The overall effort is structured to measure the performance, durability, reliability, and maintainability of these systems, to identify promising types of applications and modes of operation, and to assess the related prospect for future use. In addition, technical successes and shortcomings will be identified by demonstration participants and manufacturers using real-world experience garnered under typical operating environments.

  13. An experimental and theoretical approach to the study of the photoacoustic signal produced by cancer cells

    Directory of Open Access Journals (Sweden)

    Rafael Pérez Solano

    2012-03-01

    Full Text Available The distinctive spectral absorption characteristics of cancer cells make photoacoustic techniques useful for detection in vitro and in vivo. Here we report on our evaluation of the photoacoustic signal produced by a series of monolayers of different cell lines in vitro. Only the melanoma cell line HS936 produced a detectable photoacoustic signal in which amplitude was dependent on the number of cells. This finding appears to be related to the amount of melanin available in these cells. Other cell lines (i.e. HL60, SK-Mel-1, T47D, Hela, HT29 and PC12 exhibited values similar to a precursor of melanin (tyrosinase, but failed to produce sufficient melanin to generate a photoacoustic signal that could be distinguished from background noise. To better understand this phenomenon, we determined a formula for the time-domain photoacoustic wave equation for a monolayer of cells in a non-viscous fluid on the thermoelastic regime. The theoretical results showed that the amplitude and profile of the photoacoustic signal generated by a cell monolayer depended upon the number and distribution of the cells and the location of the point of detection. These findings help to provide a better understanding of the factors involved in the generation of a photoacoustic signal produced by different cells in vitro and in vivo.

  14. Cost analysis of electrical power from an ethanol reformer and the fuel cell in the development of productive activities in the community Pico do Amor, MT, Brazil

    International Nuclear Information System (INIS)

    Lopes, Davi Gabriel; Teixeira, Andre Frazao; Lopes, Daniel Gabriel; Cavaliero, Carla Kazue Nakao

    2010-01-01

    This work has the objective to analyze the impact of the cost of from an ethane reformer / fuel cell in the family income considering the development of two productive activities selected by the community itself: the production and marketing of cassava flour and 'rapadura', a typical brazilian candy. The community energy demand was analyzed to achieve the results; estimated the energy cost from the implemented system and the money from the selling of the cassava flour and 'rapadura' produced with this electricity; the study of sensibility of the ethanol price in the electrical energy cost was done too, and the cassava flour and 'rapadura' in the family funds. From the results, it was verified that the electrical energy cost has a 16,4% impact in the family gross income and a net value around R$ 260,85/family, indicating that the community will have enough funds to pay for the energy and also will rise the amount of money for each family. Besides, the comparative analyze of the cost of the electricity from the ethanol/fuel cell reformer and photovoltaic systems shows that, considering only the maintenance and operation costs, the first one should be more attractive than the second one. (author)

  15. Photovoltaic cell array

    Science.gov (United States)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  16. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment.

    Science.gov (United States)

    Kojima, Ryosuke; Bojar, Daniel; Rizzi, Giorgio; Hamri, Ghislaine Charpin-El; El-Baba, Marie Daoud; Saxena, Pratik; Ausländer, Simon; Tan, Kelly R; Fussenegger, Martin

    2018-04-03

    Exosomes are cell-derived nanovesicles (50-150 nm), which mediate intercellular communication, and are candidate therapeutic agents. However, inefficiency of exosomal message transfer, such as mRNA, and lack of methods to create designer exosomes have hampered their development into therapeutic interventions. Here, we report a set of EXOsomal transfer into cells (EXOtic) devices that enable efficient, customizable production of designer exosomes in engineered mammalian cells. These genetically encoded devices in exosome producer cells enhance exosome production, specific mRNA packaging, and delivery of the mRNA into the cytosol of target cells, enabling efficient cell-to-cell communication without the need to concentrate exosomes. Further, engineered producer cells implanted in living mice could consistently deliver cargo mRNA to the brain. Therapeutic catalase mRNA delivery by designer exosomes attenuated neurotoxicity and neuroinflammation in in vitro and in vivo models of Parkinson's disease, indicating the potential usefulness of the EXOtic devices for RNA delivery-based therapeutic applications.

  17. Autoreactive T cells in MRL/Mpr-lpr/lpr mice. Characterization of the lymphokines produced and analysis of antigen-presenting cells required

    International Nuclear Information System (INIS)

    Weston, K.M.; Ju, S.T.; Lu, C.Y.; Sy, M.S.

    1988-01-01

    Lymph node cells from 4-wk-old MRL/Mp-lpr/lpr mice, but not from MRL/Mp-+/+ mice, when cultured in vitro for 5 to 7 days, will spontaneously proliferate and produce IL-2. We examined the expression of several cell surface Ag on lymph node cells from MRL/Mp-lpr/lpr mice before and after in vitro culture. There is an increase in the expression of Thy-1, L3T4, IL-2R, T cell activating protein, T cell receptor, and T3 complex on the surface of cultured cells. Cultured cells produced IL-3, IFN-gamma, and small but detectable amounts of IL-1 in addition to IL-2. Gamma irradiation of APC from young MRL/Mp-lpr/lpr mice or treatment of APC with a mAb (J11D) and C, completely abrogated their stimulatory capacity. These experiments suggest that B cells are the predominant APC responsible in the activation of autoreactive T cells in MRL/Mp-lpr/lpr mice. Lymph node cells from C57BL/6-lpr/lpr or C3H-lpr/lpr mice were unable to spontaneously proliferate or produce IL-2. Lymph node cells from (MRL/Mp-lpr/lpr x C57BL/6-lpr/lpr) F1 mice or (C3H-lpr/lpr x MRL/Mp-lpr/lpr) F1 mice did proliferate and produced IL-2 after in vitro culture. Using T cells from these F1 animals and APC from each parental haplotype, we found that APC from MRL/Mp-lpr/lpr mice induced more proliferation and greater amounts of IL-2, when compared to APC from F1 animals. APC from C57BL6-lpr/lpr mice or C3H-lpr/lpr were unable to induce spontaneous proliferation and IL-2 production. Therefore, B cells from MRL/Mp-lpr/lpr mice appear to possess unique features that enable them to activate autoreactive T cells more effectively than B cells from other mice bearing the lpr/lpr gene

  18. ELECTRICITY GENERATION FROM SWINE WASTEWATER USING MICROBIAL FUEL CELL

    Directory of Open Access Journals (Sweden)

    Chimezie Jason Ogugbue

    2015-11-01

    Full Text Available Electricity generation from swine wastewater using microbial fuel cell (MFC was investigated. Swine wastewater was collected into dual-chambered (aerobic and anaerobic fuel cell. The maximum power output using copper and carbon electrodes were 250.54 and 52.33 µW, while 10.0 and 5.0 cm salt bridge length between the cathode and anode were 279.50 and 355.26 µW, respectively. Potassium permanganate and ordinal water gave a maximum power output of 1287.8 and 13 9.18 µW. MFCs utilize microbial communities to degrade organic materials found within wastewater and converted stored chemical energy to electrical energy in a single step. The initial bacterial and fungal counts were 7.4×106 and 1.1×103 CFU ml-1. Bacterial counts steadily increased with time to 1.40×107 CFU ml-1 while fungal count declined to 4.4×106 CFU ml-1 after day 60. The declined in microbial counts may be attributed to the time necessary for acclimatization of microbes to the anode. The genera identified were Bacillus, Citrobacter, Pseudomonas, Lactobacillus, Escherichia coli, Aspergillus and Rhizopus. These microbes acted as primary and secondary utilizers, utilizing carbon and other organics of the wastewater. Chemical parameters indicated that the biochemical oxygen demand ranged from 91.4–23.2 mg/L, giving 75% while the chemical oxygen demand ranged from 243.1–235.2 mg/L, representing 3.3%. Although, the metabolic activities of microbes were responsible for the observed degradation, leading to electricity, the overall power output depended on the distance between the anode and cathode compartment, types of electrode materials and mediators and oxygen reaction at the cathode.

  19. Fuel cells and electricity companies - new risk management opportunities

    International Nuclear Information System (INIS)

    Whale, M.

    2004-01-01

    'Full text:' Deregulation, distributed generation, combined heat and power, renewables, fuel cells, hydrogen. Power companies are facing a rapidly evolving environment that is testing their ability to effectively deploy capital and earn profits. While recent deregulation trends have shifted the structure of power markets into separating generators from distributors, the improving economic value proposition offered by smaller scale distributed generation technologies - such as fuel cells - would seem to be a conflicting development. In this complex and changing environment, decisions based on the economic reality of the capital markets are likely to prevail. By examining the opportunity to enhance risk management offered by stationary fuel cells, particularly in CHP applications, we provide a context for the issues being discussed in today's sessions focusing on power companies and electric utilities. Our risk management perspective suggests a pathway for implementing fuel cells in combined heat and power applications that large power generators can introduce in increasingly smaller sizes. With capital costs of fuel cells high and risk tolerance of power companies low, the challenge for smaller technology developers will be to reduce the apparently long time horizon that persists for substantial deployment. (author)

  20. Anti-tumor therapy with macroencapsulated endostatin producer cells

    Directory of Open Access Journals (Sweden)

    Balduino Keli N

    2010-03-01

    Full Text Available Abstract Background Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Results Mice were inoculated subcutaneously with melanoma (B16F10 cells or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. Conclusions This study indicates that

  1. Anti-tumor therapy with macroencapsulated endostatin producer cells.

    Science.gov (United States)

    Rodrigues, Danielle B; Chammas, Roger; Malavasi, Natália V; da Costa, Patrícia L N; Chura-Chambi, Rosa M; Balduino, Keli N; Morganti, Ligia

    2010-03-02

    Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. This study indicates that immunoisolation devices containing endostatin

  2. Electric Signals Regulate the Directional Migration of Oligodendrocyte Progenitor Cells (OPCs via β1 Integrin

    Directory of Open Access Journals (Sweden)

    Bangfu Zhu

    2016-11-01

    Full Text Available The guided migration of neural cells is essential for repair in the central nervous system (CNS. Oligodendrocyte progenitor cells (OPCs will normally migrate towards an injury site to re-sheath demyelinated axons; however the mechanisms underlying this process are not well understood. Endogenous electric fields (EFs are known to influence cell migration in vivo, and have been utilised in this study to direct the migration of OPCs isolated from neonatal Sprague-Dawley rats. The OPCs were exposed to physiological levels of electrical stimulation, and displayed a marked electrotactic response that was dependent on β1 integrin, one of the key subunits of integrin receptors. We also observed that F-actin, an important component of the cytoskeleton, was re-distributed towards the leading edge of the migrating cells, and that this asymmetric rearrangement was associated with β1 integrin function.

  3. Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices.

    Science.gov (United States)

    Song, Kwangsun; Han, Jung Hyun; Yang, Hyung Chae; Nam, Kwang Il; Lee, Jongho

    2017-06-15

    Medical electronic implants can significantly improve people's health and quality of life. These implants are typically powered by batteries, which usually have a finite lifetime and therefore must be replaced periodically using surgical procedures. Recently, subdermal solar cells that can generate electricity by absorbing light transmitted through skin have been proposed as a sustainable electricity source to power medical electronic implants in bodies. However, the results to date have been obtained with animal models. To apply the technology to human beings, electrical performance should be characterized using human skin covering the subdermal solar cells. In this paper, we present electrical performance results (up to 9.05mW/cm 2 ) of the implantable solar cell array under 59 human skin samples isolated from 10 cadavers. The results indicate that the power densities depend on the thickness and tone of the human skin, e.g., higher power was generated under thinner and brighter skin. The generated power density is high enough to operate currently available medical electronic implants such as pacemakers that require tens of microwatt. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Evidence for paracrine/autocrine regulation of GLP-1-producing cells

    DEFF Research Database (Denmark)

    Kappe, Camilla; Zhang, Qimin; Holst, Jens Juul

    2013-01-01

    Glucagon-like peptide-1 (GLP-1), secreted from gut L cells upon nutrient intake, forms the basis for novel drugs against type 2 diabetes (T2D). Secretion of GLP-1 has been suggested to be impaired in T2D and in conditions associated with hyperlipidemia and insulin resistance. Further, recent...... studies support lipotoxicity of GLP-1-producing cells in vitro. However, little is known about the regulation of L-cell viability/function, the effects of insulin signaling, or the potential effects of stable GLP-1 analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors. We determined effects of insulin...... as well as possible autocrine action of GLP-1 on viability/apoptosis of GLP-1-secreting cells in the presence/absence of palmitate, while also assessing direct effects on function. The studies were performed using the GLP-1-secreting cell line GLUTag, and palmitate was used to simulate hyperlipidemia. Our...

  5. Effects of electrical stimulation on cell proliferation and apoptosis.

    Science.gov (United States)

    Love, Maria R; Palee, Siripong; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-03-01

    The application of exogenous electrical stimulation (ES) to cells in order to manipulate cell apoptosis and proliferation has been widely investigated as a possible method of treatment in a number of diseases. Alteration of the transmembrane potential of cells via ES can affect various intracellular signaling pathways which are involved in the regulation of cellular function. Controversially, several types of ES have proved to be effective in both inhibiting or inducing apoptosis, as well as increasing proliferation. However, the mechanisms through which ES achieves this remain fairly unclear. The aim of this review was to comprehensively summarize current findings from in vitro and in vivo studies on the effects of different types of ES on cell apoptosis and proliferation, highlighting the possible mechanisms through which ES induced these effects and define the optimum parameters at which ES can be used. Through this we hope to provide a greater insight into how future studies can most effectively use ES at the clinical trial stage. © 2017 Wiley Periodicals, Inc.

  6. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells.

    Directory of Open Access Journals (Sweden)

    Keun-A Chang

    2011-04-01

    Full Text Available The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control--however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs significantly increased the proliferation of fetal neural stem cells (NSCs. Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.

  7. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Morotomi-Yano, Keiko; Akiyama, Hidenori [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Yano, Ken-ichi, E-mail: yanoken@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555 (Japan)

    2013-08-30

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.

  8. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    International Nuclear Information System (INIS)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-01-01

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs

  9. Two modes of cell death caused by exposure to nanosecond pulsed electric field.

    Directory of Open Access Journals (Sweden)

    Olga N Pakhomova

    Full Text Available High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF, are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity ("nanoelectroporation", leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1-2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6-24 hr post nsPEF. These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.

  10. The Integration of Gasification Systems with Gas Engine to Produce Electrical Energy from Biomass

    Science.gov (United States)

    Siregar, K.; Alamsyah, R.; Ichwana; Sholihati; Tou, S. B.; Siregar, N. C.

    2018-05-01

    The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis, and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactor were 900 mm and 1000 mm respectively. The method used here were the design the Detailed Engineering Design (DED), assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 hours with performance engine of 84% and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kWh-electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2eq/MJ. Electrical production cost for Biomass Power Generation is about Rp.1.500,/kWh which is cheaper than Solar Power Generation which is about of Rp. 3.300,-/kWh.

  11. Electrically Conductive and Protective Coating for Planar SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Pyung; Stevenson, Jeffry W.

    2017-12-04

    Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, prevent Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be

  12. New bimetallic EMF cell shows promise in direct energy conversion

    Science.gov (United States)

    Hesson, J. C.; Shimotake, H.

    1968-01-01

    Concentration cell, based upon a thermally regenerative cell principle, produces electrical energy from any large heat source. This experimental bimetallic EMF cell uses a sodium-bismuth alloy cathode and a pure liquid sodium anode. The cell exhibits reliability, corrosion resistance, and high current density performance.

  13. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells.

    Science.gov (United States)

    Prabakar, Kamalaveni R; Domínguez-Bendala, Juan; Molano, R Damaris; Pileggi, Antonello; Villate, Susana; Ricordi, Camillo; Inverardi, Luca

    2012-01-01

    We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.

  14. Thermo-stable carbon nanotube-TiO_2 nanocompsite as electron highways in dye-sensitized solar cell produced by bio-nano-process

    International Nuclear Information System (INIS)

    Inoue, Ippei; Yasueda, Hisashi; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro

    2015-01-01

    We produced a thermostable TiO_2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor–liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO_2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO_2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO_2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO_2 photoelectrodes. (paper)

  15. New, efficient and viable system for ethanol fuel utilization on combined electric/internal combustion engine vehicles

    Science.gov (United States)

    Sato, André G.; Silva, Gabriel C. D.; Paganin, Valdecir A.; Biancolli, Ana L. G.; Ticianelli, Edson A.

    2015-10-01

    Although ethanol can be directly employed as fuel on polymer-electrolyte fuel cells (PEMFC), its low oxidation kinetics in the anode and the crossover to the cathode lead to a substantial reduction of energy conversion efficiency. However, when fuel cell driven vehicles are considered, the system may include an on board steam reformer for converting ethanol into hydrogen, but the hydrogen produced contains carbon monoxide, which limits applications in PEMFCs. Here, we present a system consisting of an ethanol dehydrogenation catalytic reactor for producing hydrogen, which is supplied to a PEMFC to generate electricity for electric motors. A liquid by-product effluent from the reactor can be used as fuel for an integrated internal combustion engine, or catalytically recycled to extract more hydrogen molecules. Power densities comparable to those of a PEMFC operating with pure hydrogen are attained by using the hydrogen rich stream produced by the ethanol dehydrogenation reactor.

  16. A feasibility study of a new method for electrically producing seizures in man: focal electrically administered seizure therapy [FEAST].

    Science.gov (United States)

    Nahas, Ziad; Short, Baron; Burns, Carol; Archer, Melanie; Schmidt, Matthew; Prudic, Joan; Nobler, Mitchell S; Devanand, D P; Fitzsimons, Linda; Lisanby, Sarah H; Payne, Nancy; Perera, Tarique; George, Mark S; Sackeim, Harold A

    2013-05-01

    Electroconvulsive therapy (ECT) remains the most effective acute treatment for severe major depression, but with significant risk of adverse cognitive effects. Unidirectional electrical stimulation with a novel electrode placement and geometry (Focal Electrically Administered Seizure Therapy (FEAST)) has been proposed as a means to initiate seizures in prefrontal cortex prior to secondary generalization. As such, it may have fewer cognitive side effects than traditional ECT. We report on its first human clinical application. Seventeen unmedicated depressed adults (5 men; 3 bipolar disorder; age 53 ± 16 years) were recruited after being referred for ECT. Open-label FEAST was administered with a modified spECTrum 5000Q device and a traditional ECT dosing regimen until patients clinically responded. Clinical and cognitive assessments were obtained at baseline, and end of course. Time to orientation recovery, a predictor of long-term amnestic effects, was assessed at each treatment. Nonresponders to FEAST were transitioned to conventional ECT. One patient withdrew from the study after a single titration session. After the course of FEAST (median 10 sessions), there was a 46.1 ± 35.5% improvement in Hamilton Rating Scale for Depression (HRSD24) scores compared to baseline (33.1 ± 6.8, 16.8 ± 10.9; P FEAST produced clinically meaningful antidepressant improvement, with relatively short time to reorientation. Our preliminary work first in primates and now depressed adults demonstrates that FEAST is feasible, safe, well-tolerated and, if efficacy can be optimized, has potential to replace traditional ECT. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Decree of the 6 May 2017 defining the conditions of additional remuneration of electricity produced by electricity production installations using wind mechanical energy with a maximum of 6 wind turbines. Decree of the 9 May 2014 defining purchase and additional remuneration conditions for the electricity produced by installations using mainly biogas produced by methanization of matters resulting from urban or industrial waste water treatment. Decree of the 9 May 2017 defining purchase conditions for electricity produced by installations implanted on building and using photovoltaic solar energy, with an installed power less than or equal to 100 kilowatts as those concerned at the 3. of the article D.314-15 of the Code of Energy, and located in continental metropolitan territory

    International Nuclear Information System (INIS)

    Royal, Segolene; Sapin, Michel

    2017-01-01

    This document gathers three legal texts which respectively define and eventually give elements and methods of calculation of conditions of additional remuneration or purchase of electricity produced by limited wind energy installations, by biogas-based