WorldWideScience

Sample records for cells overexpressing drug

  1. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    Science.gov (United States)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  2. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    Science.gov (United States)

    Yu, Meihua; Jambhrunkar, Siddharth; Thorn, Peter; Chen, Jiezhong; Gu, Wenyi; Yu, Chengzhong

    2012-12-01

    In this paper, a targeted drug delivery system has been developed based on hyaluronic acid (HA) modified mesoporous silica nanoparticles (MSNs). HA-MSNs possess a specific affinity to CD44 over-expressed on the surface of a specific cancer cell line, HCT-116 (human colon cancer cells). The cellular uptake performance of fluorescently labelled MSNs with and without HA modification has been evaluated by confocal microscopy and fluorescence-activated cell sorter (FACS) analysis. Compared to bare MSNs, HA-MSNs exhibit a higher cellular uptake via HA receptor mediated endocytosis. An anticancer drug, doxorubicin hydrochloride (Dox), has been loaded into MSNs and HA-MSNs as drug delivery vehicles. Dox loaded HA-MSNs show greater cytotoxicity to HCT-116 cells than free Dox and Dox-MSNs due to the enhanced cell internalization behavior of HA-MSNs. It is expected that HA-MSNs have a great potential in targeted delivery of anticancer drugs to CD44 over-expressing tumors.

  3. Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression.

    Directory of Open Access Journals (Sweden)

    Anna Frenzel

    Full Text Available Expression of MYC is deregulated in a wide range of human cancers, and is often associated with aggressive disease and poorly differentiated tumor cells. Identification of compounds with selectivity for cells overexpressing MYC would hence be beneficial for the treatment of these tumors. For this purpose we used cell lines with conditional MYCN or c-MYC expression, to screen a library of 80 conventional cytotoxic compounds for their ability to reduce tumor cell viability and/or growth in a MYC dependent way. We found that 25% of the studied compounds induced apoptosis and/or inhibited proliferation in a MYC-specific manner. The activities of the majority of these were enhanced both by c-MYC or MYCN over-expression. Interestingly, these compounds were acting on distinct cellular targets, including microtubules (paclitaxel, podophyllotoxin, vinblastine and topoisomerases (10-hydroxycamptothecin, camptothecin, daunorubicin, doxorubicin, etoposide as well as DNA, RNA and protein synthesis and turnover (anisomycin, aphidicholin, gliotoxin, MG132, methotrexate, mitomycin C. Our data indicate that MYC overexpression sensitizes cells to disruption of specific pathways and that in most cases c-MYC and MYCN overexpression have similar effects on the responses to cytotoxic compounds. Treatment of the cells with topoisomerase I inhibitors led to down-regulation of MYC protein levels, while doxorubicin and the small molecule MYRA-A was found to disrupt MYC-Max interaction. We conclude that the MYC pathway is only targeted by a subset of conventional cytotoxic drugs currently used in the clinic. Elucidating the mechanisms underlying their specificity towards MYC may be of importance for optimizing treatment of tumors with MYC deregulation. Our data also underscores that MYC is an attractive target for novel therapies and that cellular screenings of chemical libraries can be a powerful tool for identifying compounds with a desired biological activity.

  4. Overexpression of Bax induces apoptosis and enhances drug sensitivity of hepatocellular cancer-9204 cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Yong Zheng; Guang-Shun Yang; Wei-Zhong Wang; Jiang Li; Kai-Zong Li; Wen-Xian Guan; Wen-Liang Wang

    2005-01-01

    AIM: To investigate the role of overexpression of Bax in apoptotic pathways and the response of human hepatocellular cancer (HCC)-9204 cells to cell death induced by adriamycin.METHODS: The whole length of Bax cDNA was transfectrd into human HCC-9204 cells by the method of lipofectamine transfection. An inducible MT-Ⅱ regulatory system was constructed, which allowed controlled expression of protein upon addition of ZnSO4 (100 μmol/L) as an external inducer. Stable transfecting inducible expression vector containing Bax gene was performed. Expression of Bax in protein was analyzed by immunohistochemistry and Western blotting. TUNEL and flow cytometry were used to assess the effect of Bax on apoptosis. Colony assay and tetrazolium blue (MTT) assay were used to evaluate the difference in drug sensitivity of HCC-9204 cells after Bax-transfection.RESULTS: Immunohistochemistry and Western blotting demonstrated that the expression of Bax protein markedly increased in Bax-transfected cells 4 h after the addition cytoplasm and perinuclear region of HCC-9404 cells, and there was ectopic expression in cells with marked condensation of chromatin and cytoplasm (apoptotic cells). Apoptotic index significantly increased in Bax-transfected HCC-9204/Bax cells (3.6 vs 27.2, 4.2 vs 32.3, P<0.05).Flow cytometry analysis showed a significant sub-G1 peak and apoptosis in 15.4% HCC-9204/Bax cells 24 h after treatment. Furthermore, colony survival rate decreased from 66% (HCC-9204/pMD) to 45% (HCC-9204/Bax) 2 dafter ADR withdrawal. MTT assay result showed that the effects of Bax on cell viability following ADR exposure were significant as compared to the vehicle-transfected HCC-9204/pMD cells (21% vs 44%, P<0.01).CONCLUSION: Overexpression of Bax not only induces apoptosis, but also sensitizes HCC-9204 cells to cell death induced by adriamycin.

  5. Identification of a novel topoisomerase inhibitor effective in cells overexpressing drug efflux transporters.

    Directory of Open Access Journals (Sweden)

    Walid Fayad

    Full Text Available BACKGROUND: Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. METHOD AND FINDINGS: A library of natural products (NCI Natural Product set was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing compounds identified in the screen was thaspine (taspine, an alkaloid from the South American tree Croton lechleri. The cortex of this tree is used for medicinal purposes by tribes in the Amazonas basin. Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells. Analysis of the gene expression signature of thaspine-treated cells suggested that thaspine is a topoisomerase inhibitor. Inhibition of both topoisomerase I and II was observed using in vitro assays, and thaspine was found to have a reduced cytotoxic effect on a cell line with a mutated topoisomerase II enzyme. Interestingly, in contrast to the topoisomerase II inhibitors doxorubicin, etoposide and mitoxantrone, thaspine was cytotoxic to cell lines overexpressing the PgP or MRP drug efflux transporters. We finally show that thaspine induces wide-spread apoptosis in colon carcinoma multicellular spheroids and that apoptosis is induced in two xenograft mouse models in vivo. CONCLUSIONS: The alkaloid thaspine from the cortex of Croton lechleri is a dual topoisomerase inhibitor effective in cells overexpressing drug efflux transporters and induces wide-spread apoptosis in multicellular spheroids.

  6. Drug Efflux Transporters Are Overexpressed in Short-Term Tamoxifen-Induced MCF7 Breast Cancer Cells.

    Science.gov (United States)

    Krisnamurti, Desak Gede Budi; Louisa, Melva; Anggraeni, Erlia; Wanandi, Septelia Inawati

    2016-01-01

    Tamoxifen is the first line drug used in the treatment of estrogen receptor-positive (ER+) breast cancer. The development of multidrug resistance (MDR) to tamoxifen remains a major challenge in the treatment of cancer. One of the mechanisms related to MDR is decrease of drug influx via overexpression of drug efflux transporters such as P-glycoprotein (P-gp/MDR1), multidrug resistance associated protein (MRP), or BCRP (breast cancer resistance protein). We aimed to investigate whether the sensitivity of tamoxifen to the cells is maintained through the short period and whether the expressions of several drug efflux transporters have been upregulated. We exposed MCF7 breast cancer cells with tamoxifen 1 μM for 10 passages (MCF7 (T)). The result showed that MCF7 began to lose their sensitivity to tamoxifen from the second passage. MCF7 (T) also showed a significant increase in all transporters examined compared with MCF7 parent cells. The result also showed a significant increase of CC50 in MCF7 (T) compared to that in MCF7 (97.54 μM and 3.04 μM, resp.). In conclusion, we suggest that the expression of several drug efflux transporters such as P-glycoprotein, MRP2, and BCRP might be used and further studied as a marker in the development of tamoxifen resistance. PMID:26981116

  7. Overexpression of the human HAP1 protein sensitizes cells to the lethal effect of bioreductive drugs.

    Science.gov (United States)

    Prieto-Alamo, M J; Laval, F

    1999-03-01

    Abasic sites (AP sites) are generated in DNA either directly by DNA-damaging agents or by DNA glycosylases acting during base excision repair. These sites are repaired in human cells by the HAP1 protein, which, besides its AP-endonuclease activity, also possesses a redox function. To investigate the ability of HAP1 protein to modulate cell resistance to DNA-damaging agents, CHO cells were transfected with HAP1 cDNA, resulting in stable expression of the protein in the cell nuclei. The sensitivity of the transfected cells to the toxic effect of various agents, e.g. methylmethane sulfonate, bleomycin and H2O2, was not modified. However, the transfected cells became more sensitive to killing by mitomycin C, porfiromycin, daunorubicin and aziridinyl benzoquinone, drugs that are activated by reduction. To test whether the redox function of HAP1 protein was involved in this increased cytotoxicity, we have constructed a mutated HAP1 protein endowed with normal AP-endonuclease activity but deleted for redox function. When this mutated protein was expressed in the cells, elevated AP-endonuclease activity was measured, but sensitization to the lethal effects of compounds requiring bioreduction was no longer observed. These results suggest that HAP1 protein, besides its involvement in DNA repair, is able to activate bioreduction of alkylating drugs used in cancer chemotherapy. PMID:10190555

  8. Identification of a Novel Topoisomerase Inhibitor Effective in Cells Overexpressing Drug Efflux Transporters

    OpenAIRE

    Walid Fayad; Mårten Fryknäs; Slavica Brnjic; Maria Hägg Olofsson; Rolf Larsson; Stig Linder

    2009-01-01

    BACKGROUND: Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. METHOD AND FINDINGS: A library of natural products (NCI Natural Product set) was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing comp...

  9. Overexpression of miR-34c regulates the sensitivity to doxorubicin in drug-resistant breast cancer cell lines MCF-7/DOX

    Institute of Scientific and Technical Information of China (English)

    Han Li; Tong Li; Li-Hong Zhang

    2016-01-01

    Objective:To study the regulating effect of overexpressing miR-34c on the sensitivity to doxorubicin in drug-resistant breast cancer cell line MCF-7/DOX. Methods:Breast cancer cell lines MCF-7 and drug-resistant breast cancer cell lines MCF-7/DOX were cultured, transfected with miR-34c and negative control fragments and treated with different doses of doxorubicin;treated cells were taken, CCK-8 kits were used to detect cell viability, and RNA detection kits were used to detect mRNA contents of drug resistance-related genes. Results: miR-34a, 34b and 34c expression levels in MCF-7/DOX cell lines were lower than those in MCF-7 cell lines and the reduction of miR-34c expression level was the most significant, and mRNA contents of MDR1, BCRP, UCP2, Twist and c-Src were significantly higher than those in MCF-7 cell lines;after transfection of miR-34c, the inhibitory effect of doxorubicin on the viability of MCF-7/DOX cell lines was stronger than that of MCF-7/DOX cell lines transfected with negative control, and mRNA contents of MDR1, BCRP, UCP2, Twist and c-Src were significantly lower than those in MCF-7 cell lines transfected with negative control. Conclusions:Overexpression of miR-34c in drug-resistant breast cancer cell lines MCF-7/DOX can increase the sensitivity to doxorubicin and inhibit the expression levels of drug resistance-related genes MDR1, BCRP, UCP2, Twist and c-Src .

  10. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination.

    Science.gov (United States)

    Fonseca, Nuno A; Rodrigues, Ana S; Rodrigues-Santos, Paulo; Alves, Vera; Gregório, Ana C; Valério-Fernandes, Ângela; Gomes-da-Silva, Lígia C; Rosa, Manuel Santos; Moura, Vera; Ramalho-Santos, João; Simões, Sérgio; Moreira, João Nuno

    2015-11-01

    Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care. PMID:26283155

  11. Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance.

    Science.gov (United States)

    Schneider, E; Horton, J K; Yang, C H; Nakagawa, M; Cowan, K H

    1994-01-01

    A human breast cancer cell line (MCF7/WT) was selected for resistance to etoposide (VP-16) by stepwise exposure to 2-fold increasing concentrations of this agent. The resulting cell line (MCF7/VP) was 28-, 21-, and 9-fold resistant to VP-16, VM-26, and doxorubicin, respectively. MCF7/VP cells also exhibited low-level cross-resistance to 4'-(9-acridinylamino)-methanesulfon-m-anisidide, mitoxantrone, and vincristine and no cross-resistance to genistein and camptothecin. Furthermore, these cells were collaterally sensitive to the alkylating agents melphalan and chlorambucil. DNA topoisomerase II levels were similar in both wild-type MCF7/WT and drug-resistant MCF7/VP cells. In contrast, topoisomerase II from MCF7/VP cells appeared to be 7-fold less sensitive to drug-induced cleavable complex formation in whole cells and 3-fold less sensitive in nuclear extracts than topoisomerase II from MCF7/WT cells. Although this suggested that the resistant cells may contain a qualitatively altered topoisomerase II, no mutations were detected in either the ATP-binding nor the putative breakage/resealing regions of either DNA topoisomerase II alpha or II beta. In addition, the steady-state intracellular VP-16 concentration was reduced by 2-fold in the resistant cells, in the absence of detectable mdr1/P-gp expression and without any change in drug efflux. In contrast, expression of the gene encoding the MRP was increased at least 10-fold in resistant MCF7/VP cells as compared to sensitive MCF7/WT cells. These results suggest that resistance to epipodophyllotoxins in MCF7/VP cells is multifactorial, involving a reduction in intracellular drug concentration, possibly as a consequence of MRP overexpression, and an altered DNA topoisomerase II drug sensitivity. PMID:7903202

  12. Mechanism study of PEGylated polyester and β-cyclodextrin integrated micelles on drug resistance reversal in MRP1-overexpressed HL60/ADR cells.

    Science.gov (United States)

    Ji, Qian; Qiu, Liyan

    2016-08-01

    Chemotherapy is one of the main strategies for cancer treatment, but its effective application is seriously limited by the development of drug resistance. In this study, we designed micellar vectors for doxorubicin based on amphiphilic copolymers sequentially linking β-cyclodextrin (β-CD), polylacticacid (PLA) or polycaprolactone (PCL) block, and polyethylene glycol (PEG) block to overcome drug resistance in human acute myeloid leukemia cells (HL60/ADR) overexpressing multidrug resistance protein 1 (MRP1). The significant enhancement in cytotoxicity and inhibited HL60/ADR tumor growth in mouse was achieved. More importantly, several analyses were performed to understand the interactions between various polymers and MRP1 at the cellular level. The results showed that the polymers did not show remarkable correlation of MRP1 gene and protein expression, but could decrease intracellular ATP, mitochondrial membrane potential and glutathione levels, which was greatly dependent on the molecular structure of polymers. In conclusion, these novel micelles can be considered as a kind of promising drug delivery system for tumor therapy to reverse drug resistance related to MRP1 overexpression. PMID:27088190

  13. Reducing Both Pgp Overexpression and Drug Efflux with Anti-Cancer Gold-Paclitaxel Nanoconjugates

    Science.gov (United States)

    Li, Fei; Zhou, Xiaofei; Zhou, Hongyu; Jia, Jianbo; Li, Liwen; Zhai, Shumei; Yan, Bing

    2016-01-01

    Repeated administrations of anti-cancer drugs to patients often induce drug resistance. P-glycoprotein (Pgp) facilitates an efficient drug efflux, preventing cellular accumulation of drugs and causing multi-drug resistance (MDR). In this study, we developed a gold-paclitaxel nanoconjugate system to overcome MDR. Gold nanoparticles (GNPs) were conjugated with β-cyclodextrin enclosing paclitaxel (PTX) molecules and PEG molecules. GNP conjugates were effectively endocytosed by both drug-sensitive human lung cancer H460 cells and Pgp-overexpressed drug-resistant H460PTX cells. Compared with PTX, PGNPs did not induce the Pgp overexpression in drug-sensitive H460 cells after long-term treatment and also avoided being pumped out of cells by overexpressed Pgp molecules in H460PTX with a 17-fold lower EC50 compared to PTX. Fluorescent microscopy and flow cytometry further confirmed that fluorescent labeled PGNPs (f-PGNPs) maintained a high cellular PTX level in both H460 and H460PTX cells. These results demonstrated that nano-drug conjugates were able to avoid the development of drug resistance in sensitive cells and evade Pgp-mediated drug resistance and to maintain a high cytotoxicity in drug-resistant cancer cells. These findings exemplify a powerful nanotechnological approach to the long-lasting issue of chemotherapy-induced drug resistance. PMID:27467397

  14. Fabrication of poly(γ-glutamic acid)-based biopolymer as the targeted drug delivery system with enhanced cytotoxicity to APN/CD13 over-expressed cells.

    Science.gov (United States)

    Zhang, Li; Geng, Xu; Zhou, Jie; Wang, Ying; Gao, Hongliang; Zhou, Yue; Huang, Jing

    2015-06-01

    Poly(γ-glutamic acid)-based targeted drug delivery system (PAMCN) targeting transmembrane metalloprotease aminopeptidase-N (APN/CD13) was fabricated and evaluated for the enhancement of targeting efficiency and cytotoxicity. The cisplatin (CDDP) loading content of PAMCN was about 36 ± 5% and PAMCN showed a sustainable release profile with a half-maximal release time (t1/2) of 23 h. The average size of PAMCN was 132 ± 18 nm determined by light scattering (LS) and 158 ± 67 nm by atomic force microscopy (AFM). Flow cytometry and fluorescence microscope analysis showed that the drug carrier (PAMN) could specifically bind to human umbilical vein endothelial cells (HUVEC). PAMCN enhanced the efficacy of CDDP to HUVEC cells with the half maximal inhibitory concentration (IC50) value decreased to 90.83 ± 33.00 μg/ml comparing with free CDDP treatment and showed less tube formation amounts (p < 0.01) than free CDDP in matrigel angiogenesis inhibition assay in vitro. In vivo toxicity experiment indicated that the survival rate of KM mice in PAMCN group was 100% and PAMCN reduced the hepatic and renal toxicity significantly compared to free CDDP group. Therefore, this novel drug delivery system presents a promising potential for antiangiogenic chemotherapy. PMID:25648136

  15. The Effect of MicroRNA-124 Overexpression on Anti-Tumor Drug Sensitivity.

    Directory of Open Access Journals (Sweden)

    Shiau-Mei Chen

    Full Text Available MicroRNAs play critical roles in regulating various physiological processes, including growth and development. Previous studies have shown that microRNA-124 (miR-124 participates not only in regulation of early neurogenesis but also in suppression of tumorigenesis. In the present study, we found that overexpression of miR-124 was associated with reduced DNA repair capacity in cultured cancer cells and increased sensitivity of cells to DNA-damaging anti-tumor drugs, specifically those that cause the formation of DNA strand-breaks (SBs. We then examined which DNA repair-related genes, particularly the genes of SB repair, were regulated by miR-124. Two SB repair-related genes, encoding ATM interactor (ATMIN and poly (ADP-ribose polymerase 1 (PARP1, were strongly affected by miR-124 overexpression, by binding of miR-124 to the 3¢-untranslated region of their mRNAs. As a result, the capacity of cells to repair DNA SBs, such as those resulting from homologous recombination, was significantly reduced upon miR-124 overexpression. A particularly important therapeutic implication of this finding is that overexpression of miR-124 enhanced cell sensitivity to multiple DNA-damaging agents via ATMIN- and PARP1-mediated mechanisms. The translational relevance of this role of miR-124 in anti-tumor drug sensitivity is suggested by the finding that increased miR-124 expression correlates with better breast cancer prognosis, specifically in patients receiving chemotherapy. These findings suggest that miR-124 could potentially be used as a therapeutic agent to improve the efficacy of chemotherapy with DNA-damaging agents.

  16. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    Science.gov (United States)

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells. PMID:26676266

  17. Chemical Reactivity Window Determines Prodrug Efficiency toward Glutathione Transferase Overexpressing Cancer Cells.

    Science.gov (United States)

    van Gisbergen, Marike W; Cebula, Marcus; Zhang, Jie; Ottosson-Wadlund, Astrid; Dubois, Ludwig; Lambin, Philippe; Tew, Kenneth D; Townsend, Danyelle M; Haenen, Guido R M M; Drittij-Reijnders, Marie-José; Saneyoshi, Hisao; Araki, Mika; Shishido, Yuko; Ito, Yoshihiro; Arnér, Elias S J; Abe, Hiroshi; Morgenstern, Ralf; Johansson, Katarina

    2016-06-01

    Glutathione transferases (GSTs) are often overexpressed in tumors and frequently correlated to bad prognosis and resistance against a number of different anticancer drugs. To selectively target these cells and to overcome this resistance we previously have developed prodrugs that are derivatives of existing anticancer drugs (e.g., doxorubicin) incorporating a sulfonamide moiety. When cleaved by GSTs, the prodrug releases the cytostatic moiety predominantly in GST overexpressing cells, thus sparing normal cells with moderate enzyme levels. By modifying the sulfonamide it is possible to control the rate of drug release and specifically target different GSTs. Here we show that the newly synthesized compounds, 4-acetyl-2-nitro-benzenesulfonyl etoposide (ANS-etoposide) and 4-acetyl-2-nitro-benzenesulfonyl doxorubicin (ANS-DOX), function as prodrugs for GSTA1 and MGST1 overexpressing cell lines. ANS-DOX, in particular, showed a desirable cytotoxic profile by inducing toxicity and DNA damage in a GST-dependent manner compared to control cells. Its moderate conversion of 500 nmol/min/mg, as catalyzed by GSTA1, seems hereby essential since the more reactive 2,4-dinitrobenzenesulfonyl doxorubicin (DNS-DOX) (14000 nmol/min/mg) did not display a preference for GSTA1 overexpressing cells. DNS-DOX, however, effectively killed GSTP1 (20 nmol/min/mg) and MGST1 (450 nmol/min/mg) overexpressing cells as did the less reactive 4-mononitrobenzenesulfonyl doxorubicin (MNS-DOX) in a MGST1-dependent manner (1.5 nmol/min/mg) as shown previously. Furthermore, we show that the mechanism of these prodrugs involves a reduction in GSH levels as well as inhibition of the redox regulatory enzyme thioredoxin reductase 1 (TrxR1) by virtue of their electrophilic sulfonamide moiety. TrxR1 is upregulated in many tumors and associated with resistance to chemotherapy and poor patient prognosis. Additionally, the prodrugs potentially acted as a general shuttle system for DOX, by overcoming resistance

  18. Several mutations of Zymoseptoria tritici field strains lead to MFS1 overexpression and multi-drug-resistance (MDR)

    OpenAIRE

    Fillinger, Sabine; Omrane, Selim; Audeon, Colette; Ignace, Amandine; Duplaix, Clémentine; Aouini, Lamia; Kema, Gert; Walker, Anne-Sophie

    2016-01-01

    Multidrug resistance (MDR) is a common trait developed by many organisms to counteract chemicals and/or drugs used against them. The basic MDR mechanism is relying on an overexpressed efflux transport system that actively expulses the toxic agent outside the cell. In fungi, MDR (or PDR) has been extensively studied in Saccharomyces cerevisiae and Candida albicans. Plant pathogenic fungi are also concerned by this phenomenon. MDR strains were detected in septoria leaf blotch (Zymoseptoria trit...

  19. TIMP-1 overexpression does not affect sensitivity to HER2-targeting drugs in the HER2-gene-amplified SK-BR-3 human breast cancer cell line

    DEFF Research Database (Denmark)

    Deng, Xiaohong; Fogh, Louise; Lademann, Ulrik Axel;

    2013-01-01

    affect sensitivity to the HER2-targeting drugs trastuzumab and lapatinib. SK-BR-3 human breast cancer cells were stably transfected with TIMP-1, characterized with regard to TIMP-1 protein expression, proliferation, and functionality of the secreted TIMP-1, and the sensitivity to trastuzumab and...... lapatinib was studied in five selected single-cell subclones expressing TIMP-1 protein at various levels plus the parental SK-BR-3 cell line. Both trastuzumab and lapatinib reduced cell viability, as determined by MTT assay, but the sensitivity to the drugs was not associated with the expression level of...

  20. Overexpression of kinesins mediates docetaxel resistance in breast cancer cells.

    Science.gov (United States)

    De, Sarmishtha; Cipriano, Rocky; Jackson, Mark W; Stark, George R

    2009-10-15

    Resistance to chemotherapy remains a major barrier to the successful treatment of cancer. To understand mechanisms underlying docetaxel resistance in breast cancer, we used an insertional mutagenesis strategy to identify proteins whose overexpression confers resistance. A strong promoter was inserted approximately randomly into the genomes of tumor-derived breast cancer cells, using a novel lentiviral vector. We isolated a docetaxel-resistant clone in which the level of the kinesin KIFC3 was elevated. When KIFC3 or the additional kinesins KIFC1, KIF1A, or KIF5A were overexpressed in the breast cancer cell lines MDA-MB231 and MDA-MB 468, the cells became more resistant to docetaxel. The binding of kinesins to microtubules opposes the stabilizing effect of docetaxel that prevents cytokinesis and leads to apoptosis. Our finding that kinesins can mediate docetaxel resistance might lead to novel therapeutic approaches in which kinesin inhibitors are paired with taxanes. PMID:19789344

  1. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan, E-mail: quan_haotj@126.com

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  2. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    International Nuclear Information System (INIS)

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer

  3. SNEV overexpression extends the life span of human endothelial cells

    International Nuclear Information System (INIS)

    In a recent screening for genes downregulated in replicatively senescent human umbilical vein endothelial cells (HUVECs), we have isolated the novel protein SNEV. Since then SNEV has proven as a multifaceted protein playing a role in pre-mRNA splicing, DNA repair, and the ubiquitin/proteosome system. Here, we report that SNEV mRNA decreases in various cell types during replicative senescence, and that it is increased in various immortalized cell lines, as well as in breast tumors, where SNEV transcript levels also correlate with the survival of breast cancer patients. Since these mRNA profiles suggested a role of SNEV in the regulation of cell proliferation, the effect of its overexpression was tested. Thereby, a significant extension of the cellular life span was observed, which was not caused by altered telomerase activity or telomere dynamics but rather by enhanced stress resistance. When SNEV overexpressing cells were treated with bleomycin or bleomycin combined with BSO, inducing DNA damage as well as reactive oxygen species, a significantly lower fraction of apoptotic cells was found in comparison to vector control cells. These data suggest that high levels of SNEV might extend the cellular life span by increasing the resistance to stress or by improving the DNA repair capacity of the cells

  4. Adult T-cell leukemia cells overexpress Wnt5a and promote osteoclast differentiation

    OpenAIRE

    Bellon, Marcia; Ko, Nga Ling; Lee, Min-Jung; Yao, Yuan; Waldmann, Thomas A; Trepel, Jane B; Nicot, Christophe

    2013-01-01

    Profiling of the Wnt/β-catenin pathway reveals overexpression of Wnt5a, LEF-1 and TCF-1 in ATL patient cells.ATL cells overexpress Wnt5a, which enhances osteoclastogenesis and may contribute to the osteolytic bone lesions and hypercalcemia.

  5. Overexpression of S100A4 in human cancer cell lines resistant to methotrexate

    Directory of Open Access Journals (Sweden)

    Hernández Jose L

    2010-06-01

    Full Text Available Abstract Background Methotrexate is a chemotherapeutic drug that is used in therapy of a wide variety of cancers. The efficiency of treatment with this drug is compromised by the appearance of resistance. Combination treatments of MTX with other drugs that could modulate the expression of genes involved in MTX resistance would be an adequate strategy to prevent the development of this resistance. Methods The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. A global comparison of all the studied cell lines was performed in order to find out differentially expressed genes in the majority of the MTX-resistant cells. S100A4 mRNA and protein levels were determined by RT-Real-Time PCR and Western blot, respectively. Functional validations of S100A4 were performed either by transfection of an expression vector for S100A4 or a siRNA against S100A4. Transfection of an expression vector encoding for β-catenin was used to inquire for the possible transcriptional regulation of S100A4 through the Wnt pathway. Results S100A4 is overexpressed in five out of the seven MTX-resistant cell lines studied. Ectopic overexpression of this gene in HT29 sensitive cells augmented both the intracellular and extracellular S100A4 protein levels and caused desensitization toward MTX. siRNA against S100A4 decreased the levels of this protein and caused a chemosensitization in combined treatments with MTX. β-catenin overexpression experiments support a possible involvement of the Wnt signaling pathway in S100A4 transcriptional regulation in HT29 cells. Conclusions S100A4 is overexpressed in many MTX-resistant cells. S100A4 overexpression decreases the sensitivity of HT29 colon cancer human cells to MTX, whereas its knockdown causes chemosensitization toward MTX. Both approaches highlight a role for S100A4 in MTX resistance.

  6. Overexpression of S100A4 in human cancer cell lines resistant to methotrexate

    International Nuclear Information System (INIS)

    Methotrexate is a chemotherapeutic drug that is used in therapy of a wide variety of cancers. The efficiency of treatment with this drug is compromised by the appearance of resistance. Combination treatments of MTX with other drugs that could modulate the expression of genes involved in MTX resistance would be an adequate strategy to prevent the development of this resistance. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. A global comparison of all the studied cell lines was performed in order to find out differentially expressed genes in the majority of the MTX-resistant cells. S100A4 mRNA and protein levels were determined by RT-Real-Time PCR and Western blot, respectively. Functional validations of S100A4 were performed either by transfection of an expression vector for S100A4 or a siRNA against S100A4. Transfection of an expression vector encoding for β-catenin was used to inquire for the possible transcriptional regulation of S100A4 through the Wnt pathway. S100A4 is overexpressed in five out of the seven MTX-resistant cell lines studied. Ectopic overexpression of this gene in HT29 sensitive cells augmented both the intracellular and extracellular S100A4 protein levels and caused desensitization toward MTX. siRNA against S100A4 decreased the levels of this protein and caused a chemosensitization in combined treatments with MTX. β-catenin overexpression experiments support a possible involvement of the Wnt signaling pathway in S100A4 transcriptional regulation in HT29 cells. S100A4 is overexpressed in many MTX-resistant cells. S100A4 overexpression decreases the sensitivity of HT29 colon cancer human cells to MTX, whereas its knockdown causes chemosensitization toward MTX. Both approaches highlight a role for S100A4 in MTX resistance

  7. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC). Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131) using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041), increased lymph node metastasis (P = 0.001), less differentiation (P = 0.005), increased recurrence (P = 0.038) and shorter survival (P = 0.004) of the patients. In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and treatment of OSCC

  8. Use of a yeast-based membrane protein expression technology to overexpress drug resistance efflux pumps.

    Science.gov (United States)

    Lamping, Erwin; Cannon, Richard D

    2010-01-01

    Azole antifungal drugs are used widely to treat people with oral fungal infections. Unfortunately, fungi can develop resistance to these drugs. This resistance can be due to the overexpression or mutation of cytochrome P450 14alpha-lanosterol demethylase, also known as ERG11 or CYP51, and/or the overexpression of membrane-located multidrug efflux pumps. We have developed a heterologous membrane protein expression system that can be used to study the structure and function of these proteins in the non-pathogenic, genetically stable, and versatile eukaryotic model organism, Saccharomyces cerevisiae. In this chapter we describe the techniques used to express the Candida albicans efflux pump Cdr1p in S. cerevisiae. PMID:20717788

  9. The overexpression of MRP4 is related to multidrug resistance in osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Zhonghui He

    2015-01-01

    Full Text Available Doxorubicin (Adriamycin, ADM is an antimitotic drug used in the treatment of a wide range of malignant tumors, including acute leukemia, lymphoma, osteosarcoma, breast cancer, and lung cancer. Multidrug resistance-associated proteins (MRPs are members of a superfamily of ATP-binding cassette (ABC transporters, which can transport various molecules across extra- and intra-cellular membranes. The aim of this study was to investigate whether there was a correlation between MRP4 and primary ADM resistance in osteosarcoma cells. In this paper, we chose the human osteosarcoma cell line MG63, ADM resistant cell line MG63/DOX, and the patient′s primary cell GSF-0686. We checked the ADM sensitivity and cytotoxicity of all the three cells by cell proliferation assay. The intracellular drug concentrations were measured by using LC-MS/MS. We also examined MRP4 gene expression by RT-PCR and Western Blot. We found that the intracellular ADM concentration of the parent osteosarcoma cell line MG63 was higher than the ADM resistant osteosarcoma MG63/DOX cell line or the GSF-0686 cell after ADM treatment (P < 0.05. In addition, MRP4 mRNA and protein levels in ADM resistant osteosarcoma cells were higher than in MG63 cell (P < 0.05. Taking together, this work suggests that overexpression of MRP4 may confer ADM resistance in osteosarcoma cells.

  10. β-Cell Specific Overexpression of GPR39 Protects against Streptozotocin-Induced Hyperglycemia

    Directory of Open Access Journals (Sweden)

    Kristoffer L. Egerod

    2011-01-01

    Full Text Available Mice deficient in the zinc-sensor GPR39, which has been demonstrated to protect cells against endoplasmatic stress and cell death in vitro, display moderate glucose intolerance and impaired glucose-induced insulin secretion. Here, we use the Tet-On system under the control of the proinsulin promoter to selectively overexpress GPR39 in the β cells in a double transgenic mouse strain and challenge them with multiple low doses of streptozotocin, which in the wild-type littermates leads to a gradual increase in nonfasting glucose levels and glucose intolerance observed during both food intake and OGTT. Although the overexpression of the constitutively active GPR39 receptor in animals not treated with streptozotocin appeared by itself to impair the glucose tolerance slightly and to decrease the β-cell mass, it nevertheless totally protected against the gradual hyperglycemia in the steptozotocin-treated animals. It is concluded that GPR39 functions in a β-cell protective manner and it is suggested that it is involved in some of the beneficial, β-cell protective effects observed for Zn++ and that GPR39 may be a target for antidiabetic drug intervention.

  11. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaolei Li

    2016-03-01

    Full Text Available (1 Background: Transient receptor potential vanilloid 3 (TRPV3 is a member of the TRP channels family of Ca2+-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC; (2 Methods: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca2+]i. Flow cytometry was used to analyze cell cycle; (3 Results: TRPV3 was overexpressed in 65 of 96 (67.7% human lung cancer cases and correlated with differentiation (p = 0.001 and TNM stage (p = 0.004. Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca2+]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4 Conclusions: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC.

  12. Regulation of [Ca2+](i) homeostasis in MRP1 overexpressing cells

    NARCIS (Netherlands)

    Filipeanu, C.M; Nelemans, Adriaan; Veldman, Robert Jan; de Zeeuw, Dick; Kok, Jan Willem

    2000-01-01

    Regulation of capacitative Ca2+ entry,vas studied in two different multidrug resistance (MDR) protein (MRP1) overexpressing cell lines, HT29(col) and GLC4/ADR. MRP1 overexpression was accompanied by a decreased response to thapsigargin, Moreover, inhibition of capacitative Ca2+ entry by D,L-threo-1-

  13. Effects of p53 overexpression on neoplastic cell pro-liferation and apoptosis in thymic carcinoma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate p53 overexpression and its correlation with neoplastic cell proliferation and apoptosis in 20 thymic carcinomas. Methods: 20 surgical samples of thymic carcinoma were collected randomly during the past 15 years in the Guangzhou area. Immunohistochemical staining was performed using LSAB method with anti-p53 monoclonal antibody (DO-7) and proliferating cell nuclear antigen (clone PC 10) as primary antibodies. The p53 index was indicated by the number of p53 positive cells among 100 carcinoma cells. More than 25 percentage of p53 positive cells found in tissue sections was recognized as p53 overexpression. Carcinoma cell proliferation activity was assayed by PCNA index (PI), and apoptosis degree was evaluated by TUNEL (TdT-mediated dUTP-X nick end labeling) index (TI) using Boehringer Mannheim In Situ Death Detection Kit. Results: P53 positive cells could be found in vast majority of thymic carcinomas (19/20) and the overexpression rate reached 35% (7/20). The median PI (40%) of 7 cases with p53 overexpression was higher than that (31%) of 13 cases without p53 overexpression, but there was no statistical significance that existed between these two data (P>0.05). The median TI (0.5/HPF) of 7 p53 overexpression cases was much lower than that (4.5/HPF) of 13 non-overexpression cases, and there was a significant difference statistically (P<0.05). Conclusion: p53 expression was a frequent finding in thymic carcinoma cells, and the p53 overexpression which might represent p53 inactivation or gene mutation was often involved in thymic carcino-genesis. The median PCNA index of p53 overexpression group was higher than that of non-overexpression group though there existed no statistical difference. This indicates that the inhibiting function of p53 on cell proliferation seemed lost in p53 overexpressed thymic carcinomas. It is worthy to be specially mentioned that the inducing function of p53 on cell apoptosis was markedly lost in p53 overexpressed thymic

  14. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  15. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  16. Overexpression of CYP3A4 in a COLO 205 Colon Cancer Stem Cell Model in vitro

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) seem to constitute a subpopulation of tumor cells that escape from chemotherapy and cause recurrent disease. Low proliferation rates, protection in a stem cell niche and overexpression of drug resistance proteins are considered to confer chemoresistance. We established an in vitro colon CSC-like model using the COLO 205 cell line, which revealed transiently increased expression of CD133 when transferred to serum-free stem cell culture medium. Assessment of global gene expression of COLO 205 cells under these conditions identified a set of upregulated genes including cytochrome P450 3A4 (CYP3A4) and aldehyde dehydrogenase 1A1 (ALDH1A1), as confirmed by real-time qPCR. ALDH1A1 is a CSC marker for certain tumor entities and confers resistance to cyclophosphamide. CYP3A4 is expressed in liver and colon and its overexpression seems particularly relevant in colon cancer, since it inactivates irinotecan and other xenobiotics, such as taxols and vinca alkaloids. In conclusion, this COLO 205 model provides evidence for CD133 induction concomitant with overexpression of CYP3A4, which, together with ATP-binding cassette, subfamily G, member 2 (ABCG2) and others, may have a role in chemoresistant colon CSCs and a negative impact on disease-free survival in colon cancer patients

  17. Overexpression of CYP3A4 in a COLO 205 Colon Cancer Stem Cell Model in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Ulrike [Ludwig Boltzmann Cluster of Translational Oncology, c/o Balderichgasse 26/13, A-1170 Vienna (Austria); Liedauer, Richard [Department of Pathophysiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna (Austria); Ausch, Christoph [Department of Surgery, Danube Hospital, A-1220 Vienna (Austria); Thalhammer, Theresia [Department of Pathophysiology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna (Austria); Hamilton, Gerhard, E-mail: gerhard.hamilton@toc.lbg.ac.at [Ludwig Boltzmann Cluster of Translational Oncology, c/o Balderichgasse 26/13, A-1170 Vienna (Austria)

    2011-03-22

    Cancer stem cells (CSCs) seem to constitute a subpopulation of tumor cells that escape from chemotherapy and cause recurrent disease. Low proliferation rates, protection in a stem cell niche and overexpression of drug resistance proteins are considered to confer chemoresistance. We established an in vitro colon CSC-like model using the COLO 205 cell line, which revealed transiently increased expression of CD133 when transferred to serum-free stem cell culture medium. Assessment of global gene expression of COLO 205 cells under these conditions identified a set of upregulated genes including cytochrome P450 3A4 (CYP3A4) and aldehyde dehydrogenase 1A1 (ALDH1A1), as confirmed by real-time qPCR. ALDH1A1 is a CSC marker for certain tumor entities and confers resistance to cyclophosphamide. CYP3A4 is expressed in liver and colon and its overexpression seems particularly relevant in colon cancer, since it inactivates irinotecan and other xenobiotics, such as taxols and vinca alkaloids. In conclusion, this COLO 205 model provides evidence for CD133 induction concomitant with overexpression of CYP3A4, which, together with ATP-binding cassette, subfamily G, member 2 (ABCG2) and others, may have a role in chemoresistant colon CSCs and a negative impact on disease-free survival in colon cancer patients.

  18. EFFECTS OF p53 OVEREXPRESSION ON NEOPLASTIC CELL MITOSIS AND APOPTOSIS IN NASOPHARYNGEAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To investigate the p53 overexpression and its correlation withneoplastic cell mitosis and apoptosis in 43 nasopharyngeal carcinomas (NPCs). Methods: Forty-three pretreated NPC biopsy samples were randomly collected in the year 1997 for this study. p53 overexpression was detected by LSAB immunohistochemistry using DO-7 primary antibody. Mitotic figures were counted on H&E stained slides, and apoptotic cells on TUNEL-stained slides by use of in-situ cell death detection kit. Both of mitotic and apoptotic cells were quantitated by cell numbers per one high power field (5′ 40) averagely in terms of mitotic index (MI) and TUNEL index (TI), respectively. To compare the mean MIs of two groups categorized by different percentages of positive p53 positive cells found in NPC specimens was taken for the purpose of designating the criterion of p53 overexpression. And then, the correlation of p53 overexpression with MI and TI was made by statistical analysis. Results: Because statistically significant difference appeared at the criterion of 20%, the p53 overexpression of NPC was defined as≥20% of positive cells found. The p53 overexpression thus could be detected in 37 out of 43 NPCs, reaching 86.05% (37/43). The mean MI (1.87± 1.78/HPF) of 37 NPCs with p53 overexpression was significantly higher than that (0.76± 0.63/HPF) of 6 NPCs without p53 overexpression, the P value being <0.05. However, there was no statistical difference between the mean TI (24.50± 26.66HPF) of 37 NPCs with p53 overexpression and TI (23.17± 25.30/HPF) of 6 NPCs without p53 overexpression. Conclusions: p53 overexpression of NPC could be designated by ≥20% of positive neoplastic cells found in pretreated NPC specimens, and the rate of which reached 86.05% (37/43). The overexpressed p53 could enhance cell proliferative activity in pretreated NPCs represented by increasing of MI, but showed no effect on neoplastic cell apoptosis.

  19. Inhibition of laminin-5 production in breast epithelial cells by overexpression of p300.

    Science.gov (United States)

    Miller, K A; Chung, J; Lo, D; Jones, J C; Thimmapaya, B; Weitzman, S A

    2000-03-17

    The transcriptional coactivator p300 is essential for normal embryonic development and cellular differentiation. We have been studying the role of p300 in the transcription of a variety of genes, and we became interested in the role of this coactivator in the transcription of genes important in breast epithelial cell biology. From MCF-10A cells (spontaneously immortalized, nontransformed human breast epithelial cells), we developed cell lines that stably overexpress p300. These p300-overexpressing cells displayed reduced adhesion to culture dishes and were found to secrete an extracellular matrix deficient in laminin-5. Laminin-5 is the major extracellular matrix component produced by breast epithelium. Immunofluorescence studies, as well as experiments using normal matrix, confirmed that the decreased adhesion of p300-overexpressing cells is due to laminin-5-deficient extracellular matrix and not due to loss of laminin-5 receptors. Northern blots revealed markedly decreased levels of expression of two of the genes (designated LAMA3 and LAMC2) encoding the alpha3 and gamma2 chains of the laminin-5 heterotrimer in the cells that overexpress p300, whereas LAMB3 mRNA, encoding the third or beta3 chain of laminin-5, was not markedly reduced. Transient transfection experiments with a vector containing a murine LAMA3 promoter demonstrate that overexpressing p300 down-regulates the LAMA3 promoter. In summary, overexpression of p300 leads to down-regulation of laminin-5 production in breast epithelial cells, resulting in decreased adhesion. PMID:10713141

  20. Synergistic interaction between selective drugs in cell populations models.

    Directory of Open Access Journals (Sweden)

    Victoria Doldán-Martelli

    Full Text Available The design of selective drugs and combinatorial drug treatments are two of the main focuses in modern pharmacology. In this study we use a mathematical model of chimeric ligand-receptor interaction to show that the combination of selective drugs is synergistic in nature, providing a way to gain optimal selective potential at reduced doses compared to the same drugs when applied individually. We use a cell population model of proliferating cells expressing two different amounts of a target protein to show that both selectivity and synergism are robust against variability and heritability in the cell population. The reduction in the total drug administered due to the synergistic performance of the selective drugs can potentially result in reduced toxicity and off-target interactions, providing a mechanism to improve the treatment of cell-based diseases caused by aberrant gene overexpression, such as cancer and diabetes.

  1. Mipu1 Overexpression Protects Macrophages from oxLDL-Induced Foam Cell Formation and Cell Apoptosis

    OpenAIRE

    Qu, Shun-Lin; Fan, Wen-Jing; Zhang, Chi; Guo, Fang; Han, Dan; Pan, Wen-Jun; Li, Wei; Feng, Da-Ming; JIANG, ZHI-SHENG

    2014-01-01

    Mipu1 (myocardial ischemic preconditioning upregulated protein 1) is a novel N-terminal Kruppel-associated box (KRAB)/C2H2 zinc finger superfamily protein, that displays a powerful effect in protecting H9c2 cells from oxidative stress-induced cell apoptosis. The present study aims to investigate the effect of Mipu1 overexpression on oxidized low-density lipoprotein (oxLDL)-induced foam cell formation, cell apoptosis, and its possible mechanisms. New Zealand healthy rabbits were used to establ...

  2. Overexpression of long non-coding RNA PVT1 in ovarian cancer cells promotes cisplatin resistance by regulating apoptotic pathways.

    Science.gov (United States)

    Liu, Enling; Liu, Zheng; Zhou, Yuxiu; Mi, Ruoran; Wang, Dehua

    2015-01-01

    Ovarian cancer is the most lethal gynecologic malignancy. Cisplatin is a very effective cancer chemotherapy drug, but cisplatin resistance is a crucial problem of therapy failure. Overexpression of PVT1 has been demonstrated in ovarian cancer. The mRNA level of PVT1 in ovarian cancer tissues of cisplatin-resistant patients and cisplatin-sensitive patients, cisplatin-resistant cells SKOV-3/DDP and A2780/DDP, cisplatin-sensitive cells SKOV-3 and A2780 were determined by qRT-PCR. The influence of the knockdown or overexpression of PVT1 on cisplatin resistance was measured by measuring the cytotoxicity of cisplatin and the apoptotic rate of ovarian cancer cells was detected by CCK-8 assay and flow cytometry, respectively. The mRNA levels and protein expression of TGF-β1, Smad4, p-Smad4 and Caspase-3 in apoptotic pathways were determined. The mRNA level of PVT1 was significantly higher in ovarian cancer tissues of cisplatin-resistant patients and cisplatin-resistant cells. SKOV-3/DDP and A2780/DDP cell viability and the percentage of apoptotic cells after transfection with PVT-1 siRNA and treated with cisplatin was markedly lower and higher than the control, respectively. Moreover, the overexpression of PVT1 exhibited the anti-apoptotic property in SKOV-3 and A2780 cells after transfection with LV-PVT1-GFP and treated with cisplatin. The mRNA levels and protein expression of TGF-β1, p-Smad4 and Caspase-3 were much higher in cisplatin-resistant cells transfected with siPVT1. Overexpression of LncRNA PVT1 in ovarian cancer promotes cisplatin resistance by regulating apoptotic pathways. PMID:26884974

  3. relA over-expression reduces tumorigenicity and activates apoptosis in human cancer cells

    OpenAIRE

    Ricca, A; Biroccio, A; Trisciuoglio, D; M. Cippitelli; Zupi, G.; Bufalo, D Del

    2001-01-01

    We previously demonstrated that bcl-2 over-expression increases the malignant behaviour of the MCF7 ADR human breast cancer cell line and enhances nuclear factor-kappa B (NF-k B) transcriptional activity. Here, we investigated the direct effect of increased NF-k B activity on the tumorigenicity of MCF7 ADR cells by over-expressing the NF-k B subunit relA/p65. Surprisingly, our results demonstrated that over-expression of relA determines a considerable reduction of the tumorigenic ability in n...

  4. Overexpression of engulfment and cell motility 1 promotes cell invasion and migration of hepatocellular carcinoma.

    Science.gov (United States)

    Jiang, Jiarui; Liu, Guoqing; Miao, Xiongying; Hua, Songwen; Zhong, Dewu

    2011-05-01

    Engulfment and cell motility 1 (Elmo1) has been linked to the invasive phenotype of glioma cells. The use of Elmo1 inhibitors is currently being evaluated in hepato-cellular carcinoma (HCC), but the molecular mechanisms of their therapeutic effect have yet to be determined. Elmo1 expression in HCC tissue samples from 131 cases and in 5 HCC cell lines was determined by immunohistochemistry, quantitative RT-PCR and Western blotting. To functionally characterize Elmo1 in HCC, Elmo1 expression in the HCCLM3 cell line was blocked by siRNA. Cell migration was measured by wound healing and transwell migration assays in vitro. Elmo1 overexpression was significantly correlated with cell invasion and the poor prognosis of HCC. Elmo1-siRNA-treated HCCLM3 cells demonstrated a reduction in cell migration. The present study demonstrated for the first time that the suppression of Elmo1 expression inhibits cell invasion in HCC. PMID:22977532

  5. Overexpression of Hsp27 affects the metastatic phenotype of human melanoma cells in vitro

    OpenAIRE

    Aldrian, Silke; Trautinger, Franz; Fröhlich, Ilse; Berger, Walter; Micksche, Michael; Kindas-Mügge, Ingela

    2002-01-01

    Overexpression of the small heat shock protein Hsp27 has been shown by us to inhibit the in vitro proliferation rate and to delay tumor development of a human melanoma cell line (A375) in nude mice. We hypothesized that Hsp27 may influence the neoplastic phenotype. In the present study Hsp27 transfectants from this cell line were analyzed for various cellular aspects associated with the metastatic process. We found that Hsp27-overexpressing clones exhibited an altered cellular morphology as c...

  6. Bioactivation of mitomycin antibiotics by aerobic and hypoxic Chinese hamster ovary cells overexpressing DT-diaphorase.

    Science.gov (United States)

    Belcourt, M F; Hodnick, W F; Rockwell, S; Sartorelli, A C

    1996-06-28

    DT-Diaphorase catalyzes a two-electron reduction of mitomycin C (MC) and porfiromycin (POR) to reactive species. Many cell lines that overexpress DT-diaphorase and are sensitive to the mitomycins are protected from the aerobic cytotoxicity of these drugs by the DT-diaphorase inhibitor dicumarol. The cytoprotective properties of this relatively non-specific inhibitor, however, vanish under hypoxic conditions. To ascertain the role of DT-diaphorase in mitomycin bioactivation and cytotoxicity in living cells, a rat liver DT-diaphorase cDNA was transfected into Chinese hamster ovary cells. MC was equitoxic to the parental cells under oxygenated and hypoxic conditions. In contrast, POR was less toxic than MC to these cells under aerobic conditions, but significantly more toxic than MC under hypoxia. Two DT-diaphorase-transfected clones displayed increases in DT-diaphorase activity of 126- and 133-fold over parental cells. The activities of other oxidoreductases implicated in mitomycin bioreduction were unchanged. MC was more toxic to both DT-diaphorase-transfected lines than to parental cells; the toxicity of MC to the transfected lines was similar in air and hypoxia. POR was also more toxic to the DT-diaphorase-elevated clones than to parental cells under oxygenated conditions. Under hypoxia, however, the toxicity of POR to the transfected clones was unchanged from that of parental cells. The findings implicate DT-diaphorase in mitomycin bioactivation in living cells, but suggest that this enzyme does not contribute to the differential toxicity of MC or POR in air and hypoxia. PMID:8687482

  7. Mipu1 overexpression protects macrophages from oxLDL-induced foam cell formation and cell apoptosis.

    Science.gov (United States)

    Qu, Shun-Lin; Fan, Wen-Jing; Zhang, Chi; Guo, Fang; Han, Dan; Pan, Wen-Jun; Li, Wei; Feng, Da-Ming; Jiang, Zhi-Sheng

    2014-12-01

    Mipu1 (myocardial ischemic preconditioning upregulated protein 1) is a novel N-terminal Kruppel-associated box (KRAB)/C2H2 zinc finger superfamily protein, that displays a powerful effect in protecting H9c2 cells from oxidative stress-induced cell apoptosis. The present study aims to investigate the effect of Mipu1 overexpression on oxidized low-density lipoprotein (oxLDL)-induced foam cell formation, cell apoptosis, and its possible mechanisms. New Zealand healthy rabbits were used to establish atherosclerosis model, and serum levels of triglycerides, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol were detected by an automatic biochemical analyzer. Sudan IV staining was used to detect atherosclerotic lesions. The RAW264.7 macrophage cell line was selected as the experimental material. Oil red O staining, high-performance liquid chromatography, and Dil-labeled lipoprotein were used to detect cholesterol accumulation qualitatively and quantitatively, respectively. Flow cytometry was used to determine cell apoptosis. Real-time quantitative polymerase chain reaction (PCR) was used to detect the mRNA expression of the main proteins that are associated with the transport of cholesterol, such as ABCA1, ABCG1, SR-BI, and CD36. Western blot analysis was used to detect the protein expression of Mipu1. There were atherosclerotic lesions in the high-fat diet group with Sudan IV staining. High-fat diet decreased Mipu1 expression and increased CD36 expression significantly at the 10th week compared with standard-diet rabbits. Mipu1 overexpression decreased oxLDL-induced cholesterol accumulation, oxLDL uptake, cell apoptosis, and cleaved caspase-3. Mipu1 overexpression inhibited the oxLDL-induced CD36 mRNA and protein expression, but it did not significantly inhibit the mRNA expression of ABCA1, ABCG1, and SR-BI. Mipu1 overexpression inhibits oxLDL-induced foam cell formation and cell apoptosis. Mipu1 overexpression reduces the

  8. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  9. Overexpression of long non-coding RNA PVT1 in ovarian cancer cells promotes cisplatin resistance by regulating apoptotic pathways

    OpenAIRE

    Liu, Enling; Liu, Zheng; Zhou, Yuxiu; MI, RUORAN; Wang, Dehua

    2015-01-01

    Ovarian cancer is the most lethal gynecologic malignancy. Cisplatin is a very effective cancer chemotherapy drug, but cisplatin resistance is a crucial problem of therapy failure. Overexpression of PVT1 has been demonstrated in ovarian cancer. The mRNA level of PVT1 in ovarian cancer tissues of cisplatin-resistant patients and cisplatin-sensitive patients, cisplatin-resistant cells SKOV-3/DDP and A2780/DDP, cisplatin-sensitive cells SKOV-3 and A2780 were determined by qRT-PCR. The influence o...

  10. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Li, E-mail: luli7300@126.com [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Wen-Hui [Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001 (China); Yan, Ba-Yi; Yang, Gui-Jiao [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Li, Ang [Department of Medicine, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Department of Anatomy, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Yang, Wu-Lin, E-mail: wulinyoung@163.com [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research - A*STAR (Singapore)

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  11. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    International Nuclear Information System (INIS)

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5

  12. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  13. S100A4 is frequently overexpressed in lung cancer cells and promotes cell growth and cell motility

    International Nuclear Information System (INIS)

    Highlights: • We observed frequent overexpression of S100A4 in lung cancer cell lines. • Knockdown of S100A4 suppressed proliferation in lung cancer cells. • Forced expression of S100A4 accelerated cell motility in lung cancer cells. • PRDM2 was found to be one of the downstream suppressed genes of S100A4. - Abstract: S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In this study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer

  14. S100A4 is frequently overexpressed in lung cancer cells and promotes cell growth and cell motility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Na; Sato, Daisuke; Saiki, Yuriko; Sunamura, Makoto; Fukushige, Shinichi; Horii, Akira, E-mail: horii@med.tohoku.ac.jp

    2014-05-09

    Highlights: • We observed frequent overexpression of S100A4 in lung cancer cell lines. • Knockdown of S100A4 suppressed proliferation in lung cancer cells. • Forced expression of S100A4 accelerated cell motility in lung cancer cells. • PRDM2 was found to be one of the downstream suppressed genes of S100A4. - Abstract: S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In this study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.

  15. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain.

    Science.gov (United States)

    Palmieri, Diane; Bronder, Julie L; Herring, Jeanne M; Yoneda, Toshiyuki; Weil, Robert J; Stark, Andreas M; Kurek, Raffael; Vega-Valle, Eleazar; Feigenbaum, Lionel; Halverson, Douglas; Vortmeyer, Alexander O; Steinberg, Seth M; Aldape, Kenneth; Steeg, Patricia S

    2007-05-01

    Retrospective studies of breast cancer patients suggest that primary tumor Her-2 overexpression or trastuzumab therapy is associated with a devastating complication: the development of central nervous system (brain) metastases. Herein, we present Her-2 expression trends from resected human brain metastases and data from an experimental brain metastasis assay, both indicative of a functional contribution of Her-2 to brain metastatic colonization. Of 124 archival resected brain metastases from breast cancer patients, 36.2% overexpressed Her-2, indicating an enrichment in the frequency of tumor Her-2 overexpression at this metastatic site. Using quantitative real-time PCR of laser capture microdissected epithelial cells, Her-2 and epidermal growth factor receptor (EGFR) mRNA levels in a cohort of 12 frozen brain metastases were increased up to 5- and 9-fold, respectively, over those of Her-2-amplified primary tumors. Co-overexpression of Her-2 and EGFR was also observed in a subset of brain metastases. We then tested the hypothesis that overexpression of Her-2 increases the colonization of breast cancer cells in the brain in vivo. A subclone of MDA-MB-231 human breast carcinoma cells that selectively metastasizes to brain (231-BR) overexpressed EGFR; 231-BR cells were transfected with low (4- to 8-fold) or high (22- to 28-fold) levels of Her-2. In vivo, in a model of brain metastasis, low or high Her-2-overexpressing 231-BR clones produced comparable numbers of micrometastases in the brain as control transfectants; however, the Her-2 transfectants yielded 3-fold greater large metastases (>50 microm(2); P < 0.001). Our data indicate that Her-2 overexpression increases the outgrowth of metastatic tumor cells in the brain in this model system. PMID:17483330

  16. Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway.

    Science.gov (United States)

    Kawiak, Anna; Zawacka-Pankau, Joanna; Lojkowska, Ewa

    2012-04-27

    Breast cancer is the leading cause of death-related cancers in women. Approximately 30% of breast cancers overexpress the Her2 oncogene, which is associated with a poor prognosis and increased resistance to chemotherapy. Plumbagin (1), a constituent of species in the plant genera Drosera and Plumbago, displays antineoplastic activity toward various cancers. The present study was aimed at determining the anticancer potential of 1 toward Her2-overexpressing breast cancer cells and defining the mode of cell death induced in these cells. The results showed that 1 exhibited high antiproliferative activity toward the Her2-overexpressing cell lines SKBR3 and BT474. The antiproliferative activity of 1 was associated with apoptosis-mediated cell death, as revealed by caspase activation and an increase in the sub-G1 fraction of the cell cycle. Compound 1 increased the levels of the proapoptotic Bcl-2 family of proteins and decreased the level of the antiapoptotic Bcl-2 protein in SKBR3 and BT474 cells. Thus, these findings indicate that 1 induces apoptosis in Her2-overexpressing breast cancers through the mitochondrial-mediated pathway and suggest its potential for further investigation for the treatment of Her2-overexpressing breast cancer. PMID:22512718

  17. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells

    DEFF Research Database (Denmark)

    Miyake, K; Mickley, L; Litman, Thomas;

    1999-01-01

    Reports of multiple distinct mitoxantrone-resistant sublines without overexpression of P-glycoprotein or the multidrug-resistance associated protein have raised the possibility of the existence of another major transporter conferring drug resistance. In the present study, a cDNA library from mito...

  18. Improved antibody production in Chinese hamster ovary cells by ATF4 overexpression

    OpenAIRE

    Haredy, Ahmad M.; Nishizawa, Akitoshi; Honda, Kohsuke; Ohya, Tomoshi; Ohtake, Hisao; Omasa, Takeshi

    2013-01-01

    To improve antibody production in Chinese hamster ovary (CHO) cells, the humanized antibody-producing CHO DP-12-SF cell line was transfected with the gene encoding activating transcription factor 4 (ATF4), a central factor in the unfolded protein response. Overexpression of ATF4 significantly enhanced the production of antibody in the CHO DP-12-SF cell line. The specific IgG production rate of in the ATF4-overexpressing CHO-ATF4-16 cells was approximately 2.4 times that of the parental host c...

  19. Paclitaxel-doxorubicin sequence is more effective in breast cancer cells with heat shock protein 27 overexpression

    Institute of Scientific and Technical Information of China (English)

    SHI Peng; WANG Ming-ming; JIANG Li-yu; LIU Huan-tao; SUN Jing-zhong

    2008-01-01

    Background Cancer cells with overexpression of heat shock protein 27 (HSP27) are resistant to chemotherapeutic drug doxorubicin (Dox). Paclitaxel (Pacl) was reported to suppress HSP27 expression in ovarian and uterine cancer cells. The purposes of this study were to investigate whether Pacl inhibits the expression of HSP27 in breast cancer cells, whether Pacl can sensitize breast cancer cells with HSP27 overexpression to Dox, and to define a more effective schedule for the combination of Dox with Pacl.Methods The HSP27 high-expressing human breast cancer cell lines, MCF-7 and MDA-MB-435, and the HSP27 low-expressing cell line, MDA-MB-231, were used in this study. The level of HSP27, topoisomerase (Topo) Ha and β expression were assessed by Western blotting. The cytotoxic activities of Dox, Pacl and combination of these two drugs were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometric assays. Results Pacl (0.1 umol/L) inhibited HSP27 expression by approximately 2-fold in MCF-7 and MDA-MB-435 cells, while up-regulating the level of topo lla and β. In contrast, expression of HSP27 in MDA-MB-231 did not change significantly following Pacl treatment. There were synergistic effects in both treatment sequences (Pacl-Dox and Dox-Pacl) when Pacl was combined with Dox. Compared with those treated with the Dox-Pacl sequence, the Pacl-Dox sequence had a stronger effect in cancer cells with HSP27 overexpression, as MCF-7 and MDA-MB-435 treated with the Pacl-Dox sequence had lower viabilities and a higher apoptotic rate.Conclusions Paclitaxel significantly decreases the level of HSP27 in breast cancer cells overexpressing HSP27. In combination therapies, the Pacl-Dox sequence is more effective in clearing breast cancer cells with high HSP27 expression compared with the Dox-Pacl sequence.

  20. Short-form RON overexpression augments benzyl isothiocyanate-induced apoptosis in human breast cancer cells.

    Science.gov (United States)

    Sehrawat, Anuradha; Singh, Shivendra V

    2016-05-01

    Chemoprevention of breast cancer is feasible with the use of non-toxic phytochemicals from edible and medicinal plants. Benzyl isothiocyanate (BITC) is one such plant compound that prevents mammary cancer development in a transgenic mouse model in association with tumor cell apoptosis. Prior studies from our laboratory have demonstrated a role for reactive oxygen species (ROS)-dependent Bax activation through the intermediary of c-Jun N-terminal kinases in BITC-induced apoptosis in human breast cancer cells. The present study demonstrates that truncated Recepteur d'Origine Nantais (sfRON) is a novel regulator of BITC-induced apoptosis in breast cancer cells. Overexpression of sfRON in MCF-7 and MDA-MB-361 cells resulted in augmentation of BITC-induced apoptosis when the apoptotic fraction was normalized against vehicle control for each cell type (untransfected and sfRON overexpressing cells). ROS generation and G2 /M phase cell cycle arrest resulting from BITC treatment were significantly attenuated in sfRON overexpressing cells after normalization with vehicle control for each cell type. Increased BITC-induced apoptosis by sfRON overexpression was independent of c-Jun N-terminal kinase or p38 mitogen-activated protein kinase hyperphosphorylation. On the other hand, activation of Bax and Bak following BITC exposure was markedly more pronounced in sfRON overexpressing cells than in controls. sfRON overexpression also augmented apoptosis induction by structurally diverse cancer chemopreventive phytochemicals including withaferin A, phenethyl isothiocyanate, and D,L-sulforaphane. In conclusion, the present study provides novel mechanistic insights into the role of sfRON in apoptosis regulation by BITC and other electrophilic phytochemicals. © 2015 Wiley Periodicals, Inc. PMID:25857724

  1. miRNAs modulate the drug response of tumor cells

    Institute of Scientific and Technical Information of China (English)

    WU XueMei; XIAO HuaSheng

    2009-01-01

    Chemotherapy is one of the major treatments of malignant carcinomas. However, its efficiency is af-fected by both intrinsic and acquired resistance to anticancer drugs. The cellular mechanisms of drug resistance include the overexpression of energy-dependent transporters that eject anticancer drugs from cells such as p-glycoprotein and multidrug resistance related protein (MRP), the mutation of drug targets, the activation of DNA repair pathways, the defects in cellular death pathways and so on. The genetic and epigenetic changes of these genes can lead to cancer drug resistance. Among these mechanisms, microRNAs (miRNAs) which are critical and essential for many important processes such as development, differentiation, and even carcinogenesis have been reported to regulate the chemo-sensitivity of tumor cells. In this paper we briefly review the relationship between miRNA and cancer drug resistance.

  2. miRNAs modulate the drug response of tumor cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Chemotherapy is one of the major treatments of malignant carcinomas. However,its efficiency is affected by both intrinsic and acquired resistance to anticancer drugs. The cellular mechanisms of drug resistance include the overexpression of energy-dependent transporters that eject anticancer drugs from cells such as p-glycoprotein and multidrug resistance related protein (MRP),the mutation of drug targets,the activation of DNA repair pathways,the defects in cellular death pathways and so on. The genetic and epigenetic changes of these genes can lead to cancer drug resistance. Among these mechanisms,microRNAs (miRNAs) which are critical and essential for many important processes such as development,differentiation,and even carcinogenesis have been reported to regulate the chemosen-sitivity of tumor cells. In this paper we briefly review the relationship between miRNA and cancer drug resistance.

  3. Aire-Overexpressing Dendritic Cells Induce Peripheral CD4+ T Cell Tolerance

    Science.gov (United States)

    Li, Dongbei; Li, Haijun; Fu, Haiying; Niu, Kunwei; Guo, Yantong; Guo, Chuan; Sun, Jitong; Li, Yi; Yang, Wei

    2015-01-01

    Autoimmune regulator (Aire) can promote the ectopic expression of peripheral tissue-restricted antigens (TRAs) in thymic medullary epithelial cells (mTECs), which leads to the deletion of autoreactive T cells and consequently prevents autoimmune diseases. However, the functions of Aire in the periphery, such as in dendritic cells (DCs), remain unclear. This study’s aim was to investigate the effect of Aire-overexpressing DCs (Aire cells) on the functions of CD4+ T cells and the treatment of type 1 diabetes (T1D). We demonstrated that Aire cells upregulated the mRNA levels of the tolerance-related molecules CD73, Lag3, and FR4 and the apoptosis of CD4+ T cells in STZ-T1D mouse-derived splenocytes. Furthermore, following insulin stimulation, Aire cells decreased the number of CD4+ IFN-γ+ T cells in both STZ-T1D and WT mouse-derived splenocytes and reduced the expression levels of TCR signaling molecules (Ca2+ and p-ERK) in CD4+ T cells. We observed that Aire cells-induced CD4+ T cells could delay the development of T1D. In summary, Aire-expressing DCs inhibited TCR signaling pathways and decreased the quantity of CD4+IFN-γ+ autoreactive T cells. These data suggest a mechanism for Aire in the maintenance of peripheral immune tolerance and provide a potential method to control autoimmunity by targeting Aire. PMID:26729097

  4. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    International Nuclear Information System (INIS)

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  5. Cyclin-dependent kinase inhibitor 3 is overexpressed in hepatocellular carcinoma and promotes tumor cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Chunyang; Xie, Haiyang; Zhou, Lin; Zhou, Wuhua; Zhang, Wu; Ding, Songming; Wei, Bajin; Yu, Xiaobo; Su, Rong [Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province (China); Zheng, Shusen, E-mail: shusenzheng@zju.edu.cn [Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer CDKN3 is commonly overexpressed in HCC and is associated with poor clinical outcome. Black-Right-Pointing-Pointer Overexpression of CDKN3 could stimulate the proliferation of HCC cells by promoting G1/S transition. Black-Right-Pointing-Pointer CDKN3 could inhibit the expression of p21 in HCC cells. Black-Right-Pointing-Pointer Overexpression of CDKN3 has no effect on apoptosis and invasion of HCC cells. Black-Right-Pointing-Pointer We identified 61 genes co-expressed with CDKN3, and BIRC5 was located at the center of the co-expression network. -- Abstract: Cyclin-dependent kinase inhibitor 3 (CDKN3) belongs to the protein phosphatases family and has a dual function in cell cycling. The function of this gene has been studied in several kinds of cancers, but its role in human hepatocellular carcinoma (HCC) remains to be elucidated. In this study, we found that CDKN3 was frequently overexpressed in both HCC cell lines and clinical samples, and this overexpression was correlated with poor tumor differentiation and advanced tumor stage. Functional studies showed that overexpression of CDKN3 could promote cell proliferation by stimulating G1-S transition but has no impact on cell apoptosis and invasion. Microarray-based co-expression analysis identified a total of 61 genes co-expressed with CDKN3, with most of them involved in cell proliferation, and BIRC5 was located at the center of CDKN3 co-expression network. These results suggest that CDKN3 acts as an oncogene in human hepatocellular carcinoma and antagonism of CDKN3 may be of interest for the treatment of HCC.

  6. Lead Optimization of 2-Cyclohexyl-N-[(Z-(3-methoxyphenyl/3-hydroxyphenyl methylidene]hydrazinecarbothioamides for Targeting the HER-2 Overexpressed Breast Cancer Cell Line SKBr-3

    Directory of Open Access Journals (Sweden)

    Mashooq A. Bhat

    2015-10-01

    Full Text Available Lead derivatives of 2-cyclohexyl-N-[(Z-(3-methoxyphenyl/3-hydroxyphenyl methylidene]hydrazinecarbothioamides 1–18 were synthesized, characterized and evaluated in vitro against HER-2 overexpressed breast cancer cell line SKBr-3. All the compounds showed activity against HER-2 overexpressed SKBr-3 cells with IC50 = 17.44 ± 0.01 µM to 53.29 ± 0.33 µM. (2Z-2-(3-Hydroxybenzylidene-N-(3-methoxyphenylhydrazinecarbothioamide (12, IC50 = 17.44 ± 0.01 µM was found to be most potent compound of this series targeting HER-2 overexpressed breast cancer cells compared to the standard drug 5-fluorouracil (5-FU (IC50 = 38.58 ± 0.04 µM. Compound 12 inhibited the cellular proliferation via DNA degradation.

  7. Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide

    International Nuclear Information System (INIS)

    Epidermal growth factor receptor (EGFR), a cellular transmembrane receptor, plays a key role in cell proliferation and is linked to a poor prognosis in various human cancers. In this study, we constructed Cetuximab-immunomicelles in which the anti-EGFR monoclonal antibody was linked to poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG–PCL) nanomicelles that were loaded with doxorubicin (DOX) and superparamagnetic iron oxide (SPIO). The specific interactions between EGFR-overexpressing tumor cells (A431) and immunomicelles were observed using confocal laser scanning microscopy (CLSM) and flow cytometry. Furthermore, the capacity of transporting SPIO into tumor cells using these immunomicelles was evaluated with a 1.5 T clinical magnetic resonance imaging (MRI) scanner. It was found that the acquired MRI T2 signal intensity of A431 cells that were treated with the SPIO-loaded and antibody-functionalized micelles decreased significantly. Using the thiazolyl blue tetrazolium bromide (MTT) assay, we also demonstrated that the immunomicelles inhibited cell proliferation more effectively than their nontargeting counterparts. Our results suggest that Cetuximab-immunomicelles are a useful delivery vehicle for DOX and SPIO to EGFR-overexpressing tumor cells in vitro and that Cetuximab-immunomicelles can serve as a MRI-visible and targeted drug delivery agent for better tumor imaging and therapy.

  8. Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Caihong Zhou

    2013-02-01

    Full Text Available TTRAP is a multi-functional protein that is involved in multipleaspects of cellular functions including cell proliferation,apoptosis and the repair of DNA damage. Here, we demonstratedthat the lentivirus-mediated overexpression of TTRAPsignificantly inhibited cell growth and induced apoptosis inosteosarcoma cells. The ectopic TTRAP suppressed the growthand colony formation capacity of two osteosarcoma cell lines,U2OS and Saos-2. Cell apoptosis was induced in U2OS cellsand the cell cycle was arrested at G2/M phase in Saos-2 cells.Exogenous expression of TTRAP in serum-starved U2OS andSaos-2 cells induced an increase in caspase-3/-7 activity and adecrease in cyclin B1 expression. In comparison with wild-typeTTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesteraseactivity of TTRAP, in particular TTRAPE152A, showed decreasedinhibitory activity on cell growth. These results may aid inclarifying the physiological functions of TTRAP, especially itsroles in the regulation of cell growth and tumorigenesis. [BMBReports 2013; 46(2: 113-118

  9. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells12

    Science.gov (United States)

    Wittig-Blaich, Stephanie M; Kacprzyk, Lukasz A; Eismann, Thorsten; Bewerunge-Hudler, Melanie; Kruse, Petra; Winkler, Eva; Strauss, Wolfgang S L; Hibst, Raimund; Steiner, Rudolf; Schrader, Mark; Mertens, Daniel; Sültmann, Holger; Wittig, Rainer

    2011-01-01

    The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases. PMID:21750652

  10. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Stephanie M Wittig-Blaich

    2011-07-01

    Full Text Available The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases.

  11. T-DM1, a novel antibody–drug conjugate, is highly effective against primary HER2 overexpressing uterine serous carcinoma in vitro and in vivo

    International Nuclear Information System (INIS)

    Amplification of c-erbB2 has been reported in over 30% of uterine serous carcinoma (USC) and found to confer poor survival because of high proliferation and increased resistance to therapy. In this study, we evaluated for the first time Trastuzumab emtansine (T-DM1), a novel antibody–drug conjugate, against multiple epidermal growth factor receptor-2 (HER2)-positive USC cells in vitro followed by developing a supportive in vivo model. Fifteen primary USC cell lines were assessed by immunohistochemistry (IHC) and flow cytometry for HER2 protein expression. C-erbB2 gene amplification was evaluated using fluorescent in situ hybridization. Sensitivity to T-DM1 and trastuzumab (T)-induced antibody-dependent cell-mediated cytotoxicity was evaluated in 5-h chromium release assays. T-DM1 and T cytostatic and apoptotic activities were evaluated using flow-cytometry-based proliferation assays. In vivo activity of T-DM1 versus T in USC xenografts in SCID mice was also evaluated. High levels of HER2 protein overexpression and HER2 gene amplification were detected in 33% of USC cell lines. T-DM1 was considerably more effective than trastuzumab in inhibiting cell proliferation and in causing apoptosis (P = 0.004) of USC showing HER2 overexpression. Importantly, T-DM1 was highly active at reducing tumor formation in vivo in USC xenografts overexpressing HER2 (P = 0.04) and mice treated with TDM-1 had significantly longer survival when compared to T-treated mice and control mice (P ≤ 0.0001). T-DM1 shows promising antitumor effect in HER2-positive USC cell lines and USC xenografts and its activity is significantly higher when compared to T. T-DM1 may represent a novel treatment option for HER2-positive USC patients with disease refractory to trastuzumab and traditional chemotherapy

  12. T-DM1, a novel antibody–drug conjugate, is highly effective against primary HER2 overexpressing uterine serous carcinoma in vitro and in vivo

    Science.gov (United States)

    English, Diana P; Bellone, Stefania; Schwab, Carlton L; Bortolomai, Ileana; Bonazzoli, Elena; Cocco, Emiliano; Buza, Natalia; Hui, Pei; Lopez, Salvatore; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D

    2014-01-01

    Amplification of c-erbB2 has been reported in over 30% of uterine serous carcinoma (USC) and found to confer poor survival because of high proliferation and increased resistance to therapy. In this study, we evaluated for the first time Trastuzumab emtansine (T-DM1), a novel antibody–drug conjugate, against multiple epidermal growth factor receptor-2 (HER2)-positive USC cells in vitro followed by developing a supportive in vivo model. Fifteen primary USC cell lines were assessed by immunohistochemistry (IHC) and flow cytometry for HER2 protein expression. C-erbB2 gene amplification was evaluated using fluorescent in situ hybridization. Sensitivity to T-DM1 and trastuzumab (T)-induced antibody-dependent cell-mediated cytotoxicity was evaluated in 5-h chromium release assays. T-DM1 and T cytostatic and apoptotic activities were evaluated using flow-cytometry-based proliferation assays. In vivo activity of T-DM1 versus T in USC xenografts in SCID mice was also evaluated. High levels of HER2 protein overexpression and HER2 gene amplification were detected in 33% of USC cell lines. T-DM1 was considerably more effective than trastuzumab in inhibiting cell proliferation and in causing apoptosis (P = 0.004) of USC showing HER2 overexpression. Importantly, T-DM1 was highly active at reducing tumor formation in vivo in USC xenografts overexpressing HER2 (P = 0.04) and mice treated with TDM-1 had significantly longer survival when compared to T-treated mice and control mice (P ≤ 0.0001). T-DM1 shows promising antitumor effect in HER2-positive USC cell lines and USC xenografts and its activity is significantly higher when compared to T. T-DM1 may represent a novel treatment option for HER2-positive USC patients with disease refractory to trastuzumab and traditional chemotherapy. PMID:24890382

  13. T-DM1, a novel antibody-drug conjugate, is highly effective against primary HER2 overexpressing uterine serous carcinoma in vitro and in vivo.

    Science.gov (United States)

    English, Diana P; Bellone, Stefania; Schwab, Carlton L; Bortolomai, Ileana; Bonazzoli, Elena; Cocco, Emiliano; Buza, Natalia; Hui, Pei; Lopez, Salvatore; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D

    2014-10-01

    Amplification of c-erbB2 has been reported in over 30% of uterine serous carcinoma (USC) and found to confer poor survival because of high proliferation and increased resistance to therapy. In this study, we evaluated for the first time Trastuzumab emtansine (T-DM1), a novel antibody-drug conjugate, against multiple epidermal growth factor receptor-2 (HER2)-positive USC cells in vitro followed by developing a supportive in vivo model. Fifteen primary USC cell lines were assessed by immunohistochemistry (IHC) and flow cytometry for HER2 protein expression. C-erbB2 gene amplification was evaluated using fluorescent in situ hybridization. Sensitivity to T-DM1 and trastuzumab (T)-induced antibody-dependent cell-mediated cytotoxicity was evaluated in 5-h chromium release assays. T-DM1 and T cytostatic and apoptotic activities were evaluated using flow-cytometry-based proliferation assays. In vivo activity of T-DM1 versus T in USC xenografts in SCID mice was also evaluated. High levels of HER2 protein overexpression and HER2 gene amplification were detected in 33% of USC cell lines. T-DM1 was considerably more effective than trastuzumab in inhibiting cell proliferation and in causing apoptosis (P = 0.004) of USC showing HER2 overexpression. Importantly, T-DM1 was highly active at reducing tumor formation in vivo in USC xenografts overexpressing HER2 (P = 0.04) and mice treated with TDM-1 had significantly longer survival when compared to T-treated mice and control mice (P ≤ 0.0001). T-DM1 shows promising antitumor effect in HER2-positive USC cell lines and USC xenografts and its activity is significantly higher when compared to T. T-DM1 may represent a novel treatment option for HER2-positive USC patients with disease refractory to trastuzumab and traditional chemotherapy. PMID:24890382

  14. Characterization of MCF mammary epithelial cells overexpressing the Arylhydrocarbon receptor (AhR

    Directory of Open Access Journals (Sweden)

    Matsumura Fumio

    2009-07-01

    Full Text Available Abstract Background Recent reports indicate the existence of breast cancer cells expressing very high levels of the Arylhydrocarbon receptor (AhR, a ubiquitous intracellular receptor best known for mediating toxic action of dioxin and related pollutants. Positive correlation between the degree of AhR overexpression and states of increasing transformation of mammary epithelial cells appears to occur in the absence of any exogenous AhR ligands. These observations have raised many questions such as why and how AhR is overexpressed in breast cancer and its physiological roles in the progression to advanced carcinogenic transformation. To address those questions, we hypothesized that AhR overexpression occurs in cells experiencing deficiencies in normally required estrogen receptor (ER signaling, and the basic role of AhR in such cases is to guide the affected cells to develop orchestrated cellular changes aimed at substituting the normal functions of ER. At the same time, the AhR serves as the mediator of the cell survival program in the absence of ER signaling. Methods We subjected two lines of Michigan Cancer Foundation (MCF mammary epithelial cells to 3 different types ER interacting agents for a number of passages and followed the changes in the expression of AhR mRNA. The resulting sublines were analyzed for phenotypical changes and unique molecular characteristics. Results MCF10AT1 cells continuously exposed to 17-beta-estradiol (E2 developed sub-lines that show AhR overexpression with the characteristic phenotype of increased proliferation, and distinct resistance to apoptosis. When these chemically selected cell lines were treated with a specific AhR antagonist, 3-methoxy-4-nitroflavone (MNF, both of the above abnormal cellular characteristics disappeared, indicating the pivotal role of AhR in expressing those cellular phenotypes. The most prominent molecular characteristics of these AhR overexpressing MCF cells were found to be

  15. Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells

    Institute of Scientific and Technical Information of China (English)

    Qi-huang JIN; Heng-yi HE; Yu-fang SHI; He LU; Xue-jun ZHANG

    2004-01-01

    AIM: To study the potential function of acetylcholinesterase (AChE) in apoptosis through overexpression of AChE in Normal Rat Kidney (NRK) cells. METHODS: AChE activity was detected by the method of Karnovsky and Roots. Activated caspase-3 was analyzed by Western blotting and immunofiurescence with antibody special to activated caspase-3 fragment. The expression plasmids were constructed in pcDNA3.1 containing AChE gene or a fragment of AChE antisense that were got from RT-PCR. Stable expression cell lines were selected by G418 in cells transfected by lipofection. AChE expression was analyzed by RT-PCR and Western blotting. The proliferation rates of transfected cells were examined by the growth curve and cloning efficiency. MTT assay was used to analyze the cell viability. RESULTS: The proliferation rate of the cells transfected with AChE was retarded and the cloning efficiency was lower (28.2 %±3.1% and 48.7 %±2.1%) than cells transfected with vector (56.1%±0.3 %) or AChE-antisense (77.7 %±2.2 %). After 2 d the various clone types were deprived of serum, the residue cell viability were 10.4 %±4.6 % and 12.6 %±6.7 % in the cells transfected with AChE, and 27.4 %±3.5 % in cells with vector, and 50.3 %±7.8 % in cells with AChE-antisense. CONCLUSION: During apoptosis, increase of AChE protein is to inhibit cell proliferation, and then to promote apoptosis in NRK cells.

  16. Overexpressed Genes/ESTs and Characterization of Distinct Amplicons on 17823 in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ayse E. Erson

    2001-01-01

    Full Text Available 17823 is a frequent site of gene amplification in breast cancer. Several lines of evidence suggest the presence of multiple amplicons on 17823. To characterize distinct amplicons on 17823 and localize putative oncogenes, we screened genes and expressed sequence tags (ESTs in existing physical and radiation hybrid maps for amplification and overexpression in breast cancer cell lines by semiquantitative duplex PCR, semiquantitative duplex RT-PCR, Southern blot, Northern blot analyses. We identified two distinct amplicons on 17823, one including TBX2 and another proximal region including RPS6KB1 (PS6K and MUL. In addition to these previously reported overexpressed genes, we also identified amplification and overexpression of additional uncharacterized genes and ESTs, some of which suggest potential oncogenic activity. In conclusion, we have further defined two distinct regions of gene amplification and overexpression on 17823 with identification of new potential oncogene candidates. Based on the amplification and overexpression patterns of known and as of yet unrecognized genes on 17823, it is likely that some of these genes mapping to the discrete amplicons function as oncogenes and contribute to tumor progression in breast cancer cells.

  17. Research of vitamin E succinate combined with paclitaxel on the apoptosis of Her-2 over-expressing breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Li Li; Tingting Yan; Yan Zhao; Qiuying Jiang

    2011-01-01

    Objective: The aim of this study was to detect apoptosis rates of Her-2 overexpression breast cancer cells, which were administrated with vitamin E succinate (VES) combined with paclitaxel at different dosages, or administrated alone; to discuss the mechanism of their actions. Methods: Using immunohistochemical method to detect Her-2 expression of MDA-MB-453 cells. Using TUNEL assay to detect apoptosis rates of MDA-MB-453 cells, with the concentrations at 10, 20 mg/L of VES and 50, 100 nmol/L of paclitaxel, and also combined together for 24 or 48 h. Then compared apoptosis action of various combinations. Results: The expression rate of 95% Her-2 was interval (63.32%, 69.60%); VES and paclitaxel both induced apoptosis of MDA-MB-453 cells, and it is dose to time dependence. It was strongest in apoptosis at 10 mg/L VES and 100 nmol/L paclitaxel in MDA-MB-453 cells 48 h later. Conclusion: VES and paclitaxel both induced apoptosis of MDA-MB-453 cells. It is stronger when the two drugs are administrated together. The mechanism is probably related to reduction of bcl-2 expression, so as to be more sensitive to paclitaxel. Synergistic effect is also possible for the two drugs influence tumor cells in different growing phases.

  18. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  19. Overexpression of Mitochondrial Sirtuins Alters Glycolysis and Mitochondrial Function in HEK293 Cells

    Science.gov (United States)

    Barbi de Moura, Michelle; Uppala, Radha; Zhang, Yuxun; Van Houten, Bennett; Goetzman, Eric S.

    2014-01-01

    SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak. PMID:25165814

  20. relA over-expression reduces tumorigenicity and activates apoptosis in human cancer cells

    Science.gov (United States)

    Ricca, A; Biroccio, A; Trisciuoglio, D; Cippitelli, M; Zupi, G; Bufalo, D Del

    2001-01-01

    We previously demonstrated that bcl-2 over-expression increases the malignant behaviour of the MCF7 ADR human breast cancer cell line and enhances nuclear factor-kappa B (NF-k B) transcriptional activity. Here, we investigated the direct effect of increased NF-k B activity on the tumorigenicity of MCF7 ADR cells by over-expressing the NF-k B subunit relA/p65. Surprisingly, our results demonstrated that over-expression of relA determines a considerable reduction of the tumorigenic ability in nude mice as indicated by the tumour take and the median time of tumour appearance. In vitro studies also evidenced a reduced cell proliferation and the activation of the apoptotic programme after relA over-expression. Apoptosis was associated with the production of reactive oxygen species, and the cleavage of the specific substrate Poly-ADP-ribose-polymerrase. Our data indicate that there is no general role for NF-k B in the regulation of apoptosis and tumorigenicity. In fact, even though inhibiting NF-k B activity has been reported to be lethal to tumour cells, our findings clearly suggest that an over-induction of nuclear NF-k B activity may produce the same effect. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11747334

  1. Expression profiling in transgenic FVB/N embryonic stem cells overexpressing STAT3

    Directory of Open Access Journals (Sweden)

    Yokota Takashi

    2008-05-01

    Full Text Available Abstract Background The transcription factor STAT3 is a downstream target of the LIF signalling cascade. LIF signalling or activation is sufficient to maintain embryonic stem (ES cells in an undifferentiated and pluripotent state. To further investigate the importance of STAT3 in the establishment of ES cells we have in a first step derived stable pluripotent embryonic stem cells from transgenic FVB mice expressing a conditional tamoxifen dependent STAT3-MER fusion protein. In a second step, STAT3-MER overexpressing cells were used to identify STAT3 pathway-related genes by expression profiling in order to identify new key-players involved in maintenance of pluripotency in ES cells. Results Transgenic STAT3-MER blastocysts yielded pluripotent germline-competent ES cells at a high frequency in the absence of LIF when established in tamoxifen-containing medium. Expression profiling of tamoxifen-induced transgenic FVB ES cell lines revealed a set of 26 genes that were markedly up- or down-regulated when compared with wild type cells. The expression of four of the up-regulated genes (Hexokinase II, Lefty2, Pramel7, PP1rs15B was shown to be restricted to the inner cell mass (ICM of the blastocysts. These differentially expressed genes represent potential candidates for the maintenance of pluripotency of ES cells. We finally overexpressed two candidate genes, Pem/Rhox5 and Pramel7, in ES cells and demonstrated that their overexpression is sufficient for the maintenance of expression of ES cell markers as well as of the typical morphology of pluripotent ES cells in absence of LIF. Conclusion Overexpression of STAT3-MER in the inner cell mass of blastocyst facilitates the establishment of ES cells and induces the upregulation of potential candidate genes involved in the maintenance of pluripotency. Two of them, Pem/Rhox5 and Pramel7, when overexpressed in ES cells are able to maintain the embryonic stem cells in a pluripotent state in a LIF independent

  2. Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To investigate whether the expression of exogenous heme oxygenase-1 (HO-l) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation,we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector.The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-l, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.

  3. Dual-stimuli responsive hyaluronic acid-conjugated mesoporous silica for targeted delivery to CD44-overexpressing cancer cells.

    Science.gov (United States)

    Zhao, Qinfu; Liu, Jia; Zhu, Wenquan; Sun, Changshan; Di, Donghua; Zhang, Ying; Wang, Pu; Wang, Zhanyou; Wang, Siling

    2015-09-01

    In this paper, a redox and enzyme dual-stimuli responsive delivery system (MSN-SS-HA) based on mesoporous silica nanoparticles (MSN) for targeted drug delivery has been developed, in which hyaluronic acid (HA) was conjugated on the surface of silica by cleavable disulfide (SS) bonds. HA possesses many attractive features, including acting as a targeting ligand and simultaneously a capping agent to achieve targeted and controlled drug release, prolonging the blood circulation time, and increasing the physiological stability and biocompatibility of MSN. The anticancer drug doxorubicin (DOX) was chosen as a model drug. In vitro drug release profiles showed that the release of DOX was markedly restricted in pH 7.4 and pH 5.0 phosphate buffer solution (PBS), while it was significantly accelerated upon the addition of glutathione (GSH)/hyaluronidases (HAase). In addition, the release was further accelerated in the presence of both GSH and HAase. Confocal laser scanning microscopy (CLSM) and fluorescence-activated cell sorting (FACS) showed that MSN-SS-HA exhibited a higher cellular uptake via cluster of differentiation antigen-44 (CD44) receptor-mediated endocytosis compared with thiol (SH)-functionalized MSN (MSN-SH) in CD44 receptor over-expressed in human HCT-116 cells. The DOX-loaded MSN-SS-HA was more cytotoxic against HCT-116 cells than NIH-3T3 (CD44 receptor-negative) cells due to the enhanced cellular uptake of MSN-SS-HA. This paper describes the development of an effective method for using a single substance as multi-functional material for MSN to simultaneously regulate drug release and achieve targeted delivery. PMID:25985912

  4. Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse

    International Nuclear Information System (INIS)

    Insulin-like growth factor I receptor (IGF-IR) is a transmembrane receptor tyrosine kinase whose activation strongly promotes cell growth and survival. We previously reported that IGF-IR activity confers intrinsic radioresistance in mouse embryo fibroblasts in vitro. However, it is still unclear whether tumor cells overexpressing IGF-IR exhibit radioresistance in vivo. For this purpose, we established HeLa cells that overexpress IGF-IR (HeLa-R), subcutaneously transplanted these cells into nude mice, and examined radioresponse in the resulting solid tumors. HeLa-R cells exhibited typical in vitro phenotypes generally observed in IGF-IR-overexpressing cells, as well as significant intrinsic radioresistance in vitro compared with parent cells. As expected, the transplanted HeLa-R tumors grew at a remarkably higher rate than parent tumors. Histological analysis revealed that HeLa-R tumors expressed more VEGF and had a higher density of tumor vessels. Unexpectedly, a marked growth delay was observed in HeLa-R tumors following 10 Gy of X-irradiation. Immunostaining of HeLa-R tumors for the hypoxia marker pimonidazole revealed a significantly lower level of hypoxic cells. Moreover, clamp hypoxia significantly increased radioresistance in HeLa-R tumors. Tumor microenvironments in vivo generated by the IGF-IR expression thus could be a major factor in determining the tumor radioresponse in vivo

  5. Overexpression of inosine 5'-monophosphate dehydrogenase type II mediates chemoresistance to human osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Jörg Fellenberg

    Full Text Available BACKGROUND: Chemoresistance is the principal reason for poor survival and disease recurrence in osteosarcoma patients. Inosine 5'-monophosphate dehydrogenase type II (IMPDH2 encodes the rate-limiting enzyme in the de novo guanine nucleotide biosynthesis and has been linked to cell growth, differentiation, and malignant transformation. In a previous study we identified IMPDH2 as an independent prognostic factor and observed frequent IMPDH2 overexpression in osteosarcoma patients with poor response to chemotherapy. The aim of this study was to provide evidence for direct involvement of IMPDH2 in the development of chemoresistance. METHODOLOGY/PRINCIPAL FINDINGS: Stable cell lines overexpressing IMPDH2 and IMPDH2 knock-down cells were generated using the osteosarcoma cell line Saos-2 as parental cell line. Chemosensitivity, proliferation, and the expression of apoptosis-related proteins were analyzed by flow cytometry, WST-1-assay, and western blot analysis. Overexpression of IMPDH2 in Saos-2 cells induced strong chemoresistance against cisplatin and methotrexate. The observed chemoresistance was mediated at least in part by increased expression of the anti-apoptotic proteins Bcl-2, Mcl-1, and XIAP, reduced activation of caspase-9, and, consequently, reduced cleavage of the caspase substrate PARP. Pharmacological inhibition of IMPDH induced a moderate reduction of cell viability and a strong decrease of cell proliferation, but no increase in chemosensitivity. However, chemoresistant IMPDH2-overexpressing cells could be resensitized by RNA interference-mediated downregulation of IMPDH2. CONCLUSIONS: IMPDH2 is directly involved in the development of chemoresistance in osteosarcoma cells, suggesting that targeting of IMPDH2 by RNAi or more effective pharmacological inhibitors in combination with chemotherapy might be a promising means of overcoming chemoresistance in osteosarcomas with high IMPDH2 expression.

  6. Mouse ES cells overexpressing DNMT1 produce abnormal neurons with upregulated NR1

    OpenAIRE

    D'Aiuto, Leonardo; Di Maio, Roberto; Mohan, K. Naga; Minervini, Crescenzio; Saporiti, Federica; Soreca, Isabella; Greenamyre, J. Timothy; Chaillet, J. Richard

    2011-01-01

    High levels of DNA methyltransferase 1 (DNMT1), hypermethylation, and downregulation of GAD67 and reelin have been described in GABAergic interneurons of patients with schizophrenia (SZ) and bipolar (BP) disorders. However, overexpression of DNMT1 is lethal, making it difficult to assess the direct effect of high levels of DNMT1 on neuronal development in vivo. We therefore used Dnmt1tet/tet mouse ES cells that overexpress DNMT1 as an in vitro model to investigate the impact of high levels of...

  7. Overexpression of Periostin and Lumican in Esophageal Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    To identify biomarkers for early detection for esophageal squamous cell carcinoma (ESCC), we previously carried out a genome-wide gene expression profiling study using an oligonucleotide microarray platform. This analysis led to identification of several transcripts that were significantly upregulated in ESCC compared to the adjacent normal epithelium. In the current study, we performed immunohistochemical analyses of protein products for two candidates genes identified from the DNA microarray analysis, periostin (POSTN) and lumican (LUM), using tissue microarrays. Increased expression of both periostin and lumican was observed in 100% of 137 different ESCC samples arrayed on tissue microarrays. Increased expression of periostin and lumican was observed in carcinoma as well as in stromal cell in the large majority of cases. These findings suggest that these candidates can be investigated in the sera of ESCC patients using ELISA or multiple reaction monitoring (MRM) type assays to further explore their utility as biomarkers

  8. Reversal of startle gating deficits in transgenic mice overexpressing corticotropin-releasing factor by antipsychotic drugs.

    NARCIS (Netherlands)

    Dirks, A.; Groenink, L.; Westphal, K.G.; Olivier, J.D.A.; Verdouw, P.M.; Gugten, J. van der; Geyer, M.A.; Olivier, B.

    2003-01-01

    Chronically elevated levels of corticotropin-releasing factor (CRF) in transgenic mice overexpressing CRF in the brain (CRF-OE) appear to be associated with alterations commonly associated with major depressive disorder, as well as with sensorimotor gating deficits commonly associated with schizophr

  9. Reversal of startle gating deficits in transgenic mice overexpressing corticotropin-releasing factor by antipsychotic drugs

    NARCIS (Netherlands)

    Dirks, Anneloes; Groenink, Lucianne; Westphal, Koen G C; Olivier, Jocelien D A; Verdouw, P Monika; van der Gugten, Jan; Geyer, Mark A; Olivier, Berend

    2003-01-01

    Chronically elevated levels of corticotropin-releasing factor (CRF) in transgenic mice overexpressing CRF in the brain (CRF-OE) appear to be associated with alterations commonly associated with major depressive disorder, as well as with sensorimotor gating deficits commonly associated with schizophr

  10. Gremlin is overexpressed in lung adenocarcinoma and increases cell growth and proliferation in normal lung cells.

    Directory of Open Access Journals (Sweden)

    Michael S Mulvihill

    Full Text Available BACKGROUND: Gremlin, a member of the Dan family of BMP antagonists, is a glycosylated extracellular protein. Previously Gremlin has been shown to play a role in dorsal-ventral patterning, in tissue remodeling, and recently in angiogenesis. Evidence has previously been presented showing both over- and under-expression of Gremlin in different tumor tissues. Here, we sought to quantify expression of Gremlin in cancers of the lung and performed in vitro experiments to check whether Gremlin promotes cell growth and proliferation. METHODOLOGY/PRINCIPAL FINDINGS: Expression of Gremlin in 161 matched tumor and normal lung cancer specimens is quantified by quantitative real-time PCR and protein level is measured by immunohistochemistry. GREM1 was transfected into lung fibroblast and epithelial cell lines to assess the impact of overexpression of Gremlin in vitro. RESULTS: Lung adenocarcinoma but not squamous cell carcinoma shows a significant increase in Gremlin expression by mRNA and protein level. Lung fibroblast and epithelial cell lines transfected with GREM1 show significantly increased cell proliferation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that Gremlin acts in an oncogenic manner in lung adenocarcinoma and could hold promise as a new diagnostic marker or potential therapeutic target in lung AD or general thoracic malignancies.

  11. Mechanisms regulating c-met overexpression in liver-metastatic B16-LS9 melanoma cells.

    Science.gov (United States)

    Elia, G; Ren, Y; Lorenzoni, P; Zarnegar, R; Burger, M M; Rusciano, D

    2001-01-01

    Liver selected B16-LS9 melanoma cells show a dramatic overexpression of the proto-oncogene c-met, the cellular receptor for hepatocyte growth factor/scatter factor. As a consequence, c-met becomes constitutively active, and the cells become more responsive to hepatocyte growth factor stimulation. We have investigated the molecular mechanisms regulating c-met expression in both the parental line B16-F1, which has low expression levels, and the liver-specific B16-LS9, overexpressing c-met. Overexpression is observed at the protein and mRNA levels, however without further evidence of gene amplification or rearrangement. c-met promoter activity was higher in B16-LS9 than B16-F1 cells, and also a nuclear run-off showed higher transcription levels in B16-LS9 cells. Moreover, we found that c-met mRNA had a longer half-life in B16-LS9 cells, thus indicating also the involvement of post-transcriptional regulation mechanisms. Finally, we found evidence that autonomous activation of the melanocortin receptor-1 (MCR-1) is at least partially responsible for c-met upregulation in B16-LS9 cells, since treatment of the cells with a potent MSH antagonist (the agouti peptide) has strong down-regulatory effects. PMID:11255230

  12. ß-Cell Specific Overexpression of GPR39 Protects against Streptozotocin-Induced Hyperglycemia

    DEFF Research Database (Denmark)

    Egerod, Kristoffer Lihme; Jin, Chunyu; Petersen, Pia Steen;

    2011-01-01

    Mice deficient in the zinc-sensor GPR39, which has been demonstrated to protect cells against endoplasmatic stress and cell death in vitro, display moderate glucose intolerance and impaired glucose-induced insulin secretion. Here, we use the Tet-On system under the control of the proinsulin...... promoter to selectively overexpress GPR39 in the ß cells in a double transgenic mouse strain and challenge them with multiple low doses of streptozotocin, which in the wild-type littermates leads to a gradual increase in nonfasting glucose levels and glucose intolerance observed during both food intake and...... OGTT. Although the overexpression of the constitutively active GPR39 receptor in animals not treated with streptozotocin appeared by itself to impair the glucose tolerance slightly and to decrease the ß-cell mass, it nevertheless totally protected against the gradual hyperglycemia in the steptozotocin...

  13. Overexpression of the ATP binding cassette gene ABCA1 determines resistance to Curcumin in M14 melanoma cells

    Directory of Open Access Journals (Sweden)

    Angelini Giovanna

    2009-12-01

    Full Text Available Abstract Background Curcumin induces apoptosis in many cancer cells and it reduces xenograft growth and the formation of lung metastases in nude mice. Moreover, the plant derived polyphenol has been reported to be able to overcome drug resistance to classical chemotherapy. These features render the drug a promising candidate for tumor therapy especially for cancers known for their high rates concerning therapy resistance like melanoma. Results We show here that the melanoma cell line M14 is resistant to Curcumin induced apoptosis, which correlates with the absence of any effect on NFκB signaling. We show that CXCL1 a chemokine that is down regulated in breast cancer cells by Curcumin in an NFκB dependant manner is expressed at variable levels in human melanomas. Yet in M14 cells, CXCL1 expression did not change upon Curcumin treatment. Following the hypothesis that Curcumin is rapidly removed from the resistant cells, we analyzed expression of known multi drug resistance genes and cellular transporters in M14 melanoma cells and in the Curcumin sensitive breast cancer cell line MDA-MB-231. ATP-binding cassette transporter ABCA1, a gene involved in the cellular lipid removal pathway is over-expressed in resistant M14 melanoma as compared to the sensitive MDA-MB-231 breast cancer cells. Gene silencing of ABCA1 by siRNA sensitizes M14 cells to the apoptotic effect of Curcumin most likely as a result of reduced basal levels of active NFκB. Moreover, ABCA1 silencing alone also induces apoptosis and reduces p65 expression. Conclusion Resistance to Curcumin thus follows classical pathways and ABCA1 expression should be considered as response marker.

  14. Adipose-derived Stromal Cells Overexpressing Vascular Endothelial Growth Factor Accelerate Mouse Excisional Wound Healing

    OpenAIRE

    Nauta, Allison; Seidel, Catharina; Deveza, Lorenzo; Montoro, Daniel; Grova, Monica; Ko, Sae Hee; Hyun, Jeong; Geoffrey C Gurtner; Longaker, Michael T.; Yang, Fan

    2012-01-01

    Angiogenesis is essential to wound repair, and vascular endothelial growth factor (VEGF) is a potent factor to stimulate angiogenesis. Here, we examine the potential of VEGF-overexpressing adipose-derived stromal cells (ASCs) for accelerating wound healing using nonviral, biodegradable polymeric vectors. Mouse ASCs were transfected with DNA plasmid encoding VEGF or green fluorescent protein (GFP) using biodegradable poly (β-amino) esters (PBAE). Cells transfected using Lipofectamine 2000, a c...

  15. Immortalization of Neural Precursors When Telomerase Is Overexpressed in Embryonal Carcinomas and Stem Cells

    OpenAIRE

    Schwob, Anneke E.; Nguyen, Lilly J.; Meiri, Karina F.

    2008-01-01

    The DNA repair enzyme telomerase maintains chromosome stability by ensuring that telomeres regenerate each time the cell divides, protecting chromosome ends. During onset of neuroectodermal differentiation in P19 embryonal carcinoma (EC) cells three independent techniques (Southern blotting, Q-FISH, and Q-PCR) revealed a catastrophic reduction in telomere length in nestin-expressing neuronal precursors even though telomerase activity remained high. Overexpressing telomerase protein (mTERT) pr...

  16. MSX2 overexpression inhibits gemcitabine-induced caspase-3 activity in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shin Hamada; Kennichi Satoh; Kenji Kimura; Atsushi Kanno; Atsushi Masamune; Tooru Shimosegawa

    2005-01-01

    AIM: To evaluate the effect of MSX2 on gemcitabineinduced caspase-3 activation in pancreatic cancer cell line Panc-1.METHODS: Using V5-tagged MSX2 expression vector,stable transfectant of MSX2 was generated from Panc-1cells (Px14 cells). Cell viability under gemcitabine administration was determined by MTT assay relative to control cell line (empty-vector transfected Panc-1 cells;P-3EV cells). Hoechst staining was used for the detection of apoptotic cell. Activation of caspase-3 was assessed using Western blotting analysis and direct measurement of caspase-3 specific activities.RESULTS: MSX2 overexpression in Panc-1 cells resulted in decreased gemcitabine-induced caspase-3 activation and increased cell viability under gemcitabine treatment in Px14 cells.CONCLUSION: MSX2 exerts repressive effects on gemcitabine-induced apoptotic pathway. This novel apoptosis-regulating function of MSX2 may provide a new therapeutic target for pancreatic cancer.

  17. The effects of over-expressing Tip60 on cellular DNA damage repair and cell cycle progression

    International Nuclear Information System (INIS)

    To investigate the effects of Tip60 on DNA damage repair, cell cycle and the related mechanism as well, the proliferative activity, DNA double strand break (DSB) repair competency and cell cycle arrest were analyzed in stable Tip60-overexpression U2OS cells established by transfecting with exogenous Tip60 gene. It was found that the overexpression of Tip60 inhibited the proliferative activity but increased the DNA damage repair competency. The radiation-induced G2/M arrest was prolonged in Tip60 over-expressed U2OS cells, which was associated with a decreasing level of cell cycle checkpoint protein Cyclin B/CDC2 complex. (authors)

  18. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation.

    Science.gov (United States)

    Zhang, Wenwen; Cao, Lulu; Sun, Zijia; Xu, Jing; Tang, Lin; Chen, Weiwei; Luo, Jiayan; Yang, Fang; Wang, Yucai; Guan, Xiaoxiang

    2016-05-18

    The F box protein Skp2 is oncogenic. Skp2 and Skp2B, an isoform of Skp2 are overexpressed in breast cancer. However, little is known regarding the mechanism by which Skp2B promotes the occurrence and development of breast cancer. Here, we determined the expression and clinical outcomes of Skp2 in breast cancer samples and cell lines using breast cancer database, and investigated the role of Skp2 and Skp2B in breast cancer cell growth, apoptosis and cell cycle arrest. We obtained Skp2 is significantly overexpressed in breast cancer samples and cell lines, and high Skp2 expression positively correlated with poor prognosis of breast cancer. Both Skp2 and Skp2B could promote breast cancer cell proliferation, inhibit cell apoptosis, change the cell cycle distribution and induce the increased S phase cells and therefore induce cell proliferation in breast cancer cells. Moreover, the 2 isoforms could both suppress PIG3 expression via independent pathways in the breast cancer cells. Skp2 suppressed p53 and inhibited PIG3-induced apoptosis, while Skp2B attenuated the function of PIG3 by inhibiting PHB. Our results indicate that Skp2 and Skp2B induce breast cancer cell development and progression, making Skp2 and Skp2B potential molecular targets for breast cancer therapy. PMID:27111245

  19. THE OVEREXPRESSION AND SIGNIFICANCE OF CYCLIN D1 AND P53 IN CERVICAL SQUAMOUS CELL CARCINOMAS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To investigate the significance of overexpresson of eyclin D1 and P53 protein in cervical squamous cell carcinomas.Methods:Fifty cases of invasive cervical squamous cell carcinomas and 10 Cases of normal cervical squamous epithelia were investigated with immunihistochemical technique.Results:The overexpressioin of cyclin D1 and P53 in invasive cervical carcinomas was 70% and 50%,respectively,There was no overexpression of them in the control group.The overexpression of cyclin D1 in grade Ⅱand Ⅲ was much higher than that in grade I(P<0.05),The overexpresson of cyclin D1 in stage Ⅲof cervical carcinoma was significantly higher than that in stage Ⅱ(P<0.05).The overexpression of P53 in grade -Ⅱand gradeⅢ of cervical carcinoma was remarkably higher than that in grade I(P<0.05),Conclusion:The action point of both cyclin D1 and P53 may be at G1/S transtition.The overexpression of them was associated with development and progression of cervical carcinoma probably in different mechanisms and different pathways.

  20. Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect

    Energy Technology Data Exchange (ETDEWEB)

    Ghezali, Lamia; Leger, David Yannick; Limami, Youness [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Cook-Moreau, Jeanne [Université de Limoges, FR 3503 GEIST, UMR CNRS 7276 “Contrôle de la réponse immune B et lymphoproliférations”, Faculté de Médecine, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Beneytout, Jean-Louis [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France); Liagre, Bertrand, E-mail: bertrand.liagre@unilim.fr [Université de Limoges, FR 3503 GEIST, EA 1069 “Laboratoire de Chimie des Substances Naturelles”, GDR CNRS 3049, Faculté de Pharmacie, Laboratoire de Biochimie et Biologie Moléculaire, 2 rue du Docteur Marcland, 87025 Limoges Cedex (France)

    2013-04-15

    Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effect on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression.

  1. Effects of resistin-like molecule β over-expression on gastric cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Li-Duan Zheng; Chun-Lei Yang; Teng Qi; Meng Qi; Ling Tong; Qiang-Song Tong

    2012-01-01

    AIM:To investigate the effects of resistin-like molecule β (RELMβ) over-expression on the invasion,metastasis and angiogenesis of gastric cancer cells.METHODS:Human RELMβ encoding expression vector was constructed and transfected into the RELMβ lowly-expressed gastric cancer cell lines SGC-7901 and MKN-45.Gene expression was measured by Western blotting,reverse transcription polymerase chain reaction (PCR) and real-time quantitative PCR.Cell proliferation was measured by 2-(4,5-dimethyltriazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetry,colony formation and 5-ethynyl-20-deoxyuridine incorporation assays.The in vitro migration,invasion and metastasis of cancer cells were measured by cell adhesion assay,scratch assay and matrigel invasion assay.The angiogenic capabilities of cancer cells were measured by tube formation of endothelial cells.RESULTS:Transfection of RELMβ vector into SGC-7901 and MKN-45 cells resulted in over-expression of RELMβ,which did not influence the cellular proliferation.However,over-expression of RELMβ suppressed the in vitro adhesion,invasion and metastasis of cancer cells,accompanied by decreased expression of matrix metalloproteinase-2 (MMP-2) and MMP-9.Moreover,transfection of RELMβ attenuated the expression of vascular endothelial growth factor and in vitro angiogenic capabilities of cancer cells.CONCLUSION:Over-expression of RELMβ abolishes the invasion,metastasis and angiogenesis of gastric cancer cells in vitro,suggesting its potentials as a novel therapeutic target for gastric cancer.

  2. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival

    International Nuclear Information System (INIS)

    Background and purpose: The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors. Material and methods: Quantitative PCR, immunohistochemistry, clonogenic survival, proliferation assays and in vivo tumor growth were used to assess this potential. Results: We show that EGFR overexpressing xenografts are sensitive to CQ treatment and are sensitized to irradiation by autophagy inhibition. In HNSSC xenografts, a correlation between EGFR and expression of the autophagy marker LC3b is observed, suggesting a role for autophagy in EGFR expressing tumors. This observation was substantiated in cell lines, showing high EGFR expressing cells to be more sensitive to CQ addition as reflected by decreased proliferation and survival. Surprisingly high EGFR expressing cells display a lower autophagic flux. Conclusions: The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival. Inhibition of autophagy may therefore provide a novel treatment opportunity for EGFR overexpressing tumors

  3. Zinc finger protein 521 overexpression increased transcript levels of Fndc5 in mouse embryonic stem cells

    Indian Academy of Sciences (India)

    Motahere-Sadat Hashemi; Abbas Kiani Esfahani; Maryam Peymani; Alireza Shoaraye Nejati; Kamran Ghaedi; Mohammad Hossein Nasr-Esfahani; Hossein Baharvand

    2016-03-01

    Zinc finger protein 521 is highly expressed in brain, neural stem cells and early progenitors of the human hematopoietic cells. Zfp521 triggers the cascade of neurogenesis inmouse embryonic stemcells through inducing expression of the early neuroectodermal genes Sox1, Sox3 and Pax6. Fndc5, a precursor of Irisin has inducing effects on the expression level of brain derived neurotrophic factor in hippocampus. Therefore, it is most likely that Fndc5 may play an important role in neural differentiation. To exhibit whether the expression of this protein is under regulation with Zfp521, we overexpressed Zfp521 in a stable transformants of mESCs expressing EGFP under control of Fndc5 promoter. Increased expression of Zfp521 enhanced transcription levels of both EGFP and endogenous Fndc5. This result was confirmed by overexpression the aforementioned vectors in HEK cells and indicated that Zfp521 functions upstream of Fndc5 expression. It is most likely that Zfp521 may act through the binding to its response element on Fndc5 core promoter. Therefore it is concluding that an enhanced expression of Fndc5 in neural progenitor cells is stimulated by Zfp521 overexpression in these cells.

  4. Over-expression of putative transcriptional coactivator KELP interferes with Tomato mosaic virus cell-to-cell movement.

    Science.gov (United States)

    Sasaki, Nobumitsu; Ogata, Takuya; Deguchi, Masakazu; Nagai, Shoko; Tamai, Atsushi; Meshi, Tetsuo; Kawakami, Shigeki; Watanabe, Yuichiro; Matsushita, Yasuhiko; Nyunoya, Hiroshi

    2009-03-01

    Tomato mosaic virus (ToMV) encodes a movement protein (MP) that is necessary for virus cell-to-cell movement. We have demonstrated previously that KELP, a putative transcriptional coactivator of Arabidopsis thaliana, and its orthologue from Brassica campestris can bind to ToMV MP in vitro. In this study, we examined the effects of the transient over-expression of KELP on ToMV infection and the intracellular localization of MP in Nicotiana benthamiana, an experimental host of the virus. In co-bombardment experiments, the over-expression of KELP inhibited virus cell-to-cell movement. The N-terminal half of KELP (KELPdC), which had been shown to bind to MP, was sufficient for inhibition. Furthermore, the over-expression of KELP and KELPdC, both of which were co-localized with ToMV MP, led to a reduction in the plasmodesmal association of MP. In the absence of MP expression, KELP was localized in the nucleus and the cytoplasm by the localization signal in its N-terminal half. It was also shown that ToMV amplified normally in protoplasts prepared from leaf tissue that expressed KELP transiently. These results indicate that over-expressed KELP interacts with MP in vivo and exerts an inhibitory effect on MP function for virus cell-to-cell movement, but not on virus amplification in individual cells. PMID:19236566

  5. RIP3 overexpression sensitizes human breast cancer cells to parthenolide in vitro via intracellular ROS accumulation

    OpenAIRE

    Lu, Can; Zhou, Li-Yan; Xu, Hui-Jun; Chen, Xing-Yu; Tong, Zhong-sheng; Liu, Xiao-dong; Jia, Yong-sheng; Chen, Yue

    2014-01-01

    Aim: Receptor-interacting protein 3 (RIP3) is involved in tumor necrosis factor receptor signaling, and results in NF-κB-mediated prosurvival signaling and programmed cell death. The aim of this study was to determine whether overexpression of the RIP3 gene could sensitize human breast cancer cells to parthenolide in vitro. Methods: The expression of RIP3 mRNA in human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-435 and T47D) was detected using RT-PCR. Both MDA-MB-231 and MCF-7 cells ...

  6. Novel 5-fluorouracil-resistant human esophageal squamous cell carcinoma cells with dihydropyrimidine dehydrogenase overexpression

    OpenAIRE

    Kikuchi, Osamu; Ohashi, Shinya; Nakai, Yukie; Nakagawa, Shunsaku; Matsuoka, Kazuaki; Kobunai, Takashi; Takechi, Teiji; Amanuma, Yusuke; Yoshioka, Masahiro; Ida, Tomomi; Yamamoto, Yoshihiro; Okuno, Yasushi; Miyamoto, Shin’ichi; Nakagawa, Hiroshi; Matsubara, Kazuo

    2015-01-01

    5-Fluorouracil (5-FU) is a key drug for the treatment of esophageal squamous cell carcinoma (ESCC); however, resistance to it remains a critical limitation to its clinical use. To clarify the mechanisms of 5-FU resistance of ESCC, we originally established 5-FU-resistant ESCC cells, TE-5R, by step-wise treatment with continuously increasing concentrations of 5-FU. The half maximal inhibitory concentration of 5-FU showed that TE-5R cells were 15.6-fold more resistant to 5-FU in comparison with...

  7. Restoration of the cellular secretory milieu overrides androgen dependence of in vivo generated castration resistant prostate cancer cells overexpressing the androgen receptor.

    Science.gov (United States)

    Patki, Mugdha; Huang, Yanfang; Ratnam, Manohar

    2016-07-22

    It is believed that growth of castration resistant prostate cancer (CRPC) cells is enabled by sensitization to minimal residual post-castrate androgen due to overexpression of the androgen receptor (AR). Evidence is derived from androgen-induced colony formation in the absence of cell-secreted factors or from studies involving forced AR overexpression in hormone-dependent cells. On the other hand, standard cell line models established from CRPC patient tumors (e.g., LNCaP and VCaP) are hormone-dependent and require selection pressure in castrated mice to re-emerge as CRPC cells and the resulting tumors then tend to be insensitive to the androgen antagonist enzalutamide. Therefore, we examined established CRPC model cells produced by castration of mice bearing hormone-dependent cell line xenografts including CRPC cells overexpressing full-length AR (C4-2) or co-expressing wtAR and splice-variant AR-V7 that is incapable of ligand binding (22Rv1). In standard colony formation assays, C4-2 cells were shown to be androgen-dependent and sensitive to enzalutamide whereas 22Rv1 cells were incapable of colony formation under identical conditions. However, both C4-2 and 22Rv1 cells formed colonies in conditioned media derived from the same cells or from HEK293 fibroblasts that were proven to lack androgenic activity. This effect was (i) not enhanced by androgen, (ii) insensitive to enzalutamide, (iii) dependent on AR (in C4-2) and on AR-V7 and wtAR (in 22Rv1) and (iv) sensitive to inhibitors of several signaling pathways, similar to androgen-stimulation. Therefore, during progression to CRPC in vivo, coordinate cellular changes accompanying overexpression of AR may enable cooperation between hormone-independent activity of AR and actions of cellular secretory factors to completely override androgen-dependence and sensitivity to drugs targeting hormonal factors. PMID:27179779

  8. mad—overexpression down regulates the malignant growth and p53 mediated apoptosis in human hepatocellular carcinoma BEL—7404 cells

    Institute of Scientific and Technical Information of China (English)

    ZHANHUA; YONGHUAXU

    1999-01-01

    Mad protein has been shown as an antagonist of cMyc protein in some cell lines.The effect of Mad protein to the malignant phenotype of human hepatoma BEL-7404 cell line was investigated experimentally.An eukarryotic vector pCDNA Ⅲ containing full ORF fragment of mad cDNA was transfected into targeted cells.Under G418 selection,stable Mad-overexpressed cells were cloned.Studies on the effect of Mad over-expression in cell proliferation and cell cycle revealed that cell morphology of the Mad-overexpressed BEL-7404-M1 cells was significantly different from the parent and control vector transfected cells.DNA synthesis,cell proliferation and anchorage-independent growth in soft-agar of the madtransfected cells were partially inhibited in comparison to control cells.Flos cytometry analysis indicated that mad over-expression might block more transfectant cells at G0/G1 phase,resulting in the retardation of cell proliferation.RT-PCR detected a marked inhibition of the expression of cdc25A,an important regulator gene of G0/G1 to S phase in cell cycle.It was also found that Mad protein overexpression could greatly suppress p53-mediated apoptosis in BEL-74040M1 cells in the absence of serume.Thus,Mad proteins may function as a negative regulator antagonizing c-Myc activity in the control of cell growth and apoptosis in human hepatocellular carcinoma BEL-7404 cells.

  9. Overexpressed Ly-6A.2 mediates cell-cell adhesion by binding a ligand expressed on lymphoid cells.

    OpenAIRE

    Bamezai, A; Rock, K L

    1995-01-01

    The Ly-6 locus encodes several cell surface proteins whose functions are unknown. Although it is hypothesized that these proteins may be receptors, there is no direct evidence that they bind a ligand. Herein we present evidence that Ly-6A.2, a Ly-6 protein expressed on T lymphocytes, binds a ligand expressed on normal thymocytes and splenic B and T cells. We find that transgenic thymocytes that overexpress Ly-6A.2 spontaneously aggregate in culture. This homotypic adhesion requires the overex...

  10. Collateral sensitivity to cisplatin in KB-8-5-11 drug-resistant cancer cells.

    LENUS (Irish Health Repository)

    Doherty, Ben

    2014-01-01

    KB-8-5-11 cells are a drug-resistant cervical cell model that overexpresses ABCB1 (P-glycoprotein). KB-8-5-11 has become sensitive to non-ABCB1 substrate cisplatin. Understanding the mechanism of collateral sensitivity to cisplatin may lead to biomarker discovery for platinum sensitivity in patients with cancer.

  11. LFC131 peptide-conjugated polymeric nanoparticles for the effective delivery of docetaxel in CXCR4 overexpressed lung cancer cells.

    Science.gov (United States)

    Wang, Ruo-Tian; Zhi, Xiu-Yi; Yao, Shu-Yang; Zhang, Yi

    2015-09-01

    CXCR4 is a chemokine receptor which is over expressed in multiple cancers including lung cancers. LFC131 peptide (d-Tyr-Arg-Arg-2-Nal-Gly), an inhibitor of CXCR4-ligand binding, is a low molecular weight CXCR4 antagonist. In this study, we developed novel LFC131 peptide surface conjugated O-carboxymethyl chitosan nanoparticles (O-CMC NP) to target CXCR4 over expressed A549 lung cancer cells. CXCR4-targeted drug delivery system was characterized for its binding, uptake, targeting specificity, and in vitro antitumour effect. Our main goal was to increase the intracellular concentration of docetaxel (DTX) in the cancer cells via a targeted approach. We have reported a nanosized particle with spherical shape and showed a high loading capacity. The CMC NP showed a controlled release pattern and presence of LFC131 did not influence the release of DTX. The fluorescence analysis showed an enhanced cell uptake for targeted NP via CXCR4-LFC131 biological interactions. The receptor-mediated cellular internalization was further confirmed confocal microscopy. The cytotoxicity assays showed enhanced cancer cell death by targeted NPs due to the selective delivery of DTX. Consistent with the cellular uptake analysis, targeted NPs induced a greater caspase-3 activity in A549 cancer cells. LFC/CMC NP exhibited a remarkable cell apoptosis by inducing apoptotic and necrotic cell death. Together, targeted LFC/CMC NP significantly enhanced cancer cell death than compared to non-targeted and free drugs. This kind of targeted nanoplatform which is based on polymeric nanocarriers could further facilitate a treatment protocol for CXCR4 overexpressing A549 lung cancer cells. PMID:26070050

  12. UMMS-4 enhanced sensitivity of chemotherapeutic agents to ABCB1-overexpressing cells via inhibiting function of ABCB1 transporter.

    Science.gov (United States)

    Qiao, Dongjuan; Tang, Shangjun; Aslam, Sana; Ahmad, Matloob; To, Kenneth Kin Wah; Wang, Fang; Huang, Zhencong; Cai, Jiye; Fu, Liwu

    2014-01-01

    Multidrug resistance (MDR) mediated by ATP-binding cassette (ABC) transporters through efflux of antineoplastic agents from cancer cells is a major obstacle to successful cancer chemotherapy. The inhibition of these ABC transporters is thus a logical approach to circumvent MDR. There has been intensive research effort to design and develop novel inhibitors for the ABC transporters to achieve this goal. In the present study, we evaluated the ability of UMMS-4 to modulate P-glycoprotein (P-gp/ABCB1)-, breast cancer resistance protein (BCRP/ABCG2)- and multidrug resistance protein (MRP1/ABCC1)-mediated MDR in cancer cells. Our findings showed that UMMS-4, at non-cytotoxic concentrations, apparently circumvents resistance to ABCB1 substrate anticancer drugs in ABCB1-overexpressing cells. When used at a concentration of 20 μmol/L, UMMS-4 produced a 17.53-fold reversal of MDR, but showed no effect on the sensitivity of drug-sensitive parental cells. UMMS-4, however, did not significantly alter the sensitivity of non-ABCB1 substrates in all cells and was unable to reverse ABCG2- and ABCC1-mediated MDR. Additionally, UMMS-4 profoundly inhibited the transport of rhodamine 123 (Rho 123) and doxorubicin (Dox) by the ABCB1 transporter. Furthermore, UMMS-4 did not alter the expression of ABCB1 at the mRNA and protein levels. In addition, the results of ATPase assays showed that UMMS-4 stimulated the ATPase activity of ABCB1. Taken together, we conclude that UMMS-4 antagonizes ABCB1-mediated MDR in cancer cells through direct inhibition of the drug efflux function of ABCB1. These findings may be useful for the development of safer and more effective MDR modulator. PMID:24660104

  13. Microarray dataset of Jurkat cells following miR-93 over-expression.

    Science.gov (United States)

    Gioiosa, Silvia; Verduci, Lorena; Azzalin, Gianluca; Carissimi, Claudia; Fulci, Valerio; Macino, Giuseppe

    2016-09-01

    The dataset presented here represents a microarray experiment of Jurkat cell line over-expressing miR-93 after lentiviral transgenic construct transduction. Three biological replicates have been performed. We further provide normalized and processed data, log2 Fold Change based ranked list and GOterms resulting table. The raw microarray data are available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number ArrayExpress: E-MTAB-4588. PMID:27408928

  14. Downregulation of ER-α36 expression sensitizes HER2 overexpressing breast cancer cells to tamoxifen

    OpenAIRE

    Yin, Li; Pan, Xiaohua; Zhang, Xin-Tian; Guo, Yu-ming; Wang, Zhao-Yi; Gong, Yaoqin; Wang, Molin

    2015-01-01

    Tamoxifen provided a successful treatment for ER-positive breast cancer for many years. However, HER2 overexpressing breast cancer cells respond poorly to tamoxifen therapy presumably by pass. The molecular mechanisms underlying development of tamoxifen resistance have not been well established. Recently, we reported that breast cancer cells with high levels of ER-α36, a variant of ER-α, were resistant to tamoxifen and knockdown of ER-α36 expression in tamoxifen resistant cells with the shRNA...

  15. Cancer stem cell overexpression of nicotinamide N-methyltransferase enhances cellular radiation resistance

    DEFF Research Database (Denmark)

    D’Andrea, Filippo P.; Safwat, Akmal; Kassem, Moustapha; Gautier, Laurent; Overgaard, Jens; Horsman, Michael R.

    2011-01-01

    BackgroundCancer stem cells are thought to be a radioresistant population and may be the seeds for recurrence after radiotherapy. Using tumorigenic clones of retroviral immortalized human mesenchymal stem cell with small differences in their phenotype, we investigated possible genetic expression...... analysis found the genes involved in cancer, proliferation, DNA repair and cell death. ConclusionsThe higher radiation resistance in clone CE8 is likely due to NNMT overexpression. The higher levels of NNMT could affect the cellular damage resistance through depletion of the accessible amounts of...... nicotinamide, which is a known inhibitor of cellular DNA repair mechanisms....

  16. Overexpression of Csk-binding protein contributes to renal cell carcinogenesis.

    Science.gov (United States)

    Feng, X; Lu, X; Man, X; Zhou, W; Jiang, L Q; Knyazev, P; Lei, L; Huang, Q; Ullrich, A; Zhang, Z; Chen, Z

    2009-09-17

    C-terminal Src kinase (Csk)-binding protein (Cbp) is a transmembrane adaptor protein that localizes exclusively in lipid rafts, where it regulates Src family kinase (SFK) activities through recruitment of Csk. Although SFKs are well known for their involvement in cancer, the function of Cbp in carcinogenesis remains largely unknown. In this study, we reported overexpression of Cbp in more than 70% of renal cell carcinoma (RCC) specimens and in the majority of tested RCC cell lines. Depletion of Cbp in RCC cells by RNA interference led to remarkable inhibition of cell proliferation, migration, anchorage-independent growth as well as tumorigenicity in nude mice. Strikingly, silencing of Cbp negatively affected the sustaining of Erk1/2 activation but not c-Src activation induced by serum. Besides, the RhoA activity in RCC cells was remarkably impaired when Cbp was knocked down. Overexpression of wild-type Cbp, but not its mutant Cbp/DeltaCP lacking C-terminal PDZ-binding motif, significantly enhanced RhoA activation and cell migration of RCC cells. These results provided new insights into the function of Cbp in modulating RhoA activation, by which Cbp might contribute to renal cell carcinogenesis. PMID:19581936

  17. A transgenic mouse model of neuroepithelial cell specific inducible overexpression of dopamine D1-receptor.

    Science.gov (United States)

    Fujimoto, K; Araki, K; McCarthy, D M; Sims, J R; Ren, J Q; Zhang, X; Bhide, P G

    2010-10-27

    Dopamine and its receptors appear in the brain during early embryonic period suggesting a role for dopamine in brain development. In fact, dopamine receptor imbalance resulting from impaired physiological balance between D1- and D2-receptor activities can perturb brain development and lead to persisting changes in brain structure and function. Dopamine receptor imbalance can be produced experimentally using pharmacological or genetic methods. Pharmacological methods tend to activate or antagonize the receptors in all cell types. In the traditional gene knockout models the receptor imbalance occurs during development and also at maturity. Therefore, assaying the effects of dopamine imbalance on specific cell types (e.g. precursor versus postmitotic cells) or at specific periods of brain development (e.g. pre- or postnatal periods) is not feasible in these models. We describe a novel transgenic mouse model based on the tetracycline dependent inducible gene expression system in which dopamine D1-receptor transgene expression is induced selectively in neuroepithelial cells of the embryonic brain at experimenter-chosen intervals of brain development. In this model, doxycycline-induced expression of the transgene causes significant overexpression of the D1-receptor and significant reductions in the incorporation of the S-phase marker bromodeoxyuridine into neuroepithelial cells of the basal and dorsal telencephalon indicating marked effects on telencephalic neurogenesis. The D1-receptor overexpression occurs at higher levels in the medial ganglionic eminence (MGE) than the lateral ganglionic eminence (LGE) or cerebral wall (CW). Moreover, although the transgene is induced selectively in the neuroepithelium, D1-receptor protein overexpression appears to persist in postmitotic cells. The mouse model can be modified for neuroepithelial cell-specific inducible expression of other transgenes or induction of the D1-receptor transgene in other cells in specific brain regions by

  18. Influence of overexpression of SOCS2 on cells of DN rat

    Institute of Scientific and Technical Information of China (English)

    Na-Na; Bao; De-Yang; Kong; Dan; Zhu; Li-Rong; Hao

    2015-01-01

    Objective: To explore the influence and mechanism of overexpression of SOCS2 on diabetic nephropathy(DN) rats and cells. Methods: STZ was used to induce male SD rats and SOCS2 was injected into left renal vein. Rats were divided into DN group, DN-Ad-null group and DNAd-SOCS2 group. Glucose with high and normal concentration was used to culture HBZY-1 cells and then transfect Ad-SOCS2. HG group, HG-Ad-null group, HG-Ad-SOCS2 group, CG group, CG-Ad-null group, and CG-Ad-SOCS2 group were created. The expression of inflammatory cytokines(MCP-1, TNF-α and IL-6) in kidney tissue of rats, fibrosis related protein(FN, Collagen Ⅳ and TGF-β) in kidney tissue and cells of rats, and JAK/STAT signaling pathway related proteins(p-JAK2 and p-STAT3) were tested by western blot. ELISA was used to test the expression of inflammatory cytokines(TNF-α and IL-6) in cells. Results: The expression of inflammatory cytokines in DN rats(MCP-1, TNF-α and IL-6) and cell(TNF-α and IL-6) were increased(P<0.01) significantly. However, SOCS2 could decrease the overexpression of mediated inflammatory cytokines in DN animal models and cell models(P<0.01). The expression of fibrosis related protein in DN rats and cells increased while SOCS2 decreased the overexpression of mediated fibrosis related protein in DN model rats and cells(P<0.01). The expression of JAK/STAT pathway related protein in both DN rats and cells increased and the JAK/STAT signaling pathway was activated. Yet, SOCS2 obviously suppressed the expression of the JAK/STAT signaling pathway as well as the related proteins(p-JAK2 and p-STAT3) in both DN rats and cells. Conclusions: The overexpression of SOCS2 can decrease the expression of inflammatory cytokines and fibrosis related proteins in DN rats and cells, and meanwhile suppress the activation of JAK/STAT signaling pathway mediated by DN.

  19. Cyclin B1 overexpression in conventional oral squamous cell carcinoma and verrucous carcinoma-A correlation with clinicopathological features

    OpenAIRE

    Patil, Gururaj B.; Hallikeri, Kaveri S.; Balappanavar, Aswini Y.; Hongal, Sudheer G.; Sanjaya, PR; Sagari, Sheetalkumar G.

    2013-01-01

    Background: Nuclear localization of cyclin B1 is an indicator for cells undergoing mitotic division, and the overexpression has shown promising results as a good prognostic predictor for patients of squamous cell carcinoma (SCC). Cyclin B1 overexpression among histological grades of conventional oral squamous cell carcinoma (COSCC), as well as comparison with verrucous carcinoma (VC) has been less investigated. Study Design: Immunohistochemical expression of cyclin B1 was compared with variou...

  20. Overexpression of FOXO4 induces apoptosis of clear-cell renal carcinoma cells through downregulation of Bim.

    Science.gov (United States)

    Wang, Wei; Zhou, Pang-Hu; Hu, Wei

    2016-03-01

    Forkhead box O4 (FOXO4) has been reported to be a novel tumor suppressor gene in gastrointestinal cancers; however, its role in clear‑cell renal carcinoma cells (ccRCC) has remained largely elusive. The present study assessed the expression levels of FOXO4 in RCC tissues and cells. Furthermore, the effects of vector‑mediated overexpression of FOXO4 on the apoptotic rate of the 786‑0 and Caki‑1 cell lines and the role of Bim in this process were investigated. The results demonstrated that the protein and mRNA expression levels of FOXO4 were decreased in renal cancer tissues and cell lines compared with those in normal tissues and cell lines. FOXO4 overexpression significantly increased the apoptotic rate of ccRCC cells in vitro, along with increased protein expression levels of Bim, cleaved‑caspase 3, B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax) and cytochrome c, as well as a decrease in Bcl‑2 expression. Of note, the apoptotic effects of FOXO4 overexpression in 786‑0 cells were inhibited by small interfering RNA‑mediated knockdown of Bim. The results of the present study indicated that FOXO4 has an inhibitory effect in ccRCC, at least in part through inducing apoptosis via upregulation of Bim in the mitochondria-dependent pathway. PMID:26780985

  1. Overexpression of CDX2 in gastric cancer cells promotes the development of multidrug resistance.

    Science.gov (United States)

    Yan, Lin-Hai; Wei, Wei-Yuan; Cao, Wen-Long; Zhang, Xiao-Shi; Xie, Yu-Bo; Xiao, Qiang

    2015-01-01

    Modulator of multidrug resistance (MDR) gene is a direct transcriptional target of CDX2. However, we still speculate whether CDX2 affects MDR through other ways. In this study, a cisplatin-resistant (SGC7901/DDP) and a 5-fluoro-2, 4(1h,3h)pyrimidinedione-resistant (BGC823/5-FU) gastric cancer cell line with stable overexpression of CDX2 were established. The influence of overexpression of CDX2 on MDR was assessed by measuring IC50 of SGC7901/DDP and BGC823/5-FU cells to cisplatin, doxorubicin, and 5-fluorouracil, rate of doxorubicin efflux, apoptosis, and cell cycle progression detected by flow cytometry. In addition, we determined the in vivo effects of CDX2-overexpression lentiviral vector (LV-CDX2-GFP) on tumor size, and apoptotic cells in tumor tissues were detected by deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling and hematoxylin and eosin staining. Results showed that LV-CDX2-GFP led to up-regulation of CDX2 mRNA and protein expression. It significantly inhibited the sensitivity of SGC7901/DDP and BGC823/5-FU cells to cisplatin, doxorubicin, and 5-fluorouracil. Flow cytometry confirmed that the percentage of apoptotic cells decreased after CDX2 up-regulation. This notion was further supported by the observation that up-regulation of CDX2 blocked entry into the M-phase of the cell cycle. Furthermore, up-regulation of CDX2 significantly decreased intracellular accumulation of doxorubicin. In molecular studies, quantitative reverse-transcriptase real-time polymerase chain reaction and western blotting revealed that CDX2 up-regulation could suppress expression of Caspase-3, Caspase-9 and PTEN, and increased the expression of MDR1, MRP, mTOR, HIF-1α. PMID:25628941

  2. High mobility group A1 protein expression reduces the sensitivity of colon and thyroid cancer cells to antineoplastic drugs

    OpenAIRE

    D’Angelo, Daniela; Mussnich, Paula; De Rosa, Roberta; Bianco, Roberto; Tortora, Giampaolo; Fusco, Alfredo

    2014-01-01

    Background Development of resistance to conventional drugs and novel biological agents often impair long-term chemotherapy. HMGA gene overexpression is often associated with antineoplastic drug resistance and reduced survival. Inhibition of HMGA expression in thyroid cancer cells reduces levels of ATM protein, the main cellular sensor of DNA damage, and enhances cellular sensitivity to DNA-damaging agents. HMGA1 overexpression promotes chemoresistance to gemcitabine in pancreatic adenocarcino...

  3. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    International Nuclear Information System (INIS)

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression

  4. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qing; Yu, Tao; Ren, Yao-Yao; Gong, Ting; Zhong, Dian-Sheng, E-mail: zhongdsyx@126.com

    2014-11-07

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.

  5. Geldanamycin inhibits proliferation and motility of Her2/neu-overexpressing SKBr3 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective Benzoquinone ansamycin antibiotic, geldanamycin (GA), is a new anticancer agent that could inhibit Hsp90 by occupying its NH2-terminal ATP-binding site. This study was to investigate the antitumor efficacy of GA on Her2/neu tyrosine kinase overexpressing human breast cancer cell line SKBr3. Methods The degradation of Her2/neu tyrosine kinase was analyzed by Western blotting, the proliferation index was determined by MTT assay, cell cycle distribution was detected by flow cytometry, Cyclin D1 mRNA ...

  6. Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness.

    Science.gov (United States)

    Murcia-Belmonte, Verónica; Esteban, Pedro F; Martínez-Hernández, José; Gruart, Agnès; Luján, Rafael; Delgado-García, José María; de Castro, Fernando

    2016-04-01

    During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination. PMID:25662897

  7. Overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating chemokine expression

    Science.gov (United States)

    Duckworth, C; Zhang, L; Carroll, S L; Ethier, S P; Cheung, H W

    2016-01-01

    We previously found that the scaffold adapter GRB2-associated binding protein 2 (GAB2) is amplified and overexpressed in a subset of primary high-grade serous ovarian cancers and cell lines. Ovarian cancer cells overexpressing GAB2 are dependent on GAB2 for activation of the phosphatidylinositol 3-kinase (PI3K) pathway and are sensitive to PI3K inhibition. In this study, we show an important role of GAB2 overexpression in promoting tumor angiogenesis by upregulating expression of multiple chemokines. Specifically, we found that suppression of GAB2 by inducible small hairpin RNA in ovarian cancer cells inhibited tumor cell proliferation, angiogenesis and peritoneal tumor growth in immunodeficient mice. Overexpression of GAB2 upregulated the secretion of several chemokines from ovarian cancer cells, including CXCL1, CXCL2 and CXCL8. The secreted chemokines not only signal through endothelial CXCR2 receptor in a paracrine manner to promote endothelial tube formation, but also act as autocrine growth factors for GAB2-induced transformation of fallopian tube secretory epithelial cells and clonogenic growth of ovarian cancer cells overexpressing GAB2. Pharmacological inhibition of inhibitor of nuclear factor kappa-B kinase subunit β (IKKβ), but not PI3K, mechanistic target of rapamycin (mTOR) or mitogen-activated protein kinase (MEK), could effectively suppress GAB2-induced chemokine expression. Inhibition of IKKβ augmented the efficacy of PI3K/mTOR inhibition in suppressing clonogenic growth of ovarian cancer cells with GAB2 overexpression. Taken together, these findings suggest that overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating expression of CXCL1, CXCL2 and CXCL8 that is IKKβ-dependent. Co-targeting IKKβ and PI3K pathways downstream of GAB2 might be a promising therapeutic strategy for ovarian cancer that overexpresses GAB2. PMID:26657155

  8. ALDH1A1-overexpressing cells are differentiated cells but not cancer stem or progenitor cells in human hepatocellular carcinoma.

    Science.gov (United States)

    Tanaka, Kaori; Tomita, Hiroyuki; Hisamatsu, Kenji; Nakashima, Takayuki; Hatano, Yuichiro; Sasaki, Yoshiyuki; Osada, Shinji; Tanaka, Takuji; Miyazaki, Tatsuhiko; Yoshida, Kazuhiro; Hara, Akira

    2015-09-22

    Aldehyde dehydrogenase 1A1 (ALDH1A1) is considered to be a cancer stem cell marker in several human malignancies. However, the role of ALDH1A1 in hepatocellular carcinoma (HCC) has not been well elucidated. In this study, we investigated the relationship between ALDH1A1 and clinicopathological findings and examined whether ALDH1A1 deserves to be a cancer stem cell marker in HCC. Sixty HCC samples obtained from surgical resection were collected for immunohistochemical (IHC) staining. Of these 60 samples, 47 samples of HCC tumorous and non-tumorous tissues were evaluated with qRT-PCR. There was no significant difference in the ALDH1A1-mRNA level between tumorous and non-tumorous tissues. Tumorous ALDH1A1-mRNA level had no relationship with the clinicopathological features. Immunoreactivity of ALDH1A1 was classified into two groups based on the percentage of ALDH1A1-overexpressing cells. The ALDH1A1-high group was significantly associated with low serum levels of α-fetoprotein, small tumor diameter, very little lymphovascular invasion, more differentiated pathology and good stage. The ALDH1A1-high group showed more favorable prognosis for recurrence-free survival. In double-staining IHC, ALDH1A1 was not co-expressed with BMI1, EpCAM, CD13, CD24, CD90 and CD133, which reported as cancer stem cell markers in HCC. In conclusion, ALDH1A1-overexpressing cells could appear to be differentiated cells rather than cancer stem cells in HCC. PMID:26160842

  9. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available F18 2-Fluoro 2-deoxyglucose (FDG has been the gold standard in positron emission tomography (PET oncologic imaging since its introduction into the clinics several years ago. Seeking to complement FDG in the diagnosis of breast cancer using radio labeled fructose based analogs, we investigated the expression of the chief fructose transporter-GLUT 5 in breast cancer cells and human tissues. Our results indicate that GLUT 5 is not over-expressed in breast cancer tissues as assessed by an extensive immunohistochemistry study. RT-PCR studies showed that the GLUT 5 mRNA was present at minimal amounts in breast cancer cell lines. Further knocking down the expression of GLUT 5 in breast cancer cells using RNA interference did not affect the fructose uptake in these cell lines. Taken together these results are consistent with GLUT 5 not being essential for fructose uptake in breast cancer cells and tissues.

  10. Enhanced migration of tissue inhibitor of metalloproteinase overexpressing hepatoma cells is attributed to gelatinases:Relevance to intracellular signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Elke Roeb; Anja-Katrin Bosserhoff; Sabine Hamacher; Bettina Jansen; Judith Dahmen; Sandra Wagner; Siegfried Matern

    2005-01-01

    AIM: To study the effect of gelatinases (especially MMP-9)on migration of tissue inhibitor of metalloproteinase (TIMP-1) overexpressing hepatoma cells.METHODS: Wild type HepG2 cells, cells stably transfected with TIMP-1 and TIMP-1 antagonist (MMP-9-H401A, a catalytically inactive matrix metalloproteinase (MMP) which still binds and neutralizes TIMP-1) were incubated in Boyden chambers either with or without Galardin (a synthetic inhibitor of MMP-1, -2, -3, -8, -9) or a specific inhibitor of gelatinases.RESULTS: Compared to wild type HepG2 cells, the cells overexpressing TIMP-1 showed 115% migration (P<0.05)and the cells overexpressing MMP-9-H401A showed 62% migration (P<0.01). Galardin reduced cell migration dose dependently in all cases. The gelatinase inhibitor reduced migration in TIMP-1 overexpressing cells predominantly.Furthermore, we examined intracellular signal transduction pathways of TIMP-1-dependent HepG2 cells. TIMP-1deactivates cell signaling pathways of MMP-2 and MMP-9involving p38 mitogen-activated protein kinase. Specific blockade of the ERK pathway suppresses gelatinase expression either in the presence or absence of TIMP-1.CONCLUSION: Overexpressing functional TIMP-1-enhanced migration of HepG2-TIMP-1 cells depends on enhanced MMP-activity, especially MMP-9.

  11. The over-expression of cell migratory genes in alveolar rhabdomyosarcoma could contribute to metastatic spread.

    Science.gov (United States)

    Rapa, Elizabeth; Hill, Sophie K; Morten, Karl J; Potter, Michelle; Mitchell, Chris

    2012-06-01

    Alveolar (ARMS) and Embryonal (ERMS) rhabdomyosarcoma differ in their response to current treatments. The ARMS subtype has a less favourable prognosis and often presents with widespread metastases, while the less metastatic ERMS has a 5 year survival rate of more than 80 %. In this study we investigate gene expression differences that could contribute to the high frequency of metastasis in ARMS. Microarray analysis identified significant differences in DNA repair, cell cycle and cell migration between the two RMS subtypes. Two genes up regulated in ARMS and involved in cell migration; the engulfment and cell motility gene 1 (ELMO1) and NEL-like 1 gene (NELL1) were selected for further investigation. Over-expression of ELMO1 significantly increased cell invasion from 24.70 ± 7% to 93 ± 5.4% in primary myoblasts and from 29.43 ± 2.1% to 87.33 ± 4.1% in the ERMS cell line RD. siRNA knockout of ELMO1 in the ARMS cell line RH30 significantly reduced cell invasion from 88.2 ± 3.8% to 35.2 ± 2.5%. Over-expression of NELL1 significantly increased myoblast invasion from 23.6 ± 6.9% to 100 ± 0.1%, but had no effect on invasion of the ERMS cell line RD. These findings suggest that ELMO1 may play a key role in ARMS metastasis. NELL1 increased invasion in primary myoblasts, but other factors required for it to enhance motility were not present in the RD ERMS cell line. Impairing ELMO1 function by pharmacological or siRNA knockdown could be a highly effective approach to reduce the metastatic spread of RMS. PMID:22415709

  12. Regulation of cell growth and apoptosis through lactate dehydrogenase C over-expression in Chinese hamster ovary cells.

    Science.gov (United States)

    Fu, Tuo; Zhang, Cunchao; Jing, Yu; Jiang, Cheng; Li, Zhenhua; Wang, Shengyu; Ma, Kai; Zhang, Dapeng; Hou, Sheng; Dai, Jianxin; Kou, Geng; Wang, Hao

    2016-06-01

    Lactate has long been credited as a by-product, which jeopardizes cell growth and productivity when accumulated over a certain concentration during the manufacturing process of therapeutic recombinant proteins by Chinese hamster ovary (CHO) cells. A number of efforts to decrease the lactate concentration have been developed; however, the accumulation of lactate is still a critical issue by the late stage of fed-batch culture. Therefore, a lactate-tolerant cell line was developed through over-expression of lactate dehydrogenase C (LDH-C). In fed-batch culture, sodium lactate or sodium pyruvate was supplemented into the culture medium to simulate the environment of lactate accumulation, and LDH-C over-expression increased the highest viable cell density by over 30 and 50 %, respectively, on day 5, meanwhile the viability was also improved significantly since day 5 compared with that of the control. The percentages of cells suffering early and late apoptosis decreased by 3.2 to 12.5 and 2.0 to 4.3 %, respectively, from day 6 onwards in the fed-batch culture when 40 mM sodium pyruvate was added compared to the control. The results were confirmed by mitochondrial membrane potential assay. In addition, the expression of cleaved caspases 3 and 7 decreased in cells over-expressing LDH-C, suggesting the mitochondrial pathway was involved in the LDH-C regulated anti-apoptosis. In conclusion, a novel cell line with higher lactate tolerance, lowered lactate production, and alleviated apoptosis response was developed by over-expression of LDH-C, which may potentially represent an efficient and labor-saving approach in generating recombinant proteins. PMID:26841889

  13. Analysis of membrane proteome and secretome in cells over-expressing ADAM17 using quantitative proteomics

    International Nuclear Information System (INIS)

    Full text: A disintegrin and metalloproteinase (ADAM) protease is involved in proteolytic ectodomain shedding of several membrane-associated proteins and modulation of key cell signaling pathways in the tumor microenvironment. In this study, we examined the effect of over-expressing the full length human ADAM17 in membrane and secreted proteins. To this end, we constructed a stable Flp-In T-RExHEK293 cells expressing ADAM17 by tetracycline induction. These cells were grown in Dulbeccos modified Eagles medium containing light lysine, arginine or heavy, L-Arg-13C615N4 and L-Lys -13C615N2 (SILAC: stable isotope labeling with amino acid in cell culture) media and they were treated with an ADAM17 activator, phorbolester (PMA). Controls such as Flp-In T-RExHEK293 cell without PMA treatment and without ADAM17 cloned were cultivated in light medium. The ADAM17 overexpression was induced with tetracycline 500 ng/ml for 24 hours. Cells in a heavy condition were treated with PMA 50 ng/ml for 1 hour and vehicle DMSO was used as control in a light cell condition. The extracellular media were collected, concentrated and used to evaluate the secretome and a cell surface biotinylation-based approach was used to capture cell surface-associated proteins. The biotinylated proteins were eluted with dithiothreitol, alkylated with iodoacetamide and then digested with trypsin. The resulting peptides were subjected to LC-MS/MS analysis on an ETD enabled Orbitrap Velos instrument. The results showed different proteins up or down regulated in membrane and secretome analysis which might represent potential molecules involved in signaling or ADAM17 regulation events. (author)

  14. Analysis of membrane proteome and secretome in cells over-expressing ADAM17 using quantitative proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, R.; Simabuco, F.M. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil); Yokoo, S.; Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Sherman, N. [University of Virginia, Charlottesville, VA (United States)

    2012-07-01

    Full text: A disintegrin and metalloproteinase (ADAM) protease is involved in proteolytic ectodomain shedding of several membrane-associated proteins and modulation of key cell signaling pathways in the tumor microenvironment. In this study, we examined the effect of over-expressing the full length human ADAM17 in membrane and secreted proteins. To this end, we constructed a stable Flp-In T-RExHEK293 cells expressing ADAM17 by tetracycline induction. These cells were grown in Dulbeccos modified Eagles medium containing light lysine, arginine or heavy, L-Arg-13C615N4 and L-Lys -13C615N2 (SILAC: stable isotope labeling with amino acid in cell culture) media and they were treated with an ADAM17 activator, phorbolester (PMA). Controls such as Flp-In T-RExHEK293 cell without PMA treatment and without ADAM17 cloned were cultivated in light medium. The ADAM17 overexpression was induced with tetracycline 500 ng/ml for 24 hours. Cells in a heavy condition were treated with PMA 50 ng/ml for 1 hour and vehicle DMSO was used as control in a light cell condition. The extracellular media were collected, concentrated and used to evaluate the secretome and a cell surface biotinylation-based approach was used to capture cell surface-associated proteins. The biotinylated proteins were eluted with dithiothreitol, alkylated with iodoacetamide and then digested with trypsin. The resulting peptides were subjected to LC-MS/MS analysis on an ETD enabled Orbitrap Velos instrument. The results showed different proteins up or down regulated in membrane and secretome analysis which might represent potential molecules involved in signaling or ADAM17 regulation events. (author)

  15. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Si-Jian [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Wu, Yue-Bing [Department of Internal Medicine Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Cai, Shang [Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 21500 (China); Pan, Yi-Xin; Liu, Wei [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Bian, Liu-Guan [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Sun, Bomin [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Sun, Qing-Fang, E-mail: sunqingfang11@163.com [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China)

    2015-03-13

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.

  16. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    International Nuclear Information System (INIS)

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation

  17. Enhancement of germ cell apoptosis induced by ethanol in transgenic mice overexpressing Fas Ligand

    Institute of Scientific and Technical Information of China (English)

    HENG CHUAN XIA; FENG LI; ZHEN LI; ZU CHUAN ZHANG

    2003-01-01

    It was suggested that chronic ethanol exposure could result in testicular germ cell apoptosis, but the mechanism is still unclear. In the present study, we use a model of transgenic mice ubiquitously overexpressing human FasL to investigate whether Fas ligand plays a role in ethanol-induced testicular germ cell apoptosis. Both wild-type (WT)mice and transgenic (TG) mice were treated with acute ethanol (20% v/v) by introperitoneal injection for five times.After ethanol injection, WT mice displayed up-regulation of Fas ligand in the testes, which was shown by FITCconjugated flow cytometry and western blotting. Moreover, TG mice exhibited significantly more apoptotic germ cells than WT mice did after ethanol injection, which was demonstrated by DNA fragmentation, PI staining flow cytometry and TUNEL staining. In addition, histopathological examination revealed that degenerative changes of epithelial component of the tubules occurred in FasL overexpressing transgenic mice while testicular morphology was normal in wild-type mice after acute ethanol exposure, suggesting FasL expression determines the sensitivity of testes to ethanol in mice. In summary, we provide the direct evidences that Fas ligand mediates the apoptosis of testicular germ cells induced by acute ethanol using FasL transgenic mice.

  18. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    Directory of Open Access Journals (Sweden)

    Kyungha Shin

    2016-01-01

    Full Text Available Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs overexpressing choline acetyltransferase (ChAT improve cognitive function of Alzheimer’s disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level.

  19. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury.

    Science.gov (United States)

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  20. Overexpression of Midkine promotes the viability of BA/F3 cells

    International Nuclear Information System (INIS)

    Midkine (MK), a heparin-binding growth factor, has been reported to be overexpressed in a variety of human solid tumors. In the previous study, we found that MK was overexpressed in bone marrow samples derived from acute leukemia (AL) patients. To elucidate the role of MK, we stably transfected MK in IL-3-dependent BA/F3 cells. The results indicated that the capacity of proliferation and colony formation was significantly increased in the MK-transfected subclones than in the empty vector-transfected subclones. MK potentiated proliferation of BA/F3 cells by promoting cell cycle progression. Apoptosis assays showed a remarkable reduction of apoptosis in MK expressing subclones. Exogenous MK could induce the phosphorylation of Raf-1, and inhibit the expression of Bax in BA/F3 cells. These results indicate that MK might be involved in the pathogenesis of leukemia and could be taken as an ideal diagnostic marker and molecular target for the treatment of acute leukemia.

  1. Signaling Pathway of GP88 (Progranulin) in Breast Cancer Cells: Upregulation and Phosphorylation of c-myc by GP88/Progranulin in Her2-Overexpressing Breast Cancer Cells

    OpenAIRE

    Kim, Wes E; Yue, Binbin; Serrero, Ginette

    2016-01-01

    Her2 is a receptor tyrosine kinase overexpressed in 25% of breast tumors. We have shown that the 88 kDa autocrine growth and survival factor GP88 (progranulin) stimulated Her2 phosphorylation and proliferation and conferred Herceptin resistance in Her2-overexpressing cells. Herein, we report that GP88 stimulates c-myc phosphorylation and upregulates c-myc levels in Her2-overexpressing cells. c-myc phosphorylation and upregulation by GP88 were not observed in non-Her2-overexpressing breast can...

  2. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Genz, Berit [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Thomas, Maria [Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart (Germany); Pützer, Brigitte M. [Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock (Germany); Siatkowski, Marcin; Fuellen, Georg [Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock (Germany); Vollmar, Brigitte [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Abshagen, Kerstin, E-mail: kerstin.abshagen@uni-rostock.de [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany)

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  3. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    International Nuclear Information System (INIS)

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells

  4. Protein Kinase G1 α Overexpression Increases Stem Cell Survival and Cardiac Function after Myocardial Infarction

    OpenAIRE

    Linlin Wang; Zeeshan Pasha; Shuyun Wang; Ning Li; Yuliang Feng; Gang Lu; Millard, Ronald W.; Muhammad Ashraf

    2013-01-01

    BACKGROUND: We hypothesized that overexpression of cGMP-dependent protein kinase type 1α (PKG1α) could mimic the effect of tadalafil on the survival of bone marrow derived mesenchymal stem cells (MSCs) contributing to regeneration of the ischemic heart. METHODS AND RESULTS: MSCs from male rats were transduced with adenoviral vector encoding for PKG1α ((PKG1α)MSCs).Controls included native MSCs ((Nat)MSCs) and MSCs transduced with an empty vector ((Null)MSCs). PKG1α activity was increased appr...

  5. Overexpressing Human Membrane Proteins in Stably Transfected and Clonal Human Embryonic Kidney 293S Cells

    OpenAIRE

    Chaudhary, Sarika; Pak, John E.; Gruswitz, Franz; Sharma, Vinay; Stroud, Robert M.

    2012-01-01

    X-ray crystal structures of human membrane proteins, while potentially being of extremely high impact, are highly underrepresented relative to those of prokaryotic membrane proteins. One key reason for this is that human membrane proteins can be difficult to express at a level, and at a quality, suitable for structural studies. This protocol describes the methods that we utilize to overexpress human membrane proteins from clonal HEK293S GnTI- cells, and was recently used in our 2.1 Å X-ray cr...

  6. Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma

    International Nuclear Information System (INIS)

    Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP), a target protein of S100, has been identified as a component of a novel ubiquitinylation complex leading to β-catenin degradation, which was found to be related to the malignant phenotypes of gastric cancer. However, the roles of CacyBP/SIP in renal cell carcinoma still remain unclear. In the present study, we had analyzed the expression of the CacyBP/SIP protein in human renal cancer cells and clinical tissue samples. The possible roles of CacyBP/SIP in regulating the malignant phenotype of renal cancer cells were also investigated. The results demonstrated that the expression of CacyBP/SIP was markedly down-regulated in renal cell carcinoma tissues and cell lines. Ectopic overexpression of CacyBP/SIP in A498 cells inhibited the proliferation of this cell and delayed cell cycle progression significantly, which might be related to the down-regulation of Cyclin D1 through reducing β-catenin protein. CacyBP/SIP also suppressed colony formation in soft agar and its tumorigenicity in nude mice. Taken together, our work showed that CacyBP/SIP, as a novel down-regulated gene in renal cell carcinoma, suppressed proliferation and tumorigenesis of renal cancer cells

  7. Fibroblast growth factor receptor 3 protein is overexpressed in oral and oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Koole, Koos; van Kempen, Pauline M W; Swartz, Justin E; Peeters, Ton; van Diest, Paul J; Koole, Ron; van Es, Robert J J; Willems, Stefan M

    2016-02-01

    Fibroblast growth factor receptor 3 (FGFR3) is a member of the fibroblast growth factor receptor tyrosine kinase family. It has been identified as a promising therapeutic target in multiple types of cancer. We have investigated FGFR3 protein expression and FGFR3 gene copy-numbers in a single well-documented cohort of oral and oropharyngeal squamous cell carcinoma. Tissue microarray sets containing 452 formalin-fixed paraffin-embedded tissues were immunohistochemically stained with an anti-FGFR3 antibody and hybridized with a FGFR3 fluorescence in situ hybridization probe. FGFR3 protein expression was correlated with clinicopathological and survival data, which were retrieved from electronic medical records. FGFR3 mRNA data of 522 head and neck squamous cell carcinoma (HNSCC) were retrieved from The Cancer Genome Atlas (TCGA). Fibroblast growth factor receptor 3 (FGFR3) protein was overexpressed in 48% (89/185) of oral and 59% (124/211) of oropharyngeal squamous cell carcinoma. Overexpression of FGFR3 protein was not related to overall survival or disease-free survival in oral (HR[hazard ratio]: 0.94; 95% CI: 0.64-1.39; P = 0.77, HR: 0.94; 95% CI: 0.65-1.36; P = 0.75) and oropharyngeal squamous cell carcinoma (HR: 1.21; 95% CI: 0.81-1.80; P = 0.36, HR: 0.42; 95% CI: 0.79-1.77; P = 0.42). FGFR3 mRNA was upregulated in 3% (18/522) of HNSCC from the TCGA. The FGFR3 gene was gained in 0.6% (1/179) of oral squamous cell carcinoma but no amplification was found in oral and oropharyngeal squamous cell carcinoma. In conclusion, FGFR3 protein is frequently overexpressed in oral and oropharyngeal squamous cell carcinoma. Therefore, it may serve as a potential therapeutic target for FGFR3-directed therapies in oral and oropharyngeal squamous cell carcinoma. PMID:26711175

  8. Tetracycline-inducible protein expression in pancreatic cancer cells: Effects of CapG overexpression

    Institute of Scientific and Technical Information of China (English)

    Sarah Tonack; Sabina Patel; Mehdi Jalali; Taoufik Nedjadi; Rosalind E Jenkins; Christopher Goldring; John Neoptolemos; Eithne Costello

    2011-01-01

    AIM: To establish stable tetracycline-inducible pancre-atic cancer cell lines.METHODS: Suit-2, MiaPaca-2, and Panc-1 cells were transfected with a second generation reverse tetra-cycline-controlled transactivator protein (rtTA2S-M2), under the control of either a cytomegalovirus (CMV) or a chicken β-actin promoter, and the resulting clones were characterised.RESULTS: Use of the chicken (β-actin) promoter proved superior for both the production and mainte-nance of doxycycline-inducible cell lines. The system proved versatile, enabling transient inducible expression of a variety of genes, including GST-P, CYP2E1, S100A6, and the actin capping protein, CapG. To determine the physiological utility of this system in pancreatic cancer cells, stable inducible CapG expressors were established. Overexpressed CapG was localised to the cytoplasm and the nuclear membrane, but was not observed in the nu-cleus. High CapG levels were associated with enhanced motility, but not with changes to the cell cycle, or cellu-lar proliferation. In CapG-overexpressing cells, the levels and phosphorylation status of other actin-moduating proteins (Cofilin and Ezrin/Radixin) were not altered. However, preliminary analyses suggest that the levels of other cellular proteins, such as ornithine aminotransfer-ase and enolase, are altered upon CapG induction. CONCLUSION: We have generated pancreatic-cancer derived cell lines in which gene expression is fully con-trollable.

  9. The Effect of cdk- 5 Overexpression and Overactivation on Tau Hyperphosphorylation in Cultured N2a Cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Juan; LI Hong-lian; FENG You-mei; WANG Jian-zhi

    2005-01-01

    Neurofibrillary tangles (NFTs) are one of the neuropathological hallmarks of Alzheimer' s disease (AD) and abnormally hyperphosphorylated tau is the major protein of NFTs. It was reported that cyclin-dependent kinase5 (Cdk-5) could phosphorylate tau at most AD-related epitopes in vivo. In this study, we investigated the effect of cdk-5 overexpression on tau hyperphosphorylation in neuroblastoma N2a cells. We demonstrated that overexpression of cdk-5 which resulted in a 3.5-fold Cdk5 activation in the transfected cells induced a dramatic increase in phosphorylation of tau at several phosphorylation sites. Overexpression of cdk-5 led to a reduced staining with antibody Tau-1 and an enhanced staining with antibody PHF-1, suggesting hy perphosphorylation of tau at Ser199/202 and Ser396/404 sites. It implies that in vitro overexpression of cdk-5 leads to Cdk5 overactivation and tau hyperphosphorylation may be the underline mechanism.

  10. CENPA overexpression promotes genome instability in pRb-depleted human cells

    Directory of Open Access Journals (Sweden)

    Lentini Laura

    2009-12-01

    Full Text Available Abstract Background Aneuploidy is a hallmark of most human cancers that arises as a consequence of chromosomal instability and it is frequently associated with centrosome amplification. Functional inactivation of the Retinoblastoma protein (pRb has been indicated as a cause promoting chromosomal instability as well centrosome amplification. However, the underlying molecular mechanism still remains to be clarified. Results Here we show that pRb depletion both in wild type and p53 knockout HCT116 cells was associated with the presence of multipolar spindles, anaphase bridges, lagging chromosomes and micronuclei harbouring whole chromosomes. In addition aneuploidy caused by pRb acute loss was not affected by p53 loss. Quantitative real-time RT-PCR showed that pRB depletion altered expression of genes involved in centrosome duplication, kinetochore assembly and in the Spindle Assembly Checkpoint (SAC. However, despite MAD2 up-regulation pRb-depleted cells seemed to have a functional SAC since they arrested in mitosis after treatments with mitotic poisons. Moreover pRb-depleted HCT116 cells showed BRCA1 overexpression that seemed responsible for MAD2 up-regulation. Post-transcriptional silencing of CENPA by RNA interference, resulting in CENP-A protein levels similar to those present in control cells greatly reduced aneuploid cell numbers in pRb-depleted cells. Conclusion Altogether our findings indicate a novel aspect of pRb acute loss that promotes aneuploidy mainly by inducing CENPA overexpression that in turn might induce micronuclei by affecting the correct attachment of spindle microtubules to kinetochores.

  11. Overexpression of GPR39 contributes to malignant development of human esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Tang Hong

    2011-02-01

    Full Text Available Abstract Background By using cDNA microarray analysis, we identified a G protein-coupled receptor, GPR39, that is significantly up-regulated in ESCC. The aim of this study is to investigate the role of GPR39 in human esophageal cancer development, and to examine the prevalence and clinical significance of GPR39 overexpression in ESCC. Methods The mRNA expression level of GPR39 was analyzed in 9 ESCC cell lines and 50 primary ESCC tumors using semi-quantitative RT-PCR. Immunohistochemistry was used to assess GPR39 protein expression in tissue arrays containing 300 primary ESCC cases. In vitro and in vivo studies were done to elucidate the tumorigenic role of GPR39 in ESCC cells. Results We found that GPR39 was frequently overexpressed in primary ESCCs in both mRNA level (27/50, 54% and protein level (121/207, 58.5%, which was significantly associated with the lymph node metastasis and advanced TNM stage (P GPR39 gene into ESCC cell line KYSE30 could promote cell proliferation, increase foci formation, colony formation in soft agar, and tumor formation in nude mice. The mechanism by which amplified GPR39 induces tumorigenesis was associated with its role in promoting G1/S transition via up-regulation of cyclin D1 and CDK6. Further study found GPR39 could enhance cell motility and invasiveness by inducing EMT and remodeling cytoskeleton. Moreover, depletion of endogenous GPR39 by siRNA could effectively decrease the oncogenicity of ESCC cells. Conclusions The present study suggests that GPR39 plays an important tumorigenic role in the development and progression of ESCC.

  12. Overexpression of GPR39 contributes to malignant development of human esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    By using cDNA microarray analysis, we identified a G protein-coupled receptor, GPR39, that is significantly up-regulated in ESCC. The aim of this study is to investigate the role of GPR39 in human esophageal cancer development, and to examine the prevalence and clinical significance of GPR39 overexpression in ESCC. The mRNA expression level of GPR39 was analyzed in 9 ESCC cell lines and 50 primary ESCC tumors using semi-quantitative RT-PCR. Immunohistochemistry was used to assess GPR39 protein expression in tissue arrays containing 300 primary ESCC cases. In vitro and in vivo studies were done to elucidate the tumorigenic role of GPR39 in ESCC cells. We found that GPR39 was frequently overexpressed in primary ESCCs in both mRNA level (27/50, 54%) and protein level (121/207, 58.5%), which was significantly associated with the lymph node metastasis and advanced TNM stage (P < 0.01). Functional studies showed that GPR39 has a strong tumorigenic ability. Introduction of GPR39 gene into ESCC cell line KYSE30 could promote cell proliferation, increase foci formation, colony formation in soft agar, and tumor formation in nude mice. The mechanism by which amplified GPR39 induces tumorigenesis was associated with its role in promoting G1/S transition via up-regulation of cyclin D1 and CDK6. Further study found GPR39 could enhance cell motility and invasiveness by inducing EMT and remodeling cytoskeleton. Moreover, depletion of endogenous GPR39 by siRNA could effectively decrease the oncogenicity of ESCC cells. The present study suggests that GPR39 plays an important tumorigenic role in the development and progression of ESCC

  13. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.

    Directory of Open Access Journals (Sweden)

    Lisa Cadavez

    Full Text Available In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP. The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR, perturbing endoplasmic reticulum (ER homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP or protein disulfite isomerase (PDI, and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA or 4-phenylbutyrate (PBA, alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.

  14. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Zou, Defeng; Chen, Yi; Han, Yaxin; Lv, Chen; Tu, Guanjun

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesenchymal stem cells, neural...

  15. Overexpression of Robo2 causes defects in the recruitment of metanephric mesenchymal cells and ureteric bud branching morphogenesis

    International Nuclear Information System (INIS)

    Highlights: ► Overexpression of Robo2 caused reduced UB branching and glomerular number. ► Fewer MM cells surrounding the UB after overexpression of Robo2 in vitro. ► No abnormal Epithelial Morphology of UB or apoptosis of mm cells in the kidney. ► Overexpression of Robo2 affected MM cells migration and caused UB deficit. ► The reduced glomerular number can also be caused by fewer MM cells. -- Abstract: Roundabout 2 (Robo2) is a member of the membrane protein receptor family. The chemorepulsive effect of Slit2–Robo2 signaling plays vital roles in nervous system development and neuron migration. Slit2–Robo2 signaling is also important for maintaining the normal morphogenesis of the kidney and urinary collecting system, especially for the branching of the ureteric bud (UB) at the proper site. Slit2 or Robo2 mouse mutants exhibit multilobular kidneys, multiple ureters, and dilatation of the ureter, renal pelvis, and collecting duct system, which lead to vesicoureteral reflux. To understand the effect of Robo2 on kidney development, we used microinjection and electroporation to overexpress GFP-Robo2 in an in vitro embryonic kidney model. Our results show reduced UB branching and decreased glomerular number after in vitro Robo2 overexpression in the embryonic kidneys. We found fewer metanephric mesenchymal (MM) cells surrounding the UB but no abnormal morphology in the branching epithelial UB. Meanwhile, no significant change in MM proliferation or apoptosis was observed. These findings indicate that Robo2 is involved in the development of embryonic kidneys and that the normal expression of Robo2 can help maintain proper UB branching and glomerular morphogenesis. Overexpression of Robo2 leads to reduced UB branching caused by fewer surrounding MM cells, but MM cell apoptosis is not involved in this effect. Our study demonstrates that overexpression of Robo2 by microinjection in embryonic kidneys is an effective approach to study the function of Robo2.

  16. Mer receptor tyrosine kinase is frequently overexpressed in human non-small cell lung cancer, confirming resistance to erlotinib

    OpenAIRE

    Xie, Shengzhi; Li, Yongwu; Li, Xiaoyan; WANG, LINXIONG; Yang, Na; Wang, Yadi; Wei, Huafeng

    2015-01-01

    Mer is a receptor tyrosine kinase (RTK) with oncogenic properties that is often overexpressed or activated in various malignancies. Using both immunohistochemistry and microarray analyses, we demonstrated that Mer was overexpressed in both tumoral and stromal compartments of about 70% of non-small cell lung cancer (NSCLC) samples relative to surrounding normal lung tissue. This was validated in freshly harvested NSCLC samples; however, no associations were found between Mer expression and pat...

  17. Effects of overexpressing p14ARF on the apoptosis in human melanoma cells irradiated with γ-ray

    Institute of Scientific and Technical Information of China (English)

    PENG Lixia; ZHANG Wei; LIU Huitu; HE Dacheng; GAO Ping

    2003-01-01

    Tumor suppressor ARF can induce cell cycle arrest or apoptosis by activating p53. In order to explore the molecular mechanism of the induction of apoptosis by p14ARF, a human melanoma cell model overexpressing p14ARF was constructed. Present study indicated that in the cells overexpressing p14ARF, p53 was accumulated in nucleus while it dispersed in cytosol in the control cells. Irradiated with γ-ray, overexpressing p14ARF promoted the apoptosis of A375 cells, triggered Smac release from mitochondria to cytosol, and increased the expression of p53, Bax, Caspase-3, Caspase-9, p21cip1 and p27kip1. However, the protein level of Bcl-2 and phospho-ERK was down-regulated. These results suggested a possible mechanism of p14ARF in promotion of apoptosis.

  18. 20(S)-Protopanaxadiol (PPD) analogues chemosensitize multidrug-resistant cancer cells to clinical anticancer drugs.

    Science.gov (United States)

    Liu, Junhua; Wang, Xu; Liu, Peng; Deng, Rongxin; Lei, Min; Chen, Wantao; Hu, Lihong

    2013-07-15

    Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3-2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells. PMID:23683834

  19. Overexpression of {alpha}-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohee [Department of Internal Medicine, Dankook University College of Medicine, Cheonan (Korea, Republic of); Yang, Jae-Yeon [Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Chongno-Gu, Seoul 110-744 (Korea, Republic of); Shin, Chan Soo, E-mail: csshin@snu.ac.kr [Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Chongno-Gu, Seoul 110-744 (Korea, Republic of)

    2009-05-15

    {alpha}- and {beta}-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/{beta}-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of {alpha}-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding {alpha}-catenin (MSCV-{alpha}-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium ({beta}-glycerol phosphate and ascorbic acid), cells overexpressing {alpha}-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that {alpha}-catenin overexpression has significantly increased cell-cell aggregation. However, cellular {beta}-catenin levels (total, cytoplasmic-nuclear ratio) and {beta}-catenin-TCF/LEF transcriptional activity did not change by overexpression of {alpha}-catenin. Knock-down of {alpha}-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that {alpha}-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/{beta}-catenin-signaling.

  20. Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells

    Institute of Scientific and Technical Information of China (English)

    Xing-Xiang Peng; Amit K. Tiwari; Hsiang-Chun Wu; Zhe-Sheng Chen

    2012-01-01

    Imatinib,a breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) tyrosine kinase inhibitor (TKI),has revolutionized the treatment of chronic myelogenous leukemia (CML).However,development of multidrug resistance(MDR) limits the use of imatinib.In the present study,we aimed to investigate the mechanisms of cellular resistance to imatinib in CML.Therefore,we established an imatinib-resistant human CML cell line (K562-imatinib) through a stepwise selection process.While characterizing the phenotype of these cells,we found that K562-imatinib cells were 124.6-fold more resistant to imatinib than parental K562 cells.In addition,these cells were cross-resistant to second- and third-generation BCR-ABL TKIs.Western blot analysis and reverse transcription-polymerase chain reaction(RT-PCR) demonstrated that P-glycoprotein (P-gp) and MDR1 mRNA levels were increased in K562-imatinib cells.In addition,accumulation of [14C]6-mercaptopurine (6-MP) was decreased,whereas the ATP-dependent efflux of [14C] 6-MP and [3H]methotrexate transport were increased in K562-imatinib cells.These data suggest that the overexpression of P-gp may play a crucial role in acquired resistance to imatinib in CML K562-imatinib cells.

  1. Overexpression of cyclin L2 induces apoptosis and cell-cycle arrest in human lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    LI Hong-li; WANG Tong-shan; LI Xiao-yu; LI Nan; HUANG Ding-zhi; CHEN Qi; BA Yi

    2007-01-01

    Background Uncontrolled cell division is one of the hallmarks of tumor growth. Researches have been focused on numerous molecules involved in this process. Cyclins are critical regulatory proteins of cell cycle progression and/or transcription. The present study aimed to investigate the anti-proliferative effect of cyclin L2, and to define its growth regulatory mechanisms using human lung adenocarcinoma cell line A549.Methods Human cyclin L2 was transfected into human lung adenocarcinoma cells (A549 cell), and was expressed in a mammalian expression vector pcDNA3.1. The effects and mechanisms of the cyclin L2 in cell growth, cell cycle analysis and apoptosis were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry or Western blot, respectively.Results Overexpression of cyclin L2 inhibited the growth of A549 cells. Cell cycle analysis in cells transfected with pCCNL2 revealed an increment in proportion in G0/G1 phase ((68.07 ± 4.2)%) in contrast to (60.39 ± 2.82)% of the cells transfected with mock vector. Apoptosis occurred in (7.25 ± 0.98)% cells transfected with pCCNL2, as compared with (1.25 ± 0.21)% of the mock vector control group. Cyclin L2-induced-G0/G1 arrest and apoptosis involved upregulation of caspase-3 and downregulation of Bcl-2 and survivin.Conclusion The results indicate that overexpression of cyclin L2 protein may promote efficient growth inhibition of human lung adenocarcinoma cells by inducing G0/G1 cell cycle arrest and apoptosis.

  2. RNA interference blocking the apoptosis in HEK293 cells induced by overexpression of alpha-synuclein

    Institute of Scientific and Technical Information of China (English)

    Tao Chen; Beisha Tang; Xiaoping Liao; Guoqiang Wen; Xinxiang Yan; Jifeng Guo; Yuhu Zhang; Feng Ouyang; Zhigang Long; Li Cao; Jing Li

    2009-01-01

    BACKGROUND: Overexpression of o-synuclein can induce cell apoptosis. RNA interference (RNAi)may block specific gene function and cause gene silencing.OBJECTIVE: To construct a specific and effective RNAi plasmid for the a-synuclein gene and investigate if RNAi can block apoptosis in HEK293 cells, induced by overexpression of wild-type α-synuclein.DESIGN, TIME AND SETTING: A contrast experiment based on genetically engineered cytobiology was performed at the State Key Lab of Medical Genetics of China, Xiangya Medical College of Central South University, between October 2004 and October 2008.MATERIALS: HEK293 cells and pBSHH1 plasmid were provided by the State Key Lab of Medical Genetics of China; OligDNA sequence by Sagon Bioengineering Company, Shanghai;Lipofectamine 2000 by Invitrogen, USA;α-synuclein monoclonal antibody, Hoechst 33258, and MTT by Sigma, USA; Horseradish peroxidase-coupled goat anti-rat luG by KPL, USA; FACSan flow cytometry by BD, USA.METHODS: Four target sites were used to construct hairpin RNA pBSHH1 vectors-pSYNi-1,pSYNi-2, pSYNi-3 and pSYNi-4-which were cloned in the pBSHH1 plasmid. HEK293 cells were transfected using Lipofectamine 2000. In addition, a non-transfect group and a negative plasmid transfect group were established. The cultured HEK293 cells were processed as follows:transfection of blank plasmid (blank control group), transfection of α-synuclein-pEGFP and RNAi negative vector (negative control group), and transfection of a-synuclein-pEGFP and pSYNi-1 (transfection group). Cells in all groups were transfected with Lipofectamine 2000 for 48 hours.MAIN OUTCOME MEASURES: Expression of α-synuclein mRNA and protein were detected by RT-PCR and Western blot. Cell morphology was observed under an inverted fluorescence microscope; cell viability was measured using MTT method; and cell apoptosis was determined with Annexin V-PE flow cytometry.RESULTS: a-synuclein mRNA and protein expressions were significantly decreased in the pSYNi-1

  3. Recovery of NIS expression in thyroid cancer cells by overexpression of Pax8 gene

    International Nuclear Information System (INIS)

    Recovery of iodide uptake in thyroid cancer cells by means of obtaining the functional expression of the sodium/iodide symporter (NIS) represents an innovative strategy for the treatment of poorly differentiated thyroid cancer. However, the NIS gene expression alone is not always sufficient to restore radioiodine concentration ability in these tumour cells. In this study, the anaplastic thyroid carcinoma ARO cells were stably transfected with a Pax8 gene expression vector. A quantitative RT-PCR was performed to assess the thyroid specific gene expression in selected clones. The presence of NIS protein was detected by Western blot and localized by immunofluorescence. A iodide uptake assay was also performed to verify the functional effect of NIS induction and differentiation switch. The clones overexpressing Pax8 showed the re-activation of several thyroid specific genes including NIS, Pendrin, Thyroglobulin, TPO and TTF1. In ARO-Pax8 clones NIS protein was also localized both in cell cytoplasm and membrane. Thus, the ability to uptake the radioiodine was partially restored, associated to a high rate of efflux. In addition, ARO cells expressing Pax8 presented a lower rate of cell growth. These finding demonstrate that induction of Pax8 expression may determine a re-differentiation of thyroid cancer cells, including a partial recovery of iodide uptake, fundamental requisite for a radioiodine-based therapeutic approach for thyroid tumours

  4. Overexpression of Cathepsin L is associated with gefitinib resistance in non-small cell lung cancer.

    Science.gov (United States)

    Cui, F; Wang, W; Wu, D; He, X; Wu, J; Wang, M

    2016-07-01

    Lung cancer, the most common malignancy, is still the leading cause of cancer-related death worldwide. Non-small-cell lung cancer (NSCLC) accounts for 80 % of all lung cancers. Recent studies showed Cathepsin L (CTSL) is overexpressed in various cancerous tissues; however, the association between CTSL expression and EGFR-TKI resistance remains unknown. In this study, we investigated the expression of CTSL in lung cancer specimens and matched normal tissues by quantitative real-time PCR and IHC. The functional role of CTSL in resistant PC-9/GR cell line was investigated by proliferation and apoptosis analysis compared with control PC-9 cells. Our results found that the level of CTSL expression was higher in NSCLC tissues compared with matched normal adjacent tissue samples, and CTSL was more highly expressed in PC-9/GR cells compared to PC-9 cells. Knocking-down of CTSL in PC-9/GR cells could decrease cell proliferation and potentiate apoptosis induced by gefitinib, suggesting CTSL may contribute to gefitinib resistance in NSCLC. CTSL might be explored as a candidate of therapeutic target for modulating EGFR-TKI sensitivity in NSCLC. PMID:26474873

  5. Recovery of NIS expression in thyroid cancer cells by overexpression of Pax8 gene

    Directory of Open Access Journals (Sweden)

    Gulino Alberto

    2005-07-01

    Full Text Available Abstract Background Recovery of iodide uptake in thyroid cancer cells by means of obtaining the functional expression of the sodium/iodide symporter (NIS represents an innovative strategy for the treatment of poorly differentiated thyroid cancer. However, the NIS gene expression alone is not always sufficient to restore radioiodine concentration ability in these tumour cells. Methods In this study, the anaplastic thyroid carcinoma ARO cells were stably transfected with a Pax8 gene expression vector. A quantitative RT-PCR was performed to assess the thyroid specific gene expression in selected clones. The presence of NIS protein was detected by Western blot and localized by immunofluorescence. A iodide uptake assay was also performed to verify the functional effect of NIS induction and differentiation switch. Results The clones overexpressing Pax8 showed the re-activation of several thyroid specific genes including NIS, Pendrin, Thyroglobulin, TPO and TTF1. In ARO-Pax8 clones NIS protein was also localized both in cell cytoplasm and membrane. Thus, the ability to uptake the radioiodine was partially restored, associated to a high rate of efflux. In addition, ARO cells expressing Pax8 presented a lower rate of cell growth. Conclusion These finding demonstrate that induction of Pax8 expression may determine a re-differentiation of thyroid cancer cells, including a partial recovery of iodide uptake, fundamental requisite for a radioiodine-based therapeutic approach for thyroid tumours.

  6. Effects of gene F10 over-expression on the tumorigenicity of A549 cells

    Directory of Open Access Journals (Sweden)

    Ya-li SONG

    2012-07-01

    Full Text Available Objective To explore the effects and mechanism of gene F10 over-expression on the tumorigenicity of A549 cells in nude mice. Methods Eighteen SPF nude mice (4-5weeks of age were randomly equally divided into the three groups: A549-WT (vaccination with wild-type strain A549, Mock-A549 (vaccination with controlled cells Mock-A549 transfected by blank vectors and F10+A549 (vaccination with F10+A549 cells which overexpressed F10 gene according to their vaccination and then revaccinated into the subcutaneous tissue of the back with cell suspension (0.1ml with 5×106 cells in each mouse. After vaccination, the mice were observed and weighed once every 3-4 days, then the tumor formation time was recorded, the tumor growth curve drawn and tumor formation rate calculated. The mice were sacrificed and the subcutaneous tumor tissues were paraffin embedded and sectioned, and stained with HE for histopathological examinati on 5 weeks after the vaccination. Meanwhile, the expressions of Caspase-3, Bax and Bcl-2 in the tumor tissue were detected by immunohistochemistry. Results The tumor formation time was significantly different (F=13.523, P=0.000 between the groups of A549-WT (12.0±1.4d, Mock-A549 (11.7±1.0d and F10+A549 (8.5±1.4d, and it was longer in the groups A549-WT and Mock-A549 than that in F10+A549 group (P 0.05. Pathological examination revealed that the tumor tissues in the groups A549-WT and Mock-A549 harbored more necrotic cells, with structure of homogeneously red stained and amorphous material. In F10+A549 group, the number of necrotic cell was less, and cell proliferation was obvious in the edge of tumor tissues, in which, microvessels were found. In groups A549-WT and Mock-A549, the expression of Bcl-2 was rarely observed, while it was obvious in F10+A549 group, with positive cells diffusely distributed. In groups A549-WT and Mock-A549, there was strong the expression of both Bax and Caspase-3, especially in the A549-WT group. But the

  7. Microvessel density and heparanase over-expression in clear cell renal cell cancer: correlations and prognostic significances

    Directory of Open Access Journals (Sweden)

    Ren Juchao

    2011-12-01

    Full Text Available Abstract Background Tumor angiogenesis is important in the progression of malignancies, and heparanase plays an important role in sustaining the pathology of clear cell renal cell cancer (ccRCC. The study was carried out to investigate the correlations between microvessel density (MVD and heparanase expression containing prognostic significances in the patients with ccRCC. Methods Specimens from 128 patients with ccRCC were investigated by immunohistochemistry for MVD. RT-PCR and immunohistochemistry were used to detect heparanase expression. Correlations between MVD, heparanase expression, and various clinico-pathological factors were studied. The prognostic significances of MVD and heparanase expression were also analysed. Results We discovered a statistically significant prevalence of higher MVD in ccRCC compared with adjacent normal renal tissues. MVD was positively correlated with TNM stage and distant metastasis in ccRCC patients, and was also correlated with the expression level of heparanase. Heparanase is over-expressed and correlated with TNM stage, histologic grade, distant metastasis and lymphatic metastasis in ccRCC. High MVD and heparanase over-expression inversely correlate with the survival of ccRCC patients. Conclusions Heparanase contributes to angiogenesis of ccRCC and over-expression of heparanase is an independent predictors of prognosis for ccRCC. MVD is correlated with tumor development and metastasis in ccRCC.

  8. Homeobox B9 is overexpressed in hepatocellular carcinomas and promotes tumor cell proliferation both in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangyi [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Dong, Lei, E-mail: dlleidong@126.com [Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Street, Shahekou District, Dalian 116001 (China); Xing, Rong [Department of Pathology and Pathophysiology, Dalian Medical University, No. 9 Lvshunnan Road, Lvshunkou District, Dalian 116044 (China); Wang, Li; Luan, Fengming; Yao, Chenhui [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Ji, Xuening [Department of Oncology, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China); Bai, Lizhi, E-mail: dllizhibai@126.com [Department of Emergency, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China)

    2014-02-07

    Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC. HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC.

  9. Bullatacin Triggered ABCB1-Overexpressing Cell Apoptosis via the Mitochondrial-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Yong-Ju Liang

    2009-01-01

    Full Text Available This paper was to explore bullatacin-mediated multidrug-resistant cell apoptosis at extremely low concentration. To investigate its precise mechanisms, the pathway of cell apoptosis induced by bullatacin was examined. Bullatacin causes an upregulation of ROS and a downregulation of ΔΨm in a concentration-dependent manner in ABCB1-overexpressing KBv200 cells. In addition, cleavers of caspase-9, caspase-3, and PARP were observed following the release of cytochrome c from mitochondria after bullatacin treatment. However, neither cleavage of caspase-8 nor change of expression level of bcl-2, bax and Fas was observed by the same treatment. Pretreating KBv200 cells with N-acetylcysteine, an antioxidant modulator, resulted in a significant reduction of ROS generation and cell apoptosis induced by bullatacin. Bullatacin-induced apoptosis was antagonized by z-LEHD-fmk, a caspase-9 inhibitor, but not by z-IETD-fmk, a caspase-8 inhibitor. These implied that apoptosis of KBv200 cells induced by bullatacin was associated with the mitochondria-dependent pathway that was limited to activation of apical caspase-9.

  10. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Veronica L Martinez-Marignac

    Full Text Available Over-expression of DNA repair genes has been associated with resistance to radiation and DNA-damage induced by chemotherapeutic agents such as cisplatin. More recently, based on the analysis of genome expression profiling, it was proposed that over-expression of DNA repair genes enhances the invasive behaviour of tumour cells. In this study we present experimental evidence utilizing functional assays to test this hypothesis. We assessed the effect of the DNA repair proteins known as X-ray complementing protein 3 (XRCC3 and RAD51, to the invasive behavior of the MCF-7 luminal epithelial-like and BT20 basal-like triple negative human breast cancer cell lines. We report that stable or transient over-expression of XRCC3 but not RAD51 increased invasiveness in both cell lines in vitro. Moreover, XRCC3 over-expressing MCF-7 cells also showed a higher tumorigenesis in vivo and this phenotype was associated with increased activity of the metalloproteinase MMP-9 and the expression of known modulators of cell-cell adhesion and metastasis such as CD44, ID-1, DDR1 and TFF1. Our results suggest that in addition to its' role in facilitating repair of DNA damage, XRCC3 affects invasiveness of breast cancer cell lines and the expression of genes associated with cell adhesion and invasion.

  11. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells

    DEFF Research Database (Denmark)

    Honjo, Y; Hrycyna, C A; Yan, Q W; Medina-Pérez, W Y; Robey, R W; van de Laar, A; Litman, Thomas; Dean, M; Bates, S E

    2001-01-01

    A disparity was noted in the transport of rhodamine 123 among nine MXR/BCRP/ABCP-overexpressing cells studied; all demonstrated mitoxantrone transport, whereas only two effluxed rhodamine 123. When the MXR/BCRP/ABCP gene was sequenced in the cell lines studied, differences were noted at amino acid...

  12. Muscle cell atrophy induced by HSP gene silencing was counteracted by HSP overexpression

    Science.gov (United States)

    Choi, Inho; Lee, Joo-Hee; Nikawa, Takeshi; Gwag, Taesik; Park, Kyoungsook; Park, Junsoo

    Heat shock proteins (HSP), as molecular chaperones, are known to assist protein quality control under various stresses. Although overexpression of HSP70 was found to contribute to muscle size retention under an unloading condition, it remains largely unclarified whether muscle atrophy is induced by active suppression of HSP expression. In this study, we pre-treated Hsp70 siRNA to rat L6 cells for the HSP gene silencing, and determined myotube diameter, HSP72 expression and anabolic and catabolic signaling activities in the absence or presence of triterpene celastrol (CEL), the HSP70 inducer. Relative to a negative control (NC), muscle cell diameter was reduced 0.89-fold in the siRNA-treated group, increased 1.2-fold in the CEL-treated group and retained at the size of NC in the siRNA+CEL group. HSP72 expression was decreased 0.35-fold by siRNA whereas the level was increased 6- to 8-fold in the CEL and siRNA+CEL groups. Expression of FoxO3 and atrogin-1 was increased 1.8- to 4.8-fold by siRNA, which was abolished by CEL treatment. Finally, phosphorylation of Akt1, S6K and ERK1/2 was not affected by siRNA, but was elevated 2- to 6-fold in the CEL and siRNA+CEL groups. Taken together, HSP downregulation by Hsp gene silencing led to muscle cell atrophy principally via increases in catabolic activities and that such anti-atrophic effect was counteracted by HSP overexpression.

  13. Differential effect of over-expressing UGT1A1 and CYP1A1 on xenobiotic assault in MCF-7 cells

    International Nuclear Information System (INIS)

    Gene mutation has been considered as a major step of carcinogenesis. Some defective genes may induce spontaneous tumorigenesis, while others are required to interact with the environment to induce cancer. CYP1A1 and UGT1A1 are encoded for the respective phase I and II drug-metabolizing enzymes. Their expressions have been associated with breast cancer incidence in women, and some xenobiotics are substrates of these two enzymes. In the current study, cytochrome P450 (CYP) 1A1 and UDP-glucuronosyltransferase (UGT) 1A1 were over-expressed in the breast cancer MCF-7 cells, and potential interactions between these enzymes and estrogen or polycyclic aromatic hydrocarbon were evaluated. Compared with control cells (MCF-7VEC), reduced cell proliferation was seen in cells expressing UGT1A1 (MCF-7UGT1A1) under estradiol treatment. 7,12-Dimethylbenz[a]anthracene (DMBA) is an established breast cancer initiator in animal model. Over-expressing UGT1A1 reduced the binding of DMBA to DNA, and increased MCF-7UGT1A1 intact cells under DMBA treatment was verified by comet assay. On the other hand, intensified DMBA binding and damages were observed in MCF-7CYP1A1 cells. This study supported that UGT1A1 but not CYP1A1 expression could protect against xenobiotic assault

  14. A Cell-Targeted, Size-Photocontrollable, Nuclear-Uptake Nanodrug Delivery System for Drug-Resistant Cancer Therapy

    OpenAIRE

    Qiu, Liping; Chen, Tao; Öçsoy, Ismail; Yasun, Emir; Wu, Cuichen; Zhu, Guizhi; You, Mingxu; Han, Da; Jiang, Jianhui; Yu, Ruqin; Tan, Weihong

    2014-01-01

    The development of multidrug resistance (MDR) has become an increasingly serious problem in cancer therapy. The cell-membrane overexpression of P-glycoprotein (P-gp), which can actively efflux various anticancer drugs from the cell, is a major mechanism of MDR. Nuclear-uptake nanodrug delivery systems, which enable intranuclear release of anticancer drugs, are expected to address this challenge by bypassing P-gp. However, before entering the nucleus, the nanocarrier must pass through the cell...

  15. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    Energy Technology Data Exchange (ETDEWEB)

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos [INTA, Laboratorio de Bioinformatica y Expresion Genica, Universidad de Chile, El Libano 5524, Macul, Santiago (Chile); Cerpa, Waldo [Centro de Envejecimiento y Regeneracion (CARE), Centro de Regulacion Celular y Patologia ' Joaquin V. Luco' (CRCP), MIFAB, Departamento de Biologia Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago (Chile); Cambiazo, Veronica [INTA, Laboratorio de Bioinformatica y Expresion Genica, Universidad de Chile, El Libano 5524, Macul, Santiago (Chile); Millenium Nucleus CGC, Universidad de Chile (Chile); Inestrosa, Nibaldo C. [Centro de Envejecimiento y Regeneracion (CARE), Centro de Regulacion Celular y Patologia ' Joaquin V. Luco' (CRCP), MIFAB, Departamento de Biologia Celular y Molecular, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago (Chile); Gonzalez, Mauricio, E-mail: mgonzale@inta.cl [INTA, Laboratorio de Bioinformatica y Expresion Genica, Universidad de Chile, El Libano 5524, Macul, Santiago (Chile)

    2009-05-15

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu{sup 2+} binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu{sup 2+} reduction and {sup 64}Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu{sup 2+} reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu{sup 2+} ions. Moreover, wild-type cells exposed to both Cu{sup 2+} ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu{sup 2+} reductase activity and increased {sup 64}Cu uptake. We conclude that Cu{sup 2+} reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  16. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    International Nuclear Information System (INIS)

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu2+ binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu2+ reduction and 64Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu2+ reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu2+ ions. Moreover, wild-type cells exposed to both Cu2+ ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu2+ reductase activity and increased 64Cu uptake. We conclude that Cu2+ reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  17. Live-cell luciferase assay of drug resistant cells

    OpenAIRE

    sprotocols

    2015-01-01

    To date, multiplexing cell-based assay is essential for high-throughput screening of molecular targets. Measuring multiple parameters of a single sample increases consistency and decrease time and cost of assay. Functional assay of living cell is useful as a first step of multiplexing assay, because live-cell assay allows following second assay using cell lysate or stained cell. However, live-cell assay of drug resistant cells that are highly activated of drug efflux mechanisms is sometimes u...

  18. Mic60/mitofilin overexpression alters mitochondrial dynamics and attenuates vulnerability of dopaminergic cells to dopamine and rotenone.

    Science.gov (United States)

    Van Laar, Victor S; Berman, Sarah B; Hastings, Teresa G

    2016-07-01

    Mitochondrial dysfunction has been implicated in Parkinson's disease (PD) neuropathology. Mic60, also known as mitofilin, is a protein of the inner mitochondrial membrane and a key component of the mitochondrial contact site and cristae junction organizing system (MICOS). Mic60 is critical for maintaining mitochondrial membrane structure and function. We previously demonstrated that mitochondrial Mic60 protein is susceptible to both covalent modification and loss in abundance following exposure to dopamine quinone. In this study, we utilized neuronally-differentiated SH-SY5Y and PC12 dopaminergic cell lines to examine the effects of altered Mic60 levels on mitochondrial function and cellular vulnerability in response to PD-relevant stressors. Short hairpin RNA (shRNA)-mediated knockdown of endogenous Mic60 protein in neuronal SH-SY5Y cells significantly potentiated dopamine-induced cell death, which was rescued by co-expressing shRNA-insensitive Mic60. Conversely, in PC12 and SH-SY5Y cells, Mic60 overexpression significantly attenuated both dopamine- and rotenone-induced cell death as compared to controls. Mic60 overexpression in SH-SY5Y cells was also associated with increased mitochondrial respiration, and, following rotenone exposure, increased spare respiratory capacity. Mic60 knockdown cells exhibited suppressed respiration and, following rotenone treatment, decreased spare respiratory capacity. Mic60 overexpression also affected mitochondrial fission/fusion dynamics. PC12 cells overexpressing Mic60 exhibited increased mitochondrial interconnectivity. Further, both PC12 cells and primary rat cortical neurons overexpressing Mic60 displayed suppressed mitochondrial fission and increased mitochondrial length in neurites. These results suggest that altering levels of Mic60 in dopaminergic neuronal cells significantly affects both mitochondrial homeostasis and cellular vulnerability to the PD-relevant stressors dopamine and rotenone, carrying implications for PD

  19. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    International Nuclear Information System (INIS)

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs

  20. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Il; Ryu, Jae-Sung; Yeo, Jee Eun; Choi, Yun Jin; Kim, Yong Sang [Center for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul (Korea, Republic of); Ko, Kinarm [Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 143-701 (Korea, Republic of); Koh, Yong-Gon, E-mail: yonseranglab@daum.net [Center for Stem Cell and Arthritis Research, Department of Orthopedic Surgery, Yonsei Sarang Hospital, Seoul (Korea, Republic of)

    2014-08-08

    Highlights: • Continuous TGF-β1 overexpression in hSD-MSCs did not influence their phenotypes. • Retroviral-mediated transduction of TGFB1 in hSD-MSCs enhances cell proliferation. • TGF-β1 overexpression did not effect to adipo- or osteogenic potential of hSD-MSCs. • TGF-β1 overexpression in hSD-MSCs could stimulate and accelerate chondrogenesis. - Abstract: Transforming growth factor-beta (TGF-β) superfamily proteins play a critical role in proliferation, differentiation, and other functions of mesenchymal stem cells (MSCs). During chondrogenic differentiation of MSCs, TGF-β up-regulates chondrogenic gene expression by enhancing the expression of the transcription factor SRY (sex-determining region Y)-box9 (Sox9). In this study, we investigated the effect of continuous TGF-β1 overexpression in human synovium-derived MSCs (hSD-MSCs) on immunophenotype, differentiation potential, and proliferation rate. hSD-MSCs were transduced with recombinant retroviruses (rRV) encoding TGF-β1. The results revealed that continuous overexpression of TGF-β1 did not affect their phenotype as evidenced by flow cytometry and reverse transcriptase PCR (RT-PCR). In addition, continuous TGF-β1 overexpression strongly enhanced cell proliferation of hSD-MSCs compared to the control groups. Also, induction of chondrogenesis was more effective in rRV-TGFB-transduced hSD-MSCs as shown by RT-PCR for chondrogenic markers, toluidine blue staining and glycosaminoglycan (GAG)/DNA ratio. Our data suggest that overexpression of TGF-β1 positively enhances the proliferation and chondrogenic potential of hSD-MSCs.

  1. Targeted imaging of EGFR overexpressed cancer cells by brightly fluorescent nanoparticles conjugated with cetuximab.

    Science.gov (United States)

    Gao, Meng; Su, Huifang; Lin, Gengwei; Li, Shiwu; Yu, Xingsu; Qin, Anjun; Zhao, Zujin; Zhang, Zhenfeng; Tang, Ben Zhong

    2016-08-11

    To improve the treatment efficiency and reduce side effects in cancer therapy, accurate diagnosis of cancer cell types at a molecular level is highly desirable. Fluorescent nanoparticles (NPs) are especially suitable for detecting molecular biomarkers of cancer with advantages of superior brightness, easy decoration and high resolution. However, the conventional organic fluorophores, conjugated polymers, and inorganic quantum dots suffer from the drawbacks of aggregation-caused quenching (ACQ), low photostability, and heavy metal toxicity, respectively, which severely restrict their applications in NPs-based fluorescence imaging. To overcome these limitations, herein, we have developed fluorescent nanoparticles based on a t-BuPITBT-TPE fluorophore derived from aggregation-induced emission (AIE)-active tetraphenylethene. Through encapsulating t-BuPITBT-TPE within biocompatible DSPE-PEG and further decorating with a monoclonal antibody cetuximab (C225), the obtained t-BuPITBT-TPE-C225 NPs can be used for targeted imaging of non-small cell lung cancer cells with an overexpressed epidermal growth factor receptor (EGFR). The specific targeting ability of t-BuPITBT-TPE-C225 NPs has been well verified by confocal microscopy and flow cytometry experiments. The t-BuPITBT-TPE-C225 NPs have shown significant advantages in terms of highly efficient red emission, good bio-compatibility, and excellent photostability. This work provides a promising method for precise diagnosis of cancer cells by antibody-functionalized fluorescent NPs with high brightness. PMID:27468980

  2. Intracellular overexpression of HIV-1 Nef impairs differentiation and maturation of monocytic precursors towards dendritic cells.

    Directory of Open Access Journals (Sweden)

    Yan Guo

    Full Text Available Nef functions as an immunosuppressive factor critical for HIV-1 replication, survival and development of AIDS following HIV-1 infection. What effects Nef exerts on differentiation and maturation of monocytes towards dendritic cells (DCs remains greatly controversial. In this study, we used THP-1 (human monocytic leukemia cell line as monocytic DC precursors to investigate how overexpression of HIV-1 Nef influences the processes of differentiation and maturation of dendritic cells. In striking contrast to negative controls, our results showed that morphological and phenotypical changes (CD11c, CD14, CD40, CD80, CD83, CD86, and HLA-DR occurred on recombinant THP-1 expressing HIV-1 Nef (short for Nef upon co-stimulation of GM-CSF/IL-4 or GM-CSF/IL-4/TNF-α/ionomycin. Moreover, CD4, CCR5, and CXCR4 were also down-regulated on Nef. It might be hypothesized that Nef prevents superinfection and signal transduction in HIV-1 infected monocytes. Collectively, our study demonstrates that long-lasting expression of Nef at high levels indeed retards differentiation and maturation of dendritic cells in terms of phenotype and morphology. We are hopeful that potentially, stable expression of intracellular Nef in vivo may function as a subtle mode to support long-lasting HIV-1 existence.

  3. The targeted transduction of MMP-overexpressing tumor cells by ACPP-HPMA copolymer-coated adenovirus conjugates.

    Directory of Open Access Journals (Sweden)

    Shuhua Li

    Full Text Available We have designed and tested a new way to selectively deliver HPMA polymer-coated adenovirus type 5 (Ad5 particles into matrix metalloproteinase (MMP-overexpressing tumor cells. An activatable cell penetrating peptide (ACPP was designed and attached to the reactive 4-nitrophenoxy groups of HPMA polymers by the C-terminal amino acid (asparagine, N. ACPPs are activatable cell penetrating peptides (CPPs with a linker between polycationic and polyanionic domains, and MMP-mediated cleavage releases the CPP portion and its attached cargo to enable cell entry. Our data indicate that the transport of these HPMA polymer conjugates by a single ACPP molecule to the cytoplasm occurs via a nonendocytotic and concentration-independent process. The uptake was observed to finish within 20 minutes by inverted fluorescence microscopy. In contrast, HPMA polymer-coated Ad5 without ACPPs was internalized solely by endocytosis. The optimal formulation was not affected by the presence of Ad5 neutralizing antibodies during transduction, and ACPP/polymer-coated Ad5 also retained high targeting capability to several MMP-overexpressing tumor cell types. For the first time, ACPP-mediated cytoplasmic delivery of polymer-bound Ad5 to MMP-overexpressing tumor cells was demonstrated. These findings are significant, as they demonstrate the use of a polymer-based system for the targeted delivery into MMP-overexpressing solid tumors and highlight how to overcome major cellular obstacles to achieve intracellular macromolecular delivery.

  4. Myeov (myeloma overexpressed gene) drives colon cancer cell migration and is regulated by PGE2

    LENUS (Irish Health Repository)

    Lawlor, Garrett

    2010-06-22

    Abstract Introduction We have previously reported that Myeov (MYEloma OVerexpressed gene) expression is enhanced in colorectal cancer (CRC) and that it promotes CRC cell proliferation and invasion. The role of Myeov in CRC migration is unclear. ProstaglandinE2 (PGE 2) is a known factor in promoting CRC carcinogenesis. The role of PGE 2 in modulating Myeov expression has also not been defined. Aim To assess the role of Myeov expression in CRC cell migration and to evaluate the role of PGE 2 in Myeov bioactivity. Methods siRNA mediated Myeov knockdown was achieved in T84 CRC cells. Knockdown was assessed using quantitative real time PCR. The effect of knockdown on CRC cell migration was assessed using a scratch wound healing assay. Separately, T84 cells were treated with PGE 2 (0.00025 μ M, 0.1 μ M and 1 μ M) from 30 min to 3 hours and the effect on Myeov gene expression was assessed using real time PCR. Results Myeov knockdown resulted in a significant reduction in CRC cell migration, observable as early as 12 hours (P < 0.05) with a 39% reduction compared to control at 36 hours (p < 0.01). Myeov expression was enhanced after treatment with PGE 2, with the greatest effect seen at 60 mins for all 3 PGE 2 doses. This response was dose dependent with a 290%, 550% & 1,000% increase in Myeov expression for 0.00025 μ M, 0.1 μ M and 1 μ M PGE 2 respectively. Conclusion In addition to promoting CRC proliferation and invasion, our findings indicate that Myeov stimulates CRC cell migration, and its expression may be PGE 2 dependant.

  5. MYEOV (myeloma overexpressed gene) drives colon cancer cell migration and is regulated by PGE2.

    LENUS (Irish Health Repository)

    Lawlor, Garrett

    2010-01-01

    INTRODUCTION: We have previously reported that Myeov (MYEloma OVerexpressed gene) expression is enhanced in colorectal cancer (CRC) and that it promotes CRC cell proliferation and invasion. The role of Myeov in CRC migration is unclear. ProstaglandinE2 (PGE 2) is a known factor in promoting CRC carcinogenesis. The role of PGE 2 in modulating Myeov expression has also not been defined. AIM: To assess the role of Myeov expression in CRC cell migration and to evaluate the role of PGE 2 in Myeov bioactivity. METHODS: siRNA mediated Myeov knockdown was achieved in T84 CRC cells. Knockdown was assessed using quantitative real time PCR. The effect of knockdown on CRC cell migration was assessed using a scratch wound healing assay. Separately, T84 cells were treated with PGE 2 (0.00025 micro M, 0.1 micro M and 1 micro M) from 30 min to 3 hours and the effect on Myeov gene expression was assessed using real time PCR. RESULTS: Myeov knockdown resulted in a significant reduction in CRC cell migration, observable as early as 12 hours (P < 0.05) with a 39% reduction compared to control at 36 hours (p < 0.01). Myeov expression was enhanced after treatment with PGE 2, with the greatest effect seen at 60 mins for all 3 PGE 2 doses. This response was dose dependent with a 290%, 550% & 1,000% increase in Myeov expression for 0.00025 micro M, 0.1 micro M and 1 micro M PGE 2 respectively. CONCLUSION: In addition to promoting CRC proliferation and invasion, our findings indicate that Myeov stimulates CRC cell migration, and its expression may be PGE 2 dependant.

  6. Potentiation of Anticancer Drugs: Effects of Pentoxifylline on Neoplastic Cells

    Directory of Open Access Journals (Sweden)

    Miroslav Barancik

    2011-12-01

    Full Text Available The drug efflux activity of P-glycoprotein (P-gp, a product of the mdr1 gene, ABCB1 member of ABC transporter family represents a mechanism by which tumor cells escape death induced by chemotherapeutics. In this study, we investigated the mechanisms involved in the effects of pentoxifylline (PTX on P-gp-mediated multidrug resistance (MDR in mouse leukemia L1210/VCR cells. Parental sensitive mouse leukemia cells L1210, and multidrug-resistant cells, L1210/VCR, which are characterized by the overexpression of P-gp, were used as experimental models. The cells were exposed to 100 μmol/L PTX in the presence or absence of 1.2 μmol/L vincristine (VCR. Western blot analysis indicated a downregulation of P-gp protein expression when multidrug-resistant L1210/VCR cells were exposed to PTX. The effects of PTX on the sensitization of L1210/VCR cells to VCR correlate with the stimulation of apoptosis detected by Annexin V/propidium iodide apoptosis necrosis kit and proteolytic activation of both caspase-3 and caspase-9 monitored by Western blot analysis. Higher release of matrix metalloproteinases (MMPs, especially MMP-2, which could be attenuated by PTX, was found in L1210/VCR than in L1210 cells by gelatin zymography in electrophoretic gel. Exposure of resistant cells to PTX increased the content of phosphorylated Akt kinase. In contrast, the presence of VCR eliminated the effects of PTX on Akt kinase phosphorylation. Taken together, we conclude that PTX induces the sensitization of multidrug-resistant cells to VCR via downregulation of P-gp, stimulation of apoptosis and reduction of MMPs released from drug-resistant L1210/VCR cells. These facts bring new insights into the mechanisms of PTX action on cancer cells.

  7. Verteporfin can Reverse the Paclitaxel Resistance Induced by YAP Over-Expression in HCT-8/T Cells without Photoactivation through Inhibiting YAP Expression

    Directory of Open Access Journals (Sweden)

    Wang Pan

    2016-07-01

    Full Text Available Background/Aims: Paclitaxel (PTX is one of the most effective anti-cancer drugs. However, multiple drug resistance is still the main factor that hinders the effective treatment of cancer with PTX. Several factors including YAP over-expression can cause PTX resistance. In this study, we aimed to verify the role YAP plays in PTX resistance, explore the reversal of PTX resistance by verteporfin (VP and investigate the effect of combination therapy of PTX and VP on the PTX resistant colon cancer cells (HCT-8/T. Methods: To study the relationship between YAP and PTX resistance, a stable YAP-over-expression or YAP silencing cell line was generated by transfected with YAP-plasmids or siYAP-RNA. WST-1 assay was performed to detect the cytotoxicity of PTX on HCT-8 and HCT-8/T cells. Clone formation assay and Transwell assay was preformed to determine the cell proliferation and invasion ability respectively. Immunofluorescence and Western blot analysis was performed for protein detection. Results: YAP was stronger expressed in HCT-8/T than in HCT-8, and PTX resistance was positively correlated with the level of YAP expression. VP, a strongly YAP inhibitor, could reduce the PTX resistance on HCT-8/T cells without light activation by inhibiting YAP. Beside, VP and PTX combination therapy showed synergism on inhibition of YAP and cytotoxicity to HCT-8/T. Moreover, verteporfin and PTX combination therapy affect the invasion and colony formation ability and induce apoptosis of HCT-8/T cells. Conclusions: VP can reverse the PTX resistance induced by YAP over-expression in HCT-8/T cells without photoactivation through inhibiting YAP expression.

  8. Disturbed α-Cell Function in Mice with β-Cell Specific Overexpression of Human Islet Amyloid Polypeptide

    Directory of Open Access Journals (Sweden)

    Bo Ahrén

    2008-01-01

    Full Text Available Exogenous administration of islet amyloid polypeptide (IAPP has been shown to inhibit both insulin and glucagon secretion. This study examined α-cell function in mice with β-cell specific overexpression of human IAPP (hIAPP after an oral protein gavage (75 mg whey protein/mouse. Baseline glucagon levels were higher in transgenic mice (41±4.0 pg/mL, n=6 than in wildtype animals (19±5.1 pg/mL, n=5, P=.015. In contrast, the glucagon response to protein was impaired in transgenic animals (21±2.7 pg/mL in transgenic mice versus 38±5.7 pg/mL in wildtype mice at 15 minutes; P=.027. Baseline insulin levels did not differ between the groups, while the insulin response, as the glucagon response, was impaired after protein challenge (P=.018. Glucose levels were not different between the groups and did not change significantly after protein gavage. Acetaminophen was given through gavage to the animals (2 mg/mouse to estimate gastric emptying. The plasma acetaminophen profile was similar in the two groups of mice. We conclude that disturbances in glucagon secretion exist in mice with β-cell specific overexpression of human IAPP, which are not secondary to changes in gastric emptying. The reduced glucagon response to protein challenge may reflect a direct inhibitory influence of hIAPP on glucagon secretion.

  9. Polymeric micelles as a diagnostic tool for image-guided drug delivery and radiotherapy of HER2 overexpressing breast cancer

    Science.gov (United States)

    Hoang, Nu Bryan

    Block copolymer micelles have emerged as a viable formulation strategy with several drugs relying on this technology in clinical evaluation. To date, information on the tumor penetration and intratumoral distribution of block copolymer micelles (BCM) has been quite limited. Thus, there is impetus to develop a radiolabeled formulation that can be used to gain invaluable insight into the intratumoral distribution of the BCMs. This information could then be used to direct formulation strategies as a means to optimize treatment outcomes. This thesis describes the synthesis and characterization of a targeted block copolymer micelle system based on poly(ethylene glycol)-block -poly(epsilon-caprolactone) labeled with the radionuclide Indium-111 (111In). The incorporation of the imageable component, 111In permits pursuit of image-guided drug delivery for real-time monitoring of tumor localization and intratumoral distribution. Intracellular trafficking of drugs and therapies such as Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. HER2 specific antibodies (trastuzumab fab fragments) and nuclear localization signal peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake was HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS resulted in a significant increase in nuclear uptake of the radionuclide 111In. Successful nuclear targeting was shown to improve the antiproliferative effect of the Auger electrons. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and 111In in all breast cancer cell lines evaluated. Imaging enabled the accurate quantification of the specific tumor uptake of the micelles and visualization of their degree of tumor penetration in relation to

  10. Phospholipase C δ-4 overexpression upregulates ErbB1/2 expression, Erk signaling pathway, and proliferation in MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Morris Valerie

    2004-05-01

    Full Text Available Abstract Background The expression of the rodent phosphoinositide-specific phospholipase C δ-4 (PLCδ4 has been found to be elevated upon mitogenic stimulation and expression analysis have linked the upregulation of PLCδ4 expression with rapid proliferation in certain rat transformed cell lines. The human homologue of PLCδ4 has not been extensively characterized. Accordingly, we investigate the effects of overexpression of human PLCδ4 on cell signaling and proliferation in this study. Results The cDNA for human PLCδ4 has been isolated and expressed ectopically in breast cancer MCF-7 cells. Overexpression of PLCδ4 selectively activates protein kinase C-φ and upregulates the expression of epidermal growth factor receptors EGFR/erbB1 and HER2/erbB2, leading to constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2 pathway in MCF-7 cells. MCF-7 cells stably expressing PLCδ4 demonstrates several phenotypes of transformation, such as rapid proliferation in low serum, formation of colonies in soft agar, and capacity to form densely packed spheroids in low-attachment plates. The growth signaling responses induced by PLCδ4 are not reversible by siRNA. Conclusion Overexpression or dysregulated expression of PLCδ4 may initiate oncogenesis in certain tissues through upregulation of ErbB expression and activation of ERK pathway. Since the growth responses induced by PLCδ4 are not reversible, PLCδ4 itself is not a suitable drug target, but enzymes in pathways activated by PLCδ4 are potential therapeutic targets for oncogenic intervention.

  11. Squalamine and cisplatin block angiogenesis and growth of human ovarian cancer cells with or without HER-2 gene overexpression.

    Science.gov (United States)

    Li, Dan; Williams, Jon I; Pietras, Richard J

    2002-04-25

    Angiogenesis is important for growth and progression of ovarian cancers. Squalamine is a natural antiangiogenic sterol, and its potential role in treatment of ovarian cancers with or without standard cisplatin chemotherapy was assessed. Since HER-2 gene overexpression is associated with cisplatin resistance in vitro and promotion of tumor angiogenesis in vivo, the response of ovarian cancer cells with or without HER-2 gene overexpression to squalamine and cisplatin was evaluated both in tumor xenograft models and in tissue culture. Ovarian cancer cells with or without HER-2 overexpression were grown as subcutaneous xenografts in nude mice. Animals were treated by intraperitoneal injection with control vehicle, cisplatin, squalamine or cisplatin combined with squalamine. At the end of the experiment, tumors were assessed for tumor growth inhibition and for changes in microvessel density and apoptosis. Additional in vitro studies evaluated effects of squalamine on tumor and endothelial cell growth and on signaling pathways in human endothelial cells. Profound growth inhibition was elicited by squalamine alone and by combined treatment with squalamine and cisplatin for both parental and HER-2-overexpressing ovarian tumor xenografts. Immunohistochemical evaluation of tumors revealed decreased microvessel density and increased apoptosis. Although HER-2-overexpressing tumors had more angiogenic and less apoptotic activity than parental cancers, growth of both tumor types was similarly suppressed by treatment with squalamine combined with cisplatin. In in vitro studies, we found that squalamine does not directly affect proliferation of ovarian cells. However, squalamine significantly blocked VEGF-induced activation of MAP kinase and cell proliferation in human vascular endothelial cells. The results suggest that squalamine is anti-angiogenic for ovarian cancer xenografts and appears to enhance cytotoxic effects of cisplatin chemotherapy independent of HER-2 tumor status

  12. Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass

    DEFF Research Database (Denmark)

    Gelling, Richard W; Vuguin, Patricia M; Du, Xiu Quan;

    2009-01-01

    . beta-Cell mass and pancreatic insulin content were also increased (20 and 50%, respectively) in RIP-Gcgr mice compared with controls. When fed a high-fat diet (HFD), both control and RIP-Gcgr mice developed similar degrees of obesity and insulin resistance. However, the severity of both fasting...... in vivo, we generated mice overexpressing the Gcgr specifically on pancreatic beta-cells (RIP-Gcgr). In vivo and in vitro insulin secretion in response to glucagon and glucose was increased 1.7- to 3.9-fold in RIP-Gcgr mice compared with controls. Consistent with the observed increase in insulin...... hyperglycemia and impaired glucose tolerance (IGT) were reduced in RIP-Gcgr mice compared with controls. Furthermore, the insulin response of RIP-Gcgr mice to an IPGTT was twice that of controls when fed the HFD. These data indicate that increased pancreatic beta-cell expression of the Gcgr increased insulin...

  13. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  14. [Establishment of stable subline of K562 cells overexpressing high mobility group B1 protein].

    Science.gov (United States)

    Yan, Fan-Zhi; Yan, Jin-Song; Zhao, Jia; Li, Wei-Ping; Chen, Xue-Yu; Yang, Yan; Rao, Shu-Mei; Jin, Jing

    2011-02-01

    This study was aimed to establish a stable subline of K562 cells (K562-HMGB1) overexpressing HMGB1 protein and K562-HMGB1 sublines served as control, so as to provide a basis for exploring the role of hmgb1 gene in occurrence and development of leukemia and their mechanism. Protein-coding gene of hmgb1 was amplified by PCR with cDNA as template, which was synthesized by reverse transcription from total RNA extracted from U937 cells. The PCR-amplified hmgb1 gene was ligated into PMD18-T vector (PMD18-T-HMGB1 vector), and then transformed into E. coli strain DH5α. DH5α containing PMD18-T-HMGB1 vector were grown on LB agar plate supplemented with 100 µg/ml ampicillin overnight. The single ampicillin-selected DH5α clone was picked for culturing overnight and then harvested for plasmid extraction. The extracted plasmid was characterized to contain hmgb1 gene digested with the desired restriction enzymes of KpnI/XhoI. The correctness of hmgb1 sequence was confirmed with DNA sequencing. The insert of hmgb1 gene contained in PMD18-T-HMGB1 vector was cut out with restriction enzymes of KpnI/XhoI and then ligated into eukaryotic expression vector pcDNA3.1 to form pcDNA3.1-HMGB1 vector. 10µg of pcDNA3.1-HMGB1 or pcDNA3.1 plasmid was separately electroporated into K562 cells. At 48 hours after electroporation the cells were cultured with G418 at a final concentration of 800 µg/ml for over 2 weeks. Finally stably transfected sublines of K562 cells containing hmgb1 gene (K562-HMGB1), and of K562 containing pcDNA3.1 vector (K562-pcDNA3.1) served as a control, were obtained. The transcriptional or translational expression of hmgb1 gene was detected with RT-PCR or Western blot, respectively, to testify transfected efficiency and validity of stable subline of K562-HMGB1. The results indicated that the eukaryotic expression vector pcDNA3.1-HMGB1 plasmid was successfully constructed and was electroporated into K562 cells. The transcriptional or translational expression of hmgb1

  15. Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury.

    Science.gov (United States)

    Song, Linyang; Song, Wei; Schipper, Hyman M

    2007-08-01

    The mechanisms responsible for the progressive degeneration of dopaminergic neurons and pathologic iron deposition in the substantia nigra pars compacta of patients with Parkinson's disease (PD) remain unclear. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the oxidative degradation of heme to ferrous iron, carbon monoxide, and biliverdin, is upregulated in affected PD astroglia and may contribute to abnormal mitochondrial iron sequestration in these cells. To determine whether glial HO-1 hyper-expression is toxic to neuronal compartments, we co-cultured dopaminergic PC12 cells atop monolayers of human (h) HO-1 transfected, sham-transfected, or non-transfected primary rat astroglia. We observed that PC12 cells grown atop hHO-1 transfected astrocytes, but not the astroglia themselves, were significantly more susceptible to dopamine (1 microM) + H(2)O(2) (1 microM)-induced death (assessed by nuclear ethidium monoazide bromide staining and anti-tyrosine hydroxylase immunofluorescence microscopy) relative to control preparations. In the experimental group, PC12 cell death was attenuated significantly by the administration of the HO inhibitor, SnMP (1.5 microM), the antioxidant, ascorbate (200 microM), or the iron chelators, deferoxamine (400 microM), and phenanthroline (100 microM). Exposure to conditioned media derived from HO-1 transfected astrocytes also augmented PC12 cell killing in response to dopamine (1 microM) + H(2)O(2) (1 microM) relative to control media. In PD brain, overexpression of HO-1 in nigral astroglia and accompanying iron liberation may facilitate the bioactivation of dopamine to neurotoxic free radical intermediates and predispose nearby neuronal constituents to oxidative damage. PMID:17526019

  16. Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells overexpressing folate receptors

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Novoa, Leidy V.;

    2013-01-01

    We here present amethod to form a noncovalent conjugate of single-walled carbon nanotubes and folic acid aimed to interact with cells over-expressing folate receptors. The bonding was obtained without covalent chemical functionalization using a simple, rapid “one pot” synthesis method. The zeta p...

  17. Effect of CXCR4 gene overexpression mediated by lentiviral vector on the biological characteristics of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    陈伟

    2013-01-01

    Objective To construct mouse CXC chemokine receptor type 4 (Cxcr4) gene overexpressing lentiviral vector and to evaluate its biological effect on mouse mesenchymal stem cells (MSCs) .Methods Cxcr4 gene was amplified and subcloned into pCR-Blunt vector.Cxcr4gene and enhanced green fluorescent protein (EGFP)

  18. Tbx3 represses PTEN and is over-expressed in head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Despite advances in diagnostic and treatment strategies, head and neck squamous cell cancer (HNSCC) constitutes one of the worst cancer types in terms of prognosis. PTEN is one of the tumour suppressors whose expression and/or activity have been found to be reduced in HNSCC, with rather low rates of mutations within the PTEN gene (6-8%). We reasoned that low expression levels of PTEN might be due to a transcriptional repression governed by an oncogene. Tbx2 and Tbx3, both of which are transcriptional repressors, have been found to be amplified or over-expressed in various cancer types. Thus, we hypothesize that Tbx3 may be over expressed in HNSCC and may repress PTEN, thus leading to cancer formation and/or progression. Using immunohistochemistry and quantitative PCR (qPCR), protein and mRNA levels of PTEN and Tbx3 were identified in samples excised from cancerous and adjacent normal tissues from 33 patients who were diagnosed with HNSCC. In addition, HeLa and HEK cell lines were transfected with a Tbx3 expressing plasmid and endogenous PTEN mRNA and protein levels were determined via qPCR and flow cytometry. Transcription assays were performed to demonstrate effects of Tbx3 on PTEN promoter activity. Mann–Whitney, Spearman’s Correlation and Wilcoxon signed-rank tests were used to analyze the data. We demonstrate that in HNSCC samples, Tbx3 mRNA levels are increased with respect to their normal tissue counterparts (p<0.001), whereas PTEN mRNA levels are significantly reduced in cancer tissues. Moreover, Tbx3 protein is also increased in HNSCC tissue sections. Over-expression of Tbx3 in HeLa and HEK cell lines causes reduction in endogenous PTEN mRNA and protein levels. In addition, transcription activity assays reveal that Tbx3 is capable of repressing both the basal and induced promoter activity of PTEN. We show that Tbx3 is up-regulated in tissue samples of HNSCC patients and that Tbx3 represses PTEN transcription. Thus, our data not only reveals a new

  19. Overexpression of karyopherin 2 in human ovarian malignant germ cell tumor correlates with poor prognosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available BACKGROUND: The aim of this study was to identify a biomarker useful in the diagnosis and therapy of ovarian malignant germ cell tumor (OMGCT. METHODS: The karyopherin 2 (KPNA2 expression in OMGCT and normal ovarian tissue was determined by standard gene microarray assays, and further validated by a quantitative RT-PCR and immunohistochemistry. The correlation between KPNA2 expression in OMGCT and certain clinicopathological features were analyzed. Expression of SALL4, a stem cell marker, was also examined in comparison with KPNA2. RESULTS: KPNA2 was found to be over-expressed by approximately eight-fold in yolk sac tumors and immature teratomas compared to normal ovarian tissue by microarray assays. Overexpression was detected in yolk sac tumors, immature teratomas, dysgerminomas, embryonal carcinomas, mature teratomas with malignant transformation and mixed ovarian germ cell tumors at both the transcription and translation levels. A positive correlation between KPNA2 and SALL4 expression at both the transcription level (R = 0.5120, P = 0.0125, and the translation level (R = 0.6636, P<0.0001, was presented. Extensive expression of KPNA2 was positively associated with pathologic type, recurrence and uncontrolled, ascitic fluid presence, suboptimal cytoreductive surgery necessity, resistance/refraction to initial chemotherapy, HCG level and SALL4 level in OMGCT patients. KPNA2 was found to be an independent factor for 5-year disease-free survival (DFS of OMGCT (P = 0.02. The 5-year overall survival (OS and DFS rate for KPNA2-low expression patients (88% and 79%, n = 48 were significantly higher than the OS and DFS rate for KPNA2-high expression patients (69% and 57.1%, n = 42(P = 0.0151, P = 0.0109, respectively. The 5-year OS and DFS rate for SALL4-low expression patients (84% and 74%, n = 62 was marginally significantly higher than the high expression patients (78.6% and 71.4%, n = 28(P = 0.0519, P = 0.0647, respectively. CONCLUSIONS: KPNA2 is

  20. Overexpression of Robo2 causes defects in the recruitment of metanephric mesenchymal cells and ureteric bud branching morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jiayao [Institute of Nephrology, State Key Laboratory of Kidney Disease (2011DAV00088), The Chinese PLA General Hospital, Beijing 100853 (China); Medical College of NanKai University, Tianjin (China); Li, Qinggang; Xie, Yuansheng; Zhang, Xueguang; Cui, Shaoyuan; Shi, Suozhu [Institute of Nephrology, State Key Laboratory of Kidney Disease (2011DAV00088), The Chinese PLA General Hospital, Beijing 100853 (China); Chen, Xiangmei, E-mail: xmchen301@126.com [Institute of Nephrology, State Key Laboratory of Kidney Disease (2011DAV00088), The Chinese PLA General Hospital, Beijing 100853 (China); Medical College of NanKai University, Tianjin (China)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Overexpression of Robo2 caused reduced UB branching and glomerular number. Black-Right-Pointing-Pointer Fewer MM cells surrounding the UB after overexpression of Robo2 in vitro. Black-Right-Pointing-Pointer No abnormal Epithelial Morphology of UB or apoptosis of mm cells in the kidney. Black-Right-Pointing-Pointer Overexpression of Robo2 affected MM cells migration and caused UB deficit. Black-Right-Pointing-Pointer The reduced glomerular number can also be caused by fewer MM cells. -- Abstract: Roundabout 2 (Robo2) is a member of the membrane protein receptor family. The chemorepulsive effect of Slit2-Robo2 signaling plays vital roles in nervous system development and neuron migration. Slit2-Robo2 signaling is also important for maintaining the normal morphogenesis of the kidney and urinary collecting system, especially for the branching of the ureteric bud (UB) at the proper site. Slit2 or Robo2 mouse mutants exhibit multilobular kidneys, multiple ureters, and dilatation of the ureter, renal pelvis, and collecting duct system, which lead to vesicoureteral reflux. To understand the effect of Robo2 on kidney development, we used microinjection and electroporation to overexpress GFP-Robo2 in an in vitro embryonic kidney model. Our results show reduced UB branching and decreased glomerular number after in vitro Robo2 overexpression in the embryonic kidneys. We found fewer metanephric mesenchymal (MM) cells surrounding the UB but no abnormal morphology in the branching epithelial UB. Meanwhile, no significant change in MM proliferation or apoptosis was observed. These findings indicate that Robo2 is involved in the development of embryonic kidneys and that the normal expression of Robo2 can help maintain proper UB branching and glomerular morphogenesis. Overexpression of Robo2 leads to reduced UB branching caused by fewer surrounding MM cells, but MM cell apoptosis is not involved in this effect. Our study demonstrates that

  1. Unidirectional fluxes of rhodamine 123 in multidrug-resistant cells: evidence against direct drug extrusion from the plasma membrane.

    OpenAIRE

    Altenberg, G A; Vanoye, C G; Horton, J K; Reuss, L

    1994-01-01

    P-glycoprotein (Pgp), a plasma membrane protein overexpressed in multidrug-resistant tumor cells, is an ATPase thought to actively export cytotoxic drugs. It has been proposed that Pgp transports drugs directly from the lipid bilayer to the external medium ("vacuum cleaner" hypothesis). A possible mechanism for this model is that the Pgp is a flippase--i.e., it catalyzes the translocation of hydrophobic substrates from the inner to the outer leaflet of the cell membrane. Two immediate predict...

  2. 14-3-3ζ Overexpression Defines High Risk for Breast Cancer Recurrence and Promotes Cancer Cell Survival

    OpenAIRE

    Neal, Christopher L.; Yao, Jun; Yang, Wentao; ZHOU, XIAOYAN; Nguyen, Nina T.; LU, JING; Danes, Christopher G.; Guo, Hua; Lan, Keng-Hsueh; Ensor, Joe; Hittelman, Walter; Hung, Mien-Chie; Yu, Dihua

    2009-01-01

    The ubiquitously expressed 14-3-3 proteins are involved in numerous important cellular functions. The loss of 14-3-3σ is a common event in breast cancer; however, the role of other 14-3-3s in breast cancer is unclear. Recently, we found that 14-3-3ζ overexpression occurs in early stage breast diseases and contributes to transformation of human mammary epithelial cells. Here, we show that 14-3-3ζ overexpression also persisted in invasive ductal carcinoma and contributed to the further progress...

  3. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suna, E-mail: wangs3@mail.nih.gov; Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  4. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    International Nuclear Information System (INIS)

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative RTPCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  5. Satb1 Overexpression Drives Tumor-Promoting Activities in Cancer-Associated Dendritic Cells.

    Science.gov (United States)

    Tesone, Amelia J; Rutkowski, Melanie R; Brencicova, Eva; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Stephen, Tom L; Allegrezza, Michael J; Payne, Kyle K; Nguyen, Jenny M; Wickramasinghe, Jayamanna; Tchou, Julia; Borowsky, Mark E; Rabinovich, Gabriel A; Kossenkov, Andrew V; Conejo-Garcia, Jose R

    2016-02-23

    Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression. PMID:26876172

  6. SATB1 OVEREXPRESSION DRIVES TUMOR-PROMOTING ACTIVITIES IN CANCER-ASSOCIATED DENDRITIC CELLS

    Science.gov (United States)

    Tesone, Amelia J.; Rutkowski, Melanie R.; Brencicova, Eva; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Stephen, Tom L.; Allegrezza, Michael J.; Payne, Kyle K.; Nguyen, Jenny M.; Wickramasinghe, Jayamanna; Tchou, Julia; Borowsky, Mark E.; Rabinovich, Gabriel A.; Kossenkov, Andrew V.; Conejo-Garcia, Jose R.

    2016-01-01

    SUMMARY Special AT-rich sequence-binding protein-1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating MHC-II expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC-II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46+ inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression. PMID:26876172

  7. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    Science.gov (United States)

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry. PMID:26211445

  8. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    International Nuclear Information System (INIS)

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the VH promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL

  9. MicroRNA181a Is Overexpressed in T-Cell Leukemia/Lymphoma and Related to Chemoresistance

    Directory of Open Access Journals (Sweden)

    Zi-Xun Yan

    2015-01-01

    Full Text Available MicroRNAs (miRs play an important role in tumorogenesis and chemoresistance in lymphoid malignancies. Comparing with reactive hyperplasia, miR181a was overexpressed in 130 patients with T-cell leukemia/lymphoma, including acute T-cell lymphoblastic leukemia (n=32, T-cell lymphoblastic lymphoma (n=16, peripheral T-cell lymphoma, not otherwise specified (n=45, anaplastic large cell lymphoma (n=15, and angioimmunoblastic T-cell lymphoma (n=22. Irrespective to histological subtypes, miR181a overexpression was associated with increased AKT phosphorylation. In vitro, ectopic expression of miR181a in HEK-293T cells significantly enhanced cell proliferation, activated AKT, and conferred cell resistance to doxorubicin. Meanwhile, miR181a expression was upregulated in Jurkat cells, along with AKT activation, during exposure to chemotherapeutic agents regularly applied to T-cell leukemia/lymphoma treatment, such as doxorubicin, cyclophosphamide, cytarabine, and cisplatin. Isogenic doxorubicin-resistant Jurkat and H9 cells were subsequently developed, which also presented with miR181a overexpression and cross-resistance to cyclophosphamide and cisplatin. Meanwhile, specific inhibition of miR181a enhanced Jurkat and H9 cell sensitivity to chemotherapeutic agents, further indicating that miR181a was involved in acquired chemoresistance. Collectively, miR181a functioned as a biomarker of T-cell leukemia/lymphoma through modulation of AKT pathway. Related to tumor cell chemoresistance, miR181a could be a potential therapeutic target in treating T-cell malignancies.

  10. In vivo overexpression of tumstatin domains by tumor cells inhibits their invasive properties in a mouse melanoma model

    International Nuclear Information System (INIS)

    Our previous studies demonstrated that a synthetic peptide encompassing residues 185-203 of the noncollagenous (NC1) domain of the α3 chain of type IV collagen, named tumstatin, inhibits in vitro melanoma cell proliferation and migration. In the present study, B16F1 melanoma cells were stably transfected to overexpress the complete tumstatin domain (Tum 1-232) or its C-terminal part, encompassing residues 185-203 (Tum 183-232). Tumstatin domain overexpression inhibited B16F1 in vitro cell proliferation, anchorage-independent growth, and invasive properties. For studying the in vivo effect of overexpression, representative clones were subcutaneously injected into the left side of C57BL6 mice. In vivo tumor growth was decreased by -60% and -56%, respectively, with B16F1 cells overexpressing Tum 1-232 or Tum 183-232 compared to control cells. This inhibitory effect was associated with a decrease of in vivo cyclin D1 expression. We also demonstrated that the overexpression of Tum 1-232 or Tum 183-232 induced an in vivo down-regulation of proteolytic cascades involving matrix metalloproteinases (MMPs), especially the production or activation of MMP-2, MMP-9, MMP-13, as well as MMP-14. The plasminogen activation system was also altered in tumors with a decrease of urokinase-type plasminogen activator (u-PA) and tissue-type plasminogen activator (t-PA) and a strong increase of plasminogen activator inhibitor-1 (PAI-1). Collectively, our results demonstrate that tumstatin or its C-terminal antitumor fragment, Tum 183-232, inhibits in vivo melanoma progression by triggering an intracellular transduction pathway, which involves a cyclic AMP (cAMP)-dependent mechanism

  11. Protein kinase G1 α overexpression increases stem cell survival and cardiac function after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available BACKGROUND: We hypothesized that overexpression of cGMP-dependent protein kinase type 1α (PKG1α could mimic the effect of tadalafil on the survival of bone marrow derived mesenchymal stem cells (MSCs contributing to regeneration of the ischemic heart. METHODS AND RESULTS: MSCs from male rats were transduced with adenoviral vector encoding for PKG1α ((PKG1αMSCs.Controls included native MSCs ((NatMSCs and MSCs transduced with an empty vector ((NullMSCs. PKG1α activity was increased approximately 20, 5 and 16 fold respectively in (PKG1αMSCs. (PKG1αMSCs showed improved survival under oxygen and glucose deprivation (OGD which was evidenced by lower LDH release, caspase-3/7 activity and number of positive TUNEL cells. Anti-apoptotic proteins pAkt, pGSK3β, and Bcl-2 were significantly increased in (PKG1αMSCs compared to (NatMSCs and (NullMSCs. Higher release of multiple prosurvival and angiogenic factors such as HGF, bFGF, SDF-1 and Ang-1 was observed in (PKG1αMSCs before and after OGD. In a female rat model of acute myocardial infarction, (PKG1αMSCs group showed higher survival compared with (NullMSCs group at 3 and 7 days after transplantation as determined by TUNEL staining and sry-gene quantitation by real-time PCR. Increased anti-apoptotic proteins and paracrine factors in vitro were also identified. Immunostaining for cardiac troponin I combined with GFP showed increased myogenic differentiation of (PKG1αMSCs. At 4 weeks after transplantation, compared to DMEM group and (NullMSCs group, (PKG1αMSCs group showed increased blood vessel density in infarct and peri-infarct areas (62.5±7.7; 68.8±7.3 per microscopic view, p<0.05 and attenuated infarct size (27.2±2.5%, p<0.01. Heart function indices including ejection fraction (52.1±2.2%, p<0.01 and fractional shortening (24.8%±1.3%, p<0.01 were improved significantly in (PKG1αMSCs group. CONCLUSION: Overexpression of PKG1α transgene could be a powerful approach to improve MSCs

  12. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  13. HER-2/neu and CD117 (c-kit overexpression in patients with pesticide exposure and extensive stage small cell lung carcinoma (ESSCLC

    Directory of Open Access Journals (Sweden)

    Potti Anil

    2005-06-01

    Full Text Available Abstract Background The rate of detection of HER-2/neu and CD117 (c-kit overexpression in small cell lung cancer (SCLC has varied widely; between 5–35% and 21–70% respectively. Methods To evaluate the relationship between pesticide exposure and HER-2/neu and CD117 overexpression in extensive stage SCLC (ESSCLC, we identified patients with ESSCLC and assessed pesticide exposure using a predetermined questionnaire. An exposure index (hours/day × days/year × years ≥ 2400 hours was considered as 'exposed.' HER-2/neu overexpression was evaluated on archival tissue using the DAKO Hercep test, and CD117 testing was performed using immunohistochemistry (A4052 polyclonal antibody. Results 193 ESSCLC patients were identified. Pesticide exposure data could be obtained on 174 patients (84 females and 109 males with a mean age of 68.5 years. 53/174 (30.4% revealed HER-2/neu overexpression. 54/174 (31.03% specimens showed CD117 overexpression by IHC. On multivariate analysis, HER-2/neu overexpression was associated with diminished survival (p neu overexpression and 47/121 (38.8% patients without overexpression had exposure to pesticides (odds ratio: 5.38; p Conclusion Pesticide exposure affects HER-2/neu but not CD117 overexpression. Future studies are needed to determine specific pesticide(s/pesticide components that are responsible for HER-2/neu overexpression in ESSCLC, and to validate our findings in other solid tumors that overexpress HER-2/neu.

  14. Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model.

    Directory of Open Access Journals (Sweden)

    Hong J Lee

    Full Text Available BACKGROUND: Intracerebral hemorrhage (ICH is a lethal stroke type. As mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs selectively migrate to the brain and induce behavioral recovery in rat ICH model, and that combined administration of NSCs and vascular endothelial growth factor (VEGF results in improved structural and functional outcome from cerebral ischemia. METHODS AND FINDINGS: We postulated that human NSCs overexpressing VEGF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs, increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by unilateral injection of bacterial collagenase into striatum. HB1.F3.VEGF human NSC line produced an amount of VEGF four times higher than parental F3 cell line in vitro, and induced behavioral improvement and 2-3 fold increase in cell survival at two weeks and eight weeks post-transplantation. CONCLUSIONS: Brain transplantation of F3 human NSCs over-expressing VEGF near ICH lesion sites provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results suggest a possible application of the human neural stem cell line, which is genetically modified to over-express VEGF, as a therapeutic agent for ICH-stroke.

  15. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Defeng Zou; Yi Chen; Yaxin Han; Chen Lv; Guanjun Tu

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs inbone marrow-derived mesen-chymal stem cells, neural stem cells and neurons. miR-124 expression was substantially reduced inbone marrow-derived mesenchymal stem cells compared with the other cell types. We con-structed a lentiviral vector overexpressing miR-124 and transfected it intobone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markersβ-III tu-bulin and microtubule-associated protein-2 were signiifcantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re-sults suggest that miR-124 plays an important role in the differentiation ofbone marrow-derived mesenchymal stem cells into neurons. Our ifndings should facilitate the development of novel strategies for enhancing the therapeutic efifcacy ofbone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.

  16. Overexpression of neuromedin U is correlated with regional metastasis of head and neck squamous cell carcinoma.

    Science.gov (United States)

    Wang, Lei; Chen, Chen; Li, Fen; Hua, Qing-Quan; Chen, Shiming; Xiao, Bokui; Dai, Mengyuan; Li, Man; Zheng, Anyuan; Yu, Di; Hu, Zhang Wei; Tao, Zezhang

    2016-08-01

    Regional metastasis is an important prognostic factor for patients with head and neck squamous cell carcinoma (HNSCC). Neuromedin U (Nmu) is a secreted neuropeptide, named due to its potent uterine contraction‑inducing activity. The aim of the present study was to analyze the significance of Nmu in the regional metastasis of HNSCC. The characteristics of 240 patients recruited from the Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University (Wuhan, China) were summarized retrospectively. The positive rate of neck dissection was analyzed according to the material. The expression levels of Nmu in human tumor samples were analyzed using immunohistochemistry. Subsequently, the expression of Nmu was investigated using a tissue microassay to analyze the association between Nmu protein expression and Tumor Node Metastasis (TNM) status. The positive rate of neck dissection was 51.4% in the study sample. The expression levels of Nmu in primary tumors with regional metastasis were higher, compared with those without metastasis. There was increased protein expression of Nmu in the advanced tumor tissues. The data obtained in the present study demonstrated that the expression of Nmu was correlated with regional metastasis and TNM status. Overexpression of Nmu may be involved in the process of regional metastasis of HNSCC, and may serve as a novel and valuable biomarker for predicting regional metastasis in patients with HNSCC. PMID:27279246

  17. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    Science.gov (United States)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.

  18. NQO1 overexpression is associated with poor prognosis in squamous cell carcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    NQO1 (NAD(P)H: quinone oxidoreductase-1), located on chromosome 16q22, functions primarily to protect normal cells from oxidant stress and electrophilic attack. Recent studies have revealed that NQO1 is expressed at a high level in most human solid tumors including those of the colon, breast, pancreas, ovaries and thyroid, and it has also been detected following the induction of cell cycle progression and proliferation of melanoma cells. In this study, we aimed to investigate the clinicopathological significance of upregulated NQO1 protein expression in squamous cell carcinomas (SCCs) of the uterine cervix. The localization of the NQO1 protein was determined in the SiHa cervical squamous cancer cell line using immunofluorescence (IF) staining, and immunohistochemical (IHC) staining performed on paraffin-embedded cervical SCC specimens from 177 patients. For comparison, 94 cervical intraepithelial neoplasia (CIN) and 25 normal cervical epithelia samples were also included. QRT-PCR was performed on RNA from fresh tissues to detect NQO1 mRNA expression levels, and HPV infection status was genotyped using oligonucleotide microarray. Disease-free survival (DFS) and 5-year overall survival (OS) rates for all cervical SCC patients were calculated using the Kaplan–Meier method, and univariate and multivariate analysis was performed using the Cox proportional hazards regression model. The NQO1 protein showed a mainly cytoplasmic staining pattern in cervical cancer cells, and only three cases of cervical SCC showed a nuclear staining pattern. The strongly positive rate of NQO1 protein expression was significantly higher in cervical SCCs and CINs than in normal cervical epithelia. High-level NQO1 expression was closely associated with poor differentiation, late-stage, lymph node metastasis and high-risk for HPV infection. Additionally, high-level NQO1 expression was associated with lower DFS and 5-year OS rates, particularly for patients with early-stage cervical SCCs

  19. Adenovirus-Mediated Over-Expression of Nrf2 Within Mesenchymal Stem Cells (MSCs Protected Rats Against Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadzadeh-Vardin

    2015-06-01

    Full Text Available Purpose: Recent developments in the field of cell therapy have led to a renewed interest in treatment of acute kidney injury (AKI. However, the early death of transplanted mesenchymal stem cells (MSCs in stressful microenvironment of a recipient tissue is a major problem with this kind of treatment. The objective of this study was to determine whether overexpression of a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2, in MSCs could protect rats against AKI. Methods: The Nrf2 was overexpressed in MSCs by recombinant adenoviruses, and the MSCs were implanted to rats suffering from cisplatin-induced AKI. Results: The obtained results showed that transplantation with the engineered MSCs ameliorates cisplatin-induced AKI. Morphologic features of the investigated kidneys showed that transplantation with the MSCs in which Nrf2 had been overexpressed significantly improved the complications of AKI. Conclusion: These findings suggested that the engineered MSCs might be a good candidate to be further evaluated in clinical trials. However, detailed studies must be performed to investigate the possible carcinogenic effect of Nrf2 overexpression.

  20. Nimotuzumab promotes radiosensitivity of EGFR-overexpression esophageal squamous cell carcinoma cells by upregulating IGFBP-3

    Directory of Open Access Journals (Sweden)

    Zhao Lei

    2012-12-01

    Full Text Available Abstract Background Epidermal growth factor receptor (EGFR is suggested to predict the radiosensitivity and/or prognosis of human esophageal squamous cell carcinoma (ESCC. The objective of this study was to investigate the efficacy of Nimotuzumab (an anti-EGFR monoclonal antibody on ESCC radiotherapy (RT and underlying mechanisms. Methods Nimotuzumab was administrated to 2 ESCC cell lines KYSE30 and TE-1 treated with RT. Cell growth, colony formation and apoptosis were used to measure anti-proliferation effects. The method of RNA interference was used to investigate the role of insulin-like growth factor binding protein-3 (IGFBP-3 in ESCC cells radiosensitivity treated with Nimotuzumab. In vivo effect of Nimotuzumab on ESCC radiotherapy was done using a mouse xenograft model. Results Nimotuzumab enhanced radiation response of KYSE30 cells (with high EGFR expression in vitro, as evidenced by increased radiation-inhibited cell growth and colony formation and radiation-mediated apoptosis. Mechanism study revealed that Nimotuzumab inhibited phosphorylated EGFR (p-EGFR induced by EGF in KYSE30 cells. In addition, knockdown of IGFBP-3 by short hairpin RNA significantly reduced KYSE30 cells radiosensitivity (PP>0.05. In KYSE30 cell xenografts, Nimotuzumab combined with radiation led to significant tumor growth delay, compared with that of radiation alone (P=0.029, and also with IGFBP-3 up-regulation in tumor tissue. Conclusions Nimotuzumab could enhance the RT effect of ESCC cells with a functional active EGFR pathway. In particular, the increased ESCC radiosensitivity by Nimotuzumab might be dependent on the up-regulation of IGFBP-3 through EGFR-dependent pathway.

  1. A lack of Adriamycin (ADR) resistance in Chinese hamster ovary (CHO) cells overexpressing P-glycoprotein (Pgp) following in vitro exposure to fractionated X-irradiation

    International Nuclear Information System (INIS)

    Using x-ray pretreated CHO cells, the authors demonstrated differing accumulation of adriamycin and vincristine in cells overexpressing P-glycoprotein. Response was also varied by the addition of calcium channel antagonist verapamil. (author)

  2. Overexpression or silencing of FOXO3a affects proliferation of endothelial progenitor cells and expression of cell cycle regulatory proteins.

    Directory of Open Access Journals (Sweden)

    Tiantian Sang

    Full Text Available Endothelial dysfunction is involved in the pathogenesis of many cardiovascular diseases such as atherosclerosis. Endothelial progenitor cells (EPCs have been considered to be of great significance in therapeutic angiogenesis. Furthermore, the Forkhead box O (FOXO transcription factors are known to be important regulators of cell cycle. Therefore, we investigated the effects of changes in FOXO3a activity on cell proliferation and cell cycle regulatory proteins in EPCs. The constructed recombinant adenovirus vectors Ad-TM (triple mutant-FOXO3a, Ad-shRNA-FOXO3a and the control Ad-GFP were transfected into EPCs derived from human umbilical cord blood. Assessment of transfection efficiency using an inverted fluorescence microscope and flow cytometry indicated a successful transfection. Additionally, the expression of FOXO3a was markedly increased in the Ad-TM-FOXO3a group but was inhibited in the Ad-shRNA-FOXO3a group as seen by western blotting. Overexpression of FOXO3a suppressed EPC proliferation and modulated expression of the cell cycle regulatory proteins including upregulation of the cell cycle inhibitor p27(kip1 and downregulation of cyclin-dependent kinase 2 (CDK2, cyclin D1 and proliferating cell nuclear antigen (PCNA. In the Ad-shRNA-FOXO3a group, the results were counter-productive. Furthermore, flow cytometry for cell cycle analysis suggested that the active mutant of FOXO3a caused a noticeable increase in G1- and S-phase frequencies, while a decrease was observed after FOXO3a silencing. In conclusion, these data demonstrated that FOXO3a could possibly inhibit EPC proliferation via cell cycle arrest involving upregulation of p27(kip1 and downregulation of CDK2, cyclin D1 and PCNA.

  3. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12.

    Directory of Open Access Journals (Sweden)

    Erica L Cain

    Full Text Available BACKGROUND: Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6 and the dual specificity phosphatase 12 (dusp12. While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1 which is implicated in metastasis. SIGNIFICANCE: Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.

  4. Overexpression of CHOP alone and in combination with chaperones is effective in improving antibody production in mammalian cells.

    Science.gov (United States)

    Nishimiya, Daisuke; Mano, Takashi; Miyadai, Kenji; Yoshida, Hiroko; Takahashi, Tohru

    2013-03-01

    Secretory capacities including folding and assembly are believed to be limiting factors in the establishment of mammalian cell lines producing high levels of recombinant therapeutic proteins. To achieve industrial success, it is also important to improve protein folding, assembly, and secretory processes in combination with increasing transcription and translation. Here, we identified the expression of CHOP/Gadd153 and GRP78, which are unfolded protein response (UPR)-related genes, correlated with recombinant antibody production in stable CHO cells. Subsequently, CHOP overexpression resulted in increasing recombinant antibody production in some mammalian cell lines, and in addition a threefold further enhancement was obtained by combining expression with UPR-related genes or ER chaperones in transient assays. Overexpression of CHOP had no effect on the biochemical characteristics of the product. These results suggest overexpression of CHOP and its combinations may be an effective method to efficiently select a single cell line with a high level of antibody production in the development of cell lines for manufacturing. PMID:22926643

  5. Overexpression of engulfment and cell motility 1 promotes cell invasion and migration of hepatocellular carcinoma

    OpenAIRE

    JIANG, JIARUI; Liu, Guoqing; Miao, Xiongying; HUA, SONGWEN; ZHONG, DEWU

    2011-01-01

    Engulfment and cell motility 1 (Elmo1) has been linked to the invasive phenotype of glioma cells. The use of Elmo1 inhibitors is currently being evaluated in hepato-cellular carcinoma (HCC), but the molecular mechanisms of their therapeutic effect have yet to be determined. Elmo1 expression in HCC tissue samples from 131 cases and in 5 HCC cell lines was determined by immunohistochemistry, quantitative RT-PCR and Western blotting. To functionally characterize Elmo1 in HCC, Elmo1 expression in...

  6. Uptake of synthetic Low Density Lipoprotein by leukemic stem cells--a potential stem cell targeted drug delivery strategy.

    Science.gov (United States)

    Zhou, Peixun; Hatziieremia, Sophia; Elliott, Moira A; Scobie, Linda; Crossan, Claire; Michie, Alison M; Holyoake, Tessa L; Halbert, Gavin W; Jørgensen, Heather G

    2010-12-20

    Chronic Myeloid Leukemia (CML) stem/progenitor cells, which over-express Bcr-Abl, respond to imatinib by a reversible block in proliferation without significant apoptosis. As a result, patients are unlikely to be cured owing to the persistence of leukemic quiescent stem cells (QSC) capable of initiating relapse. Previously, we have reported that intracellular levels of imatinib in primary primitive CML cells (CD34+38(lo/⁻)), are significantly lower than in CML progenitor cells (total CD34+) and leukemic cell lines. The aim of this study was to determine if potentially sub-therapeutic intracellular drug concentrations in persistent leukemic QSC may be overcome by targeted drug delivery using synthetic Low Density Lipoprotein (sLDL) particles. As a first step towards this goal, however, the extent of uptake of sLDL by leukemic cell lines and CML patient stem/progenitor cells was investigated. Results with non-drug loaded particles have shown an increased and preferential uptake of sLDL by Bcr-Abl positive cell lines in comparison to Bcr-Abl negative. Furthermore, CML CD34+ and primitive CD34+38(lo/⁻) cells accumulated significantly higher levels of sLDL when compared with non-CML CD34+ cells. Thus, drug-loading the sLDL nanoparticles could potentially enhance intracellular drug concentrations in primitive CML cells and thus aid their eradication. PMID:20869412

  7. Tbx3 represses PTEN and is over-expressed in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Burgucu Durmus

    2012-10-01

    Full Text Available Abstract Background Despite advances in diagnostic and treatment strategies, head and neck squamous cell cancer (HNSCC constitutes one of the worst cancer types in terms of prognosis. PTEN is one of the tumour suppressors whose expression and/or activity have been found to be reduced in HNSCC, with rather low rates of mutations within the PTEN gene (6-8%. We reasoned that low expression levels of PTEN might be due to a transcriptional repression governed by an oncogene. Tbx2 and Tbx3, both of which are transcriptional repressors, have been found to be amplified or over-expressed in various cancer types. Thus, we hypothesize that Tbx3 may be over expressed in HNSCC and may repress PTEN, thus leading to cancer formation and/or progression. Methods Using immunohistochemistry and quantitative PCR (qPCR, protein and mRNA levels of PTEN and Tbx3 were identified in samples excised from cancerous and adjacent normal tissues from 33 patients who were diagnosed with HNSCC. In addition, HeLa and HEK cell lines were transfected with a Tbx3 expressing plasmid and endogenous PTEN mRNA and protein levels were determined via qPCR and flow cytometry. Transcription assays were performed to demonstrate effects of Tbx3 on PTEN promoter activity. Mann–Whitney, Spearman’s Correlation and Wilcoxon signed-rank tests were used to analyze the data. Results We demonstrate that in HNSCC samples, Tbx3 mRNA levels are increased with respect to their normal tissue counterparts (p Conclusions We show that Tbx3 is up-regulated in tissue samples of HNSCC patients and that Tbx3 represses PTEN transcription. Thus, our data not only reveals a new mechanism that may be important in cancer formation, but also suggests that Tbx3 can be used as a potential biomarker in cancer.

  8. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration

    OpenAIRE

    Bray, Kristi; Gillette, Melissa; Young, Jeanette; Loughran, Elizabeth; Hwang, Melissa; Sears, James Cooper; Vargo-Gogola, Tracy

    2013-01-01

    Introduction The Rho GTPase Cdc42 is overexpressed and hyperactivated in breast tumors compared to normal breast tissue. Cdc42 regulates key processes that are critical for mammary gland morphogenesis and become disrupted during the development, progression, and metastasis of breast cancer. However, the contribution of Cdc42 to normal and neoplastic mammary gland development in vivo remains poorly understood. We were therefore interested in investigating the effects of Cdc42 overexpression on...

  9. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker.

    Directory of Open Access Journals (Sweden)

    Yukihiro Saito

    Full Text Available Establishment of a biological pacemaker is expected to solve the persisting problems of a mechanical pacemaker including the problems of battery life and electromagnetic interference. Enhancement of the funny current (If flowing through hyperpolarization-activated cyclic nucleotide-gated (HCN channels and attenuation of the inward rectifier K+ current (IK1 flowing through inward rectifier potassium (Kir channels are essential for generation of a biological pacemaker. Therefore, we generated HCN4-overexpressing mouse embryonic stem cells (mESCs and induced cardiomyocytes that originally show poor IK1 currents, and we investigated whether the HCN4-overexpressing mESC-derived cardiomyocytes (mESC-CMs function as a biological pacemaker in vitro.The rabbit Hcn4 gene was transfected into mESCs, and stable clones were selected. mESC-CMs were generated via embryoid bodies and purified under serum/glucose-free and lactate-supplemented conditions. Approximately 90% of the purified cells were troponin I-positive by immunostaining. In mESC-CMs, expression level of the Kcnj2 gene encoding Kir2.1, which is essential for generation of IK1 currents that are responsible for stabilizing the resting membrane potential, was lower than that in an adult mouse ventricle. HCN4-overexpressing mESC-CMs expressed about a 3-times higher level of the Hcn4 gene than did non-overexpressing mESC-CMs. Expression of the Cacna1h gene, which encodes T-type calcium channel and generates diastolic depolarization in the sinoatrial node, was also confirmed. Additionally, genes required for impulse conduction including Connexin40, Connexin43, and Connexin45 genes, which encode connexins forming gap junctions, and the Scn5a gene, which encodes sodium channels, are expressed in the cells. HCN4-overexpressing mESC-CMs showed significantly larger If currents and more rapid spontaneous beating than did non-overexpressing mESC-CMs. The beating rate of HCN4-overexpressing mESC-CMs responded

  10. Stretching cells and delivering drugs with bubbles

    Science.gov (United States)

    Ohl, Claus-Dieter; Li, Fenfang; Chon U, Chan; Gao, Yu; Xu, Chenjie

    2015-11-01

    In this talk we'll review our work on impulsive cell stretching using cavitation bubbles and magnetic microbubbles for drug delivery. For sufficient short times cells can sustain a much larger areal strain than the yield strain obtained from quasi-static stretching. Experiments with red blood cells show that even then the rupture of the cell is slow process; it is caused by diffusive swelling rather than mechanical violation of the plasma membrane. In the second part we'll discuss bubbles coated with magnetic and drug loaded particles. These bubbles offer an interesting vector for on demand delivery of drugs using mild ultrasound and magnetic fields. We report on basic experiments in microfluidic channels revealing the release of the agent during bubble oscillations and first in vivo validation with a mouse tumor model. Singapore National Research Foundations Competitive Research Program funding (NRF-CRP9-2011-04).

  11. SET overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario

    International Nuclear Information System (INIS)

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidation and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer. - Highlights: • SET, UCPs and autophagy prevention are correlated. • SET action has mitochondrial involvement. • UCP2/3 may reduce ROS and prevent autophagy. • SET protects cell from ROS via UCP2/3

  12. SET overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luciana O.; Goto, Renata N. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Neto, Marinaldo P.C. [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Sousa, Lucas O. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Curti, Carlos [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Leopoldino, Andréia M., E-mail: andreiaml@usp.br [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2015-03-06

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidation and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer. - Highlights: • SET, UCPs and autophagy prevention are correlated. • SET action has mitochondrial involvement. • UCP2/3 may reduce ROS and prevent autophagy. • SET protects cell from ROS via UCP2/3.

  13. Overexpressed GRP78 affects EMT and cell-matrix adhesion via autocrine TGF-β/Smad2/3 signaling.

    Science.gov (United States)

    Zhang, Lichao; Li, Zongwei; Fan, Yongsheng; Li, Hanqing; Li, Zhouyu; Li, Yaoping

    2015-07-01

    Glucose-regulated protein of 78kD (GRP78) is a multifunctional protein belonging to the heat shock protein 70 family. Overexpression of GRP78 triggered by environmental and physiological stresses is positively correlated with the occurrence and progression of various tumors, but the molecular mechanisms have not been well established. The present study indicated that overexpression of GRP78 in colon cancer cells could promote cell-matrix adhesion through the upregulation of fibronectin, integrin-β1 and phosphorylated FAK. Meanwhile, it resulted in a visible epithelial-mesenchymal transition in DLD1 cells, and the Snail-2 played the key role during the process. More importantly, the data indicated that GRP78 overexpression facilitated the expression and secretion of TGF-β1, which further activated the downstream Smad2/3 signaling module to effectuate the cell-matrix adhesion and epithelial-mesenchymal transition. Taken together, this study provides a novel molecular mechanism involving in the effects of GRP78 on colon cancer metastasis. PMID:25934251

  14. Geldanamycin inhibits proliferation and motility of Her2/neu-overexpressing SK-Br3 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Ren Yu; Wang Ke; He Jianjun; Chen Wuke; Ma Qingyong

    2008-01-01

    Objective Benzoquinone ansamycin antibiotic, geldanamycin (GA), is a new anticancer agent that could inhibit Hsp90 by occupying its NH2-terminal ATP-binding site. This study was to investigate the antitumor efficacy of GA on Her2/neu tyrosine kinase overexpressing human breast cancer cell line SKBr3. Methods The degradation of Her2/neu tyrosine kinase was analyzed by Western blotting, the proliferation index was determined by MTT assay,cell cycle distribution was detected by flow cytometry, Cyclin D1 mRNA transcription was measured by RT-PCR and real-time PCR, and cell motility was evaluated by the cell culture insert model. Results GA induced a dose- and a time-dependent degradation of the Her2/neu tyrosine kinase protein and concurrently, the inhibition of cancer cell proliferation. The antitumor effects mediated by GA included: GA treatment decreased the survival rates of cancer cells,and led to a dase-dependent G1 arrest. Furthermore, this antitumor effect was proved to be related to declined transcription of Cyclin D1. Concurrently, the motility of cancer cells was reduced by GA. Conclusion GA treatment could induce the degradation of Her2/neu tyrnsine kinase efficiently, inhibit cancer cell proliferation and reduce motility in Her2/nen tyrosine kinase overexpressed human breast cancer cell line SKBr3.

  15. The reversal of antineoplastic drug resistance in cancer cells by β-elemene.

    Science.gov (United States)

    Zhang, Guan-Nan; Ashby, Charles R; Zhang, Yun-Kai; Chen, Zhe-Sheng; Guo, Huiqin

    2015-11-01

    Multidrug resistance (MDR), defined as the resistance of cancer cells to compounds with diverse structures and mechanisms of actions, significantly limits the efficacy of antitumor drugs. A major mechanism that mediates MDR in cancer is the overexpression of adenosine triphosphate (ATP)-binding cassette transporters. These transporters bind to their respective substrates and catalyze their efflux from cancer cells, thereby lowering the intracellular concentrations of the substrates and thus attenuating or even abolishing their efficacy. In addition, cancer cells can become resistant to drugs via mechanisms that attenuate apoptosis and cell cycle arrest such as alterations in the p53, check point kinase, nuclear factor kappa B, and the p38 mitogen-activated protein kinase pathway. In this review, we discuss the mechanisms by which β-elemene, a compound extracted from Rhizoma zedoariae that has clinical antitumor efficacy, overcomes drug resistance in cancer. PMID:26370907

  16. Over-expression of human endosulfatase-1 exacerbates cadmium-induced injury to transformed human lung cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiying [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States); Department of Environmental and Molecular Toxicology, College of Agriculture and Life Sciences, NC State University, Raleigh, NC 27695 (United States); Newman, Donna R. [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States); Bonner, James C. [Department of Environmental and Molecular Toxicology, College of Agriculture and Life Sciences, NC State University, Raleigh, NC 27695 (United States); Sannes, Philip L., E-mail: philip_sannes@ncsu.edu [Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, NC State University, Raleigh, NC 27607 (United States)

    2012-11-15

    Environmental exposure to cadmium is known to cause damage to alveolar epithelial cells of the lung, impair their capacity to repair, and result in permanent structural alterations. Cell surface heparan sulfate proteoglycans (HSPGs) can modulate cell responses to injury through their interactions with soluble effector molecules. These interactions are often sulfate specific, and the removal of sulfate groups from HS side chains could be expected to influence cellular injury, such as that caused by exposure to cadmium. The goal of this study was to define the role 6-O-sulfate plays in cellular responses to cadmium exposure in two pulmonary epithelial cancer cell lines (H292 and A549) and in normal human primary alveolar type II (hAT2) cells. Sulfate levels were modified by transduced transient over-expression of 6-O-endosulfatase (HSulf-1), a membrane-bound enzyme which specifically removes 6-O-sulfate groups from HSPG side chains. Results showed that cadmium decreased cell viability and activated apoptosis pathways at low concentrations in hAT2 cells but not in the cancer cells. HSulf-1 over-expression, on the contrary, decreased cell viability and activated apoptosis pathways in H292 and A549 cells but not in hAT2 cells. When combined with cadmium, HSulf-1 over-expression further decreased cell viability and exacerbated the activation of apoptosis pathways in the transformed cells but did not add to the toxicity in hAT2 cells. The finding that HSulf-1 sensitizes these cancer cells and intensifies the injury induced by cadmium suggests that 6-O-sulfate groups on HSPGs may play important roles in protection against certain environmental toxicants, such as heavy metals. -- Highlights: ► Primary human lung alveolar type 2 (hAT2) cells and H292 and A549 cells were used. ► Cadmium induced apoptosis in hAT2 cells but not in H292 or A549 cells. ► HSulf-1exacerbates apoptosis induced by cadmium in H292 and A549 but not hAT2 cells.

  17. Lewis (y) Antigen Overexpression Increases the Expression of MMP-2 and MMP-9 and Invasion of Human Ovarian Cancer Cells

    OpenAIRE

    Shulan Zhang; Masao Iwamori; Changzhi Wang; Yifei Wang; Chuan Liu; Song Gao; Lili Gao; Bei Lin; Limei Yan

    2010-01-01

    Lewis (y) antigen is a difucosylated oligosaccharide present on the plasma membrane, and its overexpression is frequently found in human cancers and has been shown to be associated with poor prognosis. Our previous studies have shown that Lewis (y) antigen plays a positive role in the process of invasion and metastasis of ovarian cancer cells. However, the mechanisms by which Lewis (y) antigen enhances the invasion and tumor metastasis are still unknown. In this study, we established a stable...

  18. CD13/Aminopeptidase N overexpression by basic fibroblast growth factor mediates enhanced invasiveness of 1F6 human melanoma cells

    OpenAIRE

    Fontijn, D.; Duyndam, M.C.A.; van Berkel, M P A; Yuana, Y.; Shapiro, L H; Pinedo, H. M.; Broxterman, H.J.; Boven, E.

    2006-01-01

    CD13/Aminopeptidase N (CD13) is known to play an important role in tumour cell invasion. We examined whether basic fibroblast growth factor (bFGF) is involved in the regulation of CD13 expression in human melanoma cells. 1F6 human melanoma cells were stably transfected with constructs encoding either the 18 kDa (18kD) or all (ALL) bFGF isoform proteins. We observed highly increased CD13 mRNA and protein expression in the 1F6 clones regardless of the overexpression of either the 18kD or all is...

  19. The B cell antigen receptor and overexpression of MYC can cooperate in the genesis of B cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Yosef Refaeli

    2008-06-01

    Full Text Available A variety of circumstantial evidence from humans has implicated the B cell antigen receptor (BCR in the genesis of B cell lymphomas. We generated mouse models designed to test this possibility directly, and we found that both the constitutive and antigen-stimulated state of a clonal BCR affected the rate and outcome of lymphomagenesis initiated by the proto-oncogene MYC. The tumors that arose in the presence of constitutive BCR differed from those initiated by MYC alone and resembled chronic B cell lymphocytic leukemia/lymphoma (B-CLL, whereas those that arose in response to antigen stimulation resembled large B-cell lymphomas, particularly Burkitt lymphoma (BL. We linked the genesis of the BL-like tumors to antigen stimulus in three ways. First, in reconstruction experiments, stimulation of B cells by an autoantigen in the presence of overexpressed MYC gave rise to BL-like tumors that were, in turn, dependent on both MYC and the antigen for survival and proliferation. Second, genetic disruption of the pathway that mediates signaling from the BCR promptly killed cells of the BL-like tumors as well as the tumors resembling B-CLL. And third, growth of the murine BL could be inhibited by any of three distinctive immunosuppressants, in accord with the dependence of the tumors on antigen-induced signaling. Together, our results provide direct evidence that antigenic stimulation can participate in lymphomagenesis, point to a potential role for the constitutive BCR as well, and sustain the view that the constitutive BCR gives rise to signals different from those elicited by antigen. The mouse models described here should be useful in exploring further the pathogenesis of lymphomas, and in preclinical testing of new therapeutics.

  20. Overexpression of NDRG2 Increases Iodine Uptake and Inhibits Thyroid Carcinoma Cell Growth In Situ and In Vivo.

    Science.gov (United States)

    Yin, Anqi; Wang, Chengguo; Sun, Jiachen; Gao, Jianjun; Tao, Liang; Du, Xilin; Zhao, Huadong; Yang, Jiandong; Li, Yan

    2016-01-01

    Medullary thyroid carcinoma (MTC) is an uncommon and highly aggressive tumor of the neuroendocrine system, which derives from the neuroendocrine C cells of the thyroid gland. Except for surgical resection, there are not very many effective systemic treatment options for MTC. N-Myc downstream-regulated gene 2 (NDRG2) had a significantly lower expression in MTC compared with normal thyroid tissue. However, the function of NDRG2 in MTC oncogenesis is largely unknown. In this study, we found that overexpression of NDRG2 inhibited the proliferation of TT cells (human medullary thyroid carcinoma cells) in vitro and suppressed the development of MTC in a nude mouse xenograft model. Further analysis revealed that NDRG2 arrested the cell cycle G0/G1 phase progression and induced TT cell apoptosis. Moreover, NDRG2 overexpression may mediate the antiproliferative effect by reducing cyclin D1 and cyclin E protein levels. We also found aberrant NDRG2-mitigated TT cell migration and invasion in vitro. Sodium/iodide symporter (NIS) mediates active I(-) transport into the thyroid follicular cells, and radionuclide treatment is a promising therapy for MTC. Our current data revealed that NDRG2 overexpression enhanced NIS level in TT cells and increased their iodine uptake in vitro. Furthermore, (99m)TcO4(-) radionuclide imaging of the xenograft tumors indicated that NDRG2 could promote NIS-mediated radionuclide transport. In conclusion, the present study suggested that NDRG2 is a critical molecule in the regulation of MTC biological behavior and a potential promoter in radioactive iodine therapy. PMID:26802650

  1. Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Tangfeng Lv

    Full Text Available BACKGROUND: Lysine specific demethylase 1 (LSD1 has been identified and biochemically characterized in epigenetics, but the pathological roles of its dysfunction in lung cancer remain to be elucidated. The aim of this study was to evaluate the prognostic significance of LSD1 expression in patients with non-small cell lung cancer (NSCLC and to define its exact role in lung cancer proliferation, migration and invasion. METHODS: The protein levels of LSD1 in surgically resected samples from NSCLC patients were detected by immunohistochemistry or Western blotting. The mRNA levels of LSD1 were detected by qRT-PCR. The correlation of LSD1 expression with clinical characteristics and prognosis was determined by statistical analysis. Cell proliferation rate was assessed by MTS assay and immunofluorescence. Cell migration and invasion were detected by scratch test, matrigel assay and transwell invasion assay. RESULTS: LSD1 expression was higher in lung cancer tissue more than in normal lung tissue. Our results showed that over-expression of LSD1 protein were associated with shorter overall survival of NSCLC patients. LSD1 was localized mainly to the cancer cell nucleus. Interruption of LSD1 using siRNA or a chemical inhibitor, pargyline, suppressed proliferation, migration and invasion of A549, H460 and 293T cells. Meanwhile, over-expression of LSD1 enhanced cell growth. Finally, LSD1 was shown to regulate epithelial-to-mesenchymal transition in lung cancer cells. CONCLUSIONS: Over-expression of LSD1 was associated with poor prognosis in NSCLC, and promoted tumor cell proliferation, migration and invasion. These results suggest that LSD1 is a tumor-promoting factor with promising therapeutic potential for NSCLC.

  2. Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis

    OpenAIRE

    Müller-Decker, Karin; Neufang, Gitta; Berger, Irina; Neumann, Melanie; Marks, Friedrich; Fürstenberger, Gerhard

    2002-01-01

    Genetic and pharmacological evidence suggests that overexpression of cyclooxygenase-2 (COX-2) is critical for epithelial carcinogenesis and provides a major target for cancer chemoprevention by nonsteroidal antiinflammatory drugs. Transgenic mouse lines with keratin 5 promoter-driven COX-2 overexpression in basal epidermal cells exhibit a preneoplastic skin phenotype. As shown here, this phenotype depends on the level of COX-2 expression and COX-2-mediated prostaglandin accumulation. The tran...

  3. Overexpression of MIP2, a novel WD-repeat protein, promotes proliferation of H9c2 cells

    International Nuclear Information System (INIS)

    WD40 repeat proteins have a wide range of diverse biological functions including signal transduction, cell cycle regulation, RNA splicing, and transcription. Myocardial ischemic preconditioning up-regulated protein 2 (MIP2) is a novel member of the WD40 repeat proteins superfamily that contains five WD40 repeats. Little is known about its biological role, and the purpose of this study was to determine the role of MIP2 in regulating cellular proliferation. Transfection and constitutive expression of MIP2 in the rat cardiomyoblast cell line H9c2 results in enhanced growth of those cells as measured by cell number and is proportional to the amount of MIP2 expressed. Overexpression of MIP2 results in a shorter cell cycle, as measured by flow cytometry. Collectively, these data suggest that MIP2 may participate in the progression of cell proliferation in H9c2 cells.

  4. CPT1α over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    International Nuclear Information System (INIS)

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1α (CPT1α). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1α transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1α over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1α over-expressing cells in a concentration-dependent manner. Both, PA and CPT1α over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1α, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo

  5. Overexpression of miR-100 inhibits cell proliferation, migration, and chemosensitivity in human glioblastoma through FGFR3

    Directory of Open Access Journals (Sweden)

    Luan YX

    2015-11-01

    Full Text Available Yongxin Luan,1 Shuyan Zhang,1 Ling Zuo,2 Lixiang Zhou1 1Department of Neurosurgery, First Bethune Hospital of Jilin University, 2Department of Ophthalmology, Second Bethune Hospital of Jilin University, Changchun, People’s Republic of China Background: Glioblastoma multiforme is one of the most deadly forms of brain cancer. We investigated the regulatory effects of microRNA-100 (miR-100 on cell proliferation, migration, and chemosensitivity in human glioblastoma. Methods: miR-100 expression was assessed by quantitative real-time polymerase chain reaction in both glioblastoma cells and human tumors. Lentiviruses of miR-100 mimics and inhibitors were transfected into U251 and T98G cells. The regulatory effects of either overexpressing or downregulating miR-100 on glioblastoma were evaluated by a viability assay, growth assay, migration assay, chemosensitivity assay, and an in vivo tumor transplantation assay. Expression of fibroblast growth factor receptor 3 (FGFR3, the bioinformatically predicted target of miR-100, was examined by Western blot in glioblastoma. FGFR3 was then ectopically overexpressed in U251 and T98G cells, and its effects on miR-100-mediated cancer regulation were evaluated by growth, migration, and chemosensitivity assays. Results: MiR-100 was markedly downregulated in both glioblastoma cell lines and human tumors. Overexpressing miR-100 through lentiviral transfection in U251 and T98G cells significantly inhibited cancer growth (both in vitro and in vivo and migration and increased chemosensitivity to cisplatin and 1, 3-bis (2-chloroethyl-l-nitrosourea, whereas downregulation of miR-100 had no effects on development of cancer. FGFR3 was directly regulated by miR-100 in glioblastoma. Ectopically overexpressing FGFR3 was able to ameliorate the anticancer effects of upregulation of miR-100 on glioblastoma growth, migration, and chemosensitivity. Conclusion: MiR-100 was generally downregulated in glioblastoma. Overexpressing mi

  6. T-DM1, a novel antibody-drug conjugate, is highly effective against uterine and ovarian carcinosarcomas overexpressing HER2.

    Science.gov (United States)

    Nicoletti, Roberta; Lopez, Salvatore; Bellone, Stefania; Cocco, Emiliano; Schwab, Carlton L; Black, Jonathan D; Centritto, Floriana; Zhu, Liancheng; Bonazzoli, Elena; Buza, Natalia; Hui, Pei; Mezzanzanica, Delia; Canevari, Silvana; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D

    2015-01-01

    Ovarian and uterine carcinosarcoma (CS) are characterized by their aggressive clinical behavior and poor prognosis. We evaluated the efficacy of trastuzumab-emtansine (T-DM1), against primary HER2 positive and HER2 negative CS cell lines in vitro and in vivo. Eight primary CS cell lines were evaluated for HER2 amplification and protein expression by fluorescence in situ hybridization, immunohistochemistry, flow cytometry and qRT-PCR. Sensitivity to T-DM1-induced antibody-dependent-cell-mediated-cytotoxicity (ADCC) was evaluated in 4-h-chromium-release-assays. T-DM1 cytostatic and apoptotic activities were evaluated using flow cytometry based proliferation assays. In vivo activity of T-DM1 was also evaluated. HER2 protein overexpression and gene amplification were detected in 25 % (2/8) of the primary CS cell lines. T-DM1 and T were similarly effective in inducing strong ADCC against CS overexpressing HER2 at 3+ levels. In contrast, T-DM1 was dramatically more effective than T in inhibiting cell proliferation (P < 0.0001) and in inducing G2/M phase cell cycle arrest in the HER2 expressing cell lines (shift of G2/M: mean ± SEM from 14.87 ± 1.23 to 66.57 ± 4.56 %, P < 0.0001). Importantly, T-DM1 was highly active at reducing tumor formation in vivo in CS xenografts overexpressing HER2 (P = 0.0001 and P < 0.0001 compared to T and vehicle respectively) with a significantly longer survival when compared to T and vehicle mice (P = 0.008 and P = 0.0001 respectively). T-DM1 may represent a novel treatment option for the subset of HER2 positive CS patients with disease refractory to chemotherapy. PMID:25398397

  7. A novel targeted system to deliver chemotherapeutic drugs to EphA2-expressing cancer cells

    OpenAIRE

    Wang, Si; Placzek, William J.; Stebbins, John L.; Mitra, Sayantan; Noberini, Roberta; Koolpe, Mitchell; Zhang, Ziming; Dahl, Russell; Pasquale, Elena B.; Pellecchia, Maurizio

    2012-01-01

    The efficacy of anti-cancer drugs is often limited by their systemic toxicities and adverse side effects. We report that the EphA2 receptor is over-expressed preferentially in several human cancer cell lines compared to normal tissues and that an EphA2 targeting peptide (YSAYPDSVPMMS) can be effective in delivering anti-cancer agents to such tumors. Hence, we report on the synthesis and characterizations of a novel EphA2-targeting agent conjugated with the chemotherapeutic drug paclitaxel. We...

  8. Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila.

    Science.gov (United States)

    Cui, Lijie; Ni, Xiaoling; Ji, Qian; Teng, Xiaojuan; Yang, Yanru; Wu, Chao; Zekria, David; Zhang, Dasheng; Kai, Guoyin

    2015-01-01

    Camptothecin (CPT) belongs to a group of monoterpenoidindole alkaloids (TIAs) and its derivatives such as irinothecan and topothecan have been widely used worldwide for the treatment of cancer, giving rise to rapidly increasing market demands. Genes from Catharanthus roseus encoding strictosidine synthase (STR) and geraniol 10-hydroxylase (G10H), were separately and simultaneously introduced into Ophiorrhiza pumila hairy roots. Overexpression of individual G10H (G lines) significantly improved CPT production with respect to non-transgenic hairy root cultures (NC line) and single STR overexpressing lines (S lines), indicating that G10H plays a more important role in stimulating CPT accumulation than STR in O. pumila. Furthermore, co-overexpression of G10H and STR genes (SG Lines) caused a 56% increase on the yields of CPT compared to NC line and single gene transgenic lines, showed that simultaneous introduction of G10H and STR can produce a synergistic effect on CPT biosynthesis in O. pumila. The MTT assay results indicated that CPT extracted from different lines showed similar anti-tumor activity, suggesting that transgenic O. pumila hairy root lines could be an alternative approach to obtain CPT. To our knowledge, this is the first report on the enhancement of CPT production in O. pumila employing a metabolic engineering strategy. PMID:25648209

  9. Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway

    International Nuclear Information System (INIS)

    Overexpression of Aurora-A and mutant Ras (RasV12) together has been detected in human bladder cancer tissue. However, it is not clear whether this phenomenon is a general event or not. Although crosstalk between Aurora-A and Ras signaling pathways has been reported, the role of these two genes acting together in tumorigenesis remains unclear. Real-time PCR and sequence analysis were utilized to identify Ha- and Ki-ras mutation (Gly -> Val). Immunohistochemistry staining was used to measure the level of Aurora-A expression in bladder and colon cancer specimens. To reveal the effect of overexpression of the above two genes on cellular responses, mouse NIH3T3 fibroblast derived cell lines over-expressing either RasV12and wild-type Aurora-A (designated WT) or RasV12 and kinase-inactivated Aurora-A (KD) were established. MTT and focus formation assays were conducted to measure proliferation rate and focus formation capability of the cells. Small interfering RNA, pharmacological inhibitors and dominant negative genes were used to dissect the signaling pathways involved. Overexpression of wild-type Aurora-A and mutation of RasV12 were detected in human bladder and colon cancer tissues. Wild-type Aurora-A induces focus formation and aggregation of the RasV12 transformants. Aurora-A activates Ral A and the phosphorylation of AKT as well as enhances the phosphorylation of MEK, ERK of WT cells. Finally, the Ras/MEK/ERK signaling pathway is responsible for Aurora-A induced aggregation of the RasV12 transformants. Wild-type-Aurora-A enhances focus formation and aggregation of the RasV12 transformants and the latter occurs through modulating the Ras/MEK/ERK signaling pathway

  10. Overexpression of human sperm protein 17 increases migration and decreases the chemosensitivity of human epithelial ovarian cancer cells

    International Nuclear Information System (INIS)

    Most deaths from ovarian cancer are due to metastases that are resistant to conventional therapies. But the factors that regulate the metastatic process and chemoresistance of ovarian cancer are poorly understood. In the current study, we investigated the aberrant expression of human sperm protein 17 (HSp17) in human epithelial ovarian cancer cells and tried to analyze its influences on the cell behaviors like migration and chemoresistance. Immunohistochemistry and immunocytochemistry were used to identify HSp17 in paraffin embedded ovarian malignant tumor specimens and peritoneal metastatic malignant cells. Then we examined the effect of HSp17 overexpression on the proliferation, migration, and chemoresistance of ovarian cancer cells to carboplatin and cisplatin in a human ovarian carcinoma cell line, HO8910. We found that HSp17 was aberrantly expressed in 43% (30/70) of the patients with primary epithelial ovarian carcinomas, and in all of the metastatic cancer cells of ascites from 8 patients. The Sp17 expression was also detected in the metastatic lesions the same as in ovarian lesions. None of the 7 non-epithelial tumors primarily developed in the ovaries was immunopositive for HSp17. Overexpression of HSp17 increased the migration but decreased the chemosensitivity of ovarian carcinoma cells to carboplatin and cisplatin. HSp17 is aberrantly expressed in a significant proportion of epithelial ovarian carcinomas. Our results strongly suggest that HSp17 plays a role in metastatic disease and resistance of epithelial ovarian carcinoma to chemotherapy

  11. Poly(ADP-ribose polymerase 1 (PARP1 overexpression in human breast cancer stem cells and resistance to olaparib.

    Directory of Open Access Journals (Sweden)

    Marine Gilabert

    Full Text Available BACKGROUND: Breast cancer stem cells (BCSCs have been recognized as playing a major role in various aspects of breast cancer biology. To identify specific biomarkers of BCSCs, we have performed comparative proteomics of BCSC-enriched and mature cancer cell populations from the human breast cancer cell line (BCL, BrCA-MZ-01. METHODS: ALDEFLUOR assay was used to sort BCSC-enriched (ALDH+ and mature cancer (ALDH- cell populations. Total proteins were extracted from both fractions and subjected to 2-Dimensional Difference In-Gel Electrophoresis (2-D DIGE. Differentially-expressed spots were excised and proteins were gel-extracted, digested and identified using MALDI-TOF MS. RESULTS: 2-D DIGE identified poly(ADP-ribose polymerase 1 (PARP1 as overexpressed in ALDH+ cells from BrCA-MZ-01. This observation was confirmed by western blot and extended to four additional human BCLs. ALDH+ cells from BRCA1-mutated HCC1937, which had the highest level of PARP1 overexpression, displayed resistance to olaparib, a specific PARP1 inhibitor. CONCLUSION: An unbiased proteomic approach identified PARP1 as upregulated in ALDH+, BCSC-enriched cells from various human BCLs, which may contribute to clinical resistance to PARP inhibitors.

  12. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida.

    Science.gov (United States)

    Zenoni, Sara; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Sanson, Andrea; de Groot, Peter; Sordo, Sara; Citterio, Sandra; Monti, Francesca; Pezzotti, Mario

    2011-08-01

    • Expansins are cell wall proteins required for cell enlargement and cell wall loosening during many developmental processes. The involvement of the Petunia hybrida expansin A1 (PhEXPA1) gene in cell expansion, the control of organ size and cell wall polysaccharide composition was investigated by overexpressing PhEXPA1 in petunia plants. • PhEXPA1 promoter activity was evaluated using a promoter-GUS assay and the protein's subcellular localization was established by expressing a PhEXPA1-GFP fusion protein. PhEXPA1 was overexpressed in transgenic plants using the cauliflower mosaic virus (CaMV) 35S promoter. Fourier transform infrared (FTIR) and chemical analysis were used for the quantitative analysis of cell wall polymers. • The GUS and GFP assays demonstrated that PhEXPA1 is present in the cell walls of expanding tissues. The constitutive overexpression of PhEXPA1 significantly affected expansin activity and organ size, leading to changes in the architecture of petunia plants by initiating premature axillary meristem outgrowth. Moreover, a significant change in cell wall polymer composition in the petal limbs of transgenic plants was observed. • These results support a role for expansins in the determination of organ shape, in lateral branching, and in the variation of cell wall polymer composition, probably reflecting a complex role in cell wall metabolism. PMID:21534969

  13. Alteration of the Metabolome Profile in Endothelial Cells by Overexpression of miR-143/145.

    Science.gov (United States)

    Wang, Wenshuo; Yang, Ye; Wang, Yiqing; Pang, Liewen; Huang, Jiechun; Tao, Hongyue; Sun, Xiaotian; Liu, Chen

    2016-03-01

    Communication between endothelial cells (ECs) and smooth muscle cells (SMCs) via miR-143/145 clusters is vital to vascular stability. Previous research demonstrates that miR-143/145 released from ECs can regulate SMC proliferation and migration. In addition, a recent study has found that SMCs also have the capability of manipulating EC function via miR-143/145. In the present study, we artificially increased the expression of miR-143/145 in ECs, to mimic a similar change caused by miR-143/145 released by SMCs, and applied untargeted metabolomics analysis, aimed at investigating the consequential effect of miR-143/145 overexpression. Our results showed that miR-143/145 overexpression alters the levels of metabolites involved in energy production, DNA methylation, and oxidative stress. These changed metabolites indicate that metabolic pathways, such as the SAM cycle and TCA cycle, exhibit significant differences from the norm with miR-143/145 overexpression. PMID:26597530

  14. Bioresorbable polyelectrolytes for smuggling drugs into cells.

    Science.gov (United States)

    Jaganathan, Sripriya

    2016-06-01

    There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems. PMID:25961363

  15. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  16. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  17. Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE

    International Nuclear Information System (INIS)

    The fibroblast growth factor receptor (FGFR)2 gene has been shown to be amplified in 5-10% of breast cancer patients. A breast cancer cell line developed in our laboratory, SUM-52PE, was shown to have a 12-fold amplification of the FGFR2 gene, and FGFR2 message was found to be overexpressed 40-fold in SUM-52PE cells as compared with normal human mammary epithelial (HME) cells. Both human breast cancer (HBC) cell lines and HME cells expressed two FGFR2 isoforms, whereas SUM-52PE cells overexpressed those two isoforms, as well as several unique FGFR2 polypeptides. SUM-52PE cells expressed exclusively FGFR2-IIIb isoforms, which are high-affinity receptors for fibroblast growth factor (FGF)-1 and FGF-7. Differences were identified in the expression of the extracellular Ig-like domains, acid box and carboxyl termini, and several variants not previously reported were isolated from these cells. The FGFR family of receptor tyrosine kinases includes four members, all of which are highly alternatively spliced and glycosylated. For FGFR2, alternative splicing of the second half of the third Ig-like domain, involving exons IIIb and IIIc, is a mutually exclusive choice that affects ligand binding specificity and affinity [1,2,3]. It appears that the second half of the third Ig-like domain can dictate high affinity for FGF-2 or keratinocyte growth factor (KGF), whereas affinity for FGF-1 appears to remain the same [3]. Alternative splicing of the carboxyl terminus has been shown to involve at least two different exons that can produce at least three different variants. The C1-type and C2-type carboxyl termini are encoded by the same exon, and have two different splice acceptor sites, whereas the C3-type carboxyl terminus is encoded by a separate exon [4]. The biologic significance of the C1 carboxyl terminus, as compared with the shorter C3 variant found primarily in tumorigenic samples, has been studied in NIH3T3 transfection assays, in which C3 variants were able to produce

  18. HOXB7 mRNA is overexpressed in pancreatic ductal adenocarcinomas and its knockdown induces cell cycle arrest and apoptosis

    International Nuclear Information System (INIS)

    Human homeobox genes encode nuclear proteins that act as transcription factors involved in the control of differentiation and proliferation. Currently, the role of these genes in development and tumor progression has been extensively studied. Recently, increased expression of HOXB7 homeobox gene (HOXB7) in pancreatic ductal adenocarcinomas (PDAC) was shown to correlate with an invasive phenotype, lymph node metastasis and worse survival outcomes, but no influence on cell proliferation or viability was detected. In the present study, the effects arising from the knockdown of HOXB7 in PDAC cell lines was investigated. Real time quantitative PCR (qRT-PCR) (Taqman) was employed to assess HOXB7 mRNA expression in 29 PDAC, 6 metastatic tissues, 24 peritumoral tissues and two PDAC cell lines. siRNA was used to knockdown HOXB7 mRNA in the cell lines and its consequences on apoptosis rate and cell proliferation were measured by flow cytometry and MTT assay respectively. Overexpression of HOXB7 mRNA was observed in the tumoral tissues and in the cell lines MIA PaCa-2 and Capan-1. HOXB7 knockdown elicited (1) an increase in the expression of the pro-apoptotic proteins BAX and BAD in both cell lines; (2) a decrease in the expression of the anti-apoptotic protein BCL-2 and in cyclin D1 and an increase in the number of apoptotic cells in the MIA PaCa-2 cell line; (3) accumulation of cell in sub-G1 phase in both cell lines; (4) the modulation of several biological processes, especially in MIA PaCa-2, such as proteasomal ubiquitin-dependent catabolic process and cell cycle. The present study confirms the overexpression of HOXB7 mRNA expression in PDAC and demonstrates that decreasing its protein level by siRNA could significantly increase apoptosis and modulate several biological processes. HOXB7 might be a promising target for future therapies

  19. Molecular cloning and cold shock induced overexpression of the DNA encoding phor sensor domain from Mycobacterium tuberculosis as a target molecule for novel anti-tubercular drugs

    Science.gov (United States)

    Langi, Gladys Emmanuella Putri; Moeis, Maelita R.; Ihsanawati, Giri-Rachman, Ernawati Arifin

    2014-03-01

    Mycobacterium tuberculosis (Mtb), the sole cause of Tuberculosis (TB), is still a major global problem. The discovery of new anti-tubercular drugs is needed to face the increasing TB cases, especially to prevent the increase of cases with resistant Mtb. A potential novel drug target is the Mtb PhoR sensor domain protein which is the histidine kinase extracellular domain for receiving environmental signals. This protein is the initial part of the two-component system PhoR-PhoP regulating 114 genes related to the virulence of Mtb. In this study, the gene encoding PhoR sensor domain (SensPhoR) was subcloned from pGEM-T SensPhoR from the previous study (Suwanto, 2012) to pColdII. The construct pColdII SensPhoR was confirmed through restriction analysis and sequencing. Using the construct, SensPhoR was overexpressed at 15°C using Escherichia coli BL21 (DE3). Low temperature was chosen because according to the solubility prediction program of recombinant proteins from The University of Oklahama, the PhoR sensor domain has a chance of 79.8% to be expressed as insoluble proteins in Escherichia coli's (E. coli) cytoplasm. This prediction is also supported by other similar programs: PROSO and PROSO II. The SDS PAGE result indicated that the PhoR sensor domain recombinant protein was overexpressed. For future studies, this protein will be purified and used for structure analysis which can be used to find potential drugs through rational drug design.

  20. Amifostine-conjugated pH-sensitive calcium phosphate-covered magnetic-amphiphilic gelatin nanoparticles for controlled intracellular dual drug release for dual-targeting in HER-2-overexpressing breast cancer.

    Science.gov (United States)

    Li, Wei-Ming; Chiang, Chih-Sheng; Huang, Wei-Chen; Su, Chia-Wei; Chiang, Min-Yu; Chen, Jian-Yi; Chen, San-Yuan

    2015-12-28

    We developed a surfactant-free method utilizing amifostine to stably link a targeting ligand (Herceptin) to amphiphilic gelatin (AG)-iron oxide@calcium phosphate (CaP) nanoparticles with hydrophobic curcumin (CUR) and hydrophilic doxorubicin (DOX) encapsulated in the AG core and CaP shell (AGIO@CaP-CD), respectively. This multi-functional nanoparticle system has a pH-sensitive CaP shell and degradable amphiphilic gelatin (AG) core, which enables controllable sequential release of the two drugs. The dual-targeting system of AGIO@CaP-CD (HER-AGIO@CaP-CD) with a bioligand and magnetic targeting resulted in significantly elevated cellular uptake in HER2-overexpressing SKBr3 cells and more efficacious therapy than delivery of targeting ligand alone due to the synergistic cell multi-drug resistance/apoptosis-inducing effect of the CUR and DOX combination. This nanoparticle combined with Herceptin and iron oxide nanoparticles not only provided a dual-targeting functionality, but also encapsulated CUR and DOX as a dual-drug delivery system for the combination therapy. This study further demonstrated that the therapeutic efficacy of this dual-targeting co-delivery system can be improved by modifying the application duration of magnetic targeting, which makes this combination therapy system a powerful new tool for in vitro/in vivo cancer therapy, especially for HER2-positive cancers. PMID:26478017

  1. Overexpression of Cell Surface Cytokeratin 8 in Multidrug-Resistant MCF-7/MX Cells Enhances Cell Adhesion to the Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2008-11-01

    Full Text Available Accumulating evidence suggests that multiple complex mechanisms may be involved, simultaneously or complementarily, in the emergence and development of multidrug resistance (MDR in various cancers. Cell adhesion-mediated MDR is one such mechanism. In the present study, we initially observed increased cell adhesion to extracellular matrix proteins by the MDR human breast tumor cell line MCF-7/MX compared to its parental cells. We then used a strategy that combined antibody-based screening technique and mass spectrometry-based proteomics to identify membrane proteins that contribute to the enhanced adhesion of MCF-7/MX cells. Using MCF-7/MX cells as immunogen, we isolated a mouse monoclonal antibody, 9C6, that preferentially reacts with MCF-7/MX cells over the parental MCF-7 cells. The molecular target of 9C6 was identified as cytokeratin 8 (CK8, which was found to be overexpressed on the cell surface of MCF-7/MX cells. We further observed that down-regulation of cell surface levels of CK8 through siRNA transfection significantly inhibited MCF-7/MX cell adhesion to fibronectin and vitronectin. In addition, anti-CK8 siRNA partially reversed the MDR phenotype of MCF-7/MX cells. Taken together, our results suggest that alterations in the expression level and cellular localization of CK8 may play a significant role in enhancing the cellular adhesion of MDR MCF-7/MX cells.

  2. Prolonged survival in pancreatic cancer patients with increased regucalcin gene expression: Overexpression of regucalcin suppresses the proliferation in human pancreatic cancer MIA PaCa-2 cells in vitro.

    Science.gov (United States)

    Yamaguchi, Masayoshi; Osuka, Satoru; Weitzmann, M Neale; El-Rayes, Bassel F; Shoji, Mamoru; Murata, Tomiyasu

    2016-05-01

    Approximately 90% of all pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is a highly aggressive malignancy and is one of the deadliest. This poor clinical outcome is due to the prominent resistance of pancreatic cancer to drug and radiation therapies. Regucalcin plays a pivotal role as a suppressor protein in signal transduction in various types of cells including tumor tissues. We demonstrated that the prolonged survival is induced in PDAC patients with increased regucalcin gene expression using a dataset of PDAC obtained from GEO database (GSE17891) together with the clinical annotation data file. Moreover, overexpression of regucalcin with full length was demonstrated to suppress the proliferation, cell death and migration in human pancreatic cancer MIA PaCa-2 (K-ras mutated) cells that possess resistance to drug and radiation therapies. Suppressive effects of regucalcin on cell proliferation and death were not seen in the cells overexpressed with regucalcin cDNA alternatively spliced variants (deleted exon 4 or deleted exon 4 and 5). Regucalcin was suggested to induce G1 and G2/M phase cell cycle arrest in MIA PaCa-2 cells. Suppressive effects of regucalcin on cell proliferation were independent of cell death. Overexpression of regucalcin was found to suppress signaling pathways including Akt, MAP kinase and SAPK/JNK, to increase the protein levels of p53, a tumor suppresser, and to decrease K-ras, c-fos and c-jun, a oncogene, by suppressing signaling pathways that are related to signaling of K-ras. Regucalcin may play a potential role as a suppressor protein in human pancreatic cancer. PMID:26935290

  3. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction.

    Science.gov (United States)

    Zhao, Liyan; Liu, Xiaolin; Zhang, Yuelin; Liang, Xiaoting; Ding, Yue; Xu, Yan; Fang, Zhen; Zhang, Fengxiang

    2016-05-15

    Poor cell survival post transplantation compromises the therapeutic benefits of mesenchymal stem cells (MSCs) in myocardial infarction (MI). Hepatocyte growth factor (HGF) is an important cytokine for angiogenesis, anti-inflammation and anti-apoptosis. This study aimed to evaluate the cardioprotective effects of MSCs overexpressing HGF in a mouse model of MI. The apoptosis of umbilical cord-derived MSCs (UC-MSCs) and HGF-UC-MSCs under normoxic and hypoxic conditions was detected. The conditioned medium (CdM) of UC-MSCs and HGF-UC-MSCs under a hypoxic condition was harvested and its protective effect on neonatal cardiomyocytes (NCMs) exposed to a hypoxic challenge was examined. UC-MSCs and HGF-UC-MSCs were transplanted into the peri-infarct region in mice following MI and heart function assessed 4 weeks post transplantation. The apoptosis of HGF-UC-MSCs under hypoxic conditions was markedly decreased compared with that of UC-MSCs. NCMs treated with HGF-UC-MSC hypoxic CdM (HGF-UC-MSCs-hy-CdM) exhibited less cell apoptosis in response to hypoxic challenge than those treated with UC-MSC hypoxic CdM (UC-MSCs-hy-CdM). HGF-UC-MSCs-hy-CdM released the inhibited p-Akt and lowered the enhanced ratio of Bax/Bcl-2 induced by hypoxia in the NCMs. HGF-UC-MSCs-hy-CdM expressed higher levels of HGF, EGF, bFGF and VEGF than UC-MSCs-hy-CdM. Transplantation of HGF-UC-MSCs or UC-MSCs greatly improved heart function in the mouse model of MI. Compared with UC-MSCs, transplantation of HGF-UC-MSCs was associated with less cardiomyocyte apoptosis, enhanced angiogenesis and increased proliferation of cardiomyocytes. This study may provide a novel therapeutic strategy for MSC-based therapy in cardiovascular disease. PMID:27025401

  4. CYP3A4 overexpression enhances apoptosis induced by anticancer agent imidazoacridinone C-1311, but does not change the metabolism of C-1311 in CHO cells

    OpenAIRE

    Pawłowska, Monika; Augustin, Ewa; Mazerska, Zofia

    2013-01-01

    Aim: To examine whether CYP3A4 overexpression influences the metabolism of anticancer agent imidazoacridinone C-1311 in CHO cells and the responses of the cells to C-1311. Methods: Wild type CHO cells (CHO-WT), CHO cells overexpressing cytochrome P450 reductase (CPR) [CHO-HR] and CHO cells coexpressing CPR and CYP3A4 (CHO-HR-3A4) were used. Metabolic transformation of C-1311 and CYP3A4 activity were measured using RP-HPLC. Flow cytometry analyses were used to examine cell cycle, caspase-3 act...

  5. Cloning of smac gene and its overexpression effects on radiosensitivity of HeLa cells to γ-rays

    International Nuclear Information System (INIS)

    Objective: To clone smac gene and construct eukaryocytic expression vector pcDNA3.1/ smac. The smac gene was transfected into HeLa cells to explore the effects of over-expression of extrinsic smac gene on radiosensitivity to γ-rays of HeLa cells. Methods: The full-length smac gene was amplified from total RNA of HeLa cells by RTPCR. The RTPCR product was ligated with the vector pcDNA3.1 and sequenced. The correct pcDNA3.1/smac was transfected into HeLa cells. The expression of smac gene was tested by RTPCR and Western blot. The cellular growth inhibition rates were evaluated by MTT 48 horns after irradiation with different doses of γ-rays. Results: Recombinant eukaryocytic expression vector pcDNA3.1/smac was successfully constructed. RTPCR and Western blot results indicated that the expression of smac gene of HeLa/smac cells was significantly enhanced compared with the expression of smac gene of HeLa/pcDNA3.1 and HeLa cells. 48 hours after different doses of γ-ray irradiation was significantly higher in pcDNA3.1/smac transfected HeLa/smac cells than those of non-transfected HeLa cells or pcDNA3.1 transfected HeLa/pcDNA3.1 cells, inhabitation rates were 38.85%, 17.64% and 20.32%, respectively. Conclusions: smac gene was successfully cloned. Extrinsic smac gene over-expression could significantly enhance radiosensitivity to γ-ray of HeLa cells, which would herald a new approach to improve radiosensitivity of cervical cancer. (authors)

  6. Consequences of over-expression of rat Scavenger Receptor, SR-BI, in an adrenal cell model

    Directory of Open Access Journals (Sweden)

    Azhar Salman

    2006-12-01

    Full Text Available Abstract Background The plasma membrane scavenger receptor, SR-BI, mediates the 'selective uptake' process by which cholesteryl esters (CE from exogenously supplied HDL are taken up by target cells. Recent work suggests that dimer and higher order oligomeric forms of the SR-BI protein are important to this process. SR-BI has been shown to be particularly associated with microvilli and microvillar channels found at the cell surface of steroidogenic cells, and a study with the hormone stimulated adrenal gland has shown impressive changes in the size and complexity of the microvillar compartment as the mass of CE uptake (and accompanying steroidogenesis fluctuates. In the present study, we examine a cell line in which we overexpress the SR-BI protein to determine if morphological, biochemical and functional events associated with SR-BI in a controlled cell system are similar to those observed in the intact mammalian adrenal which is responsive to systemic factors. Methods Y1-BS1 mouse adrenocortical cells were transiently transfected using rat SR-BI-pcDNA6-V5-His, rat SR-BI-pcDNA6-cMyc-His or control pcDNA6-V5-His vector construct using a CaPO4 precipitation technique. Twenty four hours after transfection, cells were treated with, or without, Bt2cAMP, and SR-BI expression, CE uptake, and steroidogenesis was measured. SR-BI dimerization and cell surface architectural changes were assessed using immunoelectron microscopic techniques. Results Overexpression of the scavenger receptor protein, SR-BI, in Y1-BS1 cells results in major alterations in cell surface architecture designed to increase uptake of HDL supplied-CEs. Changes include 1 the formation of crater-like erosions of the surface with multiple double membraned channel structures lining the craters, and 2 dimerized formations of SR-BI lining the newly formed craters and associated double membraned channels. Conclusion These data show that overexpression of the scavenger receptor protein, SR

  7. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor

    Directory of Open Access Journals (Sweden)

    Joos Ulrich

    2005-07-01

    Full Text Available Abstract Background Hypoxia-inducible factor 1 (HIF-1 is a transcription factor, which plays a central role in biologic processes under hypoxic conditions, especially concerning tumour angiogenesis. HIF-1α is the relevant, oxygen-dependent subunit and its overexpression has been associated with a poor prognosis in a variety of malignant tumours. Therefore, HIF-1α expression in early stage oral carcinomas was evaluated in relation to established clinico-pathological features in order to determine its value as a prognostic marker. Methods 85 patients with histologically proven surgically treated T1/2 squamous cell carcinoma (SCC of the oral floor were eligible for the study. Tumor specimens were investigated by means of tissue micro arrays (TMAs and immunohistochemistry for the expression of HIF-1. Correlations between clinical features and the expression of HIF-1 were evaluated by Kaplan-Meier curves, log-rank tests and multivariate Cox regression analysis. Results HIF-1α was frequently overexpressed in a probably non-hypoxia related fashion. The expression of HIF-1α was related with a significantly improved 5-year survival rate (p Conclusion HIF-1α overexpression is an indicator of favourable prognosis in T1 and T2 SCC of the oral floor. Node negative patients lacking HIF-1α expression may therefore be considered for adjuvant radiotherapy.

  8. NEU overexpression in the furan rat model of cholangiocarcinogenesis compared with biliary ductal cell hyperplasia.

    OpenAIRE

    Sirica, A E; Radaeva, S.; Caran, N.

    1997-01-01

    Immunohistochemical studies have suggested that the tyrosine kinase growth factor receptor p185neu is overexpressed in a high percentage of human cholangiocarcinomas. To establish the specificity and temporal relationship between the expression of this receptor in cholangiocarcinogenesis, we investigated c-neu expression in precancerous cholangiofibrotic tissue and subsequently derived primary and transplantable cholangiocarcinomas originated in the livers of furan-treated rats. Proliferated ...

  9. Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2

    Directory of Open Access Journals (Sweden)

    Quadros Edward V

    2009-05-01

    Full Text Available Abstract Background Recent evidence suggests that several human cancers are capable of uncoupling of mitochondrial ATP generation in the presence of intact tricarboxylic acid (TCA enzymes. The goal of the current study was to test the hypothesis that ketone bodies can inhibit cell growth in aggressive cancers and that expression of uncoupling protein 2 is a contributing factor. The proposed mechanism involves inhibition of glycolytic ATP production via a Randle-like cycle while increased uncoupling renders cancers unable to produce compensatory ATP from respiration. Methods Seven aggressive human cancer cell lines, and three control fibroblast lines were grown in vitro in either 10 mM glucose medium (GM, or in glucose plus 10 mM acetoacetate [G+AcA]. The cells were assayed for cell growth, ATP production and expression of UCP2. Results There was a high correlation of cell growth with ATP concentration (r = 0.948 in a continuum across all cell lines. Controls demonstrated normal cell growth and ATP with the lowest density of mitochondrial UCP2 staining while all cancer lines demonstrated proportionally inhibited growth and ATP, and over-expression of UCP2 (p Conclusion Seven human cancer cell lines grown in glucose plus acetoacetate medium showed tightly coupled reduction of growth and ATP concentration. The findings were not observed in control fibroblasts. The observed over-expression of UCP2 in cancer lines, but not in controls, provides a plausible molecular mechanism by which acetoacetate spares normal cells but suppresses growth in cancer lines. The results bear on the hypothesized potential for ketogenic diets as therapeutic strategies.

  10. PIK3CA gene mutations and overexpression: implications for prognostic biomarker and therapeutic target in Chinese esophageal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available To evaluate PIK3CA gene mutations and PIK3CA expression status in Chinese esophageal squamous cell carcinoma (ESCC patients, and their correlation with clinicopathological characteristics and clinical outcomes.Direct sequencing was applied to investigate mutations in exons 9 and 20 of PIK3CA in 406 Chinese ESCC patients. PIK3CA expression was evaluated using immunohistochemistry analysis. The associations of PIK3CA gene mutations and PIK3CA expression with clinicopathological characteristics and clinical outcome were examined.Thirty somatic point mutations (30/406, 7.4% were identified in exon 9 whereas no mutations were detected in exon 20. PIK3CA mutations were not correlated with clinicopathological characteristics or clinical outcomes. However in the ESCC patients with family cancer history, PIK3CA mutations were independently correlated with worse overall survival (multivariate hazard ratio (HR = 10.493, 95% CI: 2.432-45.267, P = 0.002. Compared to normal esophageal tissue, PIK3CA was significantly overexpressed in cancer tissue (P<0.001. PIK3CA overexpression was independently associated with higher risk of local recurrence (multivariate HR  = 1.435, 95% CI: 1.040-1.979, P = 0.028. In female ESCC patients, PIK3CA overexpression was independently correlated with worse overall survival (multivariate HR  = 2.341, 95% CI: 1.073-5.108, P = 0.033.Our results suggest PIK3CA gene mutation and overexpression could act as biomarkers for individualized molecular targeted therapy for Chinese ESCC patients.

  11. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells.

    Science.gov (United States)

    Aires, Antonio; Ocampo, Sandra M; Simões, Bruno M; Josefa Rodríguez, María; Cadenas, Jael F; Couleaud, Pierre; Spence, Katherine; Latorre, Alfonso; Miranda, Rodolfo; Somoza, Álvaro; Clarke, Robert B; Carrascosa, José L; Cortajarena, Aitziber L

    2016-02-12

    Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully  apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro. PMID:26754042

  12. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells

    Science.gov (United States)

    Aires, Antonio; Ocampo, Sandra M.; Simões, Bruno M.; Josefa Rodríguez, María; Cadenas, Jael F.; Couleaud, Pierre; Spence, Katherine; Latorre, Alfonso; Miranda, Rodolfo; Somoza, Álvaro; Clarke, Robert B.; Carrascosa, José L.; Cortajarena, Aitziber L.

    2016-02-01

    Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro.

  13. Arsenic trioxide inhibits tumor cell growth in malignant rhabdoid tumors in vitro and in vivo by targeting overexpressed Gli1.

    Science.gov (United States)

    Kerl, Kornelius; Moreno, Natalia; Holsten, Till; Ahlfeld, Julia; Mertins, Julius; Hotfilder, Marc; Kool, Marcel; Bartelheim, Kerstin; Schleicher, Sabine; Handgretinger, Rupert; Schüller, Ulrich; Meisterernst, Michael; Frühwald, Michael C

    2014-08-15

    Rhabdoid tumors are highly aggressive tumors occurring in infants and very young children. Despite multimodal and intensive therapy prognosis remains poor. Molecular analyses have uncovered several deregulated pathways, among them the CDK4/6-Rb-, the WNT- and the Sonic hedgehog (SHH) pathways. The SHH pathway is activated in rhabdoid tumors by GLI1 overexpression. Here, we demonstrate that arsenic trioxide (ATO) inhibits tumor cell growth of malignant rhabdoid tumors in vitro and in a mouse xenograft model by suppressing Gli1. Our data uncover ATO as a promising therapeutic approach to improve prognosis for rhabdoid tumor patients. PMID:24420698

  14. Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Kenneth E. Bernstein

    2016-03-01

    Full Text Available Angiotensin-converting enzyme (ACE converts angiotensin I to the vasoconstrictor angiotensin II and thereby plays an important role in blood pressure control. However, ACE is relatively non-specific in its substrate specificity and cleaves many other peptides. Recent analysis of mice overexpressing ACE in monocytes, macrophages, and other myelomonocytic cells shows that these animals have a marked increase in resistance to experimental melanoma and to infection by Listeria monocytogenes or methicillin-resistant Staphylococcus aureus (MRSA. Several other measures of immune responsiveness, including antibody production, are enhanced in these animals. These studies complement a variety of studies indicating an important role of ACE in the immune response.

  15. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    International Nuclear Information System (INIS)

    The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

  16. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bin [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Hu, Zhiqiang, E-mail: zhiqhutg@126.com [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei [Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050 (China)

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  17. Overexpression of dishevelled-1 attenuates wortmannin-induced hyperphosphorylation of cytoskeletal proteins in N2a cell

    Institute of Scientific and Technical Information of China (English)

    Hai-hong WANG; Ai-hong ZHANG; Ling-qiang ZHU; Qun WANG; Jian-zhi WANG

    2005-01-01

    Aim: To investigate the effect of dishevelled- 1 (DVL- 1) on wortmannin-induced Alzheimer-like hyperphosphorylation of cytoskeletal proteins in mouse neuroblastoma 2a (N2a) cells. Methods: Cultured N2a cells were transitorily transfected with DVL-1 expression plasmid using LipofectamineTM 2000. Western blot and immunofluorescence microscopy were used to measure the phosphorylation of neurofilament and tau. Results: Level of phosphorylated neurofilament at SMI31 epitope and phosphorylated tau determined by PHF-1 was increased at 1 h and 3 h and back to normal at 6 h after wortmannin 1 μmol/L treatment. The highest level of phosphorylated neurofilament and phosphorylated tau was seen at 1 h and 3 h after wortmannin treatment, respectively. When DVL- 1 protein was overexpressed,the hyperphosphorylation of neurofilament at SMI31 and SMI32 epitopes and tau at PHF- 1 (Ser-396/404), M4 (Thr-231/Ser-235), and Tau- 1 (Ser- 198/199/202) epitopes was attenuated. Conclusion: Overexpression of mouse DVL-1 protein inhibits wortmannin-induced hyperphosphorylation of neurofilament and tau in N2a cells.

  18. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    International Nuclear Information System (INIS)

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management

  19. Expression of P-glycoprotein-mediated drug resistance in CHO cells surviving a single X-ray dose of 30 Gy

    International Nuclear Information System (INIS)

    The authors reported previously that Chinese hamster ovary (CHO) cells surviving exposure to repeated doses of 9 Gy of X-irradiation in vitro expressed a multiple drug resistance phenotype characterized by cross-resistance to epipodophyllotoxins and to Vinca alkaloids, and by P-glycoprotein (Pgp) overexpression. They now show that exposure of these CHO cells to a single 30-Gy X-ray dose similarly resulted in the survivors expressing resistance to vincristine and to etoposide and overexpressing Pgp. In agreement with data obtained on cells which received repeated X-ray exposures, this Pgp overexpression occurred in the absence of any significant elevation of Pgp mRNA. However, the reduced ability to accumulate rhodamine 123 identified in these sublines, and the ability of verapamil to reverse this accumulation defect, implies that the Pgp which was overexpressed was functional. (author)

  20. RhoC GTPase Overexpression Modulates Induction of Angiogenic Factors in Breast Cells

    OpenAIRE

    van Golen, Kenneth L; Zhi-Fen Wu; XiaoTan Qiao; LiWei Bao; Merajver, Sofia D

    2000-01-01

    Inflammatory breast cancer (IBC) is a distinct and aggressive form of locally advanced breast cancer. IBC is highly angiogenic, invasive, and metastatic at its inception. Previously, we identified specific genetic alterations of IBC that contribute to this highly invasive phenotype. RhoC GTPase was overexpressed in 90% of archival IBC tumor samples, but not in stage-matched, non-IBC tumors. To study the role of RhoC GTPase in contributing to an IBC-like phenotype, we generated stable transfec...

  1. RhoC GTPase Overexpression Modulates Induction of Angiogenic Factors in Breast Cells1

    OpenAIRE

    van Golen, Kenneth L; Wu, Zhi-fen; Qiao, XiaoTan; Bao, Liwei; Merajver, Sofia D

    2000-01-01

    Inflammatory breast cancer (IBC) is a distinct and aggressive form of locally advanced breast cancer. IBC is highly angiogenic, invasive, and metastatic at its inception. Previously, we identified specific genetic alterations of IBC that contribute to this highly invasive phenotype. RhoC GTPase was overexpressed in 90% of archival IBC tumor samples, but not in stage-matched, non-IBC tumors. To study the role of RhoC GTPase in contributing to an IBC-like phenotype, we generated stable transfec...

  2. Development and characterization of multifunctional nanoparticles for drug delivery to cancer cells

    Science.gov (United States)

    Nahire, Rahul Rajaram

    Lipid and polymeric nanoparticles, although proven to be effective drug delivery systems compared to free drugs, have shown considerable limitations pertaining to their uptake and release at tumor sites. Spatial and temporal control over the delivery of anticancer drugs has always been challenge to drug delivery scientists. Here, we have developed and characterized multifunctional nanoparticles (liposomes and polymersomes) which are targeted specifically to cancer cells, and release their contents with tumor specific internal triggers. To enable these nanoparticles to be tracked in blood circulation, we have imparted them with echogenic characteristic. Echogenicity of nanoparticles is evaluated using ultrasound scattering and imaging experiments. Nanoparticles demonstrated effective release with internal triggers such as elevated levels of MMP-9 enzyme found in the extracellular matrix of tumor cells, decreased pH of lysosome, and differential concentration of reducing agents in cytosol of cancer cells. We have also successfully demonstrated the sensitivity of these particles towards ultrasound to further enhance the release with internal triggers. To ensure the selective uptake by folate receptor- overexpressing cancer cells, we decorated these nanoparticles with folic acid on their surface. Fluorescence microscopic images showed significantly higher uptake of folate-targeted nanoparticles by MCF-7 (breast cancer) and PANC-1 (pancreatic cancer) cells compared to particles without any targeting ligand on their surface. To demonstrate the effectiveness of these nanoparticles to carry the drugs inside and kill cancer cells, we encapsulated doxorubicin and/or gemcitabine employing the pH gradient method. Drug loaded nanoparticles showed significantly higher killing of the cancer cells compared to their non-targeted counterparts and free drugs. With further development, these nanoparticles certainly have potential to be used as a multifunctional nanocarriers for image

  3. Reg3g overexpression promotes β cell regeneration and induces immune tolerance in nonobese-diabetic mouse model.

    Science.gov (United States)

    Xia, Fei; Cao, Hui; Du, Jiao; Liu, Xiulan; Liu, Yang; Xiang, Ming

    2016-06-01

    The regenerating islet-derived gene was first isolated in regenerated pancreas tissues, greatly contributing to β cell regeneration. It is an anti-inflammatory in response to cellular stress. This encouraged us to investigate the exact role of a novel member of Reg family, regenerating islet-derived gene γ, in type 1 diabetes of nonobese-diabetic mice. For this, Reg3g gene was overexpressed in pancreatic islets, and conferred beneficial effects on β cell regeneration through activating the Janus kinase 2/signal transducer and activator of transcription 3/nuclear factor κB signaling pathway. Lentiviral vector-encoding regenerating islet-derived gene γ treatment also decreased lymphocyte infiltrates of the intra-islet and peri-islet by inducing both differentiation of regulatory T cell and immature dendritic cells of tolerogenic properties, which attenuated autoimmunity. This treatment further contributed to rebalanced levels of type 1/2 helper T cell cytokines and elevated α1-antitrypsin levels in the serum. These results were not observed in phosphate-buffered saline-treated mice or in lentivirus-control mice. We have shown, for the first time, to our knowledge, that regenerating islet-derived gene γ promotes β cell regeneration and preserves β cells from autoimmunity damage by increasing regulatory T cell differentiation and inducing tolerated dendritic cells. This regenerating islet-derived gene γ infusion could probably be developed into an optimal gene therapy for the prevention and reversal of type 1 diabetes. PMID:26667474

  4. Adenovirus E2F1 Overexpression Sensitizes LNCaP and PC3 Prostate Tumor Cells to Radiation In Vivo

    International Nuclear Information System (INIS)

    Purpose: We previously showed that E2F1 overexpression radiosensitizes prostate cancer cells in vitro. Here, we demonstrate the radiosensitization efficacy of adenovirus (Ad)-E2F1 infection in growing (orthotopic) LNCaP and (subcutaneous) PC3 nude mice xenograft tumors. Methods and Materials: Ad-E2F1 was injected intratumorally in LNCaP (3 x 108 plaque-forming units [PFU]) and PC3 (5 x 108 PFU) tumors treated with or without radiation. LNCaP tumor volumes (TV) were measured by magnetic resonance imaging, caliper were used to measure PC3 tumors, and serum prostate-specific antigen (PSA) levels were determined by enzyme-linked immunosorbent assay. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, and key proteins involved in cell death signaling were analyzed by Western blotting. Results: Intracellular overexpression of Ad-E2F1 had a significant effect on the regression of TV and reduction of PSA levels relative to that of adenoviral luciferase (Ad-Luc)-infected control. The in vivo regressing effect of Ad-E2F1 on LNCaP tumor growth was significant (PSA, 34 ng/ml; TV, 142 mm3) compared to that of Ad-Luc control (PSA, 59 ng/ml; TV, 218 mm3; p 3 to Ad-Luc+RT/PSA, 42 ng/ml, and TV, 174 mm3, respectively; p <0.05). For PC3 tumors, the greatest effect was observed with Ad-E2F1 infection alone; there was little or no effect when radiotherapy (RT) was combined. However, addition of RT enhanced the level of in situ apoptosis in PC3 tumors. Molecularly, addition of Ad-E2F1 in a combination treatment abrogated radiation-induced BCL-2 protein expression and was associated with an increase in activated BAX, and together they caused a potent radiosensitizing effect, irrespective of p53 and androgen receptor functional status. Conclusions: We show here for the first time that ectopic overexpression of E2F1 in vivo, using an adenoviral vector, significantly inhibits orthotopic p53 wild-type LNCaP tumors and subcutaneous p53-null

  5. Overexpression of heat-shock protein 20 in rat heart myogenic cells confers protection against simulated ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Yan-hui ZHU; Xian WANG

    2005-01-01

    Aim: To explore whether overexpression of the small heat shock protein HSP20 in rat cardiomyocytes protects against simulated ischemia/reperfusion (SI/R) injury.Methods: Recombinant adenovirus expressing HSP20 was used to infect rat H9c2cardiomyocytes at high efficiency, as assessed by green fluorescent protein. H9c2cells were subjected to SI/R stress; survival was estimated through assessment of lactate dehydrogenase and cell apoptosis through caspase-3 activity. Results:Overexpression of HSP20 decreased lactate dehydrogenase release by 21.5% and caspase-3 activity by 58.8%. Pretreatment with the protein kinase C inhibitor Ro31-8220 (0.1 μmol/L) for 30 min before SI/R canceled the protective effect of HSP20.The selective mitochondrial K+ATP channel inhibitor 5-hydroxydecanoate ( 100 μmol/L)had a similar effect. However, the non-selective K+ATP channel inhibitor glibenclamide (100 μmol/L) had no significant effect. Conclusion: These data indicate that the protective effect of HSP20 in vitro is primarily due to reduced necrotic and apoptotic death of cardiomyocytes, possibly via the protein kinase C/mitochondrial K+ATP pathway.

  6. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis

    International Nuclear Information System (INIS)

    While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix remodeling. Our findings

  7. Polymer-DNA Nanoparticle-Induced CXCR4 Overexpression Improves Stem Cell Engraftment and Tissue Regeneration in a Mouse Hindlimb Ischemia Model

    Science.gov (United States)

    Deveza, Lorenzo; Choi, Jeffrey; Lee, Jerry; Huang, Ngan; Cooke, John; Yang, Fan

    2016-01-01

    Peripheral arterial disease affects nearly 202 million individuals worldwide, sometimes leading to non-healing ulcers or limb amputations in severe cases. Genetically modified stem cells offer potential advantages for therapeutically inducing angiogenesis via augmented paracrine release mechanisms and tuned dynamic responses to environmental stimuli at disease sites. Here, we report the application of nanoparticle-induced CXCR4-overexpressing stem cells in a mouse hindlimb ischemia model. We found that CXCR4 overexpression improved stem cell survival, modulated inflammation in situ, and accelerated blood reperfusion. These effects, unexpectedly, led to complete limb salvage and skeletal muscle repair, markedly outperforming the efficacy of the conventional angiogenic factor control, VEGF. Importantly, assessment of CXCR4-overexpressing stem cells in vitro revealed that CXCR4 overexpression induced changes in paracrine signaling of stem cells, promoting a therapeutically desirable pro-angiogenic and anti-inflammatory phenotype. These results suggest that nanoparticle-induced CXCR4 overexpression may promote favorable phenotypic changes and therapeutic efficacy of stem cells in response to the ischemic environment. PMID:27279910

  8. 15-Lipoxygenase-1 Production is Lost in Pancreatic Cancer and Overexpression of the Gene Inhibits Tumor Cell Growth

    Directory of Open Access Journals (Sweden)

    René Hennig

    2007-11-01

    Full Text Available Pancreatic cancer patients have an abysmal prognosis because of late diagnosis and lack of therapeutic options. Pancreatic intraepithelial neoplasias (PaniNs, the precursor lesions, are a potential target for chemoprevention. Targeting eicosanoid pathways is an obvious choice because 5-lipoxygenase (5-LOX has been suggested as a tumor promoter in pancreatic carcinogenesis. Here we provide evidence that 15-lipoxygenase-1 (15-LOX-1 expression and activity may exert antitumorigenic effects in pancreatic cancer. Reverse transcription- polymerase chain reaction (RTPCR and Western blot analysis showed absence or very weak expression of 15-LOX-1 in all pancreatic cancer cell lines tested. 15-LOX-1 was strongly stained in normal ductal cells, tubular complexes, and centroacinar cells, but no staining was seen in islets, cancer cells, PanlN lesions, or in tumor cells in lymph node metastases, indicating that 15-LOX-1 expression is lost during tumor development in human pancreas. Overexpression of 15-LOX-1 in pancreatic tumor cells or treatment with its arachidonic acid-derived metabolite resulted in decreased cell growth. These findings provide evidence that loss of 15-LOX-1 may play an important role in pancreatic carcinogenesis, possibly as a tumor suppressor gene. Thus, induction of 15-LOX-1 expression may be an attractive option for the prevention and treatment of pancreatic cancer.

  9. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor

    International Nuclear Information System (INIS)

    Hypoxia-inducible factor 1 (HIF-1) is a transcription factor, which plays a central role in biologic processes under hypoxic conditions, especially concerning tumour angiogenesis. HIF-1α is the relevant, oxygen-dependent subunit and its overexpression has been associated with a poor prognosis in a variety of malignant tumours. Therefore, HIF-1α expression in early stage oral carcinomas was evaluated in relation to established clinico-pathological features in order to determine its value as a prognostic marker. 85 patients with histologically proven surgically treated T1/2 squamous cell carcinoma (SCC) of the oral floor were eligible for the study. Tumor specimens were investigated by means of tissue micro arrays (TMAs) and immunohistochemistry for the expression of HIF-1. Correlations between clinical features and the expression of HIF-1 were evaluated by Kaplan-Meier curves, log-rank tests and multivariate Cox regression analysis. HIF-1α was frequently overexpressed in a probably non-hypoxia related fashion. The expression of HIF-1α was related with a significantly improved 5-year survival rate (p < 0.01) and a significantly increased disease free period (p = 0.01) independent from nodal status and tumour size. In primary node negative T1/T2 SCC of the oral floor, absence of HIF-1α expression specified a subgroup of high-risk patients (p < 0.05). HIF-1α overexpression is an indicator of favourable prognosis in T1 and T2 SCC of the oral floor. Node negative patients lacking HIF-1α expression may therefore be considered for adjuvant radiotherapy

  10. Adenovirus-mediated overexpression of liver carnitine palmitoyltransferase I in INS1E cells: effects on cell metabolism and insulin secretion.

    Science.gov (United States)

    Rubí, Blanca; Antinozzi, Peter A; Herrero, Laura; Ishihara, Hisamitsu; Asins, Guillermina; Serra, Dolors; Wollheim, Claes B; Maechler, Pierre; Hegardt, Fausto G

    2002-01-01

    Lipid metabolism in the beta-cell is critical for the regulation of insulin secretion. Pancreatic beta-cells chronically exposed to fatty acids show higher carnitine palmitoyltransferase I (CPT I) protein levels, higher palmitate oxidation rates and an altered insulin response to glucose. We examined the effect of increasing CPT I levels on insulin secretion in cultured beta-cells. We prepared a recombinant adenovirus containing the cDNA for the rat liver isoform of CPT I. The overexpression of CPT I in INS1E cells caused a more than a 5-fold increase in the levels of CPT I protein (detected by Western blotting), a 6-fold increase in the CPT activity, and an increase in fatty acid oxidation at 2.5 mM glucose (1.7-fold) and 15 mM glucose (3.1-fold). Insulin secretion was stimulated in control cells by 15 mM glucose or 30 mM KCl. INS1E cells overexpressing CPT I showed lower insulin secretion on stimulation with 15 mM glucose (-40%; P<0.05). This decrease depended on CPT I activity, since the presence of etomoxir, a specific inhibitor of CPT I, in the preincubation medium normalized the CPT I activity, the fatty-acid oxidation rate and the insulin secretion in response to glucose. Exogenous palmitate (0.25 mM) rescued glucose-stimulated insulin secretion (GSIS) in CPT I-overexpressing cells, indicating that the mechanism of impaired GSIS was through the depletion of a critical lipid. Depolarizing the cells with KCl or intermediary glucose concentrations (7.5 mM) elicited similar insulin secretion in control cells and cells overexpressing CPT I. Glucose-induced ATP increase, glucose metabolism and the triacylglycerol content remained unchanged. These results provide further evidence that CPT I activity regulates insulin secretion in the beta-cell. They also indicate that up-regulation of CPT I contributes to the loss of response to high glucose in beta-cells exposed to fatty acids. PMID:11988095

  11. Cytosolic phospholipase A2 activation correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth.

    LENUS (Irish Health Repository)

    Caiazza, Francesco

    2010-05-01

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) catalyzes the hydrolysis of membrane glycerol-phospholipids to release arachidonic acid as the first step of the eicosanoid signaling pathway. This pathway contributes to proliferation in breast cancer, and numerous studies have demonstrated a crucial role of cyclooxygenase 2 and prostaglandin E(2) release in breast cancer progression. The role of cPLA(2)alpha activation is less clear, and we recently showed that 17beta-estradiol (E2) can rapidly activate cPLA(2)alpha in MCF-7 breast cancer cells. Overexpression or gene amplification of HER2 is found in approximately 30% of breast cancer patients and correlates with a poor clinical outcome and resistance to endocrine therapy. This study reports the first evidence for a correlation between cPLA(2)alpha enzymatic activity and overexpression of the HER2 receptor. The activation of cPLA(2)alpha in response to E2 treatment was biphasic with the first phase dependent on trans-activation through the matrix metalloproteinase-dependent release of heparin-bound epidermal growth factor. EGFR\\/HER2 heterodimerization resulted in downstream signaling through the ERK1\\/2 cascade to promote cPLA(2)alpha phosphorylation at Ser505. There was a correlation between HER2 and cPLA(2)alpha expression in six breast cancer cell lines examined, and inhibition of HER2 activation or expression in the SKBR3 cell line using herceptin or HER2-specific small interfering RNA, respectively, resulted in decreased activation and expression of cPLA(2)alpha. Pharmacological blockade of cPLA(2)alpha using a specific antagonist suppressed the growth of both MCF-7 and SKBR3 cells by reducing E2-induced proliferation and by stimulating cellular apoptosis and necrosis. This study highlights cPLAalpha(2) as a potential target for therapeutic intervention in endocrine-dependent and endocrine-independent breast cancer.

  12. Antitumor Effect of PUMA Overexpression on Pancreatic Cancer ASPC-1 Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke-jun; LI De-chun; ZHU Dong-ming; ZHU Xin-guo

    2007-01-01

    Objective: To investigated the antitumor effects of PUMA gene transfection on pancreatic cancer Aspc-1 cells. Methods: Plasmid pGFP-PUMA-C1 and pGFP-C1 was introduced into the pancreatic cancer ASPC-1 cells by LipofectinamineTm 2000 transfection. 24 h and 48 h after transfection, these cells were collected, PUMA protein and PUMA mRNA expression in ASPC-1 cells were detected by Western blot and semiquantitative reverse transcription polymerase chain reaction (RT-PCR) methods, respectively. Cell apoptosis was examined by flow cytometry and terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick end labeling (TUNEL). Growth inhibition of Aspc-1 cells was determined by the colorimetric MTT cell Viability/proliferation assay. Results: Transfection of pGFP-PUMA-C1 into Aspc-1 cells resulted in the upregulation of the corresponding mRNA and PUMA protein, which was associated with a reduced number of viable cells and increased number of apoptosis cells, but the mRNA and PUMA protein and the corresponding viabe cells and apoptosis cells had no significant differences in Aspc-1 cells/pGFP-C1 compared to control cells. Conclusion: Re-expression of PUMA gene, which is lost in human pancreatic cancer cells, can induce apoptosis, resulting in inhibition of tumor growth.

  13. Drug hypersensitivity in clonal mast cell disorders

    DEFF Research Database (Denmark)

    Bonadonna, P; Pagani, M; Aberer, W;

    2015-01-01

    Mastocytosis is a clonal disorder characterized by the proliferation and accumulation of mast cells (MC) in different tissues, with a preferential localization in skin and bone marrow (BM). The excess of MC in mastocytosis as well as the increased releasability of MC may lead to a higher frequency...... serum tryptase determination, physical examination for cutaneous mastocytosis lesions, and clinical characteristics of anaphylactic reaction might be useful for differential diagnosis. In this position paper, the ENDA group performed a literature search on immediate drug hypersensitivity reactions in...

  14. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair.

    Directory of Open Access Journals (Sweden)

    Gaëlle Gendronneau

    Full Text Available The proteins of the galectin family are implicated in many cellular processes, including cell interactions, polarity, intracellular trafficking, and signal transduction. In human and mouse, galectin-7 is almost exclusively expressed in stratified epithelia, notably in the epidermis. Galectin-7 expression is also altered in several human tumors of epithelial origin. This study aimed at dissecting the consequences of galectin-7 overexpression on epidermis structure and functions in vivo.We established transgenic mice specifically overexpressing galectin-7 in the basal epidermal keratinocytes and analyzed the consequences on untreated skin and after UVB irradiation or mechanical injury.The intercellular cohesion of the epidermis is impaired in transgenic animals, with gaps developing between adjacent keratinocytes, associated with loss of adherens junctions. The epidermal architecture is aberrant with perturbations in the multilayered cellular organisation of the tissue, and structural defects in the basement membrane. These transgenic animals displayed a reduced re-epithelialisation potential following superficial wound, due to a defective collective migration of keratinocytes. Finally, a single mild dose of UVB induced an abnormal apoptotic response in the transgenic epidermis.These results indicate that an excess of galectin-7 leads to a destabilisation of adherens junctions associated with defects in epidermal repair. As this phenotype shares similarities with that of galectin-7 null mutant mice, we conclude that a critical level of this protein is required for maintaining proper epidermal homeostasis. This study brings new insight into the mode of action of galectins in normal and pathological situations.

  15. p210 Bcr-Abl confers overexpression of inosine monophosphate dehydrogenase : an intrinsic pathway to drug resistance mediated by oncogene.

    Energy Technology Data Exchange (ETDEWEB)

    Gharehbaghi, K.; Burgess, G. S.; Collart, F. R.; Litz-Jackson, S.; Huberman, E.; Jayaram, H. N.; Boswell, H. S.; Center for Mechanistic Biology and Biotechnology; Lab. for Experimental Oncology; Indiana Univ. School of Medicine

    1994-01-01

    The p210 bcr-abl fusion protein tyrosine kinase oncogene has been implicated in the pathogenesis of chronic granulocytic leukemia (CGL). Specific intracellular functions performed by p210 bcr-abl have recently been delineated. We considered the possibility that p210 bcr-abl may also regulate the abundance of inosine 5'-monophosphate dehydrogenase (IMPDH) which is a rate-limiting enzyme for de novo guanylate synthesis. We performed studies of the inhibition of IMPDH by tiazofurin, which acts as a competitive inhibitor through its active species that mimics nicotinamide adenine dinucleotide (NAD), i.e. thiazole-4-carboxamide adenine dinucleotide (TAD). The mean inhibitory concentration (IC50) of tiazofurin for cellular proliferation inhibition was 2.3-2.8-fold greater in cells expressing p210 bcr-abl than in their corresponding parent cells proliferating under the influence of growth factors or in growth factor-independent derivative cells not expressing detectable p210 bcr-abl. IMPDH activity was 1.5-2.3-fold greater within cells expressing p210 bcr-abl than in their parent cells. This increase in enzyme activity was a result of 2-fold increased IMPDH protein as determined by immunoblotting. In addition, an increase in the Km value for NAD utilization by IMPDH was observed in p210 bcr-abl transformed cells, but this increase was within the range of resident NAD concentrations observed in the cells. Increased IMPDH protein in p210 bcr-abl transformed cells was traced to an increased level of IMP dehydrogenase II messenger RNA. Thus, regulation of IMPDH gene expression is mediated at least in part by the bcr-abl gene product and may therefore be indicative of a specific mechanism of intrinsic resistance to tiazofurin.

  16. p210 bcr-abl confers overexpression of inosine monophosphate dehydrogenase: an intrinsic pathway to drug resistance mediated by oncogene.

    Science.gov (United States)

    Gharehbaghi, K; Burgess, G S; Collart, F R; Litz-Jackson, S; Huberman, E; Jayaram, H N; Boswell, H S

    1994-08-01

    The p210 bcr-abl fusion protein tyrosine kinase oncogene has been implicated in the pathogenesis of chronic granulocytic leukemia (CGL). Specific intracellular functions performed by p210 bcr-abl have recently been delineated. We considered the possibility that p210 bcr-abl may also regulate the abundance of inosine 5'-monophosphate dehydrogenase (IMPDH) which is a rate-limiting enzyme for de novo guanylate synthesis. We performed studies of the inhibition of IMPDH by tiazofurin, which acts as a competitive inhibitor through its active species that mimics nicotinamide adenine dinucleotide (NAD), i.e. thiazole-4-carboxamide adenine dinucleotide (TAD). The mean inhibitory concentration (IC50) of tiazofurin for cellular proliferation inhibition was 2.3-2.8-fold greater in cells expressing p210 bcr-abl than in their corresponding parent cells proliferating under the influence of growth factors or in growth factor-independent derivative cells not expressing detectable p210 bcr-abl. IMPDH activity was 1.5-2.3-fold greater within cells expressing p210 bcr-abl than in their parent cells. This increase in enzyme activity was a result of 2-fold increased IMPDH protein as determined by immunoblotting. In addition, an increase in the Km value for NAD utilization by IMPDH was observed in p210 bcr-abl transformed cells, but this increase was within the range of resident NAD concentrations observed in the cells. Increased IMPDH protein in p210 bcr-abl transformed cells was traced to an increased level of IMP dehydrogenase II messenger RNA. Thus, regulation of IMPDH gene expression is mediated at least in part by the bcr-abl gene product and may therefore be indicative of a specific mechanism of intrinsic resistance to tiazofurin. PMID:7520100

  17. Overexpression of monocarboxylate transporter-1 (Slc16a1) in mouse pancreatic ß-cells leads to relative hyperinsulinism during exercise

    DEFF Research Database (Denmark)

    Pullen, Timothy J; Sylow, Lykke; Sun, Gao;

    2012-01-01

    in ß-cells is sufficient to cause EIHI by allowing entry of pyruvate and triggering insulin secretion thus remains unproven. Therefore, we generated a transgenic mouse capable of doxycycline-induced, ß-cell-specific overexpression of MCT1 to test this model directly. MCT1 expression caused isolated...

  18. Inductoin of Radioresistance by Overexpression of Glutathione S-Transferase K1 (hGSTK1) in MCF-7 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Chul [Kyungpook National University College of Medicine, Taegu (Korea, Republic of); Shin, Sei One [Yeungnam University College of Medicine, Taegu (Korea, Republic of)

    2001-12-15

    Purpose : This study was conducted to assess the effects of x-irradiation on the expression of the novel glutathione S-transferase K1 gene. Materials and methods : Human glutathione S-transferase K1 (hGSTK1) DNA was purified and ligated to a pcDNA3.1/Myc-His(+) vector for the overexpression of hGSTK1 gene. MCF-7 cells were transfected with or without the recombinant hGSTK1 gene, and irradiated with 6 MV x-ray. After incubation of 14 days, cell survival was measured and compared. The expression of hGSTK1 and the effect of x- irradiation on hGSTK1 expression were also estimated in MCF-7 cells transfected with or without the hGSTK1 gene by RT-PCR. Results : Following 2 to 12 Gy of x-irradiation, the cell survivals were higher in the MCF-7 cells transfected with the hGSTK1 gene than in those without transfection. Despite the higher cell survival in the hGSTK1-transfected cells, RT-PCR for hGSTK1 mRNA revealed no significant differences according to radiation dose, fractionation, and time after irradiation. Conclusion : The MCF-7 cells transfected with the hGSTK1 gene showed higher cell survival than those without transfection of the gene. The hGSTK1 gene might be associated with the radiosensitivity of MCF-7 cell line and further analysis should be needed.

  19. Cytoplasmic Overexpression of CD95L in Esophageal Adenocarcinoma Cells Overcomes Resistance to CD95-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Gregory A. Watson

    2011-03-01

    Full Text Available Introduction: The CD95/CD95L pathway plays a critical role in tissue homeostasis and immune system regulation; however, the function of this pathway in malignancy remains poorly understood. We hypothesized that CD95L expression in esophageal adenocarcinoma confers advantages to the neoplasm other than immune privilege. Methods: CD95L expression was characterized in immortalized squamous esophagus (HET-1A and Barrett esophagus (BAR-T cells; adenocarcinoma cell lines FLO-1, SEG-1, and BIC-1, and MDA468 (- control; and KFL cells (+ control. Analyses included reverse transcription-polymerase chain reaction, immunoblots of whole cell and secretory vesicle lysates, FACScan analysis, laser scanning confocal microscopy of native proteins and fluorescent constructs, and assessment of apoptosis and ERK1/2 pathways. Results: Cleaved, soluble CD95L is expressed at both the RNA and protein levels in these cell lines derived from esophageal adenocarcinoma and other human tissues. CD95L was neither trafficked to the cell membrane nor secreted into the media or within vesicles, rather the protein seems to be sequestered in the cytoplasm. CD95 and CD95L colocalize by immunofluorescence, but an interaction was not proven by immunoprecipitation. Overexpression of CD95L in the adenocarcinoma cell lines induced robust apoptosis and, under conditions of pan-caspase inhibition, resulted in activation of ERK signaling. Conclusions: CD95L localization in EA cells is inconsistent with the conference of immune privilege and is more consistent with a function that promotes tumor growth through alternative CD95 signaling. Reduced cell surface expression of CD95 affects cell sensitivity to extracellular apoptotic signals more significantly than alterations in downstream modulators of apoptosis.

  20. Enhanced Differentiation of Three-Gene-Reprogrammed Induced Pluripotent Stem Cells into Adipocytes via Adenoviral-Mediated PGC-1α Overexpression

    Directory of Open Access Journals (Sweden)

    Yi-Jen Chen

    2011-11-01

    Full Text Available Induced pluripotent stem cells formed by the introduction of only three factors, Oct4/Sox2/Klf4 (3-gene iPSCs, may provide a safer option for stem cell-based therapy than iPSCs conventionally introduced with four-gene iPSCs. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α plays an important role during brown fat development. However, the potential roles of PGC-1α in regulating mitochondrial biogenesis and the differentiation of iPSCs are still unclear. Here, we investigated the effects of adenovirus-mediated PGC-1α overexpression in 3-gene iPSCs. PGC-1α overexpression resulted in increased mitochondrial mass, reactive oxygen species production, and oxygen consumption. Microarray-based bioinformatics showed that the gene expression pattern of PGC-1α-overexpressing 3-gene iPSCs resembled the expression pattern observed in adipocytes. Furthermore, PGC-1α overexpression enhanced adipogenic differentiation and the expression of several brown fat markers, including uncoupling protein-1, cytochrome C, and nuclear respiratory factor-1, whereas it inhibited the expression of the white fat marker uncoupling protein-2. Furthermore, PGC-1α overexpression significantly suppressed osteogenic differentiation. These data demonstrate that PGC-1α directs the differentiation of 3-gene iPSCs into adipocyte-like cells with features of brown fat cells. This may provide a therapeutic strategy for the treatment of mitochondrial disorders and obesity.

  1. Distinct P-glycoprotein precursors are overproduced in independently isolated drug-resistant cell lines.

    Science.gov (United States)

    Greenberger, L M; Lothstein, L; Williams, S S; Horwitz, S B

    1988-06-01

    A family of P-glycoproteins are overproduced in multidrug-resistant cells derived from the murine macrophage-like line J774.2. To determine whether individual family members are overproduced in response to different drugs, the P-glycoprotein precursors in several independently isolated cell lines, which were selected for resistance to vinblastine or taxol, were compared. Individual cell lines selected with vinblastine overproduced P-glycoprotein precursors of either 120 or 125 kDa. Taxol-selected cell lines overproduced either the 125-kDa precursor or both precursors simultaneously. Two similar but distinct peptide maps for the mature P-glycoproteins were observed. These maps corresponded to each precursor regardless of the drug used for selection. One vinblastine-resistant cell line switched from the 125- to the 120-kDa precursor when grown in increasing concentrations of drug. This change coincided with the overexpression of a distinct subset of mRNA species that code for P-glycoprotein. It is concluded that precursor expression is not drug-specific. These data suggest that individual overproduced P-glycoprotein family members are translated as distinct polypeptides. The results may help to explain the diversity in the multidrug-resistant phenotype. PMID:2897689

  2. Ro60 overexpression contributes to proliferation and sensitivity of tumor cells to γ-irradiation

    International Nuclear Information System (INIS)

    Objective: To investigate the expression and subcellular localization of RNA-binding protein Ro60 in neoplasms before and after γ-ray irradiation, and the function of Ro60 in tumor cell proliferation and radio-sensitivity. Methods: The eukaryotic expression plasmid of mGFP-Ro60 was constructed and transfected into HCT116 and MCF7 tumor cells. The cellular localization of Ro60 was examined before and after irradiation. Cell proliferation and radio-sensitivity were detected by CCK8 and trypan blue assay. Results: The result of immunoblotting showed that tumor cells expressed Ro60 protein. The irradiation increased Ro60 expression and induced significant nuclear aggregation of Ro60. The cell proliferation before and after irradiation was drastically reduced while cell death increased in Ro60 over expressed tumor cells. Conclusion: γ-ray irradiation alters Ro60 expression and localization, and Ro60 plays an important role in tumor cell proliferation and radio-sensitivity. (authors)

  3. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression.

    Science.gov (United States)

    Zhang, Xiaolu; Li, Bingnan; de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-03-10

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity. PMID:25682873

  4. IFNγ-mediated inhibition of cell proliferation through increased PKCδ-induced overexpression of EC-SOD

    Science.gov (United States)

    Jeon, Yoon-Jae; Yoo, Hyun; Kim, Byung Hak; Lee, Yun Sang; Jeon, Byeongwook; Kim, Sung-Sub; Kim, Tae-Yoon

    2012-01-01

    Extracellular superoxide dismutase (EC-SOD) overexpression modulates cellular responses such as tumor cell suppression and is induced by IFNγ. Therefore, we examined the role of EC-SOD in IFNγ-mediated tumor cell suppression. We observed that the dominant-negative protein kinase C delta (PKCδ) suppresses IFNγ-induced EC-SOD expression in both keratinocytes and melanoma cells. Our results also showed that PKCδ-induced ECSOD expression was reduced by pretreatment with a PKCspecific inhibitor or a siRNA against PKCδ. PKCδ-induced ECSOD expression suppressed cell proliferations by the up-regulation of p21 and Rb, and the downregulation of cyclin A and D. Finally, we demonstrated that increased expression of EC-SOD drastically suppressed lung melanoma proliferation in an EC-SOD transgenic mouse via p21 expression. In summary, our findings suggest that IFNγ-induced EC-SOD expression occurs via activation of PKCδ. Therefore, the upregulation of EC-SOD may be effective for prevention of various cancers, including melanoma, via cell cycle arrest. [BMB Reports 2012; 45(11): 659-664] PMID:23187006

  5. Differential expression of sphingolipids in MRP1 overexpressing HT29 cells

    NARCIS (Netherlands)

    Kok, JW; Veldman, Robert; Klappe, K; Koning, H; Filipeanu, Catalin M.; Muller, Michael

    2000-01-01

    We have obtained a novel multidrug resistant cell line, derived from HT29 G(+) human colon carcinoma cells, by selection with gradually increasing concentrations of the anti-mitotic, microtubule-disrupting agent colchicine. This HT29(col) cell line displayed a 25-fold increase in colchicine resistan

  6. Downregulation of B-cell lymphoma/leukemia-2 by overexpressed microRNA 34a enhanced titanium dioxide nanoparticle-induced autophagy in BEAS-2B cells

    Science.gov (United States)

    Bai, Wenlin; Chen, Yujiao; Sun, Pengling; Gao, Ai

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles (TNPs) are manufactured worldwide for a wide range of applications and the toxic effect of TNPs on biological systems is gaining attention. Autophagy is recognized as an emerging toxicity mechanism triggered by nanomaterials. MicroRNA 34a (miR34a) acts as a tumor suppressor gene by targeting many oncogenes, but how it affects autophagy induced by TNPs is not completely understood. Here, we observed the activation of TNP-induced autophagy through monodansylcadaverine staining and LC3-I/LC3-II conversion. Meanwhile, the transmission electron microscope ultrastructural analysis showed typical morphological characteristics in autophagy process. We detected the expression of miR34a and B-cell lymphoma/leukemia-2 (Bcl-2). In addition, the underlying mechanism of TNP-induced autophagy was performed using overexpression of miR34a by lentivirus vector transfection. Results showed that TNPs induced autophagy generation evidently. Typical morphological changes in the process of autophagy were observed by the transmission electron microscope ultrastructural analysis and LC3-I/LC3-II conversion increased significantly in TNP-treated cells. Meanwhile, TNPs induced the downregulation of miR34a and increased the expression of Bcl-2. Furthermore, overexpressed miR34a decreased the expression of Bcl-2 both in messenger RNA and protein level, following which the level of autophagy and cell death rate increased after the transfected cells were incubated with TNPs for 24 hours. These findings provide the first evidence that overexpressed miR34a enhanced TNP-induced autophagy and cell death through targeted downregulation of Bcl-2 in BEAS-2B cells.

  7. HOXA1 is overexpressed in oral squamous cell carcinomas and its expression is correlated with poor prognosis

    International Nuclear Information System (INIS)

    HOX genes encode homeodomain-containing transcription factors involved in the regulation of cellular proliferation and differentiation during embryogenesis. However, members of this family demonstrated oncogenic properties in some malignancies. The present study investigated whether genes of the HOXA cluster play a role in oral cancer. In order to identify differentially expressed HOXA genes, duplex RT-PCR in oral samples from healthy mucosa and squamous cell carcinoma was used. The effects of HOXA1 on proliferation, apoptosis, adhesion, invasion, epithelial-mesenchymal transition (EMT) and anchorage-independent growth were assessed in cells with up- and down-regulation of HOXA1. Immunohistochemical analysis using a tissue microarray (TMA) containing 127 oral squamous cell carcinomas (OSCC) was performed to determine the prognostic role of HOXA1 expression. We showed that transcripts of HOXA genes are more abundant in OSCC than in healthy oral mucosa. In particular, HOXA1, which has been described as one of the HOX members that plays an important role in tumorigenesis, was significantly more expressed in OSCCs compared to healthy oral mucosas. Further analysis demonstrated that overexpression of HOXA1 in HaCAT human epithelial cells promotes proliferation, whereas downregulation of HOXA1 in human OSCC cells (SCC9 cells) decreases it. Enforced HOXA1 expression in HaCAT cells was not capable of modulating other events related to tumorigenesis, including apoptosis, adhesion, invasion, EMT and anchorage-independent growth. A high number of HOXA1-positive cells was significantly associated with T stage, N stage, tumor differentiation and proliferative potential of the tumors, and was predictive of poor survival. In multivariate analysis, HOXA1 was an independent prognostic factor for OSCC patients (HR: 2.68; 95% CI: 1.59-2.97; p = 0.026). Our findings indicate that HOXA1 may contribute to oral carcinogenesis by increasing tumor cell proliferation, and suggest that HOXA1

  8. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting

    International Nuclear Information System (INIS)

    miRNAs, sorting as non-coding RNAs, are differentially expressed in breast tumor and act as tumor promoters or suppressors. miR-206 could suppress the progression of breast cancer, the mechanism of which remains unclear. The study here was aimed to investigate the effect of miR-206 on human breast cancers. We found that miR-206 was down-regulated while one of its predicted targets, 6-Phosphofructo-2-kinase (PFKFB3) was up-regulated in human breast carcinomas. 17β-estradiol dose-dependently decreased miR-206 expression as well as enhanced PFKFB3 mRNA and protein expression in estrogen receptor α (ERα) positive breast cancer cells. Furthermore, we identified that miR-206 directly interacted with 3′-untranslated region (UTR) of PFKFB3 mRNA. miR-206 modulated PFKFB3 expression in MCF-7, T47D and SUM159 cells, which was influenced by 17β-estradiol depending on ERα expression. In addition, miR-206 overexpression impeded fructose-2,6-bisphosphate (F2,6BP) production, diminished lactate generation and reduced cell proliferation and migration in breast cancer cells. In conclusion, our study demonstrated that miR-206 regulated PFKFB3 expression in breast cancer cells, thereby stunting glycolysis, cell proliferation and migration. - Highlights: • miR-206 was down-regulated and PFKFB3 was up-regulated in human breast carcinomas. • 17β-estradiol regulated miR-206 and PFKFB3 expression in ERα+ cancer cells. • miR-206directly interacted with 3′-UTR of PFKFB3 mRNA. • miR-206 fructose-2,6-bisphosphate (F2,6BP) impeded production and lactate generation. • miR-206 reduced cell proliferation and migration in breast cancer cells

  9. Over-expression of VEGF165 in the adipose tissue-derived stem cells via the lentiviral vector

    Institute of Scientific and Technical Information of China (English)

    SUN Xiang-zhou; LIU Gui-hua; WANG Zhuo-qing; ZHENG Fu-fu; BIAN Jun; HUANG Yan-ping; GAO Yong; ZHANG Ya-dong; DENG Chun-hua

    2011-01-01

    Background Many researchers studied the possibility of using stem cells as gene therapeutic vector. But few related reports on the adipose tissue-derived stem cells (ADSCs) are available. Therefore we intended to construct a lentiviral VEGF165 expression vector and then infect the ADSCs to produce therapeutic seed cells.Methods EHS1001-68950485313912 clone was mutated by PCR method to produce consensus fragment of VEGF165 transcript (NM_001025368). Lentivirus was enveloped with pGC-FU, pHelper 1.0 and pHelper 2.0 plasmids in 293T cells.And then the ADSCs (multiplicity of infection=20) were transfected with the vectors after titer determination. Stable expression of VEGF165 in ADSCs was confirmed by immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and Western blotting analysis.Results DNA sequencing and 293T transfection verified VEGF165 was linked to the GFP fused vector. The virus titer is up to 2x10a determined by quantitative PCR. VEGF165 transduced cells could show green fluorescence confirmed by immunofluorescence staining (almost 95%). ELISA analyses could detect out the density of VEGF was 850.86-1202.13pg/ml (mean (923.00±31.22) pg/ml) in the supernatant of VEGF16s-transduced cells but not detected in the GFP-transduced cells (P <0.001) and the Western blotting analyses also confirmed VEGF165 expression in VEGF165-transduced cells.Conclusions The VEGF165 over-expression ADSCs were obtained and may be used as a cell therapeutic tool and may be applied for vascular regeneration, especially in the treatment of erectile dysfunction.

  10. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xin; Lyu, Pengwei; Cao, Zhang; Li, Jingruo; Guo, Guangcheng; Xia, Wanjun; Gu, Yuanting, E-mail: zzyuantinggu@126.com

    2015-08-07

    miRNAs, sorting as non-coding RNAs, are differentially expressed in breast tumor and act as tumor promoters or suppressors. miR-206 could suppress the progression of breast cancer, the mechanism of which remains unclear. The study here was aimed to investigate the effect of miR-206 on human breast cancers. We found that miR-206 was down-regulated while one of its predicted targets, 6-Phosphofructo-2-kinase (PFKFB3) was up-regulated in human breast carcinomas. 17β-estradiol dose-dependently decreased miR-206 expression as well as enhanced PFKFB3 mRNA and protein expression in estrogen receptor α (ERα) positive breast cancer cells. Furthermore, we identified that miR-206 directly interacted with 3′-untranslated region (UTR) of PFKFB3 mRNA. miR-206 modulated PFKFB3 expression in MCF-7, T47D and SUM159 cells, which was influenced by 17β-estradiol depending on ERα expression. In addition, miR-206 overexpression impeded fructose-2,6-bisphosphate (F2,6BP) production, diminished lactate generation and reduced cell proliferation and migration in breast cancer cells. In conclusion, our study demonstrated that miR-206 regulated PFKFB3 expression in breast cancer cells, thereby stunting glycolysis, cell proliferation and migration. - Highlights: • miR-206 was down-regulated and PFKFB3 was up-regulated in human breast carcinomas. • 17β-estradiol regulated miR-206 and PFKFB3 expression in ERα+ cancer cells. • miR-206directly interacted with 3′-UTR of PFKFB3 mRNA. • miR-206 fructose-2,6-bisphosphate (F2,6BP) impeded production and lactate generation. • miR-206 reduced cell proliferation and migration in breast cancer cells.

  11. Overexpression of DcR3 and Its Significance on Tumor Cell Differentiation and Proliferation in Glioma

    Directory of Open Access Journals (Sweden)

    Suning Huang

    2014-01-01

    Full Text Available Background. Overexpression of decoy receptor 3 (DcR3 have been reported in various classes of malignancies. However, its expression and clinicopathological contribution in gliomas has not been fully elucidated. Objective. To explore the expression and clinical significance of DcR3 protein in relation to tumor cell differentiation and proliferation in glioma cell lines and tissues. Methods. One hundred and twenty-five samples of glioma patients and 18 cases of normal brain tissues were recruited. The expression of DcR3 protein was detected using immunohistochemistry. Tumor differentiation was assessed by histologic characters and the status of glial fibrillary acidic protein (GFAP. Tumor cell labeling indexes (LIs of Ki-67 and PCNA were also obtained. The relationship between the DcR3 level and clinicopathological features was investigated, including tumor differentiation, LIs, and survival. Meanwhile, the expression of DcR3 protein was also measured in the supernatants of 8 glioma cell lines and glioma cells freshly prepared from 8 human glioblastoma specimens by using western blot. Results. The level of DcR3 protein in gliomas was significantly higher than that in normal brain tissues (P<0.01. DcR3 expression showed positive correlations with tumor pathological grade (r=0.621, P<0.01 and negative with GFAP expression (r=-0.489, P<0.01. Furthermore, there were positive correlations between DcR3 expression and Ki-67, PCNA LIs (r=0.529, P<0.01; r=0.556, P<0.01. The survival in the DcR3 negative group was 50 ± 1.79 months, longer than that of the DcR3 positive group (48.36 ± 2.90, however, without significance (P=0.149. Different levels of DcR3 could also be detected in the culturing supernatants of all the 8 glioma cell lines and glioma cells freshly obtained from 8 human glioblastoma specimens. Conclusions. The overexpression of DcR3 might play a crucial role in the tumorigenesis, differentiation, and proliferation of glioma.

  12. Overexpression of cytoglobin gene inhibits hypoxic injury to SH-SY5Y neuroblastoma cells

    Institute of Scientific and Technical Information of China (English)

    Xiuling Yu; Dianwen Gao

    2013-01-01

    A plasmid for cytoglobin expression, pAcGFP1-C1-cytoglobin, was transfected into SH-SY5Y cel s. Cobalt chloride was used to establish a model of hypoxia. Western blotting indicated that cytoglobin was overexpressed and there was low expression of hypoxia-inducible factor-1αin SH-SY5Y cel s after transfection. Fol owing cobalt chloride-induced hypoxia, cytoglobin and hypoxia-inducible fac-tor-1αexpression gradual y increased in SH-SY5Y cel s. Flow cytometry showed that with increas-ing duration of hypoxia, the proportion of normal cel s significantly diminished in the transfected and non-transfected groups. The proportion of cel s in the early stages of apoptosis increased. However, the proportion of apoptotic cel s was significantly lower in the transfected group compared with the non-transfected group. These results demonstrate that cytoglobin and hypoxia-inducible factor-1αare strongly up-regulated by hypoxia, and that there is a strong relationship between hypox-ia-inducible factor-1αand cytoglobin during hypoxic injury.

  13. Overexpression of Dyrk1A regulates cardiac troponin T splicing in cells and mice.

    Science.gov (United States)

    Lu, Shu; Yin, Xiaomin

    2016-05-13

    The human heart expresses four isoforms of cardiac troponin T (cTnT) through alternative splicing of exons 4 and 5 of the cTnT gene. Alternative splicing of cTnT exon 5 is developmentally regulated. cTnT isoforms containing exon 5 are expressed in the fetal and neonatal heart but not in the mature heart. SRp55 is an essential splicing factor involved in cTnT exon 5 splicing and it is phosphorylated by Dyrk1A (dual specificity tyrosine phosphorylation regulated kinase 1A). In the present study, we found Dyrk1A interacted with SRp55 and enhanced its promotion of cTnT exon 5 inclusion. The shift from cTnT exon 5 inclusion to exclusion during development was delayed in the heart of Ts65Dn mice due to Dyrk1A overexpression. These results provide new insight into the role of Dyrk1A in the neonatal cardiac development. PMID:27049307

  14. Driving gradual endogenous c-myc overexpression by flow-sorting: intracellular signaling and tumor cell phenotype correlate with oncogene expression

    DEFF Research Database (Denmark)

    Knudsen, Kasper Jermiin; Holm, G.M.N.; Krabbe, J.S.;

    2009-01-01

    Insulin-exposed rat mammary cancer cells were flow sorted based on a c-myc reporter plasmid encoding a destabilized green fluorescent protein. Sorted cells exhibited gradual increases in c-myc levels. Cells overexpressing c-myc by only 10% exhibited phenotypic changes attributable to c-myc overex...... alternative modeling of the receptor-mediated carcinogenic process, compared to the currently used approaches of recombinant constitutive or conditional overexpression of oncogenic transmembrane receptor tyrosine kinases or oncogenic transcription factors.......Insulin-exposed rat mammary cancer cells were flow sorted based on a c-myc reporter plasmid encoding a destabilized green fluorescent protein. Sorted cells exhibited gradual increases in c-myc levels. Cells overexpressing c-myc by only 10% exhibited phenotypic changes attributable to c...... exhibited overexpression of the IGF-1R, and slightly elevated expression of the IR. Increased susceptibility to the mitogenic effect of insulin was seen in a small proportion of the sorted cells, and insulin was more effective in activating the p44/42 MAPK pathway, but not the PI3K pathway, in the sorted...

  15. Conditional overexpression of Stat3alpha in differentiating myeloid cells results in neutrophil expansion and induces a distinct, antiapoptotic and pro-oncogenic gene expression pattern.

    Science.gov (United States)

    Redell, Michele S; Tsimelzon, Anna; Hilsenbeck, Susan G; Tweardy, David J

    2007-10-01

    Normal neutrophil development requires G-CSF signaling, which includes activation of Stat3. Studies of G-CSF-mediated Stat3 signaling in cell culture and transgenic mice have yielded conflicting data regarding the role of Stat3 in myelopoiesis. The specific functions of Stat3 remain unclear, in part, because two isoforms, Stat3alpha and Stat3beta, are expressed in myeloid cells. To understand the contribution of each Stat3 isoform to myelopoiesis, we conditionally overexpressed Stat3alpha or Stat3beta in the murine myeloid cell line 32Dcl3 (32D) and examined the consequences of overexpression on cell survival and differentiation. 32D cells induced to overexpress Stat3alpha, but not Stat3beta, generated a markedly higher number of neutrophils in response to G-CSF. This effect was a result of decreased apoptosis but not of increased proliferation. Comparison of gene expression profiles of G-CSF-stimulated, Stat3alpha-overexpressing 32D cells with those of cells with normal Stat3alpha expression revealed novel Stat3 gene targets, which may contribute to neutrophil expansion and improved survival, most notably Slc28a2, a purine nucleoside transporter, which is critical for maintenance of intracellular nucleotide levels and prevention of apoptosis, and Gpr65, an acid-sensing, G protein-coupled receptor with pro-oncogenic and antiapoptotic functions. PMID:17634277

  16. Core I gene is overexpressed in Hürthle and non-Hürthle cell microfollicular adenomas and follicular carcinomas of the thyroid

    International Nuclear Information System (INIS)

    Most of the steps involved in the initiation and progression of Hürthle (oncocytic, oxyphilic) cell carcinomas of the thyroid remain unknown. Using differential display and semiquantitative RT-PCR we found, among other alterations, overexpression of the gene encoding the Core I subunit of the complex III of the mitochondrial respiratory chain in a follicular carcinoma composed of Hürthle cells. Similar high levels of Core I gene expression were detected in nine follicular carcinomas (seven with Hürthle cell features), in seven microfollicular adenomas (one with Hürthle cell features) and in one micro/macrofollicular adenoma, in contrast to a lower/normal expression in nine papillary carcinomas (three with Hürthle cell features) and five macrofollicular adenomas (one of which displaying Hürthle cell features). No significative correlation was found between Core I overexpression and the proliferative activity of the lesions. We conclude that Core I overexpression in thyroid tumours is not associated with malignancy, Hürthle cells or proliferative activity. The pathogenetic mechanism linking Core I overexpression to the microfollicular pattern of growth of thyroid tumours remains to be clarified

  17. Hair Cell Overexpression of Islet1 Reduces Age-Related and Noise-Induced Hearing Loss

    OpenAIRE

    Huang, Mingqian; Kantardzhieva, Albena; Scheffer, Deborah; Liberman, M. Charles; Chen, Zheng-Yi

    2013-01-01

    Isl1 is a LIM-homeodomain transcription factor that is critical in the development and differentiation of multiple tissues. In the mouse inner ear, Isl1 is expressed in the prosensory region of otocyst, in young hair cells and supporting cells, and is no longer expressed in postnatal auditory hair cells. To evaluate how continuous Isl1 expression in postnatal hair cells affects hair cell development and cochlear function, we created a transgenic mouse model in which the Pou4f3 promoter drives...

  18. Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance.

    Science.gov (United States)

    Zhao, Yuanyuan; Chen, Fei; Pan, Yuanming; Li, Zhipeng; Xue, Xiangdong; Okeke, Chukwunweike Ikechukwu; Wang, Yifeng; Li, Chan; Peng, Ling; Wang, Paul C; Ma, Xiaowei; Liang, Xing-Jie

    2015-09-01

    Carrier-free pure nanodrugs (PNDs) that are composed entirely of pharmaceutically active molecules are regarded as promising candidates to be the next generation of drug formulations and are mainly formulated from supramolecular self-assembly of drug molecules. It benefits from the efficient use of drug compounds with poor aqueous solubility and takes advantage of nanoscale drug delivery systems. Here, a type of all-in-one nanoparticle consisting of multiple drugs with enhanced synergistic antiproliferation efficiency against drug-resistant cancer cells has been created. To nanoparticulate the anticancer drugs, 10-hydroxycamptothecin (HCPT) and doxorubicin (DOX) were chosen as a typical model. The resulting HD nanoparticles (HD NPs) were formulated by a "green" and convenient self-assembling method, and the water-solubility of 10-hydroxycamptothecin (HCPT) was improved 50-fold after nanosizing by coassembly with DOX. The formation process was studied by observing the morphological changes at various reaction times and molar ratios of DOX to HCPT. Molecular dynamics (MD) simulations showed that DOX molecules tend to assemble around HCPT molecules through intermolecular forces. With the advantage of nanosizing, HD NPs could improve the intracellular drug retention of DOX to as much as 2-fold in drug-resistant cancer cells (MCF-7R). As a dual-drug-loaded nanoformulation, HD NPs effectively enhanced drug cytotoxicity to drug-resistant cancer cells. The combination of HCPT and DOX exhibited a synergistic effect as the nanosized HD NPs improved drug retention in drug-resistant cancer cells against P-gp efflux in MCF-7R cells. Furthermore, colony forming assays were applied to evaluate long-term inhibition of cancer cell proliferation, and these assays confirmed the greatly improved cytotoxicity of HD NPs in drug-resistant cells compared to free drugs. PMID:26270258

  19. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells

    Science.gov (United States)

    Kung, Mei-Lang; Hsieh, Shu-Ling; Wu, Chih-Chung; Chu, Tian-Huei; Lin, Yu-Chun; Yeh, Bi-Wen; Hsieh, Shuchen

    2015-01-01

    Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively

  20. Overexpression of IL-15 promotes tumor destruction via NK1.1+ cells in a spontaneous breast cancer model

    International Nuclear Information System (INIS)

    Natural Killer (NK) cells play an important role in tumor prevention, but once tumors form, the numbers as well as the cytotoxic functions of NK cells are reduced. IL-15 is a cytokine that increases and activates NK cells. Here we will examine the anti-tumor role of IL-15 in a spontaneous breast cancer model. To achieve this, Polyoma Middle T (MT) mice that form spontaneous breast cancer were crossed with mice that either overexpress IL-15 (IL-15 transgenic (TG)) or mice that lack IL-15 (IL-15 knockout (KO)). We compared survival curves and tumor formation in IL-15 KO/MT, MT and IL-15 TG/MT groups. In addition, the phenotype, activation and contribution of NK cells and CD8 T cells to tumor formation were examined in each of these mouse strains via flow cytometry, ELISA, adoptive transfer and antibody depletion experiments. IL-15KO/MT tumors formed and progressed to endpoint more quickly than MT tumors. These tumors displayed little apoptosis and poor CD8 T cell infiltration. In contrast, IL-15 TG/MT mice had increased survival and the tumors displayed extensive cell death, high proportions of activated NK cells and a higher infiltration of CD8 T cells than MT tumors. CD8 T cells in IL-15 TG/MT tumors were capable of secreting IFNγ, possessed markers of memory, did not display an exhausted phenotype and were frequently NK1.1+. Long-term antibody depletion studies in IL-15 TG/MT mice revealed that NK1.1+, but not CD8 T cells, were critical for tumor destruction. Lastly, human NK cells, when exposed to a similar cytokine environment as that found in IL-15TG/MT tumors, were capable of killing human breast cancer cells. This study reveals that high levels of IL-15 can promote tumor destruction and reduce metastasis in breast cancer via effects on NK1.1+ cells. Our results suggest that strategies aimed at increasing NK cell activation may be effective against solid epithelial cancers. The online version of this article (doi:10.1186/s12885-015-1264-3) contains

  1. Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Graziela Rosa Ravacci

    2015-01-01

    Full Text Available In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression of lipogenic genes involved in uptake (CD36, transport (FABP4, and storage (DGAT of exogenous fatty acids (FA, as well as increased activation of “de novo” FA synthesis (FASN. We further investigate whether this lipogenesis reprogramming might be regulated by mTOR/PPARγ pathway. Inhibition of the mTORC1 pathway markers, p70S6 K1, SREBP1, and LIPIN1, as well as an increase in DEPTOR expression (the main inhibitor of the mTOR was detected in HB4aC5.2. Based on these results, a PPARγ selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2 but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4 in both cell lines yet only induced death in the HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death. In conclusion, oncogenic transformation of breast cells by HER2 overexpression may require a reprogramming of lipogenic genetic that is independent of mTORC1 pathway and PPARγ activity. This reprogramming was inhibited by DHA.

  2. Direct Induction of Hemogenic Endothelium and Blood by Overexpression of Transcription Factors in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Elcheva, Irina; Brok-Volchanskaya, Vera; Slukvin, Igor

    2015-01-01

    During development, hematopoietic cells arise from a specialized subset of endothelial cells, hemogenic endothelium (HE). Modeling HE development in vitro is essential for mechanistic studies of the endothelial-hematopoietic transition and hematopoietic specification. Here, we describe a method for the efficient induction of HE from human pluripotent stem cells (hPSCs) by way of overexpression of different sets of transcription factors. The combination of ETV2 and GATA1 or GATA2 TFs is used to induce HE with pan-myeloid potential, while a combination of GATA2 and TAL1 transcription factors allows for the production of HE with erythroid and megakaryocytic potential. The addition of LMO2 to GATA2 and TAL1 combination substantially accelerates differentiation and increases erythroid and megakaryocytic cells production. This method provides an efficient and rapid means of HE induction from hPSCs and allows for the observation of the endothelial-hematopoietic transition in a culture dish. The protocol includes hPSCs transduction procedures and post-transduction analysis of HE and blood progenitors. PMID:26710184

  3. Over-expression of tumour suppressor gene p53 in laryngeal squamous cell carcinomas and its prognostic significance.

    Science.gov (United States)

    Salam, M A; Crocker, J; Morris, A

    1995-02-01

    p53 is a nuclear phosphoprotein which acts as a tumour suppressor factor, regulating cell growth and division. Mutations in the p53 gene appear to be the most common genetic alterations in human cancer. The aim of this study was to investigate p53 expression in laryngeal squamous cell carcinomas and to assess its role as a marker of prognostic significance. Using immunohistochemical staining techniques, a series of laryngeal carcinomas (n = 87) were examined for expression of the mutant form of p53 phosphoprotein using the monoclonal antibody PAB 1801. p53 over-expression was noted in 50 biopsies of laryngeal carcinomas (57.5%) but not in any of the non-neoplastic laryngeal mucosa which were used as the control. There was no statistical correlation between p53 immunoreactivity and the clinicopathological parameters of the cancers including: site of tumour, TNM staging, differentiation grading and tumour recurrence. These findings indicate that p53 expression is strongly associated with carcinoma cells and not with normal cells in the larynx. However, p53 expression is probably unrelated to the biological aggressiveness of these tumours. PMID:7788934

  4. Pomolic acid inhibits metastasis of HER2 overexpressing breast cancer cells through inactivation of the ERK pathway.

    Science.gov (United States)

    Kim, Buyun; Kim, Yu Chul; Park, Byoungduck

    2016-08-01

    Expression of the CXC chemokine receptor-4 (CXCR4), a G protein-coupled receptor, and HER2, a receptor tyrosine kinase, strongly correlates with tumor progression and metastatic potential of breast cancer cells. We report the identification of pomolic acid (PA) as a novel regulator of HER2 and CXCR4 expression. We found that PA downregulated the expression of HER2 and CXCR4 in SKBR3 cells in a dose- and time-dependent manner. When investigated for the molecular mechanism(s), it was found that the downregulation of HER2 and CXCR4 was not due to proteolytic degradation but rather to transcriptional regulation as indicated by downregulation of mRNA expression. Moreover, we show that PA inhibits phosphorylation of ERK and reduces NF-κB activation. Suppression of CXCR4 expression by PA correlated with the inhibition of CXCL12-induced invasion of HER2-overexpressing breast cancer cells. Overall, our results demonstrate for the first time that PA is a novel inhibitor of HER2 and CXCR4 expression via kinase pathways and may play a critical role in determining the metastatic potential of breast cancer cells. PMID:27277173

  5. Lentivirus-mediated LIGHT overexpression inhibits human colorectal carcinoma cell growth in vitro and in vivo

    OpenAIRE

    Wang, Haibo; Yu, Zhuang; LIU, SHIHAI; Liu, Xiangping; Sui, Aihua; YAO, RUYONG; Luo, Zheng; LI, CHUANZHI

    2013-01-01

    Human LIGHT (lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator on T cells) is the 14th member of the tumor necrosis factor (TNF) superfamily and is therefore also known as TNFSF14. LIGHT has been proven to be a multifunctional molecule affecting cell proliferation, differentiation and a number of other biological processes, in particular, cell growth inhibition. However, the expression and molecular mechanisms of the LIGHT gene in huma...

  6. Serotonin transporter protein overexpression and association to Th17 and T regulatory cells in lupoid leishmaniasis.

    Science.gov (United States)

    Mashayekhi Goyonlo, Vahid; Elnour, Husameldin; Nordlind, Klas

    2014-03-01

    The immunopathogenesis of chronic non-healing Old World cutaneous leishmaniasis is challenging. There is a bidirectional communication between the nervous and immune systems, serotonin being an important mediator in this respect. Our aim was to study the role of the serotonin transporter protein (SERT) and its relation to T cell-related immune responses in lupoid leishmaniasis. Paraffin-embedded skin biopsies of 12 cases of lupoid and 12 cases of usual types of cutaneous leishmaniasis were investigated using immunohistochemistry regarding expression of SERT, Th1, Th2, Th17 and T regulatory cell (Treg) markers. SERT as well as Tregs and interleukin (IL)-17 positive cells were more prevalent while IL-5 (Th2) and interferon (IFN)-γ (Th1) expressing cells were less numerous in the lupoid tissue compared to those from the usual type of leishmaniasis. The majority of the SERT(+) cells were also tryptase(+) (mast cells). There was a positive correlation between a higher number of SERT(+) and IL-17(+) cells in the lupoid type, while lower numbers of SERT(+) cells were significantly related to lower percentages of CD25(+) cells in the usual type of leishmaniasis. These results might indicate a role for SERT, Th17 and Tregs in the pathogenesis of lupoid leishmaniasis. PMID:23989888

  7. ABCG2-overexpressing S1-M1-80 cell xenografts in nude mice keep original biochemistry and cell biological properties

    Institute of Scientific and Technical Information of China (English)

    Fang Wang; Yong-Ju Liang; Xing-Ping Wu; Xiao-Dong Su; Li-Wu Fu

    2012-01-01

    S1-M1-80 cells,derived from human colon carcinoma S1 cells,are mitoxantrone-selected ABCG2-overexpressing cells and are widely used in in vitro studies of multidrug resistance (MDR).In this study,S1-M1-80 cell xenografts were established to investigate whether the MDR phenotype and cell biological properties were maintained in vivo.Our results showed that the proliferation,cell cycle,and ABCG2 expression level in S1-M1-80 cells were similar to those in cells isolated from S1-M1-80 cell xenografts (named xS1-M1-80 cells).Consistently,xS1-M1-80 cells exhibited high levels of resistance to ABCG2 substrates such as mitoxantrone and topotecan,but remained sensitive to the non-ABCG2 substrate cisplatin.Furthermore,the specific ABCG2 inhibitor Ko143 potently sensitized xS1-M1-80 cells to mitoxantrone and topotecan.These results suggest that S1-M1-80 cell xenografts in nude mice retain their original cytological characteristics at 9 weeks.Thus,this model could serve as a good system for further investigation of ABCG2-mediated MDR.

  8. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    International Nuclear Information System (INIS)

    Highlights: → We found a novel inhibitor of Nrf2 known as a chemoresistance factor. → Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. → Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. → Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for a new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.

  9. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Tomokazu; Matsumoto, Takashi; Itoi, Ayano; Kawana, Ayako; Nishiyama, Takahito; Ogura, Kenichiro [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Hiratsuka, Akira, E-mail: hiratuka@toyaku.ac.jp [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan)

    2011-10-07

    Highlights: {yields} We found a novel inhibitor of Nrf2 known as a chemoresistance factor. {yields} Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. {yields} Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. {yields} Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for a new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.

  10. CAP1 is overexpressed in human epithelial ovarian cancer and promotes cell proliferation.

    Science.gov (United States)

    Hua, Minhui; Yan, Sujuan; Deng, Yan; Xi, Qinghua; Liu, Rong; Yang, Shuyun; Liu, Jian; Tang, Chunhui; Wang, Yingying; Zhong, Jianxin

    2015-04-01

    Adenylate cyclase-associated protein 1 (CAP1) regulates both actin filaments and the Ras/cAMP pathway in yeast, and has been found play a role in cell motility and in the development of certain types of cancer. In the present study, we investigated CAP1 gene expression in human epithelial ovarian cancer (EOC). Western blot analysis and immunohistochemistry were performed using EOC tissue samples and the results revealed that CAP1 expression increased with the increasing grade of EOC. In the normal ovarian tissue samples however, CAP1 expression was barely detected. Using Pearson's χ2 test, it was demonstrated that CAP1 expression was associated with the histological grade and Ki-67 expression. Kaplan-Meier analysis revealed that a higher CAP1 expression in patients with EOC was associated with a poorer prognosis. In in vitro experiments using HO-8910 EOC cells, the expression of CAP1 was knocked down using siRNA. The proliferation of the HO-8910 cells was then determined by cell cycle analysis and cell proliferation assay using the cell counting kit-8 and flow cytometry. The results revealed that the loss of CAP1 expression inhibited cell cycle progression. These findings suggest that a high expression of CAP1 is involved in the pathogenesis of EOC, and that the downregulation of CAP1 in tumor cells may be a therapeutic target for the treatment of patients with EOC. PMID:25652936

  11. Overexpression of KiSS-1 reduces colorectal cancer cell invasion by downregulating MMP-9 via blocking PI3K/Akt/NF-κB signal pathway.

    Science.gov (United States)

    Chen, Shaoqin; Chen, Wei; Zhang, Xiang; Lin, Suyong; Chen, Zhihua

    2016-04-01

    Metastasis of colorectal cancer (CRC) depends critically on MMP-9. KiSS-1 is a human malignant melanoma metastasis-suppressor gene. Thus, the interaction between MMP-9 and KiSS-1 has drawn considerable attention in recent years. In the present study, it was hypothesized that KiSS-1 gene could repress the metastatic potential of colorectal cancer cells by inhibiting the expression of MMP-9. Stable transfection of KiSS-1 specific siRNA and KiSS-1 expression vector in human CRC cell line HCT-116 was achieved by lentivirus infection. Moreover, the cell proliferation, invasiveness, and apoptosis were evaluated by CCK-8 method, transwell experiment, and fluorescence activated cell sorter, respectively. We also investigated the expression of MMP-9, PI3K, Akt, pAKt, and NF-кB subunit p65 using western blotting. KiSS-1 overexpression significantly decreased the cell proliferation and invasiveness of HCT-119 cells, while apoptosis was enhanced. The result of western blotting showed that synthesis of MMP-9, PI3K, p65, and phosphorylation of Akt were significantly blocked by overexpression of KiSS-1. Concatenated treatment of KiSS-1 overexpression vector with PI3K and Akt agonists attenuated the effect of KiSS-1 on the biological activity of CRC cells and also released the expression of MMP-9, PI3K, p65, and phosphorylation of Akt from the influence of overexpression of KiSS-1. Overexpression of KiSS-1 suppressed the invasiveness of CRC cells, and the gene exerted its function by reducing the expression of MMP-9 via blocking of tge PI3K/Akt/NF-κB pathway. PMID:26847533

  12. The novel chicken interleukin 26 protein is overexpressed in T cells and induces proinflammatory cytokines.

    Science.gov (United States)

    Truong, Anh Duc; Park, Boyeong; Ban, Jihye; Hong, Yeong Ho

    2016-01-01

    In the present study, we describe the cloning and functional characterization of chicken interleukin 26 (ChIL-26). ChIL-26, a member of the IL-10 cytokine family, induces the production of proinflammatory cytokines by T cells. The ChIL-26 cDNA encodes an 82-amino-acid protein whose amino acid sequence has 22.63, 46.31 and 43.15% homology with human IL-26, pig IL-26 and canary IL-26, respectively. ChIL-26 signals through a heterodimeric receptor complex composed of the IL-20R1 and IL-10R2 chains, which are expressed primarily in the CU91 T cell line as well as CD4(+) and CD8(+) T cells. Recombinant ChIL-26 protein induced Th1 cytokines (IL-16 and IFN-γ), Th2 cytokines (IL-4, IL-6 and IL-10), Th17 cytokines (IL-17A, IL-17D, and IL-17F), and chemokine transcripts (mainly CCL3, CCL4, CCL5, CCL20 and CXCL13) in the CU91 T cell line and in CD4(+) and CD8(+) T cells, however IL-18 was not expressed in the CU91 T cell line. Taken together, the data demonstrates that T cells express the functional ChIL-26 receptor complex and that ChIL-26 modulates T cell proliferation and proinflammatory gene expression. To the best of our knowledge, this is the first report of cloned ChIL-26. We evaluated its functional roles, particularly in the pathogenic costimulation of T cells, which may be significantly associated with the induction of cytokines. PMID:27312894

  13. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs.

    Science.gov (United States)

    Lombardo, Laura; Pellitteri, Rosalia; Balazy, Michael; Cardile, Venera

    2008-05-01

    Our work contributes to the understanding of the mechanisms of drug resistance in epilepsis. This study aimed to investigate i) the levels of expression of P-glycoprotein (P-gp), and multidrug resistance-associated proteins (MRP)1 and 2, ii) the activation of the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), and iii) the relationship between increased P-gp and MRPs expression and PXR and CAR activation, in immortalized rat brain microvascular endothelial cell lines, GPNT and RBE4, following treatment with the antiepileptic drugs (AEDs), topiramate, phenobarbital, carbamazepine, tiagabine, levetiracetam, and phenytoin, using Western blotting and immunocytochemistry methods. Carbamazepine, phenobarbital and phenytoin induced the highest levels of P-gp and MPRs expression that was associated with increased activation of PXR and CAR receptors as compared to levetiracetam, tiagabine and topiramate. We conclude that P-gp and MRPs are differently overexpressed in GPNT and RBE4 by various AEDs and both PXR and CAR are involved in the drug-resistant epilepsy induced by carbamazepine, phenobarbital and phenytoin. PMID:18473823

  14. Overexpression of Bcl-2 enhances metastatic potential of human bladder cancer cells

    OpenAIRE

    Miyake, H; Hara, I.; Yamanaka, K.; Gohji, K.; Arakawa, S; Kamidono, S.

    1999-01-01

    We investigated the effect of Bcl-2 expression on the metastatic process of bladder cancer cells by using the Bcl-2-transfected human bladder cancer cell lines (KoTCC-1/BH) and the control vector only-transfected cell line (KoTCC-1/C), which were generated in our previous study (Miyake et al (1998) Oncogene 16: 933–934). When they were injected intravenously into athymic nude mice, KoTCC-1/BH formed more than three times as many tumour nodules in the lungs as did KoTCC-1/C. In addition, tumou...

  15. Characterization of naturally acquired multiple-drug resistance of Yoshida rat ascites hepatoma AH66 cell line.

    Science.gov (United States)

    Miyamoto, K; Wakabayashi, D; Minamino, T; Nomura, M; Wakusawa, S; Nakamura, S

    1996-01-01

    Characteristics of multiple-drug resistance of rat ascites hepatoma AH66, a cell line induced by dimethylaminoazobenzene and established as a transplantable tumor, were compared with those of AH66F, a drug sensitive line obtained from AH66. The AH66 cell line was resistant to vinblastine, adriamycin, SN-38 an active form of camptothesine, etoposide, and clorambucil by 10-fold or more than the AH66F cell line. The resistance of AH66 cells to vinblastine, adriamycin, and SN-38 was closely related to P-glycoprotein overexpression in the plasma membrane, because the resistance was significantly inhibited by verapamil. AH66 cells contained much glutahione and had a high activity of glutathione S-transferase P-form (GST-P), compared with AH66F cells, and resistance to clorambucil was decreased by treatment with buthionine sulfoximine, an inhibitor of glutathione synthesis. AH66 cells have a similar topoisomerase I activity, but about 6 times lower topoisomerase II activity than AH66F cells. Therefore, the resistance to etoposide and a part of the resistance to adriamycin of AH66 cells seems to depend upon this low topoisomerase II activity. These results, show that the AH66 cell line has high multiple-drug resistance compared with the AH66F cell line, by several mechanisms. Consequently, the AH66 and AH66F cell lines are useful to study naturally acquired multiple-drug resistance of hepatomas. PMID:8702243

  16. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest

    International Nuclear Information System (INIS)

    Cell division cycle associated 3 (CDCA3), part of the Skp1-cullin-F-box (SCF) ubiquitin ligase, refers to a trigger of mitotic entry and mediates destruction of the mitosis inhibitory kinase. Little is known about the relevance of CDCA3 to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of CDCA3 in OSCC. We evaluated CDCA3 mRNA and protein expression in both OSCC-derived cell lines and primary OSCCs and performed functional analyses of CDCA3 in OSCC-derived cells using the shRNA system. The CDCA3 expression at both the mRNA and protein levels was frequently up-regulated in all cell lines examined and primary tumors (mRNA, 51/69, 74 %; protein, 79/95, 83 %) compared to normal controls (p < 0.001). In contrast, no significant level of CDCA3 protein expression was seen in oral premalignant lesions (OPLs) (n = 20) compared with the expression in OSCCs. Among the clinical variables analyzed, the CDCA3 expression status was closely related to tumor size (p < 0.05). In addition, suppression of CDCA3 expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells by arresting cell-cycle progression at the G1 phase. Further, there was up-regulation of the cyclin-dependent kinase inhibitors (p21Cip1, p27Kip1, p15INK4B, and p16INK4A) in the knockdown cells. The current results showed that overexpression of CDCA3 occurs frequently during oral carcinogenesis and this overexpression might be associated closely with progression of OSCCs by preventing the arrest of cell-cycle progression at the G1 phase via decreased expression of the cyclin-dependent kinase inhibitors

  17. Over-expression of PUMA correlates with the apoptosis of spinal cord cells in rat neuropathic intermittent claudication model.

    Directory of Open Access Journals (Sweden)

    Bin Ma

    Full Text Available BACKGROUND: Neuropathic intermittent claudication (NIC is a typical clinical symptom of lumbar spinal stenosis and the apoptosis of neurons caused by cauda equina compression (CEC has been proposed as an important reason. Whereas, the factors and the mechanism involved in the process of apoptosis induced by CEC remain unclear. METHODOLOGY AND RESULTS: In our modified rat model of NIC, a trapezoid-shaped silicon rubber was inserted into the epidural space under the L5 and L6 vertebral plate. Obvious apoptosis was observed in spinal cord cells after compression by TUNEL assay. Simultaneously, qRT-PCR and immunohistochemistry showed that the expression levels of PUMA (p53 up-regulated modulator of apoptosis and p53 were upregulated significantly in spinal cord under compression, while the expression of p53 inhibitor MDM2 and SirT2 decreased in the same region. Furthermore, CEC also resulted in the upregulation of Bcl-2 pro-apoptotic genes expression and caspase-3 activation. With the protection of Methylprednisolone, the upregulation of PUMA and p53 expression as well as the decrease of MDM2 and SirT2 in spinal cord were partially rescued in western bolt analysis. CONCLUSIONS: These results suggest that over-expression of PUMA correlates with CEC caused apoptosis of spinal cord cells, which is characterized by the increase of p53, Bax and Bad expression. PUMA upregulation might be crucial to induce apoptosis of spinal cord cells through p53-dependent pathway in CEC.

  18. Overexpression and altered nucleocytoplasmic distribution of Anopheles ovalbumin-like SRPN10 serpins in Plasmodium-infected midgut cells.

    Science.gov (United States)

    Danielli, Alberto; Barillas-Mury, Carolina; Kumar, Sanjeev; Kafatos, Fotis C; Loukeris, Thanasis G

    2005-02-01

    The design of effective, vector-based malaria transmission blocking strategies relies on a thorough understanding of the molecular and cellular interactions that occur during the parasite sporogonic cycle in the mosquito. During Plasmodium berghei invasion, transcription from the SRPN10 locus, encoding four serine protease inhibitors of the ovalbumin family, is strongly induced in the mosquito midgut. Herein we demonstrate that intense induction as well as redistribution of SRPN10 occurs specifically in the parasite-invaded midgut epithelial cells. Quantitative analysis establishes that in response to epithelial invasion, SRPN10 translocates from the nucleus to the cytoplasm and this is followed by strong SRPN10 overexpression. The invaded cells exhibit signs of apoptosis, suggesting a link between this type of intracellular serpin and epithelial damage. The SRPN10 gene products constitute a novel, robust and cell-autonomous marker of midgut invasion by ookinetes. The SRPN10 dynamics at the subcellular level confirm and further elaborate the 'time bomb' model of P. berghei invasion in both Anopheles stephensi and Anopheles gambiae. In contrast, this syndrome of responses is not elicited by mutant P. berghei ookinetes lacking the major ookinete surface proteins, P28 and P25. Molecular markers with defined expression patterns, in combination with mutant parasite strains, will facilitate dissection of the molecular mechanisms underlying vector competence and development of effective transmission blocking strategies. PMID:15659062

  19. Transient overexpression of Werner protein rescues starvation induced autophagy in Werner syndrome cells.

    Science.gov (United States)

    Maity, Jyotirindra; Bohr, Vilhelm A; Laskar, Aparna; Karmakar, Parimal

    2014-12-01

    Reduced autophagy may be associated with normal and pathological aging. Here we report a link between autophagy and Werner protein (WRNp), mutated in Werner syndrome, the human premature aging Werner syndrome (WS). WRN mutant fibroblast AG11395 and AG05229 respond weakly to starvation induced autophagy compared to normal cells. While the fusion of phagosomes with lysosome is normal, WS cells contain fewer autophagy vacuoles. Cellular starvation autophagy in WS cells is restored after transfection with full length WRN. Further, siRNA mediated silencing of WRN in the normal fibroblast cell line WI-38 results in decreased autophagy and altered expression of autophagy related proteins. Thus, our observations suggest that WRN may have a role in controlling autophagy and hereby cellular maintenance. PMID:25257404

  20. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer

    International Nuclear Information System (INIS)

    Highlights: ► JMJD2B is required for cell proliferation and in vivo tumorigenesis. ► JMJD2B depletion induces apoptosis and/or cell cycle arrest. ► JMJD2B depletion activates DNA damage response and enhances p53 stabilization. ► JMJD2B is overexpressed in human primary gastric cancer. -- Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role of JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21CIP1 proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.

  1. Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum.

    Science.gov (United States)

    Gómez Pérez, Verónica; García-Hernandez, Raquel; Corpas-López, Victoriano; Tomás, Ana M; Martín-Sanchez, Joaquina; Castanys, Santiago; Gamarro, Francisco

    2016-08-01

    Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania infantum, is one of the most important zoonotic diseases affecting dogs and humans in the Mediterranean area. The presence of infected dogs as the main reservoir host of L. infantum is regarded as the most significant risk for potential human infection. We have studied the susceptibility profile to antimony and other anti-leishmania drugs (amphotericin B, miltefosine, paromomycin) in Leishmania infantum isolates extracted from a dog before and after two therapeutic interventions with meglumine antimoniate (subcutaneous Glucantime(®), 100 mg/kg/day for 28 days). After the therapeutic intervention, these parasites were significantly less susceptible to antimony than pretreatment isolate, presenting a resistance index of 6-fold to Sb(III) for promastigotes and >3-fold to Sb(III) and 3-fold to Sb(V) for intracellular amastigotes. The susceptibility profile of this resistant L. infantum line is related to a decreased antimony uptake due to lower aquaglyceroporin-1 expression levels. Additionally, other mechanisms including an increase in thiols and overexpression of enzymes involved in thiol metabolism, such as ornithine decarboxylase, trypanothione reductase, mitochondrial tryparedoxin and mitochondrial tryparedoxin peroxidase, could contribute to the resistance as antimony detoxification mechanisms. A major contribution of this study in a canine L. infantum isolate is to find an antimony-resistant mechanism similar to that previously described in other human clinical isolates. PMID:27317865

  2. Crucial role of HMGA1 in the self-renewal and drug resistance of ovarian cancer stem cells

    Science.gov (United States)

    Kim, Dae Kyoung; Seo, Eun Jin; Choi, Eun J; Lee, Su In; Kwon, Yang Woo; Jang, Il Ho; Kim, Seung-Chul; Kim, Ki-Hyung; Suh, Dong-Soo; Seong-Jang, Kim; Lee, Sang Chul; Kim, Jae Ho

    2016-01-01

    Cancer stem cells are a subpopulation of cancer cells characterized by self-renewal ability, tumorigenesis and drug resistance. The aim of this study was to investigate the role of HMGA1, a chromatin remodeling factor abundantly expressed in many different cancers, in the regulation of cancer stem cells in ovarian cancer. Spheroid-forming cancer stem cells were isolated from A2780, SKOV3 and PA1 ovarian cancer cells by three-dimensional spheroid culture. Elevated expression of HMGA1 was observed in spheroid cells along with increased expression of stemness-related genes, such as SOX2, KLF4, ALDH, ABCB1 and ABCG2. Furthermore, spheroid A2780 cells, compared with adherent cells, showed higher resistance to chemotherapeutic agents such as paclitaxel and doxorubicin. HMGA1 knockdown in spheroid cells reduced the proliferative advantage and spheroid-forming efficiency of the cells and the expression of stemness-related genes. HMGA1 overexpression in adherent A2780 cells increased cancer stem cell properties, including proliferation, spheroid-forming efficiency and the expression of stemness-related genes. In addition, HMGA1 regulated ABCG2 promoter activity through HMGA1-binding sites. Knockdown of HMGA1 in spheroid cells reduced resistance to chemotherapeutic agents, whereas the overexpression of HMGA1 in adherent ovarian cancer cells increased resistance to chemotherapeutic agents in vitro. Furthermore, HMGA1-overexpressing A2780 cells showed a significant survival advantage after chemotherapeutic agent treatment in a xenograft tumorigenicity assay. Together, our results provide novel insights regarding the critical role of HMGA1 in the regulation of the cancer stem cell characteristics of ovarian cancer cells, thus suggesting that HMGA1 may be an important target in the development of therapeutics for ovarian cancer patients. PMID:27561949

  3. Nuclear translocation and overexpression of GAPDH by the hyper-pressure in retinal ganglion cell

    International Nuclear Information System (INIS)

    To investigate the effect of hyper-pressure on retinal ganglion cells (RGC-5), RGC-5 cells were exposed to an ambient hydrostatic pressure of 100 mm Hg. Upon treatment, the proliferation of RGC-5 cells was inhibited and neuronal apoptosis was detected by specific apoptosis marker TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling). To probe into the mechanism mediating the apoptosis of RGC-5 cells in 100 mm Hg, protein profile alterations following hyper-pressure treatment were examined using two-dimensional gel electrophoresis (2-DE) followed by MALDI-TOF. Out of the 400 protein spots of RGC-5 cells detected on 2-DE gels, 37 differentially expressed protein spots were further identified using in gel tryptic digestion and mass spectrometry. Among these proteins, glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) was significantly expressed 10 times more in 100 mm Hg than in normal pressure. The accumulation of GAPDH in the nucleus and its translocation from the cytosol to the nucleus in 100 mm Hg were observed using a microscope. These results suggest that the hyper-pressure-induced apoptosis in RGC-5 cells may be involved with not only the increase of GAPDH expression, but also the accumulation and the translocalization of GAPDH to the nucleus

  4. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  5. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  6. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    International Nuclear Information System (INIS)

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease

  7. Overexpression of the hydatidiform mole-related gene F10 inhibits apoptosis in A549 cells through downregulation of BCL2-associated X protein and caspase-3.

    Science.gov (United States)

    Song, Yali; Zhang, Gong; Zhu, Xiulan; Pang, Zhanjun; Xing, Fuqi; Quan, Song

    2012-09-01

    The aim of this study was to investigate how the overexpression of the hydatidiform mole-related gene F10 affects apoptosis in human lung cancer A549 cells. A549 cells were transfected with pEGFP-N1-F10 (A549-F10) or pEGFP-N1 empty vector (A549-empty). Untransfected A549, A549-F10 or A549-empty cells were examined using the MTT cell proliferation assay and the TUNEL-FITC/Hoechst 33258 apoptosis assay. Western blotting was used to examine the expression levels of the pro-apoptotic genes, BCL2-associated X protein (BAX) and caspase-3. F10 was stably expressed in A549 cells. From 12 h, A549-F10 cells proliferated markedly faster than the untransfected and A549-empty cells. F10 overexpression also significantly inhibited apoptosis, as shown by the reduced number of TUNEL and Hoechst 33258 double-positive cells. This inhibition was likely due to an F10-induced reduction in the BAX and caspase-3 levels. The results of this study indicate that F10 overexpression inhibits apoptosis in A549 cells through the downregulation of the pro-apoptotic genes BAX and caspase-3. PMID:23741243

  8. FER tyrosine kinase (FER) overexpression mediates resistance to quinacrine through EGF-dependent activation of NF-κB

    OpenAIRE

    Guo, Canhui; Stark, George R.

    2011-01-01

    Quinacrine, a drug with antimalarial and anticancer activities that inhibits NF-κB and activates p53, has progressed into phase II clinical trials in cancer. To further elucidate its mechanism of action and identify pathways of drug resistance, we used an unbiased method for validation-based insertional mutagenesis to isolate a quinacrine-resistant cell line in which an inserted CMV promoter drives overexpression of the FER tyrosine kinase (FER). Overexpression of FER from a cDNA confers quin...

  9. Enhancer of Zeste Homolog 2 Overexpression in Nasopharyngeal Carcinoma: An Independent Poor Prognosticator That Enhances Cell Growth

    International Nuclear Information System (INIS)

    Purpose: As a key component of polycomb-repressive complex 2, enhancer of zeste homolog 2 (EZH2) represses target genes through histone methylation and is frequently overexpressed and associated with poor prognosis in common carcinomas. For the first time, we reported EZH2 expression and its biological and clinical significance in nasopharyngeal carcinoma (NPC). Methods and Materials: In NPC cell lines and specimens, endogenous expression of EZH2 mRNA and protein was determined by semiquantitative reverse transcription–polymerase chain reaction and immunoblotting, respectively. To analyze the effect on cell growth, stable silencing of EZH2 was established in EZH2-expressing TW02 NPC cells with RNA interference. EZH2 immunolabeling was assessable for 89 primary NPC biopsy samples and correlated with clinicopathological variables, disease-specific survival (DSS), and overall survival (OS). Results: Growth activity of TW02 cells was significantly suppressed (p < 0.001) with stable EZH2 silencing. Compared with normal nasopharyngeal tissue, expression levels of EZH2 transcript and protein were apparently upregulated in NPC specimens. As a continuous variable, higher EZH2 expression preferentially occurred in NPCs of T3 to T4 stages (p = 0.03) and significantly predicted inferior DSS (p = 0.0010) and OS (p = 0.004). The prognostic implications for DSS (p = 0.010) and OS (p = 0.006) still remained valid when using the median (≥60%) of EZH2 immunolabeling index to dichotomize the cohort. In the multivariate model, higher EZH2 expression was an independent adverse factor of both DSS (p = 0.012) and OS (p = 0.011), along with American Joint Committee on Cancer Stages III to IV (p = 0.024 for DSS, p = 0.017 for OS). Conclusion: At least partly through promoting cell growth, EZH2 implicates disease progression, confers tumor aggressiveness, and represents an independent adverse prognosticator in patients with NPC.

  10. Overexpression of GRß in colonic mucosal cell line partly reflects altered gene expression in colonic mucosa of patients with inflammatory bowel disease.

    Science.gov (United States)

    Nagy, Zsolt; Acs, Bence; Butz, Henriett; Feldman, Karolina; Marta, Alexa; Szabo, Peter M; Baghy, Kornelia; Pazmany, Tamas; Racz, Karoly; Liko, Istvan; Patocs, Attila

    2016-01-01

    The glucocorticoid receptor (GR) plays a crucial role in inflammatory responses. GR has several isoforms, of which the most deeply studied are the GRα and GRß. Recently it has been suggested that in addition to its negative dominant effect on GRα, the GRß may have a GRα-independent transcriptional activity. The GRß isoform was found to be frequently overexpressed in various autoimmune diseases, including inflammatory bowel disease (IBD). In this study, we wished to test whether the gene expression profile found in a GRß overexpressing intestinal cell line (Caco-2GRß) might mimic the gene expression alterations found in patients with IBD. Whole genome microarray analysis was performed in both normal and GRß overexpressing Caco-2 cell lines with and without dexamethasone treatment. IBD-related genes were identified from a meta-analysis of 245 microarrays available in online microarray deposits performed on intestinal mucosa samples from patients with IBD and healthy individuals. The differentially expressed genes were further studied using in silico pathway analysis. Overexpression of GRß altered a large proportion of genes that were not regulated by dexamethasone suggesting that GRß may have a GRα-independent role in the regulation of gene expression. About 10% of genes differentially expressed in colonic mucosa samples from IBD patients compared to normal subjects were also detected in Caco-2 GRß intestinal cell line. Common genes are involved in cell adhesion and cell proliferation. Overexpression of GRß in intestinal cells may affect appropriate mucosal repair and intact barrier function. The proposed novel role of GRß in intestinal epithelium warrants further studies. PMID:26480216

  11. Myocardial injection of apelin-overexpressing bone marrow cells improves cardiac repair via upregulation of Sirt3 after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Lanfang Li

    Full Text Available Our previous study shows that treatment with apelin increases bone marrow cells (BMCs recruitment and promotes cardiac repair after myocardial infarction (MI. The objective of this study was to investigate whether overexpression of apelin in BMCs improved cell therapy and accelerated cardiac repair and functional recovery in post-MI mice. Mouse myocardial infarction was achieved by coronary artery ligation and BMCs overexpressing apelin (apelin-BMCs or GFP (GFP-BMCs were injected into ischemic area immediately after surgery. In vitro, exposure of cultured BMCs to apelin led to a gradual increase in SDF-1á and CXCR4 expression. Intramyocardial delivery of apelin-BMCs in post-MI mice resulted in a significant increase number of APJ⁺/c-kit⁺/Sca1⁺ cells in the injected area compared to GFP-BMCs treated post-MI mice. Treatment with apelin-BMCs increased expression of VEGF, Ang-1 and Tie-2 in post-MI mice. Apelin-BMCs treatment also significantly increased angiogenesis and attenuated cardiac fibrosis formation in post-MI mice. Most importantly, treatment with apelin-BMCs significantly improved left ventricular (LV systolic function in post-MI mice. Mechanistically, Apelin-BMCs treatment led to a significant increase in Sirtuin3 (Sirt3 expression and reduction of reactive oxygen species (ROS formation. Treatment of cultured BMCs with apelin also increased Notch3 expression and Akt phosphorylation. Apelin treatment further attenuated stress-induced apoptosis whereas knockout of Sirt3 abolished anti-apoptotic effect of apelin in cultured BMCs. Moreover, knockout of Sirt3 significantly attenuated apelin-BMCs-induced VEGF expression and angiogenesis in post-MI mice. Knockout of Sirt3 further blunted apelin-BMCs-mediated improvement of cardiac repair and systolic functional recovery in post-MI mice. These data suggest that apelin improves BMCs therapy on cardiac repair and systolic function in post-MI mice. Upregulation of Sirt3 may contribute to the

  12. Myocardial injection of apelin-overexpressing bone marrow cells improves cardiac repair via upregulation of Sirt3 after myocardial infarction.

    Science.gov (United States)

    Li, Lanfang; Zeng, Heng; Hou, Xuwei; He, Xiaochen; Chen, Jian-Xiong

    2013-01-01

    Our previous study shows that treatment with apelin increases bone marrow cells (BMCs) recruitment and promotes cardiac repair after myocardial infarction (MI). The objective of this study was to investigate whether overexpression of apelin in BMCs improved cell therapy and accelerated cardiac repair and functional recovery in post-MI mice. Mouse myocardial infarction was achieved by coronary artery ligation and BMCs overexpressing apelin (apelin-BMCs) or GFP (GFP-BMCs) were injected into ischemic area immediately after surgery. In vitro, exposure of cultured BMCs to apelin led to a gradual increase in SDF-1á and CXCR4 expression. Intramyocardial delivery of apelin-BMCs in post-MI mice resulted in a significant increase number of APJ⁺/c-kit⁺/Sca1⁺ cells in the injected area compared to GFP-BMCs treated post-MI mice. Treatment with apelin-BMCs increased expression of VEGF, Ang-1 and Tie-2 in post-MI mice. Apelin-BMCs treatment also significantly increased angiogenesis and attenuated cardiac fibrosis formation in post-MI mice. Most importantly, treatment with apelin-BMCs significantly improved left ventricular (LV) systolic function in post-MI mice. Mechanistically, Apelin-BMCs treatment led to a significant increase in Sirtuin3 (Sirt3) expression and reduction of reactive oxygen species (ROS) formation. Treatment of cultured BMCs with apelin also increased Notch3 expression and Akt phosphorylation. Apelin treatment further attenuated stress-induced apoptosis whereas knockout of Sirt3 abolished anti-apoptotic effect of apelin in cultured BMCs. Moreover, knockout of Sirt3 significantly attenuated apelin-BMCs-induced VEGF expression and angiogenesis in post-MI mice. Knockout of Sirt3 further blunted apelin-BMCs-mediated improvement of cardiac repair and systolic functional recovery in post-MI mice. These data suggest that apelin improves BMCs therapy on cardiac repair and systolic function in post-MI mice. Upregulation of Sirt3 may contribute to the protective

  13. Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells

    NARCIS (Netherlands)

    J.J. Molenaar; M.E. Ebus; D. Geerts; J. Koster; F. Lamers; L.J. Valentijn; E.M. Westerhout; R. Versteeg; H.N. Caron

    2009-01-01

    Two genes have a synthetically lethal relationship when the silencing or inhibiting of 1 gene is only lethal in the context of a mutation or activation of the second gene. This situation offers an attractive therapeutic strategy, as inhibition of such a gene will only trigger cell death in tumor cel

  14. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  15. Olig2 overexpression induces the in vitro differentiation of neural stem cells into mature oligodendrocytes

    NARCIS (Netherlands)

    Copray, Sjef; Balasubramaniyan, Veerakumar; Levenga, Josien; Liem, Robert; Boddeke, Erik; de Bruijn, Joost D.

    2006-01-01

    Differentiation induction of neural stem cells (NSCs) into oligodendrocytes during embryogenesis is the result of a complex interaction between local induction factors and intracellular transcription factors. At the early stage of differentiation, in particular, the helix-loop-helix transcription fa

  16. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato

    Czech Academy of Sciences Publication Activity Database

    Albacete, A.; Cantero-Navarro, E.; Grosskinsky, D. K.; Arias, M.L.; Balibrea, M. E.; Bru, R.; Fragner, L.; Ghanem, M. E.; de la Cruz Gonzalez, M.; Hernández, J. A.; Martínez-Andújar, C.; van der Graaff, E.; Weckwerth, W.; Zellnig, G.; Pérez-Alfocea, F.; Roitsch, Thomas

    2015-01-01

    Roč. 66, č. 3 (2015), s. 863-878. ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Cell wall invertase * cytokinins * drought stress * ethylene * source–sink relationships * tomato Subject RIV: EH - Ecology, Behaviour Impact factor: 5.526, year: 2014

  17. Hydroquinone induces DNA hypomethylation-independent overexpression of retroelements in human leukemia and hematopoietic stem cells.

    Science.gov (United States)

    Conti, Anastasia; Rota, Federica; Ragni, Enrico; Favero, Chiara; Motta, Valeria; Lazzari, Lorenza; Bollati, Valentina; Fustinoni, Silvia; Dieci, Giorgio

    2016-06-10

    Hydroquinone (HQ) is an important benzene-derived metabolite associated with acute myelogenous leukemia risk. Although altered DNA methylation has been reported in both benzene-exposed human subjects and HQ-exposed cultured cells, the inventory of benzene metabolite effects on the epigenome is only starting to be established. In this study, we used a monocytic leukemia cell line (THP-1) and hematopoietic stem cells (HSCs) from cord blood to investigate the effects of HQ treatment on the expression of the three most important families of retrotransposons in the human genome: LINE-1, Alu and Endogenous retroviruses (HERVs), that are normally subjected to tight epigenetic silencing. We found a clear tendency towards increased retrotransposon expression in response to HQ exposure, more pronounced in the case of LINE-1 and HERV. Such a partial loss of silencing, however, was generally not associated with HQ-induced DNA hypomethylation. On the other hand, retroelement derepression was also observed in the same cells in response to the hypomethylating agent decitabine. These observations suggest the existence of different types of epigenetic switches operating at human retroelements, and point to retroelement activation in response to benzene-derived metabolites as a novel factor deserving attention in benzene carcinogenesis studies. PMID:27154225

  18. Nras Overexpression Results in Granulocytosis, T-Cell Expansion and Early Lethality in Mice

    DEFF Research Database (Denmark)

    Lassen, Louise Berkhoudt; Gonzalez, Borja Ballarin; Schmitz, Alexander;

    2012-01-01

    after birth, animals started to progressively lose weight and die before weaning. Heterozygous mice showed a moderate increase of T-cells and granulocytes but survived to adulthood and were fertile. In homozygous and heterozygous mice Gfi1 and Gcsf mRNA levels were upregulated, possibly explaining the...

  19. The consensus sequence of FAMLF alternative splice variants is overexpressed in undifferentiated hematopoietic cells

    Directory of Open Access Journals (Sweden)

    W.L. Chen

    2015-07-01

    Full Text Available The familial acute myeloid leukemia related factor gene (FAMLF was previously identified from a familial AML subtractive cDNA library and shown to undergo alternative splicing. This study used real-time quantitative PCR to investigate the expression of the FAMLF alternative-splicing transcript consensus sequence (FAMLF-CS in peripheral blood mononuclear cells (PBMCs from 119 patients with de novo acute leukemia (AL and 104 healthy controls, as well as in CD34+ cells from 12 AL patients and 10 healthy donors. A 429-bp fragment from a novel splicing variant of FAMLF was obtained, and a 363-bp consensus sequence was targeted to quantify total FAMLF expression. Kruskal-Wallis, Nemenyi, Spearman's correlation, and Mann-Whitney U-tests were used to analyze the data. FAMLF-CS expression in PBMCs from AL patients and CD34+ cells from AL patients and controls was significantly higher than in control PBMCs (P<0.0001. Moreover, FAMLF-CS expression in PBMCs from the AML group was positively correlated with red blood cell count (rs =0.317, P=0.006, hemoglobin levels (rs =0.210, P=0.049, and percentage of peripheral blood blasts (rs =0.256, P=0.027, but inversely correlated with hemoglobin levels in the control group (rs =–0.391, P<0.0001. AML patients with high CD34+ expression showed significantly higher FAMLF-CS expression than those with low CD34+ expression (P=0.041. Our results showed that FAMLF is highly expressed in both normal and malignant immature hematopoietic cells, but that expression is lower in normal mature PBMCs.

  20. Effect of multidrug resistance gene-1(mdr1) overexpression on in-vitro uptake of 99mTc-sestaMIBI in murine L1210 leukemia cells

    International Nuclear Information System (INIS)

    To determine whether 99mTc-MIBI is recognized by the multidrug resistant P-glycoprotein (Pgp), we have measured quantitatively 99mTc-MIBI uptake in cancer cells. The effects of various Pgp reversing agents on cellular 99mTc-MIBI uptake were also investigated in the presence of multidrug resistance gene-1 (mdr 1 gene) overexpression. We measured percentage uptake of 99mTc-MIBI at different incubation temperatures both in mdr1 positive and negative cells. The effects of verapamil, cyclosporin, and dipyridamole on cellular uptake of 99mTc-MIBI were also evaluated with or without overexpression of mdr1 gene in cultured murine leukemia L1210 cells. The mdr1 gene expressing cell lines were effectively induced in in vitro with continuous application of low-dose adriamycin or vincristine. Cellular uptake of 99mTc-MIBI was higher in mdr1 negative L1210 cells than those of mdr1 positive cells, and higher when incubated in 37 .deg. C than 4 .deg. C. In the presence of verapamil, cyclosporin or dipyridamole, 99mTc-MIBI uptake was increased upto 604% in mdr1 positive cells. Cellular uptake of 99mTc-MIBI is lower in leukemia cells over-expressing mdr1 gene, and MDR-reversing agents increase cellular uptake. These results suggest the 99mTc-MIBI can be used for characterizing Pgp expression and developing MDR-reversing agents in vitro

  1. Suppression of WIF-1 through promoter hypermethylation causes accelerated proliferation of the aryl hydrocarbon receptor (AHR) overexpressing MCF10AT1 breast cancer cells

    International Nuclear Information System (INIS)

    Highlights: → 5-Aza-2'-deoxycytidine (AZ) causes proliferation suppression and ERα recovery. → AZ down-regulates Wnt/β-catenin pathway mainly by increasing WIF-1 expression. → Both ERα and AhR have some effects on DNA methylation in breast cancer cells. → Artificial overexpression of ERα in ER negative cells increases WIF-1 expression. → WIF-1 promoter hypermethylation is one of the major causes for accelerated proliferation. -- Abstract: The cause for increased cell proliferation in AHR overexpressing breast cancer cells still remains unknown. Here we studied the molecular basis of aggressive cell proliferation of an AHR overexpressing and ERα functionally down-regulated MCF10AT1 cell line, designated as P20E, in comparison to a matched sub-line, P20C with normal AHR expression and ERα function. We found that a 4-day treatment of P20E cells with 5-aza-2'-deoxycytidine (AZ) caused a significant suppression of cell proliferation. Such an effect of AZ was accompanied with the significant recovery of ERα function. Among diagnostic markers of AZ-induced cellular changes we found conspicuous up-regulation of mRNA expression of Wnt inhibitory factor-1 (WIF-1), particularly in P20E. The possibility of AZ-induced demethylation on the promoter of WIF-1 gene was confirmed through methylation specific PCR assay. Such AZ-induced changes in P20E cells were also accompanied with the decrease in the binding of nuclear proteins to the 32P labeled TRE (TCF response element) and the reduced accumulation of β-catenin protein in the cell nucleus, indicating the importance of Wnt/β-catenin pathway in maintaining the increased cell proliferation in P20E line over P20C line. The importance of WIF-1 in this regard has been validated by transfecting cells with siRNA against WIF-1, which caused an increase in cell proliferation. Moreover, artificial overexpression of ERα in both P20E as well as MDA-MB-231 cells increased the mRNA expression of WIF-1. Together these

  2. HOXA1 is overexpressed in oral squamous cell carcinomas and its expression is correlated with poor prognosis

    Directory of Open Access Journals (Sweden)

    Bitu Carolina

    2012-04-01

    Full Text Available Abstract Background HOX genes encode homeodomain-containing transcription factors involved in the regulation of cellular proliferation and differentiation during embryogenesis. However, members of this family demonstrated oncogenic properties in some malignancies. The present study investigated whether genes of the HOXA cluster play a role in oral cancer. Methods In order to identify differentially expressed HOXA genes, duplex RT-PCR in oral samples from healthy mucosa and squamous cell carcinoma was used. The effects of HOXA1 on proliferation, apoptosis, adhesion, invasion, epithelial-mesenchymal transition (EMT and anchorage-independent growth were assessed in cells with up- and down-regulation of HOXA1. Immunohistochemical analysis using a tissue microarray (TMA containing 127 oral squamous cell carcinomas (OSCC was performed to determine the prognostic role of HOXA1 expression. Results We showed that transcripts of HOXA genes are more abundant in OSCC than in healthy oral mucosa. In particular, HOXA1, which has been described as one of the HOX members that plays an important role in tumorigenesis, was significantly more expressed in OSCCs compared to healthy oral mucosas. Further analysis demonstrated that overexpression of HOXA1 in HaCAT human epithelial cells promotes proliferation, whereas downregulation of HOXA1 in human OSCC cells (SCC9 cells decreases it. Enforced HOXA1 expression in HaCAT cells was not capable of modulating other events related to tumorigenesis, including apoptosis, adhesion, invasion, EMT and anchorage-independent growth. A high number of HOXA1-positive cells was significantly associated with T stage, N stage, tumor differentiation and proliferative potential of the tumors, and was predictive of poor survival. In multivariate analysis, HOXA1 was an independent prognostic factor for OSCC patients (HR: 2.68; 95% CI: 1.59-2.97; p = 0.026. Conclusion Our findings indicate that HOXA1 may contribute to oral carcinogenesis

  3. Ethanol Enhances the Interaction of Breast Cancer Cells Over-Expressing ErbB2 With Fibronectin

    Science.gov (United States)

    Xu, Mei; Bower, Kimberly A.; Chen, Gang; Shi, Xianglin; Dong, Zheng; Ke, Zunji; Luo, Jia

    2016-01-01

    Background Ethanol is a tumor promoter and may enhance the metastasis of breast cancer. However, the underlying cellular / molecular mechanisms remain unknown. Amplification of ErbB2 or HER2, a receptor tyrosine kinase of the ErbB family, is found in 20 to 30% of patients with breast cancer. We have previously demonstrated that the effect of ethanol on the migration / invasion of breast cancer cells positively correlated with the expression levels of ErbB2. Adhesion to the extracellular matrix (ECM) is an important initial step for cancer cell invasion and metastasis. In this study, we investigated the effects of ethanol on the adhesion of MCF7 breast cancer cells over-expressing ErbB2 (MCF7ErbB2) to human plasma fibronectin. Methods To test the hypothesis that ethanol may enhance the attachment of human breast cancer cells to fibronectin, an important component of the ECM, we evaluated the effect of ethanol on the expression of focal adhesions, cell attachment, and ErbB2 signaling in cultured MCF7ErbB2 cells. Results Exposure to ethanol drastically enhanced the adhesion of MCFErbB2 cells to fibronectin and increased the expression of focal adhesions. Ethanol induced phosphorylation of ErbB2 at Tyr1248, FAK at Tyr861, and cSrc at Try216. Ethanol promoted the interaction among ErbB2, FAK, and cSrc, and the formation of a focal complex. AG825, a selective ErbB2 inhibitor, attenuated the ethanol-induced phosphorylation of ErbB2 and its association with FAK. Furthermore, AG825 blocked ethanol-promoted cell / fibronectin adhesion as well as the expression of focal adhesions. Conclusions Our results suggest that ethanol enhances the adhesion of breast cancer cells to fibronectin in an ErbB2-dependent manner, and the FAK pathway plays an important role in ethanol-induced formation of a focal complex. PMID:20201928

  4. Overexpression of tau in a nonneuronal cell induces long cellular processes

    OpenAIRE

    1991-01-01

    The ways in which the various microtubule-associated proteins (MAPs) contribute to cellular function are unknown beyond the ability of these proteins to modify microtubule dynamics. One member of the MAP family, tau protein, is restricted in its distribution to the axonal compartment of neurons, and has therefore prompted studies that attempt to relate tau function to the generation or maintenance of this structure. Sf9 cells from a moth ovary, when infected with a baculovirus containing a ta...

  5. α-Synuclein overexpression increases dopamine toxicity in BE(2-M17 cells

    Directory of Open Access Journals (Sweden)

    Miller David W

    2010-03-01

    Full Text Available Abstract Background Oxidative stress has been proposed to be involved in the pathogenesis of Parkinson's disease (PD. A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine and produce various toxic molecules, i.e., free radicals and quinone species. α-Synuclein, a protein found in Lewy bodies characteristic of PD, is also thought to be involved in the pathogenesis of PD and point mutations and multiplications in the gene coding for α-synuclein have been found in familial forms of PD. Results We used dopaminergic human neuroblastoma BE(2-M17 cell lines stably transfected with WT or A30P mutant α-synuclein to characterize the effect of α-synuclein on dopamine toxicity. Cellular toxicity was analyzed by lactate dehydrogenase assay and by fluorescence-activated cell sorter analysis. Increased expression of either wild-type or mutant α-synuclein enhances the cellular toxicity induced by the accumulation of intracellular dopamine or DOPA. Conclusions Our results suggest that an interplay between dopamine and α-synuclein can cause cell death in a neuron-like background. The data presented here are compatible with several models of cytotoxicity, including the formation of α-synuclein oligomers and impairment of the lysosomal degradation.

  6. Retraction: "Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells" by Bao et al.

    Science.gov (United States)

    2016-08-01

    The above article, published online on April 18, 2011 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the second author that found Figures 1C and 4C to be inappropriately re-used and re-labeled. REFERENCE Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. 2011. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 112:2296-2306; doi: 10.1002/jcb.23150. PMID:27301890

  7. Nanovesicle-mediated systemic delivery of microRNA-34a for CD44 overexpressing gastric cancer stem cell therapy.

    Science.gov (United States)

    Jang, Eunji; Kim, Eunjung; Son, Hye-Young; Lim, Eun-Kyung; Lee, Hwunjae; Choi, Yuna; Park, Kwangyeol; Han, Seungmin; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2016-10-01

    The cancer stem cell (CSC) hypothesis postulates that cancer cells overexpressing CD44 are marked as CSCs that cause tumorigenesis and recurrence. This hypothesis suggests that CD44 is a potential therapeutic target that can interfere with CSCs qualities. MicroRNA-34a (miR-34a) is a promising candidate for CD44 repression-based cancer therapy as it has been reported to inhibit proliferation, metastasis, and survival of CD44-positive CSCs. Here, we used nanovesicles containing PLI/miR complexes (NVs/miR) to systemically deliver miR-34a and induce miR-34a-triggered CD44 suppression in orthotopically and subcutaneously implanted tumors in nude mice. Poly(l-lysine-graft-imidazole) (PLI) condenses miRs and is functionally modified to deliver miRs to the site of action by buffering effect of imidazole residues under endosomal pH. Indeed, NVs/miR consisting of PEGylated lipids enveloping PLI/miR complexes greatly reduced inevitable toxicity of polycations by compensating their surface charge and markedly improved their in vivo stability and accumulation to tumor tissue compared to PLI/miR polyplexes. Our NVs-mediated miR-34a delivery system specifically increased endogenous target miR levels, thereby attenuating proliferation and migration of gastric cancer cells by repressing the expression of CD44 with decreased levels of Bcl-2, Oct 3/4 and Nanog genes. Our strategy led to a greater therapeutic outcome than PLI-based delivery with highly selective tumor cell death and significantly delayed tumor growth in CD44-positive tumor-bearing mouse models, thus providing a fundamental therapeutic window for CSCs. PMID:27497057

  8. Overexpression of UbcH10 alternates the cell cycle profile and accelerate the tumor proliferation in colon cancer

    Directory of Open Access Journals (Sweden)

    Hatoh Shinji

    2009-03-01

    Full Text Available Abstract Background UbcH10 participates in proper metaphase to anaphase transition, and abrogation of UbcH10 results in the premature separation of sister chromatids. To assess the potential role of UbcH10 in colon cancer progression, we analyzed the clinicopathological relevance of UbcH10 in colon cancer. Methods We firstly screened the expression profile of UbcH10 in various types of cancer tissues as well as cell lines. Thereafter, using the colon cancer cells line, we manipulated the expression of UbcH10 and evaluated the cell cycle profile and cellular proliferations. Furthermore, the clinicopathological significance of UbcH10 was immunohistologically evaluated in patients with colon cancer. Statistical analysis was performed using the student's t-test and Chi-square test. Results Using the colon cancer cells, depletion of UbcH10 resulted in suppression of cellular growth whereas overexpression of UbcH10 promoted the cellular growth and oncogenic cellular growth. Mitotic population was markedly alternated by the manipulation of UbcH10 expression. Immunohistochemical analysis indicated that UbcH10 was significantly higher in colon cancer tissue compared with normal colon epithelia. Furthermore, the clinicopathological evaluation revealed that UbcH10 was associated with high-grade histological tumors. Conclusion The results show the clinicopathological significance of UbcH10 in the progression of colon cancer. Thus UbcH10 may act as a novel biomarker in patients with colon cancer.

  9. Effect of Mst1 overexpression on the growth of human hepatocellular carcinoma HepG2 cells and the sensitivity to cisplatin in vitro

    Institute of Scientific and Technical Information of China (English)

    Chuanming Xu; Chunju Liu; Wei Huang; Shuo Tu; Fusheng Wan

    2013-01-01

    Mammalian STE20-like kinase 1 (Mst1) is the mammalian homologue of Drosophila Hippo,a major inhibitor of cell proliferation in Drosophila.It ubiquitously encodes serine threonine kinase that belongs to the family of protein kinases related to yeast STE20,and is involved in cell proliferation,apoptosis,oncogenesis,and organ growth.Recent studies have shown that Mst1 has tumor-suppressor function,and the deletion or mutation of Mst1 is reported to be associated with tumorigenesis.To investigate the effect of overexpression of Mst1 on the growth of human liver cancer cell line HepG2 cells and the sensitivity to cisplatin in vitro,here we constructed recombinant eukaryotic expression vector pEGFP-N1-Mst1 containing Mst1 gene,and transiently transfected into HepG2 cells.The effects of Mst1 overexpression on the cell proliferation and apoptosis,the phosphorylation status of Yes-associated protein,and the mRNA transcript levels of connective tissue growth factor (CTGF),amphiregulin (AREG),and birc5 (Survivin) were determined.Results showed that overexpression of Mst1 inhibited cell proliferation,induced apoptosis of HepG2 cells,promoted YAP (Ser127) phosphorylation,and downregulated the mRNA expression of CTGF,AREG,and Survivin.We also investigated the relationship between the expression and cleavage of Mst1 and cisplatin-induced cell death.We found that Mst1 overexpression could induce cisplatin chemosensitivity,and cisplatin could promote the cleavage of Mst1 without affecting the expression of Mst1.Overall,our results indicated that Mst1 might be a promising anticancer target.

  10. Candidate Antimetastasis Drugs Suppress the Metastatic Capacity of Breast Cancer Cells by Reducing Membrane Fluidity.

    Science.gov (United States)

    Zhao, Weina; Prijic, Sara; Urban, Bettina C; Tisza, Michael J; Zuo, Yan; Li, Lin; Tan, Zhi; Chen, Xiaoling; Mani, Sendurai A; Chang, Jeffrey T

    2016-04-01

    Despite the high mortality from metastatic cancer, therapeutic targets to prevent metastasis are limited. Efforts to identify genetic aberrations that predispose tumors to metastasis have been mostly unsuccessful. To understand the nature of candidate targets for metastatic disease, we performed an in silico screen to identify drugs that can inhibit a gene expression signature associated with epithelial-mesenchymal transition (EMT). Compounds discovered through this method, including those previously identified, appeared to restrict metastatic capacity through a common mechanism, the ability to modulate the fluidity of cell membranes. Treatment of breast cancer cell lines with the putative antimetastasis agents reduced membrane fluidity, resulting in decreased cell motility, stem cell-like properties, and EMT in vitro, and the drugs also inhibited spontaneous metastasis in vivo When fluidity was unchanged, the antimetastasis compounds could no longer restrict metastasis, indicating a causal association between fluidity and metastasis. We further demonstrate that fluidity can be regulated by cellular cholesterol flux, as the cholesterol efflux channel ABCA1 potentiated metastatic behaviors in vitro and in vivo The requirement for fluidity was further supported by the finding in breast cancer patients that ABCA1 was overexpressed in 41% of metastatic tumors, reducing time to metastasis by 9 years. Collectively, our findings reveal increased membrane fluidity as a necessary cellular feature of metastatic potential that can be controlled by many currently available drugs, offering a viable therapeutic opportunity to prevent cancer metastasis. Cancer Res; 76(7); 2037-49. ©2016 AACR. PMID:26825169

  11. Single cell oil production on molasses by Yarrowia lipolytica strains overexpressing DGA2 in multicopy.

    Science.gov (United States)

    Gajdoš, Peter; Nicaud, Jean-Marc; Rossignol, Tristan; Čertík, Milan

    2015-10-01

    Yarrowia lipolytica is a promising platform for single cell oil production. It is well-known for its metabolism oriented toward utilization of hydrophobic substrates and accumulation of storage lipids. Multiple copies of DGA2 under constitutive promoter were introduced into the Q4 strain, a quadruple mutant deleted for the four acyltransferases (Δdga1, Δdga2, Δlro1, and Δare1) to improve lipid accumulation. The Q4-DGA2 x3 strain contains three copies of DGA2. Further increase in accumulation was accomplished by blocking the β-oxidation pathway through MFE1 gene deletion yielding Q4-Δmfe DGA2 x3. In order to use molasses as a substrate for single cell oil production, sucrose utilization was established by expressing the Saccharomyces cerevisiae SUC2 gene yielding Q4-SUC2 DGA2 x3 and Q4-Δmfe SUC2 DGA2 x3. During cultivation on sucrose medium with a carbon to nitrogen ratio of 80, both strains accumulated more than 40 % of lipids, which was a 2-fold increase in lipid storage. Q4-Δmfe SUC2 DGA2 x3 accumulated more lipids than Q4-SUC2 DGA2 x3 (49 vs. 43 %) but yielded less biomass (13.7 vs. 15 g/L). When grown on 8 % (v/v) molasses, both strains accumulated more than 30 % of lipids after 3 days, while biomass yield was higher in Q4-SUC2 DGA2 x3 (16.4 vs. 14.4 g/L). Further addition of molasses at 72 h resulted in higher biomass yield, 26.6 g/L for Q4-SUC2 DGA2 x3, without modification of lipid content. This work presents genetically modified strains of Y. lipolytica as suitable tools for direct conversion of industrial molasses into value added products based on single cell oils. PMID:26078110

  12. microRNA-10b Is Overexpressed and Critical for Cell Survival and Proliferation in Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Rekha Pal

    Full Text Available This study demonstrates the effects of miRNA-10b on medulloblastoma proliferation through transcriptional induction of the anti-apoptotic protein BCL2. Using a cancer specific miRNA-array, high expression of miRNA-10b in medulloblastoma cell lines compared to a normal cerebellar control was shown, and this was confirmed with real time PCR (RT-PCR. Two medulloblastoma cell lines (DAOY and UW228 were transiently transfected with control miRNA, miRNA-10b inhibitor or miRNA-10b mimic and subjected to RT-PCR, MTT, apoptosis, clonogenic assay and western blot analysis. Transfection of miRNA-10b inhibitor induced a significant down-regulation of miRNA-10b expression, inhibited proliferation, and induced apoptosis, while miRNA-10b mimic exerted an opposite effect. Inhibition of miRNA-10b abrogated the colony-forming capability of medulloblastoma cells, and markedly down-regulated the expression of BCL2. Down-regulation of BCL2 by antisense oligonucleotides or siRNA also significantly down-regulated miRNA-10b, suggesting that BCL2 is a major mediator of the effects of miRNA-10b. ABT-737 and ABT-199, potent inhibitors of BCL2, downregulated the expression of miRNA-10b and increased apoptosis. Analysis of miRNA-10b levels in 13 primary medulloblastoma samples revealed that the 2 patients with the highest levels of miRNA-10b had multiple recurrences (4.5 and died within 8 years of diagnosis, compared with the 11 patients with low levels of miRNA-10b who had a mean of 1.2 recurrences and nearly 40% long-term survival. The data presented here indicate that miRNA-10b may act as an oncomir in medulloblastoma tumorigenesis, and reveal a previously unreported mechanism with Bcl-2 as a mediator of the effects of miRNA-10b upon medulloblastoma cell survival.

  13. Overexpression of amyloid precursor protein inhibits neurite outgrowth and disrupts cytoskeleton in N2a cells

    Institute of Scientific and Technical Information of China (English)

    王泽芬; 王建枝

    2004-01-01

    @@ There is considerable evidence suggesting that altered metabolism of β-amyloid precursor protein (APP) and accumulation of its β-amyloid (Aβ) fragment are key features of Alzheimer's disease (AD). APP is a type Ⅰ integral membrane protein and consists of 695-770 amino acids encoded by differentially spliced mRNAs transcribed from a single gene located on human chromosome 21.1 The 695-amino acid APP is expressed preferentially in the brain. Aβ, the major component of senile plaques, is derived by proteolytic processing of APP by β-and γ-secretase and is constitutively released from most cells.

  14. Y-box-binding protein-1 (YB-1) promotes cell proliferation, adhesion and drug resistance in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Miao, Xiaobing; Wu, Yaxun; Wang, Yuchan; Zhu, Xinghua; Yin, Haibing; He, Yunhua; Li, Chunsun; Liu, Yushan; Lu, Xiaoyun; Chen, Yali; Shen, Rong; Xu, Xiaohong; He, Song

    2016-08-15

    YB-1 is a multifunctional protein, which has been shown to correlate with resistance to treatment of various tumor types. This study investigated the expression and biologic function of YB-1 in diffuse large B-cell lymphoma (DLBCL). Immunohistochemical analysis showed that the expression statuses of YB-1 and pYB-1(S102) were reversely correlated with the clinical outcomes of DLBCL patients. In addition, we found that YB-1 could promote the proliferation of DLBCL cells by accelerating the G1/S transition. Ectopic expression of YB-1 could markedly increase the expression of cell cycle regulators cyclin D1 and cyclin E. Furthermore, we found that adhesion of DLBCL cells to fibronectin (FN) could increase YB-1 phosphorylation at Ser102 and pYB-1(S102) nuclear translocation. In addition, overexpression of YB-1 could increase the adhesion of DLBCL cells to FN. Intriguingly, we found that YB-1 overexpression could confer drug resistance through cell-adhesion dependent and independent mechanisms in DLBCL. Silencing of YB-1 could sensitize DLBCL cells to mitoxantrone and overcome cell adhesion-mediated drug resistance (CAM-DR) phenotype in an AKT-dependent manner. PMID:27397581

  15. Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model

    OpenAIRE

    Chang Chin-Pao; Chen Ying-Yu; Tsao Zih-Jay; Wu Chia-Yung; Chen Bo-Yie; Chang Han-Hsin; Yang Chi-Rei; Lin David

    2011-01-01

    Abstract Background Hedgehog signalling has been implicated in prostate tumorigenesis in human subjects and mouse models, but its effects on transforming normal basal/stem cells toward malignant cancer stem cells remain poorly understood. Methods We produced pCX-shh-IG mice that overexpress Hedgehog protein persistently in adult prostates, allowing for elucidation of the mechanism during prostate cancer initiation and progression. Various markers were used to characterize and confirm the tran...

  16. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells

    International Nuclear Information System (INIS)

    Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions. We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer. We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP+ matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses. We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP+ matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP+ matrix-induced tumor invasion phenotype is β1-integrin/FAK mediated. Cancer cell invasiveness can be affected by alterations in the tumor

  17. The Over-expression of the β2 Catalytic Subunit of the Proteasome Decreases Homologous Recombination and Impairs DNA Double-Strand Break Repair in Human Cells

    Directory of Open Access Journals (Sweden)

    Anita Collavoli

    2011-01-01

    Full Text Available By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB. This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.

  18. L1 cell adhesion molecule overexpression in hepatocellular carcinoma associates with advanced tumor progression and poor patient survival

    Directory of Open Access Journals (Sweden)

    Guo Xiaodong

    2012-08-01

    Full Text Available Abstract Objective L1 cell adhesion molecule (L1CAM, as a member of the immunoglobulin superfamily, has recently been observed in a variety of human malignancies. However, no data of L1CAM are available for hepatocellular carcinoma (HCC. The aim of this study was to investigate the expression of L1CAM in HCC and determine its correlation with tumor progression and prognosis. Methods One-hundred and thirty HCC patients who had undergone curative liver resection were selected and immunohistochemistry, Western blotting, and quantitative real time polymerase chain reaction (Q-PCR were performed to analyze L1CAM expression in the respective tumors. Results Immunohistochemistry, Western blotting, and Q-PCR consistently confirmed the overexpression of L1CAM in HCC tissues compared with their adjacent nonneoplastic tissues at both protein and gene level (both P Conclusion Our data suggest for the first time that L1CAM expression in HCC was significantly correlated with the advanced tumor progression and was an independent poor prognostic factor for both overall survival and disease-free survival in patients with HCC. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1970024872761542

  19. Integrative proteomics and tissue microarray profiling indicate the association between overexpressed serum proteins and non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Yansheng Liu

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide. Clinically, the treatment of non-small cell lung cancer (NSCLC can be improved by the early detection and risk screening among population. To meet this need, here we describe the application of extensive peptide level fractionation coupled with label free quantitative proteomics for the discovery of potential serum biomarkers for lung cancer, and the usage of Tissue microarray analysis (TMA and Multiple reaction monitoring (MRM assays for the following up validations in the verification phase. Using these state-of-art, currently available clinical proteomic approaches, in the discovery phase we confidently identified 647 serum proteins, and 101 proteins showed a statistically significant association with NSCLC in our 18 discovery samples. This serum proteomic dataset allowed us to discern the differential patterns and abnormal biological processes in the lung cancer blood. Of these proteins, Alpha-1B-glycoprotein (A1BG and Leucine-rich alpha-2-glycoprotein (LRG1, two plasma glycoproteins with previously unknown function were selected as examples for which TMA and MRM verification were performed in a large sample set consisting about 100 patients. We revealed that A1BG and LRG1 were overexpressed in both the blood level and tumor sections, which can be referred to separate lung cancer patients from healthy cases.

  20. Human tetraspanin transmembrane 4 superfamily member 4 or intestinal and liver tetraspan membrane protein is overexpressed in hepatocellular carcinoma and accelerates tumor cell growth

    Institute of Scientific and Technical Information of China (English)

    Ying Li; Leiming Wang; Jie Qiu; Liang Da; Pierre Tiollais; Zaiping Li; Mujun Zhao

    2012-01-01

    The human transmembrane 4 superfamily member 4 or intestinal and liver tetraspan membrane protein (TM4SF4/il-TMP) was originally cloned as an intestinal and liver tetraspan membrane protein and mediates density-dependent cell proliferation.The rat homolog of TM4SF4 was found to be up-regulated in regenerating liver after two-thirds hepatectomy and overexpression of TM4SF4 could enhance liver injury induced by CCl4.However,the expression and significance of TM4SF4/il-TMP in liver cancer remain unknown.Here,we report that TM4SF4/il-TMP is frequently and significantly overexpressed in hepatocellular carcinoma (HCC).Real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that TM4SF4/il-TMP mRNA and protein levels were upregulated in ~80% of HCC tissues,Immunohistochemical analysis of a 75 paired HCC tissue microarray revealed that TM4SF4/il-TMP was significantly overexpressed in HCC tissues (P < 0.001),and high immunointensity of TM4SF4/iI-TMP tended to be in well-to-moderately differentiated HCC compared with poorly differentiated tumors.Functional studies showed that overexpression of TM4SF4/il-TMP in QGY-7701 and BEL-7404 HCC cell lines through stable transfection of TM4SF4 expression plasmid significantly promoted both cell growth and colony formation of HCC cells.Reduction of TM4SF4/il-TMP expression in QGY-7701 and BEL-7404 cells by stably transfecting TM4SF4 antisense plasmid caused great inhibition of cell proliferation.Our findings suggest that TM4SF4/il-TMP has the potential to be biomarker in HCC and plays a crucial role in promotion of cancer cell proliferation.

  1. Mapping the interactome of overexpressed RAF kinase inhibitor protein in a gastric cancer cell line

    International Nuclear Information System (INIS)

    Gastric cancer (GC) is a threat to human health with increasing incidence and mortality worldwide. Down-regulation or absence of RAF kinase inhibitor protein (RKIP) was associated with the occurrence, differentiation, invasion, and metastasis of GC. This study aims to investigate the molecular mechanisms and biological functions of RKIP in the GC biology. The fusion expression plasmid pcDNA3.1-RKIP-3xFLAG was transfected into SGC7901 cells, the RKIP fusion proteins were purified with anti-flag M2 magnetic beads, and the RKIP-interacting proteins were identified with tandem mass spectrometry (MS/MS), and were analyzed with bioinformatics tools. Western blot and co-immunoprecipitation were used to confirm the interaction complex. A total of 72 RKIP-interacting proteins were identified by MS/MS. Those proteins play roles in enzyme metabolism, molecular chaperoning, biological oxidation, cytoskeleton organization, signal transduction, and enzymolysis. Three RKIP-interaction protein network diagrams were constructed with Michigan Molecular Interactions, functional linage network, and Predictome analysis to address the molecular pathways of the functional activity of RKIP. The MS/MS-characterized components of the existing interaction complex (RKIP, HSP90, 14-3-3ϵ, and keratin 8) were confirmed by Western blot analysis and co-immunoprecipitation. This study is the first discovery of the interaction of RKIP with HSP90, 14-3-3, and keratin. The present data would provide insight into the molecular mechanisms of how RKIP inhibits the occurrence and development of GC

  2. DNA-templated antibody conjugation for targeted drug delivery to cancer cells

    DEFF Research Database (Denmark)

    Liu, Tianqiang

    2016-01-01

    state to get a good pharmacological performance. Recombinant antibody engineering with non-natural amino acids, or enzyme-mediated conjugation approaches (transglutaminase, Sortase A or endoglycosidase) have been reported for producing homogeneous antibody conjugates. However, these methods require......-templated organic synthesis due to the wide existence of the 3-histidine cluster in most wild-type proteins. In this thesis, three projects that relate to targeted drug delivery to cancer cells based on the DTPC method is described. The first project was a delivery system which uses transferrin as the targeting...... ligand and saporin (ribosome inactivating protein) as the warhead to achieve enhanced cellular uptake and cytotoxicity of saporin to transferrin receptor overexpressed cancer cell line. The transferrin-saporin conjugate complex are formed by linking the site-selective DNA-transferrin conjugates with mono...

  3. Overexpressing Ferredoxins in Chlamydomonas reinhardtii Increase Starch and Oil Yields and Enhance Electric Power Production in a Photo Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Li-Fen Huang

    2015-08-01

    Full Text Available Ferredoxins (FDX are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC; power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC.

  4. Squamous cell carcinoma of external auditory canal lacking epidermal growth factor receptor protein overexpression, in an elderly Omani with oculocutaneous albinism treated with palliative radiotherapy

    Science.gov (United States)

    Furrukh, Muhammad; Mufti, Taha; Hamid, Rana Shoaib; Qureshi, Asim

    2014-01-01

    We report a case of squamous cell carcinoma of external auditory canal in an Omani man with oculocutaneous albinism. The disease mimicked inflammatory process revealing positive cultures for various microorganisms during the course of his illness. He was eventually biopsied to rule out atypical infective process or presence of malignancy. He was staged as T4N0M0 and treated with radical doses of palliative radiation therapy which was very well tolerated and resulted in a complete resolution of disease clinically and a major soft tissue response on radiological imaging. Another unique finding was the absence of epidermal growth factor receptor (EGFR) protein overexpression in the tumour specimen. More than 90% of mucosal squamous cell carcinoma (SCC) involving the head and neck region overexpress the EGFR protein in normal skin patients. SCC is the predominant cutaneous malignancy in albinos, and the presence of EGFR protein overexpression in cutaneous SCC is believed to be 56–58% in normal skin patients. The scientific literature is scarce on reporting incidence of EGFR overexpression in either cutaneous or mucosal SCC in albinos, and it remains to be defined whether being albino is the cause for its absence. PMID:24907210

  5. Apoptosis-related molecular differences for response to tyrosin kinase inhibitors in drug-sensitive and drug-resistant human bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Jixia Li

    2013-01-01

    Full Text Available Context: The epidermal growth factor receptor (EGFR family is reportedly overexpressed in bladder cancer, and tyrosine kinaseinhibitors (TKIs have been suggested as treatment. Gefitinib is a selective inhibitor of the EGFR and lapatinib is a dual inhibitor of both the EGFR and HER2 (human EGFR type 2 receptor. Both compounds compete with the binding of adenosine triphosphate (ATP to the tyrosine kinase domain of the respective receptors to inhibit receptor autophosphorylation causing suppression of signal transduction. Unfortunately, resistance to these inhibitors is a major clinical problem. Aims: To compare the apoptosis signaling pathway(s induced by gefitinib and lapatinib, in UM-UC-5 (drug-sensitive and UM-UC-14 (drug-resistant bladder cancer cells and to identify molecular differences that might be useful predictors of their efficacy. Materials and Methods: Cell proliferation, cell cycle and apoptosis assay were used to detect the effect of TKIs on UM-UC-5 and UM-UC-14 cells. Molecular differences for response to TKIs were examined by protein array. Results: TKIs strongly inhibited cell proliferation and induced cell cycle G1 arrest and apoptosis in UM-UC-5 cells. Most notable apoptosis molecular differences included decreased claspin, trail, and survivin by TKIs in the sensitive cells. In contrast, TKIs had no effect on resistant cells. Conclusions: Claspin, trail, and survivin might be used to determine the sensitivity of bladder cancers to TKIs.

  6. Nanoparticles inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery via cell surface-related GRP78

    Directory of Open Access Journals (Sweden)

    Zhao L

    2014-12-01

    Full Text Available Liang Zhao,1,* Hongdan Li,2,* Yijie Shi,1 Guan Wang,2 Liwei Liu,1 Chang Su,3 Rongjian Su2 1School of Pharmacy, Liaoning Medical University, Jinzhou, People’s Republic of China; 2Central Laboratory of Liaoning Medical University, Jinzhou, People’s Republic of China; 3School of Veterinary Medicine, Liaoning Medical University, Jinzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Nanoparticles (NPs which target specific agents could effectively recognize the target cells and increase the stability of chemical agents by encapsulation. As such, NPs have been widely used in cancer treatment research. Recently, over 90% of treatment failure cases in patients with metastatic cancer were attributed to resistance to chemotherapy. Surface-exposed glucose-regulated protein of 78 kDa (GRP78 is expressed highly on many tumor cell surfaces in many human cancers and is related to the regulation of invasion and metastasis. Herein, we report that NPs conjugated with antibody against GRP78 (mAb GRP78-NPs inhibit the adhesion, invasion, and metastasis of hepatocellular carcinoma (HCC and promote drug delivery of 5-fluorouracil into GRP78 high-expressed human hepatocellular carcinoma cells. Our new findings suggest that mAb GRP78-NPs could enhance drug accumulation by effectively transporting NPs into cell surface GRP78-overexpressed human hepatocellular carcinoma cells and then inhibit cell proliferation and viability and induce cell apoptosis by regulating caspase-3. In brief, mAb GRP78-NPs effectively inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery. Keywords: 5-Fu, apoptosis, HCC, caspase-3

  7. Overexpression of cyclin Y in non-small cell lung cancer is associated with cancer cell proliferation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cyclin Y (CCNY) is a key cell cycle regulator that acts as a growth factor sensor to integrate extracellular signals with the cell cycle machinery. The expression status of CCNY in lung cancer and its clinical significance remain unknown. The data indicates that CCNY may be deregulated in non-small cell lung cancer, where it may act to promote cell proliferation. These studies suggest that CCNY may be a candidate biomarker of NSCLC and a possible therapeutic target for lung cancer treatment.

  8. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Robey, R W; Medina-Pérez, W Y; Nishiyama, K;

    2001-01-01

    We sought to characterize the interactions of flavopiridol with members of the ATP-binding cassette (ABC) transporter family. Cells overexpressing multidrug resistance-1 (MDR-1) and multidrug resistance-associated protein (MRP) did not exhibit appreciable flavopiridol resistance, whereas cell lines...... overexpressing the ABC half-transporter, ABCG2 (MXR/BCRP/ABCP1), were found to be resistant to flavopiridol. Flavopiridol at a concentration of 10 microM was able to prevent MRP-mediated calcein efflux, whereas Pgp-mediated transport of rhodamine 123 was unaffected at flavopiridol concentrations of up to 100...... microM. To determine putative mechanisms of resistance to flavopiridol, we exposed the human breast cancer cell line MCF-7 to incrementally increasing concentrations of flavopiridol. The resulting resistant subline, MCF-7 FLV1000, is maintained in 1,000 nM flavopiridol and was found to be 24-fold...

  9. Myocardin-related transcription factor-A-overexpressing bone marrow stem cells protect cardiomyocytes and alleviate cardiac damage in a rat model of acute myocardial infarction.

    Science.gov (United States)

    Zhong, Ze; Hu, Jia-Qing; Wu, Xin-Dong; Sun, Yong; Jiang, Jun

    2015-09-01

    Myocardin-related transcription factor-A (MRTF-A) can transduce biomechanical and humoral signals, which can positively modulate cardiac damage induced by acute myocardial infarction (AMI). In the clinic, bone marrow stem cell (BMSC) therapy is being increasingly utilized for AMI; however, the effects of BMSC transplantation remain to be optimized. Therefore, a novel strategy to enhance BMSC‑directed myocardial repair is particularly important. The present study was performed to assess the efficacy of MRTF‑A-overexpressing BMSCs in a rat model of AMI. Primary cardiomyocytes were prepared from neonatal Sprague-Dawley rats and BMSCs were isolated from male Sprague-Dawley rats (aged 8-12 weeks). Annexin V-phycoerythrin/7-actinomycin D staining was used to evaluate BMSC and cardiomyocyte survival after exposure to hydrogen peroxide in vitro. B-cell lymphoma 2 (Bcl-2) protein expression was measured by flow cytometric and western blot analyses. The effects of MRTF-A‑overexpressing BMSCs in a rat model of AMI were investigated by hematoxylin and eosin staining and western blot analysis of Bcl-2 expression in myocardial tissue sections. MRTF-A enhanced the migration of BMSCs, and overexpression of MRTF-A in BMSCs prevented hydrogen peroxide-induced apoptosis in primary cardiomyocytes ex vivo. In addition, co-culture of cardiomyocytes with MRTF‑A-overexpressing BMSCs inhibited hydrogen peroxide-induced apoptosis and the enhanced expression of Bcl-2. Furthermore, in vivo, enhanced cell survival was observed in the MRTF-A-modified BMSC group compared with that in the control group. These observations indicated that MRTF-A-overexpressing BMSCs have the potential to exert cardioprotective effects against hydrogen peroxide-induced injury and that treatment with MRTF‑A‑modified BMSCs is able to reverse cardiac dysfunction after AMI. PMID:26135208

  10. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    International Nuclear Information System (INIS)

    This transient permeabilized state of the cell membrane, named the 'cell electroporation' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed

  11. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy.

    Science.gov (United States)

    Qiu, Liping; Chen, Tao; Öçsoy, Ismail; Yasun, Emir; Wu, Cuichen; Zhu, Guizhi; You, Mingxu; Han, Da; Jiang, Jianhui; Yu, Ruqin; Tan, Weihong

    2015-01-14

    The development of multidrug resistance (MDR) has become an increasingly serious problem in cancer therapy. The cell-membrane overexpression of P-glycoprotein (P-gp), which can actively efflux various anticancer drugs from the cell, is a major mechanism of MDR. Nuclear-uptake nanodrug delivery systems, which enable intranuclear release of anticancer drugs, are expected to address this challenge by bypassing P-gp. However, before entering the nucleus, the nanocarrier must pass through the cell membrane, necessitating coordination between intracellular and intranuclear delivery. To accommodate this requirement, we have used DNA self-assembly to develop a nuclear-uptake nanodrug system carried by a cell-targeted near-infrared (NIR)-responsive nanotruck for drug-resistant cancer therapy. Via DNA hybridization, small drug-loaded gold nanoparticles (termed nanodrugs) can self-assemble onto the side face of a silver-gold nanorod (NR, termed nanotruck) whose end faces were modified with a cell type-specific internalizing aptamer. By using this size-photocontrollable nanodrug delivery system, anticancer drugs can be efficiently accumulated in the nuclei to effectively kill the cancer cells. PMID:25479133

  12. DNA Repair Genes ERCC1 and BRCA1 Expression in Non-Small Cell Lung Cancer Chemotherapy Drug Resistance.

    Science.gov (United States)

    Wang, Shuai; Liu, Feng; Zhu, Jingyan; Chen, Peng; Liu, Hongxing; Liu, Qi; Han, Junqing

    2016-01-01

    BACKGROUND Surgery combined with chemotherapy is an important therapy for non-small cell lung cancer (NSCLC). However, chemotherapy drug resistance seriously hinders the curative effect. Studies show that DNA repair genes ERCC1 and BRCA1 are associated with NSCLC chemotherapy, but their expression and mechanism in NSCLC chemotherapy drug-resistant cells has not been elucidated. MATERIAL AND METHODS NSCLC cell line A549 and drug resistance cell line A549/DDP were cultured. Real-time PCR and Western blot analyses were used to detect ERCC1 and BRCA1 mRNA expression. A549/DDP cells were randomly divided into 3 groups: the control group; the siRNA-negative control group (scramble group); and the siRNA ERCC1 and BRCA1siRNA transfection group. Real-time PCR and Western blot analyses were used to determine ERCC1 and BRCA1 mRNA and protein expression. MTT was used to detect cell proliferation activity. Caspase 3 activity was tested by use of a kit. Western blot analysis was performed to detect PI3K, AKT, phosphorylated PI3K, and phosphorylated AKT protein expression. RESULTS ERCC1 and BRCA1 were overexpressed in A549/DDP compared with A549 (PBRCA1 mRNA and protein expression (PBRCA1 expression obviously inhibited cell proliferation and increased caspase 3 activity (PBRCA1 significantly decreased PI3K and AKT phosphorylation levels (PBRCA1 were overexpressed in NSCLC drug-resistant cells, and they regulated lung cancer occurrence and development through the phosphorylating PI3K/AKT signaling pathway. PMID:27289442

  13. Synchronization in G0/G1 enhances the mitogenic response of cells overexpressing the human insulin receptor A isoform to insulin

    Science.gov (United States)

    Nelander, Gitte-Mai; Hansen, Bo Falck; Jensen, Pia; Krabbe, Jonas S.; Jensen, Marianne B.; Hegelund, Anne Charlotte; Svendsen, Jette E.; Oleksiewicz, Martin B.

    2009-01-01

    Evaluating mitogenic signaling specifically through the human insulin receptor (IR) is relevant for the preclinical safety assessment of developmental insulin analogs. It is known that overexpression of IR sensitizes cells to the mitogenic effects of insulin, but it is essentially unknown how mitogenic responses can be optimized to allow practical use of such recombinant cell lines for preclinical safety testing. We constitutively overexpressed the short isoform of the human insulin receptor (hIR-A, exon 11-negative) in L6 rat skeletal myoblasts. Because the mitogenic effect of growth factors such as insulin is expected to act in G0/G1, promoting S-phase entry, we developed a combined topoinhibition + serum deprivation strategy to explore the effect of G0/G1 synchronization as an independent parameter in the context of serum deprivation, the latter being routinely used to reduce background in mitogenicity assays. G0/G1 synchronization significantly improved the mitogenic responses of L6-hIR cells to insulin, measured by 3H-thymidine incorporation. Comparison with the parental L6 cells using phospho-mitogen-activated protein kinase, phospho-AKT, as well as 3H-thymidine incorporation end points supported that the majority of the mitogenic effect of insulin in L6-hIR cells was mediated by the overexpressed hIR-A. Using the optimized L6-hIR assay, we found that the X-10 insulin analog was more mitogenic than native human insulin, supporting that X-10 exhibits increased mitogenic signaling through the hIR-A. In summary, this study provides the first demonstration that serum deprivation may not be sufficient, and G0/G1 synchronization may be required to obtain optimal responsiveness of hIR-overexpressing cell lines for preclinical safety testing. PMID:19898946

  14. The role of Card9 overexpression in peripheral blood mononuclear cells from patients with aseptic acute pancreatitis.

    Science.gov (United States)

    Yang, Zhi-wen; Weng, Cheng-zhao; Wang, Jing; Xu, Ping

    2016-03-01

    Activated mononuclear cells are an early event in the course of severe acute pancreatitis (SAP). To date, the molecular mechanism triggering peripheral blood mononuclear cells (PBMCs) is poorly understood. The aim of this paper was to determine the potential role of Card9 in SAP. We collected data from 72 subjects between January 2013 and June 2014. Subsequently, PBMCs were isolated on day 1, 3 and 5 of pancreatitis. Immunofluorescence staining, quantitative real-time PCR, Western blotting, immunoprecipitation and ELISA were used to determine the role of Card9 in SAP. Microbial culture showed that SAP patients at the early period did not develop any bacteria and fungi infection. Card9 expression in SAP patients was higher than that in mild acute pancreatitis and volunteer healthy controls, up to the peak on day 1. The monocyte-derived cytokines interleukin (IL)-17, IL-1β, IL-6 and tumour necrosis factor-α mediated by the induction of Card9 markedly increased in SAP patients compared with the control group. Furthermore, the inducible formation of Card9-Bcl10 complex was found in PBMCs, which may be involved in nuclear factor kappa B (NF-κB) and p38 activation in SAP. Receiver operating characteristic curve indicated that Card9 levels had a high sensitivity of 87.5% and specificity of 67.7%, showing the close correlation with SAP patients. Card9 overexpression was firstly found in aseptic SAP, which may be played an important role in NF-κB and p38 activation in PBMCs. It also provided the new insights into therapeutic interventions by targeting monocytes activation in SAP patients. PMID:26893103

  15. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  16. Overexpression of high molecular weight FGF-2 forms inhibits glioma growth by acting on cell-cycle progression and protein translation

    International Nuclear Information System (INIS)

    In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation

  17. Comparative evaluation of novel biodegradable nanoparticles for the drug targeting to breast cancer cells.

    Science.gov (United States)

    Mattu, C; Pabari, R M; Boffito, M; Sartori, S; Ciardelli, G; Ramtoola, Z

    2013-11-01

    Nanomedicine formulations such as biodegradable nanoparticles (nps) and liposomes offer several advantages over traditional routes of administration: due to their small size, nanocarriers are able to selectively accumulate inside tumours or inflammatory tissues, resulting in improved drug efficacy and reduced side effects. To further augment targeting ability of nanoparticles towards tumour cells, specific ligands or antibodies that selectively recognise biomarkers over-expressed on cancer cells, can be attached to the surface either by chemical bond or by hydrophilic/hydrophobic interactions. In the present work, Herceptin (HER), a monoclonal antibody (mAb) able to selectively recognise HER-2 over-expressing tumour cells (such as breast and ovarian cancer cells), was absorbed on the surface of nanoparticles through hydrophilic/hydrophobic interactions. Nps were prepared by a modified single emulsion solvent evaporation method with five different polymers: three commercial polyesters (poly(ε-caprolactone) (PCL), poly (D,L-lactide) (PLA) and poly (D,L-lactide-co-.glycolide) (PLGA)) and two novel biodegradable polyesterurethanes (PURs) based on Poly(ε-caprolactone) blocks, synthesised with different chain extenders (1,4-cyclohexane dimethanol (CDM) and N-Boc-serinol). Polyurethanes were introduced as matrix-forming materials for nanoparticles due to their high chemical versatility, which allows tailoring of the materials final properties by properly selecting the reagents. All nps exhibited a small size and negative surface charge, suitable for surface functionalisation with mAb through hydrophilic/hydrophobic interactions. The extent of cellular internalisation was tested on two different cell lines: MCF-7 and SK-BR-3 breast cancer cells showing a normal and a high expression of the HER-2 receptor, respectively. Paclitaxel, a model anti-neoplastic drug, was encapsulated inside all nps, and release profiles and cytotoxicity on SK-BR-3 cells were also assessed

  18. Fabrication of folic acid-sensitive gold nanoclusters for turn-on fluorescent imaging of overexpression of folate receptor in tumor cells.

    Science.gov (United States)

    Li, Hongchang; Cheng, Yuqing; Liu, Yong; Chen, Bo

    2016-09-01

    Based on the fluorescence quenching of folic acid-sensitive bovine serum albumin-directed gold nanoclusters (BSA-AuNCs) via folic acid-induced the change of environment around BSA-AuNCs, we have constructed a turn on fluorescence imaging of folate receptor overexpressed tumor cells. In this paper, the primary fluorescence intensity of BSA-AuNCs was quenched via self-assembly of folic acid onto BSA-AuNCs to produce negligible fluorescence background, the linear range of the method was 0.1-100μg/mL with the limit of detection (LOD) of 30ng/mL (S/N=3); In the presence of overexpression of folate receptor on the surface of tumor cells, the primary fluorescence intensity of BSA-AuNCs turned on by folic acid desorbing from BSA-AuNCs, the linear range of method was 0.12-2μg/mL with the LOD of 20ng/mL (S/N=3). Additionally, due to specific and high affinity of folic acid and folate receptor, the probe had high selectivity for folate receptor, other interferences hardly changed the fluorescence intensity of the probe. Moreover, the text for cytotoxicity implied that the probe had no toxicity for tumor cells. Consequently, using the fluorescence probe, satisfactory results for the turn on imaging of folate receptor overexpressed tumor cells were obtained. A novel turn-on and red fluorescent probe for folate receptor overexpressed tumor cells was developed based on the recovery of fluorescence intensity of folic acid-sensitive BSA-AuNCs. PMID:27343585

  19. Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial-mesenchymal transition and promotes tumor growth and angiogenesis.

    Science.gov (United States)

    Oh, Eunhye; Kim, Ji Young; Cho, Youngkwan; An, Hyunsook; Lee, Nahyun; Jo, Hunho; Ban, Changill; Seo, Jae Hong

    2016-06-01

    The angiotensin II type I receptor (AGTR1) has been implicated in diverse aspects of human disease, from the regulation of blood pressure and cardiovascular homeostasis to cancer progression. We sought to investigate the role of AGTR1 in cell proliferation, epithelial-mesenchymal transition (EMT), migration, invasion, angiogenesis and tumor growth in the breast cancer cell line MCF7. Stable overexpression of AGTR1 was associated with accelerated cell proliferation, concomitant with increased expression of survival factors including poly(ADP-ribose) polymerase (PARP) and X-linked inhibitor of apoptosis (XIAP), as well as extracellular signal-regulated kinase (ERK) activation. AGTR1-overexpressing MCF7 cells were more aggressive than their parent line, with significantly increased activity in migration and invasion assays. These observations were associated with changes in EMT markers, including reduced E-cadherin expression and increased p-Smad3, Smad4 and Snail levels. Treatment with the AGTR1 antagonist losartan attenuated these effects. AGTR1 overexpression also accelerated tumor growth and increased Ki-67 expression in a xenograft model. This was associated with increased tumor angiogenesis, as evidenced by a significant increase in microvessels in the intratumoral and peritumoral areas, and enhanced tumor invasion, with the latter response associated with increased EMT marker expression and matrix metallopeptidase 9 (MMP-9) upregulation. In vivo administration of losartan significantly reduced both tumor growth and angiogenesis. Our findings suggest that AGTR1 plays a significant role in tumor aggressiveness, and its inhibition may have therapeutic implications. PMID:26975580

  20. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose

    Science.gov (United States)

    Shen, Zi-Ying; Sun, Qian; Xia, Zhong-Yuan; Meng, Qing-Tao; Lei, Shao-Qing; Zhao, Bo; Tang, Ling-Hua; Xue, Rui; Chen, Rong

    2016-01-01

    Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ-1 protein expression. The overexpression of DJ-1 by transfection with a DJ-1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ-1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG. PMID:27430285

  1. Carbon nanotubes: an emerging drug carrier for targeting cancer cells.

    Science.gov (United States)

    Rastogi, Vaibhav; Yadav, Pragya; Bhattacharya, Shiv Sankar; Mishra, Arun Kumar; Verma, Navneet; Verma, Anurag; Pandit, Jayanta Kumar

    2014-01-01

    During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicty, and drug delivery in tumor cells. This review attempts to highlight all aspects of CNTs which render them as an effective anticancer drug carrier and imaging agent. Also the potential application of CNT in targeting metastatic cancer cells by entrapping biomolecules and anticancer drugs has been covered in this review. PMID:24872894

  2. Microfluidic cell chips for high-throughput drug screening.

    Science.gov (United States)

    Chi, Chun-Wei; Ahmed, Ah Rezwanuddin; Dereli-Korkut, Zeynep; Wang, Sihong

    2016-05-01

    The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell-drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers. PMID:27071838

  3. Male sterility associated with overexpression of the noncoding $hsr\\omega$ gene in cyst cells of testis of Drosophila melanogaster

    Indian Academy of Sciences (India)

    T. K. Rajendra; K. V. Prasanth; S. C. Lakhotia

    2001-08-01

    a misregulated overexpression of $hsr\\omega$ in cyst cells, which in turn results in excessive sequestration of hnRNPs and formation of large clusters of omega speckles in these cell nuclei. The consequent limiting availability of hnRNPs is likely to trans-dominantly affect processing of other pre-mRNAs in cyst cells. We suggest that a compromise in the activity of cyst cells due to the aberrant hnRNP distribution is responsible for the failure of individualization of sperms in $hsr\\omega^{05241}$ mutant testes. These results further support a significant role of the noncoding hsr-n transcripts in basic cellular activities, namely regulation of the availability of hnRNPs in active (chromatin bound) and inactive (in omega speckles) compartments.

  4. Peroxiredoxin 1 knockdown sensitizes cancer cells to reactive oxygen species-generating drugs - an alternative approach for chemotherapy.

    Science.gov (United States)

    He, Tiantian; Hatem, Elie; Vernis, Laurence; Huang, Meng-Er

    2014-10-01

    Peroxiredoxins have multiple cellular functions as major antioxidants, signaling regulators and tumor suppressors. Peroxiredoxin 1 (PRX1) is the most abundant among the six isoforms of human peroxiredoxins, catalyzing the reduction of peroxides utilizing thioredoxin 1as an electron donor. PRX1 is frequently over-expressed in various cancer cells, which is thought to be associated with carcinogenesis, metastasis and resistance to radiotherapy or chemotherapy. We investigated how modulations of intracellular redox system, especially PRX1, affect cancer cell sensitivity to reactive oxygen species (ROS)-generating drugs. We observed that stable and transient Prx1 knockdown (Prx1-) significantly enhances HeLa cell sensitivity to β-lapachone (β-lap), a potential anticancer agent, and to other ROS-generating molecules. ROS accumulation played a crucial role in drug-enhanced Prx1- cell death. For β-lap, Prx1- cells sensitization is achieved through combined action of accumulation of ROS and enhancement of mitogen-activated protein kinase pathway activation. The effect of other ROS-inducing drugs on Prx1- cell survival will also be presented and discussed. Taken together, our data provide evidence that PRX1 could be an interesting anticancer target and modulation of intracellular redox states through PRX1 inhibition could be an alternative approach to enhance cancer cell sensitivity to ROS-generating drugs. PMID:26461286

  5. ERas protein is overexpressed and binds to the activated platelet-derived growth factor β receptor in bovine urothelial tumour cells associated with papillomavirus infection.

    Science.gov (United States)

    Russo, Valeria; Roperto, Franco; Esposito, Iolanda; Ceccarelli, Dora Maria; Zizzo, Nicola; Leonardi, Leonardo; Capparelli, Rosanna; Borzacchiello, Giuseppe; Roperto, Sante

    2016-06-01

    Embryonic stem cell-expressed Ras (ERas) encodes a constitutively active form of guanosine triphosphatase (GTPase) that binds to and activates phosphatidylinositol 3 kinase (PI3K), which in turn phosphorylates and activates downstream targets such as Akt. The current study evaluated ERas regulation and expression in papillomavirus-associated urothelial tumours in cattle grazing on lands rich in bracken fern. ERas was found upregulated and overexpressed by PCR, real time PCR and Western blot. Furthermore, protein overexpression was also confirmed by immunohistochemistry. ERas was found to interact physically and colocalise with the activated platelet derived growth factor β receptor (PDGFβR) by coimmunoprecipitation and laser scanning confocal investigations. Phosphorylation of Akt, a downstream effector both of ERas and PDGFβR, appeared to be increased in urothelial tumour cells. Altogether, these data indicate that ERas/PDGFβR complex could play a role in the pathogenesis of bovine papillomavirus-associated bladder neoplasia. PMID:27256024

  6. MDM2 antagonist Nutlin-3a potentiates antitumour activity of cytotoxic drugs in sarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Lothe Ragnhild A

    2011-05-01

    Full Text Available Abstract Background Frequent failure and severe side effects of current sarcoma therapy warrants new therapeutic approaches. The small-molecule MDM2 antagonist Nutlin-3a activates the p53 pathway and efficiently induces apoptosis in tumours with amplified MDM2 gene and overexpression of MDM2 protein. However, the majority of human sarcomas have normal level of MDM2 and the therapeutic potential of MDM2 antagonists in this group is still unclear. We have investigated if Nutlin-3a could be employed to augment the response to traditional therapy and/or reduce the genotoxic burden of chemotherapy. Methods A panel of sarcoma cell lines with different TP53 and MDM2 status were treated with Nutlin-3a combined with Doxorubicin, Methotrexate or Cisplatin, and their combination index determined. Results Clear synergism was observed when Doxorubicin and Nutlin-3a were combined in cell lines with wild-type TP53 and amplified MDM2, or with Methotrexate in both MDM2 normal and amplified sarcoma cell lines, allowing for up to tenfold reduction of cytotoxic drug dose. Interestingly, Nutlin-3a seemed to potentiate the effect of classical drugs as Doxorubicin and Cisplatin in cell lines with mutated TP53, but inhibited the effect of Methotrexate. Conclusion The use of Nutlin in combination with classical sarcoma chemotherapy shows promising preclinical potential, but since clear biomarkers are still lacking, clinical trials should be followed up with detailed tumour profiling.

  7. Lactate-Dehydrogenase 5 is overexpressed in non-small cell lung cancer and correlates with the expression of the transketolase-like protein 1

    OpenAIRE

    Stickeler Elmar; Aumann Konrad; Mattern Dominik; Schulte-Uentrop Luzie; Sienel Wulf; Kassem Ahmad; Kayser Gian; Werner Martin; Passlick Bernward; Hausen Axel

    2010-01-01

    Abstract Aims As one of the five Lactate dehydrogenase (LDH) isoenzymes, LDH5 has the highest efficiency to catalyze pyruvate transformation to lactate. LDH5 overexpression in cancer cells induces an upregulated glycolytic metabolism and reduced dependence on the presence of oxygen. Here we analyzed LDH5 protein expression in a well characterized large cohort of primary lung cancers in correlation to clinico-pathological data and its possible impact on patient survival. Methods Primary lung c...

  8. Effect of ATP sulfurylase overexpression in bright yellow 2 tobacco cells: regulation of ATP sulfurylase and SO4(-2) transport activities

    International Nuclear Information System (INIS)

    To determine if the ATP sulfurylase reaction is a regulatory step for the SO4(2-)-assimilation pathway in plants, an Arabidopsis thaliana ATP sulfurylase cDNA, APS2, was fused to the 355 promoter of the cauliflower mosaic virus and introduced by Agrobacterium tumefaciens-mediated transformation into isolated Bright Yellow 2 tobacco (Nicotiana tabacum) cells. The ATP sulfurylase activity in transgenic cells was 8-fold that in control cells, and was correlated with the expression of a specific polypeptide revealed by western analysis using an anti-ATP sulfurylase antibody. The molecular mass of this polypeptide agreed with that for the overexpressed mature protein. ATP sulfurylase overexpression had no effect on [35S]SO4(2-) influx or ATP sulfurylase activity regulation by S availability, except that ATP sulfurylase activity variations in response to S starvation in transgenic cells were 8 times higher than in the wild type. There were also no differences in cell growth or sensitivity to SeO4(2-) (a toxic SO4(2-) analog) between transgenic and wild-type cells. We propose that in Bright Yellow 2 tobacco cells, the ATP sulfurylase derepression by S deficiency may involve a posttranscriptional mechanism, and that the ATP sulfurylase abundance is not limiting for cell metabolism

  9. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, Daria [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation); Hannover Medical School, Hannover (Germany); Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V. [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Palotás, András, E-mail: palotas@asklepios-med.eu [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Asklepios-Med (Private Medical Practice and Research Center), Szeged (Hungary); Islamov, Rustem R., E-mail: islamru@yahoo.com [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation)

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.

  10. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    International Nuclear Information System (INIS)

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis

  11. Effect of multidrug resistance gene-1(mdr1) overexpression on in-vitro uptake of {sup 99m}Tc-sestaMIBI in murine L1210 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kyung Ah; Lee, Jae Tae; Lee, Sang Woo; Kang, Do Young; Sohn, Snag Kyun; Lee, Jong Kee; Jun, Soo Han; Lee, Kyu Bo [College of Medicine, Kyungpook National Univ., Taegu (Korea, Republic of); Chung, June Key [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    1999-02-01

    To determine whether {sup 99m}Tc-MIBI is recognized by the multidrug resistant P-glycoprotein (Pgp), we have measured quantitatively {sup 99m}Tc-MIBI uptake in cancer cells. The effects of various Pgp reversing agents on cellular {sup 99m}Tc-MIBI uptake were also investigated in the presence of multidrug resistance gene-1 (mdr 1 gene) overexpression. We measured percentage uptake of {sup 99m}Tc-MIBI at different incubation temperatures both in mdr1 positive and negative cells. The effects of verapamil, cyclosporin, and dipyridamole on cellular uptake of {sup 99m}Tc-MIBI were also evaluated with or without overexpression of mdr1 gene in cultured murine leukemia L1210 cells. The mdr1 gene expressing cell lines were effectively induced in in vitro with continuous application of low-dose adriamycin or vincristine. Cellular uptake of {sup 99m}Tc-MIBI was higher in mdr1 negative L1210 cells than those of mdr1 positive cells, and higher when incubated in 37 .deg. C than 4 .deg. C. In the presence of verapamil, cyclosporin or dipyridamole, {sup 99m}Tc-MIBI uptake was increased upto 604% in mdr1 positive cells. Cellular uptake of {sup 99m}Tc-MIBI is lower in leukemia cells over-expressing mdr1 gene, and MDR-reversing agents increase cellular uptake. These results suggest the {sup 99m}Tc-MIBI can be used for characterizing Pgp expression and developing MDR-reversing agents in vitro.

  12. Transcriptome analysis of a human colorectal cancer cell line shows molecular targets of insulin-like growth factor-binding protein-4 overexpression.

    Science.gov (United States)

    Diehl, Daniela; Lahm, Harald; Wolf, Eckhard; Bauersachs, Stefan

    2005-02-10

    Insulin-like growth factor II (IGF-II) is expressed commonly in colorectal tumors. IGF-binding protein-4 (IGFBP-4) counteracts the tumor promoting activities of IGF-II by binding this growth factor. We have shown previously that in LS1034 cells, which highly express IGF-II, overexpression of IGFBP-4 led to a strong reduction in proliferation, colony formation and invasive capacity. To investigate the effects of IGFBP-4 at the molecular level we analyzed growth parameters of LS1034 human colon cancer cells vs. cells expressing the murine IGFBP-4 (mIGFBP-4) and used a subtractive cDNA library approach in combination with cDNA array hybridization to detect changes in the mRNA expression profiles. The mRNA levels for several proteins that are known to affect important biological properties of neoplastic cells, such as proteolysis, proliferation and differentiation were altered by overexpression of IGFBP-4. Transcript levels for tumor markers, like the carcinoembryonic antigen-related cell adhesion molecule (CEACAM), were reduced by elevated mIGFBP-4. Changes at the mRNA level were confirmed by Western blotting for CST1 (proteolysis or protease inhibitor), COX-2 (cell motility) and CEACAM5 (tumor marker). Furthermore, the effect of mIGFBP-4 on apoptosis was investigated and no increase of apoptosis could be detected in the IGFBP-4 overexpressing LS1034 cells. Our data indicate that IGFBP-4 is involved in the regulation of gene products that are known or supposed to be important for the pathogenesis of colon cancer cells. PMID:15455346

  13. Overcome Cancer Cell Drug Resistance Using Natural Products

    Directory of Open Access Journals (Sweden)

    Pu Wang

    2015-01-01

    Full Text Available Chemotherapy is one of the major treatment methods for cancer. However, failure in chemotherapy is not uncommon, mainly due to dose-limiting toxicity associated with drug resistance. Management of drug resistance is important towards successful chemotherapy. There are many reports in the Chinese literature that natural products can overcome cancer cell drug resistance, which deserve sharing with scientific and industrial communities. We summarized the reports into four categories: (1 in vitro studies using cell line models; (2 serum pharmacology; (3 in vivo studies using animal models; and (4 clinical studies. Fourteen single compounds were reported to have antidrug resistance activity for the first time. In vitro, compounds were able to overcome drug resistance at nontoxic or subtoxic concentrations, in a dose-dependent manner, by inhibiting drug transporters, cell detoxification capacity, or cell apoptosis sensitivity. Studies in vivo showed that single compounds, herbal extract, and formulas had potent antidrug resistance activities. Importantly, many single compounds, herbal extracts, and formulas have been used clinically to treat various diseases including cancer. The review provides comprehensive data on use of natural compounds to overcome cancer cell drug resistance in China, which may facilitate the therapeutic development of natural products for clinical management of cancer drug resistance.

  14. Targeting the sphingolipid metabolism to defeat pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug.

    Science.gov (United States)

    Guillermet-Guibert, Julie; Davenne, Lise; Pchejetski, Dimitri; Saint-Laurent, Nathalie; Brizuela, Leyre; Guilbeau-Frugier, Céline; Delisle, Marie-Bernadette; Cuvillier, Olivier; Susini, Christiane; Bousquet, Corinne

    2009-04-01

    Defeating pancreatic cancer resistance to the chemotherapeutic drug gemcitabine remains a challenge to treat this deadly cancer. Targeting the sphingolipid metabolism for improving tumor chemosensitivity has recently emerged as a promising strategy. The fine balance between intracellular levels of the prosurvival sphingosine-1-phosphate (S1P) and the proapoptotic ceramide sphingolipids determines cell fate. Among enzymes that control this metabolism, sphingosine kinase-1 (SphK1), a tumor-associated protein overexpressed in many cancers, favors survival through S1P production, and inhibitors of SphK1 are used in ongoing clinical trials to sensitize epithelial ovarian and prostate cancer cells to various chemotherapeutic drugs. We here report that the cellular ceramide/S1P ratio is a critical biosensor for predicting pancreatic cancer cell sensitivity to gemcitabine. A low level of the ceramide/S1P ratio, associated with a high SphK1 activity, correlates with a robust intrinsic pancreatic cancer cell chemoresistance toward gemcitabine. Strikingly, increasing the ceramide/S1P ratio, by using pharmacologic (SphK1 inhibitor or ceramide analogue) or small interfering RNA-based approaches to up-regulate intracellular ceramide levels or reduce SphK1 activity, sensitized pancreatic cancer cells to gemcitabine. Conversely, decreasing the ceramide/S1P ratio, by up-regulating SphK1 activity, promoted gemcitabine resistance in these cells. Development of novel pharmacologic strategies targeting the sphingolipid metabolism might therefore represent an interesting promising approach, when combined with gemcitabine, to defeat pancreatic cancer chemoresistance to this drug. PMID:19372554

  15. Overexpression of FoxM1 is associated with tumor progression in patients with clear cell renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Xue Yi-Jun

    2012-09-01

    Full Text Available Abstract Background Fork head box M1 (FoxM1 is a proliferation-associated transcription factor essential for cell cycle progression. Numerous studies have documented that FoxM1 has multiple functions in tumorigenesis and its elevated levels are frequently associated with cancer progression. The present study was conducted to investigate the expression of FoxM1 and its prognostic significance in clear cell renal cell carcinoma (ccRCC. Meanwhile, the function of FoxM1 in human ccRCC was further investigated in cell culture models. Methods Real-time quantitative PCR, western blot and immunohistochemistry were used to explore FoxM1 expression in ccRCC cell lines and primary ccRCC clinical specimens. FoxM1 expression was knocked down by small interfering RNA (siRNA in Caki-1 and 786-O cells; proliferation, colony formation, cell cycle, migration, invasion, and angiogenesis were assayed. Results FoxM1 expression was up-regulated in the majority of the ccRCC clinical tissue specimens at both mRNA and protein levels. Clinic pathological analysis showed that FoxM1 expression was significantly correlated with primary tumor stage (P P = 0.01, distant metastasis (P = 0.01, TNM stage (P P = 0.003. The Kaplan–Meier survival curves revealed that high FoxM1 expression was associated with poor prognosis in ccRCC patients (P P = 0.008. Experimentally, we found that down-regulation of FoxM1 inhibited cell proliferation and induced cell cycle arrest with reduced expression of cyclin B1, cyclin D1, and Cdk2, and increased expression of p21 and p27. Also, down-regulation of FoxM1 reduced expression and activity of matrix metalloproteinase-2 (MMP-2, MMP-9 and vascular endothelial growth factor (VEGF, resulting in the inhibition of migration, invasion, and angiogenesis. Conclusions These results suggest that FoxM1 expression is likely to play important roles in ccRCC development and progression, and that FoxM1 is a prognostic biomarker and a

  16. hMENA(11a) contributes to HER3-mediated resistance to PI3K inhibitors in HER2-overexpressing breast cancer cells.

    Science.gov (United States)

    Trono, P; Di Modugno, F; Circo, R; Spada, S; Di Benedetto, A; Melchionna, R; Palermo, B; Matteoni, S; Soddu, S; Mottolese, M; De Maria, R; Nisticò, P

    2016-02-18

    Human Mena (hMENA), an actin regulatory protein of the ENA/VASP family, cooperates with ErbB receptor family signaling in breast cancer. It is overexpressed in high-risk preneoplastic lesions and in primary breast tumors where it correlates with HER2 overexpression and an activated status of AKT and MAPK. The concomitant overexpression of hMENA and HER2 in breast cancer patients is indicative of a worse prognosis. hMENA is expressed along with alternatively expressed isoforms, hMENA(11a) and hMENAΔv6 with opposite functions. A novel role for the epithelial-associated hMENA(11a) isoform in sustaining HER3 activation and pro-survival pathways in HER2-overexpressing breast cancer cells has been identified by reverse phase protein array and validated in vivo in a series of breast cancer tissues. As HER3 activation is crucial in mechanisms of cell resistance to PI3K inhibitors, we explored whether hMENA(11a) is involved in these resistance mechanisms. The specific hMENA(11a) depletion switched off the HER3-related pathway activated by PI3K inhibitors and impaired the nuclear accumulation of HER3 transcription factor FOXO3a induced by PI3K inhibitors, whereas PI3K inhibitors activated hMENA(11a) phosphorylation and affected its localization. At the functional level, we found that hMENA(11a) sustains cell proliferation and survival in response to PI3K inhibitor treatment, whereas hMENA(11a) silencing increases molecules involved in cancer cell apoptosis. As shown in three-dimensional cultures, hMENA(11a) contributes to resistance to PI3K inhibition because its depletion drastically reduced cell viability upon treatment with PI3K inhibitor BEZ235. Altogether, these results indicate that hMENA(11a) in HER2-overexpressing breast cancer cells sustains HER3/AKT axis activation and contributes to HER3-mediated resistance mechanisms to PI3K inhibitors. Thus, hMENA(11a) expression can be proposed as a marker of HER3 activation and resistance to PI3K inhibition therapies, to

  17. Retroviral transfer of a murine cDNA for multidrug resistance confers pleiotropic drug resistance to cells without prior drug selection

    International Nuclear Information System (INIS)

    The authors have constructed a retrovirus expression vector that carries the murine mdr cDNA transcribed under the control of the human H4 histone promoter to examine the feasibility of efficiently transferring a multidrug resistance phenotype to cells without requiring drug selection. This approach will facilitate the transfer of mdr cDNA to hematopoietic progenitor cells for the study of multidrug resistance in vivo. The retrovirus vector pHmdr has been used for transmission and expression of the mdr cDNA in initially drug-sensitive NIH 3T3 fibroblasts. Selection of pHmdr infectants in the cytotoxic agents colchicine or doxorubicin gave rise to highly multidrug-resistant colonies containing a single gene copy of the vector. Moreover, in the analysis of 12 cloned unselected NIH 3T3 cell infectants, a multidrug resistance phenotype was conferred by as few as two copies of the pHmdr vector. Overexpression of the mdr cDNA in drug-selected and unselected pHmdr infectants was directly related to cell survival in three cytotoxic agents tested. These results hold significant implications for the study of multidrug resistance in vivo

  18. T cell receptor signaling pathway is overexpressed in CD4 + T cells from HAM/TSP individuals

    Directory of Open Access Journals (Sweden)

    Mariana Tomazini Pinto

    2015-12-01

    Full Text Available ABSTRACT Human T-lymphotropic virus type 1 (HTLV-1 is a human retrovirus related to the chronic neuroinflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. CD4+ T cells activation appears to play a key role on HTLV-1 infection. Here we investigated the expression of genes associated to T cell activation CD3e molecule, epsilon (CD3?, lymphocyte-specific protein tyrosine kinase (LCK, vav 1 guanine nucleotide exchange factor (VAV1, and zeta-chain (TCR associated protein kinase 70 kDa (ZAP70 on T lymphocytes of HTLV-1-infected individuals and compared to healthy uninfected individuals (CT. We observed that CD3?, LCK, ZAP70, and VAV1 gene expression were increased in CD4+ T cells from HAM/TSP group compared to HTLV-1 asymptomatic patients (HAC. Moreover, ZAP70 and VAV1 were also upregulated in HAM/TSP compared to CT group. We detected a positive correlation among all these genes. We also observed that CD3?, LCK, and VAV1 genes had a positive correlation with the proviral load (PVL and Tax expression. These results suggest that PVL and Tax protein could drive CD3?, LCK, and VAV1 gene expression in CD4+ T cells, and these genes function on a synchronized way on the CD4+ T cell activation. The elucidation of the mechanisms underlying T cell receptor signaling pathway is of considerable interest and might lead to new insights into the mechanism of HAM/TSP.

  19. Expression of cancer stem cell surface markers after chemotherapeutic drug treatment to reflect breast cancer cell regrowth

    Institute of Scientific and Technical Information of China (English)

    Qing Liu; Wings Tjing Yung Loo; Louis Wing Cheong Chow; Kelly Wei Yu Rui

    2014-01-01

    Objective To detect the cell viability and the expressions of stem cell surface markers after chemotherapeutic drug treatment. Methods We observed the cytotoxic effects of three chemotherapeutic agents [ epirubicin ( Epi ) , fluorouracil ( 5-FU ) and cyclophosphamide ( Cyc ) ] in three cell lines, and the cell viabilities after removed these chemotherapeutic agents. Expressions of stem cell surface markers CD44, CD24, CD90, CD14 and aldehyde dehydrogenase1(ALDH1) in breast cancer cells were analyzed by real-time PCR. The post hoc analysis (Tukey’s tests) in conjunction with one-way ANOVA was used for statistical analysis. Results The initial cytotoxic efficacy was most notable. After the treatment of the same therapeutic agents, cell viability was decreased by 64. 8% 35. 14%, 32. 25% in BT-483 cells, 66. 4%, 22. 94% and 45. 88% in MDA-MB-231 cells, 97. 1%, 99. 5% and 76. 4% in MCF cells. The difference was significant compared with that before treatment ( P=0. 000 ) . However, the inhibitory effects were diminished after chemotherapeutic agent withdrawal. Cell viabilities were increased to 167. 9%, 212. 04% and 188. 66% in MDA-MB-231 cells at 48 h after withdrawal. At 72 h after withdrawal, cell viability was increased with a significant difference in three cell lines (all P values=0. 000). Expressions of CD44 and ALDH1 were most prevalent for MDA-MB-231, BT-483 and MCF-7 cells. ALDH1 mRNA level was significant higher in BT-483 ( HER-2 overexpression cell line) than MDA-MB-231 ( triple negative cell line ) ( P = 0. 012 ) . CD14 mRNA level in MCF-7 cells were significantly lower than that in MDA-MB-231 and BT-483 (P=0. 003, 0. 001). BT-483 showed significantly higher level of CD44 than MDA-MB-231 and MCF-7 cell line (P= 0.013, 0.020), and no significant difference was detected between MDA-MB-231 and MCF-7 breast cancer cells ( P=0. 955 ) . CD90 mRNA expressions were detected in MDA-MB-231 cells and MCF-7 cells, but not in BT-483 cells. Conclusion Some malignant

  20. Red Blood Cell Membrane-Cloaked Nanoparticles For Drug Delivery

    Science.gov (United States)

    Carpenter, Cody Westcott

    Herein we describe the development of the Red Blood Cell coated nanoparticle, RBC-NP. Purified natural erythrocyte membrane is used to coat drug-loaded poly(lacticco-glycolic acid) (PLGA). Synthetic PLGA co-polymer is biocompatible and biodegradable and has already received US FDA approval for drug-delivery and diagnostics. This work looks specifically at the retention of immunosuppressive proteins on RBC-NPs, right-sidedness of natural RBC membranes interfacing with synthetic polymer nanoparticles, sustained and retarded drug release of RBC-NPs as well as further surface modification of RBC-NPs for increased targeting of model cancer cell lines.

  1. Overexpression of hSNF2H in glioma promotes cell proliferation, invasion, and chemoresistance through its interaction with Rsf-1.

    Science.gov (United States)

    Zhao, Xiao-Chun; An, Ping; Wu, Xiu-Ying; Zhang, Li-Min; Long, Bo; Tian, Yue; Chi, Xiao-Ying; Tong, Dong-Yi

    2016-06-01

    hSNF2H partners with Rsf-1 to compose the Rsf complex to regulate gene expression. Recent studies indicated that hSNF2H was overexpressed in several human cancers. However, its expression pattern and biological mechanism in glioma remain unexplored. In this study, we found that hSNF2H was overexpressed in 32 % of glioma specimens. hSNF2H overexpression correlated with advanced tumor grade (p = 0.0338) and Rsf-1 positivity in glioma tissues (p = 0.016). Small interfering RNA (siRNA) knockdown was performed in A172 and U87 cell lines. MTT, colony formation assay, and cell cycle analysis showed that knockdown of hSNF2H inhibited cell proliferation, colony formation ability, and cell cycle transition. Matrigel invasion assay showed that hSNF2H depletion inhibited invasive ability of glioma cells. In addition, we demonstrated that hSNF2H depletion decreased temozolomide resistance of A172 and U87 cell lines and increased temozolomide induced apoptosis. Furthermore, hSNF2H depletion decreased cyclin D1, cyclin E, p-Rb, MMP2, cIAP1, Bcl-2 expression, and phosphorylation of IκBα and p65, suggesting hSNF2H regulates apoptosis through NF-κB pathway. Immunoprecipitation showed that hSNF2H could interact with Rsf-1 in both cell lines. To validate the involvement of Rsf-1, we checked the change of its downstream targets in Rsf-1 depleted cells. In Rsf-1 depleted cells, changes of cyclin E, Bcl-2, and p-IκBα were not significant using hSNF2H siRNA treatment. In conclusion, our study demonstrated that hSNF2H was overexpressed in human gliomas and contributed to glioma proliferation, invasion, and chemoresistance through regulation of cyclin E and NF-κB pathway, which is dependent on its interaction with Rsf-1. PMID:26666816

  2. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Sang Yong [Department of Diagnostic Radiology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Han, Myung Kwan [Department of Microbiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Duk Hoon [Division of Forensic Medicine, National Forensic Service, Seoul (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  3. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  4. Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells.

    Science.gov (United States)

    Johari-Ahar, Mohammad; Barar, Jaleh; Alizadeh, Ali Mohammad; Davaran, Soodabeh; Omidi, Yadollah; Rashidi, Mohammad-Reza

    2016-01-01

    Methotrexate (MTX), a folic acid derivative, is a potent anticancer used for treatment of different malignancies, but possible initiation of drug resistance to MTX by cancer cells has limited its applications. Nanoconjugates (NCs) of MTX to quantum dots (QDs) may favour the cellular uptake via folate receptors (FRs)-mediated endocytosis that circumvents the efflux functions of cancer cells. We synthesised MTX-conjugated l-cysteine capped CdSe QDs (MTX-QD nanoconjugates) and evaluated their internalisation and cytotoxicity in the KB cells with/without resistancy to MTX. The NCs were fully characterised by high resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and optical spectroscopy. Upon conjugation with MTX, the photoluminescence (PL) properties of QDs altered, while an obvious quenching in PL of QDs was observed after physical mixing. The MTX-QD nanoconjugates efficiently internalised into the cancer cells, and induced markedly high cytotoxicity (IC50, 12.0 µg/mL) in the MTX-resistant KB cells as compared to the free MTX molecules (IC50,105.0 µg/mL), whereas, these values were respectively about 7.0 and 0.6 µg/mL in the MTX-sensitive KB cells. Based on these findings, the MTX-QD nanoconjugates are proposed for the targeted therapy of MTX-resistant cancers, which may provide an improved outcome in the relapsed FR-overexpressing cancers. PMID:26176269

  5. Tumor signatures of PTHLH overexpression, high serum calcium, and poor prognosis were observed exclusively in clear cell but not non clear cell renal carcinomas

    International Nuclear Information System (INIS)

    High serum calcium (Ca) due to aberrant secretion of tumor parathyroid hormone-like hormone (PTHLH) is a well-known paraneoplastic sign and is associated with poor prognosis in patients with renal cell carcinoma (RCC). However, the status of serum Ca and tumor PTHLH expression have not been verified using the 2004 World Health Organization (WHO) renal tumor classification. We retrospectively reviewed corrected serum Ca levels at initial onset (n = 683) and/or as of recurrence (n = 71) in patients with RCC. We also examined a total of 623 renal parenchymal tumor samples for PTHLH mRNA expressions by quantitative real-time PCR. High serum Ca concomitant with PTHLH overexpression in tumors was observed exclusively in clear cell RCC but not in other non clear cell subtype tumors, including papillary, chromophobe, collecting-duct, unclassified, and other rare subtype RCCs or in benign oncocytomas and angiomyolipomas. In clear cell RCC, PTHLH expression was significantly high in male patients, and was associated with a symptomatic presentation, higher grade, and higher stage cases, whereas it was not associated with VHL gene status. Univariate analyses demonstrated that high PTHLH expression was strongly associated with poor outcome both in overall survival (OS) and disease-free survival (DFS) for patients who underwent standard nephrectomy. Further multivariate Cox analyses revealed that the PTHLH expressions remained as independent prognostic parameters for OS but not for DFS. These data suggest that the previously characterized tumor signatures of high serum Ca due to high PTHLH expression and poor prognosis are clear cell RCC-specific features, whereas these characteristics are rare in non clear cell RCCs

  6. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato

    DEFF Research Database (Denmark)

    Albacete, Alfonso; Cantero-Navarro, Elena; Grosskinsky, Dominik Kilian;

    2015-01-01

    %), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold...

  7. Involvement of CUL4A in Regulation of Multidrug Resistance to P-gp Substrate Drugs in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yunshan Wang

    2013-12-01

    Full Text Available CUL4A encodes a core component of a cullin-based E3 ubiquitin ligase complex that regulates many critical processes such as cell cycle progression, DNA replication, DNA repair and chromatin remodeling by targeting a variety of proteins for ubiquitination and degradation. In the research described in this report we aimed to clarify whether CUL4A participates in multiple drug resistance (MDR in breast cancer cells. We first transfected vectors carrying CUL4A and specific shCUL4A into breast cancer cells and corresponding Adr cells respectively. Using reverse transcription polymerase chain reactions and western blots, we found that overexpression of CUL4A in MCF7 and MDA-MB-468 cells up-regulated MDR1/P-gp expression on both the transcription and protein levels, which conferred multidrug resistance to P-gp substrate drugs, as determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. On the other hand, silencing CUL4A in MCF7/Adr and MDA-MB-468/Adr cells led to the opposite effect. Moreover, ERK1/2 in CUL4A-overexpressing cells was highly activated and after treatment with PD98059, an ERK1/2-specific inhibitor, CUL4A-induced expression of MDR1/P-gp was decreased significantly. Lastly, immunohistochemistry in breast cancer tissues showed that P-gp expression had a positive correlation with the expression of CUL4A and ERK1/2. Thus, these results implied that CUL4A and ERK1/2 participated in multi-drug resistance in breast cancer through regulation of MDR1/P-gp expression.

  8. Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model

    Directory of Open Access Journals (Sweden)

    Chang Chin-Pao

    2011-01-01

    Full Text Available Abstract Background Hedgehog signalling has been implicated in prostate tumorigenesis in human subjects and mouse models, but its effects on transforming normal basal/stem cells toward malignant cancer stem cells remain poorly understood. Methods We produced pCX-shh-IG mice that overexpress Hedgehog protein persistently in adult prostates, allowing for elucidation of the mechanism during prostate cancer initiation and progression. Various markers were used to characterize and confirm the transformation of normal prostate basal/stem cells into malignant cancer stem cells under the influence of Hedgehog overexpression. Results The pCX-shh-IG mice developed prostatic intraepithelial neoplasia (PIN that led to invasive and metastatic prostate cancers within 90 days. The prostate cancer was initiated through activation of P63+ basal/stem cells along with simultaneous activation of Hedgehog signalling members, suggesting that P63+/Patch1+ and P63+/Smo+ cells may serve as cancer-initiating cells and progress into malignant prostate cancer stem cells (PCSCs. In the hyperplastic lesions and tumors, the progeny of PCSCs differentiated into cells of basal-intermediate and intermediate-luminal characteristics, whereas rare ChgA+ neuroendocrine differentiation was seen. Furthermore, in the metastatic loci within lymph nodes, kidneys, and lungs, the P63+ PCSCs formed prostate-like glandular structures, characteristic of the primitive structures during early prostate development. Besides, androgen receptor (AR expression was detected heterogeneously during tumor progression. The existence of P63+/AR-, CK14+/AR- and CD44+/AR- progeny indicates direct procurement of AR- malignant cancer trait. Conclusions These data support a cancer stem cell scenario in which Hedgehog signalling plays important roles in transforming normal prostate basal/stem cells into PCSCs and in the progression of PCSCs into metastatic tumor cells.

  9. Differential toxicity of mitomycin C and porfiromycin to aerobic and hypoxic Chinese hamster ovary cells overexpressing human NADPH:cytochrome c (P-450) reductase.

    OpenAIRE

    Belcourt, M F; Hodnick, W F; Rockwell, S; Sartorelli, A C

    1996-01-01

    Purified NADPH:cytochrome c (P-450) reductase (FpT; NADPH-ferrihemoprotein oxidoreductase, EC 1.6.2.4) can reductively activate mitomycin antibiotics through a one-electron reduction to species that alkylate DNA. To assess the involvement of FpT in the intracellular activation of the mitomycins, transfectants overexpressing a human FpT cDNA were established from a Chinese hamster ovary cell line deficient in dihydrofolate reductase (CHO-K1/dhfr-). The parental cell line was equisensitive to t...

  10. Overexpression of steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability

    Directory of Open Access Journals (Sweden)

    Tian Dai

    2012-11-01

    Full Text Available Abstract Background Endothelial dysfunction is a well documented evidence for the onset of atherosclerosis and other cardiovascular diseases. Lipids disorder is among the main risk factors for endothelial dysfunction in these diseases. Steroidogenic acute regulatory protein (StAR, one of the cholesterol transporters, plays an important role in the maintenance of intracellular lipid homeostasis. However, the effect of StAR on endothelial dysfunction is not well understood. Palmitic acid (PA has been shown to decrease eNOS activity and induce inflammation, both are the causes of endothelial dysfunction, in an endothelial cell culture model. Methods StAR gene was introduced into primary rat aortic endothelial cells by adenovirus infection. Real-time PCR and Western blotting were performed to determine the relative genes and proteins expression level to elucidate the underlying mechanism. The free fatty acid and cholesterol quantification kits were used to detect total cellular free fatty acid and cholesterol. The levels of inflammatory factors and nitric oxide were determined by ELISA and classic Griess reagent methods respectively. Results We successfully overexpressed StAR in primary rat aortic endothelial cells. Following StAR overexpression, mRNA levels of IL-1β, TNFα, IL6 and VCAM-1 and protein levels of IL-1β, , TNFα and IL-6 in culture supernatant were significantly decreased, which duing to blocke NFκB nuclear translocation and activation. Moreover, StAR overexpression attenuated the PA-induced reduction of nitric oxide bioavailability by protecting the bioactivity of pAkt/peNOS/NO pathway. Furthermore, the key genes involved in lipid metabolism were greatly reduced following StAR overexpression. In order to investigate the underlying mechanism, cerulenin and lovastatin, the inhibitor of fatty acid and cholesterol synthase, were added prior to PA treatment. The results showed that both cerulenin and lovastatin had a similar effect as

  11. Troglitazone reverses the multiple drug resistance phenotype in cancer cells

    Directory of Open Access Journals (Sweden)

    Gerald F Davies

    2009-03-01

    Full Text Available Gerald F Davies1, Bernhard HJ Juurlink2, Troy AA Harkness11Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; 2College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi ArabiaAbstract: A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1 and histone H3 expression. The thiazolidinedione troglitazone (TRG downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX. The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp drug efflux pump multiple drug resistance protein 1 (MDR-1, and the breast cancer resistance protein (BCRP. TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers. Keywords: chemotherapy, doxorubicin, breast cancer resistance protein-1, multiple drug resistance, multiple drug resistance protein 1

  12. Glial cells as drug targets: What does it take?

    Science.gov (United States)

    Möller, Thomas; Boddeke, Hendrikus W G M

    2016-10-01

    The last two decades have brought a significant increase in our understanding of glial biology and glial contribution to CNS disease. Yet, despite the fact that glial cells make up the majority of CNS cells, no drug specifically targeting glial cells is on the market. Given the long development times of CNS drugs, on average over 12 years, this is not completely surprising. However, there is increasing interest from academia and industry to exploit glial targets to develop drugs for the benefit of patients with currently limited or no therapeutic options. CNS drug development has a high attrition rate and has encountered many challenges. It seems unlikely that developing drugs against glial targets would be any less demanding. However, the knowledge generated in traditional CNS drug discovery teaches valuable lessons, which could enable the glial community to accelerate the cycle time from basic discovery to drug development. In this review we will discuss steps necessary to bring a "glial target idea" to a clinical development program. GLIA 2016;64:1742-1754. PMID:27121701

  13. FBI-1 Is Overexpressed in Gestational Trophoblastic Disease and Promotes Tumor Growth and Cell Aggressiveness of Choriocarcinoma via PI3K/Akt Signaling.

    Science.gov (United States)

    Mak, Victor C Y; Wong, Oscar G W; Siu, Michelle K Y; Wong, Esther S Y; Ng, Wai-Yan; Wong, Richard W C; Chan, Ka-Kui; Ngan, Hextan Y S; Cheung, Annie N Y

    2015-07-01

    Human placental trophoblasts can be considered pseudomalignant, with tightly controlled proliferation, apoptosis, and invasiveness. Gestational trophoblastic disease (GTD) represents a family of heterogeneous trophoblastic lesions with aberrant apoptotic and proliferative activities and dysregulation of cell signaling pathways. We characterize the oncogenic effects of factor that binds to the inducer of short transcripts of HIV-1 [FBI-1, alias POZ and Krüppel erythroid myeloid ontogenic factor (POKEMON)/ZBTB7A] in GTD and its role in promoting cell aggressiveness in vitro and tumor growth in vivo. IHC studies showed increased nuclear expression of FBI-1, including hydatidiform moles, choriocarcinoma (CCA), and placental site trophoblastic tumor, in GTD. In JAR and JEG-3 CCA cells, ectopic FBI-1 expression opposed apoptosis through repression of proapoptotic genes (eg, BAK1, FAS, and CASP8). FBI-1 overexpression also promoted Akt activation, as indicated by Akt-pS473 phosphorylation. FBI-1 overexpression promoted mobility and invasiveness of JEG-3 and JAR, but not in the presence of the phosphoinositide 3-kinase inhibitor LY294002. These findings suggest that FBI-1 could promote cell migration and invasion via phosphoinositide 3-kinase/Akt signaling. In vivo, nude mice injected with CCA cells with stable FBI-1 knockdown demonstrated reduced tumor growth compared with that in control groups. These findings suggest that FBI-1 is clinically associated with the progression of, and may be a therapeutic target in, GTD, owing to its diverse oncogenic effects on dysregulated trophoblasts. PMID:26093985

  14. Overexpression of octamer transcription factors 1 or 2 alone has no effect on HIV-1 transcription in primary human CD4 T cells

    International Nuclear Information System (INIS)

    We explored the binding of octamer (Oct) transcription factors to the HIV-1 long terminal repeat (LTR) by gel shift assays and showed none of the previously identified four potential Oct binding sites bound Oct-1 or Oct-2. Overexpression of Oct-1 or Oct-2 had no effect on HIV-1 LTR activity in transiently transfected primary human CD4 T cells. Next, primary human CD4 T cells were co-transfected with a green fluorescent protein (GFP)-expression vector and an Oct-1 or Oct-2 expression plasmid. The transfected cells were stimulated for 2 days and then infected with the NL4-3 strain of HIV-1. After 3 days of infection, there were no differences in HIV-1 p24 supernatant levels. Apoptosis of infected or bystander cells overexpressing Oct-1 or Oct-2 compared to control was also unaffected. Our studies demonstrate that Oct-1 and Oct-2 fail to bind to the HIV-1 LTR and have no effect on HIV-1 transcription in primary human CD4 T cells

  15. Development of a cell-based bioassay for phospholipase A2-triggered liposomal drug release.

    Directory of Open Access Journals (Sweden)

    Ahmad Arouri

    Full Text Available The feasibility of exploiting secretory phospholipase A2 (sPLA2 enzymes, which are overexpressed in tumors, to activate drug release from liposomes precisely at the tumor site has been demonstrated before. Although the efficacy of the developed formulations was evaluated using in vitro and in vivo models, the pattern of sPLA2-assisted drug release is unknown due to the lack of a suitable bio-relevant model. We report here on the development of a novel bioluminescence living-cell-based luciferase assay for the monitoring of sPLA2-triggered release of luciferin from liposomes. To this end, we engineered breast cancer cells to produce both luciferase and sPLA2 enzymes, where the latter is secreted to the extracellular medium. We report on setting up a robust and reproducible bioassay for testing sPLA2-sensitive, luciferin remote-loaded liposomal formulations, using 1,2-distearoyl-sn-glycero-3-phosphatidylcholine/1,2-distearoyl-sn-glycero-3-phosphatidylglycerol (DSPC/DSPG 7:3 and DSPC/DSPG/cholesterol 4:3:3 as initial test systems. Upon their addition to the cells, the liposomes were degraded almost instantaneously by sPLA2 releasing the encapsulated luciferin, which provided readout from the luciferase-expressing cells. Cholesterol enhanced the integrity of the formulation without affecting its susceptibility to sPLA2. PEGylation of the liposomes only moderately broadened the release profile of luciferin. The provided bioassay represents a useful tool for monitoring active drug release in situ in real time as well as for testing and optimizing of sPLA2-sensitive lipid formulations. In addition, the bioassay will pave the way for future in-depth in vitro and in vivo studies.

  16. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles

    Science.gov (United States)

    Chen, Lijue; She, Xiaodong; Wang, Tao; He, Li; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-08-01

    Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest.Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The

  17. Overcoming MITF-conferred drug resistance through dual AURKA/MAPK targeting in human melanoma cells.

    Science.gov (United States)

    Pathria, G; Garg, B; Borgdorff, V; Garg, K; Wagner, C; Superti-Furga, G; Wagner, S N

    2016-01-01

    MITF (microphthalmia-associated transcription factor) is a frequently amplified lineage-specific oncogene in human melanoma, whose role in intrinsic drug resistance has not been systematically investigated. Utilizing chemical inhibitors for major signaling pathways/cellular processes, we witness MITF as an elicitor of intrinsic drug resistance. To search kinase(s) targets able to bypass MITF-conferred drug resistance, we employed a multi-kinase inhibitor-directed chemical proteomics-based differential affinity screen in human melanocytes carrying ectopic MITF overexpression. A subsequent methodical interrogation informed mitotic Ser/Thr kinase Aurora Kinase A (AURKA) as a crucial regulator of melanoma cell proliferation and migration, independent of the underlying molecular alterations, including TP53 functional status and MITF levels. Crucially, assessing the efficacy of investigational AURKA inhibitor MLN8237, we pre-emptively witness the procurement of a molecular program consistent with acquired drug resistance. This involved induction of multiple MAPK (mitogen-activated protein kinase) signaling pathway components and their downstream proliferation effectors (Cyclin D1 and c-JUN) and apoptotic regulators (MITF and Bcl-2). A concomitant AURKA/BRAF and AURKA/MEK targeting overcame MAPK signaling activation-associated resistance signature in BRAF- and NRAS-mutated melanomas, respectively, and elicited heightened anti-proliferative activity and apoptotic cell death. These findings reveal a previously unreported MAPK signaling-mediated mechanism of immediate resistance to AURKA inhibitors. These findings could bear significant implications for the application and the success of anti-AURKA approaches that have already entered phase-II clinical trials for human melanoma. PMID:26962685

  18. Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants

    Directory of Open Access Journals (Sweden)

    Katherine Maringer

    2014-08-01

    Full Text Available Small molecular weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and required for protein transport from the ER to the Golgi complex, however, the function of Rab2 in Dictyostelium has yet to be fully characterized. Using cell lines that over-express DdRab2, as well as cell lines over-expressing constitutively active (CA, and dominant negative (DN forms of the GTPase, we report a functional role in vesicular transport specifically phagocytosis, and endocytosis. Furthermore, Rab2 like other GTPases cycles between an active GTP-bound and an inactive GDP-bound state. We found that this GTP/GDP cycle for DdRab2 is crucial for normal Dictyostelium development and cell–cell adhesion. Similar to Rab5 and Rab7 in C. elegans, we found that DdRab2 plays a role in programmed cell death, possibly in the phagocytic removal of apoptotic corpses.

  19. [Over-expression of miR-141 inhibits the proliferation, invasion and migration of hepatocellular carcinoma MHCC-97H cells].

    Science.gov (United States)

    Yao, Bowen; Xue, Yumo; Liu, Zhikui; Xu, Meng; Tu, Kangsheng; Wang, Jun

    2016-08-01

    Objective To observe the expression level of miR-141 in tumor tissues of human hepatocellular carcinoma (HCC) and determine the effect of miR-141 level on cell proliferation, invasion and migration of MHCC-97H cells by upregulation of miR-141. Methods We checked the miR-141 expression level in HCC by real-time quantitative PCR and analyzed the relationship between the expression level of miR-141 and clinical pathological indicators as well as survival rate. MHCC-97H cells were transiently transfected with miR-141 mimics which were artificially synthesized. The proliferation of MHCC-97H cells was detected by MTT assay. Transwell(TM) assay was performed to examine the invasion and migration of MHCC-97H cells. The expression of erythropoietin-producing hepatocellular receptor A2 (EphA2), which was the potential downstream target, was determined by Western blotting and immunohistochemistry. Results The expression level of miR-141 in HCC tissues was significantly lower than that in the adjacent normal tissues, and it was obviously associated with TNM stage, portal vein infiltration and Edmondson degree. Patients in the lower miR-141 group had a worse 3-year survival than those in higher miR-141 group. Overexpression of miR-141 in MHCC-97H cells significantly suppressed cell proliferation, invasion and migration, and inhibited the protein expression of EphA2. Correlation analysis showed that miR-141 level was negatively correlated with EphA2 expression level. Conclusion miR-141 is down-regulated in HCC tissues and it is negatively correlated with EphA2 expression. Its low expression is correlated with the malignant clinical pathological features. miR-141 overexpression down-regulates EphA2 expression and subsequently inhibits the proliferation, invasion and migration of HCC cells. PMID:27412940

  20. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells

    Science.gov (United States)

    Li, Jing; Ma, Fang-Kui; Dang, Qi-Feng; Liang, Xing-Guo; Chen, Xi-Guang

    2014-12-01

    A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (- 15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-loaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4-5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies.

  1. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles.

    Science.gov (United States)

    Li, Jiahe; Ai, Yiwei; Wang, Lihua; Bu, Pengcheng; Sharkey, Charles C; Wu, Qianhui; Wun, Brittany; Roy, Sweta; Shen, Xiling; King, Michael R

    2016-01-01

    Circulating tumor cells (CTCs) are responsible for metastases in distant organs via hematogenous dissemination. Fundamental studies in the past decade have suggested that neutralization of CTCs in circulation could represent an effective strategy to prevent metastasis. Current paradigms of targeted drug delivery into a solid tumor largely fall into two main categories: unique cancer markers (e.g. overexpression of surface receptors) and tumor-specific microenvironment (e.g. low pH, hypoxia, etc.). While relying on a surface receptor to target CTCs can be greatly challenged by cancer heterogeneity, targeting of tumor microenvironments has the advantage of recognizing a broader spectrum of cancer cells regardless of genetic differences or tumor types. The blood circulation, however, where CTCs transit through, lacks the same tumor microenvironment as that found in a solid tumor. In this study, a unique "microenvironment" was confirmed upon introduction of cancer cells of different types into circulation where activated platelets and fibrin were physically associated with blood-borne cancer cells. Inspired by this observation, synthetic silica particles were functionalized with activated platelet membrane along with surface conjugation of tumor-specific apoptosis-inducing ligand cytokine, TRAIL. Biomimetic synthetic particles incorporated into CTC-associated micro-thrombi in lung vasculature and dramatically decreased lung metastases in a mouse breast cancer metastasis model. Our results demonstrate a "Trojan Horse" strategy of neutralizing CTCs to attenuate metastasis. PMID:26519648

  2. Thiacetazone, an antitubercular drug that inhibits cyclopropanation of cell wall mycolic acids in mycobacteria.

    Directory of Open Access Journals (Sweden)

    Anuradha Alahari

    Full Text Available BACKGROUND: Mycolic acids are a complex mixture of branched, long-chain fatty acids, representing key components of the highly hydrophobic mycobacterial cell wall. Pathogenic mycobacteria carry mycolic acid sub-types that contain cyclopropane rings. Double bonds at specific sites on mycolic acid precursors are modified by the action of cyclopropane mycolic acid synthases (CMASs. The latter belong to a family of S-adenosyl-methionine-dependent methyl transferases, of which several have been well studied in Mycobacterium tuberculosis, namely, MmaA1 through A4, PcaA and CmaA2. Cyclopropanated mycolic acids are key factors participating in cell envelope permeability, host immunomodulation and persistence of M. tuberculosis. While several antitubercular agents inhibit mycolic acid synthesis, to date, the CMASs have not been shown to be drug targets. METHODOLOGY/PRINCIPLE FINDINGS: We have employed various complementary approaches to show that the antitubercular drug, thiacetazone (TAC, and its chemical analogues, inhibit mycolic acid cyclopropanation. Dramatic changes in the content and ratio of mycolic acids in the vaccine strain Mycobacterium bovis BCG, as well as in the related pathogenic species Mycobacterium marinum were observed after treatment with the drugs. Combination of thin layer chromatography, mass spectrometry and Nuclear Magnetic Resonance (NMR analyses of mycolic acids purified from drug-treated mycobacteria showed a significant loss of cyclopropanation in both the alpha- and oxygenated mycolate sub-types. Additionally, High-Resolution Magic Angle Spinning (HR-MAS NMR analyses on whole cells was used to detect cell wall-associated mycolates and to quantify the cyclopropanation status of the cell envelope. Further, overexpression of cmaA2, mmaA2 or pcaA in mycobacteria partially reversed the effects of TAC and its analogue on mycolic acid cyclopropanation, suggesting that the drugs act directly on CMASs. CONCLUSIONS/SIGNIFICANCE: This

  3. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    International Nuclear Information System (INIS)

    Highlights: •Ell3 enhances proliferation and