WorldWideScience

Sample records for cells lack ap-1

  1. Hepatic stellate cells lack AP-1 responsiveness to electrophiles and phorbol 12-myristate-13-acetate

    International Nuclear Information System (INIS)

    Reichard, John F.; Petersen, Dennis R.

    2004-01-01

    Stellate cell profibrotic gene induction and transdifferentiation are central events in liver fibrosis. Oxidative stress has been implicated as an activator of the transcription factors Nrf2 and AP-1 through shared kinase signaling pathways that also purportedly contribute to stellate cell activation. The present study examined the role of oxidative stress in ARE- and TRE-regulated gene induction in isolated hepatic stellate cells. Using a portion of the human Nqo1 promoter consisting of an ARE imbedded TRE, it was demonstrated that while the ARE was responsible for mediating inducible gene expression in response to the electrophiles 4-HNE and tBHQ, the TRE was refractory to induction by either electrophiles or PMA. It was demonstrated that stellate cells possess nuclear TRE-binding proteins that were identified as JunB, JunD, Fra1, and Fra2, which were unaffected by either electrophiles or PMA treatment. This report demonstrates that, in contrast to the ARE, the TRE and its binding cognate AP-1 did not mediate independent gene induction in hepatic stellate cells. This observation is significant given the presumed importance attributed to AP-1 in mediating profibrogenic gene expression

  2. COBRA1 inhibits AP-1 transcriptional activity in transfected cells

    International Nuclear Information System (INIS)

    Zhong Hongjun; Zhu Jianhua; Zhang Hao; Ding Lihua; Sun Yan; Huang Cuifen; Ye Qinong

    2004-01-01

    Mutations in the breast cancer susceptibility gene (BRCA1) account for a significant proportion of hereditary breast and ovarian cancers. Cofactor of BRCA1 (COBRA1) was isolated as a BRCA1-interacting protein and exhibited a similar chromatin reorganizing activity to that of BRCA1. However, the biological role of COBRA1 remains largely unexplored. Here, we report that ectopic expression of COBRA1 inhibited activator protein 1 (AP-1) transcriptional activity in transfected cells in a dose-dependent manner, whereas reduction of endogenous COBRA1 with a small interfering RNA significantly enhanced AP-1-mediated transcriptional activation. COBRA1 physically interacted with the AP-1 family members, c-Jun and c-Fos, and the middle region of COBRA1 bound to c-Fos. Lack of c-Fos binding site in the COBRA1 completely abolished the COBRA1 inhibition of AP-1 trans-activation. These findings suggest that COBRA1 may directly modulate AP-1 pathway and, therefore, may play important roles in cell proliferation, differentiation, apoptosis, and oncogenesis

  3. Aerosol-delivered programmed cell death 4 enhanced apoptosis, controlled cell cycle and suppressed AP-1 activity in the lungs of AP-1 luciferase reporter mice.

    Science.gov (United States)

    Hwang, S-K; Jin, H; Kwon, J T; Chang, S-H; Kim, T H; Cho, C-S; Lee, K H; Young, M R; Colburn, N H; Beck, G R; Yang, H-S; Cho, M-H

    2007-09-01

    The long-term survival of lung cancer patients treated with conventional therapies remains poor and therefore the need for novel approaches remains high. This has led to the re-emergence of aerosol delivery as a therapeutic intervention. In this study, glucosylated polyethylenimine (GPEI) was used as carrier to investigate programmed cell death 4 (PDCD4) and PDCD4 mutant (D418A), an eIF4A-binding mutant, on PDCD4-related signaling and activator protein-1 (AP-1) activity in the lungs of AP-1 luciferase reporter mice. After confirming the efficiency of GPEI as a carrier in lungs, the effects of aerosol-delivered PDCD4 were investigated in AP-1 luciferase reporter mice. Aerosol delivery of GPEI/PDCD4 through a nose-only inhalation facilitated the apoptosis of lungs whereas aerosol PDCD4 mutant did not. Also, such aerosol delivery regulated proteins relevant to cell-cycle control and suppressed AP-1 activity. Results obtained by western blot analysis, immunohistochemistry, luciferase assay and deoxynucleotidyl-transferase-mediated nick end labeling study suggest that combined actions such as facilitating apoptosis, controlling cell cycle and suppression of AP-1 activity by PDCD4 may provide useful tool for designing lung tumor prevention and treatment by which PDCD4 functions as a transformation suppressor in the future.

  4. Knockdown of CDK2AP1 in human embryonic stem cells reduces the threshold of differentiation.

    Directory of Open Access Journals (Sweden)

    Khaled N Alsayegh

    Full Text Available Recent studies have suggested a role for the Cyclin Dependent Kinase-2 Associated Protein 1 (CDK2AP1 in stem cell differentiation and self-renewal. In studies with mouse embryonic stem cells (mESCs derived from generated mice embryos with targeted deletion of the Cdk2ap1 gene, CDK2AP1 was shown to be required for epigenetic silencing of Oct4 during differentiation, with deletion resulting in persistent self-renewal and reduced differentiation potential. Differentiation capacity was restored in these cells following the introduction of a non-phosphorylatible form of the retinoblastoma protein (pRb or exogenous Cdk2ap1. In this study, we investigated the role of CDK2AP1 in human embryonic stem cells (hESCs. Using a shRNA to reduce its expression in hESCs, we found that CDK2AP1 knockdown resulted in a significant reduction in the expression of the pluripotency genes, OCT4 and NANOG. We also found that CDK2AP1 knockdown increased the number of embryoid bodies (EBs formed when differentiation was induced. In addition, the generated EBs had significantly higher expression of markers of all three germ layers, indicating that CDK2AP1 knockdown enhanced differentiation. CDK2AP1 knockdown also resulted in reduced proliferation and reduced the percentage of cells in the S phase and increased cells in the G2/M phase of the cell cycle. Further investigation revealed that a higher level of p53 protein was present in the CDK2AP1 knockdown hESCs. In hESCs in which p53 and CDK2AP1 were simultaneously downregulated, OCT4 and NANOG expression was not affected and percentage of cells in the S phase of the cell cycle was not reduced. Taken together, our results indicate that the knockdown of CDK2AP1 in hESCs results in increased p53 and enhances differentiation and favors it over a self-renewal fate.

  5. Mutations in ap1b1 cause mistargeting of the Na(+/K(+-ATPase pump in sensory hair cells.

    Directory of Open Access Journals (Sweden)

    Rachel Clemens Grisham

    Full Text Available The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal compartments in sensory hair cells is poorly understood. Here we describe auditory/vestibular mutants isolated from forward genetic screens in zebrafish with lesions in the adaptor protein 1 beta subunit 1 (ap1b1 gene. Ap1b1 is a subunit of the adaptor complex AP-1, which has been implicated in the targeting of basolateral membrane proteins. In ap1b1 mutants we observed that although the overall development of the inner ear and lateral-line organ appeared normal, the sensory epithelium showed progressive signs of degeneration. Mechanically-evoked calcium transients were reduced in mutant hair cells, indicating that mechanotransduction was also compromised. To gain insight into the cellular and molecular defects in ap1b1 mutants, we examined the localization of basolateral membrane proteins in hair cells. We observed that the Na(+/K(+-ATPase pump (NKA was less abundant in the basolateral membrane and was mislocalized to apical bundles in ap1b1 mutant hair cells. Accordingly, intracellular Na(+ levels were increased in ap1b1 mutant hair cells. Our results suggest that Ap1b1 is essential for maintaining integrity and ion homeostasis in hair cells.

  6. Depletion of the AP-1 repressor JDP2 induces cell death similar to apoptosis

    DEFF Research Database (Denmark)

    Lerdrup, Mads; Holmberg, Christian Henrik; Dietrich, Nikolaj

    2005-01-01

    JDP2 is a ubiquitously expressed nuclear protein that efficiently represses the activity of the transcription factor AP-1. Thus far, all studies of JDP2 function have relied on the ectopic expression of the protein. In this study, we use a different approach: depletion of JDP2 from cells. Specific...... depletion of JDP2 resulted in p53-independent cell death that resembles apoptosis and was evident at 72 h. The death mechanism was caspase dependent as the cells could be rescued by treatment with caspase inhibitor zVAD. Our studies suggest that JDP2 functions as a general survival protein, not only...

  7. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    International Nuclear Information System (INIS)

    Kwon, Ho-Keun; Lee, Sung Haeng; Park, Zee Yong; Im, Sin-Hyeog; Hwang, Ji-Sun; So, Jae-Seon; Lee, Choong-Gu; Sahoo, Anupama; Ryu, Jae-Ha; Jeon, Won Kyung; Ko, Byoung Seob; Im, Chang-Rok

    2010-01-01

    Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8 + T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers

  8. Transcription factor AP-1 in esophageal squamous cell carcinoma: Alterations in activity and expression during Human Papillomavirus infection

    International Nuclear Information System (INIS)

    Hussain, Showket; Bharti, Alok C; Salam, Irfana; Bhat, Mohammad Akbar; Mir, Mohammad Muzaffar; Hedau, Suresh; Siddiqi, Mushtaq A; Basir, Seemi Farhat; Das, Bhudev C

    2009-01-01

    Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related deaths in Jammu and Kashmir (J&K) region of India. A substantial proportion of esophageal carcinoma is associated with infection of high-risk HPV type 16 and HPV18, the oncogenic expression of which is controlled by host cell transcription factor Activator Protein-1 (AP-1). We, therefore, have investigated the role of DNA binding and expression pattern of AP-1 in esophageal cancer with or without HPV infection. Seventy five histopathologically-confirmed esophageal cancer and an equal number of corresponding adjacent normal tissue biopsies from Kashmir were analyzed for HPV infection, DNA binding activity and expression of AP-1 family of proteins by PCR, gel shift assay and immunoblotting respectively. A high DNA binding activity and elevated expression of AP-1 proteins were observed in esophageal cancer, which differed between HPV positive (19%) and HPV negative (81%) carcinomas. While JunB, c-Fos and Fra-1 were the major contributors to AP-1 binding activity in HPV negative cases, Fra-1 was completely absent in HPV16 positive cancers. Comparison of AP-1 family proteins demonstrated high expression of JunD and c-Fos in HPV positive tumors, but interestingly, Fra-1 expression was extremely low or nil in these tumor tissues. Differential AP-1 binding activity and expression of its specific proteins between HPV - positive and HPV - negative cases indicate that AP-1 may play an important role during HPV-induced esophageal carcinogenesis

  9. Andrographolide suppresses high glucose-induced fibronectin expression in mesangial cells via inhibiting the AP-1 pathway.

    Science.gov (United States)

    Lan, Tian; Wu, Teng; Gou, Hongju; Zhang, Qianqian; Li, Jiangchao; Qi, Cuiling; He, Xiaodong; Wu, Pingxiang; Wang, Lijing

    2013-11-01

    Mesangial cells (MCs) proliferation and accumulation of glomerular matrix proteins such as fibronectin (FN) are the early features of diabetic nephropathy, with MCs known to upregulate matrix protein synthesis in response to high glucose. Recently, it has been found that andrographolide has renoprotective effects on diabetic nephropathy. However, the molecular mechanism underlying these effects remains unclear. Cell viability and proliferation was evaluated by MTT. FN expression was examined by immunofluorescence and immunoblotting. Activator protein-1 (AP-1) activation was assessed by immunoblotting, luciferase reporter and electrophoretic mobility shift assays. Andrographolide significantly decreased high glucose-induced cell proliferation and FN expression in MCs. Exposure of MCs to high glucose markedly stimulated the expression of phosphorylated c-jun, whereas the stimulation was inhibited by andrographolide. Plasmid pAP-1-Luc luciferase reporter assay showed that andrographolide blocked high glucose-induced AP-1 transcriptional activity. EMSA assay demonstrated that increased AP-1 binding to an AP-1 binding site at -1,029 in the FN gene promoter upon high glucose stimulation, and the binding were disrupted by andrographolide treatment. These data indicate that andrographolide suppresses high glucose-induced FN expression by inhibiting AP-1-mediated pathway. © 2013 Wiley Periodicals, Inc.

  10. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.; Schuchman, David B.; Shelhamer, James H.; Goldstein, Barry J.; Foxwell, Brian M.; Stemerman, Michael B.; Maranchie, Jodi K.; Valente, Anthony J.; Mummidi, Srinivas; Chandrasekar, Bysani

    2006-01-01

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-κB (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis

  11. Human TMEM174 that is highly expressed in kidney tissue activates AP-1 and promotes cell proliferation

    International Nuclear Information System (INIS)

    Wang, Pingzhang; Sun, Bo; Hao, Dongxia; Zhang, Xiujun; Shi, Taiping; Ma, Dalong

    2010-01-01

    Mitogen-activated protein kinase (MAPK) cascades play an important role in regulation of AP-1 activity through the phosphorylation of distinct substrates. In the present study, we identified a novel protein, TMEM174, whose RNA transcripts are highly expressed in human kidney tissue. TMEM174 is comprised of 243 amino acids, and contains two predicted transmembrane helices which determine its subcellular localization in endoplasmic reticulum and influences its functions. Over-expression of TMME174 enhanced the transcriptional activity of AP-1 and promoted cell proliferation, whereas the truncated mutant TMEM174ΔTM without the transmembrane regions did not retain these functions. The possible mechanism of activation of AP-1 by TMEM174 was further examined. Our results suggest the potential role of TMEM174 in renal development and physiological function.

  12. Human TMEM174 that is highly expressed in kidney tissue activates AP-1 and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pingzhang [Chinese National Human Genome Center, 3-707 North YongChang Road BDA, Beijing 100191 (China); Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191 (China); Peking University Center for Human Disease Genomics, No. 38 Xueyuan Road, Beijing 100191 (China); Sun, Bo; Hao, Dongxia [Department of Biology, Northchina Coal Medical College, No. 57 JianShe South Road, Tangshan 063000 (China); Zhang, Xiujun, E-mail: zhangxiujun66@yahoo.com.cn [Department of Biology, Northchina Coal Medical College, No. 57 JianShe South Road, Tangshan 063000 (China); Shi, Taiping, E-mail: taiping_shi@yahoo.com.cn [Chinese National Human Genome Center, 3-707 North YongChang Road BDA, Beijing 100191 (China); Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191 (China); Peking University Center for Human Disease Genomics, No. 38 Xueyuan Road, Beijing 100191 (China); Ma, Dalong [Chinese National Human Genome Center, 3-707 North YongChang Road BDA, Beijing 100191 (China); Laboratory of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing 100191 (China); Peking University Center for Human Disease Genomics, No. 38 Xueyuan Road, Beijing 100191 (China)

    2010-04-16

    Mitogen-activated protein kinase (MAPK) cascades play an important role in regulation of AP-1 activity through the phosphorylation of distinct substrates. In the present study, we identified a novel protein, TMEM174, whose RNA transcripts are highly expressed in human kidney tissue. TMEM174 is comprised of 243 amino acids, and contains two predicted transmembrane helices which determine its subcellular localization in endoplasmic reticulum and influences its functions. Over-expression of TMME174 enhanced the transcriptional activity of AP-1 and promoted cell proliferation, whereas the truncated mutant TMEM174{Delta}TM without the transmembrane regions did not retain these functions. The possible mechanism of activation of AP-1 by TMEM174 was further examined. Our results suggest the potential role of TMEM174 in renal development and physiological function.

  13. Prevention of Breast Cancer Cell Transformation by Blockade of the AP-1 Transcription Factor

    Science.gov (United States)

    2001-10-01

    to transfection. pLPCX-TAM67 and control plasmids were transfected with Fugene 6 Regent (Roche) according to manufacture’s protocol. Chloroquine was...breast tu- mor growth with nonisomerizable analogues of similar to those in other reports (27,28). whether increasing or inhibiting AP-1 ac- tamoxifen

  14. Gallic Acid Inhibited Matrix Invasion and AP-1/ETS-1-Mediated MMP-1 Transcription in Human Nasopharyngeal Carcinoma Cells.

    Science.gov (United States)

    Pang, Jong-Hwei S; Yen, Jia-Hau; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2017-06-24

    Gallic acid is a trihydroxybenzoic acid found in natural herbal plants. Gallic acid has been reported to inhibit the migration and invasive capability of various cancers. Little is known about the underlying mechanisms of invasion responsible for cancer metastasis via gallic acid. The present study was intended to investigate the anti-invasive effect of gallic acid on human nasopharyngeal carcinoma cells (NPC-BM1) and its related mechanism. Gallic acid inhibited the invasion of NPC-BM1 cells dose- and time-dependently without significant cytotoxic effect. Affymetrix oligonucleotide microarray analysis revealed matrix metalloproteinase-1 (MMP-1) as the most down-regulated gene in NPC-BM1 cells by gallic acid. The cytosolic and secreted MMP-1 levels were both found to be inhibited by gallic acid as demonstrated by western blot analysis and ELISA respectively. The mRNA expression and transcription of MMP-1 gene was also down-regulated as determined by RT/real-time PCR and promoter activity assay. The expression of two major transcription binding factors in the MMP-1 promoter, AP-1 and ETS-1, were demonstrated to be reduced by gallic acid in NPC-BM1 cells. The effect of gallic acid was associated with the inhibition of p38 MAPK signaling pathway. In addition, gallic acid enhanced the gene expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) which further suppressed the MMP-1 activity. These findings may be useful to develop a novel chemotherapeutic agent to inhibit the metastasis of nasopharyngeal cancer.

  15. Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al2O3) nanoparticles in mouse skin epithelial cells.

    Science.gov (United States)

    Dey, Swatee; Bakthavatchalu, Vasudevan; Tseng, Michael T; Wu, Peng; Florence, Rebecca L; Grulke, Eric A; Yokel, Robert A; Dhar, Sanjit Kumar; Yang, Hsin-Sheng; Chen, Yumin; St Clair, Daret K

    2008-10-01

    The physicochemical properties of nanomaterials differ from those of the bulk material of the same composition. However, little is known about the underlying effects of these particles in carcinogenesis. The purpose of this study was to determine the mechanisms involved in the carcinogenic properties of nanoparticles using aluminum oxide (Al(2)O(3)/alumina) nanoparticles as the prototype. Well-established mouse epithelial JB6 cells, sensitive to neoplastic transformation, were used as the experimental model. We demonstrate that alumina was internalized and maintained its physicochemical composition inside the cells. Alumina increased cell proliferation (53%), proliferating cell nuclear antigen (PCNA) levels, cell viability and growth in soft agar. The level of manganese superoxide dismutase, a key mitochondrial antioxidant enzyme, was elevated, suggesting a redox signaling event. In addition, the levels of reactive oxygen species and the activities of the redox sensitive transcription factor activator protein-1 (AP-1) and a longevity-related protein, sirtuin 1 (SIRT1), were increased. SIRT1 knockdown reduces DNA synthesis, cell viability, PCNA levels, AP-1 transcriptional activity and protein levels of its targets, JunD, c-Jun and BcL-xl, more than controls do. Immunoprecipitation studies revealed that SIRT1 interacts with the AP-1 components c-Jun and JunD but not with c-Fos. The results identify SIRT1 as an AP-1 modulator and suggest a novel mechanism by which alumina nanoparticles may function as a potential carcinogen.

  16. Penta-acetyl geniposide-induced apoptosis involving transcription of NGF/p75 via MAPK-mediated AP-1 activation in C6 glioma cells

    International Nuclear Information System (INIS)

    Peng, C.-H.; Huang, C.-N.; Hsu, S.-P.; Wang, C.-J.

    2007-01-01

    We have demonstrated the herbal derivative penta-acetyl geniposide ((Ac) 5 GP) induces C6 glioma cell apoptosis through the critical sphingomyelinase (SMase)/nerve growth factor (NGF)/p75 and its downstream signals. It has been reported mitogen-activated protein kinase (MAPK) mediates NGF synthesis induced by SMase activation. In this study, ERK, p38 and JNK are shown to mediate (Ac) 5 GP-induced glioma cell apoptosis and elevation of NGF and p75. Treatment of PD98059 (ERK-specific inhibitor), SB203580 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) decreases the elevation of NGF and p75 mRNA induced by (Ac) 5 GP, indicating possible transcription regulation via MAPKs. The results of nuclear extract blotting and EMSA further confirm (Ac) 5 GP maximally increases AP-1 and NF-κB DNA binding at 6 h. Inhibition of ERK, p38 and JNK block the activation of AP-1 and NF-κB, suggesting these MAPKs are involved in (Ac) 5 GP-induced transcription regulation. We thereby used RT-PCR to analyze cells treated with (Ac) 5 GP, with or without AP-1 or NF-κB inhibitors. AP-1 inhibitor NDGA decreases NGF/p75 and expression of FasL and caspase 3 induced by (Ac) 5 GP, suggesting the importance of AP-1 in mediating NGF/p75 and their downstream apoptotic signals. However, FasL and caspase 3 do not change with the NF-κB inhibitor PDTC; NF-κB might be linked to other cellular events. Overall, we demonstrate that MAPK mediates (Ac) 5 GP-induced activation of AP-1, promoting the transcription of NGF/p75 and downstream apoptotic signals. These results further highlight the potential therapeutic effects of (Ac) 5 GP in chemoprevention or as an anti-tumor agent

  17. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    Science.gov (United States)

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-10-11

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lack of a role for AP1 in GPEI mediated trans-activation in F9 cells, although endogenously present AP1 can influence GPEI in HeLa cells. Co-transfection of delta fosB with c-jun, which forms an inactive c-Jun/delta FosB heterodimer that binds TRE sequences, inhibits GPEI-mediated transcription in AP1-lacking F9 cells as well as AP1-containing HeLa cells. These data suggest novel factor(s) other than AP1 are influencing GPEI. Binding studies reveal multiple nucleoproteins bind to GPEI. These factors are likely responsible for the high level of GPEI-mediated transcription observed in the absence of AP1 and during hepatocarcinogenesis.

  18. Ethanol extract of Lycoris radiata induces cell death in B16F10 melanoma via p38-mediated AP-1 activation.

    Science.gov (United States)

    Son, Minsik; Kim, Aeyung; Lee, Jaewoo; Park, Chul-Hong; Heo, Jin-Chul; Lee, Hyun-Jin; Lee, Sang-Han

    2010-08-01

    Some active alkaloids isolated from Lycoris, a bulbous perennial herb, was shown to possess various anti-tumor and anti-inflammatory activities. In this study, we evaluated the in vitro apoptotic effect of ethanol extract from Lycoris radiata (LRE) and further probed the underlying molecular mechanisms of LRE effects. The survival rate of B16F10 melanoma cells exposed to LRE was decreased in a dose-dependent manner, cell growth was retarded by arresting cell cycle at G1 phase and apoptotic appearance such as caspase-3 activation as well as DNA fragmentation was observed by LRE treatment. In addition, LRE induced p38 and c-Jun phosphorylation, followed by activation of transcription factor AP-1. Pretreatment with the p38 inhibitor (SB203580) blocked LRE-induced AP-1 transcriptional activity, and curcumin, AP-1 inhibitor, dramatically inhibited LRE-induced apoptosis in B16F10 melanoma cells. Our results collectively indicate that LRE-mediated apoptosis occurs through the activation of p38 and AP-1 pathway and potentially LRE exhibits anti-cancer activity against B16F10 melanoma cells.

  19. Up-regulation of interleukin-4 production via NF-AT/AP-1 activation in T cells by biochanin A, a phytoestrogen and its metabolites

    International Nuclear Information System (INIS)

    Park, Jin; Chung, Su Wol; Kim, Seung Hyun; Kim, Tae Sung

    2006-01-01

    Phytoestrogens are naturally occurring compounds derived from plants. Although phytoestrogens exhibit many biological functions including estrogen agonist/antagonist properties, the effect on allergic responses remains unclear. In this study, we investigated whether biochanin A, a phytoestrogen and its metabolites, genistein, p-ethylphenol and phenolic acid, affect production of IL-4, a pro-inflammatory cytokine closely associated with allergic immune responses, in primary CD4 + T cells and EL4 T lymphoma cells. Biochanin A, genistein and p-ethylphenol significantly enhanced IL-4 production from both CD4 + T cells and EL4 cells in a dose-dependent manner, while phenolic acid did not. Biochanin A, genistein and p-ethylphenol also enhanced IL-4 gene promoter activity in EL4 cells transiently transfected with IL-4 promoter constructs, but this effect was impaired in EL4 cells transfected with an IL-4 promoter construct deleted of a P4 site carrying NF-AT and AP-1 binding sites. In addition, biochanin A, genistein and p-ethylphenol increased both NF-AT and AP-1 DNA binding activities, indicating that they might enhance IL-4 production via NF-AT/AP-1 activation. Furthermore, biochanin A, genistein and p-ethylphenol increased p38 MAPK phosphorylation and PKC activity, while they did not affect ERK phosphorylation. The enhanced NF-AT DNA binding activities were suppressed by inhibitors for PI3-K and PKC, but not by p38 MAPK inhibitors. In contrast, the enhanced AP-1 DNA binding activities and p38 MAPK phosphorylation were significantly suppressed by specific inhibitors for PKC and p38 MAPK, but not by PI3-K inhibitors. These results demonstrate, for the first time, that biochanin A, genistein and p-ethylphenol enhance IL-4 production in activated T cells by two independent pathways, PI3-K/PKC/NF-AT and PKC/p38 MAPK/AP-1

  20. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-01-01

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure

  1. Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines: focus on the contribution of the AP-1 transcription factor

    Science.gov (United States)

    Boeckx, Carolien; Blockx, Lina; de Beeck, Ken Op; Limame, Ridha; Camp, Guy Van; Peeters, Marc; Vermorken, Jan B; Specenier, Pol; Wouters, An; Baay, Marc; Lardon, Filip

    2015-01-01

    Background: After an initial response to EGFR targeted therapy, secondary resistance almost invariably ensues, thereby limiting the clinical benefit of the drug. Hence, it has been recognized that the successful implementation of targeted therapy in the treatment of HNSCC cancer is very much dependent on predictive biomarkers for patient selection. Methods: We generated an in vitro model of acquired cetuximab resistance by chronically exposing three HNSCC cell lines to increasing cetuximab doses. Gene expression profiles of sensitive parental cells and resistant daughter cells were compared using microarray analysis. Growth inhibitory experiments were performed with an HB-EGF antibody and the MMP inhibitor, both in combination with cetuximab. Characteristics of EMT were analyzed using migration and invasion assays, immunofluorescent vimentin staining and qRT-PCR for several genes involved in this process. The function of the transcription factor AP-1 was investigated using qRT-PCR for several genes upregulated or downregulated in cetuximab resistant cells. Furthermore, anchorage-independent growth was investigated using the soft agar assay. Results: Gene expression profiling shows that cetuximab resistant cells upregulate several genes, including interleukin 8, the EGFR ligand HB-EGF and the metalloproteinase ADAM19. Cytotoxicity experiments with neutralizing HB-EGF antibody could not induce any growth inhibition, whereas an MMP inhibitor inhibited cell growth in cetuximab resistant cells. However, no synergetic effects combined with cetuximab could be observed. Cetuximab resistant cells showed traits of EMT, as witnessed by increased migratory potential, increased invasive potential, increased vimentine expression and increased expression of several genes involved in EMT. Furthermore, expression of upregulated genes could be repressed by the treatment with apigenin. The cetuximab resistant LICR-HN2 R10.3 cells tend to behave differently in cell culture, forming

  2. Chrysin inhibits tumor promoter-induced MMP-9 expression by blocking AP-1 via suppression of ERK and JNK pathways in gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Yong Xia

    Full Text Available Cell invasion is a crucial mechanism of cancer metastasis and malignancy. Matrix metalloproteinase-9 (MMP-9 is an important proteolytic enzyme involved in the cancer cell invasion process. High expression levels of MMP-9 in gastric cancer positively correlate with tumor aggressiveness and have a significant negative correlation with patients' survival times. Recently, mechanisms suppressing MMP-9 by phytochemicals have become increasingly investigated. Chrysin, a naturally occurring chemical in plants, has been reported to suppress tumor metastasis. However, the effects of chrysin on MMP-9 expression in gastric cancer have not been well studied. In the present study, we tested the effects of chrysin on MMP-9 expression in gastric cancer cells, and determined its underlying mechanism. We examined the effects of chrysin on MMP-9 expression and activity via RT-PCR, zymography, promoter study, and western blotting in human gastric cancer AGS cells. Chrysin inhibited phorbol-12-myristate 13-acetate (PMA-induced MMP-9 expression in a dose-dependent manner. Using AP-1 decoy oligodeoxynucleotides, we confirmed that AP-1 was the crucial transcriptional factor for MMP-9 expression. Chrysin blocked AP-1 via suppression of the phosphorylation of c-Jun and c-Fos through blocking the JNK1/2 and ERK1/2 pathways. Furthermore, AGS cells pretreated with PMA showed markedly enhanced invasiveness, which was partially abrogated by chrysin and MMP-9 antibody. Our results suggest that chrysin may exert at least part of its anticancer effect by controlling MMP-9 expression through suppression of AP-1 activity via a block of the JNK1/2 and ERK1/2 signaling pathways in gastric cancer AGS cells.

  3. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF-κB and AP-1.

    Science.gov (United States)

    Yang, Xinyu; Li, Lin; Liu, Jin; Lv, Ben; Chen, Fangping

    2016-01-01

    Extracellular histones have been recognized recently as proinflammatory mediators; they are released from dying cells in response to inflammatory challenge, contributing to endothelial cell dysfunction, thrombin formation, organ failure, and death during sepsis. Clinical studies suggest that the plasma concentration of the histone-DNA complex is correlated with the severity of DIC and is a poor independent prognostic marker in sepsis. In addition, platelet activation stimulates thrombus formation. Whether histones contribute to procoagulant activity in other ways remains elusive. In this study, we confirmed that histones induce tissue factor (TF) expression in a concentration- and time-dependent manner in vascular endothelial cells (ECs) and macrophages. However, histones did not affect TF pathway inhibitor expression. Moreover, blocking the cell surface receptors TLR4 and TLR2 with specific neutralizing antibodies significantly reduced histone-induced TF expression. Furthermore, histones enhanced the nuclear translocation of NF-κB (c-Rel/p65) and AP-1 expression in a time-dependent manner in ECs. Mutating NF-κB and AP-1 significantly reduced histone-induced TF expression. Altogether, our experiments suggest that histone induces TF expression in ECs via cell surface receptors TLR4 and TLR2, simultaneously depending on the activation of the transcription factors NF-κB and AP-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells

    International Nuclear Information System (INIS)

    Looby, Eileen; Abdel-Latif, Mohamed MM; Athié-Morales, Veronica; Duggan, Shane; Long, Aideen; Kelleher, Dermot

    2009-01-01

    The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate

  5. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells

    Directory of Open Access Journals (Sweden)

    Long Aideen

    2009-06-01

    Full Text Available Abstract Background The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. Methods Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. Results DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. Conclusion DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  6. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells.

    LENUS (Irish Health Repository)

    Looby, Eileen

    2009-01-01

    BACKGROUND: The progression from Barrett\\'s metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. METHODS: Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. RESULTS: DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1\\/2- and p38 MAPK while Erk1\\/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK\\/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. CONCLUSION: DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  7. Sargahydroquinoic acid inhibits TNFα-induced AP-1 and NF-κB signaling in HaCaT cells through PPARα activation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Youngsic; Jung, Yujung; Kim, Min Cheol; Kwon, Hak Cheol [Natural Medicine Center, KIST Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Kang, Ki Sung [College of Korean Medicine, Gachon University, Seongnam 461-701 (Korea, Republic of); Kim, Yong Kee, E-mail: yksnbk@sm.ac.kr [College of Pharmacy, Sookmyung Women’s University, Seoul 140-742 (Korea, Republic of); Kim, Su-Nam, E-mail: snkim@kist.re.kr [Natural Medicine Center, KIST Gangneung Institute, Gangneung 210-340 (Korea, Republic of)

    2014-08-08

    Highlights: • SHQA increases PPARα/γ transactivation and inhibits MMP-2/-9 expression. • SHQA inhibits TNFα-induced AP-1 and MAPK signaling. • SHQA inhibits TNFα-induced p65 translocation and IκBα phosphorylation. • SHQA inhibits TNFα-induced AP-1 and NF-κB signaling via PPARα. - Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors and expressed in various cell types in the skin, including keratinocytes, fibroblasts and infiltrating immune cells. Thus, their ligands are targets for the treatment of various skin disorders, such as photo-aging and chronological aging of skin. Intensive studies have revealed that PPARα/γ functions in photo-aging and age-related inflammation by regulating matrix metalloproteinases (MMPs) via activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB). However, the detailed mechanism of PPARα/γ’s role in skin aging has not yet been elucidated. In this study, we confirmed that sargahydroquinoic acid (SHQA) as a PPARα/γ ligand significantly decreased Tumor Necrosis Factor-alpha (TNFα)-induced MMP-2/-9 expression by downregulating TNFα-induced transcription factors, subsequently reducing IκBα degradation and blocking NF-κB p65 nuclear translocation in HaCaT human epidermal keratinocyte cells. Treatment of cells with SHQA and GW6471 (PPARα antagonist) not bisphenol A diglycidyl ether (PPARγ antagonists), reversed the effect on TNFα-induced inflammatory signaling pathway activation. Taken together, our data suggest that SHQA inhibit TNFα-induced MMP-2/-9 expression and age-related inflammation by suppressing AP-1 and NF-κB pathway via PPARα.

  8. Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-kB, and AP-1 pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Lian, Sen; Xia, Yong; Khoi, Pham Ngoc; Ung, Trong Thuan; Yoon, Hyun Joong; Kim, Nam Ho; Kim, Kyung Keun; Jung, Young Do

    2015-01-01

    Highlights: • Cadmium induces MMP-9 expression through NADPH oxidase-derived ROS. • Cadmium induces MMP-9 through EGFR-mediated Akt, Erk1/2 and JNK1/2 signaling pathways. • Akt, MAPKs (Erk1/2 and JNK1/2) functioned as upstream signals of NF-kB and AP-1 respectively, in cadmium-induced MMP-9 in endothelial cells. • ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression in ECV304 cells. - Abstract: Cadmium (Cd), a widespread cumulative pollutant, is a known human carcinogen, associated with inflammation and tumors. Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in tumor metastasis; however, the mechanisms underlying the MMP-9 expression induced by Cd remain obscure in human endothelial cells. Here, Cd elevated MMP-9 expression in dose- and time-dependent manners in human endothelial cells. Cd increased ROS production and the ROS-producing NADPH oxidase. Cd translocates p47 phox , a key subunit of NADPH oxidase, to the cell membrane. Cd also activated the phosphorylation of EGFR, Akt, Erk1/2, and JNK1/2 in addition to promoting NF-kB and AP-1 binding activities. Specific inhibitor and mutagenesis studies showed that EGFR, Akt, Erk1/2, JNK1/2 and transcription factors NF-κB and AP-1 were related to Cd-induced MMP-9 expression in endothelial cells. Akt, Erk1/2, and JNK1/2 functioned as upstream signals in the activation of NF-κB and AP-1, respectively. In addition, N-acetyl-L-cystein (NAC), diphenyleneiodonium chloride (DPI) and apocynin (APO) inhibited the Cd-induced activation of EGFR, Akt, Erk1/2, JNK1/2, and p38 MAPK, indicating that ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression. At present, it states that Cd displayed marked invasiveness in ECV304 cells, which was partially abrogated by MMP-9 neutralizing antibodies. These results demonstrated that Cd induces MMP-9 expression via ROS-dependent EGFR- > Erk1/2, JNK1/2- > AP-1 and EGFR- > Akt- > NF-κB signaling pathways and, in turn

  9. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    E K Radhakrishnan

    Full Text Available We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale, in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  10. Salvia miltiorrhiza extract inhibits TPA-induced MMP-9 expression and invasion through the MAPK/AP-1 signaling pathway in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Kim, Jeong-Mi; Noh, Eun-Mi; Song, Hyun-Kyung; Lee, Minok; Lee, Soo Ho; Park, Sueng Hyuk; Ahn, Chan-Keun; Lee, Guem-San; Byun, Eui-Baek; Jang, Beom-Su; Kwon, Kang-Beom; Lee, Young-Rae

    2017-09-01

    Cancer cell invasion is crucial for metastasis. A major factor in the capacity of cancer cell invasion is the activation of matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix. Salvia miltiorrhiza has been used as a promotion for blood circulation to remove blood stasis. Numerous previous studies have demonstrated that S. miltiorrhiza extracts (SME) decrease lipid levels and inhibit inflammation. However, the mechanism behind the effect of SME on breast cancer invasion has not been identified. The inhibitory effects of SME on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression were assessed using western blotting, reverse transcription-quantitative polymerase chain reaction and zymography assays. MMP-9 upstream signal proteins, including mitogen-activated protein kinases and activator protein 1 (AP-1) were also investigated. Cell invasion was assessed using a matrigel invasion assay. The present study demonstrated the inhibitory effects of the SME ethanol solution on MMP-9 expression and cell invasion in TPA-treated MCF-7 breast cancer cells. SME suppressed TPA-induced MMP-9 expression and MCF-7 cell invasion by blocking the transcriptional activation of AP-1. SME may possess therapeutic potential for inhibiting breast cancer cell invasiveness.

  11. Fluocinolone acetonide partially restores the mineralization of LPS-stimulated dental pulp cells through inhibition of NF-κB pathway and activation of AP-1 pathway

    Science.gov (United States)

    Liu, Zhongning; Jiang, Ting; Wang, Xinzhi; Wang, Yixiang

    2013-01-01

    BACKGROUND AND PURPOSE Fluocinolone acetonide (FA) is commonly used as a steroidal anti-inflammatory drug. We recently found that in dental pulp cells (DPCs) FA has osteo-/odonto-inductive as well as anti-inflammatory effects. However, the mechanism by which FA induces these effects in DPCs is poorly understood. EXPERIMENTAL APPROACH The effect of FA on the mineralization of DPCs during inflammatory conditions and the underlying mechanism were investigated by real-time PCR, Western blot, EMSA, histochemical staining, immunostaining and pathway blockade assays. KEY RESULTS FA significantly inhibited the inflammatory response in LPS-treated DPCs not only by down-regulating the expression of pro–inflammation-related genes, but also by up-regulating the expression of the anti-inflammatory gene PPAR-γ and mineralization-related genes. Moreover, histochemical staining and immunostaining showed that FA could partially restore the expressions of alkaline phosphatase, osteocalcin and dentin sialophosphoprotein (DSPP) and mineralization in LPS-stimulated DPCs. Real-time PCR and Western blot analysis revealed that FA up-regulated DSPP and runt-related transcription factor 2 expression by inhibiting the expression of phosphorylated-NF-κB P65 and activating activator protein-1 (AP-1) (p-c-Jun and Fra-1). These results were further confirmed through EMSA, by detection of NF-κB DNA-binding activity and pathway blockade assays using a NF-κB pathway inhibitor, AP-1 pathway inhibitor and glucocorticoid receptor antagonist. CONCLUSIONS AND IMPLICATIONS Inflammation induced by LPS suppresses the mineralization process in DPCs. FA partially restored this osteo-/odonto-genesis process in LPS-treated DPCs and had an anti-inflammatory effect through inhibition of the NF-κB pathway and activation of the AP-1 pathway. Hence, FA is a potential new treatment for inflammation-associated bone/teeth diseases. PMID:24024985

  12. Radical Scavenging Activity-Based and AP-1-Targeted Anti-Inflammatory Effects of Lutein in Macrophage-Like and Skin Keratinocytic Cells

    Directory of Open Access Journals (Sweden)

    Jueun Oh

    2013-01-01

    Full Text Available Lutein is a naturally occurring carotenoid with antioxidative, antitumorigenic, antiangiogenic, photoprotective, hepatoprotective, and neuroprotective properties. Although the anti-inflammatory effects of lutein have previously been described, the mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, in the present study, we aimed to investigate the regulatory activity of lutein in the inflammatory responses of skin-derived keratinocytes or macrophages and to elucidate the mechanism of its inhibitory action. Lutein significantly reduced several skin inflammatory responses, including increased expression of interleukin-(IL- 6 from LPS-treated macrophages, upregulation of cyclooxygenase-(COX- 2 from interferon-γ/tumor necrosis-factor-(TNF- α-treated HaCaT cells, and the enhancement of matrix-metallopeptidase-(MMP- 9 level in UV-irradiated keratinocytes. By evaluating the intracellular signaling pathway and the nuclear transcription factor levels, we determined that lutein inhibited the activation of redox-sensitive AP-1 pathway by suppressing the activation of p38 and c-Jun-N-terminal kinase (JNK. Evaluation of the radical and ROS scavenging activities further revealed that lutein was able to act as a strong anti-oxidant. Taken together, our findings strongly suggest that lutein-mediated AP-1 suppression and anti-inflammatory activity are the result of its strong antioxidative and p38/JNK inhibitory activities. These findings can be applied for the preparation of anti-inflammatory and cosmetic remedies for inflammatory diseases of the skin.

  13. Bach2 represses the AP-1-driven induction of interleukin-2 gene transcription in CD4+ T cells

    OpenAIRE

    Jang, Eunkyeong; Lee, Hye Rim; Lee, Geon Hee; Oh, Ah-Reum; Cha, Ji-Young; Igarashi, Kazuhiko; Youn, Jeehee

    2017-01-01

    The transcription repressor Bach2 has been proposed as a regulator of T cell quiescence, but the underlying mechanism is not fully understood. Given the importance of interleukin-2 in T cell activation, we investigated whether Bach2 is a component of the network of factors that regulates interleukin-2 expression. In primary and transformed CD4+ T cells, Bach2 overexpression counteracted T cell receptor/CD28- or PMA/ionomycin-driven induction of interleukin-2 expression, and silencing of Bach2...

  14. Control of endothelial cell tube formation by Notch ligand intracellular domain interactions with activator protein 1 (AP-1)

    DEFF Research Database (Denmark)

    Forghany, Zary; Robertson, Francesca; Lundby, Alicia

    2018-01-01

    Notch signaling is a ubiquitous signal transduction pathway found in most if not all metazoan cell types characterized to date. It is indispensable for cell differentiation as well as tissue growth, tissue remodelling and apoptosis. Although the canonical Notch signaling pathway is well character...

  15. Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1.

    Science.gov (United States)

    Li, Fengyin; He, Bing; Ma, Xiaoke; Yu, Shuyang; Bhave, Rupali R; Lentz, Steven R; Tan, Kai; Guzman, Monica L; Zhao, Chen; Xue, Hai-Hui

    2017-09-07

    Effective treatment of chronic myelogenous leukemia (CML) largely depends on the eradication of CML leukemic stem cells (LSCs). We recently showed that CML LSCs depend on Tcf1 and Lef1 factors for self-renewal. Using a connectivity map, we identified prostaglandin E1 (PGE1) as a small molecule that partly elicited the gene expression changes in LSCs caused by Tcf1/Lef1 deficiency. Although it has little impact on normal hematopoiesis, we found that PGE1 treatment impaired the persistence and activity of LSCs in a pre-clinical murine CML model and a xenograft model of transplanted CML patient CD34 + stem/progenitor cells. Mechanistically, PGE1 acted on the EP4 receptor and repressed Fosb and Fos AP-1 factors in a β-catenin-independent manner. Misoprostol, an FDA-approved EP4 agonist, conferred similar protection against CML. These findings suggest that activation of this PGE1-EP4 pathway specifically targets CML LSCs and that the combination of PGE1/misoprostol with conventional tyrosine-kinase inhibitors could provide effective therapy for CML. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1.

    OpenAIRE

    Diccianni, M B; Imagawa, M; Muramatsu, M

    1992-01-01

    Glutathione Transferase P (GST-P) gene expression is dominantly regulated by an upstream enhancer (GPEI) consisting of a dyad of palindromically oriented imperfect TPA (12-O-tetradecanoyl-phorbol-13-acetate)-responsive elements (TRE). GPEI is active in AP1-lacking F9 cells as well in AP1-containing HeLa cells. Despite GPEI's similarity to a TRE, c-jun co-transfection has only a minimal effect on transactivation. Antisense c-jun and c-fos co-transfection experiments further demonstrate the lac...

  17. Transcriptional Inhibition of Matrix Metal loproteinase 9 (MMP-9 Activity by a c-fos/Estrogen Receptor Fusion Protein is Mediated by the Proximal AP-1 Site of the MMP-9 Promoter and Correlates with Reduced Tumor Cell Invasion

    Directory of Open Access Journals (Sweden)

    David L. Crowe

    1999-10-01

    Full Text Available Tumor cell invasion of basement membranes is one of the hallmarks of malignant transformation. Tumor cells secrete proteolytic enzymes known as matrix metalloproteinases (MMPs which degrade extracellular matrix molecules. Increased expression of MMP-9 has been associated with acquisition of invasive phenotype in many tumors. However, multiple mechanisms for regulation of MMP-9 gene expression by tumor cell lines have been proposed. A number of transcription factor binding sites have been characterized in the upstream regulatory region of the MMP-9 gene, including those for AP-1. To determine how a specific AP-1 family member, c-fos, regulates MMP-9 promoter activity through these sites, we used an expression vector containing the c-fos coding region fused to the estrogen receptor (ER ligand binding domain. This construct is activated upon binding estradiol. Stable expression of this construct in ER negative squamous cell carcinoma (SCC lines produced an estradiol dependent decrease in the number of cells that migrated through a reconstituted basement membrane. This decreased invasiveness was accompanied by estradiol dependent downregulation of MMP-9 activity as determined by gelatin zymography. Estradiol also produced transcriptional downregulation of an MMP-9 promoter construct in cells transiently transfected with the c-fosER expression vector. This downregulation was mediated by the AP-1 site at —79 by in the MMP-9 promoter. We concluded that the proximal AP-1 site mediated the transcriptional downregulation of the MMP-9 promoter by a conditionally activated c-fos fusion protein.

  18. Bacteroides fragilis Enterotoxin Induces Formation of Autophagosomes in Endothelial Cells but Interferes with Fusion with Lysosomes for Complete Autophagic Flux through a Mitogen-Activated Protein Kinase-, AP-1-, and C/EBP Homologous Protein-Dependent Pathway.

    Science.gov (United States)

    Ko, Su Hyuk; Jeon, Jong Ik; Myung, Hyun Soo; Kim, Young-Jeon; Kim, Jung Mogg

    2017-10-01

    Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy. Copyright © 2017 American Society for Microbiology.

  19. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    Science.gov (United States)

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  20. Wnt-11 signaling leads to down-regulation of the Wnt/β-catenin, JNK/AP-1 and NF-κB pathways and promotes viability in the CHO-K1 cells

    International Nuclear Information System (INIS)

    Railo, Antti; Nagy, Irina I.; Kilpelaeinen, Pekka; Vainio, Seppo

    2008-01-01

    The Wnt family of glycoprotein growth factors controls a number of central cellular processes such as proliferation, differentiation and ageing. All the Wnt proteins analyzed so far either activate or inhibit the canonical β-catenin signaling pathway that regulates transcription of the target genes. In addition, some of them activate noncanonical signaling pathways that involve components such as the JNK, heterotrimeric G proteins, protein kinase C, and calmodulin-dependent protein kinase II, although the precise signaling mechanisms are only just beginning to be revealed. We demonstrate here that Wnt-11 signaling is sufficient to inhibit not only the canonical β-catenin mediated Wnt signaling but also JNK/AP-1 and NF-κB signaling in the CHO cells, thus serving as a noncanonical Wnt ligand in this system. Inhibition of the JNK/AP-1 pathway is mediated in part by the MAPK kinase MKK4 and Akt. Moreover, protein kinase C is involved in the regulation of JNK/AP-1 by Wnt-11, but not of the NF-κB pathway. Consistent with the central role of Akt, JNK and NF-κB in cell survival and stress responses, Wnt-11 signaling promotes cell viability. Hence Wnt-11 is involved in coordination of key signaling pathways

  1. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2016-03-01

    Full Text Available For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA, was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae. MOA modulates cytokine expression in lipopolysaccharide (LPS-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO, prostaglandin E2 (PGE2, tumor necrosis factor-α (TNF-α, interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2, thus blocking nuclear translocation of activation protein (AP-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs and one of their downstream transcription factors, activator protein-1 (AP-1. Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases.

  2. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells

    Science.gov (United States)

    Wu, Lei; Li, Xueqin; Wu, Haifeng; Long, Wei; Jiang, Xiaojian; Shen, Ting; Qiang, Qian; Si, Chuanling; Wang, Xinfeng; Jiang, Yunyao; Hu, Weicheng

    2016-01-01

    For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA), was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae). MOA modulates cytokine expression in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO) synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2), thus blocking nuclear translocation of activation protein (AP)-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs) and one of their downstream transcription factors, activator protein-1 (AP-1). Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases. PMID:26938526

  3. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways.

    Science.gov (United States)

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-10-10

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.

  4. Stimulation of Alpha7 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Upregulation of MMP, MCP-1, and RANTES through Modulating ERK1/2/AP-1 Signaling Pathway in RAW264.7 and MOVAS Cells

    Directory of Open Access Journals (Sweden)

    Liping Liu

    2017-01-01

    Full Text Available Vagus nerve stimulation through alpha7 nicotine acetylcholine receptors (α7-nAChR signaling had been demonstrated attenuation of inflammation. This study aimed to determine whether PNU-282987, a selective α7-nAChR agonist, affected activities of matrix metalloproteinase (MMP and inflammatory cytokines in nicotine-treatment RAW264.7 and MOVAS cells and to assess the underlying molecular mechanisms. RAW264.7 and MOVAS cells were treated with nicotine at different concentrations (0, 1, 10, and 100 ng/ml for 0–120 min. Nicotine markedly stimulated the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2 and c-Jun in RAW264.7 cells. Pretreatment with U0126 significantly suppressed phosphorylation of ERK1/2 and further attenuated nicotine-induced activation of c-Jun and upregulation of MMP-2, MMP-9, monocyte chemotactic protein- (MCP- 1, and regulated upon activation normal T cell expressed and secreted (RANTES. Similarly, nicotine treatment also increased phosphorylation of c-Jun and expressions of MMP-2, MMP-9, MCP-1, and RANTES in MOVAS cells. When cells were pretreated with PNU-282987, nicotine-induced activations of ERK1/2 and c-Jun in RAW264.7 cells and c-Jun in MOVAS cells were effectively inhibited. Furthermore, nicotine-induced secretions of MMP-2, MMP-9, MCP-1, and RANTES were remarkably downregulated. Treatment with α7-nAChR agonist inhibits nicotine-induced upregulation of MMP and inflammatory cytokines through modulating ERK1/2/AP-1 signaling in RAW264.7 cells and AP-1 in MOVAS cells, providing a new therapeutic for abdominal aortic aneurysm.

  5. A novel berbamine derivative inhibits cell viability and induces apoptosis in cancer stem-like cells of human glioblastoma, via up-regulation of miRNA-4284 and JNK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available Glioblastoma (GBM is the most common primary brain tumor, accounting for approximately 40% of all central nervous system malignancies. Despite standard treatment consisting of surgical resection, radiotherapy and/or chemotherapy, the prognosis for GBM is poor; with a median survival of 14.6 months. The cancer stem cell or cancer-initiating cell model has provided a new paradigm for understanding development and recurrence of GBM following treatment. Berbamine (BBM is a natural compound derived from the Berberis amurensis plant, and along with its derivatives, has been shown to exhibit antitumor activity in several cancers. Here, we reported that a novel synthetic Berbamine derivative, BBMD3, inhibits cell viability and induces apoptosis of cancer stem-like cells (CSCs in a time- and dose-dependent manner when the CSCs from four GBM patients (PBT003, PBT008, PBT022, and PBT030 were cultured. These CSCs grew in neurospheres and expressed CD133 and nestin as markers. Treatment with BBMD3 destroyed the neurosphere morphology, and led to the induction of apoptosis in the CSCs. Induction of apoptosis in these CSCs is dependent upon activation of caspase-3 and cleavage of poly (ADP-ribose polymerase (PARP. MicroRNA-4284 (miR-4284 was shown to be over-expressed about 4-fold in the CSCs following BBMD3 treatment. Furthermore, transfection of synthetic anti-sense oligonucleotide against human miR-4284 partially blocked the anticancer effects of BBMD3 on the GBM derived CSCs. BBMD3 also increased phosphorylation of the c-Jun N-terminal kinase (JNK/stress-activated protein kinase (SAPK, resulting in an increase expression of phosphorylated c-Jun and total c-Fos; the major components of transcriptional factor AP-1. The JNK-c-Jun/AP-1 signaling pathway plays an important role in the induction of apoptosis in response to UV irradiation and some drug treatments. Targeting glioblastoma stem-like cells with BBMD3 is therefore novel, and may have promise as an

  6. The immunobiology and clinical features of type 1 autoimmune polyglandular syndrome (APS-1).

    Science.gov (United States)

    Guo, Can-Jie; Leung, Patrick S C; Zhang, Weici; Ma, Xiong; Gershwin, M Eric

    2018-01-01

    Autoimmune Polyglandular Syndrome type 1 (APS-1) is a subtype of the autoimmune polyendocrine syndrome characterized by the simultaneous or sequential dysfunction of multiple endocrine or non-endocrine glands. A clinical diagnosis of APS-1 is typically based on the presence of at least two of three following criteria: chronic mucocutaneous candidiasis, hypoparathyroidism and adrenal insufficiency. The first identified causative mutated gene for APS-1 is autoimmune regulator (AIRE) encoding a critical transcription factor, which is primarily expressed in the medullary thymic epithelial cells (mTECs) for generating central immune tolerance. A wide range of chronic, debilitating complications, with no obvious correlation with genetics, makes a diagnosis of APS-1 challenging early in the disease course. Managing APS-1 is difficult due to its complexity, especially the intricate relationships within manifestations and genetic mutations. The past decades have witnessed dramatic progress in elucidating the function of AIRE and conducting large-scale cohort studies in APS-1. However, no clear evidence-based guidelines have been established in APS-1. In this review, we provide a detailed critical overview of the study history, epidemiology, clinical features, and related mechanisms of autoimmunity in APS-1, as well as currently available therapies for this autoimmune disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive Lymphomas

    Science.gov (United States)

    Garces de los Fayos Alonso, Ines; Lagger, Sabine; Merkel, Olaf; Kenner, Lukas

    2018-01-01

    The Activator Protein-1 (AP-1) transcription factor (TF) family, composed of a variety of members including c-JUN, c-FOS and ATF, is involved in mediating many biological processes such as proliferation, differentiation and cell death. Since their discovery, the role of AP-1 TFs in cancer development has been extensively analysed. Multiple in vitro and in vivo studies have highlighted the complexity of these TFs, mainly due to their cell-type specific homo- or hetero-dimerization resulting in diverse transcriptional response profiles. However, as a result of the increasing knowledge of the role of AP-1 TFs in disease, these TFs are being recognized as promising therapeutic targets for various malignancies. In this review, we focus on the impact of deregulated expression of AP-1 TFs in CD30-positive lymphomas including Classical Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma. PMID:29597249

  8. Luteolin, a flavonoid, inhibits AP-1 activation by basophils

    International Nuclear Information System (INIS)

    Hirano, Toru; Higa, Shinji; Arimitsu, Junsuke; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Matsuda, Hisashi; Yoshikawa, Masayuki; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Kawase, Ichiro; Tanaka, Toshio

    2006-01-01

    Flavonoids including luteolin, apigenin, and fisetin are inhibitors of IL-4 synthesis and CD40 ligand expression by basophils. This study was done to search for compounds with greater inhibitory activity of IL-4 expression and to clarify the molecular mechanisms through which flavonoids inhibit their expression. Of the 37 flavonoids and related compounds examined, ayanin, luteolin, and apigenin were the strongest inhibitors of IL-4 production by purified basophils in response to anti-IgE antibody plus IL-3. Luteolin did not suppress Syk or Lyn phosphorylation in basophils, nor did suppress p54/46 SAPK/JNK, p38 MAPK, and p44/42 MAPK activation by a basophilic cell line, KU812 cells, stimulated with A23187 and PMA. However, luteolin did inhibit phosphorylation of c-Jun and DNA binding activity of AP-1 in nuclear lysates from stimulated KU812 cells. These results provide a fundamental structure of flavonoids for IL-4 inhibition and demonstrate a novel action of flavonoids that suppresses the activation of AP-1

  9. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond

    Directory of Open Access Journals (Sweden)

    Fubito Nakatsu

    2014-11-01

    Full Text Available The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis. Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells.

  10. AP1S3 Mutations Are Associated with Pustular Psoriasis and Impaired Toll-like Receptor 3 Trafficking

    Science.gov (United States)

    Setta-Kaffetzi, Niovi; Simpson, Michael A.; Navarini, Alexander A.; Patel, Varsha M.; Lu, Hui-Chun; Allen, Michael H.; Duckworth, Michael; Bachelez, Hervé; Burden, A. David; Choon, Siew-Eng; Griffiths, Christopher E.M.; Kirby, Brian; Kolios, Antonios; Seyger, Marieke M.B.; Prins, Christa; Smahi, Asma; Trembath, Richard C.; Fraternali, Franca; Smith, Catherine H.; Barker, Jonathan N.; Capon, Francesca

    2014-01-01

    Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis. PMID:24791904

  11. The synergistic transactivation of the hepatitis B viral (HBV) pregenomic promoter by the E6 protein of human papillomavirus type 16 (HPV-16 E6) with HBV X protein was mediated through the AP1 site of E element in the enhancer I (EnI) in human liver cell.

    Science.gov (United States)

    Lee, D H; Choi, B H; Rho, H M

    1999-11-01

    Infection by HBV of a cell already infected with other viral species or vice versa has been suggested as being involved in hepatocellular carcinoma. Using the CAT assay method, we investigated the interactive roles of HBx and potentially oncogenic and transactivating viral early proteins such as Ad5 E1A, HPV-16 E6, and SV40 T ag. In the presence of HBx, only HPV-16 E6 showed significant synergistic transactivation of EnI. We further investigated the function of the HPV-16 E6 using deletion, heterologous promoter, and mutation analyses on the EnI promoter. The results showed that the synergistic effect was mediated through the AP1 site of the E element in EnI by the direct activation of AP1 and support the idea that the infection by HBV of the cell with other viral species such as HPV-16 could increase the transcription activity of the HBV and other oncogenes containing an AP1 site in the promoter. Copyright 1999 Academic Press.

  12. AP-1/KIF13A Blocking Peptides Impair Melanosome Maturation and Melanin Synthesis

    Directory of Open Access Journals (Sweden)

    Cécile Campagne

    2018-02-01

    Full Text Available Melanocytes are specialized cells that generate unique organelles called melanosomes in which melanin is synthesized and stored. Melanosome biogenesis and melanocyte pigmentation require the transport and delivery of melanin synthesizing enzymes, such as tyrosinase and related proteins (e.g., TYRP1, from endosomes to maturing melanosomes. Among the proteins controlling endosome-melanosome transport, AP-1 together with KIF13A coordinates the endosomal sorting and trafficking of TYRP1 to melanosomes. We identify here β1-adaptin AP-1 subunit-derived peptides of 5 amino acids that block the interaction of KIF13A with AP-1 in cells. Incubating these peptides with human MNT-1 cells or 3D-reconstructed pigmented epidermis decreases pigmentation by impacting the maturation of melanosomes in fully pigmented organelles. This study highlights that peptides targeting the intracellular trafficking of melanocytes are candidate molecules to tune pigmentation in health and disease.

  13. AP-1 Oligodeoxynucleotides Reduce Aortic Elastolysis in a Murine Model of Marfan Syndrome.

    Science.gov (United States)

    Arif, Rawa; Zaradzki, Marcin; Remes, Anca; Seppelt, Philipp; Kunze, Reiner; Schröder, Hannes; Schwill, Simon; Ensminger, Stephan M; Robinson, Peter N; Karck, Matthias; Müller, Oliver J; Hecker, Markus; Wagner, Andreas H; Kallenbach, Klaus

    2017-12-15

    Marfan syndrome is characterized by high expression of matrix metalloproteinases (MMPs) in aortic smooth muscle cells (AoSMCs) associated with medial elastolysis and aortic root aneurysm. We aimed to reduce aortic elastolysis through decrease of MMP expression with decoy oligodeoxynucleotides (dODNs) neutralizing the transcription factor activating factor-1 (AP-1). AP-1 abundance in nuclear extracts as well as MMP-2 and MMP-9 expression were significantly increased in isolated mAoSMC of mgR/mgR Marfan mice compared to wild-type cells. Exposure to AP-1 neutralizing dODNs resulted in a significant reduction of basal and interleukin-1β-stimulated MMP expression and activity in mAoSMCs. Moreover, increased migration and formation of superoxide radical anions was substantially decreased in mAoSMCs by AP-1 dODN treatment. Aortic grafts from donor Marfan mice were treated with AP-1- dODN ex vivo and implanted as infrarenal aortic interposition grafts in mgR/mgR mice. Pretreatment of aortic grafts with AP-1 dODN led to reduced elastolysis, macrophage infiltration, and MMP activity. Permeability of the endothelial monolayer was increased for dODN in mgR/mgR aortae with observed loss of tight junction proteins ZO-1 and occludin, enabling dODN to reach the tunica media. Targeting AP-1 activity offers a new potential strategy to treat the vascular phenotype associated with Marfan syndrome. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Expression of activator protein-1 (AP-1) family members in breast cancer

    International Nuclear Information System (INIS)

    Kharman-Biz, Amirhossein; Gao, Hui; Ghiasvand, Reza; Zhao, Chunyan; Zendehdel, Kazem; Dahlman-Wright, Karin

    2013-01-01

    The activator protein-1 (AP-1) transcription factor is believed to be important in tumorigenesis and altered AP-1 activity was associated with cell transformation. We aimed to assess the potential role of AP-1 family members as novel biomarkers in breast cancer. We studied the expression of AP-1 members at the mRNA level in 72 primary breast tumors and 37 adjacent non-tumor tissues and evaluated its correlation with clinicopathological parameters including estrogen receptor (ER), progesterone receptor (PR) and HER2/neu status. Expression levels of Ubiquitin C (UBC) were used for normalization. Protein expression of AP-1 members was assessed using Western blot analysis in a subset of tumors. We used student’s t-test, one-way ANOVA, logistic regression and Pearson’s correlation coefficient for statistical analyses. We found significant differences in the expression of AP-1 family members between tumor and adjacent non-tumor tissues for all AP-1 family members except Fos B. Fra-1, Fra-2, Jun-B and Jun-D mRNA levels were significantly higher in tumors compared to adjacent non-tumor tissues (p < 0.001), whilst c-Fos and c-Jun mRNA levels were significantly lower in tumors compared with adjacent non-tumor tissues (p < 0.001). In addition, Jun-B overexpression had outstanding discrimination ability to differentiate tumor tissues from adjacent non-tumor tissues as determined by ROC curve analysis. Moreover, Fra-1 was significantly overexpressed in the tumors biochemically classified as ERα negative (p = 0.012) and PR negative (p = 0.037). Interestingly, Fra-1 expression was significantly higher in triple-negative tumors compared with luminal carcinomas (p = 0.01). Expression levels of Fra-1 and Jun-B might be possible biomarkers for prognosis of breast cancer

  15. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair.

    Science.gov (United States)

    Cukras, Scott; Lee, Euiho; Palumbo, Emily; Benavidez, Pamela; Moldovan, George-Lucian; Kee, Younghoon

    2016-10-01

    USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.

  16. Promotion of Homologous Recombination and Genomic Stability byRAD51AP1 via RAD51 Recombinase Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Dray, Eloise; Groesser, Torsten; San Filippo,Joseph; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams,Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David

    2007-04-11

    Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds dsDNA and RAD51, and it greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide the first evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.

  17. Opposing Effects of Zac1 and Curcumin on AP-1-Regulated Expressions of S100A7.

    Directory of Open Access Journals (Sweden)

    Yu-Wen Chu

    Full Text Available ZAC, an encoding gene mapped at chromosome 6q24-q25 within PSORS1, was previously found over-expressed in the lower compartment of the hyperplastic epidermis in psoriatic lesions. Cytokines produced in the inflammatory dermatoses may drive AP-1 transcription factor to induce responsive gene expressions. We demonstrated that mZac1 can enhance AP-1-responsive S100A7 expression of which the encoding gene was located in PSORS4 with HaCaT keratinocytes. However, the mZac1-enhanced AP-1 transcriptional activity was suppressed by curcumin, indicating the anti-inflammatory property of this botanical agent and is exhibited by blocking the AP-1-mediated cross-talk between PSORS1 and PSORS4. Two putative AP-1-binding sites were found and demonstrated to be functionally important in the regulation of S100A7 promoter activity. Moreover, we found curcumin reduced the DNA-binding activity of AP-1 to the recognition element located in the S100A7 promoter. The S100A7 expression was found to be upregulated in the lesioned epidermis of atopic dermatitis and psoriasis, which is where this keratinocyte-derived chemoattractant engaged in the pro-inflammatory feedback loop. Understanding the regulatory mechanism of S100A7 expression will be helpful to develop therapeutic strategies for chronic inflammatory dermatoses via blocking the reciprocal stimuli between the inflammatory cells and keratinocytes.

  18. AP-1-Targeting Anti-Inflammatory Activity of the Methanolic Extract of Persicaria chinensis

    Directory of Open Access Journals (Sweden)

    Muhammad Jahangir Hossen

    2015-01-01

    Full Text Available In traditional Chinese medicine, Persicaria chinensis L. has been prescribed to cure numerous inflammatory disorders. We previously analyzed the bioactivity of the methanol extract of this plant (Pc-ME against LPS-induced NO and PGE2 in RAW264.7 macrophages and found that it prevented HCl/EtOH-induced gastric ulcers in mice. The purpose of the current study was to explore the molecular mechanism by which Pc-ME inhibits activator protein- (AP- 1 activation pathway and mediates its hepatoprotective activity. To investigate the putative therapeutic properties of Pc-ME against AP-1-mediated inflammation and hepatotoxicity, lipopolysaccharide- (LPS- stimulated RAW264.7 and U937 cells, a monocyte-like human cell line, and an LPS/D-galactosamine- (D-GalN- induced acute hepatitis mouse model were employed. The expression of LPS-induced proinflammatory cytokines including interleukin- (IL- 1β, IL-6, and tumor necrosis factor-α (TNF-α was significantly diminished by Pc-ME. Moreover, Pc-ME reduced AP-1 activation and mitogen-activated protein kinase (MAPK phosphorylation in both LPS-stimulated RAW264.7 cells and differentiated U937 cells. Additionally, we highlighted the hepatoprotective and curative effects of Pc-ME pretreated orally in a mouse model of LPS/D-GalN-intoxicated acute liver injury by demonstrating the significant reduction in elevated serum AST and ALT levels and histological damage. Therefore, these results strongly suggest that Pc-ME could function as an antihepatitis remedy suppressing MAPK/AP-1-mediated inflammatory events.

  19. AP-1 proteins in the adult brain: facts and fiction about effectors of neuroprotection and neurodegeneration.

    Science.gov (United States)

    Herdegen, T; Waetzig, V

    2001-04-30

    Jun and Fos proteins are induced and activated following most physiological and pathophysiological stimuli in the brain. Only few data allow conclusions about distinct functions of AP-1 proteins in neurodegeneration and neuroregeneration, and these functions mainly refer to c-Jun and its activation by JNKs. Apoptotic functions of activated c-Jun affect hippocampal, nigral and primary cultured neurons following excitotoxic stimulation and destruction of the neuron-target-axis including withdrawal of trophic molecules. The inhibition of JNKs might exert neuroprotection by subsequent omission of c-Jun activation. Besides endogenous neuronal functions, the c-Jun/AP-1 proteins can damage the nervous system by upregulation of harmful programs in non-neuronal cells (e.g. microglia) with release of neurodegenerative molecules. In contrast, the differentiation with neurite extension and maturation of neural cells in vitro indicate physiological and potentially neuroprotective functions of c-Jun and JNKs including sensoring for alterations in the cytoskeleton. This review summarizes the multiple molecular interfunctions which are involved in the shift from the physiological role to degenerative effects of the Jun/JNK-axis such as cell type-specific expression and intracellular localization of scaffold proteins and upstream activators, antagonistic phosphatases, interaction with other kinase systems, or the activation of transcription factors competing for binding to JNK proteins and AP-1 DNA elements.

  20. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.

    Science.gov (United States)

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-03-03

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.

  1. Heparin (GAG-hed) inhibits LCR activity of Human Papillomavirus type 18 by decreasing AP1 binding

    International Nuclear Information System (INIS)

    Villanueva, Rita; Morales-Peza, Néstor; Castelán-Sánchez, Irma; García-Villa, Enrique; Tapia, Rocio; Cid-Arregui, Ángel; García-Carrancá, Alejandro; López-Bayghen, Esther; Gariglio, Patricio

    2006-01-01

    High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7 genes is controlled by the viral Long Control Region (LCR), plus several cellular transcription factors including AP1 and the viral protein E2. Within the LCR, the binding and activity of the transcription factor AP1 represents a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation. Glycosaminoglycans (GAGs), such as heparin, can inhibit tumour growth; they have also shown antiviral effects and inhibition of AP1 transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as a possible antiviral and antitumoral agent in an HPV18 positive HeLa cell line. Using in vivo and in vitro approaches we tested GAG-hed effects on HeLa tumour cell growth, cell proliferation and on the expression of HPV18 E6/E7 oncogenes. GAG-hed effects on AP1 binding to HPV18-LCR-DNA were tested by EMSA. We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced by injection of HeLa cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation rates was observed in HeLa but not in HPV-free colorectal adenocarcinoma cells. Treated HeLa cells did not undergo apoptosis but the percentage of cells in G 2 /M phase of the cell cycle was increased. We also detected that GAG-hed prevents the binding of the transcription factor AP1 to the LCR. Direct interaction of GAG-hed with the components of the AP1 complex and subsequent interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition of E6/E7 transcription and cell proliferation. Our data suggest that GAG-hed could have

  2. Interplay between the HTLV-2 Tax and APH-2 proteins in the regulation of the AP-1 pathway

    Directory of Open Access Journals (Sweden)

    Marban Céline

    2012-12-01

    Full Text Available Abstract Background In contrast with human T-cell leukemia virus type 1 (HTLV-1 that causes ATL (adult T-cell leukemia, HTLV-2 has not been causally linked to malignant disease. The minus strand of the HTLV genomes encode the regulatory proteins HTLV-1 bZIP factor (HBZ for HTLV-1 and antisense protein of HTLV-2 (APH-2 for HTLV-2. Unlike the viral proteins Tax1 and Tax2, both HBZ and APH-2 are constitutively expressed in infected cells suggesting that they may play important roles in the pathogenesis of these viruses. To date, very little is known about the function of APH-2 except that it inhibits Tax2-mediated transcription of HTLV-2 genes. In the present study, we investigated the role of APH-2 in basal and Tax2B-mediated activation of the AP-1 pathway. Results We demonstrate that, unlike HBZ, APH-2 stimulates basal AP-1 transcription by interacting with c-Jun and JunB through its non-conventional bZIP domain. In addition, when Tax2 and APH-2 are co-expressed, they physically interact in vivo and in vitro and APH-2 acts as an inhibitor of Tax2-mediated activation of AP-1 transcription. Conclusions This report is the first to document that HTLV-2 can modulate the AP-1 pathway. Altogether our results reveal that, in contrast with HBZ, APH-2 regulates AP-1 activity in a Tax2-dependant manner. As the AP-1 pathway is involved in numerous cellular functions susceptible to affect the life cycle of the virus, these distinct biological properties between HBZ and APH-2 may contribute to the differential pathogenic potential of HTLV-1 and HTLV-2.

  3. AP1 transcription factors are required to maintain the peripheral taste system.

    Science.gov (United States)

    Shandilya, Jayasha; Gao, Yankun; Nayak, Tapan K; Roberts, Stefan G E; Medler, Kathryn F

    2016-10-27

    The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance.

  4. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    International Nuclear Information System (INIS)

    Mohareer, Krishnaveni; Sahdev, Sudhir; Hasnain, Seyed E.

    2011-01-01

    Highlights: ► Baculovirus p35 is regulated by both viral and host factors. ► Baculovirus p35 is negatively regulated by SfP53-like factor. ► Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors, which are activated under oxidative stress conditions. The AP-1 motif is located at −1401 while P53 motif is at −1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.

  5. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    Energy Technology Data Exchange (ETDEWEB)

    Mohareer, Krishnaveni [Laboratory of Molecular and Cell Biology, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500001 (India); Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046 (India); Sahdev, Sudhir [Laboratory of Molecular and Cell Biology, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500001 (India); Ranbaxy Pharmaceuticals, Gurgaon, New Delhi (India); Hasnain, Seyed E., E-mail: seh@bioschool.iitd.ac.in [Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046 (India); Kusuma School of Biological Sciences, IIT Delhi, New Delhi 110016 (India); ILBS, Vasant Kunj, New Delhi (India); King Saud University, Riyadh, KSA (Saudi Arabia)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors, which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.

  6. Andrographolide inhibits TNFα-induced ICAM-1 expression via suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1 pathways in human endothelial cells.

    Science.gov (United States)

    Lu, Chia-Yang; Yang, Ya-Chen; Li, Chien-Chun; Liu, Kai-Li; Lii, Chong-Kuei; Chen, Haw-Wen

    2014-09-01

    Andrographolide, the major bioactive component of Andrographis paniculata, has been demonstrated to have various biological properties including anti-inflammation, antioxidation, and anti-hepatotoxicity. Oxidative stress is considered a major risk factor in aging, inflammation, cancer, atherosclerosis, and diabetes mellitus. NADPH oxidase is a major source of endogenous reactive oxygen species (ROS). In this study, we used EA.hy926 endothelial-like cells to explore the anti-inflammatory activity of andrographolide. Andrographolide attenuated TNFα-induced ROS generation, Src phosphorylation, membrane translocation of the NADPH oxidase subunits p47(phox) and p67(phox), and ICAM-1 gene expression. In the small hairpin RNA interference assay, shp47(phox) abolished TNFα-induced p65 nuclear translocation, ICAM-1 gene expression, and adhesion of HL-60 cells. Andrographolide induced the gene expression of heme oxygenase 1 (HO-1) and glutamate cysteine ligase modifier subunit (GCLM) in a time-dependent manner. Cellular glutathione (GSH) content was increased by andrographolide. shGCLM attenuated the andrographolide-induced increase in GSH content and reversed the andrographolide inhibition of HL-60 adhesion. shHO-1 showed a similar effect on andrographolide inhibition of HL-60 adhesion to shGCLM. The mechanism underlying the up-regulation of HO-1 and GCLM by andrographolide was dependent on the PI3K/Akt pathway, and both the Nrf2 and AP-1 transcriptional factors were involved. Our results suggest that andrographolide attenuates TNFα-induced ICAM-1 expression at least partially through suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression, which is PI3K/Akt pathway-dependent. Copyright © 2014. Published by Elsevier Inc.

  7. Molecular Basis for Enhancement of the Meiotic DMCI Recombinase by RAD51AP1

    Energy Technology Data Exchange (ETDEWEB)

    Dray, Eloise; Dunlop, Myun Hwa; Kauppi, Liisa; San Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2010-11-05

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 Associated Protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional co-operation is dependent on complex formation between DMC1 and RAD51AP1, and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci co-localize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

  8. c-fos/c-jun expression and AP-1 activation in skin fibroblasts from centenarians.

    Science.gov (United States)

    Grassilli, E; Bellesia, E; Salomoni, P; Croce, M A; Sikora, E; Radziszewska, E; Tesco, G; Vergelli, M; Latorraca, S; Barbieri, D; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Sorbi, S; Franceschi, C

    1996-09-13

    In vitro replicative senescence is characterized by an irreversible growth arrest due to the inability of the cell to induce some key regulators of cell cycle progression, such as c-fos and AP-1, in response to mitogenic stimuli. In vitro replicative senescence and in vivo aging have been assumed to be two related phenomena, likely controlled by overlapping or interacting genes. As a corollary, fibroblasts from centenarians, which have undergone a long process of senescence in vivo should have very limited proliferative capability. On the contrary, in a previous work we found that fibroblasts from centenarians exhibited the same capacity to respond to different mitogenic stimuli as fibroblasts from young donors. Here we provide evidences that the well preserved proliferative response is likely due to the fact that some pivotal regulators- c-fos, c-jun and AP-1-are still fully inducible, despite a long process of in vivo senescence. Our data therefore suggest that in vivo and in vitro aging are separate phenomena whose possible relationships, if any, have to be ascertained very carefully.

  9. Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer

    Directory of Open Access Journals (Sweden)

    Yu Ming

    2010-10-01

    Full Text Available Abstract Background Stress, anxiety and depression can cause complex physiological and neuroendocrine changes, resulting in increased level of stress related hormone catecholamine, which may constitute a primary mechanism by which physiological factors impact gene expression in tumors. In the present study, we investigated the effects of catecholamine stimulation on MMP-7 expression in gastric cancer cells and elucidated the molecular mechanisms of the up-regulation of MMP-7 level by catecholamine through an adrenergic signaling pathway. Results Increased MMP-7 expression was identified at both mRNA and protein levels in the gastric cancer cells in response to isoproterenol stimulation. β2-AR antigonist effectively abrogated isoproterenol-induced MMP-7 expression. The activation of STAT3 and AP-1 was prominently induced by isoproterenol stimulation and AP-1 displayed a greater efficacy than STAT3 in isoproterenol-induced MMP-7 expression. Mutagenesis of three STAT3 binding sites in MMP-7 promoter failed to repress the transactivation of MMP-7 promoter and silencing STAT3 expression was not effective in preventing isoproterenol-induced MMP-7 expression. However, isoproterenol-induced MMP-7 promoter activities were completely disappeared when the AP-1 site was mutated. STAT3 and c-Jun could physically interact and bind to the AP-1 site, implicating that the interplay of both transcriptional factors on the AP-1 site is responsible for isoproterenol-stimulated MMP-7 expression in gastric cancer cells. The expression of MMP-7 in gastric cancer tissues was found to be at the site where β2-AR was overexpressed and the levels of MMP-7 and β2-AR were the highest in the metastatic locus of gastric cancer. Conclusions Up-regulation of MMP-7 expression through β2-AR-mediated signaling pathway is involved in invasion and metastasis of gastric cancer.

  10. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium.

    Science.gov (United States)

    Hossen, Muhammad Jahangir; Kim, Mi-Yeon; Cho, Jae Youl

    2016-01-01

    Xanthium strumarium L. (Asteraceae), a traditional Chinese medicine, is prescribed to treat arthritis, bronchitis, and rhinitis. Although the plant has been used for many years, the mechanism by which it ameliorates various inflammatory diseases is not yet fully understood. To explore the anti-inflammatory mechanism of methanol extracts of X. strumarium (Xs-ME) and its therapeutic potential, we used lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells and human monocyte-like U937 cells as well as a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. To find the target inflammatory pathway, we used holistic immunoblotting analysis, reporter gene assays, and mRNA analysis. Xs-ME significantly suppressed the up-regulation of both the activator protein (AP)-1-mediated luciferase activity and the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1[Formula: see text], IL-6, and tumor necrosis factor (TNF)-[Formula: see text]. Moreover, Xs-ME strongly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW264.7 and U937 cells. Additionally, these results highlighted the hepatoprotective and curative effects of Xs-ME in a mouse model of LPS/D-GalN-induced acute liver injury, as assessed by elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and histological damage. Therefore, our results strongly suggest that the ethnopharmacological roles of Xs-ME in hepatitis and other inflammatory diseases might result from its inhibitory activities on the inflammatory signaling of MAPK and AP-1.

  11. Mechanisms of collective cell movement lacking a leading or free front edge in vivo.

    Science.gov (United States)

    Uechi, Hiroyuki; Kuranaga, Erina

    2017-08-01

    Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.

  12. Antigenicity of Leishmania-Activated C-Kinase Antigen (LACK in Human Peripheral Blood Mononuclear Cells, and Protective Effect of Prime-Boost Vaccination With pCI-neo-LACK Plus Attenuated LACK-Expressing Vaccinia Viruses in Hamsters

    Directory of Open Access Journals (Sweden)

    Laura Fernández

    2018-04-01

    Full Text Available Leishmania-activated C-kinase antigen (LACK is a highly conserved protein among Leishmania species and is considered a viable vaccine candidate for human leishmaniasis. In animal models, prime-boost vaccination with LACK-expressing plasmids plus attenuated vaccinia viruses (modified vaccinia Ankara [MVA] and mutant M65 expressing LACK, has been shown to protect against cutaneous leishmaniasis (CL. Further, LACK demonstrated to induce the production of protective cytokines in patients with active CL or cured visceral leishmaniasis, as well as in asymptomatic individuals from endemic areas. However, whether LACK is capable to trigger cytokine release by peripheral blood mononuclear cells from patients cured of CL due to Leishmania infantum (L. infantum or induce protection in L. infantum-infected hamsters [visceral leishmaniasis (VL model], has not yet been analyzed. The present work examines the ex vivo immunogenicity of LACK in cured VL and CL patients, and asymptomatic subjects from an L. infantum area. It also evaluates the vaccine potential of LACK against L. infantum infection in hamsters, in a protocol of priming with plasmid pCI-neo-LACK (DNA-LACK followed by a booster with the poxvirus vectors MVA-LACK or M65-LACK. LACK-stimulated PBMC from both asymptomatic and cured subjects responded by producing IFN-γ, TNF-α, and granzyme B (Th1-type response. Further, 78% of PBMC samples that responded to soluble Leishmania antigen showed IFN-γ secretion following stimulation with LACK. In hamsters, the protocol of DNA-LACK prime/MVA-LACK or M65-LACK virus boost vaccination significantly reduced the amount of Leishmania DNA in the liver and bone marrow, with no differences recorded between the use of MVA or M65 virus vector options. In summary, the Th1-type and cytotoxic responses elicited by LACK in PBMC from human subjects infected with L. infantum, and the parasite protective effect of prime/boost vaccination in hamsters with DNA-LACK/MVA-LACK

  13. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A)

    International Nuclear Information System (INIS)

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2010-01-01

    Research highlights: → Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. → Adaptor-related protein complex 1 μ1A (AP-1 mu1A) was firstly reported to interact with kAE1. → The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. → AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. → AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl - ) and bicarbonate (HCO 3 - ) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl - /HCO 3 - exchange at the basolateral membrane and failure of proton (H + ) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 μ1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney α-intercalated cells.

  14. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    Energy Technology Data Exchange (ETDEWEB)

    Sawasdee, Nunghathai; Junking, Mutita [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Ngaojanlar, Piengpaga [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Immunology and Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Sukomon, Nattakan; Ungsupravate, Duangporn [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Akkarapatumwong, Varaporn [Institute of Molecular Biosciences, Mahidol University at Salaya Campus, Nakorn Pathom 73170 (Thailand); Noisakran, Sansanee [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Medical Molecular Biology and BIOTEC-Medical Biotechnology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  15. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer.

    Science.gov (United States)

    Mishra, Alok; Kumar, Rakesh; Tyagi, Abhishek; Kohaar, Indu; Hedau, Suresh; Bharti, Alok C; Sarker, Subhodeep; Dey, Dipankar; Saluja, Daman; Das, Bhudev

    2015-01-01

    In this study, we investigated the effects of the natural antioxidant curcumin on the HPV16-positive oral carcinoma cell line 93VU147T and demonstrated that curcumin is not only a potent inhibitor for the activity of host nuclear transcription factors AP-1 and NF-kB but it also selectively suppresses transcription of the HPV16/E6 oncogene during the carcinogenic process in oral cancer cells. This study suggests a therapeutic potential of curcumin for high-risk human papilloma virus (HPV)-infected oral cancers.

  16. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jing Lu

    Full Text Available Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced.

  17. Lack of Parental Rules for Cell Phone Use among Low Income Mexican Descendent Adolescents

    Directory of Open Access Journals (Sweden)

    Christine Bracamonte Wiggs

    2013-12-01

    Full Text Available Youth have access to and utilize various types of technology at a growing rate. Cell phones are a portable way for adolescents to remain in constant contact with friends, parents, and others. While White youth are more likely to have a cell phone compared to Latino youth, the trends for cell phone use are similar among all teens with text messaging serving as the most popular means of communication. Despite their high volume of communication with others via cell phones, adolescents are likely to have little or no adult supervision while using technology. With a lack of parental supervision or awareness regarding youth technology use, adolescents may be especially vulnerable to cyberbullying and other negative health impacts. The current study investigates cell phone and texting use among a community sample of Latino adolescents and examines how parental rules regarding cell phone use influences adolescents’ cell phone and texting behaviors.

  18. Synaptic and genomic responses to JNK and AP-1 signaling in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Bohmann Dirk

    2005-06-01

    Full Text Available Abstract Background The transcription factor AP-1 positively controls synaptic plasticity at the Drosophila neuromuscular junction. Although in motor neurons, JNK has been shown to activate AP-1, a positive regulator of growth and strength at the larval NMJ, the consequences of JNK activation are poorly studied. In addition, the downstream transcriptional targets of JNK and AP-1 signaling in the Drosophila nervous system have yet to be identified. Here, we further investigated the role of JNK signaling at this model synapse employing an activated form of JNK-kinase; and using Serial Analysis of Gene Expression and oligonucleotide microarrays, searched for candidate early targets of JNK or AP-1 dependent transcription in neurons. Results Temporally-controlled JNK induction in postembryonic motor neurons triggers synaptic growth at the NMJ indicating a role in developmental plasticity rather than synaptogenesis. An unexpected observation that JNK activation also causes a reduction in transmitter release is inconsistent with JNK functioning solely through AP-1 and suggests an additional, yet-unidentified pathway for JNK signaling in motor neurons. SAGE profiling of mRNA expression helps define the neural transcriptome in Drosophila. Though many putative AP-1 and JNK target genes arose from the genomic screens, few were confirmed in subsequent validation experiments. One potentially important neuronal AP-1 target discovered, CG6044, was previously implicated in olfactory associative memory. In addition, 5 mRNAs regulated by RU486, a steroid used to trigger conditional gene expression were identified. Conclusion This study demonstrates a novel role for JNK signaling at the larval neuromuscular junction and provides a quantitative profile of gene transcription in Drosophila neurons. While identifying potential JNK/AP-1 targets it reveals the limitations of genome-wide analyses using complex tissues like the whole brain.

  19. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha

    Science.gov (United States)

    Tang, Mingyong; Tao, Yan-Bin

    2016-01-01

    Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1) is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1) was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV) 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha. PMID:27168978

  20. Ectopic expression of Jatropha curcas APETALA1 (JcAP1 caused early flowering in Arabidopsis, but not in Jatropha

    Directory of Open Access Journals (Sweden)

    Mingyong Tang

    2016-04-01

    Full Text Available Jatropha curcas is a promising feedstock for biofuel production because Jatropha oil is highly suitable for the production of biodiesel and bio-jet fuels. However, Jatropha exhibits a low seed yield as a result of unreliable and poor flowering. APETALA1 (AP1 is a floral meristem and organ identity gene in higher plants. The flower meristem identity genes of Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an AP1 homolog (JcAP1 was isolated from Jatropha. An amino acid sequence analysis of JcAP1 revealed a high similarity to the AP1 proteins of other perennial plants. JcAP1 was expressed in inflorescence buds, flower buds, sepals and petals. The highest expression level was observed during the early developmental stage of the flower buds. The overexpression of JcAP1 using the cauliflower mosaic virus (CaMV 35S promoter resulted in extremely early flowering and abnormal flowers in transgenic Arabidopsis plants. Several flowering genes downstream of AP1 were up-regulated in the JcAP1-overexpressing transgenic plant lines. Furthermore, JcAP1 overexpression rescued the phenotype caused by the Arabidopsis AP1 loss-of-function mutant ap1-11. Therefore, JcAP1 is an ortholog of AtAP1, which plays a similar role in the regulation of flowering in Arabidopsis. However, the overexpression of JcAP1 in Jatropha using the same promoter resulted in little variation in the flowering time and floral organs, indicating that JcAP1 may be insufficient to regulate flowering by itself in Jatropha. This study helps to elucidate the function of JcAP1 and contributes to the understanding of the molecular mechanisms of flower development in Jatropha.

  1. Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641

    International Nuclear Information System (INIS)

    Qi Xingzhu; Li Yongqing; Xiao Jing; Yuan Wuzhou; Yan Yan; Wang Yuequn; Liang Shuyuan; Zhu Chuanbing; Chen Yingduan; Liu Mingyao; Wu Xiushan

    2006-01-01

    Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes in cell signal transduction connecting cell-surface receptors to critical regulatory targets within cells and control cell survival, adaptation, and proliferation. Previous studies revealed that zinc-finger proteins are involved in the regulation of the MAPK signaling pathways. Here, we report the identification and characterization of a novel human zinc-finger protein, ZNF641. The cDNA of ZNF641 is 4.9 kb, encoding 438 amino acids in the nucleus. The protein is highly conserved in evolution across different vertebrate species from mouse to human. Northern blot analysis indicates that ZNF641 is expressed in most of the examined human tissues, with a high level in skeletal muscle. Overexpression of pCMV-Tag2B-ZNF641 in the COS-7 cells activates the transcriptional activities of AP-1 and SRE. Deletion analysis indicates that the linker between KRAB box and C 2 H 2 -type zinc-fingers represents the basal activation domain. These results suggest that ZNF641 may be a positive regulator in MAPK-mediated signaling pathways that lead to the activation of AP-1 and SRE

  2. Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.

    OpenAIRE

    Dri, A M; Rouviere-Yaniv, J; Moreau, P L

    1991-01-01

    Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The...

  3. AP-1/IRF-3 Targeted Anti-Inflammatory Activity of Andrographolide Isolated from Andrographis paniculata

    Directory of Open Access Journals (Sweden)

    Ting Shen

    2013-01-01

    Full Text Available Andrographolide (AG is an abundant component of plants of the genus Andrographis and has a number of beneficial properties including neuroprotective, anticancer, anti-inflammatory, and antidiabetic effects. Despite numerous pharmacological studies, the precise mechanism of AG is still ambiguous. Thus, in the present study, we investigated the molecular mechanisms of AG and its target proteins as they pertain to anti-inflammatory responses. AG suppressed the production of nitric oxide (NO and prostaglandin E2 (PGE2, as well as the mRNA abundance of inducible NO synthase (iNOS, tumor necrosis factor-alpha (TNF-α, cyclooxygenase (COX-2, and interferon-beta (IFN-β in a dose-dependent manner in both lipopolysaccharide- (LPS- activated RAW264.7 cells and peritoneal macrophages. AG also substantially ameliorated the symptoms of LPS-induced hepatitis and EtOH/HCl-induced gastritis in mice. Based on the results of luciferase reporter gene assays, kinase assays, and measurement of nuclear levels of transcription factors, the anti-inflammatory effects of AG were found to be clearly mediated by inhibition of both (1 extracellular signal-regulated kinase (ERK/activator protein (AP-1 and (2 IκB kinase ε (IKKε/interferon regulatory factor (IRF-3 pathways. In conclusion, we detected a novel molecular signaling pathway by which AG can suppress inflammatory responses. Thus, AG is a promising anti-inflammatory drug with two pharmacological targets.

  4. PROPOSED CARDIAC STEM CELLS DERIVED FROM “CARDIOSPHERES” LACK CARDIOMYOGENIC POTENTIAL

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline

       Recent studies have reported that clinical relevant numbers of cardiac stem cells (CSCs) with cardiomyogenic potential can be obtained from small heart tissue biopsies, by an intrinsic ability of CSCs to form beating cardiospheres (CSs) during ex vivo culture. Such data have provided optimism...... that injuried heart tissue may be repaired by stem cell therapy using autologous CS derived cells, and pre-clinical studies have already been described in literature.    Herein, we established CSs from neonatal rats, and by immunofluorescence, qRT-PCR, and microscopic examination we demonstrated...... to form CSs by themselves. Phenotypically, CS cells largely resembled fibroblasts, and they lacked cardiomyogenic as well as endothelial differentiation potential.    Our data imply that at least the murine cardiosphere model seems unsuitable for enrichment of cardiac stem cells with cardiomyogenic...

  5. The Inflammation-Related Gene S100A12 Is Positively Regulated by C/EBPβ and AP-1 in Pigs

    Directory of Open Access Journals (Sweden)

    Xinyun Li

    2014-08-01

    Full Text Available S100A12 is involved in the inflammatory response and is considered an important marker for many inflammatory diseases in humans. Our previous studies indicated that the S100A12 gene was abundant in the immune tissues of pigs and was significantly upregulated during infection with Haemophilus parasuis (HPS or porcine circovirus type 2 (PCV2. In this study, the mechanism of transcriptional regulation of S100A12 was investigated in pigs. Our results showed that S100A12, CCAAT/enhancer-binding protein beta (C/EBPβ and activator protein-1 (AP-1 genes were up-regulated in PK-15 (ATCC, CCL-33 cells when treated with LPS or Poly I: C. Additionally, the promoter activity and expression level of the S100A12 gene were significantly upregulated when C/EBPβ or AP-1 were overexpressed. We utilized electromobility shift assays (EMSA to confirm that C/EBPβ and AP-1 could directly bind the S100A12 gene promoter. We also found that the transcriptional activity and expression levels of C/EBPβ and AP-1 could positively regulate each other. Furthermore, the promoter activity of the S100A12 gene was higher when C/EBPβ and AP-1 were cotransfected than when they were transfected individually. We concluded that the S100A12 gene was cooperatively and positively regulated by C/EBPβ and AP-1 in pigs. Our study offers new insight into the transcriptional regulation of the S100A12 gene.

  6. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial–mesenchymal transition in triple-negative breast cancer

    Science.gov (United States)

    Qiao, Yichun; Shiue, Chiou-Nan; Zhu, Jian; Zhuang, Ting; Jonsson, Philip; Wright, Anthony P.H.; Zhao, Chunyan; Dahlman-Wright, Karin

    2015-01-01

    The molecular determinants of malignant cell behaviour in triple-negative breast cancer (TNBC) are poorly understood. Recent studies have shown that regulators of epithelial-mesenchymal transition (EMT) are potential therapeutic targets for TNBC. In this study, we demonstrate that the inflammatory cytokine TNFα induces EMT in TNBC cells via activation of AP-1 signaling and subsequently induces expression of the EMT regulator ZEB2. We also show that TNFα activates both the PI3K/Akt and MAPK/ERK pathways, which act upstream of AP-1. We further investigated in detail AP-1 regulation of ZEB2 expression. We show that two ZEB2 transcripts derived from distinct promoters are both expressed in breast cancer cell lines and breast tumor samples. Using the chromosome conformation capture assay, we demonstrate that AP-1, when activated by TNFα, binds to a site in promoter 1b of the ZEB2 gene where it regulates the expression of both promoter 1b and 1a, the latter via mediating long range chromatin interactions. Overall, this work provides a plausible mechanism for inflammation-induced metastatic potential in TNBC, involving a novel regulatory mechanism governing ZEB2 isoform expression. PMID:25762639

  7. Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both phosphatidylinositol 3-kinase and acidic sphingomyelinase signals.

    Science.gov (United States)

    Edmead, C E; Patel, Y I; Wilson, A; Boulougouris, G; Hall, N D; Ward, S G; Sansom, D M

    1996-10-15

    A major obstacle in understanding the signaling events that follow CD28 receptor ligation arises from the fact that CD28 acts as a costimulus to TCR engagement, making it difficult to assess the relative contribution of CD28 signals as distinct from those of the TCR. To overcome this problem, we have exploited the observation that activated human T cell blasts can be stimulated via the CD28 surface molecule in the absence of antigenic challenge; thus, we have been able to observe the response of normal T cells to CD28 activation in isolation. Using this system, we observed that CD28 stimulation by B7-transfected CHO cells induced a proliferative response in T cells that was not accompanied by measurable IL-2 production. However, subsequent analysis of transcription factor generation revealed that B7 stimulation induced both activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) complexes, but not NF-AT. In contrast, engagement of the TCR by class II MHC/superantigen, either with or without CD28 ligation, resulted in the induction of NF-AT, AP-1, and NF-kappaB as well as IL-2 production. Using selective inhibitors, we investigated the signaling pathways involved in the CD28-mediated induction of AP-1 and NF-kappaB. This revealed that NF-kappaB generation was sensitive to chloroquine, an inhibitor of acidic sphingomyelinase, but not to the phosphatidylinositol 3-kinase inhibitor, wortmannin. In contrast, AP-1 generation was inhibited by wortmannin and was also variably sensitive to chloroquine. These data suggest that in activated normal T cells, CD28-derived signals can stimulate proliferation at least in part via NF-kappaB and AP-1 generation, and that this response uses both acidic sphingomyelinase and phosphatidylinositol 3-kinase-linked pathways.

  8. Effects of environmental estrogenic chemicals on AP1 mediated transcription with estrogen receptors alpha and beta.

    Science.gov (United States)

    Fujimoto, Nariaki; Honda, Hiroaki; Kitamura, Shigeyuki

    2004-01-01

    There has been much discussion concerning endocrine disrupting chemicals suspected of exerting adverse effects in both wildlife and humans. Since the majority of these compounds are estrogenic, a large number of in vitro tests for estrogenic characteristics have been developed for screening purpose. One reliable and widely used method is the reporter gene assay employing estrogen receptors (ERs) and a reporter gene with a cis-acting estrogen responsive element (ERE). Other elements such as AP1 also mediate estrogenic signals and the manner of response could be quite different from that of ERE. Since this has yet to be explored, the ER mediated AP1 activity in response to a series of environmental estrogens was investigated in comparison with ERE findings. All the compounds exhibited estrogenic properties with ERE-luc and their AP1 responses were quite similar. These was one exception, however, p,p'-DDT (1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane) did not exert any AP1-luc activity, while it appeared to be estrogenic at 10(-7) to 10(-5)M with the ERE action. None of the compounds demonstrated ER beta:AP1 activity. These data suggest that significant differences can occur in responses through the two estrogen pathways depending on environmental chemicals.

  9. CXCL12 gene silencing down-regulates metastatic potential via blockage of MAPK/PI3K/AP-1 signaling pathway in colon cancer.

    Science.gov (United States)

    Ma, J; Su, H; Yu, B; Guo, T; Gong, Z; Qi, J; Zhao, X; Du, J

    2018-01-05

    To investigate the effect of CXCL12 gene silencing on proliferation,invasion, angiogenesis and the relationship of MAPK/PI3K/AP-1 signaling pathway in colon cancer cells. RT-PCR and Western-blot were used to detect the expression of CXCL12 mRNA and protein in four colon cancer cell lines. Human colon cancer cells were transfected with CXCL12 siRNA carrying by Lipofectamine 2000. The expression of CXCL12 protein was confirmed by immunoblotting. WST-1, invasion and angiogenesis assay were used to examine the effect on proliferation, invasion and angiogenesis in colon cancer cells after CXCL12 siRNA silence, respectively. The phosphorylation of MAPK/PI3K/AP-1 protein levels was detected by Western blotting in CXCL12 siRNA suppression DLD-1 cell. CXCL12 mRNA and proteins were only expressed in DLD-1 colon cancer cell lines. CXCL12 siRNA were transfected into DLD-1 cells, the expression CXCL12 proteins was significantly inhibited (P colon cancer cell. The silencing CXCL12 gene significantly inhibits the proliferation, invasion and angiogenesis ability of some types colon carcinoma cells through down-regulation of MAPK/PI3K/AP-1 signaling pathway.

  10. Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.

    Science.gov (United States)

    Dri, A M; Rouviere-Yaniv, J; Moreau, P L

    1991-01-01

    Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The LexA repressor, which controls the expression of the sfiA gene, was present in hupA hupB mutant bacteria in concentrations half of those of the parent bacteria, but this decrease was independent of the specific cleavage of the LexA repressor by activated RecA protein. One possibility to account for the filamentous morphology of hupA hupB mutant bacteria is that the lack of HU protein alters the expression of specific genes, such as lexA and fts cell division genes. Images PMID:2019558

  11. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye.

    Science.gov (United States)

    Marko, Christina K; Menon, Balaraj B; Chen, Gang; Whitsett, Jeffrey A; Clevers, Hans; Gipson, Ilene K

    2013-07-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    Science.gov (United States)

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cells bearing chromosome aberrations lacking one telomere are selectively blocked at the G2/M checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Pilar [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Barquinero, Joan Francesc [Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Duran, Assumpta [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Caballin, Maria Rosa [Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Ribas, Montserrat [Servei de Radiofisica i Radioproteccio de l' Hospital de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Barrios, Leonardo, E-mail: Lleonard.Barrios@uab.cat [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

    2009-11-02

    Cell cycle checkpoints are part of the cellular mechanisms to maintain genomic integrity. After ionizing radiation exposure, the cells can show delay or arrest in their progression through the cell cycle, as well as an activation of the DNA repair machinery in order to reduce the damage. The G2/M checkpoint prevents G2 cells entering mitosis until the DNA damage has been reduced. The present study evaluates which G0 radiation-induced chromosome aberrations are negatively selected in the G2/M checkpoint. For this purpose, peripheral blood samples were irradiated at 1 and 3 Gy of {gamma}-rays, and lymphocytes were cultured for 48 h. Calyculin-A and Colcemid were used to analyze, in the same slide, cells in G2 and M. Chromosome spreads were consecutively analyzed by solid stain, pancentromeric and pantelomeric FISH and mFISH. The results show that the frequency of incomplete chromosome elements, those lacking a telomeric signal at one end, decreases abruptly from G2 to M. This indicates that cells with incomplete chromosome elements can progress from G0 to G2, but at the G2/M checkpoint suffer a strong negative selection.

  14. Cells bearing chromosome aberrations lacking one telomere are selectively blocked at the G2/M checkpoint

    International Nuclear Information System (INIS)

    Rodriguez, Pilar; Barquinero, Joan Francesc; Duran, Assumpta; Caballin, Maria Rosa; Ribas, Montserrat; Barrios, Leonardo

    2009-01-01

    Cell cycle checkpoints are part of the cellular mechanisms to maintain genomic integrity. After ionizing radiation exposure, the cells can show delay or arrest in their progression through the cell cycle, as well as an activation of the DNA repair machinery in order to reduce the damage. The G2/M checkpoint prevents G2 cells entering mitosis until the DNA damage has been reduced. The present study evaluates which G0 radiation-induced chromosome aberrations are negatively selected in the G2/M checkpoint. For this purpose, peripheral blood samples were irradiated at 1 and 3 Gy of γ-rays, and lymphocytes were cultured for 48 h. Calyculin-A and Colcemid were used to analyze, in the same slide, cells in G2 and M. Chromosome spreads were consecutively analyzed by solid stain, pancentromeric and pantelomeric FISH and mFISH. The results show that the frequency of incomplete chromosome elements, those lacking a telomeric signal at one end, decreases abruptly from G2 to M. This indicates that cells with incomplete chromosome elements can progress from G0 to G2, but at the G2/M checkpoint suffer a strong negative selection.

  15. How Do CD4+ T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules?

    Science.gov (United States)

    Haabeth, Ole Audun Werner; Tveita, Anders Aune; Fauskanger, Marte; Schjesvold, Fredrik; Lorvik, Kristina Berg; Hofgaard, Peter O.; Omholt, Hilde; Munthe, Ludvig A.; Dembic, Zlatko; Corthay, Alexandre; Bogen, Bjarne

    2014-01-01

    CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed. PMID:24782871

  16. How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules?

    Directory of Open Access Journals (Sweden)

    Ole Audun Werner Haabeth

    2014-04-01

    Full Text Available CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor specific antigen by host antigen presenting cells (APCs appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315, where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-g stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed.

  17. Inherent Immunogenicity or Lack Thereof of Pluripotent Stem Cells: Implications for Cell Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Arvind Chhabra

    2017-08-01

    Full Text Available Donor-specific induced pluripotent stem cells (iPSCs offer opportunities for personalized cell replacement therapeutic approaches due to their unlimited self-renewal potential and ability to differentiate into different somatic cells. A significant progress has been made toward generating iPSC lines that are free of integrating viral vectors, development of xeno-free culture conditions, and differentiation of pluripotent stem cells (PSCs into functional somatic cell lineages. Since donor-specific iPSC lines are genetically identical to the individual, they are expected to be immunologically matched and these iPSC lines and their cellular derivatives are not expected to be immunologically rejected. However, studies in mouse models, utilizing rejection of teratomas as a model, have claimed that syngenic iPSC lines, especially the iPSC lines derived with integrating viral vectors, could be inherently immunogenic. This manuscript reviews current understanding of inherent immunogenicity of PSC lines, especially that of the human iPSC lines and their cellular derivatives, and strategies to overcome it.

  18. Inhibitory effects of curcumin and capsaicin on phorbol ester-induced activation of eukaryotic transcription factors, NF-kappaB and AP-1.

    Science.gov (United States)

    Surh, Y J; Han, S S; Keum, Y S; Seo, H J; Lee, S S

    2000-01-01

    Recently, considerable attention has been focused on identifying dietary and medicinal phytochemicals that can inhibit, retard or reverse the multi-stage carcinogenesis. Spices and herbs contain phenolic substances with potent antioxidative and chemopreventive properties. Curcumin, a yellow colouring agent from turmeric and capsaicin, a pungent principle of red pepper exhibit profound anticarcinogenic and antimutagenic activities. Two well-defined eukaryotic transcription factors, nuclear factor-kappa B (NF-kappaB) and activator protein 1 (AP-1) have been implicated in pathogenesis of many human diseases including cancer. These transcription factors are known to be activated by a wide array of external stimuli, such as tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), tumor necrosis factor, reactive oxygen species, bacterial lipopolysaccharide, and ultraviolet. In the present study, we found that topical application of TPA onto dorsal skin of female ICR mice resulted in marked activation of epidermal NF-kappaB and AP-1. Curcumin and capsaicin, when topically applied prior to TPA, significantly attenuated TPA-induced activation of each transcription factor in mouse skin. Likewise, both compounds inhibited NF-kappaB and AP-1 activation in cultured human promyelocytic leukemia (HL-60) cells stimulated with TPA. Based on these findings, it is likely that curcumin and capsaicin exert anti-tumor promotional effects through suppression of the tumor promoter-induced activation of transcription factors, NF-kappaB and AP-1.

  19. A CRE/AP-1-like motif is essential for induced syncytin-2 expression and fusion in human trophoblast-like model.

    Directory of Open Access Journals (Sweden)

    Chirine Toufaily

    Full Text Available Syncytin-2 is encoded by the envelope gene of Endogenous Retrovirus-FRD (ERVFRD-1 and plays a critical role in fusion of placental trophoblasts leading to the formation of the multinucleated syncytiotrophoblast. Its expression is consequently regulated in a strict manner. In the present study, we have identified a forskolin-responsive region located between positions -300 to -150 in the Syncytin-2 promoter region. This 150 bp region in the context of a minimal promoter mediated an 80-fold induction of promoter activity following forskolin stimulation. EMSA analyses with competition experiments with nuclear extracts from forskolin-stimulated BeWo cells demonstrated that the -211 to -177 region specifically bound two forskolin-induced complexes, one of them containing a CRE/AP-1-like motif. Site-directed mutagenesis of the CRE/AP-1 binding site in the context of the Syncytin-2 promoter or a heterologous promoter showed that this motif was mostly essential for forskolin-induced promoter activity. Transfection experiments with dominant negative mutants and constitutively activated CREB expression vectors in addition to Chromatin Immunoprecipitation suggested that a CREB family member, CREB2 was binding and acting through the CRE/AP-1 motif. We further demonstrated the binding of JunD to this same motif. Similar to forskolin and soluble cAMP, CREB2 and JunD overexpression induced Syncytin-2 promoter activity in a CRE/AP-1-dependent manner and Syncytin-2 expression. In addition, BeWo cell fusion was induced by both CREB2 and JunD overexpression, while being repressed following silencing of either gene. These results thereby demonstrate that induced expression of Syncytin-2 is highly dependent on the interaction of bZIP-containing transcription factors to a CRE/AP-1 motif and that this element is important for the regulation of Syncytin-2 expression, which results in the formation of the peripheral syncytiotrophoblast layer.

  20. Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NF?B-Dependent Pathway

    OpenAIRE

    Remppis, Andrew; Bea, Florian; Greten, Henry Johannes; Buttler, Annette; Wang, Hongjie; Zhou, Qianxing; Preusch, Michael R.; Enk, Ronny; Ehehalt, Robert; Katus, Hugo; Blessing, Erwin

    2010-01-01

    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFB was anal...

  1. ZNF328, a novel human zinc-finger protein, suppresses transcriptional activities of SRE and AP-1

    International Nuclear Information System (INIS)

    Ou Ying; Wang Shenqiu; Cai Zhenyu; Wang Yuequn; Wang Canding; Li Yongqing; Li Fang; Yuan Wuzhou; Liu Bisheng; Wu Xiushan; Liu Mingyao

    2005-01-01

    The zinc finger proteins containing the Kruppel-associated box domain (KRAB-ZFPs) are the single largest class of transcription factors in human genome. Many of the KRAB-ZFPs are involved in cardiac development or cardiovascular diseases. Here, we have identified a novel human KRAB zinc finger gene, named ZNF328, from the human fetal heart cDNA library. The complete sequence of ZNF328 cDNA contains a 2376-bp open reading frame (ORF) and encodes a 792 amino acid protein with an N-terminal KRAB domain and classical zinc finger C 2 H 2 motifs in the C-terminus. Northern blot analysis indicates that the protein is expressed in most of the examined human adult and embryonic tissues. ZNF328 is a transcription suppressor when fused to Gal-4 DNA-binding domain and cotransfected with VP-16. Overexpression of ZNF328 in COS-7 cells inhibits the transcriptional activities of SRE and AP-1. Deletion analysis with a series of truncated fusion proteins indicates that the KRAB motif is a basal repression domain when cotransfected with VP-16. Similar results were obtained when the truncated fusion proteins were assayed for the transcriptional activities of SRE and AP-1. These results suggest that ZNF328 protein may act as a transcriptional repressor in mitogen-activated protein kinase (MAPK) signaling pathway to mediate cellular functions

  2. Energy expenditure and bone formation share a common sensitivity to AP-1 transcription in the hypothalamus

    DEFF Research Database (Denmark)

    Rowe, Glenn C; Vialou, Vincent; Sato, Kazusa

    2012-01-01

    ) whether these effects were due to antagonism to AP1. Our results show that stereotactic injection of an adeno-associated virus vector to restrict overexpression of ¿FosB to the ventral hypothalamus of wildtype mice induced a profound increase in both energy expenditure and bone formation and bone mass...

  3. HIV-1 Nef hijacks clathrin coats by stabilizing AP-1:Arf1 polygons.

    Science.gov (United States)

    Shen, Qing-Tao; Ren, Xuefeng; Zhang, Rui; Lee, Il-Hyung; Hurley, James H

    2015-10-23

    The lentiviruses HIV and simian immunodeficiency virus (SIV) subvert intracellular membrane traffic as part of their replication cycle. The lentiviral Nef protein helps viruses evade innate and adaptive immune defenses by hijacking the adaptor protein 1 (AP-1) and AP-2 clathrin adaptors. We found that HIV-1 Nef and the guanosine triphosphatase Arf1 induced trimerization and activation of AP-1. Here we report the cryo-electron microscopy structures of the Nef- and Arf1-bound AP-1 trimer in the active and inactive states. A central nucleus of three Arf1 molecules organizes the trimers. We combined the open trimer with a known dimer structure and thus predicted a hexagonal assembly with inner and outer faces that bind the membranes and clathrin, respectively. Hexagons were directly visualized and the model validated by reconstituting clathrin cage assembly. Arf1 and Nef thus play interconnected roles in allosteric activation, cargo recruitment, and coat assembly, revealing an unexpectedly intricate organization of the inner AP-1 layer of the clathrin coat. Copyright © 2015, American Association for the Advancement of Science.

  4. Differential gene expression in the murine gastric fundus lacking interstitial cells of Cajal

    Directory of Open Access Journals (Sweden)

    Ward Sean M

    2003-06-01

    Full Text Available Abstract Background The muscle layers of murine gastric fundus have no interstitial cells of Cajal at the level of the myenteric plexus and only possess intramuscular interstitial cells and this tissue does not generate electric slow waves. The absence of intramuscular interstitial cells in W/WV mutants provides a unique opportunity to study the molecular changes that are associated with the loss of these intercalating cells. Method The gene expression profile of the gastric fundus of wild type and W/WV mice was assayed by murine microarray analysis displaying a total of 8734 elements. Queried genes from the microarray analysis were confirmed by semi-quantitative reverse transcription-polymerase chain reaction. Results Twenty-one genes were differentially expressed in wild type and W/WV mice. Eleven transcripts had 2.0–2.5 fold higher mRNA expression in W/WV gastric fundus when compared to wild type tissues. Ten transcripts had 2.1–3.9 fold lower expression in W/WV mutants in comparison with wild type animals. None of these genes have ever been implicated in any bowel motility function. Conclusions These data provides evidence that several important genes have significantly changed in the murine fundus of W/WV mutants that lack intramuscular interstitial cells of Cajal and have reduced enteric motor neurotransmission.

  5. Adult hematopoietic stem cells lacking Hif-1α self-renew normally

    Science.gov (United States)

    Vukovic, Milica; Sepulveda, Catarina; Subramani, Chithra; Guitart, Amélie V.; Mohr, Jasmine; Allen, Lewis; Panagopoulou, Theano I.; Paris, Jasmin; Lawson, Hannah; Villacreces, Arnaud; Armesilla-Diaz, Alejandro; Gezer, Deniz; Holyoake, Tessa L.; Ratcliffe, Peter J.

    2016-01-01

    The hematopoietic stem cell (HSC) pool is maintained under hypoxic conditions within the bone marrow microenvironment. Cellular responses to hypoxia are largely mediated by the hypoxia-inducible factors, Hif-1 and Hif-2. The oxygen-regulated α subunits of Hif-1 and Hif-2 (namely, Hif-1α and Hif-2α) form dimers with their stably expressed β subunits and control the transcription of downstream hypoxia-responsive genes to facilitate adaptation to low oxygen tension. An initial study concluded that Hif-1α is essential for HSC maintenance, whereby Hif-1α–deficient HSCs lost their ability to self-renew in serial transplantation assays. In another study, we demonstrated that Hif-2α is dispensable for cell-autonomous HSC maintenance, both under steady-state conditions and following transplantation. Given these unexpected findings, we set out to revisit the role of Hif-1α in cell-autonomous HSC functions. Here we demonstrate that inducible acute deletion of Hif-1α has no impact on HSC survival. Notably, unstressed HSCs lacking Hif-1α efficiently self-renew and sustain long-term multilineage hematopoiesis upon serial transplantation. Finally, Hif-1α–deficient HSCs recover normally after hematopoietic injury induced by serial administration of 5-fluorouracil. We therefore conclude that despite the hypoxic nature of the bone marrow microenvironment, Hif-1α is dispensable for cell-autonomous HSC maintenance. PMID:27060169

  6. Triclosan Lacks (Anti-Estrogenic Effects in Zebrafish Cells but Modulates Estrogen Response in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Hélène Serra

    2018-04-01

    Full Text Available Triclosan (TCS, an antimicrobial agent widely found in the aquatic environment, is suspected to act as an endocrine disrupting compound, however mechanistic information is lacking in regards to aquatic species. This study assessed the ability of TCS to interfere with estrogen receptor (ER transcriptional activity, in zebrafish-specific in vitro and in vivo reporter gene assays. We report that TCS exhibits a lack of either agonistic or antagonistic effects on a panel of ER-expressing zebrafish (ZELH-zfERα and -zfERβ and human (MELN cell lines. At the organism level, TCS at concentrations of up to 0.3 µM had no effect on ER-regulated brain aromatase gene expression in transgenic cyp19a1b-GFP zebrafish embryos. At a concentration of 1 µM, TCS interfered with the E2 response in an ambivalent manner by potentializing a low E2 response (0.625 nM, but decreasing a high E2 response (10 nM. Altogether, our study suggests that while modulation of ER-regulated genes by TCS may occur in zebrafish, it does so irrespective of a direct binding and activation of zfERs.

  7. On the lack of host-cell reactivation of UV-irradiated phage T5

    International Nuclear Information System (INIS)

    Chiang, T.; Harm, W.

    1976-01-01

    Previously reported experiments have shown that host-cell reactivation (HCR) of UV-irradiated phage T1 in excision-repair proficient Escherichia coli cells is inhibited by superinfection with phage T5. Theoretical considerations have led to predictions concerning the dependence of repair inhibition on the multiplicity of superinfecting T5 phage and on the UV fluence to which they were exposed. These predictions have been supported by experimental results described in this paper. The fluence dependence permitted calculation of the relative UV sensitivity of the gene function responsible for repair inhibition; it was found to be about 2.3% that of the plaque-forming ability of phage T5. The T5-inhibitable step in excision repair occurs early in the infective cycle of T1. Furthermore, experiments involving the presence of 400 μg/ml chloramphenicol showed that HCR inhibition of T1 is caused by a protein produced after the FST segment of T5 (i.e. the first 8% of the T5 genome) has entered the host cell. A previously described minor T1 recovery process, occuring in both excision-repair-proficient and -deficient host-cells, is inhibited by T5 infection due to a different substance, which is most likely associated with the 'second-step-transfer' region of T5 DNA (involving the remainder of the genome). Superinfection with T4v 1 phage resulted in HCR inhibition of T1, resembling that observed after T5 superinfection. The discussion of these results suggests that inhibition of the bacterial excision repair system by T5 or T4 infection occurs at the level of UV-endonucleolytic incision, and that lack of HCR both in T-even phages and in T5 can be explained in the same manner

  8. Stimulation of Pol III-dependent 5S rRNA and U6 snRNA gene expression by AP-1 transcription factors.

    Science.gov (United States)

    Ahuja, Richa; Kumar, Vijay

    2017-07-01

    RNA polymerase III transcribes structurally diverse group of essential noncoding RNAs including 5S ribosomal RNA (5SrRNA) and U6 snRNA. These noncoding RNAs are involved in RNA processing and ribosome biogenesis, thus, coupling Pol III activity to the rate of protein synthesis, cell growth, and proliferation. Even though a few Pol II-associated transcription factors have been reported to participate in Pol III-dependent transcription, its activation by activator protein 1 (AP-1) factors, c-Fos and c-Jun, has remained unexplored. Here, we show that c-Fos and c-Jun bind to specific sites in the regulatory regions of 5S rRNA (type I) and U6 snRNA (type III) gene promoters and stimulate their transcription. Our chromatin immunoprecipitation studies suggested that endogenous AP-1 factors bind to their cognate promoter elements during the G1/S transition of cell cycle apparently synchronous with Pol III transcriptional activity. Furthermore, the interaction of c-Jun with histone acetyltransferase p300 promoted the recruitment of p300/CBP complex on the promoters and facilitated the occupancy of Pol III transcriptional machinery via histone acetylation and chromatin remodeling. The findings of our study, together, suggest that AP-1 factors are novel regulators of Pol III-driven 5S rRNA and U6 snRNA expression with a potential role in cell proliferation. © 2017 Federation of European Biochemical Societies.

  9. Rhizoma coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFB-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Andrew Remppis

    2010-01-01

    Full Text Available Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP-1 production in RAW cells. Activation of the transcription factors AP-1 and NFB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine.

  10. Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFκB-Dependent Pathway

    Science.gov (United States)

    Remppis, Andrew; Bea, Florian; Greten, Henry Johannes; Buttler, Annette; Wang, Hongjie; Zhou, Qianxing; Preusch, Michael R.; Enk, Ronny; Ehehalt, Robert; Katus, Hugo; Blessing, Erwin

    2010-01-01

    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFκB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP)-1 production in RAW cells. Activation of the transcription factors AP-1 and NFκB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFκB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine. PMID:20652055

  11. Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis.

    Science.gov (United States)

    Han, Xinxin; Yin, Linlin; Xue, Hongwei

    2012-07-01

    Fatty acids (FAs) play crucial rules in signal transduction and plant development, however, the regulation of FA metabolism is still poorly understood. To study the relevant regulatory network, fifty-eight FA biosynthesis genes including de novo synthases, desaturases and elongases were selected as "guide genes" to construct the co-expression network. Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT) identifies 797 candidate FA-correlated genes. Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism, and function in many processes. Interestingly, 63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched. Two TF genes, CRC and AP1, both correlating with 8 FA guide genes, were further characterized. Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds. The contents of palmitoleic acid, stearic acid, arachidic acid and eicosadienoic acid are decreased, whereas that of oleic acid is increased in ap1 and crc seeds, which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes. In addition, yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15, indicating that CRC may directly regulate FA biosynthesis. © 2012 Institute of Botany, Chinese Academy of Sciences.

  12. Opposing roles of C/EBPbeta and AP-1 in the control of fibroblast proliferation and growth arrest-specific gene expression

    DEFF Research Database (Denmark)

    Gagliardi, Mark; Maynard, Scott; Miyake, Tetsuaki

    2003-01-01

    in the levels of AP-1 proteins. Therefore, C/EBPbeta is a negative regulator of AP-1 expression and activity in CEF. The expression of cyclin D1 and cell proliferation were stimulated by the dominant negative mutant of C/EBPbeta but not in the presence of TAM67, a dominant negative mutant of c-Jun and AP-1. CEF......Chicken embryo fibroblasts (CEF) express several growth arrest-specific (GAS) gene products in G0. In contact-inhibited cells, the expression of the most abundant of these proteins, the p20K lipocalin, is activated at the transcriptional level by C/EBPbeta. In this report, we describe the role of C....../EBPbeta in CEF proliferation. We show that the expression of a dominant negative mutant of C/EBPbeta (designated Delta184-C/EBPbeta) completely inhibited p20K expression at confluence and stimulated the proliferation of CEF without inducing transformation. Mouse embryo fibroblasts nullizygous for C/EBPbeta had...

  13. Isolation and characterization of the Jatropha curcas APETALA1 (JcAP1) promoter conferring preferential expression in inflorescence buds.

    Science.gov (United States)

    Tao, Yan-Bin; He, Liang-Liang; Niu, Longjian; Xu, Zeng-Fu

    2016-08-01

    The 1.5 kb JcAP1 promoter from the biofuel plant Jatropha curcas is predominantly active in the inflorescence buds of transgenic plants, in which the -1313/-1057 region is essential for maintaining the activity. Arabidopsis thaliana APETALA1 (AP1) is a MADS-domain transcription factor gene that functions primarily in flower development. We isolated a homolog of AP1 from Jatropha curcas (designated JcAP1), which was shown to exhibit flower-specific expression in Jatropha. JcAP1 is first expressed in inflorescence buds and continues to be primarily expressed in the sepals. We isolated a 1.5 kb JcAP1 promoter and evaluated its activity in transgenic Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. In transgenic Arabidopsis and Jatropha, the inflorescence buds exhibited notable GUS activity, whereas the sepals did not. Against expectations, the JcAP1 promoter was active in the anthers of Arabidopsis and Jatropha and was highly expressed in Jatropha seeds. An analysis of promoter deletions in transgenic Arabidopsis revealed that deletion of the -1313/-1057 region resulted in loss of JcAP1 promoter activity in the inflorescence buds and increased activity in the anthers. These results suggested that some regulatory sequences in the -1313/-1057 region are essential for maintaining promoter activity in inflorescence buds and can partly suppress activity in the anthers. Based on these findings, we hypothesized that other elements located upstream of the 1.5 kb JcAP1 promoter may be required for flower-specific activation. The JcAP1 promoter characterized in this study can be used to drive transgene expression in both the inflorescence buds and seeds of Jatropha.

  14. Temporal pattern of AP-1 DNA-binding activity in the rat hippocampus following a kindled seizure

    Energy Technology Data Exchange (ETDEWEB)

    Shomori, T. [Department of Neurology, Okayama University Medical School, 2-5-1, Shikata-cho Okayama (Japan); Hayabara, T. [Clinical Research Institute, National Sanatorium Minamiokayama Hospital, 4066 Hayashima-cho (Japan); Ishihara, T. [Department of Neuropsychiatry, Okayama University Medical School, 2-5-1 Shikata-cho Okayama (Japan); Okada, S. [Department of Neurology, Okayama University Medical School, 2-5-1, Shikata-cho Okayama (Japan); Akiyama, K. [Department of Neuropsychiatry, Okayama University Medical School, 2-5-1 Shikata-cho Okayama (Japan); Sato, K. [Clinical Research Institute, National Sanatorium Minamiokayama Hospital, 4066 Hayashima-cho (Japan); Kashihara, K. [Department of Neurology, Okayama University Medical School, 2-5-1, Shikata-cho Okayama (Japan)

    1997-07-28

    DNA binding by transcripton factor AP-1 was enhanced remarkably following kindling stimulation in rat amygdala. Maximum increase occurred 2 h after stimulation with return to baseline within 24 h. Supershift and western analyses revealed that 38,000 mol. wt Fos-related antigen and JunD were the main components of the evoked AP-1 complexes at the time their induction reached maximum. AP-1 induction 2 h after the last kindling stimulation was more prominent in samples from previously kindled rats than in those from non-kindled rats. This study sought to establish the role of AP-1 in plastic changes of the hippocampus associated with kindling. Male Sprague-Dawley rats were kindled from the left amygdala until they exhibited Racine [15] class 5 generalized seizures. Nuclear proteins were extracted from dorsal hippocampi obtained from 0 to 24 h after final stimulations. From these, we evaluated the temporal pattern of DNA binding by AP-1 using a gel mobility-shift assay with a {sup 32}P-labelled AP-1 probe. Supershift and western analyses were added to investigate components of the seizure-evoked AP-1 complexes. Our results suggest that the basal level of AP-1 complexes is not associated with the seizure susceptibility in kindling. However, development of kindling appears to facilitate stimulus-evoked AP-1 induction, probably via plastic changes in the central nervous system. AP-1 may mediate such changes by regulating expression of certain genes. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. EGF-R is Expressed and AP-1 and NF-κ:B Are Activated in Stromal Myofibroblasts Surrounding Colon Adenocarcinomas Paralleling Expression of COX-2 and VEGF

    Directory of Open Access Journals (Sweden)

    Panagiotis A. Konstantinopoulos

    2007-01-01

    Full Text Available Background: COX-2 and VEGF are important triggers of colon cancer growth, metastasis and angiogenesis. Cox-2 promoter contains transcriptional regulatory elements for AP-1 and NF-κ:B transcription factors whilst vegf is a known AP-1 downstream target gene. We investigated whether stromal myofibroblasts surrounding colon adenocarcinomas express COX-2 and VEGF and whether activation of AP-1 and NF-κ:B, as well as expression of EGF-R parallel expression of COX-2 and VEGF in these cells. Methods: Immunohistochemical methodology was performed on archival sections from 40 patients with colon adenocarcinomas. We evaluated c-FOS, p-c-JUN (phosphorylated c-JUN, p-Iκ:B-α (phosphorylated Iκ:B-α, EGF-R, COX-2, NF-κ:B and VEGF expression in stromal myofibroblasts surrounding colon adenocarcinomas. Double immunostaining with a-smooth muscle actin and each antibody was done to verify the expression of these molecules in stromal myofibroblasts. Results: VEGF, p-Iκ:B-α, NF-κ:B, c-FOS, p-c-JUN, EGF-R and COX-2 were expressed in stromal myofibroblasts surrounding colon adenocarcinomas in the majority of cases. EGF-R, p-Iκ:B-α, NF-κ:B, c-FOS and p-c-JUN correlated positively with COX-2 and VEGF expression. Conclusion: Stromal myofibroblasts surrounding colon adenocarcinomas are an important source of VEGF and COX-2 production, while AP-1 and NF-κ:B transcription factors are activated and EGF-R is expressed in these cells and associated with COX-2 and VEGF production.

  16. TRIM45, a novel human RBCC/TRIM protein, inhibits transcriptional activities of ElK-1 and AP-1

    International Nuclear Information System (INIS)

    Wang Yuequn; Li Yongqing; Qi Xinzhu; Yuan Wuzhou; Ai Jianping; Zhu Chuanbing; Cao Lei; Yang Hong; Liu Fang; Wu Xiushan; Liu Mingyao

    2004-01-01

    The tripartite motif (TRIM) proteins play important roles in a variety of cellular functions including cell proliferation, differentiation, development, oncogenesis, and apoptosis. In this study, we report the identification and characterization of the human tripartite motif-containing protein 45 (TRIM45), a novel member of the TRIM family, from a human embryonic heart cDNA library. TRIM45 has a predicted 580 amino acid open reading frame, encoding a putative 64-kDa protein. The N-terminal region harbors a RING finger, two B-boxes, and a predicted α-helical coiled-coil domain, which together form the RBCC/TRIM motif found in a large family of proteins, whereas the C-terminal region contains a filamin-type immunoglobulin (IG-FLMN) domain. Northern blot analysis indicates that TRIM45 is expressed in a variety of human adult and embryonic tissues. In the cell, TRIM45 protein is expressed both in cytoplasm and in cell nucleus. Overexpression of TRIM45 in COS-7 cells inhibits the transcriptional activities of ElK-1 and AP-1. These results suggest that TRIM45 may act as a new transcriptional repressor in mitogen-activated protein kinase signaling pathway

  17. Arsenic may be involved in fluoride-induced bone toxicity through PTH/PKA/AP1 signaling pathway.

    Science.gov (United States)

    Zeng, Qi-bing; Xu, Yu-yan; Yu, Xian; Yang, Jun; Hong, Feng; Zhang, Ai-hua

    2014-01-01

    Chronic exposure to combined fluoride and arsenic continues to be a major public health problem worldwide, affecting thousands of people. In recent years, more and more researchers began to focus on the interaction between the fluorine and the arsenic. In this study, the selected investigation site was located in China. The study group was selected from people living in fluoride-arsenic polluted areas due to burning coal. The total number of participants was 196; including the fluoride-arsenic anomaly group (130) and the fluoride-arsenic normal group (63). By observing the changes in gene and protein expression of PTH/PKA/AP1 signaling pathway, the results show that fluoride can increase the expression levels of PTH, PKA, and AP1, but arsenic can only affect the expression of AP1; fluoride and arsenic have an interaction on the expression of AP1. Further study found that fluoride and arsenic can affect the mRNA expression level of c-fos gene (AP1 family members), and have an interaction on the expression of c-fos, but not c-jun. The results indicate that PTH/PKA/AP1 signaling pathway may play an important role in bone toxicity of fluoride. Arsenic can affect the expression of c-fos, thereby affecting the expression of transcription factor AP1, indirectly involved in fluoride-induced bone toxicity. Copyright © 2013. Published by Elsevier B.V.

  18. ERalpha and AP-1 interact in vivo with a specific sequence of the F promoter of the human ERalpha gene in osteoblasts.

    Science.gov (United States)

    Lambertini, Elisabetta; Tavanti, Elisa; Torreggiani, Elena; Penolazzi, Letizia; Gambari, Roberto; Piva, Roberta

    2008-07-01

    Estrogen-responsive genes often have an estrogen response element (ERE) positioned next to activator protein-1 (AP-1) binding sites. Considering that the interaction between ERE and AP-1 elements has been described for the modulation of bone-specific genes, we investigated the 17-beta-estradiol responsiveness and the role of these cis-elements present in the F promoter of the human estrogen receptor alpha (ERalpha) gene. The F promoter, containing the sequence analyzed here, is one of the multiple promoters of the human ERalpha gene and is the only active promoter in bone tissue. Through electrophoretic mobility shift (EMSA), chromatin immunoprecipitation (ChIP), and re-ChIP assays, we investigated the binding of ERalpha and four members of the AP-1 family (c-Jun, c-fos, Fra-2, and ATF2) to a region located approximately 800 bp upstream of the transcriptional start site of exon F of the human ERalpha gene in SaOS-2 osteoblast-like cells. Reporter gene assay experiments in combination with DNA binding assays demonstrated that F promoter activity is under the control of upstream cis-acting elements which are recognized by specific combinations of ERalpha, c-Jun, c-fos, and ATF2 homo- and heterodimers. Moreover, ChIP and re-ChIP experiments showed that these nuclear factors bind the F promoter in vivo with a simultaneous occupancy stimulated by 17-beta-estradiol. Taken together, our findings support a model in which ERalpha/AP-1 complexes modulate F promoter activity under conditions of 17-beta-estradiol stimulation. (c) 2008 Wiley-Liss, Inc.

  19. Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution.

    Science.gov (United States)

    Pratap Sahi, Vaidurya; Cifrová, Petra; García-González, Judith; Kotannal Baby, Innu; Mouillé, Gregory; Gineau, Emilie; Müller, Karel; Baluška, František; Soukup, Aleš; Petrášek, Jan; Schwarzerová, Katerina

    2017-12-25

    The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Minor cell-death defects but reduced tumor latency in mice lacking the BH3-only proteins Bad and Bmf.

    Science.gov (United States)

    Baumgartner, F; Woess, C; Pedit, V; Tzankov, A; Labi, V; Villunger, A

    2013-01-31

    Proapoptotic Bcl-2 family members of the Bcl-2 homology (BH)3-only subgroup are critical for the establishment and maintenance of tissue homeostasis and can mediate apoptotic cell death in response to developmental cues or exogenously induced forms of cell stress. On the basis of the biochemical experiments as well as genetic studies in mice, the BH3-only proteins Bad and Bmf have been implicated in different proapoptotic events such as those triggered by glucose- or trophic factor-deprivation, glucocorticoids, or histone deacetylase inhibition, as well as suppression of B-cell lymphomagenesis upon aberrant expression of c-Myc. To address possible redundancies in cell death regulation and tumor suppression, we generated compound mutant mice lacking both genes. Our studies revealed lack of redundancy in most paradigms of lymphocyte apoptosis tested in tissue culture. Only spontaneous cell death of thymocytes kept in low glucose or that of pre-B cells deprived of cytokines was significantly delayed when both genes were lacking. Of note, despite these minor apoptosis defects we observed compromised lymphocyte homeostasis in vivo that affected mainly the B-cell lineage. Long-term follow-up revealed significantly reduced latency to spontaneous tumor formation in aged mice when both genes were lacking. Together our study suggests that Bad and Bmf co-regulate lymphocyte homeostasis and limit spontaneous transformation by mechanisms that may not exclusively be linked to the induction of lymphocyte apoptosis.

  1. Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses.

    Science.gov (United States)

    Mayorova, Tatiana D; Smith, Carolyn L; Hammar, Katherine; Winters, Christine A; Pivovarova, Natalia B; Aronova, Maria A; Leapman, Richard D; Reese, Thomas S

    2018-01-01

    Trichoplax adhaerens has only six cell types. The function as well as the structure of crystal cells, the least numerous cell type, presented an enigma. Crystal cells are arrayed around the perimeter of the animal and each contains a birefringent crystal. Crystal cells resemble lithocytes in other animals so we looked for evidence they are gravity sensors. Confocal microscopy showed that their cup-shaped nuclei are oriented toward the edge of the animal, and that the crystal shifts downward under the influence of gravity. Some animals spontaneously lack crystal cells and these animals behaved differently upon being tilted vertically than animals with a typical number of crystal cells. EM revealed crystal cell contacts with fiber cells and epithelial cells but these contacts lacked features of synapses. EM spectroscopic analyses showed that crystals consist of the aragonite form of calcium carbonate. We thus provide behavioral evidence that Trichoplax are able to sense gravity, and that crystal cells are likely to be their gravity receptors. Moreover, because placozoans are thought to have evolved during Ediacaran or Cryogenian eras associated with aragonite seas, and their crystals are made of aragonite, they may have acquired gravity sensors during this early era.

  2. Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    International Nuclear Information System (INIS)

    Huang, Shang-Lang; Chao, Chuck C.-K.

    2015-01-01

    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug

  3. Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shang-Lang [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chao, Chuck C.-K., E-mail: cckchao@mail.cgu.edu.tw [Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Department of Medical Research and Development, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan (China)

    2015-06-16

    A previous genome-wide screening analysis identified a panel of genes that sensitize the human non-small-cell lung carcinoma cell line NCI-H1155 to taxol. However, whether the identified genes sensitize other cancer cells to taxol has not been examined. Here, we silenced the taxol-sensitizer genes identified (acrbp, atp6v0d2, fgd4, hs6st2, psma6, and tubgcp2) in nine other cancer cell types (including lung, cervical, ovarian, and hepatocellular carcinoma cell lines) that showed reduced cell viability in the presence of a sub-lethal concentration of taxol. Surprisingly, none of the genes studied increased sensitivity to taxol in the tested panel of cell lines. As observed in H1155 cells, SKOV3 cells displayed induction of five of the six genes studied in response to a cell killing dose of taxol. The other cell types were much less responsive to taxol. Notably, four of the five inducible taxol-sensitizer genes tested (acrbp, atp6v0d2, psma6, and tubgcp2) were upregulated in a taxol-resistant ovarian cancer cell line. These results indicate that the previously identified taxol-sensitizer loci are not conserved genetic targets involved in inhibiting cell proliferation in response to taxol. Our findings also suggest that regulation of taxol-sensitizer genes by taxol may be critical for acquired cell resistance to the drug.

  4. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye

    NARCIS (Netherlands)

    Marko, C.K.; Menon, B.B.; Chen, G.; Whitsett, J.A.; Clevers, H.; Gipson, I.K.

    2013-01-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific

  5. Acinetobacter baumannii and A. pittii clinical isolates lack adherence and cytotoxicity to lung epithelial cells in vitro.

    Science.gov (United States)

    Lázaro-Díez, María; Navascués-Lejarza, Teresa; Remuzgo-Martínez, Sara; Navas, Jesús; Icardo, José Manuel; Acosta, Felix; Martínez-Martínez, Luis; Ramos-Vivas, José

    2016-09-01

    The molecular and genetic basis of Acinetobacter baumannii and Acinetobacter pittii virulence remains poorly understood, and there is still lack of knowledge in host cell response to these bacteria. In this study, we have used eleven clinical Acinetobacter strains (A. baumannii n = 5; A. pittii n = 6) to unravel bacterial adherence, invasion and cytotoxicity to human lung epithelial cells. Our results showed that adherence to epithelial cells by Acinetobacter strains is scarce and cellular invasion was not truly detected. In addition, all Acinetobacter strains failed to induce any cytotoxic effect on A549 cells. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Lack of FasL expression in cultured human retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Kaestel, C G; Madsen, H O; Prause, J U

    2001-01-01

    Retinal pigment epithelial (RPE) cells have been proposed to play a part in maintaining the eye as an immune privileged organ. However, our knowledge of the implicated mechanism is still sparse. Fas ligand (FasL) expression of RPE cells is generally recognized to be essential for the immune...... privilege of the eye, but due to contradictory published results, it is unclear whether RPE cells express this molecule. The purpose of this study was to investigate the expression of FasL in RPE cells in vitro and in vivo. Cultured human fetal and adult RPE cells were examined by flow cytometry, Western...... blotting, RT-PCR and RNase Protection assay for FasL expression. Additionally, sections of ocular tissue were stained for FasL by immunohistochemistry. None of the used methods indicated FasL expression in cultured fetal or adult RPE cells of various passages. However, RPE cells in vivo, as judged from...

  7. Lack of spontaneous and radiation-induced chromosome breakage at interstitial telomeric sites in murine scid cells.

    Science.gov (United States)

    Wong, H-P; Mozdarani, H; Finnegan, C; McIlrath, J; Bryant, P E; Slijepcevic, P

    2004-01-01

    Interstitial telomeric sites (ITSs) in chromosomes from DNA repair-proficient mammalian cells are sensitive to both spontaneous and radiation-induced chromosome breakage. Exact mechanisms of this chromosome breakage sensitivity are not known. To investigate factors that predispose ITSs to chromosome breakage we used murine scid cells. These cells lack functional DNA-PKcs, an enzyme involved in the repair of DNA double-strand breaks. Interestingly, our results revealed lack of both spontaneous and radiation-induced chromosome breakage at ITSs found in scid chromosomes. Therefore, it is possible that increased sensitivity of ITSs to chromosome breakage is associated with the functional DNA double-strand break repair machinery. To investigate if this is the case we used scid cells in which DNA-PKcs deficiency was corrected. Our results revealed complete disappearance of ITSs in scid cells with functional DNA-PKcs, presumably through chromosome breakage at ITSs, but their unchanged frequency in positive and negative control cells. Therefore, our results indicate that the functional DNA double-strand break machinery is required for elevated sensitivity of ITSs to chromosome breakage. Interestingly, we observed significant differences in mitotic chromosome condensation between scid cells and their counterparts with restored DNA-PKcs activity suggesting that lack of functional DNA-PKcs may cause a defect in chromatin organization. Increased condensation of mitotic chromosomes in the scid background was also confirmed in vivo. Therefore, our results indicate a previously unanticipated role of DNA-PKcs in chromatin organisation, which could contribute to the lack of ITS sensitivity to chromosome breakage in murine scid cells. Copyright 2003 S. Karger AG, Basel

  8. Activation of Nrf2 Reduces UVA-Mediated MMP-1 Upregulation via MAPK/AP-1 Signaling Cascades: The Photoprotective Effects of Sulforaphane and Hispidulin

    Science.gov (United States)

    Chaiprasongsuk, Anyamanee; Lohakul, Jinaphat; Soontrapa, Kitipong; Sampattavanich, Somponnat; Akarasereenont, Pravit

    2017-01-01

    UVA irradiation plays a role in premature aging of the skin through triggering oxidative stress-associated stimulation of matrix metalloproteinase-1 (MMP-1) responsible for collagen degradation, a hallmark of photoaged skin. Compounds that can activate nuclear factor E2-related factor 2 (Nrf2), a transcription factor regulating antioxidant gene expression, should therefore serve as effective antiphotoaging agents. We investigated whether genetic silencing of Nrf2 could relieve UVA-mediated MMP-1 upregulation via activation of mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling using human keratinocyte cell line (HaCaT). Antiphotoaging effects of hispidulin (HPD) and sulforaphane (SFN) were assessed on their abilities to activate Nrf2 in controlling MMP-1 and collagen expressions in association with phosphorylation of MAPKs (extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38), c-Jun, and c-Fos, using the skin of BALB/c mice subjected to repetitive UVA irradiation. Our findings suggested that depletion of Nrf2 promoted both mRNA expression and activity of MMP-1 in the UVA-irradiated HaCaT cells. Treatment of Nrf2 knocked-down HaCaT cells with MAPK inhibitors significantly suppressed UVA-induced MMP-1 and AP-1 activities. Moreover, pretreatment of the mouse skin with HPD and SFN, which could activate Nrf2, provided protective effects against UVA-mediated MMP-1 induction and collagen depletion in correlation with the decreased levels of phosphorylated MAPKs, c-Jun, and c-Fos in the mouse skin. In conclusion, Nrf2 could influence UVA-mediated MMP-1 upregulation through the MAPK/AP-1 signaling cascades. HPD and SFN may therefore represent promising antiphotoaging candidates. PMID:28011874

  9. Prolactin-stimulated mitogenesis in the Nb2 rat lymphoma cell: Lack of protoporphyrin IX effects

    Energy Technology Data Exchange (ETDEWEB)

    Gerrish, K.E.; Putnam, C.W.; Laird, H.E. II (Univ. of Arizona, Tucson (USA))

    1990-01-01

    Pharmacological characterization of the Nb2 cell peripheral-type benzodiazepine receptor (PBR) was determined using selected 1,4-benzodiazepines, PK 11195, and protoporphyrin IX (PPIX) to compete for specific ({sup 3}H) Ro5-4864 binding. These data suggest that PPIX possesses an affinity for the Nb2 cell PBR. We have previously reported that the peripheral benzodiazepine ligands, Ro5-4864 and PK 11195, modulate prolactin-stimulated mitogenesis in the Nb2 cell. In contrast, PPIX, a putative endogenous ligand for the PBR had no effect on prolactin-stimulated mitogenesis in the Nb2 cell over the concentration range from 10{sup {minus}15} M to 10{sup {minus}6} M. Taken together these data show that PPIX has an affinity for the Nb2 cell PBR but does not modulate prolactin-stimulated mitogenesis at concentrations which should bind to the Nb2 cell PBR.

  10. Lack of radiation protective effect of orgotein in normal and malignant mammalian cells

    International Nuclear Information System (INIS)

    Overgaard, J.; Nielsen, O.S.; Overgaard, M.; Steenholdt, S.; Jakobsen, A.; Sell, A.

    1979-01-01

    The potential radiation protective effect of orgotein, a metalloprotein with superoxide dismutase activity, was investigated in L 1 A 2 tumour cells in vitro, jejunal crypt cells and C 3 H mouse mammary carcinoma in vivo. No effect of orgotein, given either 2 hours before irradiation or 30 min after, was observed compared to the effect of irradiation alone. Thus, it was concluded that orgotein did not influence the primary radiation response in air in mammalian cells. (Auth.)

  11. Enhanced amino acid utilization sustains growth of cells lacking Snf1/AMPK

    DEFF Research Database (Denmark)

    Nicastro, Raffaele; Tripodi, Farida; Guzzi, Cinzia

    2015-01-01

    when grown with glucose excess. We show that loss of Snf1 in cells growing in 2% glucose induces an extensive transcriptional reprogramming, enhances glycolytic activity, fatty acid accumulation and reliance on amino acid utilization for growth. Strikingly, we demonstrate that Snf1/AMPK-deficient cells...... remodel their metabolism fueling mitochondria and show glucose and amino acids addiction, a typical hallmark of cancer cells....

  12. Lack of radiation protective effect of orgotein in normal and malignant mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Overgaard, J; Nielsen, O S; Overgaard, M; Steenholdt, S; Jakobsen, A; Sell, A [Institute of Cancer Research and The Department of Radiation Therapy and Oncology, The Radium Centre, Aarhus, Denmark

    1979-01-01

    The potential radiation protective effect of orgotein, a metalloprotein with superoxide dismutase activity, was investigated in L/sub 1/A/sub 2/ tumour cells in vitro, jejunal crypt cells and C/sub 3/H mouse mammary carcinoma in vivo. No effect of orgotein, given either 2 hours before irradiation or 30 min after, was observed compared to the effect of irradiation alone. Thus, it was concluded that orgotein did not influence the primary radiation response in air in mammalian cells.

  13. Spdef Null Mice Lack Conjunctival Goblet Cells and Provide a Model of Dry Eye

    OpenAIRE

    Marko, Christina K.; Menon, Balaraj B.; Chen, Gang; Whitsett, Jeffrey A.; Clevers, Hans; Gipson, Ilene K.

    2013-01-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef−/− mice, we determined that Spdef is required for conjunct...

  14. Recombinant interleukin-24 lacks apoptosis-inducing properties in melanoma cells.

    Directory of Open Access Journals (Sweden)

    Stephanie Kreis

    Full Text Available IL-24, also known as melanoma differentiation antigen 7 (mda-7, is a member of the IL-10 family of cytokines and is mainly produced by Th(2 cells as well as by activated monocytes. Binding of IL-24 to either of its two possible heterodimeric receptors IL-20R1/IL-20R2 and IL-22R/IL-20R2 activates STAT3 and/or STAT1 in target tissues such as lung, testis, ovary, keratinocytes and skin. To date, the physiological properties of IL-24 are still not well understood but available data suggest that IL-24 affects epidermal functions by increasing proliferation of dermal cells. In stark contrast to its "normal" and physiological behaviour, IL-24 has been reported to selectively and efficiently kill a vast variety of cancer cells, especially melanoma cells, independent of receptor expression and Jak-STAT signalling. These intriguing properties have led to the development of adenovirally-expressed IL-24, which is currently being evaluated in clinical trials. Using three different methods, we have analysed a large panel of melanoma cell lines with respect to IL-24 and IL-24 receptor expression and found that none of the investigated cell lines expressed sufficient amounts of functional receptor pairs and therefore did not react to IL-24 stimulation with Jak/STAT activation. Results for three cell lines contrasted with previous studies, which reported presence of IL-24 receptors and activation of STAT3 following IL-24 stimulation. Furthermore, evaluating four different sources and modes of IL-24 administration (commercial recombinant IL-24, bacterially expressed GST-IL-24 fusion protein, IL-24 produced from transfected Hek cells, transiently over-expressed IL-24 no induction or increase in cell death was detected when compared to appropriate control treatments. Thus, we conclude that the cytokine IL-24 itself has no cancer-specific apoptosis-inducing properties in melanoma cells.

  15. Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis

    Science.gov (United States)

    Rampazzo, Enrico; Voltan, Rebecca; Petrizza, Luca; Zaccheroni, Nelsi; Prodi, Luca; Casciano, Fabio; Zauli, Giorgio; Secchiero, Paola

    2013-08-01

    Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2 leukemic cell line and primary normal peripheral blood mononuclear cells) or in adherence (human hepatocarcinoma Huh7 and umbilical vein endothelial cells). Moreover, by multiparametric flow cytometry, we could demonstrate that the highest efficiency of cell uptake and entry was observed with NP-PEG-amino, with a stable persistence of the fluorescence signal associated with SiNPs in the loaded cell populations both in vitro and in vivo settings suggesting this as an innovative method for cell traceability and detection in whole organisms. Finally, experiments performed with the endocytosis inhibitor Genistein clearly suggested the involvement of a caveolae-mediated pathway in SiNP endocytosis. Overall, these data support the safe use of these SiNPs for diagnostic and therapeutic applications.Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2

  16. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    International Nuclear Information System (INIS)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi; Rhim, Hyangshuk; Bae, Yong Soo; Choi, Soo Young; Park, Jinseu

    2014-01-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction

  17. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  18. S-phase checkpoint elements of the E2F-1 family increase radiosensitivity in fibrosarcoma cells lacking p53

    International Nuclear Information System (INIS)

    Bodis, Stephan; Pruschy, Martin; Wirbelauer, Christiane; Glanzmann, Christoph; Krek, Wilhelm

    1997-01-01

    Purpose: Correct advance of cells through the S-phase of the mammalian cell cycle depends on the timely controlled activity of the E2F-1 transcription factor by cyclin A-cdk2. We are studying the reproductive integrity and radiosensitation of isogenic mouse fibrosarcoma cells, differing only in their p53 status, after expression of E2F-1 wildtype (wt) and specific E2F-1 mutants (mt) lacking the cyclin-A-binding domain. In this tumor model system only p53 wild-type expressing tumor cells are sensitive to ionizing radiation in vitro and in vivo. Material and Methods: Either wild-type p53 or genetically engineered p53 'null' mouse embryo fibroblasts were transfected with the oncogenes E1A and ras. These otherwise isogenic fibrosarcoma cells, with a malignant phenotype and tumorigenic in nude mice, were transfected with retroviruses containing either E2F-1 wild-type or specific E2F-1 mutants lacking the cyclin-A binding domain. Reproductive integrity after E2F-1 transfection with or without ionizing radiation (RT) was tested using the clonogenic assay. Tumor cell morphology of treated cells is analyzed for cell death mechanism. Results: E2F-1 wild-type expression in fibrosarcoma cells induced a clear p53 dependent cell death. While clonogenic survival of p53 'null' tumor cells was only slightly reduced with the expression of E2F-1 wild type (survival fraction of 0.5), the clonogenic survival of p53 wild-type fibrosarcoma tumor cells was reduced by at least one logarithm (survival fraction of 0.05). However, expression of the specific E2F-1 mutant lacking the cyclin-A binding domain reduced clonogenic survival in both the p53 'null' and the p53 wild-type fibrosarcoma cells by at least 2 logarithms (survival fraction 0.01 for p53 'null' and 0.002 for p53 wild-type). The mean values of the survival fractions after 2 and 5 Gy radiation alone in p53 'null' fibrosarcoma cells (SF 2 and SF 5) were SF 2 0.7, SF 5 = 0.15, respectively. The combination of ionizing RT in the p53

  19. Lack of functional relevance of isolated cell damage in transplants of Parkinson's disease patients

    DEFF Research Database (Denmark)

    Cooper, Oliver; Astradsson, Arnar; Hallett, Penny

    2009-01-01

    Postmortem analyses from clinical neural transplantation trials of several subjects with Parkinson's disease revealed surviving grafted dopaminergic neurons after more than a decade. A subset of these subjects displayed isolated dopaminergic neurons within the grafts that contained Lewy body......-like structures. In this review, we discuss why this isolated cell damage is unlikely to affect the overall graft function and how we can use these observations to help us to understand age-related neurodegeneration and refine our future cell replacement therapies....

  20. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    International Nuclear Information System (INIS)

    Lopez, Carlos A.; Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-01-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G 1 arrest, increase in sub-G 1 fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios (± SE) of 1.5 (± 0.2) and 1.3 (± 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53

  1. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    Science.gov (United States)

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  2. Terminalia catappa Exerts Antimetastatic Effects on Hepatocellular Carcinoma through Transcriptional Inhibition of Matrix Metalloproteinase-9 by Modulating NF-κB and AP-1 Activity

    Directory of Open Access Journals (Sweden)

    Chao-Bin Yeh

    2012-01-01

    Full Text Available High mortality and morbidity rates for hepatocellular carcinoma (HCC in Taiwan primarily result from uncontrolled tumor metastasis. Previous studies have identified that Terminalia catappa leaf extracts (TCE exert hepatoprotective, antioxidative, antiinflammatory, anticancer, and antimetastatic activities. However, the effects of TCE on HCC and the underlying molecular mechanisms of its activities have yet to be fully elucidated. The present study's findings demonstrate that TCE concentration dependently inhibits human HCC migration/invasion. Zymographic and western blot analyses revealed that TCE inhibited the activities and expression of matrix metalloproteinase-9 (MMP-9. Assessment of mRNA levels, using reverse transcriptase polymerase chain reaction (PCR and real-time PCR, and promoter assays confirmed the inhibitory effects of TCE on MMP-9 expression in HCC cells. The inhibitory effects of TCE on MMP-9 proceeded by upregulating tissue inhibitor of metalloproteinase-1 (TIMP-1, as well as suppressing nuclear translocation and DNA binding activity of nuclear factor-kappa B (NF-κB and activating protein-1 (AP-1 on the MMP-9 promoter in Huh7 cells. In conclusion, TCE inhibits MMP-9 expression and HCC cell metastasis and, thus, has potential use as a chemopreventive agent. Its inhibitory effects are associated with downregulation of the binding activities of the transcription factors NF-κB and AP-1.

  3. Benzyl alcohol derivatives from the mushroom Hericium erinaceum attenuate LPS-stimulated inflammatory response through the regulation of NF-κB and AP-1 activity.

    Science.gov (United States)

    Noh, Hyung Jun; Yoon, Ju Young; Kim, Geum Sook; Lee, Seung Eun; Lee, Dae Young; Choi, Je Hun; Kim, Seung Yu; Kang, Ki Sung; Cho, Jae Youl; Kim, Ki Hyun

    2014-10-01

    On the search for anti-inflammatory compounds from natural Korean medicinal sources, a bioassay-guided fractionation and chemical investigation of the MeOH extract from the fruiting bodies of Hericium erinaceum resulted in the isolation and identification of five benzyl alcohol derivatives (1-5). In this study, their anti-inflammatory effects on lipopolysaccharide (LPS)-induced production of pro-inflammatory mediators were examined using RAW 264.7 macrophage cells. The structures of isolates were identified by comparing their spectroscopic data with previously reported values. The analysis of their inhibitory activities on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW 264.7 macrophage cells showed that erinacerin B (2) and hericenone E (4) decreased the levels of NO and PGE2 production in a concentration-dependent manner. Next, this study was performed to examine their mechanism of action on the regulation of NO and PGE2 production. Compounds 2 and 4 were found to block the LPS-induced phosphorylation of two major inflammatory transcription factors, NF-κB (p65/p50) and AP-1 (c-Jun and c-Fos). Taken together, these results suggest that down-regulation of LPS-induced NO and PGE2 production by compounds 2 and 4 is mediated through the modulation of NF-κB and AP-1 activation in macrophage cells. These results impact the development of potential health products for preventing and treating inflammatory diseases.

  4. Signal peptide of eosinophil cationic protein is toxic to cells lacking signal peptide peptidase

    International Nuclear Information System (INIS)

    Wu, C.-M.; Chang, Margaret Dah-Tsyr

    2004-01-01

    Eosinophil cationic protein (ECP) is a toxin secreted by activated human eosinophils. The properties of mature ECP have been well studied but those of the signal peptide of ECP (ECPsp) are not clear. In this study, several chimeric proteins containing N-terminal fusion of ECPsp were generated, and introduced into Escherichia coli, Pichia pastoris, and human epidermoid carcinoma cell line A431 to study the function of ECPsp. We found that expression of ECPsp chimeric proteins inhibited the growth of E. coli and P. pastoris but not A431 cells. Primary sequence analysis and in vitro transcription/translation of ECPsp have revealed that it is a potential substrate for human signal peptide peptidase (hSPP), an intramembrane protease located in endoplasmic reticulum. In addition, knockdown of the hSPP mRNA expression in ECPsp-eGFP/A431 cells caused the growth inhibitory effect, whereas complementally expression of hSPP in P. pastoris system rescued the cell growth. Taken together, we have demonstrated that ECPsp is a toxic signal peptide, and expression of hSPP protects the cells from growth inhibition

  5. Transplantation of autologous adipose stem cells lacks therapeutic efficacy in the experimental autoimmune encephalomyelitis model.

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhang

    Full Text Available Multiple sclerosis (MS, characterized by chronic inflammation, demyelination, and axonal damage, is a complicated neurological disease of the human central nervous system. Recent interest in adipose stromal/stem cell (ASCs for the treatment of CNS diseases has promoted further investigation in order to identify the most suitable ASCs. To investigate whether MS affects the biologic properties of ASCs and whether autologous ASCs from MS-affected sources could serve as an effective source for stem cell therapy, cells were isolated from subcutaneous inguinal fat pads of mice with established experimental autoimmune encephalomyelitis (EAE, a murine model of MS. ASCs from EAE mice and their syngeneic wild-type mice were cultured, expanded, and characterized for their cell morphology, surface antigen expression, osteogenic and adipogenic differentiation, colony forming units, and inflammatory cytokine and chemokine levels in vitro. Furthermore, the therapeutic efficacy of the cells was assessed in vivo by transplantation into EAE mice. The results indicated that the ASCs from EAE mice displayed a normal phenotype, typical MSC surface antigen expression, and in vitro osteogenic and adipogenic differentiation capacity, while their osteogenic differentiation capacity was reduced in comparison with their unafflicted control mice. The ASCs from EAE mice also demonstrated increased expression of pro-inflammatory cytokines and chemokines, specifically an elevation in the expression of monocyte chemoattractant protein-1 and keratin chemoattractant. In vivo, infusion of wild type ASCs significantly ameliorate the disease course, autoimmune mediated demyelination and cell infiltration through the regulation of the inflammatory responses, however, mice treated with autologous ASCs showed no therapeutic improvement on the disease progression.

  6. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

    Directory of Open Access Journals (Sweden)

    Carlos Bueno

    Full Text Available Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the

  7. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase.

    Science.gov (United States)

    Baumann, Stephan; Hennet, Thierry

    2016-08-26

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Lack of oxygen effect in glutathione-deficient human cells in culture

    International Nuclear Information System (INIS)

    Edgren, M.; Larsson, A.; Nilsson, K.; Revesz, L.; Scott, O.C.A.

    1980-01-01

    The frequency of X-ray-induced DNA breaks was determined in human cell lines which are deficient in glutathione synthetase and have a greatly reduced glutathione content. Hydroxyapatite chromatography was used for the estimation of the DNA breaks in cell cultures, which were derived either from lymphoblasts transformed by infection with EB virus or from fibroblasts. The dose-effect relationship for the induction of breaks when radiation exposure was made in argon, was similar to that found when exposure was made in air. In control cultures with normal glutathione content, the induction of breaks was enhanced when irradiation was made under aerobic, instead of anaerobic, conditions. Treatment of the glutathione-deficient cells with the hypoxic radiosensitizer misonidazole did not enhance the induction of breaks by radiation delivered either in air or in argon. In control cultures, radiation induction of breaks was enhanced by misonidazole under anaerobic but not under aerobic conditions. When the glutathione-deficient cells were pretreated with cysteamine however, irradiation in the absence of oxygen resulted in a decreased frequency of DNA breaks. (author)

  9. RAD51AP2, a novel vertebrate- and meiotic-specific protein, sharesa conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-07-25

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.

  10. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    Imbalanced dNTP pools are highly mutagenic due to a deleterious effect on DNA polymerase fidelity. Mitochondrial DNA defects, including mutations and deletions, are commonly found in a wide variety of different cancer types. In order to further study the interconnection between dNTP pools...... and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect...... shows that normal mitochondrial function is prerequisite for retaining stable dNTP pools upon DNA damage. Therefore it is likely that mitochondrial deficiency defects may cause an increase in DNA mutations by disrupting dNTP pool balance....

  11. CAG Expansions Are Genetically Stable and Form Nontoxic Aggregates in Cells Lacking Endogenous Polyglutamine Proteins

    Directory of Open Access Journals (Sweden)

    Ashley A. Zurawel

    2016-09-01

    Full Text Available Proteins containing polyglutamine (polyQ regions are found in almost all eukaryotes, albeit with various frequencies. In humans, proteins such as huntingtin (Htt with abnormally expanded polyQ regions cause neurodegenerative diseases such as Huntington’s disease (HD. To study how the presence of endogenous polyQ aggregation modulates polyQ aggregation and toxicity, we expressed polyQ expanded Htt fragments (polyQ Htt in Schizosaccharomyces pombe. In stark contrast to other unicellular fungi, such as Saccharomyces cerevisiae, S. pombe is uniquely devoid of proteins with more than 10 Q repeats. We found that polyQ Htt forms aggregates within S. pombe cells only with exceedingly long polyQ expansions. Surprisingly, despite the presence of polyQ Htt aggregates in both the cytoplasm and nucleus, no significant growth defect was observed in S. pombe cells. Further, PCR analysis showed that the repetitive polyQ-encoding DNA region remained constant following transformation and after multiple divisions in S. pombe, in contrast to the genetic instability of polyQ DNA sequences in other organisms. These results demonstrate that cells with a low content of polyQ or other aggregation-prone proteins can show a striking resilience with respect to polyQ toxicity and that genetic instability of repetitive DNA sequences may have played an important role in the evolutionary emergence and exclusion of polyQ expansion proteins in different organisms.

  12. Lack of interaction between digoxin and quinidine in cultured heart cells

    International Nuclear Information System (INIS)

    Horowitz, J.D.; Barry, W.H.; Smith, T.W.

    1982-01-01

    Previous investigations have raised the possibility that the digoxin-quinidine interaction is associated with a reduction in the positive inotropic effect of digoxin due to displacement of digoxin from cardiac as well as skeletal muscle. To circumvent some of the complexities presented by intact animal models, this interaction was investigated in cultured chick embryo ventricular cells. Quinidine, even at relatively high concentrations (10(-4)--2 x 10(-3) M), did not significantly affect positive inotropic effects of digoxin and did not protect against cellular contracture induced by toxic digoxin concentrations, despite preincubation of cells with quinidine for 60 min. The effects of digoxin on monovalent cation transport, as judged by active uptake of the K analog 86Rb, were also not altered by 10(-4) M to 2 x 10(-3) M quinidine. These data suggest that quinidine does not displace digoxin from Na, K adenosine triphosphatase binding sites in this preparation. Although these data must be extrapolated to the intact animal with caution, our findings suggest that changes in digoxin clearance are more likely of primary importance in the digoxin-quinidine interaction, and indicate that the approximately 2-fold increase in serum digoxin concentration observed after addition of quinidine would be expected to have direct effects on myocardial cells comparable with those seen with increased digoxin concentration in the absence of quinidine

  13. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Akshay Bhinge

    2017-04-01

    Full Text Available Summary: Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS, it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential. : In this article, Bhinge, Stanton, and colleagues use genome editing of patient-derived iPSCs to model ALS phenotypic defects in vitro. Transcriptomic analysis of disease MNs reveals activation of MAPK, AP1, WNT, cell-cycle, and p53 signaling in ALS MNs. Pharmacological screening uncovers activated ERK and JNK signaling as therapeutic targets in ALS. Keywords: ALS, SOD1, FUS, CRISPR-Cas9, p38, ERK, JNK, WNT, TP53, JUN

  14. Bee Venom Inhibits Porphyromonas gingivalis Lipopolysaccharides-Induced Pro-Inflammatory Cytokines through Suppression of NF-κB and AP-1 Signaling Pathways.

    Science.gov (United States)

    Kim, Woon-Hae; An, Hyun-Jin; Kim, Jung-Yeon; Gwon, Mi-Gyeong; Gu, Hyemin; Park, Jae-Bok; Sung, Woo Jung; Kwon, Yong-Chul; Park, Kyung-Duck; Han, Sang Mi; Park, Kwan-Kyu

    2016-11-10

    Periodontitis is a chronic inflammatory disease that leads to destruction of tooth supporting tissues. Porphyromonas gingivalis ( P. gingivalis ), especially its lipopolysaccharides (LPS), is one of major pathogens that cause periodontitis. Bee venom (BV) has been widely used as a traditional medicine for various diseases. Previous studies have demonstrated the anti-inflammatory, anti-bacterial effects of BV. However, a direct role and cellular mechanism of BV on periodontitis-like human keratinocytes have not been explored. Therefore, we investigated the anti-inflammatory mechanism of BV against P. gingivalis LPS (PgLPS)-induced HaCaT human keratinocyte cell line. The anti-inflammatory effect of BV was demonstrated by various molecular biological methods. The results showed that PgLPS increased the expression of Toll-like receptor (TLR)-4 and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, and interferon (IFN)-γ. In addition, PgLPS induced activation of the signaling pathways of inflammatory cytokines-related transcription factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1). BV effectively inhibited those pro-inflammatory cytokines through suppression of NF-κB and AP-1 signaling pathways. These results suggest that administration of BV attenuates PgLPS-induced inflammatory responses. Furthermore, BV may be a useful treatment to anti-inflammatory therapy for periodontitis.

  15. Presence of multiple sites containing polar material in spherical Escherichia coli cells that lack MreB.

    Science.gov (United States)

    Nilsen, Trine; Yan, Arthur W; Gale, Gregory; Goldberg, Marcia B

    2005-09-01

    In rod-shaped bacteria, certain proteins are specifically localized to the cell poles. The nature of the positional information that leads to the proper localization of these proteins is unclear. In a screen for factors required for the localization of the Shigella sp. actin assembly protein IcsA to the bacterial pole, a mutant carrying a transposon insertion in mreB displayed altered targeting of IcsA. The phenotype of cells containing a transposon insertion in mreB was indistinguishable from that of cells containing a nonpolar mutation in mreB or that of wild-type cells treated with the MreB inhibitor A22. In cells lacking MreB, a green fluorescent protein (GFP) fusion to a cytoplasmic derivative of IcsA localized to multiple sites. Secreted full-length native IcsA was present in multiple faint patches on the surfaces of these cells in a pattern similar to that seen for the cytoplasmic IcsA-GFP fusion. EpsM, the polar Vibrio cholerae inner membrane protein, also localized to multiple sites in mreB cells and colocalized with IcsA, indicating that localization to multiple sites is not unique to IcsA. Our results are consistent with the requirement, either direct or indirect, for MreB in the restriction of certain polar material to defined sites within the cell and, in the absence of MreB, with the formation of ectopic sites containing polar material.

  16. Sperm-storage defects and live birth in Drosophila females lacking spermathecal secretory cells.

    Directory of Open Access Journals (Sweden)

    Sandra L Schnakenberg

    2011-11-01

    Full Text Available Male Drosophila flies secrete seminal-fluid proteins that mediate proper sperm storage and fertilization, and that induce changes in female behavior. Females also produce reproductive-tract secretions, yet their contributions to postmating physiology are poorly understood. Large secretory cells line the female's spermathecae, a pair of sperm-storage organs. We identified the regulatory regions controlling transcription of two genes exclusively expressed in these spermathecal secretory cells (SSC: Spermathecal endopeptidase 1 (Send1, which is expressed in both unmated and mated females, and Spermathecal endopeptidase 2 (Send2, which is induced by mating. We used these regulatory sequences to perform precise genetic ablations of the SSC at distinct time points relative to mating. We show that the SSC are required for recruiting sperm to the spermathecae, but not for retaining sperm there. The SSC also act at a distance in the reproductive tract, in that their ablation: (1 reduces sperm motility in the female's other sperm-storage organ, the seminal receptacle; and (2 causes ovoviviparity--the retention and internal development of fertilized eggs. These results establish the reproductive functions of the SSC, shed light on the evolution of live birth, and open new avenues for studying and manipulating female fertility in insects.

  17. Immunohistochemical expression of CD44s in renal cell carcinoma lacks independent prognostic significance

    Directory of Open Access Journals (Sweden)

    Walter Henriques da Costa

    2012-08-01

    Full Text Available PURPOSE: To analyze the immunohistochemical expression of the standard isoform of CD44 (CD44s adhesion molecule in clear cell renal cell carcinoma (CCRCC and its impact on clinical outcomes. MATERIALS AND METHODS: Ninety-nine consecutive patients treated surgically for RCC between 1992 and 2009 were selected. A single pathologist reviewed all cases to effect a uniform reclassification and determine the most representative tumor areas for construction of a tissue microarray. The same pathologist, who was blinded to the outcome of the cases, semi-quantitatively scored the staining intensity of CD44s in all specimens. The counting was done using the H-Score algorithm. RESULTS: Of the 99 immunostained RCC specimens, 57(57.7% showed low expression, and 42(42.4% showed high expression levels of CD44s. The expression of CD44s was directly associated with tumor size (p = 0.03, clinical stage (p = 0.02 and Fuhrman grade (p = 0.02. Disease specific survival (DSS rates for patients whose specimens expressed low and high levels of CD44s was 88.1% and 67.5%, respectively (p = 0.009. Progression free survival (PFS rates in patients with low and high expression of CD44s were 78.8% and 61.7%, respectively (p = 0.05. Classical features such as the presence of metastasis and clinical stage remained isolated predictors of survival. CONCLUSIONS: Immunohistochemical expression of CD44s was associated with important clinical variables such as stage and Fuhrman grade. However, it was not an independent predictor of survival. Therefore, we believe it has a limited role as a prognostic marker in patients with CCRCC.

  18. Lack of galectin-3 disturbs mesenteric lymph node homeostasis and B cell niches in the course of Schistosoma mansoni infection.

    Directory of Open Access Journals (Sweden)

    Felipe L Oliveira

    Full Text Available Galectin-3 is a β-galactoside-binding protein that has been shown to regulate pathophysiological processes, including cellular activation, differentiation and apoptosis. Recently, we showed that galectin-3 acts as a potent inhibitor of B cell differentiation into plasma cells. Here, we have investigated whether galectin-3 interferes with the lymphoid organization of B cell compartments in mesenteric lymph nodes (MLNs during chronic schistosomiasis, using WT and galectin-3(-/- mice. Schistosoma mansoni synthesizes GalNAcβ1-4(Fucα1-3GlcNAc(Lac-DiNAc structures (N-acetylgalactosamine β1-4 N-acetylglucosamine, which are known to interact with galectin-3 and elicit an intense humoral response. Antigens derived from the eggs and adult worms are continuously drained to MLNs and induce a polyclonal B cell activation. In the present work, we observed that chronically-infected galectin-3(-/- mice exhibited a significant reduced amount of macrophages and B lymphocytes followed by drastic histological changes in B lymphocyte and plasma cell niches in the MLNs. The lack of galectin-3 favored an increase in the lymphoid follicle number, but made follicular cells more susceptible to apoptotic stimuli. There were an excessive quantity of apoptotic bodies, higher number of annexin V(+/PI(- cells, and reduced clearance of follicular apoptotic cells in the course of schistosomiasis. Here, we observed that galectin-3 was expressed in non-lymphoid follicular cells and its absence was associated with severe damage to tissue architecture. Thus, we convey new information on the role of galectin-3 in regulation of histological events associated with B lymphocyte and plasma cell niches, apoptosis, phagocytosis and cell cycle properties in the MLNs of mice challenged with S.mansoni.

  19. Lack of retroperitoneal lymphadenopathy predicts survival of patients with metastatic renal cell carcinoma.

    Science.gov (United States)

    Vasselli, J R; Yang, J C; Linehan, W M; White, D E; Rosenberg, S A; Walther, M M

    2001-07-01

    Patients with metastatic renal cell carcinoma have a reported 5-year survival of 0% to 20%. The ability to predict which patients would benefit from nephrectomy and interleukin-2 (IL-2) therapy before any treatment is initiated would be useful for maximizing the advantage of therapy and improving the quality of life. A retrospective analysis of the x-rays and charts of patients treated at the National Institutes of Health Surgery Branch between 1985 and 1996, who presented with metastatic renal cancer beyond the locoregional area and the primary tumor in place, was performed. Preoperative computerized tomography or magnetic resonance imaging, or radiological reports if no scans were available, were used to obtain an estimate of the volume of retroperitoneal lymphadenopathy. Operative notes were used to evaluate whether all lymphadenopathy was resected or disease left in situ, or if any extrarenal resection, including venacavotomy, was performed. Mean survival rate was calculated from the time of nephrectomy to the time of death or last clinical followup. If patients received IL-2 therapy, the response to treatment was recorded. Mean survival and response rate for IL-2 were compared among patients in 3 separate analyses. Patients without preoperatively detected lymphadenopathy were compared with those with at least 1 cm.3 retroperitoneal lymphadenopathy. Also, the patients who had detectable lymphadenopathy were divided into subgroups consisting of all resected, incompletely resected, unresectable and unknown if all disease was resected. Each subgroup was compared with patients without detectable preoperative lymphadenopathy. Patients with less than were compared to those with greater than 50 cm.3 retroperitoneal lymphadenopathy. Patients undergoing extrarenal resection at nephrectomy (complex surgery) due to direct invasion of the tumor into another intra-abdominal organ were compared with those undergoing radical nephrectomy alone, regardless of lymph node status

  20. Anticancer effects of monocarbonyl analogs of curcumin: oxidative stress, nuclear translocation and modulation of AP-1 and NF-κB

    Directory of Open Access Journals (Sweden)

    Brian Adams

    2015-01-01

    Full Text Available Purpose: In order to elucidate anticancer effects of monocarbonyl analogs of curcumin (MACs, we have undertaken the present study to obtain information regarding drug targets by using a microarray approach, and to study the cellular localization of EF24 and the activity of two key transcription factors, AP-1 and NF-κB, involved in complex cellular responses of cell survival and death. Methods: Cytotoxic activity of various drugs was evaluated using a Neutral Red Dye assay. Cellular localization of biotinylated EF24 (active and reduced EF24 (inactive was determined using light and confocal microscopy. Measurement of transcription factor binding was carried out using Transfactor ELISA kits (BD Clontech, Palo Alto, CA. Gene microarray processing was performed at Expression Analysis, Inc (Durham, NC using Affymetrix Human U133A Gene Chips.Results: In this study, we demonstrated that EF24 and UBS109 exhibit much more potent cytotoxic activity against pancreatic cancer than the current standard chemotherapeutic agent gemcitabine. EF24, rapidly localizes to the cell nucleus. The compound modulates the DNA binding activity of NF-κB and AP-1 in MDA-MB-231 human breast cancer cells and DU-145 human prostate cancer cells. Immunohistochemical studies utilizing biotinylated-EF24 and chemically-reduced EF24 show that the unsaturated compound and biotinylated EF24, but not reduced EF24, translocates to the nucleus within 30 minutes after the addition of drug. Through a gene microarray study, EF24 is shown to affect genes directly involved in cytoprotection, tumor growth, angiogenesis, metastasis and apoptosis. Conclusion: EF24 and UBS109 warrant further investigation for development of pancreatic cancer therapy. The dualistic modulations of gene expression may be a manifestation of the cell responses for survival against oxidative stress by EF24. However, the cytotoxic action of EF24 ultimately prevails to kill the cells.

  1. Lack of association between STAT4 gene polymorphism and biopsy-proven giant cell arteritis.

    Science.gov (United States)

    Palomino-Morales, Rogelio; Vazquez-Rodriguez, Tomas R; Morado, Inmaculada C; Castañeda, Santos; Ortego-Centeno, Norberto; Miranda-Filloy, Jose A; Lamas, Jose R; Martin, Javier; Gonzalez-Gay, Miguel A

    2009-05-01

    To investigate the potential implication of the STAT4 gene polymorphism rs7574865 in the predisposition to or the clinical expression of giant cell arteritis (GCA). A total of 212 patients diagnosed with biopsy-proven GCA were studied. DNA from patients and controls matched by age, sex, and ethnicity was obtained from peripheral blood. Samples were genotyped for STAT4 rs7574865 polymorphism. No statistically significant differences in the allele frequencies for the STAT4 rs7574865 polymorphism were observed between patients and controls. Although we observed an increased frequency of the T/T genotype in GCA patients (6.0%) compared to healthy controls (3.9%), this difference did not achieve statistical significance (OR 1.57, 95% CI 0.72-3.41). No statistically significant differences in allele or genotype frequencies were observed when patients were stratified according to the presence of typical disease features such as polymyalgia rheumatica, severe ischemic manifestations, and visual ischemic complications in the setting of this vasculitis. Our results do not support a major role of the STAT4 rs7574865 gene polymorphism in susceptibility to or clinical manifestations of GCA.

  2. TXRF versus conventional EDXRF using 150 nm AP1 sample support films

    International Nuclear Information System (INIS)

    Wobrauschek, P.; Buzanich, G.; Marosi, N.

    2000-01-01

    Total reflection x-ray fluorescence analysis (TXRF ) is a powerful analytical tool for trace element analysis in the ng/g concentration or pg absolute region for medium Z elements using commercial or own designed TXRF equipment. One of the goals of TXRF is the extreme small penetration depth of the primary radiation into the reflector - substrate of 3-4 run if an incidence angle of about 1 mrad is adjusted. Among others, this effect results in a drastically reduced background in the measured spectra. This is caused by the reduction of elastic and inelastic scattered primary radiation from the substrate. Since there are now thin film supports commercially available having a thickness of 150 nm it is interesting to compare experimental results using TXRF and sample support films in 45 o incident beam and 45 o fluorescence emission geometry. As this film is only about 50 times more in thickness than the penetration depth in a quartz reflector, tests were performed to compare the analytical results and detection limits achievable from the same samples analyzed in total reflection geometry on a quartz reflector and conventional EDRXS geometry on the AP1 film with a dimple in the center for easy placing of the droplet. A volume of 3-5 μl of a liquid sample were used in both cases, pipetted and vacuum dried to prepare the sample. A high power 3 kW Mo-anode X-ray tube was used, for TXRF the line focus and for the conventional geometry the point focus was chosen. As additional results measurements from the TRACOR TN 5000 spectrometer will be presented using an air cooled low power tube with Rh - anode in a compact commercially available unit. A comparison of the results will be given in terms of sensitivity and detection limits, and future aspects for improvements and applications will be discussed. (author)

  3. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding.

    Directory of Open Access Journals (Sweden)

    Brittany V Martin-Murphy

    Full Text Available Current estimates suggest that over one-third of the adult population has metabolic syndrome and three-fourths of the obese population has non-alcoholic fatty liver disease (NAFLD. Inflammation in metabolic tissues has emerged as a universal feature of obesity and its co-morbidities, including NAFLD. Natural Killer T (NKT cells are a subset of innate immune cells that abundantly reside within the liver and are readily activated by lipid antigens. There is general consensus that NKT cells are pivotal regulators of inflammation; however, disagreement exists as to whether NKT cells exert pathogenic or suppressive functions in obesity. Here we demonstrate that CD1d(-/- mice, which lack NKT cells, were more susceptible to weight gain and fatty liver following high fat diet (HFD feeding. Compared with their WT counterparts, CD1d(-/- mice displayed increased adiposity and greater induction of inflammatory genes in the liver suggestive of the precursors of NAFLD. Calorimetry studies revealed a significant increase in food intake and trends toward decreased metabolic rate and activity in CD1d(-/- mice compared with WT mice. Based on these findings, our results suggest that NKT cells play a regulatory role that helps to prevent diet-induced obesity and metabolic dysfunction and may play an important role in mechanisms governing cross-talk between metabolism and the immune system to regulate energy balance and liver health.

  4. Epithelial cell stretching and luminal acidification lead to a retarded development of stria vascularis and deafness in mice lacking pendrin.

    Directory of Open Access Journals (Sweden)

    Hyoung-Mi Kim

    2011-03-01

    Full Text Available Loss-of-function mutations of SLC26A4/pendrin are among the most prevalent causes of deafness. Deafness and vestibular dysfunction in the corresponding mouse model, Slc26a4(-/-, are associated with an enlargement and acidification of the membranous labyrinth. Here we relate the onset of expression of the HCO(3 (- transporter pendrin to the luminal pH and to enlargement-associated epithelial cell stretching. We determined expression with immunocytochemistry, cell stretching by digital morphometry and pH with double-barreled ion-selective electrodes. Pendrin was first expressed in the endolymphatic sac at embryonic day (E 11.5, in the cochlear hook-region at E13.5, in the utricle and saccule at E14.5, in ampullae at E16.5, and in the upper turn of the cochlea at E17.5. Epithelial cell stretching in Slc26a4(-/- mice began at E14.5. pH changes occurred first in the cochlea at E15.5 and in the endolymphatic sac at E17.5. At postnatal day 2, stria vascularis, outer sulcus and Reissner's membrane epithelial cells, and utricular and saccular transitional cells were stretched, whereas sensory cells in the cochlea, utricle and saccule did not differ between Slc26a4(+/- and Slc26a4(-/- mice. Structural development of stria vascularis, including vascularization, was retarded in Slc26a4(-/- mice. In conclusion, the data demonstrate that the enlargement and stretching of non-sensory epithelial cells precedes luminal acidification in the cochlea and the endolymphatic sac. Stretching and luminal acidification may alter cell-to-cell communication and lead to the observed retarded development of stria vascularis, which may be an important step on the path to deafness in Slc26a4(-/- mice, and possibly in humans, lacking functional pendrin expression.

  5. Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Yi eSui

    2013-03-01

    Full Text Available Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ of the lateral ventricle and subgranular zone (SGZ of the dentate gyrus (DG. We examined whether cholecystokinin (CCK through actions mediated by CCK1 receptors (CCK1R is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 37% and 42%, respectively, in female (but not male mice lacking CCK1Rs (CCK1R-/- compared to wild-type (WT. Generation of neuroblasts in the SVZ and rostral migratory stream was also affected, since the number of doublecortin (DCX-immunoreactive (ir neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R-/- mice, BrdU-positive (+ and Ki67-ir cells were reduced by 38% and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R-/- mice was examined. In the OB granule cell layer (GCL, the number of neuronal nuclei (NeuN-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI was similar. Compared to WT, the granule cell layer of the DG in female CCK1R-/- mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL of CCK1R-/- female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is

  6. An MHC-I cytoplasmic domain/HIV-1 Nef fusion protein binds directly to the mu subunit of the AP-1 endosomal coat complex.

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar Singh

    2009-12-01

    Full Text Available The down-regulation of the major histocompatibility complex class I (MHC-I from the surface of infected cells by the Nef proteins of primate immunodeficiency viruses likely contributes to pathogenesis by providing evasion of cell-mediated immunity. HIV-1 Nef-induced down-regulation involves endosomal trafficking and a cooperative interaction between the cytoplasmic domain (CD of MHC-I, Nef, and the clathrin adaptor protein complex-1 (AP-1. The CD of MHC-I contains a key tyrosine within the sequence YSQA that is required for down-regulation by Nef, but this sequence does not conform to the canonical AP-binding tyrosine-based motif Yxxphi, which mediates binding to the medium (micro subunits of AP complexes. We previously proposed that Nef allows the MHC-I CD to bind the mu subunit of AP-1 (micro1 as if it contained a Yxxphimotif.Here, we show that a direct interaction between the MHC-I CD/Nef and micro1 plays a primary role in the down-regulation of MHC-I: GST pulldown assays using recombinant proteins indicated that most of the MHC-I CD and Nef residues that are required for the down-regulation in human cells contribute to direct interactions with a truncated version of micro1. Specifically, the tyrosine residue of the YSQA sequence in the MHC-I CD as well as Nef residues E62-65 and P78 each contributed to the interaction between MHC-I CD/Nef and micro1 in vitro, whereas Nef M20 had little to no role. Conversely, residues F172/D174 and V392/L395 of the binding pocket on micro1 for Yxxphi motifs were required for a robust interaction.These data indicate that the MHC-I cytoplasmic domain, Nef, and the C-terminal two thirds of the mu subunit of AP-1 are sufficient to constitute a biologically relevant interaction. The data also reveal an unexpected role for a hydrophobic pocket in micro1 for interaction with MHC-I CD/Nef.

  7. The Biology of Autoimmune Response in the Scurfy Mice that Lack the CD4+Foxp3+ Regulatory T-Cells.

    Science.gov (United States)

    Ju, Shyr-Te; Sharma, Rahul; Gaskin, Felicia; Kung, John T; Fu, Shu Man

    2012-04-04

    Due to a mutation in the Foxp3 transcription factor, Scurfy mice lack regulatory T-cells that maintain self-tolerance of the immune system. They develop multi-organ inflammation (MOI) and die around four weeks old. The affected organs are skin, tail, lungs and liver. In humans, endocrine and gastrointestinal inflammation are also observed, hence the disease is termed IPEX (Immunodysregulation, Polyendocrinopathy, Enteropathy, X-linked) syndrome. The three week period of fatal MOI offers a useful autoimmune model in which the controls by genetics, T-cell subsets, cytokines, and effector mechanisms could be efficiently investigated. In this report, we will review published work, summarize our recent studies of Scurfy double mutants lacking specific autoimmune-related genes, discuss the cellular and cytokine controls by these genes on MOI, the organ-specificities of the MOI controlled by environments, and the effector mechanisms regulated by specific Th cytokines, including several newly identified control mechanisms for organ-specific autoimmune response.

  8. Serum-free microcarrier based production of replication deficient Influenza vaccine candidate virus lacking NS1 using Vero cells

    Directory of Open Access Journals (Sweden)

    Yan Mylene L

    2011-08-01

    Full Text Available Abstract Background Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1 gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described. Results Five commercially available animal-component free, serum-free media (SFM were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log10 TCID50/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log10 TCID50/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log10 TCID50/ml were achieved. Conclusions We describe for the

  9. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides.

    Science.gov (United States)

    Sun, Yingjiao; Wang, Yonglin; Tian, Chengming

    2016-10-01

    Yeast AP1 transcription factor is a regulator of oxidative stress response. Here, we report the identification and characterization of CgAP1, an ortholog of YAP1 in poplar anthracnose fungus Colletotrichum gloeosporioides. The expression of CgAP1 was highly induced by reactive oxygen species. CgAP1 deletion mutants displayed enhanced sensitivity to oxidative stress compared with the wild-type strain, and their poplar leaf virulence was obviously reduced. However, the mutants exhibited no obvious defects in aerial hyphal growth, conidia production, and appressoria formation. CgAP1::eGFP fusion protein localized to the nucleus after TBH (tert-Butyl hydroperoxide) treatment, suggesting that CgAP1 functions as a redox sensor in C. gloeosporioides. In addition, CgAP1 prevented the accumulation of ROS during early stages of biotrophic growth. CgAP1 also acted as a positive regulator of several ROS-related genes (i.e., Glr1, Hyr1, and Cyt1) involved in the antioxidative response. These results highlight the key regulatory role of CgAP1 transcription factor in oxidative stress response and provide insights into the function of ROS detoxification in virulence of C. gloeosporioides. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Dietary turmeric modulates DMBA-induced p21ras, MAP kinases and AP-1/NF-κB pathway to alter cellular responses during hamster buccal pouch carcinogenesis

    International Nuclear Information System (INIS)

    Garg, Rachana; Ingle, Arvind; Maru, Girish

    2008-01-01

    The chemopreventive efficacy of turmeric has been established in experimental systems. However, its mechanism(s) of action are not fully elucidated in vivo. The present study investigates the mechanism of turmeric-mediated chemoprevention in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis at 2, 4, 6, 10 and 12 weeks. Dietary turmeric (1%) led to decrease in DMBA-induced tumor burden and multiplicity, and enhanced the latency period in parallel, to its modulatory effects on oncogene products and various cellular responses during HBP tumorigenesis. DMBA-induced expression of ras oncogene product, p21 and downstream target, the mitogen-activated protein kinases were significantly decreased by turmeric during HBP carcinogenesis. Turmeric also diminished the DMBA-induced mRNA expression of proto-oncogenes (c-jun, c-fos) and NF-κB, leading to decreased protein levels and in further attenuation of DMBA-induced AP-1/NF-κB DNA-binding in the buccal pouch nuclear extracts. Besides, buccal pouch of hamsters receiving turmeric diet showed significant alterations in DMBA-induced effects: (a) decrease in cell proliferation (diminished PCNA and Bcl2 expression), (b) enhanced apoptosis (increased expression of Bax, caspase-3 and apoptotic index), (c) decrease in inflammation (levels of Cox-2, the downstream target of AP-1/NF-κB, and PGE2) and (d) aberrant expression of differentiation markers, the cytokeratins (1, 5, 8, and 18). Together, the protective effects of dietary turmeric converge on augmenting apoptosis of the initiated cells and decreasing cell proliferation in DMBA-treated animals, which in turn, is reflected in decreased tumor burden, multiplicity and enhanced latency period. Some of these biomarkers are likely to be helpful in monitoring clinical trials and evaluating drug effect measurements

  11. NF-κB/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton

    Directory of Open Access Journals (Sweden)

    Van Thai Ha

    2014-01-01

    Full Text Available AP736 was identified as an antimelanogenic drug that can be used for the prevention of melasma, freckles, and dark spots in skin by acting as a suppressor of melanin synthesis and tyrosinase expression. Since macrophage-mediated inflammatory responses are critical for skin health, here we investigated the potential anti-inflammatory activity of AP736. The effects of AP736 on various inflammatory events such as nitric oxide (NO/prostaglandin (PG E2 production, inflammatory gene expression, phagocytic uptake, and morphological changes were examined in RAW264.7 cells. AP736 was found to strongly inhibit the production of both NO and PGE2 in lipopolysaccharide- (LPS- treated RAW264.7 cells. In addition, AP736 strongly inhibited both LPS-induced morphological changes and FITC-dextran-induced phagocytic uptake. Furthermore, AP736 also downregulated the expression of multiple inflammatory genes, such as inducible NO synthase (iNOS, cyclooxygenase- (COX- 2, and interleukin- (IL- 1β in LPS-treated RAW264.7 cells. Transcription factor analysis, including upstream signalling events, revealed that both NF-κB and AP-1 were targeted by AP736 via inhibition of the IKK/IκBα and IRAK1/TAK1 pathways. Therefore, our results strongly suggest that AP736 is a potential anti-inflammatory drug due to its suppression of NF-κB-IKK/IκBα and AP-1-IRAK1/TAK1 signalling, which may make AP736 useful for the treatment of macrophage-mediated skin inflammation.

  12. Lack of liver X receptors leads to cell proliferation in a model of mouse dorsal prostate epithelial cell.

    Directory of Open Access Journals (Sweden)

    Julie Dufour

    Full Text Available Recent studies underline the implication of Liver X Receptors (LXRs in several prostate diseases such as benign prostatic hyperplasia (BPH and prostate cancer. In order to understand the molecular mechanisms involved, we derived epithelial cells from dorsal prostate (MPECs of wild type (WT or Lxrαβ-/- mice. In the WT MPECs, our results show that LXR activation reduces proliferation and correlates with the modification of the AKT-survival pathway. Moreover, LXRs regulate lipid homeostasis with the regulation of Abca1, Abcg1 and Idol, and, in a lesser extent, Srebp1, Fas and Acc. Conversely cells derived from Lxrαβ-/- mice show a higher basal phosphorylation and consequently activation of the survival/proliferation transduction pathways AKT and MAPK. Altogether, our data point out that the cell model we developed allows deciphering the molecular mechanisms inducing the cell cycle arrest. Besides, we show that activated LXRs regulate AKT and MAPK transduction pathways and demonstrate that LXRs could be good pharmacological targets in prostate disease such as cancer.

  13. p53-dependent control of cell death by nicastrin: lack of requirement for presenilin-dependent gamma-secretase complex.

    Science.gov (United States)

    Pardossi-Piquard, Raphaëlle; Dunys, Julie; Giaime, Emilie; Guillot-Sestier, Marie-Victoire; St George-Hyslop, Peter; Checler, Frédéric; Alves da Costa, Cristine

    2009-04-01

    Nicastrin (NCT) is a component of the presenilin (PS)-dependent gamma-secretase complexes that liberate amyloid beta-peptides from the beta-Amyloid Precursor Protein. Several lines of evidence indicate that the members of these complexes could also contribute to the control of cell death. Here we show that over-expression of NCT increases the viability of human embryonic kidney (HEK293) cells and decreases staurosporine (STS)- and thapsigargin (TPS)-induced caspase-3 activation in various cell lines from human and neuronal origins by Akt-dependent pathway. NCT lowers p53 expression, transcriptional activity and promoter transactivation and reduces p53 phosphorylation. NCT-associated protection against STS-stimulated cell death was completely abolished by p53 deficiency. Conversely, the depletion of NCT drastically enhances STS-induced caspase-3 activation and p53 pathway and favored p53 nuclear translocation. We examined whether NCT protective function depends on PS-dependent gamma-secretase activity. First, a 29-amino acid deletion known to reduce NCT-dependent amyloid beta-peptide production did not affect NCT-associated protective phenotype. Second, NCT still reduces STS-induced caspase-3 activation in fibroblasts lacking PS1 and PS2. Third, the gamma-secretase inhibitor DFK167 did not affect NCT-mediated reduction of p53 activity. Altogether, our study indicates that NCT controls cell death via phosphoinositide 3-kinase/Akt and p53-dependent pathways and that this function remains independent of the activity and molecular integrity of the gamma-secretase complexes.

  14. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Pan; Hongqian, Chu; Qinghe, Meng; Lanqin, Shang; Jianjun, Jiang; Xiaohua, Yang; Xuetao, Wei; Weidong, Hao, E-mail: whao@bjmu.edu.cn

    2016-09-15

    Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and the lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8{sup +} T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. - Highlights: • Lack of TAK1 in DC caused an abolished TCE-induced CHS response. • TAK1 in DCs was essential to maintain the homeostasis of T cells in TCE-induced CHS. • Intact TAK1 in DCs was critical to promote T-cell priming in TCE-induced CHS. • DC-specific TAK1 deficiency abolished the TCE-mediated phosphorylation of Jnk.

  15. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay

    International Nuclear Information System (INIS)

    Yao, Pan; Hongqian, Chu; Qinghe, Meng; Lanqin, Shang; Jianjun, Jiang; Xiaohua, Yang; Xuetao, Wei; Weidong, Hao

    2016-01-01

    Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and the lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8 + T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. - Highlights: • Lack of TAK1 in DC caused an abolished TCE-induced CHS response. • TAK1 in DCs was essential to maintain the homeostasis of T cells in TCE-induced CHS. • Intact TAK1 in DCs was critical to promote T-cell priming in TCE-induced CHS. • DC-specific TAK1 deficiency abolished the TCE-mediated phosphorylation of Jnk.

  16. Hepatitis C virus positive diffuse large B-cell lymphomas have distinct molecular features and lack BCL2 translocations

    DEFF Research Database (Denmark)

    Visco, Carlo; Wang, Jinfen; Tisi, Maria Chiara

    2017-01-01

    apoptotic pathways, have higher proliferative index, and lack BCL2 translocations. CONCLUSIONS: HCV-positive DLBCL have distinct molecular and pathological features compared to the HCV-negative counterparts.British Journal of Cancer advance online publication, 26 September 2017; doi:10.1038/bjc.2017.345 www.bjcancer.com....... in lymphomagenesis, as witnessed by the curative potential of antiviral therapy in HCV-related low-grade B-cell lymphomas. METHODS: We performed a case-control study including 44 HCV-positive cases of de novo DLBCL, comparing them with 132 HCV-negative patients as controls (ratio 3 to 1). Cases and controls were...... for MYC, BCL2 and BCL6, TP53 mutations, and diagnostic specimens reviewed to exclude transformation from low-grade lymphoma. RESULTS: Compared to the HCV-negative controls, patients with HCV-positive de novo DLBCL had differential expression of genes that regulate innate immune response and modulate...

  17. The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone

    DEFF Research Database (Denmark)

    Baek, Kristoffer T.; Bowman, Lisa; Millership, Charlotte

    2016-01-01

    Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus. Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise...... not produce LTA, and genetic analyses confirmed that LTA becomes nonessential in the absence of the ClpX chaperone. In fact, inactivation of ltaS alleviated the severe growth defect conferred by the clpX deletion. Microscopic analyses showed that the absence of ClpX partly alleviates the septum placement...

  18. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Science.gov (United States)

    Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena

    2017-06-01

    The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  19. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Directory of Open Access Journals (Sweden)

    Susanna Boronat

    2017-06-01

    Full Text Available The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR. RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  20. Lack of radioimmunodetection and complications associated with monoclonal anticarcinoembryonic antigen antibody cross-reactivity with an antigen on circulating cells

    International Nuclear Information System (INIS)

    Dillman, R.O.; Beauregard, J.C.; Sobol, R.E.; Royston, I.; Bartholomew, R.M.; Hagan, P.S.; Halpern, S.E.

    1984-01-01

    Characterization of several high-affinity murine monoclonal anticarcinoembryonic antigen (CEA) antibodies suggested good specificity except for cross-reactivity with an antigen on granulocytes and erythrocytes which was different from the previously described normal cross-reacting antigen of granulocytes. In vivo studies in athymic mice using an indium conjugate of an anti-CEA monoclonal antibody (MoAb) revealed excellent specific uptake in colorectal carcinoma xenografts. Studies were conducted in humans to determine the limitations produced by the cross-reactivity with granulocytes and erythrocytes. Patients with metastatic colorectal cancer received 3 to 6 mg of anti-CEA MoAb over 10 min or 2 hr. In five of six trials, the MoAb infusion was associated with a 40 to 90% decrease in circulating granulocytes and systemic toxicity including fever, rigors, and emesis. One patient had no change in cell count and had no toxicity. Radionuclide scans with 111 In-anti-CEA MoAb showed marked uptake in the spleen when cells were eliminated, and in the liver, especially when pretreatment CEA levels were high. Metastatic tumor sites failed to concentrate the isotope. This study emphasizes the potential limitations for radioimmunodetection and/or radioimmunotherapy imposed by reactivity with circulating cells, and suggests that certain toxic reactions associated with MoAb infusions are related to destruction of circulating cells rather than allergic reactions to mouse protein. It also emphasizes how variables such as dose and binding affinity of antibody, radioisotope used, and assessment at different observation points can obscure lack of antibody specificity

  1. Lack of radioimmunodetection and complications associated with monoclonal anticarcinoembryonic antigen antibody cross-reactivity with an antigen on circulating cells

    Energy Technology Data Exchange (ETDEWEB)

    Dillman, R.O.; Beauregard, J.C.; Sobol, R.E.; Royston, I.; Bartholomew, R.M.; Hagan, P.S.; Halpern, S.E.

    1984-05-01

    Characterization of several high-affinity murine monoclonal anticarcinoembryonic antigen (CEA) antibodies suggested good specificity except for cross-reactivity with an antigen on granulocytes and erythrocytes which was different from the previously described normal cross-reacting antigen of granulocytes. In vivo studies in athymic mice using an indium conjugate of an anti-CEA monoclonal antibody (MoAb) revealed excellent specific uptake in colorectal carcinoma xenografts. Studies were conducted in humans to determine the limitations produced by the cross-reactivity with granulocytes and erythrocytes. Patients with metastatic colorectal cancer received 3 to 6 mg of anti-CEA MoAb over 10 min or 2 hr. In five of six trials, the MoAb infusion was associated with a 40 to 90% decrease in circulating granulocytes and systemic toxicity including fever, rigors, and emesis. One patient had no change in cell count and had no toxicity. Radionuclide scans with /sup 111/In-anti-CEA MoAb showed marked uptake in the spleen when cells were eliminated, and in the liver, especially when pretreatment CEA levels were high. Metastatic tumor sites failed to concentrate the isotope. This study emphasizes the potential limitations for radioimmunodetection and/or radioimmunotherapy imposed by reactivity with circulating cells, and suggests that certain toxic reactions associated with MoAb infusions are related to destruction of circulating cells rather than allergic reactions to mouse protein. It also emphasizes how variables such as dose and binding affinity of antibody, radioisotope used, and assessment at different observation points can obscure lack of antibody specificity.

  2. Continuous Lymphoid Cell Lines with Characteristics of B Cells (Bone-Marrow-Derived), Lacking the Epstein-Barr Virus Genome and Derived from Three Human Lymphomas

    Science.gov (United States)

    Klein, George; Lindahl, Tomas; Jondal, Mikael; Leibold, Wolfgang; Menézes, José; Nilsson, Kenneth; Sundström, Christer

    1974-01-01

    Three exceptional cell lines have been tested for the presence of the Epstein-Barr virus genome by nucleic acid hybridization (complementary RNA·DNA) and Epstein-Barr virus-determined nuclear antigen tests. Two lines were derived from Swedish lymphoma cases and one from an African Burkitt-like lymphoma biopsy that was negative for Epstein-Barr virus DNA and the virus-determined nuclear antigen. All three lines apparently lacked the viral genome. Two of the three lines clearly had characteristics of B-cells (bone-marrow-derived). PMID:4369887

  3. AP1 Keeps Chromatin Poised for Action | Center for Cancer Research

    Science.gov (United States)

    The human genome harbors gene-encoding DNA, the blueprint for building proteins that regulate cellular function. Embedded across the genome, in non-coding regions, are DNA elements to which regulatory factors bind. The interaction of regulatory factors with DNA at these sites modifies gene expression to modulate cell activity. In cells, DNA exists in a complex with proteins

  4. Doubly truncated FosB isoform (Delta2DeltaFosB) induces osteosclerosis in transgenic mice and modulates expression and phosphorylation of Smads in osteoblasts independent of intrinsic AP-1 activity

    DEFF Research Database (Denmark)

    Sabatakos, George; Rowe, Glenn C; Kveiborg, Marie

    2008-01-01

    DeltaFosB and a further truncated isoform (Delta2DeltaFosB) that lacks known transactivation domains but, like DeltaFosB, induces increased expression of osteoblast marker genes. MATERIALS AND METHODS: To test Delta2DeltaFosB's ability to induce bone formation in vivo, we generated transgenic mice......6 expression. CONCLUSIONS: DeltaFosB's AP-1 transactivating function is not needed to induce increased bone formation, and Delta2DeltaFosB may act, at least in part, by increasing Smad1 expression, phosphorylation, and translocation to the nucleus....

  5. Lack of autologous mixed lymphocyte reaction in patients with chronic lymphocytic leukemia: evidence for autoreactive T-cell dysfunction not correlated with phenotype, karyotype, or clinical status

    International Nuclear Information System (INIS)

    Han, T.; Bloom, M.L.; Dadey, B.; Bennett, G.; Minowada, J.; Sandberg, A.A.; Ozer, H.

    1982-01-01

    In the present study, there was a complete lack of autologous MLR between responding T cells or T subsets and unirradiated or irradiated leukemic B cells or monocytes in all 20 patients with CLL, regardless of disease status, stage, phenotype, or karyotype of the disease. The stimulating capacity of unirradiated CLL B cells and CLL monocytes or irradiated CLL B cells was significantly depressed as compared to that of respective normal B cells and monocytes in allogeneic MLR. The responding capacity of CLL T cells was also variably lower than that of normal T cells against unirradiated or irradiated normal allogeneic B cells and monocytes. The depressed allogeneic MLR between CLL B cells or CLL monocytes and normal T cells described in the present study could be explained on the basis of a defect in the stimulating antigens of leukemic B cells or monocytes. The decreased allogeneic MLR of CLL T cells might simply be explained by a defect in the responsiveness of T lymphocytes from patients with CLL. However, these speculations do not adequately explain the complete lack of autologous MLR in these patients. When irradiated CLL B cells or irradiated CLL T cells were cocultured with normal T cells and irradiated normal B cells, it was found that there was no suppressor cell activity of CLL B cells or CLL T cells on normal autologous MLR. Our data suggest that the absence or dysfunction of autoreactive T cells within the Tnon-gamma subset account for the lack of autologous MLR in patients with CLL. The possible significance of the autologous MLR, its relationship to in vivo immunoregulatory mechanisms, and the possible role of breakdown of autoimmunoregulation in the oncogenic process of certain lymphoproliferative and autoimmune diseases in man are discussed

  6. Sugary Kefir Strain Lactobacillus mali APS1 Ameliorated Hepatic Steatosis by Regulation of SIRT-1/Nrf-2 and Gut Microbiota in Rats.

    Science.gov (United States)

    Chen, Yung-Tsung; Lin, Yu-Chun; Lin, Jin-Seng; Yang, Ning-Sun; Chen, Ming-Ju

    2018-04-01

    Non-alcoholic fatty liver disease (NAFLD) is a common disease that is concomitant with obesity, resulting in increased mortality. To date, the efficiency of NAFLD treatment still needs to be improved. Therefore, we aimed to evaluate the effect of Lactobacillus mali APS1, which was isolated from sugary kefir, on hepatic steatosis in rats fed a high-fat diet (HFD). Sprague Dawley rats were fed a control diet, a HFD with saline, and a HFD with APS1 intervention by gavage daily for 12 weeks. The results showed that APS1 significantly reduced body weight and body weight gain in HFD-fed rats. APS1 reduced hepatic lipid accumulation by regulating SIRT-1/PGC-1α/SREBP-1 expression. Moreover, APS1 increased hepatic antioxidant activity by modulating Nrf-2/HO-1 expression. Notably, APS1 manipulated the gut microbiota, resulting in increasing proportions of the phylum Bacteroidetes/Firmicutes and reducing the abundance of specific NAFLD-associated bacteria. These results suggested that APS1 ameliorated hepatic steatosis by modulating lipid metabolism and antioxidant activity via manipulating specific NAFLD-associated gut microbiota in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells

    OpenAIRE

    Liu, Guangming; Bibus, Douglas M.; Bode, Ann M.; Ma, Wei-Ya; Holman, Ralph T.; Dong, Zigang

    2001-01-01

    Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic ac...

  8. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons.

    Directory of Open Access Journals (Sweden)

    Young-Mi Lim

    Full Text Available Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1 is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box-like and WD40 repeats-containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1 and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

  9. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages.

    Science.gov (United States)

    Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline

    2017-05-01

    Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice.

    Science.gov (United States)

    Leroy, Karelle; Ando, Kunie; Laporte, Vincent; Dedecker, Robert; Suain, Valérie; Authelet, Michèle; Héraud, Céline; Pierrot, Nathalie; Yilmaz, Zehra; Octave, Jean-Noël; Brion, Jean-Pierre

    2012-12-01

    Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.

    Science.gov (United States)

    Liechti, George; Kuru, Erkin; Packiam, Mathanraj; Hsu, Yen-Pang; Tekkam, Srinivas; Hall, Edward; Rittichier, Jonathan T; VanNieuwenhze, Michael; Brun, Yves V; Maurelli, Anthony T

    2016-05-01

    The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.

  12. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.

    Directory of Open Access Journals (Sweden)

    George Liechti

    2016-05-01

    Full Text Available The peptidoglycan (PG cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.

  13. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Kauffmann, Susanne Ørding; Thomsen, Allan Randrup

    2003-01-01

    of virus-specific CD4(+) T cells was markedly impaired in B(-/-) mice infected with either virus strain. Thus, our results indicate that B cells play an important role in antiviral immunity not only as Ab producers, but also in promoting an optimal and sustained T cell response. The T cell defects......In this study, we investigate the state of T cell-mediated immunity in B cell-deficient (B(-/-)) mice infected with two strains of lymphocytic choriomeningitis virus known to differ markedly in their capacity to persist. In B(-/-) C57BL mice infected with the more persisting virus, virus......-specific CD8(+) T cells are initially generated that are qualitatively similar to those in wild-type mice. However, although cell numbers are well sustained over time, the capacity to produce cytokines is rapidly impaired. In similarly infected B(-/-) BALB/c mice, virus-specific CD8(+) T cells are completely...

  14. Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Benjamin S Mantell

    Full Text Available The contribution of natural killer T (NKT cells to the pathogenesis of metabolic abnormalities of obesity is controversial. While the combined genetic deletion of NKT and CD8(+ T-cells improves glucose tolerance and reduces inflammation, interpretation of these data have been complicated by the recent observation that the deletion of CD8(+ T-cells alone reduces obesity-induced inflammation and metabolic dysregulation, leaving the issue of the metabolic effects of NKT cell depletion unresolved. To address this question, CD1d null mice (CD1d(-/-, which lack NKT cells but have a full complement of CD8(+ T-cells, and littermate wild type controls (WT on a pure C57BL/6J background were exposed to a high fat diet, and glucose intolerance, insulin resistance, dyslipidemia, inflammation, and obesity were assessed. Food intake (15.5±4.3 vs 15.3±1.8 kcal/mouse/day, weight gain (21.8±1.8 vs 22.8±1.4 g and fat mass (18.6±1.9 vs 19.5±2.1 g were similar in CD1d(-/- and WT, respectively. As would be expected from these data, metabolic rate (3.0±0.1 vs 2.9±0.2 ml O(2/g/h and activity (21.6±4.3 vs 18.5±2.6 beam breaks/min were unchanged by NKT cell depletion. Furthermore, the degree of insulin resistance, glucose intolerance, liver steatosis, and adipose and liver inflammatory marker expression (TNFα, IL-6, IL-10, IFN-γ, MCP-1, MIP1α induced by high fat feeding in CD1d(-/- were not different from WT. We conclude that deletion of NKT cells, in the absence of alterations in the CD8(+ T-cell population, is insufficient to protect against the development of the metabolic abnormalities of diet-induced obesity.

  15. B-1a transitional cells are phenotypically distinct and are lacking in mice deficient in IκBNS

    Science.gov (United States)

    Pedersen, Gabriel K.; Àdori, Monika; Khoenkhoen, Sharesta; Dosenovic, Pia; Beutler, Bruce; Karlsson Hedestam, Gunilla B.

    2014-01-01

    B-1 cells mediate early protection against infection by responding to T cell-independent (TI) antigens found on the surface of various pathogens. Mice with impaired expression of the atypical IκB protein IκBNS have markedly reduced frequencies of B-1 cells. We used a mouse strain with dysfunctional IκBNS derived from an N-ethyl-N-nitrosourea (ENU) screen, named bumble, to investigate the point in the development of B-1 cells where IκBNS is required. The presence of wild-type (wt) peritoneal cells in mixed wt/bumble chimeras did not rescue the development of bumble B-1 cells, but wt peritoneal cells transferred to bumble mice restored natural IgM levels and response to TI antigens. The bumble and wt mice displayed similar levels of fetal liver B-1 progenitors and splenic neonatal transitional B (TrB) cells, both of which were previously shown to give rise to B-1 cells. Interestingly, we found that a subset of wt neonatal TrB cells expressed common B-1a markers (TrB-1a) and that this cell population was absent in the bumble neonatal spleen. Sorted TrB-1a (CD93+IgM+CD5+) cells exclusively generated B-1a cells when adoptively transferred, whereas sorted CD93+IgM+CD5− cells gave rise to B-2 cells and, to a lesser extent, B-1b and B-1a cells. This study identifies a phenotypically distinct splenic population of TrB-1a cells and establishes that the development of B-1a cells is blocked before this stage in the absence of IκBNS. PMID:25228759

  16. Diseased muscles that lack dystrophin or laminin-α2 have altered compositions and proliferation of mononuclear cell populations

    Directory of Open Access Journals (Sweden)

    Miller Jeffrey

    2005-04-01

    Full Text Available Abstract Background Multiple types of mononucleate cells reside among the multinucleate myofibers in skeletal muscles and these mononucleate cells function in muscle maintenance and repair. How neuromuscular disease might affect different types of muscle mononucleate cells had not been determined. In this study, therefore, we examined how two neuromuscular diseases, dystrophin-deficiency and laminin-α2-deficiency, altered the proliferation and composition of different subsets of muscle-derived mononucleate cells. Methods We used fluorescence-activated cell sorting combined with bromodeoxyuridine labeling to examine proliferation rates and compositions of mononuclear cells in diseased and healthy mouse skeletal muscle. We prepared mononucleate cells from muscles of mdx (dystrophin-deficient or Lama2-/- (laminin-α2-deficient mice and compared them to cells from healthy control muscles. We enumerated subsets of resident muscle cells based on Sca-1 and CD45 expression patterns and determined the proliferation of each cell subset in vivo by BrdU incorporation. Results We found that the proliferation and composition of the mononucleate cells in dystrophin-deficient and laminin-α2-deficient diseased muscles are different than in healthy muscle. The mdx and Lama2-/- muscles showed similar significant increases in CD45+ cells compared to healthy muscle. Changes in proliferation, however, differed between the two diseases with proliferation increased in mdx and decreased in Lama2-/- muscles compared to healthy muscles. In particular, the most abundant Sca-1-/CD45- subset, which contains muscle precursor cells, had increased proliferation in mdx muscle but decreased proliferation in Lama2-/- muscles. Conclusion The similar increases in CD45+ cells, but opposite changes in proliferation of muscle precursor cells, may underlie aspects of the distinct pathologies in the two diseases.

  17. Evidence that a recombinationless strain, rad 51, of Saccharomyces cerevisiae lacks the budding cell resistance to γ-rays

    International Nuclear Information System (INIS)

    Hama-Inaba, Hiroko; Saeki, Tetsuya

    1975-01-01

    The radiosensitivities of a wild-type and x-ray sensitive mutant, rad 51 (defective in genetic recombination) of Saccharomyces cerevisiae to γ-rays were compared, using non-synchronized and partially synchronized cultures. The rad 51 cells, either haploid or diploid, showed only very small changes in radiosensitivity during cell growth, whereas the wild-type cells, especially haploid, showed the well-known budding resistance. The heterozygous (wild/rad 51) diploid cells showed in a survival curve a remarkable budding resistance and sigmoidal inactivation kinetics similar to those of wild-type homozygous diploid cells. (author)

  18. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells.

    Science.gov (United States)

    Fernando, Joan; Malfettone, Andrea; Cepeda, Edgar B; Vilarrasa-Blasi, Roser; Bertran, Esther; Raimondi, Giulia; Fabra, Àngels; Alvarez-Barrientos, Alberto; Fernández-Salguero, Pedro; Fernández-Rodríguez, Conrado M; Giannelli, Gianluigi; Sancho, Patricia; Fabregat, Isabel

    2015-02-15

    The multikinase inhibitor sorafenib is the only effective drug in advanced cases of hepatocellular carcinoma (HCC). However, response differs among patients and effectiveness only implies a delay. We have recently described that sorafenib sensitizes HCC cells to apoptosis. In this work, we have explored the response to this drug of six different liver tumor cell lines to define a phenotypic signature that may predict lack of response in HCC patients. Results have indicated that liver tumor cells that show a mesenchymal-like phenotype, resistance to the suppressor effects of transforming growth factor beta (TGF-β) and high expression of the stem cell marker CD44 were refractory to sorafenib-induced cell death in in vitro studies, which correlated with lack of response to sorafenib in nude mice xenograft models of human HCC. In contrast, epithelial-like cells expressing the stem-related proteins EpCAM or CD133 were sensitive to sorafenib-induced apoptosis both in vitro and in vivo. A cross-talk between the TGF-β pathway and the acquisition of a mesenchymal-like phenotype with up-regulation of CD44 expression was found in the HCC cell lines. Targeted CD44 knock-down in the mesenchymal-like cells indicated that CD44 plays an active role in protecting HCC cells from sorafenib-induced apoptosis. However, CD44 effect requires a TGF-β-induced mesenchymal background, since the only overexpression of CD44 in epithelial-like HCC cells is not sufficient to impair sorafenib-induced cell death. In conclusion, a mesenchymal profile and expression of CD44, linked to activation of the TGF-β pathway, may predict lack of response to sorafenib in HCC patients. © 2014 UICC.

  19. Lack of correlation between immunologic markers and cell surface ultrastructure in the leukemic phase of lymphoproliferative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Golomb, Harvey M.; Simon, Deberah

    1977-01-01

    In a prospective study of malignant cells from 13 patients with the leukemic phase of lymphoproliferative diseases, we wished to determine whether any correlation between the immunologic markers and the cell surface ultrastructure. Five patients had chronic lymphocytic leukemia, four had malignant lymphomas, poorly differentiated lymphocytic type, two had the Sezary syndrome, and one each had acute prolymphocytic leukemia and acute lymphocytic leukemia. Cell separation and isolation was done at room temperature for all specimens. Immunologic markers tested for were surface immunoglobins, a B-cell property, and E-rosettes, a T-cell property. Three patients had T-cell diseases, 6 had B-cell diseases, and 4 were classified as ''null.'' All but one patient had moderate to large numbers of microvilli on their malignant cells. The single exception had a typical B-cell form of chronic lymphocytic leukemia. There appears to be no correlation between immunologic markers and cell surface ultrastructure; therefore, SEM appears not to be valuable in the diagnosis or classification of immunologic sub-types of certain lymphoproliferative diseases.

  20. Lack of a differential radiation response for proliferative and non-proliferative rat thyroid cells (FRTL-5) in vitro

    International Nuclear Information System (INIS)

    Brosing, J.W.; Giese, W.L.; Mulcahy, R.T.

    1989-01-01

    FRTL-5 rat thyroid epithelial cells maintain normal thyroid function and morphology in vitro, exhibit an absolute requirement for thyroid stimulating hormone (TSH) for proliferation and display radiation dose response characteristics indistinguishable from those of rat thyroid epithelial cells in vivo. In TSH-free medium cells remain in a non-proliferative, yet viable, state for prolonged periods of time and respond to TSH re-stimulation by a return to exponential growth. Flow cytometric analysis using two-step acridine orange (AO) staining revealed an accumulation of cells in the G1 phase of the cell cycle accompanied by a pronounced reduction in red fluorescence (indicative of RNA content) in FRTL-5 cells cultured in the absence of TSH. The response of proliferative and non-proliferative FRTL-5 cells to single dose, split dose and fractionated radiation was compared to determine whether proliferative status was an important response determinant. The response of FRTL-5 cells was not influenced by proliferative status at the time of irradiation. Additionally, dose response was not altered by variable (12 hr-8 days) non-proliferative intervals before or after irradiation. As revealed by split dose experiments, the rate and extent of sublethal damage repair was likewise similar for proliferative and non-proliferative cells. Multifraction experiments employing three fractions separated by 6 hr intervals indicate that non-proliferative FRTL-5 cells completely repair sublethal damage between fractions. These results indicate that the radiation response of FRTL-5 cells is not influenced by the proliferative status of the cells prior to or post-irradiation

  1. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo.

    Science.gov (United States)

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg H W

    2009-10-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc.

  2. Radiation-induced apoptosis in developing rats and kainic acid-induced excitotoxicity in adult rats are associated with distinctive morphological and biochemical c-Jun/AP-1 (N) expression

    Energy Technology Data Exchange (ETDEWEB)

    Pozas, E. [Unitat de Neuropatologia, Servei d' Anatomia Patologica, Hospital Princeps d' Espanya, Universitat de Barcelona, 08907 Hospitalet de Llobregat (Spain); Planas, A.M. [Departament de Farmacologia i Toxicologia, IIBB, CSIC Barcelona (Spain); Ferrer, I. [Unitat de Neuropatologia, Servei d' Anatomia Patologica, Hospital Princeps d' Espanya, Universitat de Barcelona, 08907 Hospitalet de Llobregat (Spain)

    1997-07-14

    Ionizing radiation produces apoptosis in the developing rat brain. Strong c-Jun immunoreactivity, as revealed with the antibody c-Jun/AP-1 (N) which is raised against the amino acids 91-105 mapping with the amino terminal domain of mouse c-Jun p39, is simultaneously observed in the nucleus and cytoplasm of apoptotic cells. Western blotting of total brain homogenates, using the same antibody, shows a p39 band in control rats which is accompanied by a strong, phosphorylated p62 double-band in irradiated animals. In addition, increased c-Jun N-terminal kinase 1 expression, as found on western blots, is found in irradiated rats when compared with controls. Intraperitoneal injection of kainic acid at convulsant doses to the adult rat produces cell death with morphological features of necrosis, together with the appearance of cells with fine granular chromatin degeneration and small numbers of apoptotic-like cells, in the entorhinal and piriform cortices, basal amygdala, certain thalamic nuclei, and CA1 region of the hippocampus. c-Jun expression in kainic acid-treated rats, as revealed with the c-Jun/AP-1 (N) antibody, is found in the nuclei of a minority of cells in the same areas. The vast majority of c-Jun-immunoreactive cells have normal nuclear morphology, whereas necrotic cells are negative and only a few cells with fine granular chromatin condensation and apoptotic cells following kainic acid injection are stained with c-Jun antibodies. Western blotting, using the same antibody, shows a p39 band in control rats, which is accompanied by a band at about p26 from 6 h onwards following kainic acid injection. Decreased c-Jun N-terminal kinase 1 expression, as revealed on western blots, is observed in kainic acid-treated rats.These results show that the antibody c-Jun/AP-1 (N) recognizes three different forms of c-Jun-related immunoreactivity in normal and pathological states, which are associated with the different outcome of cells. These results stress the necessity

  3. Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling

    Directory of Open Access Journals (Sweden)

    Simon James

    2011-05-01

    Full Text Available Abstract Background Mushrooms are well recognized for their culinary properties as well as for their potency to enhance immune response. In the present study, we evaluated anti-inflammatory properties of an edible oyster mushroom (Pleurotus ostreatus in vitro and in vivo. Methods RAW264.7 murine macrophage cell line and murine splenocytes were incubated with the oyster mushroom concentrate (OMC, 0-100 μg/ml in the absence or presence of lipopolysacharide (LPS or concanavalin A (ConA, respectively. Cell proliferation was determined by MTT assay. Expression of cytokines and proteins was measured by ELISA assay and Western blot analysis, respectively. DNA-binding activity was assayed by the gel-shift analysis. Inflammation in mice was induced by intraperitoneal injection of LPS. Results OMC suppressed LPS-induced secretion of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and IL-12p40 from RAW264.7 macrophages. OMC inhibited LPS-induced production of prostaglandin E2 (PGE2 and nitric oxide (NO through the down-regulation of expression of COX-2 and iNOS, respectively. OMC also inhibited LPS-dependent DNA-binding activity of AP-1 and NF-κB in RAW264.7 cells. Oral administration of OMC markedly suppressed secretion of TNF-α and IL-6 in mice challenged with LPS in vivo. Anti-inflammatory activity of OMC was confirmed by the inhibition of proliferation and secretion of interferon-γ (IFN-γ, IL-2, and IL-6 from concanavalin A (ConA-stimulated mouse splenocytes. Conclusions Our study suggests that oyster mushroom possesses anti-inflammatory activities and could be considered a dietary agent against inflammation. The health benefits of the oyster mushroom warrant further clinical studies.

  4. Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/beta-catenin-based adherens junctions

    NARCIS (Netherlands)

    Theard, Delphine; Steiner, Magdalena; Kalicharan, Dharamdajal; Hoekstra, Dick; van IJzendoorn, Sven C. D.

    Using a mutant hepatocyte cell line in which E-cadherin and ss-catenin are completely depleted from the cell surface, and, consequently, fail to form adherens junctions, we have investigated adherens junction requirement for apical-basolateral polarity development and polarized membrane trafficking.

  5. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype

    DEFF Research Database (Denmark)

    Breau, Marie A; Pietri, Thomas; Eder, Olivier

    2006-01-01

    The enteric nervous system arises mainly from vagal and sacral neural crest cells that colonise the gut between 9.5 and 14 days of development in mice. Using the Cre-LoxP system, we removed beta1 integrins in the neural crest cells when they emerge from the neural tube. beta1-null enteric neural...

  6. Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells

    NARCIS (Netherlands)

    van Rijt, Leonie S.; Vos, Nanda; Hijdra, Daniëlle; de Vries, Victor C.; Hoogsteden, Henk C.; Lambrecht, Bart N.

    2003-01-01

    Asthma is characterized by infiltration of the airway wall with eosinophils. Although eosinophils are considered to be effector cells, recent studies have reported their ability to activate primed Th2 cells. In this study, we investigated whether eosinophils are capable of presenting Ag to unprimed

  7. Action potential generation in the small intestine of W mutant mice that lack interstitial cells of Cajal

    DEFF Research Database (Denmark)

    Malysz, J; Thuneberg, L; Mikkelsen, Hanne Birte

    1996-01-01

    significantly changed. Neither FLC nor MLC were part of a network nor did they form specialized junctions with neighboring cells as ICC do. Hence no cell type had replaced ICC at their normal morphological position associated with Auerbach's plexus. ICC were present in W/Wv mice at the deep muscular plexus...

  8. A Paracrine Role for IL6 in Prostate Cancer Patients: Lack of Production by Primary or Metastatic Tumor Cells

    Science.gov (United States)

    Yu, Shu-Han; Zheng, Qizhi; Esopi, David; Macgregor-Das, Anne; Luo, Jun; Antonarakis, Emmanuel S.; Drake, Charles G.; Vessella, Robert; Morrissey, Colm; De Marzo, Angelo M.; Sfanos, Karen S.

    2015-01-01

    Correlative human studies suggest that the pleiotropic cytokine interleukin-6 (IL6) contributes to the development and/or progression of prostate cancer. However, the source of IL6 production in the prostate microenvironment in patients has yet to be determined. The cellular origin of IL6 in primary and metastatic prostate cancer was examined in formalin-fixed, paraffin-embedded (FFPE) tissues using a highly sensitive and specific chromogenic in situ hybridization (CISH) assay that underwent extensive analytical validation. Quantitative RT-PCR (q-RT-PCR) showed that benign prostate tissues often had higher expression of IL6 mRNA than matched tumor specimens. CISH analysis further indicated that both primary and metastatic prostate adenocarcinoma cells do not express IL6 mRNA. IL6 expression was highly heterogeneous across specimens and was nearly exclusively restricted to the prostate stromal compartment – including endothelial cells and macrophages among other cell types. The number of IL6-expressing cells correlated positively with the presence of acute inflammation. In metastatic disease, tumor cells were negative in all lesions examined and IL6 expression was restricted to endothelial cells within the vasculature of bone metastases. Finally, IL6 was not detected in any cells in soft tissue metastases. These data suggest that, in prostate cancer patients, paracrine rather than autocrine IL6 production is likely associated with any role for the cytokine in disease progression. PMID:26048576

  9. Lacking deoxygenation-linked interaction between cytoplasmic domain of band 3 and HbF from fetal red blood cells

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Aim: Several of the red blood cell's metabolic and membrane functions display dependence on haemoglobin oxygenation. In adult human red cells, the increased glycolytic rate at low O2 tension results from binding of deoxygenated HbA at negatively charged, N-terminal, cytoplasmic domain of the memb......Aim: Several of the red blood cell's metabolic and membrane functions display dependence on haemoglobin oxygenation. In adult human red cells, the increased glycolytic rate at low O2 tension results from binding of deoxygenated HbA at negatively charged, N-terminal, cytoplasmic domain...... of the membrane protein band 3, which liberates glycolytic enzymes from this site. This study aims to investigate the role of fetal HbF (that has lower anion-binding capacity than HbA) in fetal red cells (that are subjected to low O2 tensions), and to elucidate possible linkage (e.g. via the major red cell...... membrane organising centre, band 3) between the individual oxygenation-linked reactions encountered in red cells. Methods: The interaction between band 3 and Hb is analysed in terms of the effects, measured under different conditions, of a 10-mer peptide that corresponds to the N-terminus of human band 3...

  10. Lack of direct evidence for a functional role of voltage-operated calcium channels in juxtaglomerular cells

    DEFF Research Database (Denmark)

    Kurtz, A; Skott, O; Chegini, S

    1990-01-01

    in patch-clamped nor in intact Furaester-loaded cells. Moreover, basal renin secretion from a preparation enriched in mouse juxtaglomerular cells and from rat glomeruli with attached juxtaglomerular cells was not inhibited when extracellular potassium was isoosmotically increased to 56 mmol/l. In mouse...... kidney slices, however, depolarizing potassium concentrations caused a delayed inhibition at 56 mmol/l and a delayed stimulation of renin secretion at 110 mmol/l. Taken together, our study does not provide direct evidence for a role of voltage-activated calcium channels in the regulation of calcium...

  11. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  12. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47phox pathway

    International Nuclear Information System (INIS)

    Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung; Yen, Feng-Lin; Chiang, Yao-Chang; Lee, Chiang-Wen

    2014-01-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47 phox /JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47 phox inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation

  13. Mutation to ouabain-resistance in Chinese hamster cells: induction by ethyl methanesulphonate and lack of induction by ionising radiation

    International Nuclear Information System (INIS)

    Thacker, J.; Stephens, M.A.; Stretch, A.

    1978-01-01

    The spontaneous frequency of mutants resistant to growth inhibition by ouabian (OUAsup(R) mutants) was found to be about 5.10 -5 per viable cell in uncloned cultures of Chinese hamster V79-4 cells. In freshly-isolated clones or cultures started from a few cells this frequency was initially reduced to about 1.10 -6 in 1 mM ouabain. No increase in the frequency of OUAsup(R) mutants was found in cultures treated with γ-rays despite exploration of such variables as radiation dose, ouabain concentration, post-treatment interval before selection, cell density in selective medium, and clonal state of the cells at the time of adding ouabain (in situ vs. respreading method). A similar negative result was found for accelerated helium ions, for which the mutagenic effectiveness per unit dose has been shown to be about 10 times higher than γ-rays for the induction of thioguanine-resistant mutants in these cells. Recent evidence is reviewed in support of the suggestion that ionising radiation is unable to induce OUAsup(R) mutants because of the severity of the genetic damage it causes. (Auth.)

  14. IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel multiple sclerosis susceptibility loci

    DEFF Research Database (Denmark)

    Sørensen, Per Soelberg

    2010-01-01

    and the same direction of effect observed in the discovery phase. Three loci exceeded genome-wide significance in the joint analysis: RGS1 (P value=3.55 x 10(-9)), IL12A (P=3.08 x 10(-8)) and MPHOSPH9/CDK2AP1 (P=3.96 x 10(-8)). The RGS1 risk allele is shared with celiac disease (CD), and the IL12A risk allele......A recent meta-analysis identified seven single-nucleotide polymorphisms (SNPs) with suggestive evidence of association with multiple sclerosis (MS). We report an analysis of these polymorphisms in a replication study that includes 8,085 cases and 7,777 controls. A meta-analysis across...... the replication collections and a joint analysis with the discovery data set were performed. The possible functional consequences of the validated susceptibility loci were explored using RNA expression data. For all of the tested SNPs, the effect observed in the replication phase involved the same allele...

  15. Lack of CD4+ T cell percent decrease in alemtuzumab-treated multiple sclerosis patients with persistent relapses.

    Science.gov (United States)

    Rolla, Simona; De Mercanti, Stefania Federica; Bardina, Valentina; Horakova, Dana; Habek, Mario; Adamec, Ivan; Cocco, Eleonora; Annovazzi, Pietro; Vladic, Anton; Novelli, Francesco; Durelli, Luca; Clerico, Marinella

    2017-12-15

    Alemtuzumab, a highly effective treatment for relapsing remitting multiple sclerosis (RRMS), induces lymphopenia especially of CD4+ T cells. Here, we report the atypical CD4+ T population behaviour of two patients with persistent disease activity despite repeated alemtuzumab treatments. Whereas lymphocytes count decreased and fluctuated accordingly to alemtuzumab administration, their CD4+ cell percentage was not or just mildly affected and was slightly below the lowest normal limit already before alemtuzumab. These cases anticipate further studies aimed to investigate whether the evaluation of the CD4+ cell percentage could represent a helpful tool to address the individual clinical response to alemtuzumab. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Lack of specificity of chromosome breaks resulting from radiation-induced genomic instability in Chinese hamster cells

    International Nuclear Information System (INIS)

    Trott, K.-R.; Teibe, A.

    1998-01-01

    In V79 Chinese hamster cells, radiation-induced genomic instability results in a persistently increased frequency of micronuclei, dicentric chromosomes and apoptosis and in decreased colony-forming ability. These manifestations of radiation-induced genomic instability may be attributed to an increased rate of chromosome breakage events many generations after irradiation. This chromosomal instability does not seem to be a property which has been inflicted on individual chromosomes at the time of irradiation. Rather, it appears to be secondary to an increased level of non-specific clastogenic factors in the progeny of most if not all irradiated cells. This conclusion is drawn from the observations presented here, that all the chromosomes in surviving V79 cells are involved in the formation of dicentric chromosome aberrations 1 or 2 weeks after irradiation with about equal probability if corrections are made for chromosome length. (orig.)

  17. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay.

    Science.gov (United States)

    Yao, Pan; Hongqian, Chu; Qinghe, Meng; Lanqin, Shang; Jianjun, Jiang; Xiaohua, Yang; Xuetao, Wei; Weidong, Hao

    2016-09-15

    Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and the lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8(+) T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Lack of retinoic acid leads to increased langerin-expressing dendritic cells in gut-associated lymphoid tissues.

    Science.gov (United States)

    Chang, Sun-Young; Cha, Hye-Ran; Chang, Jae-Hoon; Ko, Hyun-Jeong; Yang, Hyungjun; Malissen, Bernard; Iwata, Makoto; Kweon, Mi-Na

    2010-04-01

    Retinoic acid (RA) is a crucial factor for maintaining homeostasis in the gut, including lymphocyte homing, immunoglobulin (Ig) A production, and T regulatory cells (Treg) and T helper cell 17 (T(H)17) generation. Until now, most attention has focused on the function of dendritic cells (DCs) to initiate adaptive immunity including T and B lymphocytes through RA. To investigate the effects of RA on DCs of gut-associated lymphoid tissue (GALT), we analyzed the phenotype and function of DC subsets from GALT of vitamin A-deficient (VAD) mice. VAD mice were prepared by feeding them a VAD diet over 12 weeks from gestational days 10-14. Here, we report that tremendous increase of langerin(+) DCs occurred in the mesenteric lymph nodes (MLNs) and gut lamina propria of VAD mice dependent on CCR7 signaling. Langerin(+) DCs have phenotypes more similar to those of bone marrow-derived dermal langerin(+) DCs than epidermal Langerhans cells. Moreover, RA receptor antagonists enhance the differentiation of langerin(+) DCs from mouse and human precursors of bone marrow and peripheral blood. Langerin(+) DCs were highly differentiated but less inflammatory than langerin(-) DCs of MLNs of VAD mice. Moreover, tolerance to orally delivered antigen was completely abrogated by depletion of langerin(+) DCs in the VAD mice. These results suggest that generation of langerin(+) DCs in the GALT is tightly regulated by RA and that the microenvironment of tissues determines the phenotype of DCs. 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Lack of relationship between TIMP-1 tumour cell immunoreactivity, treatment efficacy and prognosis in patients with advanced epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Steffensen, Karina Dahl; Waldstrøm, Marianne; Christensen, Rikke Kølby

    2010-01-01

    BACKGROUND: Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a natural inhibitor of the matrix metalloproteinases (MMPs) which are proteolytic enzymes involved in degradation of extracellular matrix thereby favoring tumour cell invasion and metastasis. TIMP-1 activity in tumour tissue may ther...... immunoreactivity in tumour tissue from patients with primary epithelial ovarian cancer did not correlate with patient survival or response to combination platinum/cyclophosphamide therapy.......BACKGROUND: Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a natural inhibitor of the matrix metalloproteinases (MMPs) which are proteolytic enzymes involved in degradation of extracellular matrix thereby favoring tumour cell invasion and metastasis. TIMP-1 activity in tumour tissue may...... therefore play an essential role in the progression of a malignant tumour.The primary aim of the present study was to evaluate TIMP-1 protein immunoreactivity in tissue from primary ovarian cancer patients and associate these findings with the course of the disease including response to treatment...

  20. Actin and dynamin recruitment and the lack thereof at exo- and endocytotic sites in PC12 cells.

    Science.gov (United States)

    Felmy, Felix

    2009-06-01

    Protein recruitment during endocytosis is well characterized in fibroblasts. Since fibroblasts do not engage in regulated exocytosis, only information about protein recruitment during constitutive endocytosis is provided. Furthermore, the cortical actin of fibroblasts is characterized by stress fibers rather than a thick cortical meshwork. A cell model, which differs in these features, could provide insight into the heterogeneity of protein recruitment to constitutive and exocytosis coupled endocytotic areas. Therefore, this study investigates the sequence of protein recruitment in PC12 cells, a well documented exocytotic cell model with thick actin cortex. Using real time total-internal-reflection fluorescence microscopy it was found that at the plasma membrane steady, but not transient, dynamin-1-EGFP or -mCherry fluorescence spots that rapidly dimmed coincided with markers for constitutive endocytotic such as clathrin-LC-dsRed and transferrin-receptor-pHluorin. Clathrin-LC-dsRed and dynamin-1-EGFP were further used to determine the temporal sequence of protein recruitment to areas of constitutive endocytosis. mCherry- and EGFP-beta-actin, Arp-3-EGFP and EGFP-mAbp1 were slowly recruited before the dynamin-1-mCherry fluorescence dimmed, but their fluorescence peaked after the loss of clathrin-LC-dsRed commenced. Furthermore, mCherry-beta-actin fluorescence increased before exocytosis, indicating redistribution prior to release. Also, no average dynamin-1-mCherry recruitment was observed within 50 s to regions of exocytosis marked by NPY-mGFP. This indicates that the temporal-spatial coupling between regulated exo-and endocytosis is rather limited in PC12 cells. Furthermore, the time course of the protein recruitment to constitutive endocytotic sites might depend on the subcellular morphology such as the size of the actin cortex.

  1. Yeast Cells Lacking the CIT1-encoded Mitochondrial Citrate Synthase Are Hypersusceptible to Heat- or Aging-induced Apoptosis

    OpenAIRE

    Lee, Yong Joo; Hoe, Kwang Lae; Maeng, Pil Jae

    2007-01-01

    In Saccharomyces cerevisiae, the initial reaction of the tricarboxylic acid cycle is catalyzed by the mitochondrial citrate synthase Cit1. The function of Cit1 has previously been studied mainly in terms of acetate utilization and metabolon construction. Here, we report the relationship between the function of Cit1 and apoptosis. Yeast cells with cit1 deletion showed a temperature-sensitive growth phenotype, and they displayed a rapid loss in viability associated with typical apoptotic hallma...

  2. Lack of hormone binding in COS-7 cells expressing a mutated growth hormone receptor found in Laron dwarfism.

    Science.gov (United States)

    Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A

    1993-01-01

    A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064

  3. Synergistic inhibition of the APC/C by the removal of APC15 in HCT116 cells lacking UBE2C

    DEFF Research Database (Denmark)

    Garvanska, Dimitriya H; Larsen, Marie Sofie Yoo; Nilsson, Jakob

    2016-01-01

    that has been shown to depend on the APC/C E2 enzymes, UBE2C and UBE2S. Here we investigate the in vivo role of the APC/C E2 enzymes in SAC silencing using CRISPR/Cas9 genetically engineered HCT116 UBE2C or UBE2S null cell lines. Using live cell assays, we show that UBE2C and UBE2S make a minor...... contribution to SAC silencing in HCT116 cells. Strikingly in cells specifically lacking UBE2C, we observe a strong synergistic inhibition of mitotic progression when we stabilize the MCC on the APC/C by depleting APC15, potentially reflecting increased competition between the MCC and the remaining initiating E...

  4. Cyr61/CCN1 induces CCL20 production by keratinocyte via activating p38 and JNK/AP-1 pathway in psoriasis.

    Science.gov (United States)

    Li, Huidan; Li, Haichuan; Huo, Rongfen; Wu, Pinru; Shen, Zhengyu; Xu, Hui; Shen, Baihua; Li, Ningli

    2017-10-01

    Psoriasis is a common chronic skin disease characterized by epidermal hyperplasia and inflammation. Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) has recently been implicated in psoriasis pathogenesis by promoting keratinocyte activation. However, the mechanisms by which CCN1 enhances cutaneous inflammation are not fully understood. In this study, we investigated the role of CCN1 on the expression of CCL20 in human keratinocyte. By double-label immunofluorescence staining, we first identified that the expression of CCN1 colocalized well with CCL20 production in the epidermis of psoriasis skin lesion. Furthermore, in vivo, blocking or knockdown CCN1 expression ameliorated skin inflammation and reduced the expression of CCL20 in both imiquimod and IL-23-induced psoriasis-like mouse models, which indicated that CCN1 might be involved in the regulation of CCL20 production in psoriasis. Next, in vitro, we stimulated primary normal human epidermal keratinocyte (NHEK) with exogenous protein CCN1 and found that CCN1 directly upregulated CCL20 production independent of TNF-α, IL-22 and IL-17 pathway. Lastly, the signaling pathway study showed that CCN1 enhanced the binding of AP-1 to the CCL20 promoter via crosstalk with p38 and JNK. Our study demonstrates that CCN1 stimulates CCL20 production in vitro and in vivo, and thus supports the notion that overexpressed CCN1 in hyperproliferating keratinocyte is functionally involved in the recruitment of inflammatory cells to skin lesions affected by psoriasis. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  5. Selection and characterization of T-cell variants lacking molecules involved in T-cell activation (T3 T-cell receptor, T44, and T11): analysis of the functional relationship among different pathways of activation

    International Nuclear Information System (INIS)

    Moretta, A.; Poggi, A.; Olive, D.; Bottino, C.; Fortis, C.; Pantaleo, G.; Moretta, L.

    1987-01-01

    A clone of the interleukin 2-producing Jurkat leukemia cell line termed JA3 (surface phenotype, T3 + , Ti + , T44 + , T11 + , T40 + ) has been used to induce and select cell variants lacking surface molecules involved in T-cell activation. Following 200 rad of γ-radiation (1 rad = 0.01 Gy), cells were treated with monoclonal antibodies (mAbs) directed to T3, Ti, T44, or T11 antigen and complement. After growth of the residual cells in culture, negative cells were cloned under limiting conditions. Depending on the specificity of the mAb used for the immunoselection, three groups of variants were obtained. (i) The use of mAbs directed to T3 or Ti resulted in cell variants that expressed the T3 - Ti - T44 + Leu1 + T11 + T40 + 4F2 + HLA class I + surface phenotype. (ii) Immunoselection with anti-T44 mAb resulted in 2 variants that shared the T3 - Ti - T44 - Leu1 - T11 - T40 - 4F2 - HLA class I + phenotype. (iii) Cell treatment with anti-T11 mAb resulted in 15 variants characterized by the lack of T11 antigen expression and of all the other T-cell-specific surface antigens. Therefore, it appears that the different sets of JA3 cell variants, like T cells at discrete stages of intrathymic differentiation, may follow a coordinated expression of surface differentiation antigens. Analysis of the functional responsiveness of the three distinct groups of JA3 cell variants to different stimuli showed that all produced interleukin 2 in response to A23187 calcium ionophore plus phorbol 12-myristate 13-acetate

  6. The adeno-associated virus major regulatory protein Rep78-c-Jun-DNA motif complex modulates AP-1 activity

    International Nuclear Information System (INIS)

    Prasad, C. Krishna; Meyers, Craig; Zhan Dejin; You Hong; Chiriva-Internati, Maurizio; Mehta, Jawahar L.; Liu Yong; Hermonat, Paul L.

    2003-01-01

    Multiple epidemiologic studies show that adeno-associated virus (AAV) is negatively associated with cervical cancer (CX CA), a cancer which is positively associated with human papillomavirus (HPV) infection. Mechanisms for this correlation may be by Rep78's (AAV's major regulatory protein) ability to bind the HPV-16 p97 promoter DNA and inhibit transcription, to bind and interfere with the functions of the E7 oncoprotein of HPV-16, and to bind a variety of HPV-important cellular transcription factors such as Sp1 and TBP. c-Jun is another important cellular factor intimately linked to the HPV life cycle, as well as keratinocyte differentiation and skin development. Skin is the natural host tissue for both HPV and AAV. In this article it is demonstrated that Rep78 directly interacts with c-Jun, both in vitro and in vivo, as analyzed by Western blot, yeast two-hybrid cDNA, and electrophoretic mobility shift-supershift assay (EMSA supershift). Addition of anti-Rep78 antibodies inhibited the EMSA supershift. Investigating the biological implications of this interaction, Rep78 inhibited the c-Jun-dependent c-jun promoter in transient and stable chloramphenicol acetyl-transferase (CAT) assays. Rep78 also inhibited c-Jun-augmented c-jun promoter as well as the HPV-16 p97 promoter activity (also c-Jun regulated) in in vitro transcription assays in T47D nuclear extracts. Finally, the Rep78-c-Jun interaction mapped to the amino-half of Rep78. The ability of Rep78 to interact with c-Jun and down-regulate AP-1-dependent transcription suggests one more mechanism by which AAV may modulate the HPV life cycle and the carcinogenesis process

  7. Yeast cells lacking all known ceramide synthases continue to make complex sphingolipids and to incorporate ceramides into glycosylphosphatidylinositol (GPI) anchors

    DEFF Research Database (Denmark)

    Vionnet, Christine; Roubaty, Carole; Ejsing, Christer S.

    2010-01-01

    In yeast, the inositolphosphorylceramides mostly contain C26:0 fatty acids. Inositolphosphorylceramides were considered to be important for viability, since the inositolphosphorylceramide synthase AUR1 is essential. Yet, lcb1 cells, unable to make sphingoid bases and inositolphosphorylceramides......, are viable if they harbor SLC1-1, a gain of function mutation in the 1-acyl-glycerol-3-phosphate acyltransferase SLC1. SLC1-1 allows to incorporate C26:0 fatty acids into phosphatidylinositol (PI), thus generating PIii, an abnormal, C26-containing PI, presumably acting as surrogate...

  8. Lack of effect of inhibitors of DNA synthesis/repair on the ionizing radiation-induced chromosomal damage in G[sub 2] stage of ataxia telangiectasia cells

    Energy Technology Data Exchange (ETDEWEB)

    Antoccia, A. (Univ. ' La Sapienza' , Rome (Italy). Dipt. di Genetica e Biologia Molecolare); Palitti, F.; Raggi, T. (Univ. del Tuscia, Viterbo (Italy). Dipt. di Agrobiologia ed Agrochimica); Catena, C. (ENEA, Casaccia (Italy). Centro Ricerche Energia); Tanzarella, C. (Rome Univ. 3 (Italy). Dipt. di Biologia)

    1994-09-01

    The relationship between the repair processes occurring at the G[sub 2] phase of the cell cycle and cytogenetic damage in ataxia telangiectasia (AT) cells was studied. Lymphoblastoid cells derived from normal, heterozygote AT (HzAT) and three AT patients were exposed to X-rays or fission neutrons and post-treated with inhibitors of DNA synthesis/repair, such as inhibitors of DNA polymerases [alpha], [sigma] and [epsilon] (cytosine arabinoside, ara-C; aphidicolin, APC; buthylphenyl-guanine, BuPdG) or ribonucleotide reductase (hydroxyurea HU). A strong increase of radiation-induced chromosomal aberrations was observed in normal and HzAT cells post-treated with ara-C, APC and HU, but not in the presence of BuPdG. No enhancing effect was observed in cells derived from AT patients, except for HU post-irradiation treatment. These results suggest that the enzymes that can be inhibited by these agents are not directly involved in the repair of radiation damage induced in G[sub 2] cells from AT patients, indicating that probably the AT cells that we used lack the capability to transform the primary DNA lesions into reparable products, or that AT cells might contain a mutated form of DNA polymerase resistant to the inhibitors. (author).

  9. Septal membrane localization by C-terminal amphipathic α-helices of MinD in Bacillus subtilis mutant cells lacking MinJ or DivIVA.

    Science.gov (United States)

    Ishikawa, Kazuki; Matsuoka, Satoshi; Hara, Hiroshi; Matsumoto, Kouji

    2017-10-18

    The Min system, which inhibits assembly of the cytokinetic protein FtsZ, is largely responsible for positioning the division site in rod-shaped bacteria. It has been reported that MinJ, which bridges DivIVA and MinD, is targeted to the cell poles by an interaction with DivIVA, and that MinJ in turn recruits MinCD to the cell poles. MinC, however, is located primarily at active division sites at mid-cell when expressed from its native promoter. Surprisingly, we found that Bacillus subtilis MinD is located at nascent septal membranes and at an asymmetric site on lateral membranes between nascent septal membranes in filamentous cells lacking MinJ or DivIVA. Bacillus subtilis MinD has two amphipathic α-helices rich in basic amino acid residues at its C-terminus; one of these, named MTS1 here, is the counterpart of the membrane targeting sequence (MTS) in Escherichia coli MinD while the other, named MTS-like sequence (MTSL), is the nearest helix to MTS1. These amphipathic helices were located independently at nascent septal membranes in cells lacking MinJ or DivIVA, whereas elimination of the helices from the wild type protein reduced its localization considerably. MinD variants with altered MTS1 and MTSL, in which basic amino acid residues were replaced with proline or acidic residues, were not located at nascent septal membranes, indicating that the binding to the nascent septal membranes requires basic residues and a helical structure. The septal localization of MTSL, but not of MTS1, was dependent on host cell MinD. These results suggest that MinD is targeted to nascent septal membranes via its C-terminal amphipathic α-helices in B. subtilis cells lacking MinJ or DivIVA. Moreover, the diffuse distribution of MinD lacking both MTSs suggests that only a small fraction of MinD depends on MinJ for its localization to nascent septal membranes.

  10. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus.

    Science.gov (United States)

    Merkle, Florian T; Neuhausser, Werner M; Santos, David; Valen, Eivind; Gagnon, James A; Maas, Kristi; Sandoe, Jackson; Schier, Alexander F; Eggan, Kevin

    2015-05-12

    The CRISPR-Cas9 system has the potential to revolutionize genome editing in human pluripotent stem cells (hPSCs), but its advantages and pitfalls are still poorly understood. We systematically tested the ability of CRISPR-Cas9 to mediate reporter gene knockin at 16 distinct genomic sites in hPSCs. We observed efficient gene targeting but found that targeted clones carried an unexpectedly high frequency of insertion and deletion (indel) mutations at both alleles of the targeted gene. These indels were induced by Cas9 nuclease, as well as Cas9-D10A single or dual nickases, and often disrupted gene function. To overcome this problem, we designed strategies to physically destroy or separate CRISPR target sites at the targeted allele and developed a bioinformatic pipeline to identify and eliminate clones harboring deleterious indels at the other allele. This two-pronged approach enables the reliable generation of knockin hPSC reporter cell lines free of unwanted mutations at the targeted locus. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Interactome analysis of transcriptional coactivator multiprotein bridging factor 1 unveils a yeast AP-1-like transcription factor involved in oxidation tolerance of mycopathogen Beauveria bassiana.

    Science.gov (United States)

    Chu, Xin-Ling; Dong, Wei-Xia; Ding, Jin-Li; Feng, Ming-Guang; Ying, Sheng-Hua

    2018-02-01

    Oxidation tolerance is an important determinant to predict the virulence and biocontrol potential of Beauveria bassiana, a well-known entomopathogenic fungus. As a transcriptional coactivator, multiprotein bridging factor 1 mediates the activity of transcription factor in diverse physiological processes, and its homolog in B. bassiana (BbMBF1) contributes to fungal oxidation tolerance. In this study, the BbMBF1-interactomes under oxidative stress and normal growth condition were deciphered by mass spectrometry integrated with the immunoprecipitation. BbMBF1p factor has a broad interaction with proteins that are involved in various cellular processes, and this interaction is dynamically regulated by oxidative stress. Importantly, a B. bassiana homolog of yeast AP-1-like transcription factor (BbAP-1) was specifically associated with the BbMBF1-interactome under oxidation and significantly contributed to fungal oxidation tolerance. In addition, qPCR analysis revealed that several antioxidant genes are jointly controlled by BbAP-1 and BbMBF1. Conclusively, it is proposed that BbMBF1p protein mediates BbAP-1p factor to transcribe the downstream antioxidant genes in B. bassiana under oxidative stress. This study demonstrates for the first time a proteomic view of the MBF1-interactome in fungi, and presents an initial framework to probe the transcriptional mechanism involved in fungal response to oxidation, which will provide a new strategy to improve the biocontrol efficacy of B. bassiana.

  12. Identification of GATA2 and AP-1 activator elements within the enhancer VNTR occurring in intron 5 of the human SIRT3 gene

    Science.gov (United States)

    Human SIRT3 gene contains an intronic VNTR enhancer. A T > C transition occurring in the second repeat of each VNTR allele implies the presence/absence of a putative GATA binding motif. A partially overlapping AP-1 site, not affected by the transition, was also identified. Aims of the present study ...

  13. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells.

    Science.gov (United States)

    Kievit, Paul; Howard, Jane K; Badman, Michael K; Balthasar, Nina; Coppari, Roberto; Mori, Hiroyuki; Lee, Charlotte E; Elmquist, Joel K; Yoshimura, Akihiko; Flier, Jeffrey S

    2006-08-01

    Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.

  14. Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2015-08-01

    Full Text Available Background/Aims: Recent studies have indicated that CD38 gene deficiency results in dedifferentiation or transdifferentiation of arterial smooth muscle cells upon atherogenic stimulations. However, the molecular mechanisms mediating this vascular smooth muscle (SMC phenotypic switching remain unknown. Methods & Results: In the present study, we first characterized the phenotypic change in the primary cultures of coronary arterial myocytes (CAMs from CD38-/- mice. It was shown that CD38 deficiency decreased the expression of contractile marker calponin, SM22α and α-SMA but increased the expression of SMC dedifferentiation marker, vimentin, which was accompanied by enhanced cell proliferation. This phenotypic change in CD38-/- CAMs was enhanced by 7-ketocholesterol (7-Ket, an atherogenic stimulus. We further found that the CD38 deficiency decreased the expression and activity of nuclear factor E2-related factor 2 (Nrf2, a basic leucine zipper (bZIP transcription factor sensitive to redox regulation. Similar to CD38 deletion, Nrf2 gene silencing increased CAM dedifferentiation upon 7-Ket stimulation. In contrast, the overexpression of Nrf2 gene abolished 7-Ket-induced dedifferentiation in CD38-/- CAMs. Given the sensitivity of Nrf2 to oxidative stress, we determined the role of redox signaling in the regulation of Nrf2 expression and activity associated with CD38 effect in CAM phenotype changes. It was demonstrated that in CD38-/- CAMs, 7-Ket failed to stimulate the production of O2-., while in CD38+/+ CAMs 7-Ket induced marked O2-. production and enhancement of Nrf2 activity, which was substantially attenuated by NOX4 gene silencing. Finally, we demonstrated that 7-Ket-induced and NOX4-dependent O2-. production was inhibited by 8-Br-cADPR, an antagonist of cADPR or NED-19, an antagonist of NAADP as product of CD38 ADP-ribosylcyclase, which significantly inhibited the level of cytosolic Ca2+ and the activation of Nrf2 under 7-Ket. Conclusion

  15. Relationship between osteosarcoma and ionizing radiation hypersensitive human B lymphocyte cells lacking RecQL4 helicase

    International Nuclear Information System (INIS)

    Kohzaki, Masaoki; Moritake, Takashi; Okazaki, Ryuji; Ootsuyama, Akira

    2015-01-01

    Japanese society is now facing a transition period from aging society to super aging society. Concomitant with this situation, it is estimated that number of cancer patients and the requirement of less invasive Radiation Therapy (RT) for cancers will increase. Therefore, understanding of mechanisms without delay on second cancers caused by RT is indispensable. Osteosarcoma, an aggressive bone tumor frequently occurring 5% of cancers in young adult and children, increase statistically after RT for cancers. Although, mutation in p53, Rb and RecQL4 genes statistically relate with osteosarcoma incidence, precise mechanisms of osteosarcoma development by ionizing Radiation (IR) remain to be elucidated. Genome instability is one of the tumor promoting factors and we focused on RecQL4 in RecQ helicase family, which is involved in aging and cancer. We established RecQL4 knock-in human B lymphocyte Nalm-6 cells and found their hypersensitivity to IR, replication fork stall/collapses after IR. In this review, we summarize recently published studies on genetic cancer-predisposing syndrome and possible origins of bone cancers induced by IR. Then, we discuss what and how we address molecular mechanisms on osteosarcoma induced by IR in the future. (author)

  16. Lack of Connection Between Midgut Cell Autophagy Gene Expression and BmCPV Infection in the Midgut of Bombyx mori.

    Science.gov (United States)

    Yang, Xiaobing; Wu, Suli; Wu, Yongpeng; Liu, Yang; Qian, Yonghua; Jiao, Feng

    2015-01-01

    Autophagy is associated with multiple biological processes and has protective and defensive functions with respect to immunity, inflammation, and resistance to microbial infection. In this experiment, we wished to investigate whether autophagy is a factor in the midgut cell response of Bombyx mori to infection by the B. mori cytoplasmic polyhedrosis virus (BmCPV). Our results indicated that the expression of three autophagy-related genes (BmAtg8, BmAtg5, and BmAtg7) in the midgut did not change greatly after BmCPV infection in B. mori. Basal ATG8/ATG8PE protein expression was detected in different B. mori tissues by using western blot analysis. Immunohistochemistry showed that the ATG8/ATG8PE proteins were located mainly in the cytoplasm. ATG8/ATG8PE protein levels decreased at 12 and 16 h after BmCPV infection. Our results indicate that autophagy responded slightly to BmCPV infection, but could not prevent the invasion and replication of the virus. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  17. Lack of relationship between TIMP-1 tumour cell immunoreactivity, treatment efficacy and prognosis in patients with advanced epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Steffensen, Karina Dahl; Waldstrøm, Marianne; Christensen, Rikke Kølby; Bartels, Annette; Brünner, Nils; Jakobsen, Anders

    2010-01-01

    Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a natural inhibitor of the matrix metalloproteinases (MMPs) which are proteolytic enzymes involved in degradation of extracellular matrix thereby favoring tumour cell invasion and metastasis. TIMP-1 activity in tumour tissue may therefore play an essential role in the progression of a malignant tumour. The primary aim of the present study was to evaluate TIMP-1 protein immunoreactivity in tissue from primary ovarian cancer patients and associate these findings with the course of the disease including response to treatment in the individual patient. TIMP-1 was assessed by immunohistochemistry (in tissue micro arrays) in a total of 163 ovarian cancer specimens obtained from primary debulking surgery during 1991-1994 as part of a randomized clinical protocol. Positive TIMP-1 immunoreactivity was found in 12.3% of the tumours. The median survival time for the 143 patients with TIMP-1 negative tumours was 23.7 months [19.0-29.4] 95% CI, while the median survival time for the 20 patients with TIMP-1 positive tumours was 15.9 months [12.3-27.4] 95% CI. Although a difference of 7.8 months in median overall survival in favor of the TIMP-1 tumour negative patients was found, this difference did not reach statistical significance (p = 0.28, Kaplan-Meier, log-rank test). Moreover, TIMP-1 immunoreactivity was not associated with CA125 response (p = 0.53) or response at second look surgery (p = 0.72). TIMP-1 immunoreactivity in tumour tissue from patients with primary epithelial ovarian cancer did not correlate with patient survival or response to combination platinum/cyclophosphamide therapy

  18. Lack of T cell dysfunction and programmed cell death in human immunodeficiency virus type 1-infected chimpanzees correlates with absence of monocytotropic variants

    NARCIS (Netherlands)

    Schuitemaker, H.; Meyaard, L.; Kootstra, N. A.; Dubbes, R.; Otto, S. A.; Tersmette, M.; Heeney, J. L.; Miedema, F.

    1993-01-01

    In asymptomatic human immunodeficiency virus (HIV) infection in humans, disturbed T cell functions such as anergy and programmed cell death, thought to result from inappropriate signaling by antigen-presenting cells due to HIV infection, precede increase in virus load, decline in CD4+ T cell

  19. Nonobese Diabetic (NOD Mice Lack a Protective B-Cell Response against the “Nonlethal” Plasmodium yoelii 17XNL Malaria Protozoan

    Directory of Open Access Journals (Sweden)

    Mirian Mendoza

    2016-01-01

    Full Text Available Background. Plasmodium yoelii 17XNL is a nonlethal malaria strain in mice of different genetic backgrounds including the C57BL/6 mice (I-Ab/I-Enull used in this study as a control strain. We have compared the trends of blood stage infection with the nonlethal murine strain of P. yoelii 17XNL malaria protozoan in immunocompetent Nonobese Diabetic (NOD mice prone to type 1 diabetes (T1D and C57BL/6 mice (control mice that are not prone to T1D and self-cure the P. yoelii 17XNL infection. Prediabetic NOD mice could not mount a protective antibody response to the P. yoelii 17XNL-infected red blood cells (iRBCs, and they all succumbed shortly after infection. Our data suggest that the lack of anti-P. yoelii 17XNL-iRBCs protective antibodies in NOD mice is a result of parasite-induced, Foxp3+ T regulatory (Treg cells able to suppress the parasite-specific antibody secretion. Conclusions. The NOD mouse model may help in identifying new mechanisms of B-cell evasion by malaria parasites. It may also serve as a more accurate tool for testing antimalaria therapeutics due to the lack of interference with a preexistent self-curing mechanism present in other mouse strains.

  20. Murine bone marrow Lin⁻Sca⁻1⁺CD45⁻ very small embryonic-like (VSEL cells are heterogeneous population lacking Oct-4A expression.

    Directory of Open Access Journals (Sweden)

    Krzysztof Szade

    Full Text Available Murine very small embryonic-like (VSEL cells, defined by the Lin(-Sca-1(+CD45(- phenotype and small size, were described as pluripotent cells and proposed to be the most primitive hematopoietic precursors in adult bone marrow. Although their isolation and potential application rely entirely on flow cytometry, the immunophenotype of VSELs has not been extensively characterized. Our aim was to analyze the possible heterogeneity of Lin(-Sca(+CD45(- population and investigate the extent to which VSELs characteristics may overlap with that of hematopoietic stem cells (HSCs or endothelial progenitor cells (EPCs. The study evidenced that murine Lin(-Sca-1(+CD45(- population was heterogeneous in terms of c-Kit and KDR expression. Accordingly, the c-Kit(+KDR(-, c-Kit(-KDR(+, and c-Kit(-KDR(- subpopulations could be distinguished, while c-Kit(+KDR(+ events were very rare. The c-Kit(+KDR(- subset contained almost solely small cells, meeting the size criterion of VSELs, in contrast to relatively bigger c-Kit(-KDR(+ cells. The c-Kit(-KDR(-FSC(low subset was highly enriched in Annexin V-positive, apoptotic cells, hence omitted from further analysis. Importantly, using qRT-PCR, we evidenced lack of Oct-4A and Oct-4B mRNA expression either in whole adult murine bone marrow or in the sorted of Lin(-Sca-1(+CD45(-FSC(low population, even by single-cell qRT-PCR. We also found that the Lin(-Sca-1(+CD45(-c-Kit(+ subset did not exhibit hematopoietic potential in a single cell-derived colony in vitro assay, although it comprised the Sca-1(+c-Kit(+Lin(- (SKL CD34(-CD45(-CD105(+ cells, expressing particular HSC markers. Co-culture of Lin(-Sca-1(+CD45(-FSC(low with OP9 cells did not induce hematopoietic potential. Further investigation revealed that SKL CD45(-CD105(+ subset consisted of early apoptotic cells with fragmented chromatin, and could be contaminated with nuclei expelled from erythroblasts. Concluding, murine bone marrow Lin(-Sca-1(+CD45(-FSC(low cells are

  1. An increase in immature β-cells lacking Glut2 precedes the expansion of β-cell mass in the pregnant mouse.

    Directory of Open Access Journals (Sweden)

    Christine A Beamish

    Full Text Available A compensatory increase in β-cell mass occurs during pregnancy to counter the associated insulin resistance, and a failure in adaptation is thought to contribute to gestational diabetes. Insulin-expressing but glucose-transporter-2-low (Ins+Glut2LO progenitor cells are present in mouse and human pancreas, being predominantly located in extra-islet β-cell clusters, and contribute to the regeneration of the endocrine pancreas following induced ablation. We therefore sought to investigate the contribution of Ins+Glut2LO cells to β-cell mass expansion during pregnancy. Female C57Bl/6 mice were time mated and pancreata were collected at gestational days (GD 6, 9, 12, 15, and 18, and postpartum D7 (n = 4/time-point and compared to control (non-pregnant animals. Beta cell mass, location, proliferation (Ki67+, and proportion of Ins+Glut2LO cells were measured using immunohistochemistry and bright field or confocal microscopy. Beta cell mass tripled by GD18 and β-cell proliferation peaked at GD12 in islets (≥6 β-cells and small β-cell clusters (1-5 β-cells. The proportion and fraction of Ins+Glut2LO cells undergoing proliferation increased significantly at GD9 in both islets and clusters, preceding the increase in β-cell mass and proliferation, and their proliferation within clusters persisted until GD15. The overall number of clusters increased significantly at GD9. Quantitative PCR showed a significant increase in Pdx1 presence at GD9 vs. GD18 or control pancreas, and Pdx1 was visualized by immunohistochemistry within both Ins+Glut2LO and Ins+Glut2HI cells within clusters. These results indicate that Ins+Glut2LO cells are likely to contribute to β-cell mass expansion during pregnancy.

  2. Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-α and dexamethasone

    Directory of Open Access Journals (Sweden)

    Walseth Timothy F

    2008-03-01

    Full Text Available Abstract Background CD38 is expressed in human airway smooth muscle (HASM cells, regulates intracellular calcium, and its expression is augmented by tumor necrosis factor alpha (TNF-α. CD38 has a role in airway hyperresponsiveness, a hallmark of asthma, since deficient mice develop attenuated airway hyperresponsiveness compared to wild-type mice following intranasal challenges with cytokines such as IL-13 and TNF-α. Regulation of CD38 expression in HASM cells involves the transcription factor NF-κB, and glucocorticoids inhibit this expression through NF-κB-dependent and -independent mechanisms. In this study, we determined whether the transcriptional regulation of CD38 expression in HASM cells involves response elements within the promoter region of this gene. Methods We cloned a putative 3 kb promoter fragment of the human cd38 gene into pGL3 basic vector in front of a luciferase reporter gene. Sequence analysis of the putative cd38 promoter region revealed one NF-κB and several AP-1 and glucocorticoid response element (GRE motifs. HASM cells were transfected with the 3 kb promoter, a 1.8 kb truncated promoter that lacks the NF-κB and some of the AP-1 sites, or the promoter with mutations of the NF-κB and/or AP-1 sites. Using the electrophoretic mobility shift assays, we determined the binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB, AP-1, and GRE sites, and the specificity of this binding was confirmed by gel supershift analysis with appropriate antibodies. Results TNF-α induced a two-fold activation of the 3 kb promoter following its transfection into HASM cells. In cells transfected with the 1.8 kb promoter or promoter constructs lacking NF-κB and/or AP-1 sites or in the presence of dexamethasone, there was no induction in the presence of TNF-α. The binding of nuclear proteins to oligonucleotides encoding the putative cd38 NF-κB site and some of the six AP-1 sites was increased by TNF-α, and to

  3. Inability to induce consistent T-cell responses recognizing conserved regions within HIIV-1 antigens: a potential mechanism for lack of vaccine efficacy in the step study

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Szinger, James [Los Alamos National Laboratory

    2009-01-01

    T cell based vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a high probability of matching the epitope induced by vaccination with the infecting viral strain. We compared the frequency and specificity of the CTL epitopes elicited by the replication defective AdS gag/pol/nef vaccine used in the STEP trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. On average vaccination elicited only one epitope per gene. Importantly, the highly conserved epitopes in gag, pol, and nef (> 80% of strains in the current collection of the Los Alamos database [www.hiv.lanl.gov]) were rarely elicited by vaccination. Moreover there was a statistically significant skewing of the T cell response to relative variable epitopes of each gene; only 20% of persons possessed > 3 T cell responses to epitopes likely to be found in circulating strains in the CladeB populations in which the Step trial was conducted. This inability to elicit T cell responses likely to be found in circulating viral strains is a likely factor in the lack of efficacy of the vaccine utilized in the STEP trial. Modeling of the epitope specific responses elicited by vaccination, we project that a median of 8-10 CD8+ T cell epitopes are required to provide >80% likelihood of eliciting at least 3 CD8+ T cell epitopes that would be found on a circulating population of viruses. Development of vaccine regimens which elicit either a greater breadth of responses or elicit responses to conserved regions of the HIV-1 genome are needed to fully evaluate the concept of whether induction of T cell immunity can alter HIV-1 in vivo.

  4. Premature Aging Phenotype in Mice Lacking High-Affinity Nicotinic Receptors: Region-Specific Changes in Layer V Pyramidal Cell Morphology.

    Science.gov (United States)

    Konsolaki, Eleni; Skaliora, Irini

    2015-08-01

    The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Lack of nonfunctional B-cell receptor rearrangements in a patient with normal B cell numbers despite partial RAG1 deficiency and atypical SCID/Omenn syndrome

    DEFF Research Database (Denmark)

    Ohm-Laursen, Line; Nielsen, Christian; Fisker, Niels

    2008-01-01

    rearrangements to those of age-matched controls, cord blood, and adults revealed an almost total lack of nonproductive rearrangements (2.7% versus 14.7%, 27.6%, and 19.8% in the controls, respectively) indicating failure to correct out-of-frame rearrangements by a second rearrangement on the homologous...

  6. Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell death.

    Science.gov (United States)

    Chen, Junqin; Fontes, Ghislaine; Saxena, Geetu; Poitout, Vincent; Shalev, Anath

    2010-02-01

    We have previously shown that lack of thioredoxin-interacting protein (TXNIP) protects against diabetes and glucotoxicity-induced beta-cell apoptosis. Because the role of TXNIP in lipotoxicity is unknown, the goal of the present study was to determine whether TXNIP expression is regulated by fatty acids and whether TXNIP deficiency also protects beta-cells against lipoapoptosis. RESARCH DESIGN AND METHODS: To determine the effects of fatty acids on beta-cell TXNIP expression, INS-1 cells and isolated islets were incubated with/without palmitate and rats underwent cyclic infusions of glucose and/or Intralipid prior to islet isolation and analysis by quantitative real-time RT-PCR and immunoblotting. Using primary wild-type and TXNIP-deficient islets, we then assessed the effects of palmitate on apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]), mitochondrial death pathway (cytochrome c release), and endoplasmic reticulum (ER) stress (binding protein [BiP], C/EBP homologous protein [CHOP]). Effects of TXNIP deficiency were also tested in the context of staurosporine (mitochondrial damage) or thapsigargin (ER stress). Glucose elicited a dramatic increase in islet TXNIP expression both in vitro and in vivo, whereas fatty acids had no such effect and, when combined with glucose, even abolished the glucose effect. We also found that TXNIP deficiency does not effectively protect against palmitate or thapsigargin-induced beta-cell apoptosis, but specifically prevents staurosporine- or glucose-induced toxicity. Our results demonstrate that unlike glucose, fatty acids do not induce beta-cell expression of proapoptotic TXNIP. They further reveal that TXNIP deficiency specifically inhibits the mitochondrial death pathway underlying beta-cell glucotoxicity, whereas it has very few protective effects against ER stress-mediated lipoapoptosis.

  7. Benzene activates caspase-4 and -12 at the transcription level, without an association with apoptosis, in mouse bone marrow cells lacking the p53 gene

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jung-Yeon; Han, Jeong-Hee; Yoon, Byung-Il [Kangwon National University, School of Veterinary Medicine, Chuncheon, Gangwon (Korea); Hirabayashi, Yoko; Kodama, Yukio; Kanno, Jun [National Institute of Health Sciences, Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, Tokyo (Japan); Choi, Yang-Kyu [Konkuk University, College of Veterinary Medicine, Seoul (Korea); Inoue, Tohru [National Institute of Health Sciences, Biological Safety and Research Center, Tokyo (Japan)

    2009-08-15

    Benzene is a well-known environmental pollutant that can induce hematotoxicity, aplastic anemia, acute myelogenous leukemia, and lymphoma. However, although benzene metabolites are known to induce oxidative stress and disrupt the cell cycle, the mechanism underlying lympho/leukemogenicity is not fully understood. Caspase-4 (alias caspase-11) and -12 are inflammatory caspases implicated in inflammation and endoplasmic reticulum stress-induced apoptosis. The objectives of this study were to investigate the altered expression of caspase-4 and -12 in mouse bone marrow after benzene exposure and to determine whether their alterations are associated with benzene-induced bone marrow toxicity, especially cellular apoptosis. In addition, we evaluated whether the p53 gene is involved in regulating the mechanism, using both wild-type (WT) mice and mice lacking the p53 gene. For this study, 8-week-old C57BL/6 mice [WT and p53 knockout (KO)] were administered a benzene solution (150 mg/kg diluted in corn oil) via oral gavage once daily, 5 days/week, for 1 or 2 weeks. Blood and bone marrow cells were collected and cell counts were measured using a Coulter counter. Total mRNA and protein extracts were prepared from the harvested bone marrow cells. Then qRT-PCR and Western blotting were performed to detect changes in the caspases at the mRNA and protein level, respectively. A DNA fragmentation assay and Annexin-V staining were carried out on the bone marrow cells to detect apoptosis. Results indicated that when compared to the control, leukocyte number and bone marrow cellularity decreased significantly in WT mice. The expression of caspase-4 and -12 mRNA increased significantly after 12 days of benzene treatment in the bone marrow cells of benzene-exposed p53KO mice. However, apoptosis detection assays indicated no evidence of apoptosis in p53KO or WT mice. In addition, no changes of other apoptosis-related caspases, such as caspase-3 and -9, were found in WT or p53KO mice at the

  8. Lack of clinical AIDS in SIV-infected sooty mangabeys with significant CD4+ T cell loss is associated with double-negative T cells

    Science.gov (United States)

    Milush, Jeffrey M.; Mir, Kiran D.; Sundaravaradan, Vasudha; Gordon, Shari N.; Engram, Jessica; Cano, Christopher A.; Reeves, Jacqueline D.; Anton, Elizabeth; O’Neill, Eduardo; Butler, Eboneé; Hancock, Kathy; Cole, Kelly S.; Brenchley, Jason M.; Else, James G.; Silvestri, Guido; Sodora, Donald L.

    2011-01-01

    SIV infection of natural host species such as sooty mangabeys results in high viral replication without clinical signs of simian AIDS. Studying such infections is useful for identifying immunologic parameters that lead to AIDS in HIV-infected patients. Here we have demonstrated that acute, SIV-induced CD4+ T cell depletion in sooty mangabeys does not result in immune dysfunction and progression to simian AIDS and that a population of CD3+CD4–CD8– T cells (double-negative T cells) partially compensates for CD4+ T cell function in these animals. Passaging plasma from an SIV-infected sooty mangabey with very few CD4+ T cells to SIV-negative animals resulted in rapid loss of CD4+ T cells. Nonetheless, all sooty mangabeys generated SIV-specific antibody and T cell responses and maintained normal levels of plasma lipopolysaccharide. Moreover, all CD4-low sooty mangabeys elicited a de novo immune response following influenza vaccination. Such preserved immune responses as well as the low levels of immune activation observed in these animals were associated with the presence of double-negative T cells capable of producing Th1, Th2, and Th17 cytokines. These studies indicate that SIV-infected sooty mangabeys do not appear to rely entirely on CD4+ T cells to maintain immunity and identify double-negative T cells as a potential subset of cells capable of performing CD4+ T cell–like helper functions upon SIV-induced CD4+ T cell depletion in this species. PMID:21317533

  9. Synergistic inhibition of the APC/C by the removal of APC15 in HCT116 cells lacking UBE2C.

    Science.gov (United States)

    Garvanska, Dimitriya H; Larsen, Marie Sofie Yoo; Nilsson, Jakob

    2016-10-15

    The spindle assembly checkpoint (SAC) inhibits the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores by generating a diffusible inhibitor termed the mitotic checkpoint complex (MCC). At metaphase, rapid activation of the APC/C requires removal of the MCC, a process that has been shown to depend on the APC/C E2 enzymes, UBE2C and UBE2S. Here we investigate the in vivo role of the APC/C E2 enzymes in SAC silencing using CRISPR/Cas9 genetically engineered HCT116 UBE2C or UBE2S null cell lines. Using live cell assays, we show that UBE2C and UBE2S make a minor contribution to SAC silencing in HCT116 cells. Strikingly, in cells specifically lacking UBE2C, we observe a strong synergistic inhibition of mitotic progression when we stabilize the MCC on the APC/C by depleting APC15, potentially reflecting increased competition between the MCC and the remaining initiating E2 enzyme UBE2D. In conclusion, we provide in vivo insight into the APC/C E2 module and its interplay with SAC silencing components. © 2016. Published by The Company of Biologists Ltd.

  10. Lack of Both Nucleotide-Binding Oligomerization Domain-Containing Proteins 1 and 2 Primes T Cells for Activation-Induced Cell Death.

    Science.gov (United States)

    Kasimsetty, Sashi G; Shigeoka, Alana A; Scheinok, Andrew A; Gavin, Amanda L; Ulevitch, Richard J; McKay, Dianne B

    2017-08-01

    Nucleotide-binding oligomerization domain (Nod)-containing proteins Nod1 and Nod2 play important roles in the innate immune response to pathogenic microbes, but mounting data suggest these pattern recognition receptors might also play key roles in adaptive immune responses. Targeting Nod1 and Nod2 signaling pathways in T cells is likely to provide a new strategy to modify inflammation in a variety of disease states, particularly those that depend on Ag-induced T cell activation. To better understand how Nod1 and Nod2 proteins contribute to adaptive immunity, this study investigated their role in alloantigen-induced T cell activation and asked whether their absence might impact in vivo alloresponses using a severe acute graft versus host disease model. The study provided several important observations. We found that the simultaneous absence of Nod1 and Nod2 primed T cells for activation-induced cell death. T cells from Nod1 × 2 -/- mice rapidly underwent cell death upon exposure to alloantigen. The Nod1 × 2 -/- T cells had sustained p53 expression that was associated with downregulation of its negative regulator MDM2. In vivo, mice transplanted with an inoculum containing Nod1 × 2 -/- T cells were protected from severe graft versus host disease. The results show that the simultaneous absence of Nod1 and Nod2 is associated with accelerated T cell death upon alloantigen encounter, suggesting these proteins might provide new targets to ameliorate T cell responses in a variety of inflammatory states, including those associated with bone marrow or solid organ transplantation. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Generation of Novel Traj18-Deficient Mice Lacking Vα14 Natural Killer T Cells with an Undisturbed T Cell Receptor α-Chain Repertoire.

    Directory of Open Access Journals (Sweden)

    Nyambayar Dashtsoodol

    Full Text Available Invariant Vα14 natural killer T (NKT cells, characterized by the expression of a single invariant T cell receptor (TCR α chain encoded by rearranged Trav11 (Vα14-Traj18 (Jα18 gene segments in mice, and TRAV10 (Vα24-TRAJ18 (Jα18 in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells.

  12. Doxofylline does not increase formoterol-induced cAMP nor MKP-1 expression in ASM cells resulting in lack of anti-inflammatory effect.

    Science.gov (United States)

    Patel, Brijeshkumar S; Kugel, Michael J; Baehring, Gina; Ammit, Alaina J

    2017-08-01

    The xanthine doxofylline has been examined in clinical trials and shown to have efficacy and greater tolerability than theophylline in asthma and chronic obstructive pulmonary disease. The 'novofylline' doxofylline has demonstrated bronchodilatory and anti-inflammatory actions in in vivo and ex vivo experimental models of respiratory disease. However, there are limited studies in vitro. We address this herein and examine whether doxofylline has anti-inflammatory impact on primary cultures of airway smooth muscle (ASM) cells. We conduct a series of investigations comparing and contrasting doxofylline with the archetypal xanthine, theophylline, and the specific phosphodiesterase (PDE) 4 inhibitor, cilomilast. We confirm that the xanthine drugs do not have action as PDE inhibitors in ASM cells. Unlike cilomilast, doxofylline (and theophylline) do not increase cAMP production in ASM cells induced by long-acting β 2 -agonist formoterol. Similar to theophylline, and consistent with the lack of cAMP potentiation, doxofylline does not augment formoterol-induced upregulation of the anti-inflammatory protein mitogen-activated protein kinase phosphatase 1 (MKP-1). However, when we examine the effect of doxofylline on secretion of the interleukin 8 from ASM cells stimulated by tumour necrosis factor (an in vitro surrogate measure of inflammation), there was no repression of inflammation. This is in contrast to the anti-inflammatory impact exerted by theophylline and cilomilast in confirmatory experiments. In summary, our study is the first to examine the effect of doxofylline on ASM cells in vitro and highlights some distinct differences between two key members of xanthine drug family, doxofylline and theophylline. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Alloactivated HLA class II-positive T-cell lines induce IL-2 reactivity but lack accessory cell function in mixed leukocyte culture

    DEFF Research Database (Denmark)

    Odum, N; Dickmeiss, E; Hofmann, B

    1989-01-01

    in the primary mixed leukocyte reaction (median counts per minute (cpm) 5.5 x 10(3] was significantly lower than that of peripheral blood mononuclear cells (cpm: 44.0 x 10(3]. The stimulation by Ta was almost only seen when the Ta were specifically directed against the class II antigens of the responder...... peripheral blood mononuclear cells (i.e., in combinations with "backstimulation") (median cpm: 21,000). In mixed leukocyte reaction combinations without backstimulation, significantly weaker reactions were seen (median cpm: 1,000). This observation may explain previous controversies concerning...

  14. Lack of cross-resistance to fostriecin in a human small-cell lung carcinoma cell line showing topoisomerase II-related drug resistance

    NARCIS (Netherlands)

    de Jong, Steven; Zijlstra, J G; Mulder, Nanno; de Vries, Liesbeth

    1991-01-01

    Cells exhibiting decreased topoisomerase II (Topo II) activity are resistant to several drugs that require Topo II as an intermediate. These drugs are cytotoxic due to the formation of a cleavable complex between the drug, Topo II and DNA. Fostriecin belongs to a new class of drugs that inhibit Topo

  15. Lack of a Functional VHL Gene Product Sensitizes Renal Cell Carcinoma Cells to the Apoptotic Effects of the Protein Synthesis Inhibitor Verrucarin A

    Directory of Open Access Journals (Sweden)

    Girma M. Woldemichael

    2012-08-01

    Full Text Available Verrucarin A (VA is a small molecule derived from the fungal plant pathogen Myrothecium verrucaria and was identified as a selective inhibitor of clear cell renal cell carcinoma (CCRCC cell proliferation in a high-throughput screen of a library of naturally occurring small molecules. CCRCC arises as a result of loss-of-function mutations in the von Hippel-Lindau (VHL gene. Here we show that VA inhibits protein translation initiation culminating in apoptosis through the extrinsic signaling pathway. Reintroduction of the VHL gene in CCRCC cells afforded resistance to VA's apoptotic effects. This resistance is mediated in part by the formation of stress granules that entrap signaling molecules that initiate the apoptotic signaling cascade. The VHL gene product was found to be a component of stress granules that develop as result of VA treatment. These findings reveal an important role for the VHL gene product in cytotoxic stress response and have important implications for the rational development of VA-related compounds in chemotherapeutic targeting of CCRCC.

  16. Lack of a functional VHL gene product sensitizes renal cell carcinoma cells to the apoptotic effects of the protein synthesis inhibitor verrucarin A.

    Science.gov (United States)

    Woldemichael, Girma M; Turbyville, Thomas J; Vasselli, James R; Linehan, W Marston; McMahon, James B

    2012-08-01

    Verrucarin A (VA) is a small molecule derived from the fungal plant pathogen Myrothecium verrucaria and was identified as a selective inhibitor of clear cell renal cell carcinoma (CCRCC) cell proliferation in a high-throughput screen of a library of naturally occurring small molecules. CCRCC arises as a result of loss-of-function mutations in the von Hippel-Lindau (VHL) gene. Here we show that VA inhibits protein translation initiation culminating in apoptosis through the extrinsic signaling pathway. Reintroduction of the VHL gene in CCRCC cells afforded resistance to VA's apoptotic effects. This resistance is mediated in part by the formation of stress granules that entrap signaling molecules that initiate the apoptotic signaling cascade. The VHL gene product was found to be a component of stress granules that develop as result of VA treatment. These findings reveal an important role for the VHL gene product in cytotoxic stress response and have important implications for the rational development of VA-related compounds in chemotherapeutic targeting of CCRCC.

  17. Lack of a Functional VHL Gene Product Sensitizes Renal Cell Carcinoma Cells to the Apoptotic Effects of the Protein Synthesis Inhibitor Verrucarin A12

    Science.gov (United States)

    Woldemichael, Girma M; Turbyville, Thomas J; Vasselli, James R; Linehan, W Marston; McMahon, James B

    2012-01-01

    Verrucarin A (VA) is a small molecule derived from the fungal plant pathogen Myrothecium verrucaria and was identified as a selective inhibitor of clear cell renal cell carcinoma (CCRCC) cell proliferation in a high-throughput screen of a library of naturally occurring small molecules. CCRCC arises as a result of loss-of-function mutations in the von Hippel-Lindau (VHL) gene. Here we show that VA inhibits protein translation initiation culminating in apoptosis through the extrinsic signaling pathway. Reintroduction of the VHL gene in CCRCC cells afforded resistance to VA's apoptotic effects. This resistance is mediated in part by the formation of stress granules that entrap signaling molecules that initiate the apoptotic signaling cascade. The VHL gene product was found to be a component of stress granules that develop as result of VA treatment. These findings reveal an important role for the VHL gene product in cytotoxic stress response and have important implications for the rational development of VA-related compounds in chemotherapeutic targeting of CCRCC. PMID:22952429

  18. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum.

    Science.gov (United States)

    Sun, Wei; Huang, Wenjun; Li, Zhineng; Song, Chi; Liu, Di; Liu, Yongliang; Hayward, Alice; Liu, Yifei; Huang, Hongwen; Wang, Ying

    2014-03-01

    MADS-box transcriptional regulators play important roles during plant development. Based on phylogenetic reconstruction, the AP1/SEP/AGL6 superclade of floral MADS-box genes underwent one or two duplication events in the common ancestor of the core eudicots. However, the functional evolution of the AP1/SEP/AGL6 superclade in basal eudicots remains uncharacterized. Epimedium sagittatum is a basal eudicot species valued for its medicinal properties and showing unique floral morphology. In this study, structural and functional variation of FUL-like (AP1 subfamily), SEP-like and AGL6-like genes in this species was investigated to further our understanding of flower evolution in angiosperms. Detailed investigations into the microsynteny and evolutionary history of the floral A and E class MADS-box genes in eudicots were undertaken and used to trace their genomic rearrangements. One AP1-like gene, two SEP-like genes and one AGL6-like gene were cloned from E. sagittatum. Their expression patterns were examined using quantitative RT-PCR in different vegetative and reproductive organs at two developmental stages. Yeast two-hybrid assays were carried out among AP1/SEP/AGL6 superclade, AP3/PI and AGAMOUS subfamily members for elucidation of dimerization patterns. In addition, possible formation of a ternary complex involving B class proteins with the A class protein EsFUL-like, the E class SEP-like protein EsAGL2-1 or the AGL6-class protein EsAGL6 were detected using yeast three-hybrid assays. Transgenic Arabidopsis or tobacco plants expressing EsFUL-like, EsAGL2-1 and EsAGL6-like under the cauliflower mosaic virus (CaMV) 35S promoter were generated and analysed. Genomic studies of AP1 syntenic regions in arabidopsis, columbine, strawberry, papaya, peach, grapevine and tomato were conducted for microsyntenic analyses. Sequence and phylogenetic analyses showed that EsFUL-like is a member of the AP1 (A class) subfamily, EsAGL2-1 and EsAGL2-2 belong to the SEP-like (E class

  19. Cytokine production but lack of proliferation in peripheral blood mononuclear cells from chronic Chagas' disease cardiomyopathy patients in response to T. cruzi ribosomal P proteins.

    Directory of Open Access Journals (Sweden)

    Silvia A Longhi

    2014-06-01

    Full Text Available BACKGROUND: Trypanosoma cruzi ribosomal P proteins, P2β and P0, induce high levels of antibodies in patients with chronic Chagas' disease Cardiomyopathy (CCC. It is well known that these antibodies alter the beating rate of cardiomyocytes and provoke apoptosis by their interaction with β1-adrenergic and M2-muscarinic cardiac receptors. Based on these findings, we decided to study the cellular immune response to these proteins in CCC patients compared to non-infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated proliferation, presence of surface activation markers and cytokine production in peripheral blood mononuclear cells (PBMC stimulated with P2β, the C-terminal portion of P0 (CP0 proteins and T. cruzi lysate from CCC patients predominantly infected with TcVI lineage. PBMC from CCC patients cultured with P2β or CP0 proteins, failed to proliferate and express CD25 and HLA-DR on T cell populations. However, multiplex cytokine assays showed that these antigens triggered higher secretion of IL-10, TNF-α and GM-CSF by PBMC as well as both CD4+ and CD8+ T cells subsets of CCC subjects. Upon T. cruzi lysate stimulation, PBMC from CCC patients not only proliferated but also became activated within the context of Th1 response. Interestingly, T. cruzi lysate was also able to induce the secretion of GM-CSF by CD4+ or CD8+ T cells. CONCLUSIONS/SIGNIFICANCE: Our results showed that although the lack of PBMC proliferation in CCC patients in response to ribosomal P proteins, the detection of IL-10, TNF-α and GM-CSF suggests that specific T cells could have both immunoregulatory and pro-inflammatory potential, which might modulate the immune response in Chagas' disease. Furthermore, it was possible to demonstrate for the first time that GM-CSF was produced by PBMC of CCC patients in response not only to recombinant ribosomal P proteins but also to parasite lysate, suggesting the value of this cytokine to evaluate T cells responses in T

  20. Antibody response against Betaferon® in immune tolerant mice: involvement of marginal zone B-cells and CD4+ T-cells and apparent lack of immunological memory.

    Science.gov (United States)

    Sauerborn, Melody; van Beers, Miranda M C; Jiskoot, Wim; Kijanka, Grzegorz M; Boon, Louis; Schellekens, Huub; Brinks, Vera

    2013-01-01

    The immunological processes underlying immunogenicity of recombinant human therapeutics are poorly understood. Using an immune tolerant mouse model we previously demonstrated that aggregates are a major trigger of the antidrug antibody (ADA) response against recombinant human interferon beta (rhIFNβ) products including Betaferon®, and that immunological memory seems to be lacking after a rechallenge with non-aggregated rhIFNβ. The apparent absence of immunological memory indicates a CD4+ T-cell independent (Tind) immune response underlying ADA formation against Betaferon®. This hypothesis was tested. Using the immune tolerant mouse model we first validated that rechallenge with highly aggregated rhIFNβ (Betaferon®) does not lead to a subsequent fast increase in ADA titers, suggesting a lack of immunological memory. Next we assessed whether Betaferon® could act as Tind antigen by inactivation of marginal zone (MZ) B-cells during treatment. MZ B-cells are major effector cells involved in a Tind immune response. In a following experiment we depleted the mice from CD4+ T-cells to test their involvement in the ADA response against Betaferon®. Inactivation of MZ B-cells at the start of Betaferon® treatment drastically lowered ADA levels, suggesting a Tind immune response. However, persistent depletion of CD4+ T-cells before and during Betaferon® treatment abolished the ADA response in almost all mice. The immune response against rhIFNβ in immune tolerant mice is neither a T-cell independent nor a classical T-cell dependent immune response. Further studies are needed to confirm absence of immunological memory (cells).

  1. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity.

    Science.gov (United States)

    Usongo, Valentine; Martel, Makisha; Balleydier, Aurélien; Drolet, Marc

    2016-04-01

    R-loop formation occurs when the nascent RNA hybridizes with the template DNA strand behind the RNA polymerase. R-loops affect a wide range of cellular processes and their use as origins of replication was the first function attributed to them. In Escherichia coli, R-loop formation is promoted by the ATP-dependent negative supercoiling activity of gyrase (gyrA and gyrB) and is inhibited by topoisomerase (topo) I (topA) relaxing transcription-induced negative supercoiling. RNase HI (rnhA) degrades the RNA moiety of R-loops. The depletion of RNase HI activity in topA null mutants was previously shown to lead to extensive DNA relaxation, due to DNA gyrase inhibition, and to severe growth and chromosome segregation defects that were partially corrected by overproducing topo III (topB). Here, DNA gyrase assays in crude cell extracts showed that the ATP-dependent activity (supercoiling) of gyrase but not its ATP-independent activity (relaxation) was inhibited in topA null cells lacking RNase HI. To characterize the cellular event(s) triggered by the absence of RNase HI, we performed a genetic screen for suppressors of the growth defect of topA rnhA null cells. Suppressors affecting genes in replication (holC2::aph and dnaT18::aph) nucleotide metabolism (dcd49::aph), RNA degradation (rne59::aph) and fimbriae synthesis (fimD22::aph) were found to reduce replication from R-loops and to restore supercoiling, thus pointing to a correlation between R-loop-dependent replication in topA rnhA mutants and the inhibition of gyrase activity and growth. Interestingly, the position of fimD on the E. coli chromosome corresponds to the site of one of the five main putative origins of replication from R-loops in rnhA null cells recently identified by next-generation sequencing, thus suggesting that the fimD22::aph mutation inactivated one of these origins. Furthermore, we show that topo III overproduction is unable to complement the growth defect of topA rnhA null mutants at low

  2. Cinnamoyloxy-mammeisin Isolated from Geopropolis Attenuates Inflammatory Process by Inhibiting Cytokine Production: Involvement of MAPK, AP-1, and NF-κB.

    Science.gov (United States)

    Franchin, Marcelo; Rosalen, Pedro Luiz; da Cunha, Marcos Guilherme; Silva, Rangel Leal; Colón, David F; Bassi, Gabriel Shimizu; de Alencar, Severino Matias; Ikegaki, Masaharu; Alves-Filho, José C; Cunha, Fernando Q; Beutler, John A; Cunha, Thiago Mattar

    2016-07-22

    Chemical compounds belonging to the class of coumarins have promising anti-inflammatory potential. Cinnamoyloxy-mammeisin (CNM) is a 4-phenylcoumarin that can be isolated from Brazilian geopropolis. To our knowledge, its anti-inflammatory activity has never been studied. Therefore, the present study investigated the anti-inflammatory activity of CNM and elucidated its mechanism of action on isolated macrophages. Pretreatment with CNM reduced neutrophil migration into the peritoneal and joint cavity of mice. Likewise, CNM reduced the in vitro and in vivo release of TNF-α and CXCL2/MIP-2. Regarding the possible molecular mechanism of action, CNM reduced the phosphorylation of proteins ERK 1/2, JNK, p38 MAPK, and AP-1 (subunit c-jun) in PG-stimulated macrophages. Pretreatment with CNM also reduced NF-κB activation in RAW 264.7 macrophages stably expressing the NF-κB-luciferase reporter gene. On the other hand, it did not alter IκBα degradation or nuclear translocation of p65. Thus, the results of this study demonstrate promising anti-inflammatory activity of CNM and provide an explanation of its mechanism of action in macrophages via inhibition of MAPK signaling, AP-1, and NF-κB.

  3. Lack of T-cell receptor-induced signaling is crucial for CD95 ligand up-regulation and protects cutaneous T-cell lymphoma cells from activation-induced cell death.

    Science.gov (United States)

    Klemke, Claus-Detlev; Brenner, Dirk; Weiss, Eva-Maria; Schmidt, Marc; Leverkus, Martin; Gülow, Karsten; Krammer, Peter H

    2009-05-15

    Restimulation of previously activated T cells via the T-cell receptor (TCR) leads to activation-induced cell death (AICD), which is, at least in part, dependent on the death receptor CD95 (APO-1, FAS) and its natural ligand (CD95L). Here, we characterize cutaneous T-cell lymphoma (CTCL) cells (CTCL tumor cell lines and primary CTCL tumor cells from CTCL patients) as AICD resistant. We show that CTCL cells have elevated levels of the CD95-inhibitory protein cFLIP. However, cFLIP is not responsible for CTCL AICD resistance. Instead, our data suggest that reduced TCR-proximal signaling in CTCL cells is responsible for the observed AICD resistance. CTCL cells exhibit no PLC-gamma1 activity, resulting in an impaired Ca(2+)release and reduced generation of reactive oxygen species upon TCR stimulation. Ca(2+) and ROS production are crucial for up-regulation of CD95L and reconstitution of both signals resulted in AICD sensitivity of CTCL cells. In accordance with these data, CTCL tumor cells from patients with Sézary syndrome do not up-regulate CD95L upon TCR-stimulation and are therefore resistant to AICD. These results show a novel mechanism of AICD resistance in CTCL that could have future therapeutic implications to overcome apoptosis resistance in CTCL patients.

  4. Effects of T cell depletion in radiation bone marrow chimeras. I. Evidence for a donor cell population which increases allogeneic chimerism but which lacks the potential to produce GVHD

    International Nuclear Information System (INIS)

    Sykes, M.; Sheard, M.; Sachs, D.H.

    1988-01-01

    The opposing problems of graft-vs-host disease (GVHD) and failure of alloengraftment present major obstacles to the application of bone marrow transplantation (BMT) across complete MHC barriers. The addition of syngeneic T-cell-depleted (TCD) bone marrow (BM) to untreated fully allogeneic marrow inocula in lethally irradiated mice has been previously shown to provide protection from GVHD. We have used this model to study the effects of allogeneic T cells on levels of chimerism in recipients of mixed marrow inocula. The results indicate that T cells in allogeneic BM inocula eliminate both coadministered recipient-strain and radioresistant host hematopoietic elements to produce complete allogeneic chimerism without clinical GVHD. To determine the role of GVH reactivity in this phenomenon, we performed similar studies in an F1 into parent combination, in which the genetic potential for GVHD is lacking. The presence of T cells in F1 marrow inocula led to predominant repopulation with F1 lymphocytes in such chimeras, even when coadministered with TCD-recipient-strain BM. These results imply that the ability of allogeneic BM cells removed by T cell depletion to increase levels of allochimerism may be mediated by a population which is distinct from that which produces GVHD. These results may have implications for clinical BM transplantation

  5. Energy brands lack vitality

    International Nuclear Information System (INIS)

    Godri, S.; Wilders, E.

    2004-01-01

    The three Dutch energy companies (Nuon, Essent and Eneco Energie) have relatively little brand strength. The brands are not perceived to be sufficiently different from one another and are not valued by consumers. With liberalisation imminent, this is hardly a strong starting point. How can you win over consumers if it is not clear what is on offer? In the business market, decision-makers are better placed to distinguish between brands. However, the brands lack vitality in this sector of the market too. The only consolation is that the situation is by no means exclusive to the Netherlands [nl

  6. Eucalyptus globulus extract protects against UVB-induced photoaging by enhancing collagen synthesis via regulation of TGF-β/Smad signals and attenuation of AP-1.

    Science.gov (United States)

    Park, Bom; Hwang, Eunson; Seo, Seul A; Cho, Jin-Gyeong; Yang, Jung-Eun; Yi, Tae-Hoo

    2018-01-01

    UV irradiation triggers the overproduction of matrix metalloproteinases and collagen degradation, which in turn causes increased pigmentation, dryness, and deep wrinkling of the skin. These chronic symptoms are collectively referred to as photoaging. Eucalyptus globulus is an evergreen tree that is widely used in cosmetics because of its antimicrobial activity. In this study, we investigated the protective effect of 50% ethanol extracts of Eucalyptus globulus on UV-induced photoaging in vitro and in vivo. Normal human dermal fibroblasts were treated with Eucalyptus globulus at concentrations ranging from 1 to 100 μg/mL after UVB or non-UVB irradiation. We found that Eucalyptus globulus suppressed the expression of MMPs and IL-6, but increased the expression of TGF-β1 and procollagen type 1. In addition, Eucalyptus globulus inhibited activation of the AP-1 transcription factor, an inducer of MMPs. Eucalyptus globulus was also found to regulate TGF-β/Smad signaling by reversing the activity of negative Smad regulators. Lastly, in vivo studies showed that topical application of Eucalyptus globulus on UVB-irradiated hairless mice reduced wrinkle formation and dryness by down-regulating MMP-1 and up-regulating expression of elastin, TGF-β1, and procollagen type 1. Taken together, these data suggest that Eucalyptus globulus may be a useful agent in cosmetic products. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway.

    Directory of Open Access Journals (Sweden)

    Juin-Hua Huang

    2015-07-01

    Full Text Available Collaboration between heterogeneous pattern recognition receptors (PRRs leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3 and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA, genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.

  8. Utilization of Cell-Transfer Technique for Molecular Testing on Hematoxylin-Eosin-Stained Sections: A Viable Option for Small Biopsies That Lack Tumor Tissues in Paraffin Block.

    Science.gov (United States)

    Wu, Howard H; Jovonovich, Stephen M; Randolph, Melissa; Post, Kristin M; Sen, Joyashree D; Curless, Kendra; Cheng, Liang

    2016-12-01

    - In some instances the standard method of doing molecular testing from formalin-fixed, paraffin-embedded block is not possible because of limited tissue. Tumor cell-enriched cell-transfer technique has been proven useful for performing immunocytochemistry and molecular testing on cytologic smears. - To establish the cell-transfer technique as a viable option for isolating tumor cells from hematoxylin-eosin (H&E)-stained slides. - Molecular testing was performed by using the cell-transfer technique on 97 archived H&E-stained slides from a variety of different tumors. Results were compared to the conventional method of molecular testing. - Polymerase chain reaction-based molecular testing via the cell-transfer technique was successfully performed on 82 of 97 samples (85%). This included 39 of 47 cases for EGFR, 10 of 11 cases for BRAF, and 33 of 39 cases for KRAS mutations. Eighty-one of 82 cell-transfer technique samples (99%) showed agreement with previous standard method results, including 4 mutations and 35 wild-type alleles for EGFR, 4 mutations and 6 wild-type alleles for BRAF, and 11 mutations and 21 wild-type alleles for KRAS. There was only 1 discrepancy: a cell-transfer technique with a false-negative >KRAS result (wild type versus G12C). - Molecular testing performed on H&E-stained sections via cell-transfer technique is useful when tissue from cell blocks and small surgical biopsy samples is exhausted and the only available material for testing is on H&E-stained slides.

  9. Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro.

    Science.gov (United States)

    Gallenberger, Martin; Meinel, Dominik M; Kroeber, Markus; Wegner, Michael; Milkereit, Philipp; Bösl, Michael R; Tamm, Ernst R

    2011-02-01

    Mutations in WD repeat domain 36 gene (WDR36) play a causative role in some forms of primary open-angle glaucoma, a leading cause of blindness worldwide. WDR36 is characterized by the presence of multiple WD40 repeats and shows homology to Utp21, an essential protein component of the yeast small subunit (SSU) processome required for maturation of 18S rRNA. To clarify the functional role of WDR36 in the mammalian organism, we generated and investigated mutant mice with a targeted deletion of Wdr36. In parallel experiments, we used RNA interference to deplete WDR36 mRNA in mouse embryos and cultured human trabecular meshwork (HTM-N) cells. Deletion of Wdr36 in the mouse caused preimplantation embryonic lethality, and essentially similar effects were observed when WDR36 mRNA was depleted in mouse embryos by RNA interference. Depletion of WDR36 mRNA in HTM-N cells caused apoptotic cell death and upregulation of mRNA for BAX, TP53 and CDKN1A. By immunocytochemistry, staining for WDR36 was observed in the nucleolus of cells, which co-localized with that of nucleolar proteins such as nucleophosmin and PWP2. In addition, recombinant and epitope-tagged WDR36 localized to the nucleolus of HTM-N cells. By northern blot analysis, a substantial decrease in 21S rRNA, the precursor of 18S rRNA, was observed following knockdown of WDR36. In addition, metabolic-labeling experiments consistently showed a delay of 18S rRNA maturation in WDR36-depleted cells. Our results provide evidence that WDR36 is an essential protein in mammalian cells which is involved in the nucleolar processing of SSU 18S rRNA.

  10. Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway.

    Science.gov (United States)

    Morioka, N; Suekama, K; Zhang, F F; Kajitani, N; Hisaoka-Nakashima, K; Takebayashi, M; Nakata, Y

    2014-06-01

    Intercellular communication via gap junctions, comprised of connexin (Cx) proteins, allow for communication between astrocytes, which in turn is crucial for maintaining CNS homeostasis. The expression of Cx43 is decreased in post-mortem brains from patients with major depression. A potentially novel mechanism of tricyclic antidepressants is to increase the expression and functioning of gap junctions in astrocytes. The effect of amitriptyline on the expression of Cx43 and gap junction intercellular communication (GJIC) in rat primary cultured cortical astrocytes was investigated. We also investigated the role of p38 MAPK intracellular signalling pathway in the amitriptyline-induced expression of Cx43 and GJIC. Treatment with amitriptyline for 48 h significantly up-regulated Cx43 mRNA, protein and GJIC. The up-regulation of Cx43 was not monoamine-related since noradrenaline, 5-HT and dopamine did not induce Cx43 expression and pretreatment with α- and β-adrenoceptor antagonists had no effect. Intracellular signalling involved p38 MAPK, as amitriptyline significantly increased p38 MAPK phosphorylation and Cx43 expression and GJIC were significantly blocked by the p38 inhibitor SB 202190. Furthermore, amitriptyline-induced Cx43 expression and GJIC were markedly reduced by transcription factor AP-1 inhibitors (curcumin and tanshinone IIA). The translocation of c-Fos from the cytosol and the nucleus of cortical astrocytes was increased by amitriptyline, and this response was dependent on p38 activity. These findings indicate a novel mechanism of action of amitriptyline through cortical astrocytes, and further suggest that targeting this mechanism could lead to the development of a new class of antidepressants. © 2014 The British Pharmacological Society.

  11. Lack of TIMP-1 tumour cell immunoreactivity predicts effect of adjuvant anthracycline-based chemotherapy in patients (n=647) with primary breast cancer

    DEFF Research Database (Denmark)

    Willemoe, Gro L.; Hertel, Pernille Bræmer; Bartels, Annette

    2009-01-01

    PURPOSE: A number of prospective studies have shown that adjuvant CEF significantly improves disease-free and overall survival as compared to CMF in breast cancer patients. Our aim was to determine whether the benefit of epirubicin versus methotrexate differs according to TIMP-1 tumour cell...

  12. Role of phospholipase C in Dictyostelium : Formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity

    NARCIS (Netherlands)

    Drayer, A. Lyndsay; Kaay, Jeroen van der; Mayr, Georg W.; Haastert, Peter J.M. van

    1994-01-01

    The micro-organism Dictyostelium uses extracellular cAMP to induce chemotaxis and cell differentiation. Signals are transduced via surface receptors, which activate G proteins, to effector enzymes. The deduced protein sequence of Dictyostelium discoideum phosphabidylinositol-specific phospholipase C

  13. Lack of effects of typical and atypical antipsychotics in DARPP-32 and NCS-1 levels in PC12 cells overexpressing NCS-1

    Directory of Open Access Journals (Sweden)

    Reis Helton J

    2010-06-01

    Full Text Available Abstract Background Schizophrenia is the major psychiatry disorder, which the exact cause remains unknown. However, it is well known that dopamine-mediated neurotransmission imbalance is associated with this pathology and the main target of antipsychotics is the dopamine receptor D2. Recently, it was described alteration in levels of two dopamine signaling related proteins in schizophrenic prefrontal cortex (PFC: Neuronal Calcium Sensor-1 (NCS-1 and DARPP-32. NCS-1, which is upregulated in PFC of schizophrenics, inhibits D2 internalization. DARPP-32, which is decreased in PFC of schizophrenics, is a key downstream effector in transducing dopamine signaling. We previously demonstrated that antipsychotics do not change levels of both proteins in rat's brain. However, since NCS-1 and DARPP-32 levels are not altered in wild type rats, we treated wild type PC12 cells (PC12 WT and PC12 cells stably overexpressing NCS-1 (PC12 Clone with antipsychotics to investigate if NCS-1 upregulation modulates DARPP-32 expression in response to antipsychotics treatment. Results We chronically treated both PC12 WT and PC12 Clone cells with typical (Haloperidol or atypical (Clozapine and Risperidone antipsychotics for 14 days. Using western blot technique we observed that there is no change in NCS-1 and DARPP-32 protein levels in both PC12 WT and PC12 Clone cells after typical and atypical antipsychotic treatments. Conclusions Because we observed no alteration in NCS-1 and DARPP-32 levels in both PC12 WT and Clone cells treated with typical or atypical antipsychotics, we suggest that the alteration in levels of both proteins in schizophrenic's PFC is related to psychopathology but not with antipsychotic treatment.

  14. Lack of effect of the alpha2C-adrenoceptor Del322-325 polymorphism on inhibition of cyclic AMP production in HEK293 cells.

    Science.gov (United States)

    Montgomery, M D; Bylund, D B

    2010-02-01

    The alpha(2C)-adrenoceptor has multiple functions, including inhibiting release of noradrenaline from presynaptic nerve terminals. A human alpha(2C) polymorphism, Del322-325, a potential risk factor for heart failure, has been reported to exhibit reduced signalling in CHO cells. To further understand the role of the Del322-325 polymorphism on receptor signalling, we attempted to replicate and further study the reduced signalling in HEK293 cells. Human alpha(2C) wild-type (WT) and Del322-325 adrenoceptors were stably transfected into HEK293 cells. Radioligand binding was performed to determine affinities for both receptors. In intact cells, inhibition of forskolin-stimulated cyclic AMP production by WT and Del322-325 clones with a range of receptor densities (200-2320 fmol.mg(-1) protein) was measured following agonist treatment. Noradrenaline, brimonidine and clonidine exhibited similar binding affinities for WT and Del322-325. Brimonidine and clonidine also had similar efficacies and potencies for both receptors for the inhibition of cyclic AMP production at all receptor densities tested. A linear regression analysis comparing efficacy and potency with receptor expression levels showed no differences in slopes between WT and Del322-325. The alpha(2C) WT and Del322-325 adrenoceptors exhibited similar binding properties. Additionally, inhibition of cyclic AMP production by Del322-325 was similar to that of WT over a range of receptor densities. Therefore, in intact HEK293 cells, the alpha(2C)-Del322-325 polymorphism does not exhibit reduced signalling to adenylyl cyclase and may not represent a clinically important phenotype.

  15. Site-specific analysis of UV-induced cyclobutane pyrimidine dimers in nucleotide excision repair-proficient and -deficient hamster cells: Lack of correlation with mutational spectra

    International Nuclear Information System (INIS)

    Vreeswijk, Maaike P.G.; Meijers, Caro M.; Giphart-Gassler, Micheline; Vrieling, Harry; Zeeland, Albert A. van; Mullenders, Leon H.F.; Loenen, Wil A.M.

    2009-01-01

    Irradiation of cells with UVC light induces two types of mutagenic DNA photoproducts, i.e. cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4PP). To investigate the relationship between the frequency of UV-induced photolesions at specific sites and their ability to induce mutations, we quantified CPD formation at the nucleotide level along exons 3 and 8 of the hprt gene using ligation-mediated PCR, and determined the mutational spectrum of 132 UV-induced hprt mutants in the AA8 hamster cell line and of 165 mutants in its nucleotide excision repair-defective derivative UV5. In AA8 cells, transversions predominated with a strong strand bias towards thymine-containing photolesions in the non-transcribed strand. As hamster AA8 cells are proficient in global genome repair of 6-4PP but selectively repair CPD from the transcribed strand of active genes, most mutations probably resulted from erroneous bypass of CPD in the non-transcribed strand. However, the relative incidence of CPD and the positions where mutations most frequently arose do not correlate. In fact some major damage sites hardly gave rise to the formation of mutations. In the repair-defective UV5 cells, mutations were almost exclusively C > T transitions caused by photoproducts at PyC sites in the transcribed strand. Even though CPD were formed at high frequencies at some TT sites in UV5, these photoproducts did not contribute to mutation induction at all. We conclude that, even in the absence of repair, large variations in the level of induction of CPD at different sites throughout the two exons do not correspond to frequencies of mutation induction.

  16. Lack of Prenylated Proteins, Autophagy Impairment and Apoptosis in SH-SY5Y Neuronal Cell Model of Mevalonate Kinase Deficiency

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2017-03-01

    Full Text Available Background/Aims: Mevalonate Kinase Deficiency (MKD, is a hereditary disease due to mutations in mevalonate kinase gene (MVK. MKD has heterogeneous clinical phenotypes: the correlation between MVK mutations and MKD clinical phenotype is still to be fully elucidated. Deficiency of prenylated proteins has been hypothesized as possible MKD pathogenic mechanism. Based on this hypothesis and considering that neurologic impairment characterizes Mevalonic Aciduria (MA, the most severe form of MKD, we studied the effects of I268T and N301T MVK mutations on protein prenylation, autophagy and programmed cell death in SH-SY5Y neuroblastoma cell lines. Methods: SH-SY5Y cells were transiently transfected, with the pCMV-6 plasmid containing MVK wild type and the two mutated sequences. Protein prenylation levels were evaluated using GFP-RhoA-F to assess farnesylation, and GFP-RhoA to evaluate geranylgeranylation; autophagy was measured by evaluating LC3 and p62 protein levels, while Annexin V-FITC and Propidium Iodide staining allowed apoptosis detection. Results: MVK mutants’ over-expression causes decreased levels of farnesylation and geranylgeranylation, and also increased LC3 lipidation in SH-SY5Y, with concomitant p62 accumulation. Treatment with bafilomycin A1 (an inhibitor of vacuolar H+-ATPase, a late autophagy inhibitor further increase LC3-II and p62 levels, suggesting that degradation of autophagolysosome could be impaired. SH-SY5Y, with both MVK mutants, showed apoptosis increase; the presence of N301T associated with augmented cell death. Conclusions: We hypothesize that mevalonate pathway impairment causes alteration of farnesylation and geranylgeranylation proteins and alteration of the autophagic flux; these changes can induce apoptosis, possibly more relevant in the presence of N301T mutation.

  17. Lack of Prenylated Proteins, Autophagy Impairment and Apoptosis in SH-SY5Y Neuronal Cell Model of Mevalonate Kinase Deficiency.

    Science.gov (United States)

    Tricarico, Paola Maura; Romeo, Alessandra; Gratton, Rossella; Crovella, Sergio; Celsi, Fulvio

    2017-01-01

    Mevalonate Kinase Deficiency (MKD), is a hereditary disease due to mutations in mevalonate kinase gene (MVK). MKD has heterogeneous clinical phenotypes: the correlation between MVK mutations and MKD clinical phenotype is still to be fully elucidated. Deficiency of prenylated proteins has been hypothesized as possible MKD pathogenic mechanism. Based on this hypothesis and considering that neurologic impairment characterizes Mevalonic Aciduria (MA), the most severe form of MKD, we studied the effects of I268T and N301T MVK mutations on protein prenylation, autophagy and programmed cell death in SH-SY5Y neuroblastoma cell lines. SH-SY5Y cells were transiently transfected, with the pCMV-6 plasmid containing MVK wild type and the two mutated sequences. Protein prenylation levels were evaluated using GFP-RhoA-F to assess farnesylation, and GFP-RhoA to evaluate geranylgeranylation; autophagy was measured by evaluating LC3 and p62 protein levels, while Annexin V-FITC and Propidium Iodide staining allowed apoptosis detection. MVK mutants' over-expression causes decreased levels of farnesylation and geranylgeranylation, and also increased LC3 lipidation in SH-SY5Y, with concomitant p62 accumulation. Treatment with bafilomycin A1 (an inhibitor of vacuolar H+-ATPase, a late autophagy inhibitor) further increase LC3-II and p62 levels, suggesting that degradation of autophagolysosome could be impaired. SH-SY5Y, with both MVK mutants, showed apoptosis increase; the presence of N301T associated with augmented cell death. We hypothesize that mevalonate pathway impairment causes alteration of farnesylation and geranylgeranylation proteins and alteration of the autophagic flux; these changes can induce apoptosis, possibly more relevant in the presence of N301T mutation. © 2017 The Author(s)Published by S. Karger AG, Basel.

  18. Epigenetic up-regulation of ribosome biogenesis and more aggressive phenotype triggered by the lack of the histone demethylase JHDM1B in mammary epithelial cells.

    Science.gov (United States)

    Galbiati, Alice; Penzo, Marianna; Bacalini, Maria Giulia; Onofrillo, Carmine; Guerrieri, Ania Naila; Garagnani, Paolo; Franceschi, Claudio; Treré, Davide; Montanaro, Lorenzo

    2017-06-06

    The alterations of ribosome biogenesis and protein synthesis play a direct role in the development of tumors. The accessibility and transcription of ribosomal genes is controlled at several levels, with their epigenetic regulation being one of the most important. Here we explored the JmjC domain-containing histone demethylase 1B (JHDM1B) function in the epigenetic control of rDNA transcription. Since JHDM1B is a negative regulator of gene transcription, we focused on the effects induced by JHDM1B knock-down (KD). We studied the consequences of stable inducible JHDM1B silencing in cell lines derived from transformed and untransformed mammary epithelial cells. In these cellular models, prolonged JHDM1B downregulation triggered a surge of 45S pre-rRNA transcription and processing, associated with a re-modulation of the H3K36me2 levels at rDNA loci and with changes in DNA methylation of specific CpG sites in rDNA genes. We also found that after JHDM1B KD, cells showed a higher ribosome content: which were engaged in mRNA translation. JHDM1B KD and the consequent stimulation of ribosomes biogenesis conferred more aggressive features to the tested cellular models, which acquired a greater clonogenic, staminal and invasive potential. Taken together, these data indicate that the reduction of JHDM1B leads to a more aggressive cellular phenotype in mammary gland cells, by virtue of its negative regulatory activity on ribosome biogenesis.

  19. Lack of induction of tissue transglutaminase but activation of the preexisting enzyme in c-Myc-induced apoptosis of CHO cells.

    Science.gov (United States)

    Balajthy, Z; Kedei, N; Nagy, L; Davies, P J; Fésüs, L

    1997-07-18

    The intracellular activity and expression of tissue transglutaminase, which crosslinks proteins through epsilon(gamma-glutamyl)lysine isodipeptide bond, was investigated in CHO cells and those stably transfected with either inducible c-Myc (which leads to apoptosis) or with c-myc and the apoptosis inhibitor Bcl-2. Protein-bound cross-link content was significantly higher when apoptosis was induced by c-Myc while the concomitant presence of Bcl-2 markedly reduced both apoptosis and enzymatic protein cross-linking. The expression of tissue transglutaminase did not change following the initiation of apoptosis by c-Myc or when it was blocked by Bcl-2. Studying transiently co-transfected elements of the mouse tissue transglutaminase promoter linked to a reporter enzyme revealed their overall repression in cells expressing c-Myc. This repression was partially suspended in cells also carrying Bcl-2. Our data suggest that tissue transglutaminase is not induced when c-Myc initiates apoptosis but the pre-existing endogenous enzyme is activated.

  20. Lung metastasis fails in MMTV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors

    DEFF Research Database (Denmark)

    Grum-Schwensen, Birgitte; Klingelhöfer, Jörg; Grigorian, Mariam

    2010-01-01

    significantly reduced the metastatic burden in lungs of PyMT-induced mammary tumors. In S100A4(+/+) PyMT mice, massive leukocyte infiltration at the site of the growing tumor at the stage of malignant transition was associated with increased concentration of extracellular S100A4 in the tumor microenvironment......Interactions between tumor and stroma cells are essential for the progression of cancer from its initial growth at a primary site to its metastasis to distant organs. The metastasis-stimulating protein S100A4 exerts its function as a stroma cell-derived factor. Genetic depletion of S100A4...... monolayers. In vivo, the presence of S100A4(+/+), but not S100A4(-/-), fibroblasts significantly stimulated the attraction of T lymphocytes to the site of the growing tumor. Increased levels of T cells were also observed in the premetastatic lungs of tumor-bearing mice primed to metastasize by S100A4...

  1. Filarial lymphedema is characterized by antigen-specific Th1 and th17 proinflammatory responses and a lack of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Subash Babu

    Full Text Available Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients.To elucidate the role of CD4(+ T cell subsets in the development of lymphatic pathology, we examined specific sets of cytokines in individuals with filarial lymphedema in response to parasite antigen (BmA and compared them with responses from asymptomatic infected individuals. We also examined expression patterns of Toll-like receptors (TLR1-10 and Nod-like receptors (Nod1, Nod2, and NALP3 in response to BmA. BmA induced significantly higher production of Th1-type cytokines-IFN-gamma and TNF-alpha-in patients with lymphedema compared with asymptomatic individuals. Notably, expression of the Th17 family of cytokines-IL-17A, IL-17F, IL-21, and IL-23-was also significantly upregulated by BmA stimulation in lymphedema patients. In contrast, expression of Foxp3, GITR, TGFbeta, and CTLA-4, known to be expressed by regulatory T cells, was significantly impaired in patients with lymphedema. BmA also induced significantly higher expression of TLR2, 4, 7, and 9 as well Nod1 and 2 mRNA in patients with lymphedema compared with asymptomatic controls.Our findings implicate increased Th1/Th17 responses and decreased regulatory T cells as well as regulation of Toll- and Nod-like receptors in pathogenesis of filarial lymphedema.

  2. Cryopreservation does not alter main characteristics of Good Manufacturing Process-grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation.

    Science.gov (United States)

    Luetzkendorf, Jana; Nerger, Katrin; Hering, Julian; Moegel, Angelika; Hoffmann, Katrin; Hoefers, Christiane; Mueller-Tidow, Carsten; Mueller, Lutz P

    2015-02-01

    The immunomodulating capacity of multipotent mesenchymal stromal cells (MSCs) qualifies them as a therapeutic tool in several diseases. However, repeated transplantation with products of reproducible characteristics may be required. This could be achieved with cryopreserved aliquots of Good Manufacturing Practice (GMP)-grade MSCs. However, the impact of cryopreservation on the characteristics of GMP-MSCs is ill defined. We produced fresh and cryopreserved MSCs from human donors with a xenogen-free GMP protocol. Immunogenicity and immunomodulating capacity were tested in co-culture with putative recipient-specific peripheral blood mononuclear cells (PBMCs). Risk of malignant transformation was assessed in vitro and in vivo. Cryopreservation had no impact on viability and consensus criteria of MSCs. In co-culture with PBMCs, MSCs showed low immunogenicity and suppressed mitogen-stimulated proliferation of PBMC irrespective of cryopreservation. Cytogenetic aberrations were not observed consistently in fresh and cryopreserved products, and no signs of malignant transformation occurred in functional assays. MSC products from an elderly pretreated donor showed reduced functional quality, but imminent failure of functional criteria could be detected by an increased population doubling time in early passages. This study is the first systematic analysis on cryopreservation of xenogen-free human bone marrow-derived GMP-MSCs. The data support that cryopreservation does not alter the characteristics of the cells and thus may allow the generation of products for serial transplantation. In addition, the protocol allowed early detection of MSC products with low functional capacity. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. The GnRH receptor and the response of gonadotrope cells to GnRH pulse frequency code. A story of an atypical adaptation of cell function relying on a lack of receptor homologous desensitization.

    Directory of Open Access Journals (Sweden)

    Christian Bleux

    2010-01-01

    Full Text Available Brain control of the reproductive system is mediated through hypothalamic gonadotropin-releasing hormone (GnRH which activates specific receptors (GnRHR present at the surface of the pituitary gonadotropes to trigger secretion of the two gonadotropins LH and FSH. A unique feature of this system is the high dependence on the secretion mode of GnRH, which is basically pulsatile but undergoes considerable fluctuations in pulse frequency pattern in response to endogenous or external factors. How the physiological fluctuations of GnRH secretion that orchestrate normal reproduction are decoded by the gonadotrope cell machinery to ultimately control gonadotropin release and/or subunit gene transcription has been the subject of intensive studies during the past decades. Surprisingly, the mammalian GnRHR is unique among G protein-coupled receptor family as it lacks the carboxy-terminal tail usually involved in classical endocytotic process. Accordingly, it does not desensitize properly and internalizes very poorly. Both this atypical intrinsic property and post-receptor events may thus contribute to decode the GnRH signal. This includes the participation of a network of signaling pathways that differently respond to GnRH together with a growing amount of genes differentially sensitive to pulse frequency. Among these are two pairs of genes, the transcription factors EGR-1 and NAB, and the regulatory factors activin and follistatin, that function as intracellular autoregulatory feedback loops controlling respectively LHbeta and FSHbeta gene expression and hence, LH and FSH synthesis. Pituitary gonadotropes thus represent a unique model of cells functionally adapted to respond to a considerably fluctuating neuroendocrine stimulation, from short individual pulses to sustained GnRH as observed at the proestrus of ovarian cycle. Altogether, the data emphasize the adaptative reciprocal complementarity of hypothalamic GnRH neurones and pituitary gonadotropes to

  4. Th1/M1 conversion to Th2/M2 responses in models of inflammation lacking cell death stimulates maturation of monocyte precursors to fibroblasts

    Directory of Open Access Journals (Sweden)

    JoAnn eTrial

    2013-09-01

    Full Text Available We have demonstrated that cardiac fibrosis arises from the differentiation of monocyte-derived fibroblasts. We present here evidence that this process requires sequential Th1 and Th2 induction promoting analogous M1 (classically activated and M2 (alternatively activated macrophage polarity. Our models are 1 mice subjected to daily repetitive ischemia reperfusion (I/R without infarction and 2 the in vitro transmigration of human mononuclear leukocytes through human cardiac microvascular endothelium. In the mouse heart, leukocytes entered after I/R in response to monocyte chemoattractant protein-1 (MCP-1 which is the major cytokine induced by this protocol. Monocytes within the heart then differentiated into fibroblasts making collagen while bearing the markers of M2 macrophages. T cells were seen in these hearts as well as in the human heart with cardiomyopathy. In the in vitro model, transmigration of the leukocytes was likewise induced by MCP-1 and some monocytes matured into fibroblasts bearing M2 markers. In this model, the MCP-1 stimulus induced a transient Th1 and M1 response that developed into a predominately Th2 and M2 response. An increase in the Th2 product IL-13 was present in both the human and the mouse models, consistent with its known role in fibrosis. In these simplified models, in which there is no cell death to stimulate an anti-inflammatory response, there is nonetheless a resolution of inflammation enabling a profibrotic environment. This induces the maturation of monocyte precursors into fibroblasts.

  5. Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells1

    Science.gov (United States)

    Chang, Chawnshang; Lee, Soo Ok; Wang, Ruey-Sheng; Yeh, Shuyuan; Chang, Ta-Min

    2013-01-01

    ABSTRACT Androgens/androgen receptor (AR) signaling is involved primarily in the development of male-specific phenotypes during embryogenesis, spermatogenesis, sexual behavior, and fertility during adult life. However, this signaling has also been shown to play an important role in development of female reproductive organs and their functions, such as ovarian folliculogenesis, embryonic implantation, and uterine and breast development. The establishment of the testicular feminization (Tfm) mouse model exploiting the X-linked Tfm mutation in mice has been a good in vivo tool for studying the human complete androgen insensitivity syndrome, but this mouse may not be the perfect in vivo model. Mouse models with various cell-specific AR knockout (ARKO) might allow us to study AR roles in individual types of cells in these male and female reproductive systems, although discrepancies are found in results between labs, probably due to using various Cre mice and/or knocking out AR in different AR domains. Nevertheless, no doubt exists that the continuous development of these ARKO mouse models and careful studies will provide information useful for understanding AR roles in reproductive systems of humans and may help us to develop more effective and more specific therapeutic approaches for reproductive system-related diseases. PMID:23782840

  6. Interactions of Neuropathogenic Escherichia coli K1 (RS218) and Its Derivatives Lacking Genomic Islands with Phagocytic Acanthamoeba castellanii and Nonphagocytic Brain Endothelial Cells

    Science.gov (United States)

    Yousuf, Farzana Abubakar; Yousuf, Zuhair; Iqbal, Junaid; Siddiqui, Ruqaiyyah; Khan, Hafsa; Khan, Naveed Ahmed

    2014-01-01

    Here we determined the role of various genomic islands in E. coli K1 interactions with phagocytic A. castellanii and nonphagocytic brain microvascular endothelial cells. The findings revealed that the genomic islands deletion mutants of RS218 related to toxins (peptide toxin, α-hemolysin), adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin), protein secretion system (T1SS for hemolysin), invasins (IbeA, CNF1), metabolism (D-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism) showed reduced interactions with both A. castellanii and brain microvascular endothelial cells. Interestingly, the deletion of RS218-derived genomic island 21 containing adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin), protein secretion system (T1SS for hemolysin), invasins (CNF1), metabolism (D-serine catabolism) abolished E. coli K1-mediated HBMEC cytotoxicity in a CNF1-independent manner. Therefore, the characterization of these genomic islands should reveal mechanisms of evolutionary gain for E. coli K1 pathogenicity. PMID:24818136

  7. Interactions of Neuropathogenic Escherichia coli K1 (RS218 and Its Derivatives Lacking Genomic Islands with Phagocytic Acanthamoeba castellanii and Nonphagocytic Brain Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Farzana Abubakar Yousuf

    2014-01-01

    Full Text Available Here we determined the role of various genomic islands in E. coli K1 interactions with phagocytic A. castellanii and nonphagocytic brain microvascular endothelial cells. The findings revealed that the genomic islands deletion mutants of RS218 related to toxins (peptide toxin, α-hemolysin, adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin, protein secretion system (T1SS for hemolysin, invasins (IbeA, CNF1, metabolism (D-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism showed reduced interactions with both A. castellanii and brain microvascular endothelial cells. Interestingly, the deletion of RS218-derived genomic island 21 containing adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin, protein secretion system (T1SS for hemolysin, invasins (CNF1, metabolism (D-serine catabolism abolished E. coli K1-mediated HBMEC cytotoxicity in a CNF1-independent manner. Therefore, the characterization of these genomic islands should reveal mechanisms of evolutionary gain for E. coli K1 pathogenicity.

  8. Generation of H9 T-cells stably expressing a membrane-bound form of the cytoplasmic tail of the Env-glycoprotein: lack of transcomplementation of defective HIV-1 virions encoding C-terminally truncated Env

    Directory of Open Access Journals (Sweden)

    Bosch Valerie

    2006-05-01

    Full Text Available Abstract H9-T-cells do not support the replication of mutant HIV-1 encoding Env protein lacking its long cytoplasmic C-terminal domain (Env-CT. Here we describe the generation of a H9-T-cell population constitutively expressing the HIV-1 Env-CT protein domain anchored in the cellular membrane by it homologous membrane-spanning domain (TMD. We confirmed that the Env-TMD-CT protein was associated with cellular membranes, that its expression did not have any obvious cytotoxic effects on the cells and that it did not affect wild-type HIV-1 replication. However, as measured in both a single-round assay as well as in spreading infections, replication competence of mutant pNL-Tr712, lacking the Env-CT, was not restored in this H9 T-cell population. This means that the Env-CT per se cannot transcomplement the replication block of HIV-1 virions encoding C-terminally truncated Env proteins and suggests that the Env-CT likely exerts its function only in the context of the complete Env protein.

  9. Lack of increased DNA double-strand breaks in peripheral blood mononuclear cells of individuals from high level natural radiation areas of Kerala coast in India

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Vinay [Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400 094 (India); Kumar, P.R. Vivek; Koya, P.K.M.; Jaikrishan, G. [Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Das, Birajalaxmi, E-mail: birajalaxmi@yahoo.co.in [Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-06-15

    Highlights: • Basal level DNA DSBs was measured in individuals from NLNRA and HLNRA of Kerala. • No significant difference in the gamma-H2AX foci between HLNRA and NLNRA individuals. • Marginal reduction of gamma-H2AX foci in HDG of HLNRA compared to LDG and NLNRA. • A possible threshold dose of 5mGy/year for DSBs observed at chronic low dose exposure in vivo. - Abstract: The high level natural radiation area (HLNRA) of Kerala is a 55 km long and 0.5 km wide strip in south west coast of India. The level of background radiation in this area varies from <1.0 mGy/year to 45.0 mGy/year. It offers unique opportunity to study the effect of chronic low dose/low dose-rate radiation directly on human population. Spontaneous level of DNA double strand breaks (DSBs) was quantified in peripheral blood mononuclear cells of 91 random individuals from HLNRA (N = 61, mean age: 36.1 ± 7.43 years) and normal level natural radiation area (NLNRA) (N = 30, mean age: 35.5 ± 6.35 years) using gamma-H2AX as a marker. The mean annual dose received by NLNRA and HLNRA individuals was 1.28 ± 0.086 mGy/year and 8.28 ± 4.96 mGy/year, respectively. The spontaneous frequency of DSBs in terms of gamma-H2AX foci among NLNRA and HLNRA individuals were 0.095 ± 0.009 and 0.084 ± 0.004 per cell (P = 0.22). The individuals from HLNRA were further classified as low dose group (LDG, 1.51–5.0 mGy/year, mean dose: 2.63 ± 0.76 mGy/year) and high dose group (HDG, >5.0 mGy/year, mean dose: 11.04 ± 3.57 mGy/year). The spontaneous frequency of gamma-H2AX foci per cell in NLNRA, LDG and HDG was observed to be 0.095 ± 0.009, 0.096 ± 0.008 and 0.078 ± 0.004 respectively. Individuals belonging to HDG of HLNRA showed marginally lower frequency of DSBs as compared to NLNRA and LDG of HLNRA. This could be suggestive of either lower induction or better repair of DSBs in individuals from HDG of HLNRA. The present study indicated that 5.0 mGy/year could be a possible threshold dose for DSB induction

  10. Deficient incorporation of spike protein into virions contributes to the lack of infectivity following establishment of a persistent, non-productive infection in oligodendroglial cell culture by murine coronavirus

    International Nuclear Information System (INIS)

    Liu Yin; Herbst, Werner; Cao Jianzhong; Zhang Xuming

    2011-01-01

    Infection of mouse oligodendrocytes with a recombinant mouse hepatitis virus (MHV) expressing a green fluorescence protein facilitated specific selection of virus-infected cells and subsequent establishment of persistence. Interestingly, while viral genomic RNAs persisted in infected cells over 14 subsequent passages with concomitant synthesis of viral subgenomic mRNAs and structural proteins, no infectious virus was isolated beyond passage 2. Further biochemical and electron microscopic analyses revealed that virions, while assembled, contained little spike in the envelope, indicating that lack of infectivity during persistence was likely due to deficiency in spike incorporation. This type of non-lytic, non-productive persistence in oligodendrocytes is unique among animal viruses and resembles MHV persistence previously observed in the mouse central nervous system. Thus, establishment of such a culture system that can recapitulate the in vivo phenomenon will provide a powerful approach for elucidating the mechanisms of coronavirus persistence in glial cells at the cellular and molecular levels.

  11. Encephalopathy after whole-cell pertussis or measles vaccination: lack of evidence for a causal association in a retrospective case-control study.

    Science.gov (United States)

    Ray, Paula; Hayward, Jean; Michelson, David; Lewis, Edwin; Schwalbe, Joan; Black, Steve; Shinefield, Henry; Marcy, Michael; Huff, Ken; Ward, Joel; Mullooly, John; Chen, Robert; Davis, Robert

    2006-09-01

    Whole-cell pertussis (wP) and measles vaccines are effective in preventing disease but have also been suspected of increasing the risk of encephalopathy or encephalitis. Although many countries now use acellular pertussis vaccines, wP vaccine is still widely used in the developing world. It is therefore important to evaluate whether wP vaccine increases the risk of neurologic disorders. A retrospective case-control study was performed at 4 health maintenance organizations. Records from January 1, 1981, through December 31, 1995, were examined to identify children aged 0 to 6 years old hospitalized with encephalopathy or related conditions. The cause of the encephalopathy was categorized as known, unknown or suspected but unconfirmed. Up to 3 controls were matched to each case. Conditional logistic regression was used to analyze the relative risk of encephalopathy after vaccination with diphtheria-tetanus-pertussis (DTP) or measles-mumps-rubella (MMR) vaccines in the 90 days before disease onset as defined by chart review compared with an equivalent period among controls indexed by matching on case onset date. Four-hundred fifty-two cases were identified. Cases were no more likely than controls to have received either vaccine during the 90 days before disease onset. When encephalopathies of known etiology were excluded, the odds ratio for case children having received DTP within 7 days before onset of disease was 1.22 (95% confidence interval [CI] = 0.45-3.31, P = 0.693) compared with control children. For MMR in the 90 days before onset of encephalopathy, the odds ratio was 1.23 (95% confidence interval = 0.51-2.98, P = 0.647). In this study of more than 2 million children, DTP and MMR vaccines were not associated with an increased risk of encephalopathy after vaccination.

  12. Lack of Obvious Influence of PLLA Nanofibers on the Gene Expression of BMP-2 and VEGF during Growth and Differentiation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Markus D. Schofer

    2009-01-01

    Full Text Available Growth factors like bone morphogenetic protein 2 (BMP-2 and vascular endothelial growth factor (VEGF play an important role in bone remodeling and fracture repair. Therefore, with respect to tissue engineering, an artificial graft should have no negative impact on the expression of these factors. In this context, the aim of this study was to analyze the impact of poly(L-lactic acid (PLLA nanofibers on VEGF and BMP-2 gene expression during the time course of human mesenchymal stem cell (hMSC differentiation towards osteoblasts. PLLA matrices were seeded with hMSCs and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of VEGF and BMP-2. Furthermore, BMP-2–enwoven PLLA nanofibers were used in order to elucidate whether initial down-regulation of growth factor expression could be compensated. Although there was a great interpatient variability with respect to the expression of VEGF and BMP-2, PLLA nanofibers tend to result in a down-regulation in BMP-2 expression during the early phase of cultivation. This effect was diminished in the case of VEGF gene expression. The initial down-regulation was overcome when BMP-2 was directly incorporated into the PLLA nanofibers by electrospinning. Furthermore, the incorporation of BMP-2 into the PLLA nanofibers resulted in an increase in VEGF gene expression. Summarized, the results indicate that the PLLA nanofibers have little effect on growth factor production. An enhancement in gene expression of BMP-2 and VEGF can be achieved by an incorporation of BMP-2 into the PLLA nanofibers.

  13. Lack of Obvious Influence of PLLA Nanofibers on the Gene Expression of BMP-2 and VEGF during Growth and Differentiation of Human Mesenchymal Stem Cells

    Science.gov (United States)

    Schofer, Markus D.; Fuchs-Winkelmann, S.; Wack, C.; Rudisile, M.; Dersch, R.; Leifeld, I.; Wendorff, J.; Greiner, A.; Paletta, J. R. J.; Boudriot, U.

    2009-01-01

    Growth factors like bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF) play an important role in bone remodeling and fracture repair. Therefore, with respect to tissue engineering, an artificial graft should have no negative impact on the expression of these factors. In this context, the aim of this study was to analyze the impact of poly(L-lactic acid) (PLLA) nanofibers on VEGF and BMP-2 gene expression during the time course of human mesenchymal stem cell (hMSC) differentiation towards osteoblasts. PLLA matrices were seeded with hMSCs and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of VEGF and BMP-2. Furthermore, BMP-2–enwoven PLLA nanofibers were used in order to elucidate whether initial down-regulation of growth factor expression could be compensated. Although there was a great interpatient variability with respect to the expression of VEGF and BMP-2, PLLA nanofibers tend to result in a down-regulation in BMP-2 expression during the early phase of cultivation. This effect was diminished in the case of VEGF gene expression. The initial down-regulation was overcome when BMP-2 was directly incorporated into the PLLA nanofibers by electrospinning. Furthermore, the incorporation of BMP-2 into the PLLA nanofibers resulted in an increase in VEGF gene expression. Summarized, the results indicate that the PLLA nanofibers have little effect on growth factor production. An enhancement in gene expression of BMP-2 and VEGF can be achieved by an incorporation of BMP-2 into the PLLA nanofibers. PMID:19412560

  14. Neutrophilia, gelatinase release and microvascular leakage induced by human mast cell tryptase in a mouse model: Lack of a role of protease-activated receptor 2 (PAR2).

    Science.gov (United States)

    Khedr, M E M S; Abdelmotelb, A M; Pender, S L F; Zhou, X; Walls, A F

    2018-05-01

    Tryptase, the most abundant protease of the human mast cell, has been implicated as a key mediator of allergic inflammation that acts through activation of PAR2. To investigate the contribution of PAR2 in the pro-inflammatory actions mediated by tryptase in a mice model. We have injected recombinant human βII-tryptase into the peritoneum of PAR2-deficient and wild-type C57BL/6 mice. After 6, 12 and 24 hours, mice were killed, peritoneal lavage performed and inflammatory changes investigated. Tryptase stimulated an increase in neutrophil numbers in the peritoneum, but responses did not differ between PAR2-deficient and wild-type mice. Heat inactivation of tryptase or pre-incubation with a selective tryptase inhibitor reduced neutrophilia, but neutrophil accumulation was not elicited with a peptide agonist of PAR2 (SLIGRL-NH 2 ). Zymography indicated that tryptase stimulated the release of matrix metalloproteinases (MMP) 2 and 9 in the peritoneum of both mouse strains. Studies involving immunomagnetic isolation of neutrophils suggested that neutrophils represent the major cellular source of tryptase-induced MMP2 and MMP9. At 24 hours after tryptase injection, there was increased microvascular leakage as indicated by high levels of albumin in peritoneal lavage fluid, and this appeared to be partially abolished by heat-inactivating tryptase or addition of a protease inhibitor. There was no corresponding increase in levels of histamine or total protein. The extent of tryptase-induced microvascular leakage or gelatinase release into the peritoneum did not differ between PAR2-deficient and wild-type mice. Our findings indicate that tryptase is a potent stimulus for neutrophil accumulation, MMP release and microvascular leakage. Although these actions required an intact catalytic site, the primary mechanism of tryptase in vivo would appear to involve processes independent of PAR2. © 2018 The Authors. Clinical & Experimental Allergy Published by John Wiley & Sons Ltd.

  15. Functional conservation and divergence of four ginger AP1/AGL9 MADS-box genes revealed by analysis of their expression and protein-protein interaction, and ectopic expression of AhFUL gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiumei Li

    Full Text Available Alpinia genus are known generally as ginger-lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS-box genes in floral identity. In this study, four AP1/AGL9 MADS-box genes were cloned from Alpinia hainanensis, and protein-protein interactions (PPIs and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1 lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6-like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL-AhSEP4, AhFUL-AhAGL6-like, AhFUL-AhSEP3b, AhSEP4-AhAGL6-like, AhSEP4-AhSEP3b, AhAGL6-like-AhSEP3b, and AhSEP3b-AhSEP3b were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal-like or leaf-like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS-box genes.

  16. Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-κB and AP-1 Activation.

    Directory of Open Access Journals (Sweden)

    Bin Fan

    Full Text Available Over activation of microglia results in the production of proinflammatory agents that have been implicated in various brain diseases. Pycnogenol is a patented extract from French maritime pine bark (Pinus pinaster Aiton with strong antioxidant and anti-inflammatory potency. The present study investigated whether pycnogenol may be associated with the production of proinflammatory mediators in lipopolysaccharide-stimulated BV2 (mouse-derived microglia. It was found that pycnogenol treatment was dose-dependently associated with significantly less release of nitricoxide (NO, TNF-α, IL-6 and IL-1β, and lower levels of intercellular adhesion molecule1 (ICAM-1 and perilipin 2 (PLIN2. Furthermore, this effect was replicated in primary brain microglia. Levels of inducible NO synthase mRNA and protein were attenuated, whereas there was no change in the production of the anti-inflammatory cytokine IL-10. Further evidence indicated that pycnogenol treatment led to the suppression of NF-κB activation through inhibition of p65 translocation into the nucleus and inhibited DNA binding of AP-1, suggesting that these proinflammatory factors are associated with NF-κB and AP-1. We conclude that pycnogenol exerts anti-inflammatory effects through inhibition of the NF-κB and AP-1pathway, and may be useful as a therapeutic agent in the prevention of diseases caused by over activation of microglia.

  17. The analysis of novel microRNA mimic sequences in cancer cells reveals lack of specificity in stem-loop RT-qPCR-based microRNA detection.

    Science.gov (United States)

    Winata, Patrick; Williams, Marissa; McGowan, Eileen; Nassif, Najah; van Zandwijk, Nico; Reid, Glen

    2017-11-17

    MicroRNAs are frequently downregulated in cancer, and restoring expression has tumour suppressive activity in tumour cells. Our recent phase I clinical trial investigated microRNA-based therapy in patients with malignant pleural mesothelioma. Treatment with TargomiRs, microRNA mimics with novel sequence packaged in EGFR antibody-targeted bacterial minicells, revealed clear signs of clinical activity. In order to detect delivery of microRNA mimics to tumour cells in future clinical trials, we tested hydrolysis probe-based assays specific for the sequence of the novel mimics in transfected mesothelioma cell lines using RT-qPCR. The custom assays efficiently and specifically amplified the consensus mimics. However, we found that these assays gave a signal when total RNA from untransfected and control mimic-transfected cells were used as templates. Further investigation revealed that the reverse transcription step using stem-loop primers appeared to introduce substantial non-specific amplification with either total RNA or synthetic RNA templates. This suggests that reverse transcription using stem-loop primers suffers from an intrinsic lack of specificity for the detection of highly similar microRNAs in the same family, especially when analysing total RNA. These results suggest that RT-qPCR is unlikely to be an effective means to detect delivery of microRNA mimic-based drugs to tumour cells in patients.

  18. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.

    Science.gov (United States)

    Bailey, Ulla-Maja; Schulz, Benjamin L

    2013-04-01

    Post-translational modification of proteins with glycosylation is of key importance in many biological systems in eukaryotes, influencing fundamental biological processes and regulating protein function. Changes in glycosylation are therefore of interest in understanding these processes and are also useful as clinical biomarkers of disease. The presence of glycosylation can also inhibit protease digestion and lower the quality and confidence of protein identification by mass spectrometry. While deglycosylation can improve the efficiency of subsequent protease digest and increase protein coverage, this step is often excluded from proteomic workflows. Here, we performed a systematic analysis that showed that deglycosylation with peptide-N-glycosidase F (PNGase F) prior to protease digestion with AspN or trypsin improved the quality of identification of the yeast cell wall proteome. The improvement in the confidence of identification of glycoproteins following PNGase F deglycosylation correlated with a higher density of glycosylation sites. Optimal identification across the proteome was achieved with PNGase F deglycosylation and complementary proteolysis with either AspN or trypsin. We used this combination of deglycosylation and complementary protease digest to identify changes in the yeast cell wall proteome caused by lack of the Alg3p protein, a key component of the biosynthetic pathway of protein N-glycosylation. The cell wall of yeast lacking Alg3p showed specifically increased levels of Cis3p, a protein important for cell wall integrity. Our results showed that deglycosylation prior to protease digestion improved the quality of proteomic analyses even if protein glycosylation is not of direct relevance to the study at hand. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A novel cell line derived from pleomorphic adenoma expresses MMP2, MMP9, TIMP1, TIMP2, and shows numeric chromosomal anomalies.

    Directory of Open Access Journals (Sweden)

    Aline Semblano Carreira Falcão

    Full Text Available Pleomorphic adenoma is the most common salivary gland neoplasm, and it can be locally invasive, despite its slow growth. This study aimed to establish a novel cell line (AP-1 derived from a human pleomorphic adenoma sample to better understand local invasiveness of this tumor. AP-1 cell line was characterized by cell growth analysis, expression of epithelial and myoepithelial markers by immunofluorescence, electron microscopy, 3D cell culture assays, cytogenetic features and transcriptomic study. Expression of matrix metalloproteinases (MMPs and their tissue inhibitors (TIMPs was also analyzed by immunofluorescence and zymography. Furthermore, epithelial and myoepithelial markers, MMPs and TIMPs were studied in the tumor that originated the cell line. AP-1 cells showed neoplastic epithelial and myoepithelial markers, such as cytokeratins, vimentin, S100 protein and smooth-muscle actin. These molecules were also found in vivo, in the tumor that originated the cell line. MMPs and TIMPs were observed in vivo and in AP-1 cells. Growth curve showed that AP-1 exhibited a doubling time of 3.342 days. AP-1 cells grown inside Matrigel recapitulated tumor architecture. Different numerical and structural chromosomal anomalies were visualized in cytogenetic analysis. Transcriptomic analysis addressed expression of 7 target genes (VIM, TIMP2, MMP2, MMP9, TIMP1, ACTA2 e PLAG1. Results were compared to transcriptomic profile of non-neoplastic salivary gland cells (HSG. Only MMP9 was not expressed in both libraries, and VIM was expressed solely in AP-1 library. The major difference regarding gene expression level between AP-1 and HSG samples occurred for MMP2. This gene was 184 times more expressed in AP-1 cells. Our findings suggest that AP-1 cell line could be a useful model for further studies on pleomorphic adenoma biology.

  20. Berberine Reduces the Metastasis of Chondrosarcoma by Modulating the αvβ3 Integrin and the PKCδ, c-Src, and AP-1 Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Chi-Ming Wu

    2013-01-01

    Full Text Available Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis, especially to the lungs. Patients diagnosed with chondrosarcoma have poor prognosis. Berberine, an active component of the Ranunculaceae and Papaveraceae families of plant, has been proven to induce tumor apoptosis and to prevent the metastasis of cancer cells. However, the effects of berberine in human chondrosarcoma are largely unknown. In this study, we found that berberine did not induce cell apoptosis in human primary chondrocytes and chondrosarcoma cells. However, at noncytotoxic concentrations, berberine reduced the migration and invasion of chondrosarcoma cancer cells. Integrins are the major adhesive molecules in mammalian cells and have been associated with the metastasis of cancer cells. We also found that incubation of chondrosarcoma cells with berberine reduced mRNA transcription for, and cell surface expression of, the αvβ3 integrin, with additional inhibitory effects on PKCδ, c-Src, and NF-κB activation. Thus, berberine may be a novel antimetastasis agent for the treatment of metastatic chondrosarcoma.

  1. Running on empty: does mitochondrial DNA mutation limit replicative lifespan in yeast?: Mutations that increase the division rate of cells lacking mitochondrial DNA also extend replicative lifespan in Saccharomyces cerevisiae.

    Science.gov (United States)

    Dunn, Cory D

    2011-10-01

    Mitochondrial DNA (mtDNA) mutations escalate with increasing age in higher organisms. However, it has so far been difficult to experimentally determine whether mtDNA mutation merely correlates with age or directly limits lifespan. A recent study shows that budding yeast can also lose functional mtDNA late in life. Interestingly, independent studies of replicative lifespan (RLS) and of mtDNA-deficient cells show that the same mutations can increase both RLS and the division rate of yeast lacking the mitochondrial genome. These exciting, parallel findings imply a potential causal relationship between mtDNA mutation and replicative senescence. Furthermore, these results suggest more efficient methods for discovering genes that determine lifespan. Copyright © 2011 WILEY Periodicals, Inc.

  2. High-density lipoprotein is a potential growth factor for adrenocortical cells

    International Nuclear Information System (INIS)

    Murao, Koji; Imachi, Hitomi; Cao, Wenming; Yu, Xiao; Li, Junhua; Yoshida, Kazuya; Ahmed, Rania A.M.; Matsumoto, Kensuke; Nishiuchi, Takamasa; Wong, Norman C.W.; Ishida, Toshihiko

    2006-01-01

    The entry of cholesterol contained within high-density lipoprotein (HDL) into adrenocortical cells is mediated by a human homologue of SR-BI, CD36, and LIMPII Analogous-1 (CLA-1) and thus augmenting their growth. To address the role of CLA-1, we created a mutant mCLA that lacked the C-terminal tail. HDL CE selective uptake by cells carrying the mCLA-1 receptor was fully active and equivalent to those transfected with full-length CLA-1 (fCLA-1). Expression of mCLA inhibited the proliferation of an adrenocortical cell line and the incorporation of [ 3 H]thymidine into the cells. This effect was sensitive to wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K). Our transcriptional studies revealed that the inhibitory action of mCLA required the transcriptional factor AP-1 and the effect of HDL on AP-1 activation was also abrogated by wortmannin. These findings raise the possibility that the inhibitors of the effects of HDL may be of therapeutic value for adrenocortical tumor

  3. The Expression of Fos, Jun and AP-1 DNA Binding Activity in Rat Supraoptic Nucleus Neurons Following Acute Versus Repeated Osmotic Stimulation

    Science.gov (United States)

    1995-06-22

    energy . Dr. Griemley - for agreeing to sit on my committee and providing the advice. vii least, for his Thank you for Drs. Steven Bassnett, Rita Dhawan...encouragement. your time, energy and patience. viii TABLE OF CONTENTS Page Approval Sheet i Copyright Statement ii Abstract ’ iii Title Page...D.A., and Murphy,D. 1990. Regulation of c-fos and c- jun expression in the rat supraoptic nucleus. Cell. Mol. Neurobio . 10: 435-445 Castel, M., Gainer

  4. A putative SUMO interacting motif in the B30.2/SPRY domain of rhesus macaque TRIM5α important for NF-κB/AP-1 signaling and HIV-1 restriction

    Directory of Open Access Journals (Sweden)

    Marie-Édith Nepveu-Traversy

    2016-01-01

    Full Text Available TRIM5α from the rhesus macaque (TRIM5αRh is a restriction factor that shows strong activity against HIV-1. TRIM5αRh binds specifically to HIV-1 capsid (CA through its B30.2/PRYSPRY domain shortly after entry of the virus into the cytoplasm. Recently, three putative SUMO interacting motifs (SIMs have been identified in the PRYSPRY domain of human and macaque TRIM5α. However, structural modeling of this domain suggested that two of them were buried in the hydrophobic core of the protein, implying that interaction with SUMO was implausible, while the third one was not relevant to restriction. In light of these results, we re-analyzed the TRIM5αRh PRYSPRY sequence and identified an additional putative SIM (435VIIC438 which we named SIM4. This motif is exposed at the surface of the PRYSPRY domain, allowing potential interactions with SUMO or SUMOylated proteins. Introducing a double mutation in SIM4 (V435K, I436K did not alter stability, unlike mutations in SIM1. SIM4-mutated TRIM5αRh failed to bind HIV-1CA and lost the ability to restrict this virus. Accordingly, SIM4 undergoes significant variation among primates and substituting this motif with naturally occurring SIM4 variants affected HIV-1 restriction by TRIM5αRh, suggesting a direct role in capsid recognition. Interestingly, SIM4-mutated TRIM5αRh also failed to activate NF-κB and AP-1-mediated transcription. Although there is no direct evidence that SIM4 is involved in direct interaction with SUMO or a SUMOylated protein, mutating this motif strongly reduced co-localization of TRIM5αRh with SUMO-1 and with PML, a SUMOylated nuclear protein. In conclusion, this new putative SIM is crucial for both direct interaction with incoming capsids and for NF-κB/AP-1 signaling. We speculate that the latter function is mediated by interactions of SIM4 with a SUMOylated protein involved in the NF-κB/AP-1 signaling pathways.

  5. Recombinant Cyclophilins Lack Nuclease Activity

    OpenAIRE

    Manteca, Angel; Sanchez, Jesus

    2004-01-01

    Several single-domain prokaryotic and eukaryotic cyclophilins have been identified as also being unspecific nucleases with a role in DNA degradation during the lytic processes that accompany bacterial cell death and eukaryotic apoptosis. Evidence is provided here that the supposed nuclease activity of human and bacterial recombinant cyclophilins is due to contamination of the proteins by the host Escherichia coli endonuclease and is not an intrinsic property of these proteins.

  6. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Hirano, Seishiro; Fujitani, Yuji; Furuyama, Akiko; Kanno, Sanae

    2010-01-01

    Carbon nanotubes (CNT) are cytotoxic to several cell types. However, the mechanism of CNT toxicity has not been fully studied, and dosimetric analyses of CNT in the cell culture system are lacking. Here, we describe a novel, high throughput method to measure cellular uptake of CNT using turbimetry. BEAS-2B, a human bronchial epithelial cell line, was used to investigate cellular uptake, cytotoxicity, and inflammatory effects of multi-walled CNT (MWCNT). The cytotoxicity of MWCNT was higher than that of crocidolite asbestos in BEAS-2B cells. The IC 50 of MWCNT was 12 μg/ml, whereas that of asbestos (crocidolite) was 678 μg/ml. Over the course of 5 to 8 h, BEAS-2B cells took up 17-18% of the MWCNT when they were added to the culture medium at a concentration of 10 μg/ml. BEAS-2B cells were exposed to 2, 5, or 10 μg/ml of MWCNT, and total RNA was extracted for cytokine cDNA primer array assays. The culture supernatant was collected for cytokine antibody array assays. Cytokines IL-6 and IL-8 increased in a dose dependent manner at both the mRNA and protein levels. Migration inhibitory factor (MIF) also increased in the culture supernatant in response to MWCNT. A phosphokinase array study using lysates from BEAS-2B cells exposed to MWCNT indicated that phosphorylation of p38, ERK1, and HSP27 increased significantly in response to MWCNT. Results from a reporter gene assays using the NF-κB or AP-1 promoter linked to the luciferase gene in transiently transfected CHO-KI cells revealed that NF-κB was activated following MWCNT exposure, while AP-1 was not changed. Collectively, MWCNT activated NF-κB, enhanced phosphorylation of MAP kinase pathway components, and increased production of proinflammatory cytokines in human bronchial epithelial cells.

  7. Development of ADA Against Recombinant Human Interferon Beta in Immune Tolerant Mice Requires Rapid Recruitment of CD4(+) T Cells, Induces Formation of Germinal Centers but Lacks Susceptibility for (Most) Adjuvants

    NARCIS (Netherlands)

    Kijanka, Grzegorz; Sauerborn, Melody; Boon, Louis; Schellekens, Huub; Brinks, Vera

    Immunological processes leading to formation of antidrug antibodies (Abs) against recombinant human proteins remain poorly understood. Animal and clinical studies revealed that immunogenicity shares both T-cell-dependent (requirement of CD4(+) T cells, isotype switching) and T-cell-independent

  8. Direct interaction between verapamil and doxorubicin causes the lack of reversal effect of verapamil on P-glycoprotein mediated resistance to doxorubicin in vitro using L1210/VCR cells

    International Nuclear Information System (INIS)

    Breier, A.; Drobna, Z.; Barancik, M.

    1998-01-01

    Mouse leukemic cell sub-line L 1210/VCR exerts expressive multidrug resistance (MDR) that is mediated by P-glycoprotein. Cells originally adapted to vincristine are also extremely resistant to doxorubicin. Resistance to both vincristine and doxorubicin is connected with depression of drug uptake. While resistance of L 121 O cells to vincristine could be reversed by verapamil as chemo-sensitizer, resistance of cells to doxorubicin was insensitive to verapamil. Action of verapamil (well-known inhibitor of PGP activity) on multidrug resistance was often used as evidence that MDR is mediated by PGP. From this point it may be possible that the resistance of L1210/VCR cells to vincristine is mediated by PGP and the resistance to doxorubicin is mediated by other PGP-independent system. Another and more probable explanation of different effect of verapamil on resistance of L1210/VCR cells to vincristine and doxorubicin may be deduced from the following fact: Using UV spectroscopy we found that doxorubicin dissolved in water buffered medium interacts effectively with verapamil. This interaction may be responsible for the decrease of concentration of both drugs in free effective form and consequently for higher survival of cells. In contrast to doxorubicin vincristine does not give any interaction with verapamil that is measurable by UV spectroscopy and resistance of L1210/VCR cells to vincristine may be fully reversed by verapamil. (authors)

  9. Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.

    Science.gov (United States)

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.

  10. Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells.

    Science.gov (United States)

    Goreham, Renee V; Schroeder, Kathryn L; Holmes, Amy; Bradley, Siobhan J; Nann, Thomas

    2018-01-24

    The authors describe the synthesis of water-soluble and fluorescent graphene oxide quantum dots via acid exfoliation of graphite nanoparticles. The resultant graphene oxide quantum dots (GoQDs) were then modified with folic acid. Folic acid receptors are overexpressed in cancer cells and hence can bind to functionalized graphene oxide quantum dots. On excitation at 305 nm, the GoQDs display green fluorescence with a peak wavelength at ~520 nm. The modified GoQDs are non-toxic to macrophage cells even after prolonged exposure and high concentrations. Fluorescence lifetime imaging and multiphoton microscopy was used (in combination) to image HeCaT cells exposed to GoQDs, resulting in a superior method for bioimaging. Graphical abstract Schematic representation of graphene oxide quantum dots, folic acid modified graphene oxide quantum dots (red), and the use of fluorescence lifetime to discriminate against green auto-fluorescence of HeCaT cells.

  11. Molecular characterization of Legionella pneumophila-induced interleukin-8 expression in T cells

    Directory of Open Access Journals (Sweden)

    Mukaida Naofumi

    2010-01-01

    Full Text Available Abstract Background Legionella pneumophila is the causative agent of human Legionnaire's disease. During infection, the bacterium invades macrophages and lung epithelial cells, and replicates intracellularly. However, little is known about its interaction with T cells. We investigated the ability of L. pneumophila to infect and stimulate the production of interleukin-8 (IL-8 in T cells. The objective of this study was to assess whether L. pneumophila interferes with the immune system by interacting and infecting T cells. Results Wild-type L. pneumophila and flagellin-deficient Legionella, but not L. pneumophila lacking a functional type IV secretion system Dot/Icm, replicated in T cells. On the other hand, wild-type L. pneumophila and Dot/Icm-deficient Legionella, but not flagellin-deficient Legionella or heat-killed Legionella induced IL-8 expression. L. pneumophila activated an IL-8 promoter through the NF-κB and AP-1 binding regions. Wild-type L. pneumophila but not flagellin-deficient Legionella activated NF-κB, p38 mitogen-activated protein kinase (MAPK, Jun N-terminal kinase (JNK, and transforming growth factor β-associated kinase 1 (TAK1. Transfection of dominant negative mutants of IκBα, IκB kinase, NF-κB-inducing kinase, TAK1, MyD88, and p38 MAPK inhibited L. pneumophila-induced IL-8 activation. Inhibitors of NF-κB, p38 MAPK, and JNK blocked L. pneumophila-induced IL-8 expression. In addition, c-Jun, JunD, cyclic AMP response element binding protein, and activating transcription factor 1, which are substrates of p38 MAPK and JNK, bound to the AP-1 site of the IL-8 promoter. Conclusions Taken together, L. pneumophila induced a flagellin-dependent activation of TAK1, p38 MAPK, and JNK, as well as NF-κB and AP-1, which resulted in IL-8 production in human T cells, presumably contributing to the immune response in Legionnaire's disease.

  12. Lack of RNase L attenuates macrophage functions.

    Directory of Open Access Journals (Sweden)

    Xin Yi

    Full Text Available Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and cyclooxygenase-2 (Cox-2 by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown.Bone marrow-derived macrophages (BMMs were generated from RNase L(+/+and (-/- mice. The migration of BMMs was analyzed by using Transwell migration assays. Endocytosis and phagocytosis of macrophages were assessed by using fluorescein isothiocyanate (FITC-Dextran 40,000 and FITC-E. coli bacteria, respectively. The expression of inflammatory genes was determined by Western Blot and ELISA. The promoter activity of Cox-2 was measured by luciferase reporter assays.Lack of RNase L significantly decreased the migration of BMMs induced by M-CSF, but at a less extent by GM-CSF and chemokine C-C motif ligand-2 (CCL2. Interestingly, RNase L deficient BMMs showed a significant reduction of endocytic activity to FITC-Dextran 40,000, but no any obvious effect on their phagocytic activity to FITC-bacteria under the same condition. RNase L impacts the expression of certain genes related to cell migration and inflammation such as transforming growth factor (TGF-β, IL-1β, IL-10, CCL2 and Cox-2. Furthermore, the functional analysis of the Cox-2 promoter revealed that RNase L regulated the expression of Cox-2 in macrophages at its transcriptional level. Taken together, our findings provide direct evidence showing that RNase L contributes to innate immunity through regulating macrophage functions.

  13. C/EBPβ LIP augments cell death by inducing osteoglycin.

    Science.gov (United States)

    Wassermann-Dozorets, Rina; Rubinstein, Menachem

    2017-04-06

    Many types of tumor cell are devoid of the extracellular matrix proteoglycan osteoglycin (Ogn), but its role in tumor biology is poorly studied. Here we show that RNAi of Ogn attenuates stress-triggered cell death, whereas its overexpression increases cell death. We found that the transcription factor C/EBPβ regulates the expression of Ogn. C/EBPβ is expressed as a full-length, active form (LAP) and as a truncated, dominant-negative form (LIP), and the LIP/LAP ratio is positively correlated with the extent of cell death under stress. For example, we reported that drug-resistant tumor cells lack LIP altogether, and its supplementation abolished their resistance to chemotherapy and to endoplasmic reticulum (ER) stress. Here we further show that elevated LIP/LAP ratio robustly increased Ogn expression and cell death under stress by modulating the mitogen-activated protein kinase/activator protein 1 pathway (MAPK/AP-1). Our findings suggest that LIP deficiency renders tumor cell resistant to ER stress by preventing the induction of Ogn.

  14. Association of Sendai virion envelope and a mouse surface membrane polypeptide on newly infected cells: lack of association with H-2K/D or alteration of viral immunogenicity

    International Nuclear Information System (INIS)

    Zarling, D.A.; Miskimen, J.A.; Fan, D.P; Fujimoto, E.K.; Smith, P.K.

    1982-01-01

    The reagent N-succinimidyl 4-azidophenyl-1,3'-dithiopropionate (SADP) was synthesized and then coupled to purified Sendai virions by the amino-reactive end of the SADP molecule. This SADP-coupled virus was fused into the membranes of surface radioiodinated P815 cells, and target structures were allowed to form. Next, the photosensitive group on SADP was activated with ultraviolet light to covalently couple the viral proteins to any neighboring cell surface proteins. The cellular neighbors were isolated from detergent extracts of membrane proteins after immunoprecipitation with antibody specific for Sendai virion proteins. The covalent cross-links between the nonradioactive Sendai proteins and the radioiodinated cellular polypeptide neighbors were broken, and the host cell polypeptides were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and detected by autoradiography. One of these neighboring cellular proteins had an apparent m.w. of 17,000, and none was found with the characteristic size and tryptic map of either the H-2K or D gene products. Thus, the H-2K or D proteins are unlikely to be SADP- detectable neighbors of Sendai viral antigens recognized by CTL. In further experiments, the complexes of Sendai virion proteins crosslinked to cellular polypeptide neighbors were isolated from the membrane of newly infected cells and were shown to be able to stimulate CTL in vitro with approximately the same efficiency as uncross-linked Sendai virion proteins. Thus, Sendai viral proteins in the membrane of newly infected cells do not appear to be in highly immunogenic complexes with either H-2K/D or any other cellular proteins

  15. Kidney failure in mice lacking the tetraspanin CD151

    NARCIS (Netherlands)

    Sachs, Norman; Kreft, Maaike; van den Bergh Weerman, Marius A.; Beynon, Andy J.; Peters, Theo A.; Weening, Jan J.; Sonnenberg, Arnoud

    2006-01-01

    The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin alpha3beta1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking

  16. Kidney failure in mice lacking the tetraspanin CD151.

    NARCIS (Netherlands)

    Sachs, N.; Kreft, M.; Bergh Weerman, M. van der; Beynon, A.J.; Peters, T.A.; Weening, J.J.; Sonnenberg, A.

    2006-01-01

    The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin alpha3beta1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking

  17. ERK mediated upregulation of death receptor 5 overcomes the lack of p53 functionality in the diaminothiazole DAT1 induced apoptosis in colon cancer models: efficiency of DAT1 in Ras-Raf mutated cells.

    Science.gov (United States)

    Thamkachy, Reshma; Kumar, Rohith; Rajasekharan, K N; Sengupta, Suparna

    2016-03-08

    p53 is a tumour suppressor protein that plays a key role in many steps of apoptosis, and malfunctioning of this transcription factor leads to tumorigenesis. Prognosis of many tumours also depends upon the p53 status. Most of the clinically used anticancer compounds activate p53 dependent pathway of apoptosis and hence require p53 for their mechanism of action. Further, Ras/Raf/MEK/ERK axis is an important signaling pathway activated in many cancers. Dependence of diaminothiazoles, compounds that have gained importance recently due to their anticancer and anti angiogenic activities, were tested in cancer models with varying p53 or Ras/Raf mutational status. In this study we have used p53 mutated and knock out colon cancer cells and xenograft tumours to study the role of p53 in apoptosis mediated by diaminothiazoles. Colon cancer cell lines with varying mutational status for Ras or Raf were also used. We have also examined the toxicity and in vivo efficacy of a lead diaminothiazole 4-Amino-5-benzoyl-2-(4-methoxy phenylamino)thiazole (DAT1) in colon cancer xenografts. We have found that DAT1 is active in both in vitro and in vivo models with nonfunctional p53. Earlier studies have shown that extrinsic pathway plays major role in DAT1 mediated apoptosis. In this study, we have found that DAT1 is causing p53 independent upregulation of the death receptor 5 by activating the Ras/Raf/MEK/ERK signaling pathway both in wild type and p53 suppressed colon cancer cells. These findings are also confirmed by the in vivo results. Further, DAT1 is more efficient to induce apoptosis in colon cancer cells with mutated Ras or Raf. Minimal toxicity in both acute and subacute studies along with the in vitro and in vivo efficacy of DAT1 in cancers with both wild type and nonfunctional p53 place it as a highly beneficial candidate for cancer chemotherapy. Besides, efficiency in cancer cells with mutations in the Ras oncoprotein or its downstream kinase Raf raise interest in

  18. Role of bioavailable iron in coal dust-induced activation of activator protein-1 and nuclear factor of activated T cells: difference between Pennsylvania and Utah coal dusts.

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Zhang, Qi; Huang, Xi

    2002-11-01

    Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers' pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH(2)-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions.

  19. Role of Bioavailable Iron in Coal Dust-Induced Activation of Activator Protein-1 and Nuclear Factor of Activated T Cells

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Zhang, Qi; Huang, Xi

    2010-01-01

    Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers’ pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH2-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions. PMID:12397016

  20. Lack of prognostic and predictive value of CA IX in radiotherapy of squamous cell carcinoma of the head and neck with known modifiable hypoxia: An evaluation of the DAHANCA 5 study

    DEFF Research Database (Denmark)

    Eriksen, Jesper Grau; Overgaard, Jens

    2007-01-01

    BACKGROUND AND PURPOSE: CA IX is suggested to be an endogenous marker of hypoxia in tumours like squamous cell carcinomas of the head and neck (HNSCC). The aim of the present study was to investigate whether CA IX served as a prognostic factor for outcome in a large population of HNSCC and if CA IX...... was able to discriminate the tumours that did benefit from hypoxic modification with nimorazole. MATERIALS AND METHODS: Paraffin-embedded formalin-fixed pre-treatment tumour tissue was available from 320 of the 414 patients treated in the randomized DAHANCA 5 protocol with primary radiotherapy...

  1. Analysis of DNA repair in XP-HeLa hybrids; lack of correlation between excision repair of u.v. damage and adenovirus reactivation in an XP(D)-like cell line

    International Nuclear Information System (INIS)

    Johnson, R.Y.; Squires, S.; Elliott, G.C.

    1986-01-01

    Hybrids formed between HeLa cells and fibroblasts from xeroderma pigmentosum group D show either HeLa sensitivity or XPD-like hypersensitivity to u.v. radiation and corresponding high or low excision repair capability. Hybrids with low repair are presumed to have lost, via chromosome segregation, the HeLa wild type D alleles. The u.v. sensitivity and excision repair capability of another hybrid, HD1A, derived spontaneously from the normally sensitive hybrid HD1 are analyzed. While HD1A closely resembles the XPD phenotype in terms of u.v. sensitivity and excision repair it differs from XPD because of its ability to reactivate u.v.-irradiated adenovirus 2 to an extent similar to that of its HeLa parent. This capacity functionally dissociates excision repair of chromatin-based damage from damage in a viral environment. Moreover, on the basis of complementation studies the excision repair of genomic damage by HD1A is subtly different from that of a true XPD-like hybrid, HD2. The data are discussed in terms of a second change in the defective D allele of the HD1A cell. (author)

  2. Derivation of the Duchenne muscular dystrophy patient-derived induced pluripotent stem cell line lacking DMD exons 49 and 50 (CCMi001DMD-A-3, ∆49, ∆50

    Directory of Open Access Journals (Sweden)

    Gabriella Spaltro

    2017-12-01

    Full Text Available Duchenne muscular dystrophy (DMD is caused by abnormalities in the dystrophin gene and is clinically characterised by childhood muscle degeneration and cardiomyopathy. We produced an induced pluripotent stem cell line from a DMD patient's dermal fibroblasts by electroporation with episomal vectors containing: hL-MYC, hLIN28, hSOX2, hKLF4, hOCT3/4. The resultant DMD iPSC line (CCMi001DMD-A-3 displayed iPSC morphology, expressed pluripotency markers, possessed trilineage differentiation potential and was karyotypically normal. MLPA analyses performed on DNA extracted from CCMi001DMD-A-3 showed a deletion of exons 49 and 50 (CCMi001DMD-A-3, ∆49, ∆50.

  3. Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: A role for NF-κB-STAT3-directed gene expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Ghandhi, Shanaz A.; Zhou, Hongning; Huang, Sarah X.; Chai, Yunfei; Amundson, Sally A.; Hei, Tom K.

    2011-01-01

    Mitochondrial DNA depleted (ρ 0 ) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-κB and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental ρ + HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in ρ 0 cells compared to ρ + HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, ΙL17Β, ΙL18, ΙL19, and ΙL28Β) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-κB and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-κB/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in ρ + HSF, but this response was substantially decreased in ρ 0 HSF. Suppression of the IKK-NF-κB pathway by the small molecular inhibitor BMS-345541 and of the JAK2-STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated ρ + HSF. Inhibitory antibodies against IL6, the main activator of JAK2-STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-κB activation was partially lost in ρ 0 HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-κB targets, further suppressing IL6-JAK2-STAT3 that in concert with NF-κB regulated protection against TRAIL-induced apoptosis.

  4. Effect of lovastatin on rabbit vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Luan Zhaoxia; Pei Zhuguo

    2003-01-01

    Objective: To investigate the effect of lovastatin on binding activity of nuclear factor activator protein-1 (AP-1) to NF-κB and the expression of matrix metalloproteinase-9 (MMP-9) in rabbit vascular smooth muscle cells (VSMCs). Methods: The oligonucleotide corresponding to the consensus NF-κB element or the consensus AP-1 element was labeled by [γ- 32 P]-ATP. AP-1 and NF-κB binding activity was detected by electrophoretic mobility shift assay (EMSA), expression of MMP-9 was detected by zymography. Results: Lovastatin inhibited the expression of MMP-9 in a dose-dependent manner, this effect was reversed by mevalonate and GGPP but not by squalene; lovastatin significantly decreased AP-1 and NF-κB binding activity. Conclusion: Lovastatin decreased AP-1 and NF-κB binding activity and inhibited MMP-9 expression in rabbit VSMCs by the way of inhibiting prenylation of protein but not by cholestrol-lowering, and this might be the mechanism of its arteriosclerostic plaque stabilizing effects

  5. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    Science.gov (United States)

    Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.

  6. A Phenomenological Study on Lack of Motivation

    Science.gov (United States)

    Educational Research and Reviews, 2013

    2013-01-01

    The aim of this research is to point out the underlying reasons about the lack of motivation at academic activities concerning Attribution Theory. Attribution Theory trys to understand how the people answer "why" question and how they do casual explanations. This research is a qualitative based research. It used the phenomenological…

  7. TRIM45 negatively regulates NF-κB-mediated transcription and suppresses cell proliferation

    International Nuclear Information System (INIS)

    Shibata, Mio; Sato, Tomonobu; Nukiwa, Ryota; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-01

    Highlights: ► NF-κB plays an important role in cell survival and carcinogenesis. ► TRIM45 negatively regulates TNFα-induced NF-κB-mediated transcription. ► TRIM45 overexpression suppresses cell growth. ► TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth. -- Abstract: The NF-κB signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-κB is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-κB signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin–proteasome system. It has been reported that overexpression of TRIM45, one of the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNFα-induced NF-κB-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-κB signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth.

  8. Conceptualising the lack of health insurance coverage.

    Science.gov (United States)

    Davis, J B

    2000-01-01

    This paper examines the lack of health insurance coverage in the US as a public policy issue. It first compares the problem of health insurance coverage to the problem of unemployment to show that in terms of the numbers of individuals affected lack of health insurance is a problem comparable in importance to the problem of unemployment. Secondly, the paper discusses the methodology involved in measuring health insurance coverage, and argues that the current method of estimation of the uninsured underestimates the extent that individuals go without health insurance. Third, the paper briefly introduces Amartya Sen's functioning and capabilities framework to suggest a way of representing the extent to which individuals are uninsured. Fourth, the paper sketches a means of operationalizing the Sen representation of the uninsured in terms of the disability-adjusted life year (DALY) measure.

  9. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  10. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells

    International Nuclear Information System (INIS)

    Ding, M.; Kisin, E.R.; Zhao, J.; Bowman, L.; Lu, Y.; Jiang, B.; Leonard, S.; Vallyathan, V.; Castranova, V.; Murray, A.R.; Fadeel, B.; Shvedova, A.A.

    2009-01-01

    Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-κB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P + ). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P + cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-κB more efficiently in JB6 +/+ cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6 +/+ cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.

  11. Impaired intestinal proglucagon processing in mice lacking prohormone convertase 1

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Zhu, Xiaorong; Deacon, Carolyn F

    2003-01-01

    proglucagon processing showed marked defects. Tissue proglucagon levels in null mice were elevated, and proglucagon processing to glicentin, oxyntomodulin, and glucagon-like peptide-1 and -2 (GLP-1 and GLP-2) was markedly decreased, indicating that PC1 is essential for the processing of all the intestinal...... proglucagon cleavage sites. This includes the monobasic site R(77) and, thereby, production of mature, biologically active GLP-1. We also found elevated glucagon levels, suggesting that factors other than PC1 that are capable of processing to mature glucagon are present in the secretory granules of the L cell......The neuroendocrine prohormone convertases 1 and 2 (PC1 and PC2) are expressed in endocrine intestinal L cells and pancreatic A cells, respectively, and colocalize with proglucagon in secretory granules. Mice lacking PC2 have multiple endocrinopathies and cannot process proglucagon to mature...

  12. Accidents in radiotherapy: Lack of quality assurance?

    International Nuclear Information System (INIS)

    Novotny, J.

    1997-01-01

    About 150 radiological accidents, involving more than 3000 patients with adverse effects, 15 patient's fatalities and about 5000 staff and public exposures have been collected and analysed. Out of 67 analysed accidents in external beam therapy 22% has been caused by wrong calculation of the exposure time or monitor units, 13% by inadequate review of patient's chart, 12% by mistakes in the anatomical area to be treated. The remaining 35% can be attributed to 17 different causes. The most common mistakes in brachytherapy were wrong activities of sources used for treatment (20%), inadequate procedures for placement of sources applicators (14%), mistakes in calculating the treatment time (12%), etc. The direct and contributing causes of radiological accidents have been deduced from each event, when it was possible and categorized into 9 categories: mistakes in procedures (30%), professional mistakes (17%), communication mistakes (15%), lack of training (8.5%), interpretation mistakes (7%), lack of supervision (6%), mistakes in judgement (6%), hardware failures (5%), software and other mistakes (5.5%). Three types of direct and contributing causes responsible for almost 62% of all accidents are directly connected to the quality assurance of treatment. The lessons learnt from the accidents are related to frequencies of direct and contributing factors and show that most of the accident are caused by lack, non-application of quality assurance (QA) procedures or by underestimating of QA procedures. The international system for collection of accidents and dissemination of lessons learnt from the different accidents, proposed by IAEA, can contribute to better practice in many radiotherapy departments. Most of the accidents could have been avoided, had a comprehensive QA programme been established and properly applied in all radiotherapy departments, whatever the size. (author)

  13. Why does Colombia lack agricultural commodity futures?

    Directory of Open Access Journals (Sweden)

    Pablo Moreno-Alemay

    2015-11-01

    Full Text Available This article explores the reasons why futures contracts are not traded as an alternative to price hedging for agricultural goods in Colombia. Based on surveys, interviews and statistical analysis, this study identified that conceptual gaps in contract negotiation, lack of consensus in the agricultural sector regarding the use of financial mechanisms and the sector’s infrequent contact with Colombia’s financial institutions, are the main reasons why a futures contracts market has not emerged.

  14. A small scale cell culture system to analyze mechanobiology using reporter gene constructs and polyurethane dishes

    DEFF Research Database (Denmark)

    Seefried, Lothar; Mueller-Deubert, Sigrid; Wentzer, Thomas Schwarz

    2010-01-01

    of mechanotransduction and its crosstalk with biochemically induced signal transduction, AP1 and SP1 luciferase reporter gene constructs were cloned and transfected into various cell lines and primary cells. A newly developed bioreactor and small-scale 24-well polyurethane dishes were used to apply cyclic stretching...

  15. Reduced alcohol consumption in mice lacking preprodynorphin.

    Science.gov (United States)

    Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron

    2006-10-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).

  16. Inhibition of acrolein-stimulated MUC5AC production by fucoidan in human bronchial epithelial cells.

    Science.gov (United States)

    Pokharel, Yuba Raj; Yoon, Se Young; Kim, Sang Kyum; Li, Jian-Dong; Kang, Keon Wook

    2008-10-01

    Fucoidan, a marine sulfated polysaccharide has both antithrombotic and anti-inflammatory effects. We determined the effect of fucoidan on MUC5AC expression in a human bronchial epithelial cell line, NCI-H292. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that fucoidan inhibited MUC5AC expression and protein secretion in cells stimulated with acrolein, a toxic aldehyde present in tobacco smoke. The activation of both nuclear factor-kappa B (NF-kappa B) and activator protein 1 (AP-1) are key steps in the transcriptional activation of MUC5AC. We found that the acrolein-mediated transactivation of MUC5AC was selectively dependent on AP-1 activation and was suppressed by fucoidan. Fucoidan-induced AP-1 inhibition and MUC5AC repression might be associated with fucoidan's protective effects against respiratory diseases.

  17. Lack of consensus in social systems

    Science.gov (United States)

    Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.

    2008-05-01

    We propose an exactly solvable model for the dynamics of voters in a two-party system. The opinion formation process is modeled on a random network of agents. The dynamical nature of interpersonal relations is also reflected in the model, as the connections in the network evolve with the dynamics of the voters. In the infinite time limit, an exact solution predicts the emergence of consensus, for arbitrary initial conditions. However, before consensus is reached, two different metastable states can persist for exponentially long times. One state reflects a perfect balancing of opinions, the other reflects a completely static situation. An estimate of the associated lifetimes suggests that lack of consensus is typical for large systems.

  18. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport.

    Science.gov (United States)

    Batista, Anderson S; Miletti, Luiz C; Stambuk, Boris U

    2004-01-01

    Sucrose is the major carbon source used by Saccharomyces cerevisiae during production of baker's yeast, fuel ethanol and several distilled beverages. It is generally accepted that sucrose fermentation proceeds through extracellular hydrolysis of the sugar, mediated by the periplasmic invertase, producing glucose and fructose that are transported into the cells and metabolized. In the present work we analyzed the contribution to sucrose fermentation of a poorly characterized pathway of sucrose utilization by S. cerevisiae cells, the active transport of the sugar through the plasma membrane and its intracellular hydrolysis. A yeast strain that lacks the major hexose transporters (hxt1-hxt7 and gal2) is incapable of growing on or fermenting glucose or fructose. Our results show that this hxt-null strain is still able to ferment sucrose due to direct uptake of the sugar into the cells. Deletion of the AGT1 gene, which encodes a high-affinity sucrose-H(+) symporter, rendered cells incapable of sucrose fermentation. Since sucrose is not an inducer of the permease, expression of the AGT1 must be constitutive in order to allow growth of the hxt-null strain on sucrose. The molecular characterization of active sucrose transport and fermentation by S. cerevisiae cells opens new opportunities to optimize yeasts for sugarcane-based industrial processes.

  19. Lack of efficacy of ergocalciferol repletion

    Directory of Open Access Journals (Sweden)

    Thomas Wasser

    2012-04-01

    Full Text Available Introduction: Vitamin D has become an area of intensive scrutiny, both in medical and lay literature. However, there are limited data to suggest proper repletion regimens for those patients who have hypovitaminosis D. Consequently, various methods are used in clinical practice. The aim of this study was to assess the efficacy of various treatment strategies for hypovitaminosis D in an ambulatory internal medicine practice. Methods: A retrospective chart review between October 2005 and June 2010 of a suburban internal medicine practice was performed via query of the electronic medical record (Centricity, General Electric Healthcare, UK. Patients with a 25-hydroxyvitamin D concentration less than 32 mg/dl were identified and treated. Treatment success was defined as 25-hydroxyvitamin D concentrations greater than 32 mg/dl. Statistical analysis to assess changes in vitamin D level controlling for season, comorbidities, and demographics were used. Results: A total of 607 treatment episodes were identified, with 395 excluded due to lack of follow-up vitamin D level within 16 weeks, no treatment documented, topical treatment, doxercalciferol treatment, or non-compliance. Of the remaining patients, there were 212 treatment instances on 178 patients. Ergocalciferol 50,000 international units (IU was used most frequently (71.4% of the time.. A higher initial vitamin D level was positively associated with treatment success (adjusted odds ratio = 1.11, p=0.002. Increased doses of ergocalciferol increased the likelihood of treatment success (p=0.0011. Seasonal variation was related to posttreatment 25-hydroxyvitamin D concentration as was body mass index (BMI (p=0.003 and p=0.044. Conclusion: Pretreatment levels of 25-hydroxyvitamin D, BMI, season, and vitamin D dose are predictors of successful hypovitaminosis D treatment. Our data suggest that patients with initial 25-hydroxyvitamin D concentrations of <20 should be treated with a higher total dose of

  20. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.

    Science.gov (United States)

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-10-17

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.

  1. Role of nuclear factor of activated T-cells and activator protein-1 in the inhibition of interleukin-2 gene transcription by cannabinol in EL4 T-cells.

    Science.gov (United States)

    Yea, S S; Yang, K H; Kaminski, N E

    2000-02-01

    We previously reported that immunosuppressive cannabinoids inhibited interleukin (IL)-2 steady-state mRNA expression and secretion by phorbol-12-myristate-13-acetate plus ionomycin-activated mouse splenocytes and EL4 murine T-cells. Here we show that inhibition of IL-2 production by cannabinol, a modest central nervous system-active cannabinoid, is mediated through the inhibition of IL-2 gene transcription. Moreover, electrophoretic mobility shift assays demonstrated that cannabinol markedly inhibited the DNA binding activity of nuclear factor of activated T-cells (NF-AT) and activator protein-1 (AP-1) in a time- and concentration-dependent manner in activated EL4 cells. The inhibitory effects produced by cannabinol on AP-1 DNA binding were quite transient, showing partial recovery by 240 min after cell activation and no effect on the activity of a reporter gene under the control of AP-1. Conversely, cannabinol-mediated inhibition of NF-AT was robust and sustained as demonstrated by an NF-AT-regulated reporter gene. Collectively, these results suggest that decreased IL-2 production by cannabinol in EL4 cells is due to the inhibition of transcriptional activation of the IL-2 gene and is mediated, at least in part, through a transient inhibition of AP-1 and a sustained inhibition of NF-AT.

  2. Indigenous Traditional Medical Practitioners’ Lack of Formal Medical Education Impacts their Choices of Information Resources for the Treatment of Sickle Cell Anemia. A Review of: Olatokun, W. M., & Ajagbe, E. (2010. Analyzing traditional medical practitioners’ information-seeking behavior using Taylor’s information-use environment model. Journal of Librarianship and Information Science, 42, 122-135.

    Directory of Open Access Journals (Sweden)

    Maria C. Melssen

    2011-06-01

    sources. The informal sources most commonly used are local associations (55%, colleagues (55%, and master healers (52.5%. Such formal resources as medical journals, seminars or workshops, the Internet, and libraries are rarely if ever used. The factors influencing the practitioners’ resource choice include relevance (87.8%, suitability (70%, and availability (67.5%.Many practitioners also refer their patients to other traditional medical practitioners; however, very few (27.5% refer patients to orthodox physicians. The traditional practitioners felt that they can treat their patients on their own and do not need the orthodox physician’s help. The traditional practitioners also feel that there is little or no information sharing between the traditional practitioners and the orthodox physicians: the only time information is exchanged between the two groups is when the orthodox physicians want to conduct research on traditional medical practices.Conclusion – The traditional practitioners rely heavily on information from local experts to guide their treatment plans for sickle cell anemia patients. The success or failure of a given treatment plan is also based on what did or did not work in the past. These practitioners do not have a formal education and have a low literacy level. This group is not recognized by western medical culture as a result of their lack of professional, western medical training. Another issue is that there is not a solid documentation system of the treatment and management of sickle cell anemia by this group. This is due to their fears of having their methods “stolen” by fellow practitioners. Recommendations by the authors include having the association leaders document and track the treatment and disease management methods used by their members and implementing a training program for the indigenous traditional medicine practitioners. Further research needed includes exploring the various ways to integrate western medical practices with

  3. Macrophage Reporter Cell Assay for Screening Immunopharmacological Activity of Cell Wall-Active Antifungals

    OpenAIRE

    Lewis, Russell E.; Liao, Guangling; Young, Katherine; Douglas, Cameron; Kontoyiannis, Dimitrios P.

    2014-01-01

    Antifungal exposure can elicit immunological effects that contribute to activity in vivo, but this activity is rarely screened in vitro in a fashion analogous to MIC testing. We used RAW 264.7 murine macrophages that express a secreted embryonic alkaline phosphatase (SEAP) gene induced by transcriptional activation of NF-κB and activator protein 1 (AP-1) to develop a screen for immunopharmacological activity of cell wall-active antifungal agents. Isolates of Candida albicans and Aspergillus f...

  4. β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G2/M phase transition.

    Science.gov (United States)

    Zhang, Yi-Xin; Li, Xiao-Fang; Yuan, Guo-Qiang; Hu, Hui; Song, Xiao-Yun; Li, Jing-Yi; Miao, Xiao-Kang; Zhou, Tian-Xiong; Yang, Wen-Le; Zhang, Xiao-Wei; Mou, Ling-Yun; Wang, Rui

    2017-05-26

    Glioblastoma is the most common malignant brain tumor and has a poor prognosis. Tachykinin receptor neurokinin-1 (NK1R) is a promising target in glioblastoma therapy because of its overexpression in human glioblastoma. NK1R agonists promote glioblastoma cell growth, whereas NK1R antagonists efficiently inhibit cell growth both in vitro and in vivo However, the molecular mechanisms involved in these effects are incompletely understood. β-Arrestins (ARRBs) serve as scaffold proteins and adapters to mediate intracellular signal transduction. Here we show that the ARRB1-mediated signaling pathway is essential for NK1-mediated glioblastoma cell proliferation. ARRB1 knockdown significantly inhibited NK1-mediated glioblastoma cell proliferation and induced G 2 /M phase cell cycle arrest. ARRB1 knockdown cells showed remarkable down-regulation of CDC25C/CDK1/cyclin B1 activity. We also demonstrated that ARRB1 mediated prolonged phosphorylation of ERK1/2 and Akt in glioblastoma cells induced by NK1R activation. ERK1/2 and Akt phosphorylation are involved in regulating CDC25C/CDK1/cyclin B1 activity. The lack of long-term ERK1/2 and Akt activation in ARRB1 knockdown cells was at least partly responsible for the delayed cell cycle progression and proliferation. Moreover, we found that ARRB1-mediated ERK1/2 and Akt phosphorylation regulated the transcriptional activity of both NF-κB and AP-1, which were involved in cyclin B1 expression. ARRB1 deficiency increased the sensitivity of glioblastoma cells to the treatment of NK1R antagonists. Taken together, our results suggest that ARRB1 plays an essential role in NK1R-mediated cell proliferation and G 2 /M transition in glioblastoma cells. Interference with ARRB1-mediated signaling via NK1R may have potential significance for therapeutic strategies targeting glioblastoma. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Lack of centrioles and primary cilia in STIL−/− mouse embryos

    Science.gov (United States)

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474

  6. Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer

    International Nuclear Information System (INIS)

    O'Grady, Michael; Raha, Debasish; Hanson, Bonnie J; Bunting, Michaeline; Hanson, George T

    2005-01-01

    The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC 50 was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. EGFR pathway components were qualified as

  7. Arsenite enhances tumor necrosis factor-α-induced expression of vascular cell adhesion molecule-1

    International Nuclear Information System (INIS)

    Tsou, T.-C.; Yeh, Szu Ching; Tsai, E.-M.; Tsai, F.-Y.; Chao, H.-R.; Chang, Louis W.

    2005-01-01

    Epidemiological studies demonstrated a high association of vascular diseases with arsenite exposure. We hypothesize that arsenite potentiates the effect of proinflammatory cytokines on vascular endothelial cells, and hence contributes to atherosclerosis. In this study, we investigated the effect of arsenite and its induction of glutathione (GSH) on vascular cell adhesion molecule-1 (VCAM-1) protein expression in human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-α (TNF-α), a typical proinflammatory cytokine. Our study demonstrated that arsenite pretreatment potentiated the TNF-α-induced VCAM-1 expression with up-regulations of both activator protein-1 (AP-1) and nuclear factor-κB (NF-κB). To elucidate the role of GSH in regulation of AP-1, NF-κB, and VCAM-1 expression, we employed L-buthionine (S,R)-sulfoximine (BSO), a specific γ-glutamylcysteine synthetase (γ-GCS) inhibitor, to block intracellular GSH synthesis. Our investigation revealed that, by depleting GSH, arsenite attenuated the TNF-α-induced VCAM-1 expression as well as a potentiation of AP-1 and an attenuation of NF-κB activations by TNF-α. Moreover, we found that depletion of GSH would also attenuate the TNF-α-induced VCAM-1 expression with a down-regulation of the TNF-α-induced NF-κB activation and without significant effect on AP-1. On the other hand, the TNF-α-induced VCAM-1 expression could be completely abolished by inhibition of AP-1 or NF-κB activity, suggesting that activation of both AP-1 and NF-κB was necessary for VCAM-1 expression. In summary, we demonstrate that arsenite enhances the TNF-α-induced VCAM-1 expression in HUVECs via regulation of AP-1 and NF-κB activities in a GSH-sensitive manner. Our present study suggested a potential mechanism for arsenite in the induction of vascular inflammation and vascular diseases via modulating the actions of proinflammatory cytokines

  8. Deregulated MAPK activity prevents adipocyte differentiation of fibroblasts lacking the retinoblastoma protein

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Petersen, Rasmus K; Jørgensen, Claus

    2002-01-01

    A functional retinoblastoma protein (pRB) is required for adipose conversion of preadipocyte cell lines and primary mouse embryo fibroblasts (MEFs) in response to treatment with standard adipogenic inducers. Interestingly, lack of functional pRB in MEFs was recently linked to elevated Ras activity...

  9. 10 CFR 503.21 - Lack of alternate fuel supply.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New Facilities § 503.21 Lack of alternate fuel supply. (a) Eligibility. Section 211(a)(1) of the Act provides for...

  10. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do, E-mail: ydjung@chonnam.ac.kr

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  11. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    International Nuclear Information System (INIS)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do

    2012-01-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H 2 O 2 ) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H 2 O 2 increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells treated with nicotine

  12. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  13. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression

    Science.gov (United States)

    Jang, Min A.; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1–10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538–234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression. PMID:28114367

  14. Lack of consent for mediation between companies and its reasons

    OpenAIRE

    Karpińska-Królikowska, Iwona

    2011-01-01

    This article discusses commercial mediation, presenting its principles and procedure. It shows the reason why I became interested in the topic of companies’ lack of willingness to solve problems through mediation. It presents empirical statistics from mediation in commercial cases, including those on lack of consents or settlements. The figures are shown against the background of court statistics. On the basis of research conducted in the form of case studies, it presents...

  15. Adaptor protein 1 B mu subunit does not contribute to the recycling of kAE1 protein in polarized renal epithelial cells.

    Science.gov (United States)

    Almomani, Ensaf Y; Touret, Nicolas; Cordat, Emmanuelle

    2018-04-13

    Mutations in the gene encoding the kidney anion exchanger 1 (kAE1) can lead to distal renal tubular acidosis (dRTA). dRTA mutations reported within the carboxyl (C)-terminal tail of kAE1 result in apical mis-targeting of the exchanger in polarized renal epithelial cells. As kAE1 physically interacts with the μ subunit of epithelial adaptor protein 1 B (AP-1B), we investigated the role of heterologously expressed μ1B subunit of the AP-1B complex for kAE1 retention to the basolateral membrane in polarized porcine LLC-PK1 renal epithelial cells that are devoid of endogenous AP-1B. We confirmed the interaction and close proximity between kAE1 and μ1B using immunoprecipitation and proximity ligation assay, respectively. Expressing the human μ1B subunit in these cells decreased significantly the amount of cell surface kAE1 at the steady state, but had no significant effect on kAE1 recycling and endocytosis. We show that (i) heterologous expression of μ1B displaces the physical interaction of endogenous GAPDH with kAE1 WT supporting that both AP-1B and GAPDH proteins bind to an overlapping site on kAE1 and (ii) phosphorylation of tyrosine 904 within the potential YDEV interaction motif does not alter the kAE1/AP-1B interaction. We conclude that μ1B subunit is not involved in recycling of kAE1.

  16. Lack of dust in quasar absorption line systems

    International Nuclear Information System (INIS)

    Jura, M.

    1977-01-01

    It is stated that the origin of absorption line systems in quasars is still uncertain. Most such systems apparently have atomic hydrogen column densities of the order of 10 19 /cm 2 , but at least two quasars, 1331 + 170 and PHL957, have such strong Lyman α absorption lines that atomic hydrogen column densities of the order of 10 21 /cm 2 are indicated. It should be possible to observe the dust produced 2,200 A extinction feature as it is red shifted into the visible, and to determine whether absorption line systems are produced in spiral galaxies where the dust content is similar to that in the interstellar medium. It has been argued that the emission line regions of quasars generally lack dust and that towards PHL957 the 2,200 A feature is absent. The present author argues that dust similar to that found in the interstellar medium is not found towards the quasars 1331 + 170 and PHL957. This could explain why H 2 is not found towards PHL957, and it indicates that the absorption line systems in quasars are not produced in spiral galaxies similar to our own. It seems from the analysis presented that the dust-to-gas ratio towards 1331 + 170 is at least a factor of 20 less than in the interstellar medium, and there is no reason to suppose that this lack of dust results from a lack of metals It is concluded that there seems to be a lack of normal dust towards PHL957 by at least a factor of two; and that the absorption region towards 1331 + 170 and probably the region towards PHL957 are lacking dust similar to that in our own galaxy. This can explain the lack of H 2 in these systems. (U.K.)

  17. Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42

    DEFF Research Database (Denmark)

    Pleines, Irina; Dütting, Sebastian; Cherpokova, Deya

    2013-01-01

    Blood platelets are anuclear cell fragments that are essential for blood clotting. Platelets are produced by bone marrow megakaryocytes (MKs), which extend protrusions, or so-called proplatelets, into bone marrow sinusoids. Proplatelet formation requires a profound reorganization of the MK actin...... normally in vivo but displayed highly abnormal morphology and uncontrolled fragmentation. Consistently, a lack of Rac1/Cdc42 virtually abrogated proplatelet formation in vitro. Strikingly, this phenotype was associated with severely defective tubulin organization, whereas actin assembly and structure were...

  18. Effect of lack of later support in the masseter muscle

    International Nuclear Information System (INIS)

    Fernandez Lopez, Otton

    2007-01-01

    One of the main complaints during dental consultation has been pain in the zone of the masseter muscle, especially a lack of rear support. None research has published that reveals what has been the relationship between the rear support and histological alterations in muscle mass. Both topics have treated to relate through a process of tooth wear in laboratory animals and produce a lack of rear support. Cuts of the masseter muscles and specimens were subjected to microscopic study of light and electronic. The conclusion has been that by removing the rear support are produced important changes to histological level. (author) [es

  19. [Lack of neonatologists: vocational crisis or mistaken policies?].

    Science.gov (United States)

    Justich, Pablo R

    2012-10-01

    In Argentina, the difficulty in covering neonatologist's positions represent an increasing problem. The absence of a coordinated and organized health system on one hand, and the lack of adaptation of the neonatologist's role to the current situation of the maternal and child care on the other, prevent the correct assistential coverage. The inadequate work conditions, the professional risks, the wide amount of time devoted to formation and studying, and the lack of knowledge of the professionals necessities and difficulties have a negative impact when it comes to incorporate new specialists. A global approach of the problem is essential to reach enduring answers.

  20. Population dynamics model for plasmid bearing and plasmid lacking ...

    African Journals Online (AJOL)

    Streptokinase production in bioreactor is well associated to cell population dynamics. It is an established fact that two types of cell populations are found to emerge from the initial pool of recombinant cell population. This phenomenon leads to an undesired loss in yield of the product. Primary metabolites, like acetic acid etc ...

  1. Arsenic and urinary bladder cell proliferation

    International Nuclear Information System (INIS)

    Luster, Michael I.; Simeonova, Petia P.

    2004-01-01

    Epidemiologic studies have demonstrated that a close association exists between the elevated levels of arsenic in drinking water and the incidence of certain cancers, including transitional cell carcinomas of the urinary bladder. We have employed in vitro and in vivo models to examine the effects of sodium arsenite on the urinary bladder epithelium. Mice exposed to 0.01% sodium arsenite in drinking water demonstrated hyperproliferation of the bladder uroepithelium within 4 weeks after initiating treatment. This occurred in the absence of amorphous precipitates and was accompanied by the accumulation of trivalent arsenite (iAs 3+ ), and to a lesser extent dimethylarsenic (DMA), arsenate (iAs 5+ ), and monomethylarsenic (MMA) in bladder tissue. In contrast to the bladder, urinary secretion was primarily in the form of DMA and MMA. Arsenic-induced cell proliferation in the bladder epithelium was correlated with activation of the MAP kinase pathway, leading to extracellular signal-regulated kinase (ERK) kinase activity, AP-1 activation, and expression of AP-1-associated genes involved in cell proliferation. Activation of the MAP kinase pathway involved both epidermal growth factor (EGF) receptor-dependent and -independent events, the latter involving Src activation. Studies summarized in this review suggest that arsenic accumulates in urinary bladder epithelium causing activation of specific signaling pathways that lead to chronic increased cell proliferation. This may play a non-epigenetic role in carcinogenesis by increasing the proliferation of initiated cells or increasing the mutational rate

  2. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    International Nuclear Information System (INIS)

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-01-01

    Highlights: • As 2 O 3 inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As 2 O 3 than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As 2 O 3 than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As 2 O 3 is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As 2 O 3 ) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As 2 O 3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As 2 O 3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As 2 O 3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As 2 O 3 than HPV 16-positive CaSki and SiHa cells. After As 2 O 3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As 2 O 3 is a potential anticancer drug for cervical cancer

  3. Children's Lack of Playtime Seen as Troubling Health, School Issue

    Science.gov (United States)

    Jacobson, Linda

    2008-01-01

    Teachers and parents are frequently warned that students in the United States are lacking the academic skills they need for the 21st century. But a growing contingent of educators, psychologists, and other professionals are voicing worries that today's children are also growing up without the chance to play. Test preparation in kindergarten,…

  4. Lack of competition in Italian natural gas market

    International Nuclear Information System (INIS)

    Bozzetto, Fabrizio

    2007-01-01

    This article analyses the reasons for an evident lack of competition in the Italian natural gas market, after the 2003 full liberalisation of the market. In particular, analysis focuses on dynamics which probably marks mass market and small office segments [it

  5. Siim Nestor soovitab : lack of Eoins / Siim Nestor

    Index Scriptorium Estoniae

    Nestor, Siim, 1974-

    2008-01-01

    Väikefirma Seksound annab sel nädalavahetusel välja Viljandi indiebändi Lack of Eoins esikplaadi "Echo Group" (plaadiesitlused 11. dets. Tallinnas Von Krahlis ja 12. dets. Tartus Genialistide klubis, esinevad ka Ans. Andur ja Popidiot, plaate keerutavad Hannes Praks ja Taavi Laatsit)

  6. Lack of a safety culture destroyed the reactor

    International Nuclear Information System (INIS)

    Vuori, A.

    1996-01-01

    The importance of good safety culture in the operation of nuclear power plants is discussed. The modern safety culture emphasizes responsibility and preventive maintenance that can eliminate or minimize faults in advance. In the article the accident of Chernobyl is used as an example of the lack of safety culture. (1 fig.)

  7. Special Relativity in Week One: 4) Lack of Simultaneity

    Science.gov (United States)

    Huggins, Elisha

    2011-01-01

    This is our final article on teaching special relativity in the first week of an introductory physics course. One of the profound changes in our view of the world was Einstein's discovery of the lack of simultaneity. He illustrated this result with a thought experiment in which we observe a railroad car passing by us. We see the two ends of the…

  8. Lack of pre-antiretroviral care and competition from traditional ...

    African Journals Online (AJOL)

    Lack of family support tripled the risk of initiating ART very late (AOR 3.3, 95% CI: 1.6-6.6). Conclusion: Policy makers should prevent ARV stock-outs though effective ARV procurement and supply chain management. New HIV clients should seek pre-ARV care for routine monitoring and determination of ART eligibility.

  9. Inhibitory Activity of (+-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    Directory of Open Access Journals (Sweden)

    Yi Yang

    Full Text Available Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+-usnic acid and cetuximab. These results implied that (+-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

  10. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    Science.gov (United States)

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  11. Fra-1 induces morphological transformation and increases in vitro invasiveness and motility of epithelioid adenocarcinoma cells

    DEFF Research Database (Denmark)

    Kustikova, O.; Kramerov, D.; Grigorian, M.

    1998-01-01

    in vitro nor in vivo. CSML100 possesses all characteristics of a highly progressive carcinoma. These cells do not form tight contacts, are highly invasive in vitro, and are metastatic in vivo. AP-1 activity was considerably higher in CSML100 cells than in CSML0 cells. There was a common predominant Jun...... from tumors of epithelial origin revealed a correlation of fra-1 expression with mesenchymal characteristics of carcinoma cells. Moreover, we show here for the first time that the expression of exogenous Fra-1 in epithelioid cells results in morphological changes that resemble fibroblastoid conversion...

  12. Deriving mechanisms responsible for the lack of correlation between hypoxia and acidity in solid tumors.

    Directory of Open Access Journals (Sweden)

    Hamid R Molavian

    Full Text Available Hypoxia and acidity are two main microenvironmental factors intimately associated with solid tumors and play critical roles in tumor growth and metastasis. The experimental results of Helmlinger and colleagues (Nature Medicine 3, 177, 1997 provide evidence of a lack of correlation between these factors on the micrometer scale in vivo and further show that the distribution of pH and pO(2 are heterogeneous. Here, using computational simulations, grounded in these experimental results, we show that the lack of correlation between pH and pO(2 and the heterogeneity in their shapes are related to the heterogeneous concentration of buffers and oxygen in the blood vessels, further amplified by the network of blood vessels and the cell metabolism. We also demonstrate that, although the judicious administration of anti-angiogenesis agents (normalization process in tumors may lead to recovery of the correlation between hypoxia and acidity, it may not normalize the pH throughout the whole tumor. However, an increase in the buffering capacity inside the blood vessels does appear to increase the extracellular pH throughout the whole tumor. Based on these results, we propose that the application of anti-angiogenic agents and at the same time increasing the buffering capacity of the tumor extracellular environment may be the most efficient way of normalizing the tumor microenvironment. As a by-product of our simulation we show that the recently observed lack of correlation between glucose consumption and hypoxia in cells which rely on respiration is related to the inhomogeneous consumption of glucose to oxygen concentration. We also demonstrate that this lack of correlation in cells which rely on glycolysis could be related to the heterogeneous concentration of oxygen inside the blood vessels.

  13. Effects of butyltin exposures on MAP kinase dependent transcription regulators in human natural killer cells

    Science.gov (United States)

    Person, Rachel J.; Whalen, Margaret M.

    2010-01-01

    Natural Killer (NK) cells are a major immune defense mechanism against cancer development and viral infection. The butyltins (BTs), tributyltin (TBT) and dibutyltin (DBT) have been widely used in industrial and other applications and significantly contaminate the environment. Both TBT and DBT have been detected in human blood. These compounds inhibit the lytic and binding function of human NK cells and thus could increase the incidence of cancer and viral infections. Butyltin (BT)-induced loss of NK function is accompanied by activation of mitogen activated protein kinases (MAPKs) and decreases in expression of cell-surface and cytolytic proteins. MAPKs activate components of the transcription regulator AP-1 and activate the transcription regulator Elk-1. Based on the fact that BTs activate MAPKs and alter protein expression, the current study examined the effect of BT exposures on the levels and phosphorylation states of the components of AP-1 and the phosphorylation state of Elk-1. Exposure to 300 nM TBT for 10 min increased the phosphorylation of c-Jun in NK cells. 1 h exposures to 300 nM and 200 nM TBT increased the phosphorylation and overall level of c-Jun. During a 300 nM treatment with TBT for 1 h the binding activity of AP-1 was significantly decreased. There were no significant alterations of AP-1 components or of Elk-1 with DBT exposures. Thus, it appears that TBT-induced alterations on phosphorylation, total levels and binding activity of c-Jun might contribute to, but are not fully responsible for, TBT-induced alterations of NK protein expression. PMID:20370538

  14. Activation of JNK and c-Jun is involved in glucose oxidase-mediated cell death of human lymphoma cells.

    Science.gov (United States)

    Son, Young-Ok; Jang, Yong-Suk; Shi, Xianglin; Lee, Jeong-Chae

    2009-12-31

    Mitogen-activated protein kinases (MAPK) affect the activation of activator protein-1 (AP-1), which plays an important role in regulating a range of cellular processes. However, the roles of these signaling factors on hydrogen peroxide (H(2)O(2))-induced cell death are unclear. This study examined the effects of H(2)O(2) on the activation of MAPK and AP-1 by exposing the cells to H(2)O(2) generated by either glucose oxidase or a bolus addition. Exposing BJAB or Jurkat cells to H(2)O(2) affected the activities of MAPK differently according to the method of H(2)O(2) exposure. H(2)O(2) increased the AP-1-DNA binding activity in these cells, where continuously generated H(2)O(2) led to an increase in mainly the c-Fos, FosB and c-Jun proteins. The c-Jun-NH(2)-terminal kinase (JNK)-mediated activation of c-Jun was shown to be related to the H(2)O(2)-induced cell death. However, the suppression of H(2)O(2)-induced oxidative stress by either JNK inhibitor or c-Jun specific antisense transfection was temporary in the cells exposed to glucose oxidase but not to a bolus H(2)O(2). This was associated with the disruption of death signaling according to the severe and prolonged depletion of reduced glutathione. Overall, these results suggest that H(2)O(2) may decide differently the mode of cell death by affecting the intracellular redox state of thiol-containing antioxidants, and this depends more closely on the duration exposed to H(2)O(2) than the concentration of this agent.

  15. Economy may be harmed by lack of LLW disposal

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A study released by Organizations United for Responsible Low-Level Radioactive Waste Solutions warns that the substantial benefits of using radioactive materials are threatened by the lack of a low-level waste (LLW) disposal facility. The main point of the study is the threat to the American economy posed by insufficient facilities for disposal of the 1.7 billion ft 3 of LLW produced by the use of radioactive materials every year only 34.8 percent of which comes from nuclear power plants. open-quotes Thirty years of experience have provided the technical knowledge to design waste disposal facilities that protect the public and environment. But an impending lack of adequate disposal facilities jeopardizes our continued use of radioactive materials,close quotes according to the study

  16. Lack of diversity in behavioral healthcare leadership reflected in services.

    Science.gov (United States)

    Rosenberg, Linda

    2008-04-01

    America's rapidly changing demographics present an enormous challenge for today's healthcare leaders to redesign the organization and delivery of care to accommodate people who now represent every language, culture and religious belief in the world. So will mental health and addictions services in this country be ready to address the unique needs of these multicultural patients? A survey of the present landscape in 2008 tells us that we have a long, long way to go. Not only are mental health and addictions fields lacking in cultural competency, but there is little diversity in our leadership ranks. Top administrators and executives in behavioral health today are overwhelmingly non-Hispanic whites. This lack of cultural diversity among our leaders will lead to an ever-widening gap in the current chasm of racial and ethnic disparities in healthcare.

  17. Law tightened to protect adults who lack capacity.

    Science.gov (United States)

    2009-05-21

    VULNERABLE OLDER people will be better protected from abuse and poor care after new legislation came into force last month. Under the Mental Capacity Act Deprivation of Liberty Safeguards, a care home or hospital wanting to deprive a person who lacks capacity of their liberty, for their own safety or wellbeing, must now apply for permission. A rigorous, standardised assessment and authorisation process must then be completed.

  18. Return voltage: reproductibility of lack in isolated plastics

    International Nuclear Information System (INIS)

    Frutos, F.; Acedo, M.; Jimenez, A.; Perez, J.A.

    1998-01-01

    Return voltage measures from plane-plane and point-plane experimental test objects of polyethylene are presented. Even though a lack of reproducibility is observed, all the experimental voltage curves can be modellized as the sum of two exponential functions: a first one with a long time period and a second one with a quite shorter time parameter. This analytical behaviour could be theoretically explained by considering an exponential dielectric function response. (Author) 7 refs

  19. The subjetivacion of the lack: between Lacan and Hegel

    Directory of Open Access Journals (Sweden)

    Lorena Souyris Oportot

    2014-05-01

    Full Text Available The present article develops a reflection concerning the figure of the subjectivation and the statute of the lack  in relation to Jacques Lacan y Hegel's thought . The analysis will be addressed from a philosophical approach as and with a psychoanalytic perspective, to show the need to understand the subjectivity, not already as a "work" of duel, but ligature to the loss and the split. The idea is that the above mentioned significances make possible deconstruir and to rethink the duel in lack, that he structures to the subject in an experience "escripturaire" (escriptural and, for the same thing, of dispossession. So that the figure of the subjetivación "in" lack  will allow to grant an important place to the non-place while I spread where the unthinkable thing and the "Autre" registers.  Once exposed this, the reflection will focus on the tragic exigences behind experience “escripturaire” expressed in the image of Antigone

  20. REPROBATION AND LACK OF INTEREST IN MECHATRONICS ENGINEERING STUDENTS

    Directory of Open Access Journals (Sweden)

    César Humberto Guzmán Valdivia

    2013-07-01

    Full Text Available Engineering education in mechatronics is an attractive field of research because it is a new multidisciplinary career. However, a potential problem is the reprobation rate. In the period from January to April 2012 at the Universidad Politécnica de Zacatecas a 53% regular students of a total of 197 were registered. To find the causes of this problem, a survey was conducted to determine the causes of reprobation, lack of motivation and interest to a population of 96 students, of which 40 were the first training cycle, 32 the second and 24 the third. The surveys yielded three main results. The first indicates that the lack of interest is proportional to the time spent in college. The second shows that the reprobation rate is linked to the laziness and the excess of courses. And the last shows a lack of motivation and low expectations of student due to the monotony of the theoretical courses. In conclusion, more research is needed to have a motivated student in an engineering career in mechatronics.

  1. Leishmania promastigotes lack phosphatidylserine but bind annexin V upon permeabilization or miltefosine treatment.

    Directory of Open Access Journals (Sweden)

    Adrien Weingärtner

    Full Text Available The protozoan parasite Leishmania is an intracellular pathogen infecting and replicating inside vertebrate host macrophages. A recent model suggests that promastigote and amastigote forms of the parasite mimic mammalian apoptotic cells by exposing phosphatidylserine (PS at the cell surface to trigger their phagocytic uptake into host macrophages. PS presentation at the cell surface is typically analyzed using fluorescence-labeled annexin V. Here we show that Leishmania promastigotes can be stained by fluorescence-labeled annexin V upon permeabilization or miltefosine treatment. However, combined lipid analysis by thin-layer chromatography, mass spectrometry and (31P nuclear magnetic resonance (NMR spectroscopy revealed that Leishmania promastigotes lack any detectable amount of PS. Instead, we identified several other phospholipid classes such phosphatidic acid, phosphatidylethanolamine; phosphatidylglycerol and phosphatidylinositol as candidate lipids enabling annexin V staining.

  2. Heme-dependent up-regulation of the α-globin gene expression by transcriptional repressor Bach1 in erythroid cells

    International Nuclear Information System (INIS)

    Tahara, Tsuyoshi; Sun Jiying; Igarashi, Kazuhiko; Taketani, Shigeru

    2004-01-01

    The transcriptional factor Bach1 forms a heterodimer with small Maf family, and functions as a repressor of the Maf recognition element (MARE) in vivo. To investigate the involvement of Bach1 in the heme-dependent regulation of the expression of the α-globin gene, human erythroleukemia K562 cells were cultured with succinylacetone (SA), a heme biosynthetic inhibitor, and the level of α-globin mRNA was examined. A decrease of α-globin mRNA was observed in SA-treated cells, which was restored by the addition of hemin. The heme-dependent expression of α-globin occurred at the transcriptional level since the expression of human α-globin gene promoter-reporter gene containing hypersensitive site-40 (HS-40) was decreased when K562 cells were cultured with SA. Hemin treatment restored the decrease of the promoter activity by SA. The regulation of the HS-40 activity by heme was dependent on the NF-E2/AP-1 (NA) site, which is similar to MARE. The NA site-binding activity of Bach1 in K562 increased upon SA-treatment, and the increase was diminished by the addition of hemin. The transient expression of Bach1 and mutated Bach1 lacking CP motifs suppressed the HS-40 activity, and cancellation of the repressor activity by hemin was observed when wild-type Bach1 was expressed. The expression of NF-E2 strengthened the restoration of the Bach1-effect by hemin. Interestingly, nuclear localization of Bach1 increased when cells were treated with SA, while hemin induced the nuclear export of Bach1. These results indicated that heme plays an important role in the induction of α-globin gene expression through disrupting the interaction of Bach1 and the NA site in HS-40 enhancer in erythroid cells

  3. Group A Streptococcus M1T1 Intracellular Infection of Primary Tonsil Epithelial Cells Dampens Levels of Secreted IL-8 Through the Action of SpyCEP

    Directory of Open Access Journals (Sweden)

    Amelia T. Soderholm

    2018-05-01

    Full Text Available Streptococcus pyogenes (Group A Streptococcus; GAS commonly causes pharyngitis in children and adults, with severe invasive disease and immune sequelae being an infrequent consequence. The ability of GAS to invade the host and establish infection likely involves subversion of host immune defenses. However, the signaling pathways and innate immune responses of epithelial cells to GAS are not well-understood. In this study, we utilized RNAseq to characterize the inflammatory responses of primary human tonsil epithelial (TEpi cells to infection with the laboratory-adapted M6 strain JRS4 and the M1T1 clinical isolate 5448. Both strains induced the expression of genes encoding a wide range of inflammatory mediators, including IL-8. Pathway analysis revealed differentially expressed genes between mock and JRS4- or 5448-infected TEpi cells were enriched in transcription factor networks that regulate IL-8 expression, such as AP-1, ATF-2, and NFAT. While JRS4 infection resulted in high levels of secreted IL-8, 5448 infection did not, suggesting that 5448 may post-transcriptionally dampen IL-8 production. Infection with 5448ΔcepA, an isogenic mutant lacking the IL-8 protease SpyCEP, resulted in IL-8 secretion levels comparable to JRS4 infection. Complementation of 5448ΔcepA and JRS4 with a plasmid encoding 5448-derived SpyCEP significantly reduced IL-8 secretion by TEpi cells. Our results suggest that intracellular infection with the pathogenic GAS M1T1 clone induces a strong pro-inflammatory response in primary tonsil epithelial cells, but modulates this host response by selectively degrading the neutrophil-recruiting chemokine IL-8 to benefit infection.

  4. The lack of autophagy triggers precocious activation of Notch signaling during Drosophila oogenesis

    Directory of Open Access Journals (Sweden)

    Barth Julia MI

    2012-12-01

    Full Text Available Abstract Background The proper balance of autophagy, a lysosome-mediated degradation process, is indispensable for oogenesis in Drosophila. We recently demonstrated that egg development depends on autophagy in the somatic follicle cells (FC, but not in the germline cells (GCs. However, the lack of autophagy only affects oogenesis when FCs are autophagy-deficient but GCs are wild type, indicating that a dysfunctional signaling between soma and germline may be responsible for the oogenesis defects. Thus, autophagy could play an essential role in modulating signal transduction pathways during egg development. Results Here, we provide further evidence for the necessity of autophagy during oogenesis and demonstrate that autophagy is especially required in subsets of FCs. Generation of autophagy-deficient FCs leads to a wide range of phenotypes that are similar to mutants with defects in the classical cell-cell signaling pathways in the ovary. Interestingly, we observe that loss of autophagy leads to a precocious activation of the Notch pathway in the FCs as monitored by the expression of Cut and Hindsight, two downstream effectors of Notch signaling. Conclusion Our findings point to an unexpected function for autophagy in the modulation of the Notch signaling pathway during Drosophila oogenesis and suggest a function for autophagy in proper receptor activation. Egg development is affected by an imbalance of autophagy between signal sending (germline and signal receiving cell (FC, thus the lack of autophagy in the germline is likely to decrease the amount of active ligand and accordingly compensates for increased signaling in autophagy-defective follicle cells.

  5. Generation of a non-transmissive Borna disease virus vector lacking both matrix and glycoprotein genes.

    Science.gov (United States)

    Fujino, Kan; Yamamoto, Yusuke; Daito, Takuji; Makino, Akiko; Honda, Tomoyuki; Tomonaga, Keizo

    2017-09-01

    Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non-segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non-cytopathically in the cell nucleus, leading to establishment of long-lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non-transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M) and G genes in the genome, is reported. rBoDV-ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG-GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG-GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG-GFP was also demonstrated. These findings indicate that the rBoDV ΔMG-based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  6. Editor's Highlight: Complete Attenuation of Mouse Lung Cell Proliferation and Tumorigenicity in CYP2F2 Knockout and CYP2F1 Humanized Mice Exposed to Inhaled Styrene for up to 2 Years Supports a Lack of Human Relevance.

    Science.gov (United States)

    Cruzan, George; Bus, James S; Banton, Marcy I; Sarang, Satinder S; Waites, Robbie; Layko, Debra B; Raymond, James; Dodd, Darol; Andersen, Melvin E

    2017-10-01

    Styrene is a mouse-specific lung carcinogen, and short-term mode of action studies have demonstrated that cytotoxicity and/or cell proliferation, and genomic changes are dependent on CYP2F2 metabolism. The current study examined histopathology, cell proliferation, and genomic changes in CD-1, C57BL/6 (WT), CYP2F2(-/-) (KO), and CYP2F2(-/-) (CYP2F1, 2B6, 2A13-transgene) (TG; humanized) mice following exposure for up to 104 weeks to 0- or 120-ppm styrene vapor. Five mice per treatment group were sacrificed at 1, 26, 52, and 78 weeks. Additional 50 mice per treatment group were followed until death or 104 weeks of exposure. Cytotoxicity was present in the terminal bronchioles of some CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Hyperplasia in the terminal bronchioles was present in CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Increased cell proliferation, measured by KI-67 staining, occurred in CD-1 and WT mice exposed to styrene for 1 week, but not after 26, 52, or 78 weeks, nor in KO or TG mice. Styrene increased the incidence of bronchioloalveolar adenomas and carcinomas in CD-1 mice. No increase in lung tumors was found in WT despite clear evidence of lung toxicity, or, KO or TG mice. The absence of preneoplastic lesions and tumorigenicity in KO and TG mice indicates that mouse-specific CYP2F2 metabolism is responsible for both the short-term and chronic toxicity and tumorigenicity of styrene, and activation of styrene by CYP2F2 is a rodent MOA that is neither quantitatively or qualitatively relevant to humans. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. UK Citizens Lack Simple, Objective Knowledge of the European Union

    DEFF Research Database (Denmark)

    Manners, Ian James

    2017-01-01

    214); ‘A direct European tax will be created’ (EBS 214); ‘National citizenship will disappear’ (EBS 214); and ‘Most of the European budget is spent on administrative and personnel costs’ (EB65) UK respondents were far more likely to answer incorrectly that these were true. This is likely the result...... of disinformation in UK politics and media. The data suggests that not only are UK respondents unable to answer simple questions about the EU, but that they are relatively more likely to answer incorrectly rather than admit they did not know, reflecting disinformation about the EU in the UK. This lack of simple...

  8. Reincarnation and the Lack of Imagination in Philosophy

    Directory of Open Access Journals (Sweden)

    Mikel Burley

    2015-12-01

    Full Text Available It has been observed, by D. Z. Phillips among others, that philosophy suffers from a “lack of imagination”. That is, philosophers often fail to see possibilities of sense in forms of life and discourse due to narrow habits of thinking. This is especially problematic in the philosophy of religion, not least when cross-cultural modes of inquiry are called for. This article examines the problem in relation to the philosophical investigation of reincarnation beliefs in particular. As a remedial strategy, I argue for increased attention both to ethnographic sources and to the articulation of distinctively religious moral visions that reincarnation-talk facilitates.

  9. Pancreatic β-cells activate a JunB/ATF3-dependent survival pathway during inflammation

    DEFF Research Database (Denmark)

    Gurzov, E N; Barthson, J; Marhfour, I

    2012-01-01

    Destruction of insulin-producing pancreatic β-cells by local autoimmune inflammation is a hallmark of type 1 diabetes. Histochemical analysis of pancreases from non-obese diabetic mice indicated activation of the transcription factor JunB/AP-1 (activator protein-1) after autoimmune infiltration......-cells and human islet cells against pro-inflammatory mediators. These results were confirmed in genetically modified islets derived from Ubi-JunB transgenic mice. Our findings identify ATF3 as a novel downstream target of JunB in the survival mechanism of β-cells under inflammatory stress....

  10. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells.

    Science.gov (United States)

    Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V

    2016-09-01

    Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.

  11. Efficient lighting in buildings: The lack of legislation in Portugal

    International Nuclear Information System (INIS)

    Almeida, António Manuel; Martins, António Gomes

    2014-01-01

    The behavior of building designers is conditioned by the existing legislation and regulations in the national context in which they operate. However, in the Portuguese legislation there are no rules concerning the use of daylight, and therefore, designers are not stimulated to adopt solutions that make use of the existing potential of sunlight availability. In the same way, it is difficult to understand the lack of specific regulation, with quantified targets, limiting power density of artificial lighting installed inside buildings. The present opportunity, generated by the need to carry out the revision of Portuguese building energy systems regulation, should be used to fill the existing gap in national legislation regarding those matters. In this paper the authors present some proposals for future legislation that will have as central purpose the utilization of efficient lighting systems and the promotion of architectural solutions that optimize the use of daylighting. It is possible, and desirable, to add new directives to national legislation that contribute to the improvement of Portuguese buildings, characterized by its good performance in terms of daylight availability, and at the same time, increasing the energy efficiency and reducing the energy consumption of lighting systems installed in those buildings. - Highlights: • In the Portuguese legislation there are no rules concerning the use of daylight. • Lack of specific regulation limiting power density of artificial lighting. • Revision of Portuguese building energy systems regulation. • Some proposals for future legislation. • Improvement of Portuguese buildings promoting energy efficiency

  12. Characteristics of Adolescents Lacking Provider-Recommended Human Papillomavirus Vaccination.

    Science.gov (United States)

    Krakow, Melinda; Beavis, Anna; Cosides, Olivia; Rositch, Anne F

    2017-05-01

    To characterize subgroups of teens in the United States for whom provider recommendation is less likely to impact human papillomavirus (HPV) vaccine initiation. We analyzed provider-verified vaccination data from the Centers for Disease Control and Prevention's 2014 National Immunization Survey-Teen. Poisson regression models identified characteristics associated with the lack of HPV vaccine initiation among teens who received a provider recommendation (n = 12,742). Top qualitative reasons for nonvaccination among teens who received a provider recommendation were summarized (n = 1,688). Among teens with provider recommendations, males, younger teens, and white teens were less likely to initiate vaccination, compared to peers. Believing the vaccine was unnecessary, concerns about safety and lack of vaccine knowledge were common reasons parents did not initiate the vaccine, despite receiving provider recommendations. These key subgroups and barriers to HPV vaccination should be targeted with interventions that complement provider recommendation to achieve broad vaccine uptake in the United States. Published by Elsevier Inc.

  13. [Lack of assertiveness in patients with eating disorders].

    Science.gov (United States)

    Behar A, Rosa; Manzo G, Rodrigo; Casanova Z, Dunny

    2006-03-01

    Low self-assertion has been noted as an important feature among patients with eating disorders. To verify, in a female population, if assertiveness is related or has a predictive capacity for the development of eating disorders. An structured clinical interview, the Eating Attitudes Test (EAT-40) and the Rathus Assertiveness Scale (RAS) were administered to 62 patients that fulfilled the DSM-IV diagnostic criteria for eating disorders and to 120 female students without eating problems. Patients with eating disorders ranked significantly higher on the EAT-40 and its factors (p assertiveness on the RAS (p Assertiveness measured by RAS and its factors was inversely related to EAT-40 and its items (r= -0.21). The predictive capability of the lack of self-assertion in the development of an eating disorder reached 53%, when patients with eating disorders and subjects at risk were considered together and compared to students without such disorder. Lack of assertiveness is a significant trait in patients with eating disorders; it may worsen its outcome and even perpetuate symptoms. Low self-assertion may be considered a predictive factor in the development of an eating disorder and must be managed from a preventive or therapeutic point of view.

  14. Individuals With OCD Lack Unrealistic Optimism Bias in Threat Estimation.

    Science.gov (United States)

    Zetsche, Ulrike; Rief, Winfried; Exner, Cornelia

    2015-07-01

    Overestimating the occurrence of threatening events has been highlighted as a central cognitive factor in the maintenance of obsessive-compulsive disorder (OCD). The present study examined the different facets of this cognitive bias, its underlying mechanisms, and its specificity to OCD. For this purpose, threat estimation, probabilistic classification learning (PCL) and psychopathological measures were assessed in 23 participants with OCD, 30 participants with social phobia, and 31 healthy controls. Whereas healthy participants showed an optimistic expectation bias regarding positive and negative future events, OCD participants lacked such a bias. This lack of an optimistic expectation bias was not specific to OCD. Compared to healthy controls, OCD participants overestimated their personal risk for experiencing negative events, but did not differ from controls in their risk estimation regarding other people. Finally, OCD participants' biases in the prediction of checking-related events were associated with their impairments in learning probabilistic cue-outcome associations in a disorder-relevant context. In sum, the present results add to a growing body of research demonstrating that cognitive biases in OCD are context-dependent. Copyright © 2015. Published by Elsevier Ltd.

  15. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct

    Science.gov (United States)

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Li, Lijun; Ecelbarger, Carolyn M.; Staruschenko, Alexander

    2013-01-01

    The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules demonstrated that the InsR-KO mice have significantly lower ENaC activity compared to their wild-type (C57BL/6J) littermates when animals were fed either normal or sodium-deficient diets. Immunohistochemical and Western blot assays demonstrated no significant changes in expression of ENaC subunits in InsR-KO mice compared to wild-type littermates. Insulin treatment caused greater ENaC activity in split-open tubules isolated from wild-type mice but did not have this effect in the InsR-KO mice. Thus, these results suggest that insulin increases ENaC activity via its own receptor affecting the channel open probability. To further determine the mechanism of the action of insulin on ENaC, we used mouse mpkCCDc14 principal cells. Insulin significantly augmented amiloride-sensitive transepithelial flux in these cells. Pretreatment of the mpkCCDc14 cells with phosphatidylinositol 3-kinase (LY294002; 10 μM) or mTOR (PP242; 100 nM) inhibitors precluded this effect. This study provides new information about the importance of insulin receptors expressed in collecting duct principal cells for ENaC activity.—Pavlov, T. S., Ilatovskaya, D. V., Levchenko, V., Li, L., Ecelbarger, C. M., Staruschenko, A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. PMID:23558339

  16. Mechanisms underlying differential expression of interleukin-8 in breast cancer cells

    Science.gov (United States)

    Freund, Ariane; Jolivel, Valérie; Durand, Sébastien; Kersual, Nathalie; Chalbos, Dany; Chavey, Carine; Vignon, Françoise; Lazennec, Gwendal

    2004-01-01

    We have recently reported that Interleukin-8 (IL-8) expression was inversely correlated to estrogen-receptor (ER)-status and was overexpressed in invasive breast cancer cells. In the present study, we show that IL-8 overexpression in breast cancer cells involves a higher transcriptional activity of IL-8 gene promoter. Cloning of IL-8 promoter from MDA-MB-231 and MCF-7 cells expressing high and low levels of IL-8, respectively, shows the integrity of the promoter in both cell lines. Deletion and site-directed mutagenesis of the promoter demonstrate that NF-κB and AP-1 and to a lesser extent C/EBP binding sites play a crucial role in the control of IL-8 promoter activity in MDA-MB-231 cells. Knock-down of NF-κB and AP-1 activities by adenovirus-mediated expression of a NF-κB super-repressor and RNA interference, respectively, decreased IL-8 expression in MDA-MB-231 cells. On the contrary, restoration of Fra-1, Fra-2, c-Jun, p50, p65, C/EBPα and C/EBPβ expression levels in MCF-7 cells led to a promoter activity comparable to that observed in MDA-MB-231 cells. Our data constitute the first extensive study of IL-8 gene overexpression in breast cancer cells and suggest that the high expression of IL-8 in invasive cancer cells requires a complex cooperation between NF-κB, AP-1 and C/EBP transcription factors. PMID:15208657

  17. Survival of adult neurons lacking cholesterol synthesis in vivo.

    Science.gov (United States)

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  18. Survival of adult neurons lacking cholesterol synthesis in vivo

    Directory of Open Access Journals (Sweden)

    Möbius Wiebke

    2007-01-01

    Full Text Available Abstract Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1, which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  19. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-04-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of (/sup 14/C)lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution /sup 31/P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM.

  20. Lack of bcr and abr promotes hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Min Yu

    Full Text Available Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined.Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr-/- and abr-/- macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia.Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells.

  1. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities

    International Nuclear Information System (INIS)

    Thompson, J.; Chassy, B.M.; Egan, W.

    1985-01-01

    A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose- phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [ 14 C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31 P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM

  2. Lack of production sharing laws slows joint ventures in Russia

    International Nuclear Information System (INIS)

    Knott, D.

    1995-01-01

    When Russia opened its doors to foreign oil companies in 1990, there was a rush to secure a piece of the country's potentially vast oil wealth. Since then, many of the ventures between Russian and non-Russian partners have become bogged down with operational problems and an ever changing tax and legal regime. There is a stockpile of massive developments building, while government grinds with seeming reluctance toward passing laws that will allow outside firms to do big business. For major development projects the main stumbling block is the lack of production sharing contract legislation. The paper describes the problems, the current legislation, and operating problems, then highlights several joint ventures that have been successful and several that have ended in pullouts of the foreign investor

  3. [Lack of donor organs as an argument for living donors?].

    Science.gov (United States)

    Kirste, G

    2010-09-01

    In Germany more than 12,000 patients are presently waiting for an organ donation. Living donation makes sense for the long waiting time for a kidney, but it is not a permanent solution for the lack of organ donations. In the future topics which should be discussed are intensified public relations, a better family care and the allocation of rights and duties at the German coordinating agency. For all the prospects of success after a living donation the high standards of quality and security, which are targeted by the German donor organization in recipient protection, responsible evaluation of the expanded donor criteria and immunosuppressive therapy are all in favor of post-mortem organ donation. For all the phenomenal chance of success the priority of the post-mortem organ donation is regulated by law. The living donation remains an individual decision of the donor and the personal situation of life.

  4. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart

    Directory of Open Access Journals (Sweden)

    Wenjing Xu

    2015-10-01

    Full Text Available Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1 might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure.

  5. Problems caused by regulatory delays and lack of regulation

    Science.gov (United States)

    Reamer, Lynne A.

    1994-12-01

    An FDA perspective on some of the problems encountered during the device review process is described. Emphasis is placed on the need for communication and teamwork among all parties to make the system work. Manufacturers are encouraged to `Do it right the first time.' Pertinent questions are asked of the manufacturers and proposed solutions are presented. Day to day reality at FDA is described and document workload is revealed. Lack of regulation, or more appropriately, when less regulation is appropriate is discussed. FDA has distributed to manufacturers a new draft guidance document to help in the decisionmaking process and when to submit a 510(k) when modifications are made to a device. This and other mechanisms are in place at the FDA to streamline the review process. Manufacturers are cautioned about their decisions and to seek advice from qualified persons. FDA emphasizes that help is available and that when in doubt, call.

  6. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Science.gov (United States)

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Lack of time management as a psychosocial work risk

    Directory of Open Access Journals (Sweden)

    Ramon Cladellas

    2008-10-01

    Full Text Available This paper is aimed to explore the possible relationship between workers' lack of time management and several psychosocial risks. The psychosocial risks were assessed by means of the ISTAS21 Questionnaire, the Spanish version of the CoPsoQ (Copenhagen Psychological Questionnaire. More specifically, nine dimensions, which are directly related with time management, satisfaction, health and stress, were selected for evaluation. Time management was measured through the following variables: quantitative demands, influences and control of the time. Drawing on a sample of 142 workers from four departments (development, implantation, support and administration, the research results show that the employees who belong to a department that offers few opportunities for individual time management are less satisfied, have worse general and mental health, and experience more behavioral, symptomatic and cognitive stress than those who can manage their work schedule.

  8. Nonadherence is Associated with Lack of HIV-Related Knowledge

    DEFF Research Database (Denmark)

    Dyrehave, Charlotte; Rasmussen, Dlama Nggida; Hønge, Bo Langhoff

    2016-01-01

    -sectional study included 494 HIV-infected individuals from the Bissau HIV Cohort in Guinea-Bissau. They completed a questionnaire designed for assessment of adherence and HIV-related knowledge. RESULTS: A majority were female, 41% were illiterate, 25% did not take the medicine during the last 4 days, and 23......BACKGROUND: Poor treatment adherence is a main barrier for effective antiretroviral therapy (ART) globally. HIV-related knowledge may affect understanding and utilization of HIV medical information, hence limited health literacy is a known barrier to treatment adherence. DESIGN AND METHODS: A cross......% skipped their medicine during weekends. The most frequent reasons for not taking medicine were simply forgetting, side effects, lack of food, and being too ill to attend the clinic. Nonadherent patients had a lower level of HIV-related knowledge. CONCLUSION: Main barriers for nonadherence were side...

  9. Catalase reverses tumorigenicity in a malignant cell line by an epidermal growth factor receptor pathway.

    Science.gov (United States)

    Finch, Joanne S; Tome, Margaret E; Kwei, Kevin A; Bowden, G Tim

    2006-03-01

    We have used a keratinocyte in vivo/in vitro cell model to test the hypothesis that hydrogen peroxide acts as a signaling molecule, contributing to proliferation and tumorigenesis. A cell line, 6M90, that produces squamous cell carcinoma (SCC), has high levels of ROS and low levels of catalase. A new cell line, MTOC2, generated from parental 6M90 cells by introduction of a Tet-responsive catalase transgene, effectively expressed higher peroxisomal catalase. Increased catalase expression diminished constitutive ROS and enhanced viability after treatment with hydrogen peroxide. Protein tyrosine phosphatase activity was higher in the MTOC2 cells with high catalase, consistent with detection of a lower level of phosphorylation at tyrosine 1068 of the epidermal growth factor receptor (EGF-R). Transcription of downstream c-fos, AP-1 transactivation and cell proliferation were higher in the low catalase cells. An EGF-R inhibitor, AG1478, blocks the higher AP-1 transactivation and cell proliferation of the low catalase 6M90 cells. Tumorigenesis in SCID mice was greatly diminished in the high catalase cells. Our data suggest that hydrogen peroxide functions as a signaling molecule that can modulate activity of a protein tyrosine phosphatase/(s) resulting in phosphorylation of tryrosine/(s) on the EGF-R. Therefore, catalase acts as a tumor-suppressor gene in part by decreasing EGF-R signaling.

  10. Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves.

    Science.gov (United States)

    Nicolas, William J; Grison, Magali S; Trépout, Sylvain; Gaston, Amélia; Fouché, Mathieu; Cordelières, Fabrice P; Oparka, Karl; Tilsner, Jens; Brocard, Lysiane; Bayer, Emmanuelle M

    2017-06-12

    Plasmodesmata are remarkable cellular machines responsible for the controlled exchange of proteins, small RNAs and signalling molecules between cells. They are lined by the plasma membrane (PM), contain a strand of tubular endoplasmic reticulum (ER), and the space between these two membranes is thought to control plasmodesmata permeability. Here, we have reconstructed plasmodesmata three-dimensional (3D) ultrastructure with an unprecedented level of 3D information using electron tomography. We show that within plasmodesmata, ER-PM contact sites undergo substantial remodelling events during cell differentiation. Instead of being open pores, post-cytokinesis plasmodesmata present such intimate ER-PM contact along the entire length of the pores that no intermembrane gap is visible. Later on, during cell expansion, the plasmodesmata pore widens and the two membranes separate, leaving a cytosolic sleeve spanned by tethers whose presence correlates with the appearance of the intermembrane gap. Surprisingly, the post-cytokinesis plasmodesmata allow diffusion of macromolecules despite the apparent lack of an open cytoplasmic sleeve, forcing the reassessment of the mechanisms that control plant cell-cell communication.

  11. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells

    Directory of Open Access Journals (Sweden)

    Saikali Melody

    2012-07-01

    Full Text Available Abstract Background Sesquiterpene lactones (SL are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan isolated from Achillea falcata and salograviolide A (Sal A isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. Methods The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. Results β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. Conclusions These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to

  12. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells.

    Science.gov (United States)

    Saikali, Melody; Ghantous, Akram; Halawi, Racha; Talhouk, Salma N; Saliba, Najat A; Darwiche, Nadine

    2012-07-09

    Sesquiterpene lactones (SL) are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan) isolated from Achillea falcata and salograviolide A (Sal A) isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to the Middle East may provide opportunities for complementary

  13. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    International Nuclear Information System (INIS)

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James; ElShamy, Wael M.

    2006-01-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ERα signaling. However, many ERα-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ERα signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ERα-negative cells. We previously noticed that both ERα-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ERα-negative cell lines even exceeded its over-expression level in ERα-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ERα-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene

  14. Lack of sleep is associated with internet use for leisure.

    Science.gov (United States)

    Kim, So Young; Kim, Min-Su; Park, Bumjung; Kim, Jin-Hwan; Choi, Hyo Geun

    2018-01-01

    Previous studies have suggested that excessive internet use may cause lack of sleep. However, recent studies have hypothesized that lack of sleep may instigate internet use for leisure. To elucidate the potential effects of sleep time on internet use, we explored the different associations between sleep time and internet use according to its purpose. The population-based, cross-sectional study group from the Korea Youth Risk Behavior Web-based Survey (KYRBWS) collected data from 57,425 middle school students in 2014 and 2015. Sleep time over the past 7 days was classified into the following groups: Internet use time per day was separately surveyed for leisure and for study and categorized as follows: 0 h; > 0 h, ≤ 1 h (1 h); > 1 h, ≤ 2 h (2 h); and > 2 h (2+ h) per day. Information on age, sex, region of residence, body mass index (BMI), economic level, parental education level, stress level, school performance level, and sleep satisfaction were retrieved. The relationships between sleep time and internet use time for leisure/study were analyzed using multinomial logistic regression with complex sampling. In the subgroup analysis according to sleep satisfaction (good, normal, and poor), the associations of sleep time with internet use for leisure were analyzed using the same methods. Compared to 9+ h of sleep, less sleep was related to a long internet use time (2+ h) for leisure (adjusted odds ratio, AOR [95% confidence interval, CI] of sleep: 8 h = 1.23 [1.14-1.32]; 7 h = 1.42 [1.31-1.54]; and 6 h = 1.56 [1.44-1.70]; P internet use time (2+ h) for study was evident only for 6 h of sleep (AOR of sleep: 8 h = 0.84 [0.84-1.04]; 7 h = 1.05 [0.94-1.17]; and 6 h = 1.32 [1.27-1.59]; P internet use time for leisure in all sleep satisfaction groups, although the relationship was more significant in the lower sleep satisfaction group. Less sleep was significantly related to long-term use of the internet for leisure, whereas this association was not definite for internet

  15. Standardized education and parental awareness are lacking for testicular torsion.

    Science.gov (United States)

    Friedman, Ariella A; Ahmed, Haris; Gitlin, Jordan S; Palmer, Lane S

    2016-06-01

    Testicular torsion leads to orchiectomy in 30-50% of cases, which may cause psychological upset and parental guilt over a potentially avertable outcome. Presentation delay is an important modifiable cause of orchiectomy; yet, families are not routinely educated about torsion or its urgency. The present study assessed parental knowledge regarding acute scrotal pain. An anonymous survey was distributed to parents in Urology and ENT offices, asking about their children's gender and scrotal pain history, urgency of response to a child's acute scrotal pain, and familiarity with testicular torsion. Surveys of 479 urology and 59 ENT parents were analyzed. The results between the two were not statistically different. Among the urology parents, 34% had heard of testicular twisting/torsion, most commonly through friends, relatives or knowing someone with torsion (35%); only 17% were informed by pediatricians (Summary Figure). Parents presenting for a child's scrotal pain were significantly more likely to have heard of torsion (69%) than those presenting for other reasons (30%, OR 5.24, P parents of boys had spoken with their children about torsion. Roughly three quarters of them would seek emergent medical attention - by day (75%) or night (82%) - for acute scrotal pain. However, urgency was no more likely among those who knew about torsion. This was the first study to assess parental knowledge of the emergent nature of acute scrotal pain in a non-urgent setting, and most closely approximating their level of knowledge at the time of pain onset. It also assessed parents' hypothetical responses to the scenario, which was markedly different than documented presentation times, highlighting a potential area for improvement in presentation times. Potential limitations included lack of respondent demographic data, potential sampling bias of a population with greater healthcare knowledge or involvement, and assessment of parents only. Parental knowledge of testicular torsion was

  16. Lack of response to unaligned chromosomes in mammalian female gametes

    Czech Academy of Sciences Publication Activity Database

    Šebestová, Jaroslava; Danylevska, Anna; Nováková, Lucia; Kubelka, Michal; Anger, Martin

    2012-01-01

    Roč. 11, č. 16 (2012), s. 3011-3018 ISSN 1538-4101 R&D Projects: GA ČR GA523/09/0743; GA ČR(CZ) GD204/09/H084; GA ČR GAP502/10/0944 Institutional research plan: CEZ:AV0Z50450515 Keywords : Anaphase * Aneuploidy * Cell cycle Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.243, year: 2012

  17. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation

    Science.gov (United States)

    Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.

    2014-01-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  18. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    Science.gov (United States)

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.

  19. Application of 133Xe encephalography in lack blood diseases

    International Nuclear Information System (INIS)

    Xie Zhiyuan; Guo Huiying

    1993-01-01

    The determination of local blood flow in brain gray matter (rCBF) using the type CGEM 2000 133 Xe encephalography is a reliable indication for judging the degree of lack blood disease. For all the inspected patients the scalp analogy localization is used. 28 probes are applied to some regions of the forehead, the vertex, the temporal folium and the occipital folium. The localization is accurate and repeatable. The result of rCBF determination is similar to XCT, but its range is rather wider than XCT. Therefore, the rCBF determination in clinic diagnosis is reliable and can give the rCBF value qualitatively. It can be used not only for diagnosing the decease in brain, but also for the predication before apoplexy, especially for vertigo disease to be inspected. For the vertigo disease of middle age and old man, the first consideration should be the decreasing of rCBF value. For the inspection of thrombus of neck artery system, it can reflect the real range of pathological changes correctly. The method is superior to XCT for treatment planning, estimating the results, supervising the effect treatment, and the diagnosis of acute cerebral embolism. In China, the morbidity rate, the sickness rate, the disability rate and recurrent rate of cerebrovascular disease are very high, especially for the old man. Satisfactory results for 1010 cases altogether are obtained by using type CGEM 2000 cerebral angiography technique for the screening

  20. Lack of international consensus in low-risk drinking guidelines.

    Science.gov (United States)

    Furtwaengler, Nina A F F; de Visser, Richard O

    2013-01-01

    To encourage moderate alcohol consumption, many governments have developed guidelines for alcohol intake, guidelines for alcohol consumption during pregnancy and legislation relating to blood alcohol limits when driving. The aim of this study was to determine the degree of international consensus within such guidelines. Official definitions of standard drinks and consumption guidelines were searched for on government websites, including all 27 European Union Member States and countries from all global geographic regions. There was a remarkable lack of agreement about what constitutes harmful or excessive alcohol consumption on a daily basis, a weekly basis and when driving, with no consensus about the ratios of consumption guidelines for men and women. International consensus in low-risk drinking guidelines is an important--and achievable--goal. Such agreement would facilitate consistent labelling of packaged products and could help to promote moderate alcohol consumption. However, there are some paradoxes related to alcohol content labelling and people's use of such information: although clearer information could increase people's capacity to monitor and regulate their alcohol consumption, not all drinkers are motivated to drink moderately or sensibly, and drinkers who intend to get drunk may use alcohol content labelling to select more alcoholic products. © 2012 Australasian Professional Society on Alcohol and other Drugs.

  1. LACK OF AWARENESS ABOUT SAFE BLOOD IN PAKISTANI POPULATION

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2014-12-01

    Full Text Available Blood transfusion is a life saving procedure in various transfusion-dependent life threatening conditions and donation of safe blood is a prerequisite for achieving this goal. This study was designed to evaluate the awareness regarding “safe blood” in Pakistani population. This study was conducted at a large scale through a population survey. The test population was divided into two groups i.e. general population and students. The Performa was designed for a general and student population and included 20 questions related to awareness of safe blood. A total of 4900 individuals belonging to different ethnic groups were included in this population survey. Results of social survey were analyzed by using Usman and Moin awareness chart. Results of this study revealed profound unawareness about safe blood in Pakistani population. This study found lack of awareness about safe blood as a major factor that is playing a vital role in the propagation of blood borne diseases in Pakistan. To secure the recipients from blood borne complications through blood donation, it is necessary to create effective awareness about safe blood in Pakistani population.

  2. Prefrontal glucose deficits in murderers lacking psychosocial deprivation.

    Science.gov (United States)

    Raine, A; Phil, D; Stoddard, J; Bihrle, S; Buchsbaum, M

    1998-01-01

    Previous research has suggested that links between autonomic nervous system functioning and violence are strongest in those who come from benign home backgrounds, but there appears to be no similar research using brain-imaging measures of central nervous system functioning. It was hypothesized that murderers who had no early psychosocial deprivation (e.g., no childhood abuse, family neglect) would demonstrate lower prefrontal glucose metabolism than murderers with early psychosocial deprivation and a group of normal controls. Murderers from a previous study, which showed prefrontal deficits in murderers, were assessed for psychosocial deprivation and divided into those with and without deprivation. Murderers without any clear psychosocial deficits were significantly lower on prefrontal glucose metabolism than murderers with psychosocial deficits and controls. These results suggest that murderers lacking psychosocial deficits are characterized by prefrontal deficits. It is argued that among violent offenders without deprived home backgrounds, the "social push" to violence is minimized, and consequently, brain abnormalities provide a relatively stronger predisposition to violence in this group.

  3. Lack of empathy in patients with narcissistic personality disorder.

    Science.gov (United States)

    Ritter, Kathrin; Dziobek, Isabel; Preissler, Sandra; Rüter, Anke; Vater, Aline; Fydrich, Thomas; Lammers, Claas-Hinrich; Heekeren, Hauke R; Roepke, Stefan

    2011-05-15

    The study's objective was to empirically assess cognitive and emotional empathy in patients with narcissistic personality disorder (NPD). To date, "lack of empathy" is a core feature of NPD solely based on clinical observation. The study's method was that forty-seven patients with NPD, 53 healthy controls, and 27 clinical controls with borderline personality disorder (BPD) were included in the study. Emotional and cognitive empathy were assessed with traditional questionnaire measures, the newly developed Multifaceted Empathy Test (MET), and the Movie for the Assessment of Social Cognition (MASC). The study's results were that individuals with NPD displayed significant impairments in emotional empathy on the MET. Furthermore, relative to BPD patients and healthy controls, NPD patients did not show deficits in cognitive empathy on the MET or MASC. Crucially, this empathic profile of NPD is not captured by the Structured Clinical Interview for DSM-IV for Axis II Disorders (SCID-II). The study's conclusions were that while NPD involves deficits in emotional empathy, cognitive empathy seems grossly unaffected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Carbon monoxide releasing molecule-2 ameliorates IL-1β-induced IL-8 in human gastric cancer cells

    International Nuclear Information System (INIS)

    Lian, Sen; Xia, Yong; Ung, Trong Thuan; Khoi, Pham Ngoc; Yoon, Hyun Joong; Kim, Nam Ho; Kim, Kyung Keun; Jung, Young Do

    2016-01-01

    Carbon monoxide (CO), a byproduct of heme oxygenase (HO), presents antioxidant, anti-inflammatory, and anti-tumor properties. Accumulating evidence supports that interleukin (IL)-8 contribute to the vascularity of human gastric cancer. However, the inhibition of IL-8 expression by CO is yet to be elucidated. Here, we utilized CO releasing molecule-2 (CORM-2) to investigate the effect of CO on IL-1β-induced IL-8 expression and the underlying molecular mechanisms in human gastric cancer AGS cells. CORM-2 dose-dependently suppressed IL-1β-induced IL-8 mRNA and protein expression as well as IL-8 promoter activity. IL-1β induced the translocation of p47 phox to activate reactive oxygen species (ROS)-producing NADPH oxidase (NOX). Moreover, IL-1β activated MAPKs (Erk1/2, JNK1/2, and p38 MAPK) and promoted nuclear factor (NF)-kB and activator protein (AP)-1 binding activities. Pharmacological inhibition and mutagenesis studies indicated that NOX, ROS, Erk1/2, and p38 MAPK are involved in IL-1β-induced IL-8 expression. Transient transfection of deletion mutant constructs of the IL-8 promoter in cells suggested that NF-kB and AP-1 are critical for IL-1β-induced IL-8 transcription. NOX-derived ROS and MAPKs (Erk1/2 and p38 MAPK) functioned as upstream activators of NF-κB and AP-1, respectively. CORM-2 pretreatment significantly mitigated IL-1β-induced activation of ROS/NF-kB and Erk1/2/AP-1 cascades, blocking IL-8 expression and thus significantly reducing endothelial cell proliferation in the tumor microenvironment.

  5. Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells.

    Science.gov (United States)

    Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin

    2014-12-01

    Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activation of Nur77 by 6-mercaptopurine (6-MP) substantially inhibits ET-1 expression in human umbilical vein endothelial cells (HUVECs), under both basal and thrombin-stimulated conditions. Furthermore, thrombin-stimulated ET expression is significantly augmented in both Nur77 knockdown ECs and aort from Nur77 knockout mice, suggesting that Nur77 is a negative regulator of ET-1 expression. Inhibition of ET-1 expression by Nur77 occurs at gene transcriptional levels, since Nur77 potently inhibits ET-1 promoter activity, without affecting ET-1 mRNA stability. As shown in electrophoretic mobility shift assay (EMSA), Nur77 overexpression markedly inhibits both basal and thrombin-stimulated transcriptional activity of AP-1. Mechanistically, we demonstrate that Nur77 specially interacts with c-Jun and inhibits AP-1 dependent c-Jun promoter activity, which leads to a decreased expression of c-Jun, a critical component involved in both AP-1 transcriptional activity and ET-1 expression in ECs. These findings demonstrate that Nur77 is a novel negative regulator of ET-1 expression in vascular ECs through an inhibitory interaction with the c-Jun/AP-1 pathway. Activation of Nur77 may represent a useful therapeutic strategy for preventing certain cardiovascular diseases, such as atherosclerosis and pulmonary artery hypertension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells

    International Nuclear Information System (INIS)

    Guo, Xianling; Zhang, Baihe; Wu, Mengchao; Wei, Lixin; Ma, Nannan; Wang, Jin; Song, Jianrui; Bu, Xinxin; Cheng, Yue; Sun, Kai; Xiong, Haiyan; Jiang, Guocheng

    2008-01-01

    Chemoresistance is one of the main obstacles to successful cancer therapy and is frequently associated with Multidrug resistance (MDR). Many different mechanisms have been suggested to explain the development of an MDR phenotype in cancer cells. One of the most studied mechanisms is the overexpression of P-glycoprotein (P-gp), which is a product of the MDR1 gene. Tumor cells often acquire the drug-resistance phenotype due to upregulation of the MDR1 gene. Overexpression of MDR1 gene has often been reported in primary gastric adenocarcinoma. This study investigated the role of p38-MAPK signal pathway in vincristine-resistant SGC7901/VCR cells. P-gp and MDR1 RNA were detected by Western blot analysis and RT-PCR amplification. Mitgen-activated protein kinases and function of P-gp were demonstrated by Western blot and FACS Aria cytometer analysis. Ap-1 activity and cell apoptosis were detected by Dual-Luciferase Reporter Assay and annexin V-PI dual staining. The vincristine-resistant SGC7901/VCR cells with increased expression of the multidrug-resistance 1 (MDR1) gene were resistant to P-gp-related drug and P-gp-unrelated drugs. Constitutive increases of phosphorylated p38-MAPK and AP-1 activities were also found in the drug-resistant cells. Inhibition of p38-MAPK by SB202190 reduced activator protein-1 (AP-1) activity and MDR1 expression levels and increased the sensitivity of SGC7901/VCR cells to chemotherapy. Activation of the p38-MAPK pathway might be responsible for the modulation of P-glycoprotein-mediated and P-glycoprotein-unmediated multidrug resistance in the SGC7901/VCR cell line

  7. RRR-alpha-tocopheryl succinate inhibits EL4 thymic lymphoma cell growth by inducing apoptosis and DNA synthesis arrest.

    Science.gov (United States)

    Yu, W; Sanders, B G; Kline, K

    1997-01-01

    RRR-alpha-tocopheryl succinate (vitamin E succinate, VES) treatment of murine EL4 T lymphoma cells induced the cells to undergo apoptosis. After 48 hours of VES treatment at 20 micrograms/ml, 95% of cells were apoptotic. Evidence for the induction of apoptosis by VES treatments is based on staining of DNA for detection of chromatin condensation/fragmentation, two-color flow-cytometric analyses of DNA content, and end-labeled DNA and electrophoretic analyses for detection of DNA ladder formation. VES-treated EL4 cells were blocked in the G1 cell cycle phase; however, apoptotic cells came from all cell cycle phases. Analyses of mRNA expression of genes involved in apoptosis revealed decreased c-myc and increased bcl-2, c-fos, and c-jun mRNAs within three to six hours after treatment. Western analyses showed increased c-Jun, c-Fos, and Bcl-2 protein levels. Electrophoretic mobility shift assays showed increased AP-1 binding at 6, 12, and 24 hours after treatment and decreased c-Myc binding after 12 and 24 hours of VES treatment. Treatments of EL4 cells with VES+RRR-alpha-to-copherol reduced apoptosis without effecting DNA synthesis arrest. Treatments of EL4 cells with VES+rac-6-hydroxyl-2, 5,7,8-tetramethyl-chroman-2-carboxylic acid, butylated hydroxytoluene, or butylated hydroxyanisole had no effect on apoptosis or DNA synthesis arrest caused by VES treatments. Analyses of bcl-2, c-myc, c-jun, and c-fos mRNA levels in cells receiving VES + RRR-alpha-tocopherol treatments showed no change from cells receiving VES treatments alone, implying that these changes are correlated with VES treatments but are not causal for apoptosis. However, treatments with VES + RRR-alpha-tocopherol decreased AP-1 binding to consensus DNA oligomer, suggesting AP-1 involvement in apoptosis induced by VES treatments.

  8. The lack of luminous matter in the poles

    Science.gov (United States)

    Shatsova, R. B.; Anisimova, G. B.

    2010-01-01

    Many RR Lyral type stars, globular clusters and dwarf galaxus of Local Group are localized in the thin oval envelopes around the holes. 12 ovals over ▵b = 30° are in the zone of Polar Ring of the Galaxy l = (97° and 277°)+/-30°. IRAS sources on λ = 60° and 100 mμ have roughly similar distribution. These small formations partly resemble the cells of large scale of the Universe and maybe have the identical nature. It is possible that the observable picture is formed by the dark matter.

  9. Lack of Cholesterol Awareness among Physicians Who Smoke

    Directory of Open Access Journals (Sweden)

    Richard E. Scranton

    2009-02-01

    Full Text Available Cigarette use is a known risk factor for the development of coronary artery disease (CAD as it adversely affects HDL cholesterol levels and promotes thrombogenesis. Smoking may also be associated with behavioral characteristics that potentiate the risk of CAD. A lack of cholesterol knowledge would indicate an aversion to a prevention-oriented lifestyle. Thus, our goal was to determine the association between tobacco use and knowledge of self-reported cholesterol among male physicians. Using the 1982 and follow-up questionnaires from the physician health study, we report the changes in the frequencies of awareness of self-reported total cholesterol and cardiovascular risk factors among the 22,067 participants. We classified physicians as being aware of their cholesterol if they reported a cholesterol level and unaware if the question was left unanswered. In 1997, 207 physicians were excluded, as the recorded cholesterol was not interpretable, leaving 21,860 for our follow up analyses. Using unadjusted logistic models, we determined the odds ratios (OR and 95% confidence intervals (CI of not reporting a cholesterol level in either 1982 or 1997 for each specified risk factor. We then evaluated whether the lack of cholesterol awareness at both time points was associated with the use of tobacco throughout the study. After 14-years of follow up, cholesterol awareness increased from 35.9 to 58.6 percent. During this period, the frequency of hypertension and hyperlipidemia treatment increased (13.5 to 40.5% and 0.57% to 19.6% respectively, as did the diagnosis of diabetes (2.40 to 7.79%. Behavioral characteristics such as a sedentary lifestyle and obesity also increased (27.8 to 42% and 43.5 to 53.5%, respectively, however the proportion of current smokers deceased from 11.1 to 4.05%. The percentages of individuals being unaware of their cholesterol decreased in all risk factor groups. However, individuals were likely to be unaware of their cholesterol

  10. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    Science.gov (United States)

    Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-05-01

    We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  11. (Lack of) Corticospinal facilitation in association with hand laterality judgments.

    Science.gov (United States)

    Ferron, Lucas; Tremblay, François

    2017-07-01

    In recent years, mental practice strategies have drawn much interest in the field of rehabilitation. One form of mental practice particularly advocated involves judging the laterality of images depicting body parts. Such laterality judgments are thought to rely on implicit motor imagery via mental rotation of one own's limb. In this study, we sought to further characterize the involvement of the primary motor cortex (M1) in hand laterality judgments (HLJ) as performed in the context of an application designed for rehabilitation. To this end, we measured variations in corticospinal excitability in both hemispheres with motor evoked potentials (MEPs) while participants (n = 18, young adults) performed either HLJ or a mental counting task. A third condition (foot observation) provided additional control. We hypothesized that HLJ would lead to a selective MEP facilitation when compared to the other tasks and that this facilitation would be greater on the right than the left hemisphere. Contrary to our predictions, we found no evidence of task effects and hemispheric effects for the HLJ task. Significant task-related MEP facilitation was detected only for the mental counting task. A secondary experiment performed in a subset of participants (n = 6) to further test modulation during HLJ yielded the same results. We interpret the lack of facilitation with HLJ in the light of evidence that participants may rely on alternative strategies when asked to judge laterality when viewing depictions of body parts. The use of visual strategies notably would reduce the need to engage in mental rotation, thus reducing M1 involvement. These results have implications for applications of laterality tasks in the context of the rehabilitation program.

  12. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    Directory of Open Access Journals (Sweden)

    Alessandro Silvani

    Full Text Available Cannabinoid type 1 (CB1 receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD. We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD and HFD. CB1 cannabinoid receptor knock-out (KO and wild-type (WT mice were fed SD or HFD for 4 months (n = 9-10 per group. Mice were instrumented with electroencephalographic (EEG and electromyographic electrodes. Recordings were performed during baseline (48 hours, sleep deprivation (gentle handling, 6 hours, sleep recovery (18 hours, and after cage switch (insomnia model paradigm, 6 hours. We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS and rapid-eye-movement sleep (REMS than WT during the dark (active period but not during the light (rest period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  13. Lack of awareness for spatial and verbal constructive apraxia.

    Science.gov (United States)

    Rinaldi, Maria Cristina; Piras, Federica; Pizzamiglio, Luigi

    2010-05-01

    It is still a matter of debate whether constructive apraxia (CA) should be considered a form of apraxia or, rather, the motor expression of a more pervasive impairment in visuo-spatial processing. Constructive disorders were linked to visuo-spatial disorders and to deficits in appreciating spatial relations among component sub-parts or problems in reproducing three-dimensionality. We screened a large population of brain-damaged patients for CA. Only patients with constructive disorders and no signs of neglect and/or aphasia were selected. Five apractic subjects were tested with both visuo-spatial and verbal tasks requiring constructive abilities. The former ones were tests such as design copying, while the latter were experimental tasks built to transpose into the linguistic domain the constructive process as phrasing by arranging paper scraps into a sentence. A first result showed a constructive impairment in both the visuo-spatial and the linguistic domain; this finding challenges the idea that CA is confined to the visuo-spatial domain. A second result showed a systematic association between CA and unawareness for constructive disorders. Third, lack of awareness was always associated with a lesion in the right dorsolateral prefrontal cortex, a region deemed as involved in managing a conflict between intentions and sensory feed-back. Anosognosia for constructive disorders and the potential role of the right prefrontal cortex in generating the impairment, are discussed in the light of current models of action control. The core of CA could be the inability to detect any inconsistency between intended and executed action rather than a deficit in reproducing spatial relationship. 2010 Elsevier Ltd. All rights reserved.

  14. Lack of plasma kallikrein-kinin system cascade in teleosts.

    Directory of Open Access Journals (Sweden)

    Marty Kwok-Shing Wong

    Full Text Available The kallikrein-kinin system (KKS consists of two major cascades in mammals: "plasma KKS" consisting of high molecular-weight (HMW kininogen (KNG, plasma kallikrein (KLKB1, and bradykinin (BK; and "tissue KKS" consisting of low molecular-weight (LMW KNG, tissue kallikreins (KLKs, and [Lys(0]-BK. Some components of the KKS have been identified in the fishes, but systematic analyses have not been performed, thus this study aims to define the KKS components in teleosts and pave a way for future physiological and evolutionary studies. Through a combination of genomics, molecular, and biochemical methods, we showed that the entire plasma KKS cascade is absent in teleosts. Instead of two KNGs as found in mammals, a single molecular weight KNG was found in various teleosts, which is homologous to the mammalian LMW KNG. Results of molecular phylogenetic and synteny analyses indicated that the all current teleost genomes lack KLKB1, and its unique protein structure, four apple domains and one trypsin domain, could not be identified in any genome or nucleotide databases. We identified some KLK-like proteins in teleost genomes by synteny and conserved domain analyses, which could be the orthologs of tetrapod KLKs. A radioimmunoassay system was established to measure the teleost BK and we found that [Arg(0]-BK is the major circulating form instead of BK, which supports that the teleost KKS is similar to the mammalian tissue KKS. Coincidently, coelacanths are the earliest vertebrate that possess both HMW KNG and KLKB1, which implies that the plasma KKS could have evolved in the early lobe-finned fish and descended to the tetrapod lineage. The co-evolution of HMW KNG and KLKB1 in lobe-finned fish and early tetrapods may mark the emergence of the plasma KKS and a contact activation system in blood coagulation, while teleosts may have retained a single KKS cascade.

  15. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity

    Directory of Open Access Journals (Sweden)

    Schwartz Robert J

    2007-11-01

    Full Text Available Abstract Background Heart anomalies are the most frequently observed among all human congenital defects. As with the situation for neural tube defects (NTDs, it has been demonstrated that women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for delivering offspring with conotruncal heart defects 123. Cellular folate transport is mediated by a receptor or binding protein and by an anionic transporter protein system. Defective function of the Folr1 (also known as Folbp1; homologue of human FRα gene in mice results in inadequate transport, accumulation, or metabolism of folate during cardiovascular morphogenesis. Results We have observed cardiovascular abnormalities including outflow tract and aortic arch arterial defects in genetically compromised Folr1 knockout mice. In order to investigate the molecular mechanisms underlying the failure to complete development of outflow tract and aortic arch arteries in the Folr1 knockout mouse model, we examined tissue-specific gene expression difference between Folr1 nullizygous embryos and morphologically normal heterozygous embryos during early cardiac development (14-somite stage, heart tube looping (28-somite stage, and outflow track septation (38-somite stage. Microarray analysis was performed as a primary screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis highlighted the following ontology groups: cell migration, cell motility and localization of cells, structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and mRNA processing. This study provided preliminary data and suggested potential candidate genes for further description and investigation. Conclusion The results suggested that Folr1 gene ablation and abnormal folate homeostasis altered gene expression in developing heart and conotruncal tissues. These changes affected normal cytoskeleton structures, cell migration and

  16. Lack of metformin effect on mouse embryo AMPK activity: implications for metformin treatment during pregnancy.

    Science.gov (United States)

    Lee, Hyung-Yul; Wei, Dan; Loeken, Mary R

    2014-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is stimulated in embryos during diabetic pregnancy by maternal hyperglycaemia-induced embryo oxidative stress. Stimulation of AMPK disrupts embryo gene expression and causes neural tube defects. Metformin, which may be taken during early pregnancy, has been reported to stimulate AMPK activity. Thus, the benefits of improved glycaemic control could be offset by stimulated embryo AMPK activity. Here, we investigated whether metformin can stimulate AMPK activity in mouse embryos and can adversely affect embryo gene expression and neural tube defects. Pregnant nondiabetic mice were administered metformin beginning on the first day of pregnancy. Activation of maternal and embryo AMPK [phospho-AMPK α (Thr172) relative to total AMPK], expression of Pax3, a gene required for neural tube closure, and neural tube defects were studied. Mouse embryonic stem cells were used as a cell culture model of embryonic neuroepithelium to study metformin effects on AMPK and Pax3 expression. Metformin had no effect on AMPK in embryos or maternal skeletal muscle but increased activated AMPK in maternal liver. Metformin did not inhibit Pax3 expression or increase neural tube defects. However, metformin increased activated AMPK and inhibited Pax3 expression by mouse embryonic stem cells. Mate1/Slc47a1 and Oct3/Slc22a, which encode metformin transporters, were expressed at barely detectable levels by embryos. Although metformin can have effects associated with diabetic embryopathy in vitro, the lack of effects on mouse embryos in vivo may be due to lack of metformin transporters and indicates that the benefits of metformin on glycaemic control are not counteracted by stimulation of embryo AMPK activity and consequent embryopathy. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Lack of HXK2 Induces Localization of Active Ras in Mitochondria and Triggers Apoptosis in the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Loredana Amigoni

    2013-01-01

    Full Text Available We recently showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type cells growing exponentially on glucose, while in the hxk2Δ strain they accumulated mainly in mitochondria. An aberrant accumulation of activated Ras in these organelles was previously reported and correlated to mitochondrial dysfunction, accumulation of ROS, and cell death. Here we show that addition of acetic acid to wild-type cells results in a rapid recruitment of Ras-GTP from the nucleus and the plasma membrane to the mitochondria, providing a further proof that Ras proteins might be involved in programmed cell death. Moreover, we show that Hxk2 protects against apoptosis in S. cerevisiae. In particular, cells lacking HXK2 and showing a constitutive accumulation of activated Ras at the mitochondria are more sensitive to acetic-acid-induced programmed cell death compared to the wild type strain. Indeed, deletion of HXK2 causes an increase of apoptotic cells with several morphological and biochemical changes that are typical of apoptosis, including DNA fragmentation, externalization of phosphatidylserine, and ROS production. Finally, our results suggest that apoptosis induced by lack of Hxk2 may not require the activation of Yca1, the metacaspase homologue identified in yeast.

  18. Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Amigoni, Loredana; Martegani, Enzo; Colombo, Sonia

    2013-01-01

    We recently showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type cells growing exponentially on glucose, while in the hxk2Δ strain they accumulated mainly in mitochondria. An aberrant accumulation of activated Ras in these organelles was previously reported and correlated to mitochondrial dysfunction, accumulation of ROS, and cell death. Here we show that addition of acetic acid to wild-type cells results in a rapid recruitment of Ras-GTP from the nucleus and the plasma membrane to the mitochondria, providing a further proof that Ras proteins might be involved in programmed cell death. Moreover, we show that Hxk2 protects against apoptosis in S. cerevisiae. In particular, cells lacking HXK2 and showing a constitutive accumulation of activated Ras at the mitochondria are more sensitive to acetic-acid-induced programmed cell death compared to the wild type strain. Indeed, deletion of HXK2 causes an increase of apoptotic cells with several morphological and biochemical changes that are typical of apoptosis, including DNA fragmentation, externalization of phosphatidylserine, and ROS production. Finally, our results suggest that apoptosis induced by lack of Hxk2 may not require the activation of Yca1, the metacaspase homologue identified in yeast.

  19. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation.

    Science.gov (United States)

    Tilley, Cynthia; Deep, Gagan; Agarwal, Chapla; Wempe, Michael F; Biedermann, David; Valentová, Kateřina; Kren, Vladimir; Agarwal, Rajesh

    2016-01-01

    Basal cell carcinoma (BCC) is the most common cancer worldwide, and its current treatment options are insufficient and toxic. Surprisingly, unlike several other malignancies, chemopreventive efforts against BCC are almost lacking. Silibinin, a natural agent from milk thistle seeds, has shown strong efficacy against several cancers including ultraviolet radiation-induced skin (squamous) cancer; however, its potential activity against BCC is not yet examined. Herein, for the first time, we report the efficacy of silibinin and its oxidation product 2,3-dehydrosilibinin (DHS) against BCC both in vitro and in vivo using ASZ (p53 mutated) and BSZ (p53 deleted) cell lines derived from murine BCC tumors. Both silibinin and DHS significantly inhibited cell growth and clonogenicity while inducing apoptosis in a dose- and time-dependent manner, with DHS showing higher activity at lower concentrations. Both agents also inhibited the mitogenic signaling by reducing EGFR, ERK1/2, Akt, and STAT3 phosphorylation and suppressed the activation of transcription factors NF-κB and AP-1. More importantly, in an ectopic allograft model, oral administration of silibinin and DHS (200 mg/kg body weight) strongly inhibited the ASZ tumor growth by 44% and 71% (P < 0.05), respectively, and decreased the expression of proliferation biomarkers (PCNA and cyclin D1) as well as NF-κB p50 and c-Fos in the tumor tissues. Taken together, these results provide the first evidence for the efficacy and usefulness of silibinin and its derivative DHS against BCC, and suggest the need for additional studies with these agents in pre-clinical and clinical BCC chemoprevention and therapy models. © 2014 Wiley Periodicals, Inc.

  20. Lack of indication of myocardial cell damage after myocardial ischaemia in patients with severe stable angina

    DEFF Research Database (Denmark)

    Hansen, Knud Nørregaard; Egstrup, K; Nielsen, J R

    1992-01-01

    stenosis of one or more of the main coronary arteries and more than five ischaemic attacks per week. ST-segment monitoring was performed for 36 h. During the last 24 h of that period (period A) serial blood samples were analysed for myoglobin, CK and CK-MB using sensitive assays. Three days later (period B...

  1. Lack of cortical endoplasmic reticulum protein Ist2 alters sodium accumulation in Saccharomyces cerevisiae cells

    Czech Academy of Sciences Publication Activity Database

    Papoušková, Klára; Andršová, Markéta; Sychrová, Hana

    2017-01-01

    Roč. 17, č. 2 (2017), č. článku fox011. ISSN 1567-1356 R&D Projects: GA MŠk(CZ) LH14297 Institutional support: RVO:67985823 Keywords : Saccharomyces cerevisiae * Ist2 * alkali-metal- cation homeostasis * sodium tolerance * sodium uptake * alkali-metal- cation transporters Subject RIV: EE - Microbiology, Virology OBOR OECD: Mycology Impact factor: 3.299, year: 2016