WorldWideScience

Sample records for cells improves visual

  1. Oral messages improve visual search

    CERN Document Server

    Kieffer, Suzanne

    2007-01-01

    Input multimodality combining speech and hand gestures has motivated numerous usability studies. Contrastingly, issues relating to the design and ergonomic evaluation of multimodal output messages combining speech with visual modalities have not yet been addressed extensively. The experimental study presented here addresses one of these issues. Its aim is to assess the actual efficiency and usability of oral system messages including brief spatial information for helping users to locate objects on crowded displays rapidly. Target presentation mode, scene spatial structure and task difficulty were chosen as independent variables. Two conditions were defined: the visual target presentation mode (VP condition) and the multimodal target presentation mode (MP condition). Each participant carried out two blocks of visual search tasks (120 tasks per block, and one block per condition). Scene target presentation mode, scene structure and task difficulty were found to be significant factors. Multimodal target presenta...

  2. Improving rehabilitation exercise performance through visual guidance.

    Science.gov (United States)

    Lam, Agnes W K; HajYasien, Ahmed; Kulic, Dana

    2014-01-01

    In current physical rehabilitation protocols, patients typically perform exercises without feedback or guidance following the initial demonstrations from the physiotherapist. This paper proposes a system providing continuous visual feedback and guidance to patients to improve quality of motion performance and adherence to instructions. The system consists of body-worn inertial measurement units which continuously measure the patient's pose. The measured pose is overlaid with the instructed motion on a visual display shown to the user during exercise performance. Two user studies were conducted with healthy participants to evaluate the usability of the visual guidance tool. Motion data was collected by the inertial measurement sensors and used to evaluate quality of motion, comparing user performance with and without visual feedback and with or without exercise guidance. The quantitative and qualitative results of the studies confirm that performing the exercises with the visual guidance tool promotes more consistent exercise performance and proper technique. PMID:25570311

  3. Color improves "visual" acuity via sound.

    Science.gov (United States)

    Levy-Tzedek, Shelly; Riemer, Dar; Amedi, Amir

    2014-01-01

    Visual-to-auditory sensory substitution devices (SSDs) convey visual information via sound, with the primary goal of making visual information accessible to blind and visually impaired individuals. We developed the EyeMusic SSD, which transforms shape, location, and color information into musical notes. We tested the "visual" acuity of 23 individuals (13 blind and 10 blindfolded sighted) on the Snellen tumbling-E test, with the EyeMusic. Participants were asked to determine the orientation of the letter "E." The test was repeated twice: in one test, the letter "E" was drawn with a single color (white), and in the other test, with two colors (red and white). In the latter case, the vertical line in the letter, when upright, was drawn in red, with the three horizontal lines drawn in white. We found no significant differences in performance between the blind and the sighted groups. We found a significant effect of the added color on the "visual" acuity. The highest acuity participants reached in the monochromatic test was 20/800, whereas with the added color, acuity doubled to 20/400. We conclude that color improves "visual" acuity via sound. PMID:25426015

  4. Improved visual cognition through stroboscopic training

    Directory of Open Access Journals (Sweden)

    Lawrence Gregory eAppelbaum

    2011-10-01

    Full Text Available Humans have a remarkable capacity to learn and adapt, but surprisingly little research has demonstrated generalized learning in which new skills and strategies can be used flexibly across a range of tasks and contexts. In the present work we examined whether generalized learning could result from visual-motor training under stroboscopic visual conditions. Individuals were assigned to either an experimental condition that trained with stroboscopic eyewear or to a control condition that underwent identical training with non-stroboscopic eyewear. The training consisted of multiple sessions of athletic activities during which participants performed simple drills such as throwing and catching. To determine if training led to generalized cognitive benefits, we used computerized measures to assess perceptual and cognitive abilities on a variety of tasks before and after training. Computer-based assessments included measures of visual sensitivity (central and peripheral motion coherence thresholds, transient spatial attention (a useful field of view – dual task paradigm, and sustained attention (multiple-object tracking. Results revealed that stroboscopic training led to significantly greater re-test improvement in central visual field motion sensitivity and transient attention abilities. No training benefits were observed for peripheral motion sensitivity or peripheral transient attention abilities, nor were benefits seen for sustained multiple-object tracking suggesting that stroboscopic training can effectively improve some, but not all aspects of visual perception and attention.

  5. Aged human bone marrow stromal cells maintaining bone forming capacity in vivo evaluated using an improved method of visualization

    DEFF Research Database (Denmark)

    Stenderup, Karin; Rosada, Cecilia; Justesen, J;

    2004-01-01

    an in vivo assay for quantifying the bone forming capacity (BFC) and we compared the BFC of osteoblastic cells obtained from young and old donors. Osteoblasts were obtained from human bone marrow stromal cell cultures and implanted subcutaneously in immuno-deficient mice (NOD/LtSz- Prkdc(scid)). After 8...... able to form bone in vivo. The donor origin of bone was verified using several human-specific antibodies. Dose-response experiments demonstrated that 5 x 10(5) hMSC per implant gave the maximal bone formation after 8 weeks. No difference in BFC was observed between cells obtained from young (24...

  6. Improving Visualization Skills in Engineering Education

    OpenAIRE

    Contero, Manuel; Company, Pedro; José Luis SAORÍN PÉREZ; Naya, Ferran; Conesa, Julián

    2005-01-01

    This article analyzes the importance of visualization skills in engineering education. It proposes a dual approach based on computer graphics applications using both Web-based graphic applications and a sketch based modeling system. It addresses the importance of spatial abilities in the context of engineering education and the available techniques for evaluating these abilities from a psychological point of view. It then reviews some Web resources conceived to help students improve their spa...

  7. Perceptual learning in children with visual impairment improves near visual acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.; Rens, G. van; Cillessen, A.H.

    2013-01-01

    PURPOSE: This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. METHODS: Participants were 45 children with visual impairment and 29 children with normal vision. Children

  8. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, Bianca; Boonstra, F. Nienke; Cox, Ralf F. A.; van Rens, Ger; Cillessen, Antonius H. N.

    2013-01-01

    PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment. METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children w

  9. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    OpenAIRE

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.A.; van Rens, G. H M B; Cillessen, A.H.N.

    2013-01-01

    PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment. METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children with visual impairment were divided into three groups: a magnifier group (n = 12), a crowded perceptual learning group (n = 18), and an uncrowded perceptual learning group (n = 15). Children with no...

  10. A New Visual Stimulation Program for Improving Visual Acuity in Children with Visual Impairment: A Pilot Study

    OpenAIRE

    Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin

    2016-01-01

    The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits alon...

  11. Successful Computer-based Visual Training Specifically Predicts Visual Memory Enhancement over Verbal Memory Improvement in Schizophrenia

    OpenAIRE

    Surti, Toral S.; Corbera, Silvia; Bella, Morris D.; Wexler, Bruce E.

    2011-01-01

    We investigated whether improved early visual processing on cognitive remediation (CR) exercises generalizes to visual and auditory learning and information manipulation in schizophrenia. Fourteen participants received neuropsychological testing before and after CR consisting of visual, auditory and cognitive control training. Achievement on visual training exercises was strongly and significantly correlated with improved visual learning, but not improved verbal learning or increased ability ...

  12. Visualizing cell state transition using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Taro Ichimura

    Full Text Available System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA, which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.

  13. Improved discrimination of visual stimuli following repetitive transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Michael L Waterston

    Full Text Available BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a "virtual lesion" in stimulated brain regions, with correspondingly diminished behavioral performance. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of rTMS to visual cortex on subjects' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task. CONCLUSIONS/SIGNIFICANCE: Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception.

  14. Big data in medical informatics: improving education through visual analytics.

    Science.gov (United States)

    Vaitsis, Christos; Nilsson, Gunnar; Zary, Nabil

    2014-01-01

    A continuous effort to improve healthcare education today is currently driven from the need to create competent health professionals able to meet healthcare demands. Limited research reporting how educational data manipulation can help in healthcare education improvement. The emerging research field of visual analytics has the advantage to combine big data analysis and manipulation techniques, information and knowledge representation, and human cognitive strength to perceive and recognise visual patterns. The aim of this study was therefore to explore novel ways of representing curriculum and educational data using visual analytics. Three approaches of visualization and representation of educational data were presented. Five competencies at undergraduate medical program level addressed in courses were identified to inaccurately correspond to higher education board competencies. Different visual representations seem to have a potential in impacting on the ability to perceive entities and connections in the curriculum data.

  15. Qualitative visual trichotomous assessment improves the value of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in predicting the prognosis of diffuse large B-cell lymphoma

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Wei Fan; Ying-Ying Hu; Zhi-Ming Li; Zhong-Jun Xia; Xiao-Ping Lin; Ya-Rui Zhang; Pei-Yan Liang; Yuan-Hua Li

    2015-01-01

    Introduction:Fluorine-18 fluorodeoxyglucose (18 F-FDG) positron emission tomography/computed tomography (PET/CT) is a powerful tool for monitoring the response of diffuse large B-cell lymphoma (DLBCL) to therapy, but the criteria to interpret PET/CT results remain under debate. We investigated the value of post-treatment PET/CT in predicting the prognosis of DLBCL patients when interpreted according to qualitative visual trichotomous assessment (QVTA) criteria compared with the Deauvil e criteria. Methods:In this retrospective study, final PET/CT scans of DLBCL patients treated with rituximab-based regimens between October 2005 and November 2010 were interpreted using the Deauvil e and QVTA criteria. Survival curves were estimated using Kaplan-Meier analysis and compared using the log-rank test. Results:A total of 253 patients were enrol ed. The interpretation according to the Deauvil e criteria revealed that 181 patients had negative PET/CT scan results and 72 had positive results. The 3 year overal survival (OS) rate was significantly higher in patients with negative scan results than in those with positive results (91.6%vs. 57.5%, P<0.001). The 72 patients with positive scan results according to the Deauville criteria were divided into two groups by the interpretation according to the QVTA criteria:29 had indeterminate results, and 43 had positive results. The 3 year OS rate was significantly higher in patients with indeterminate scan results than in those with positive results (91.2%vs. 33.5%, P<0.001) but was similar between patients with negative and indeterminate scan results (91.6%vs. 91.2%, P=0.921). Conclusions:Compared with the Deauvil e criteria, using the QVTA criteria for interpreting post-treatment PET/CT scans of DLBCL patients is likely to reduce the number of false positive results. The QVTA criteria are feasible for therapeutic outcome evaluation and can be used to guide risk-adapted therapy.

  16. Improved portable lighting for visual aircraft inspection

    Energy Technology Data Exchange (ETDEWEB)

    Shagam, R.N. [Sandia National Lab., Albuquerque, NM (United States); Lerner, J.; Shie, R. [Physical Optics Corp., Torrance, CA (United States)

    1995-04-01

    The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser{trademark} (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

  17. Improved portable lighting for visual aircraft inspection

    Science.gov (United States)

    Shagam, Richard N.; Lerner, Jeremy M.; Shie, Rick

    1995-07-01

    The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser TM (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

  18. Improved visualization of lung metastases at single cell resolution in mice by combined in-situ perfusion of lung tissue and X-Gal staining of lacZ-tagged tumor cells.

    Science.gov (United States)

    Arlt, Matthias J E; Born, Walter; Fuchs, Bruno

    2012-01-01

    Metastasis is the main cause of death in the majority of cancer types and consequently a main focus in cancer research. However, the detection of micrometastases by radiologic imaging and the success in their therapeutic eradication remain limited. While animal models have proven to be invaluable tools for cancer research, the monitoring/visualization of micrometastases remains a challenge and inaccurate evaluation of metastatic spread in preclinical studies potentially leads to disappointing results in clinical trials. Consequently, there is great interest in refining the methods to finally allow reproducible and reliable detection of metastases down to the single cell level in normal tissue. The main focus therefore is on techniques, which allow the detection of tumor cells in vivo, like micro-computer tomography (micro-CT), positron emission tomography (PET), bioluminescence or fluorescence imaging. We are currently optimizing these techniques for in vivo monitoring of primary tumor growth and metastasis in different osteosarcoma models. Some of these techniques can also be used for ex vivo analysis of metastasis beside classical methods like qPCR, FACS or different types of histological staining. As a benchmark, we have established in the present study the stable transfection or transduction of tumor cells with the lacZ gene encoding the bacterial enzyme β-galactosidase that metabolizes the chromogenic substrate 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) to an insoluble indigo blue dye and allows highly sensitive and selective histochemical blue staining of tumor cells in mouse tissue ex vivo down to the single cell level as shown here. This is a low-cost and not equipment-intensive tool, which allows precise validation of metastasis in studies assessing new anticancer therapies. A limiting factor of X-gal staining is the low contrast to e.g. blood-related red staining of well vascularized tissues. In lung tissue this problem can be solved by

  19. Visual Aids Improve Diagnostic Inferences and Metacognitive Judgment Calibration

    Directory of Open Access Journals (Sweden)

    Rocio eGarcia-Retamero

    2015-07-01

    Full Text Available Visual aids can improve comprehension of risks associated with medical treatments, screenings, and lifestyles. Do visual aids also help decision makers accurately assess their risk comprehension? That is, do visual aids help them become well calibrated? To address these questions, we investigated the benefits of visual aids displaying numerical information and measured accuracy of self-assessment of diagnostic inferences (i.e., metacognitive judgment calibration controlling for individual differences in numeracy. Participants included 108 patients who made diagnostic inferences about three medical tests on the basis of information about the sensitivity and false-positive rate of the tests and disease prevalence. Half of the patients received the information in numbers without a visual aid, while the other half received numbers along with a grid representing the numerical information. In the numerical condition, many patients --especially those with low numeracy-- misinterpreted the predictive value of the tests and profoundly overestimated the accuracy of their inferences. Metacognitive judgment calibration mediated the relationship between numeracy and accuracy of diagnostic inferences. In contrast, in the visual aid condition, patients at all levels of numeracy showed high-levels of inferential accuracy and metacognitive judgment calibration. Results indicate that accurate metacognitive assessment may explain the beneficial effects of visual aids and numeracy --a result that accords with theory suggesting that metacognition is an essential part of risk literacy. We conclude that well-designed risk communications can inform patients about health-relevant numerical information while helping them assess the quality of their own risk comprehension.

  20. Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia

    Science.gov (United States)

    Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue

    2011-01-01

    Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…

  1. In vitro Spatial Compound Scanning for Improved Visualization of Atherosclerosis

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens E.; Sillesen, Henrik

    2000-01-01

    A new off-line multiangle ultrasound (US) compound scanner has been built with the purpose of investigating possible improvements in visualization of vascular structure. Images of two formalin-fixed human atherosclerotic plaques removed by carotid endarterectomy were recorded from seven insonific...

  2. A new visual stimulation program for improving visual acuity in children with visual impairment: a pilot study

    Directory of Open Access Journals (Sweden)

    Li-Ting eTsai

    2016-04-01

    Full Text Available The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS program combining checkerboard pattern reversal (passive stimulation with oddball stimuli (attentional modulation for improving the visual acuity (VA of visually impaired (VI children and children with amblyopia and additional developmental problems. Six children (3 females, 3 males; mean age = 3.9 ± 2.3 years with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week of at least 8 sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards, visual evoked potential (VEP, and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ were carried out before and after the VS program. Significant gains in VA were found after the VS training (VA=1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z=-2.20, asymptotic significance (2-tailed =0.028. No significant changes were observed in the FVQ assessment (92.8 ± 12.6 to 100.8 ± SD=15.4, Z=-1.46, asymptotic significance (2-tailed = 0.144. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders.

  3. A New Visual Stimulation Program for Improving Visual Acuity in Children with Visual Impairment: A Pilot Study.

    Science.gov (United States)

    Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin

    2016-01-01

    The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = -2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = -1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders. PMID:27148014

  4. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    Science.gov (United States)

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs. PMID:19605307

  5. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    Science.gov (United States)

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs.

  6. Mirtazapine improves visual hallucinations in Parkinson's disease: a case report.

    Science.gov (United States)

    Tagai, Kenji; Nagata, Tomoyuki; Shinagawa, Shunichiro; Tsuno, Norifumi; Ozone, Motohiro; Nakayama, Kazuhiko

    2013-06-01

    Psychotic symptoms often occur as a complication in Parkinson's disease patients, and a set of criteria for Parkinson's disease with psychosis (PDPsy) has been established. Among these criteria, hallucinations are one of the specific symptoms, with visual hallucinations being the most common. While atypical antipsychotic agents are often used for the treatment of PDPsy, adverse effects, including extrapyramidal symptoms, often hinder its continuation or tolerance. There have been some reports and reviews indicating that antidepressants may be effective for PDPsy and other forms of dementia with psychosis. In this report, we present a patient with PDPsy who was treated with one of the new-generation antidepressants, mirtazapine. Mirtazapine improved the patient's refractory psychotic symptoms, especially her visual hallucinations, without worsening her motor symptoms.

  7. Seeing Cells: Teaching the Visual/Verbal Rhetoric of Biology

    Science.gov (United States)

    Dinolfo, John; Heifferon, Barbara; Temesvari, Lesly A.

    2007-01-01

    This pilot study obtained baseline information on verbal and visual rhetorics to teach microscopy techniques to college biology majors. We presented cell images to students in cell biology and biology writing classes and then asked them to identify textual, verbal, and visual cues that support microscopy learning. Survey responses suggest that…

  8. Visualizing Without Vision at the Microscale: Students With Visual Impairments Explore Cells With Touch

    Science.gov (United States)

    Jones, M. Gail; Minogue, James; Oppewal, Tom; Cook, Michelle P.; Broadwell, Bethany

    2006-12-01

    Science instruction is typically highly dependent on visual representations of scientific concepts that are communicated through textbooks, teacher presentations, and computer-based multimedia materials. Little is known about how students with visual impairments access and interpret these types of visually-dependent instructional materials. This study explored the efficacy of new haptic (simulated tactile feedback and kinesthetics) instructional technology for teaching cell morphology and function to middle and high school students with visual impairments. The study examined students' prior experiences learning about the cell and cell functions in classroom instruction, as well as how haptic feedback technology impacted students' awareness of the 3-D nature of an animal cell, the morphology and function of cell organelles, and students' interest in the haptic technology as an instructional tool. Twenty-one students with visual impairment participated in the study. Students explored a tactile model of the cell with a haptic point probe that allowed them to feel the cell and its organelles. Results showed that students made significant gains in their ability to identify cell organelles and found the technology to be highly interesting as an instructional tool. The need for additional adaptive technology for students with visual impairments is discussed.

  9. Working memory training improves visual short-term memory capacity.

    Science.gov (United States)

    Schwarb, Hillary; Nail, Jayde; Schumacher, Eric H

    2016-01-01

    Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1-2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87-185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297-314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46-60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity-a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622-628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.

  10. Mirror Visual Feedback to Improve Bradykinesia in Parkinson's Disease.

    Science.gov (United States)

    Bonassi, Gaia; Pelosin, Elisa; Ogliastro, Carla; Cerulli, Cecilia; Abbruzzese, Giovanni; Avanzino, Laura

    2016-01-01

    Mirror visual feedback (MVF) therapy has been applied to improve upper limb function in stroke. When combined with motor training, MVF improves the performance of the trained and untrained hand by enhancing the excitability of both primary motor cortices (M1s). Bradykinesia is a typical feature of Parkinson's disease (PD), characterized by slowness in the execution of movement. This condition is often asymmetrical and possibly supported by a volitional hypoactivation of M1. MVF therapy could tentatively treat bradykinesia since the untrained hand, which benefits from the exercise, is generally more severely impaired in undertaking sequential movements. Aim of the study was to evaluate whether MVF therapy may improve bradykinesia of the more affected hand in PD patients. Twelve PD patients and twelve healthy controls performed for 10 minutes a finger sequence, receiving MVF of the more affected/nondominant hand. Before and after MVF training, participants performed a finger sequence at their spontaneous pace with both hands. M1 excitability was assessed in the trained and untrained hemispheres by means of transcranial magnetic stimulation. Movement speed increased after MVF training in either hand of both groups. MVF therapy enhanced cortical excitability of M1s in both groups. Our preliminary data support the use of MVF therapy to improve bradykinesia in PD patients. PMID:27563470

  11. Improving Attack Graph Visualization through Data Reduction and Attack Grouping

    Energy Technology Data Exchange (ETDEWEB)

    John Homer; Ashok Varikuti; Xinming Ou; Miles A. McQueen

    2008-09-01

    Various tools exist to analyze enterprise network systems and to produce attack graphs detailing how attackers might penetrate into the system. These attack graphs, however, are often complex and difficult to comprehend fully, and a human user may find it problematic to reach appropriate configuration decisions. This paper presents methodologies that can 1) automatically identify portions of an attack graph that do not help a user to understand the core security problems and so can be trimmed, and 2) automatically group similar attack steps as virtual nodes in a model of the network topology, to immediately increase the understandability of the data. We believe both methods are important steps toward improving visualization of attack graphs to make them more useful in configuration management for large enterprise networks. We implemented our methods using one of the existing attack-graph toolkits. Initial experimentation shows that the proposed approaches can 1) significantly reduce the complexity of attack graphs by trimming a large portion of the graph that is not needed for a user to understand the security problem, and 2) significantly increase the accessibility and understandability of the data presented in the attack graph by clearly showing, within a generated visualization of the network topology, the number and type of potential attacks to which each host is exposed.

  12. Improving the User Experience of Finding and Visualizing Oceanographic Data

    Science.gov (United States)

    Rauch, S.; Allison, M. D.; Groman, R. C.; Chandler, C. L.; Galvarino, C.; Gegg, S. R.; Kinkade, D.; Shepherd, A.; Wiebe, P. H.; Glover, D. M.

    2013-12-01

    Searching for and locating data of interest can be a challenge to researchers as increasing volumes of data are made available online through various data centers, repositories, and archives. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) is keenly aware of this challenge and, as a result, has implemented features and technologies aimed at improving data discovery and enhancing the user experience. BCO-DMO was created in 2006 to manage and publish data from research projects funded by the Division of Ocean Sciences (OCE) Biological and Chemical Oceanography Sections and the Division of Polar Programs (PLR) Antarctic Sciences Organisms and Ecosystems Program (ANT) of the US National Science Foundation (NSF). The BCO-DMO text-based and geospatial-based data access systems provide users with tools to search, filter, and visualize data in order to efficiently find data of interest. The geospatial interface, developed using a suite of open-source software (including MapServer [1], OpenLayers [2], ExtJS [3], and MySQL [4]), allows users to search and filter/subset metadata based on program, project, or deployment, or by using a simple word search. The map responds based on user selections, presents options that allow the user to choose specific data parameters (e.g., a species or an individual drifter), and presents further options for visualizing those data on the map or in "quick-view" plots. The data managed and made available by BCO-DMO are very heterogeneous in nature, from in-situ biogeochemical, ecological, and physical data, to controlled laboratory experiments. Due to the heterogeneity of the data types, a 'one size fits all' approach to visualization cannot be applied. Datasets are visualized in a way that will best allow users to assess fitness for purpose. An advanced geospatial interface, which contains a semantically-enabled faceted search [5], is also available. These search facets are highly interactive and responsive, allowing

  13. [Visual hallucinations and giant cell arteritis: the Charles Bonnet syndrome].

    Science.gov (United States)

    Bloch, J; Morell-Dubois, S; Koch, E; Launay, D; Maillard-Lefebvre, H; Buchdahl, A-L; Hachulla, E; Rouland, J-F; Hatron, P-Y; Lambert, M

    2011-12-01

    In patients with visual hallucinations, diagnostic strategy is unclearly codified. In patients known to have giant cell arteritis, the main diagnostic assumption is disease relapse. Indeed, this should lead to rapid corticosteroid therapy. However, the Charles Bonnet syndrome, that is a poorly known etiology of visual hallucinations usually observed in elderly people, should be part of the differential diagnosis. We report a 87-year-old woman, with a 2-year history of giant cell arteritis who was admitted with an acute onset of visual hallucinations and who met all the criteria for Charles Bonnet syndrome.

  14. Monterey Learning Systems: Improving Academic Achievement of Visually Impaired Learners

    Science.gov (United States)

    Daugherty, Kathryn M.

    1977-01-01

    Tested was the premise that the academic competencies of visually impaired learners could be enhanced by training procedures that combine auditory and visual skills in a project using the Monterey Learning Systems Reading and Mathematics Programs with 29 visually impaired print readers. (Author/MH)

  15. Using Symmetrical Regions of Interest to Improve Visual SLAM

    NARCIS (Netherlands)

    Kootstra, Geert; Schomaker, Lambertus

    2009-01-01

    Simultaneous Localization and Mapping (SLAM) based on visual information is a challenging problem. One of the main problems with visual SLAM is to find good quality landmarks, that can be detected despite noise and small changes in viewpoint. Many approaches use SIFT interest points as visual landma

  16. Atypical visual loss in giant cell arteritis

    DEFF Research Database (Denmark)

    Thystrup, Jan Deichmann; Knudsen, G M; Mogensen, A M;

    1994-01-01

    terminal stage of his disease due to bilateral occipital cortex infarctions, verified by CT-scan. Autopsy revealed involvement of several intracranial arteries. In case No. 2 there was severe unilateral visual loss and cotton-wool exudates in both eyes. Central vision recovered after corticosteroid therapy...

  17. Improved Visualization of Lung Metastases at Single Cell Resolution in Mice by Combined In-situ Perfusion of Lung Tissue and X-Gal Staining of lacZ-Tagged Tumor Cells

    OpenAIRE

    Matthias J E Arlt; Born, Walter; Fuchs, Bruno

    2012-01-01

    Metastasis is the main cause of death in the majority of cancer types and consequently a main focus in cancer research. However, the detection of micrometastases by radiologic imaging and the success in their therapeutic eradication remain limited. While animal models have proven to be invaluable tools for cancer research1, the monitoring/visualization of micrometastases remains a challenge and inaccurate evaluation of metastatic spread in preclinical studies potentially leads to disappointin...

  18. Improving teacher awareness through activity, badge and content visualizations

    OpenAIRE

    Charleer, Sven; Santos Odriozola, Jose Luis; Klerkx, Joris; Duval, Erik

    2014-01-01

    This paper introduces LARAe (Learning Analytics Reflection & Awareness environment), a teacher-oriented dashboard that visualizes learning traces from students, badges and course content. We also present an evaluation of the dashboard in a course on Human-Computer Interaction. The LARAe teacher dashboard provides a detailed overview of group and individual activities, achievements and course outcomes. To help visualize the abundance of traces, badges are used to abstract essential aspects of ...

  19. Visual cells remember earlier applied target: plasticity of orientation selectivity.

    Directory of Open Access Journals (Sweden)

    Narcis Ghisovan

    Full Text Available BACKGROUND: A canonical proposition states that, in mature brain, neurons responsive to sensory stimuli are tuned to specific properties installed shortly after birth. It is amply demonstrated that that neurons in adult visual cortex of cats are orientation-selective that is they respond with the highest firing rates to preferred oriented stimuli. METHODOLOGY/PRINCIPAL FINDINGS: In anesthetized cats, prepared in a conventional fashion for single cell recordings, the present investigation shows that presenting a stimulus uninterruptedly at a non-preferred orientation for twelve minutes induces changes in orientation preference. Across all conditions orientation tuning curves were investigated using a trial by trial method. Contrary to what has been previously reported with shorter adaptation duration, twelve minutes of adaptation induces mostly attractive shifts, i.e. toward the adapter. After a recovery period allowing neurons to restore their original orientation tuning curves, we carried out a second adaptation which produced three major results: (1 more frequent attractive shifts, (2 an increase of their magnitude, and (3 an additional enhancement of responses at the new or acquired preferred orientation. Additionally, we also show that the direction of shifts depends on the duration of the adaptation: shorter adaptation in most cases produces repulsive shifts, whereas adaptation exceeding nine minutes results in attractive shifts, in the same unit. Consequently, shifts in preferred orientation depend on the duration of adaptation. CONCLUSION/SIGNIFICANCE: The supplementary response improvements indicate that neurons in area 17 keep a memory trace of the previous stimulus properties, thereby upgrading cellular performance. It also highlights the dynamic nature of basic neuronal properties in adult cortex since repeated adaptations modified both the orientation tuning selectivity and the response strength to the preferred orientation. These

  20. IMPROVING THREE-DIMENSIONAL OBJECT VISUALIZATION USER INTERFACE WITH AUGMENTED REALITY TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Kravtsov �. M.

    2014-06-01

    Full Text Available The article describes hardware and software specific issues of implementing augmented reality for improving user interface of visualization of a virtual object. It also defines possible future improvements of the subject

  1. Audio-visual stimulation improves oculomotor patterns in patients with hemianopia.

    Science.gov (United States)

    Passamonti, Claudia; Bertini, Caterina; Làdavas, Elisabetta

    2009-01-01

    Patients with visual field disorders often exhibit impairments in visual exploration and a typical defective oculomotor scanning behaviour. Recent evidence [Bolognini, N., Rasi, F., Coccia, M., & Làdavas, E. (2005b). Visual search improvement in hemianopic patients after audio-visual stimulation. Brain, 128, 2830-2842] suggests that systematic audio-visual stimulation of the blind hemifield can improve accuracy and search times in visual exploration, probably due to the stimulation of Superior Colliculus (SC), an important multisensory structure involved in both the initiation and execution of saccades. The aim of the present study is to verify this hypothesis by studying the effects of multisensory training on oculomotor scanning behaviour. Oculomotor responses during a visual search task and a reading task were studied before and after visual (control) or audio-visual (experimental) training, in a group of 12 patients with chronic visual field defects and 12 controls subjects. Eye movements were recorded using an infra-red technique which measured a range of spatial and temporal variables. Prior to treatment, patients' performance was significantly different from that of controls in relation to fixations and saccade parameters; after Audio-Visual Training, all patients reported an improvement in ocular exploration characterized by fewer fixations and refixations, quicker and larger saccades, and reduced scanpath length. Overall, these improvements led to a reduction of total exploration time. Similarly, reading parameters were significantly affected by the training, with respect to specific impairments observed in both left- and right-hemianopia readers. Our findings provide evidence that Audio-Visual Training, by stimulating the SC, may induce a more organized pattern of visual exploration due to an implementation of efficient oculomotor strategies. Interestingly, the improvement was found to be stable at a 1 year follow-up control session, indicating a long

  2. Phase sensitivity of complex cells in primary visual cortex.

    Science.gov (United States)

    Hietanen, M A; Cloherty, S L; van Kleef, J P; Wang, C; Dreher, B; Ibbotson, M R

    2013-05-01

    Neurons in the primary visual cortex are often classified as either simple or complex based on the linearity (or otherwise) of their response to spatial luminance contrast. In practice, classification is typically based on Fourier analysis of a cell's response to an optimal drifting sine-wave grating. Simple cells are generally considered to be linear and produce responses modulated at the fundamental frequency of the stimulus grating. In contrast, complex cells exhibit significant nonlinearities that reduce the response at the fundamental frequency. Cells can therefore be easily and objectively classified based on the relative modulation of their responses - the ratio of the phase-sensitive response at the fundamental frequency of the stimulus (F₁) to the phase-invariant sustained response (F₀). Cells are classified as simple if F₁/F₀>1 and complex if F₁/F₀<1. This classification is broadly consistent with criteria based on the spatial organisation of cells' receptive fields and is accordingly presumed to reflect disparate functional roles of simple and complex cells in coding visual information. However, Fourier analysis of spiking responses is sensitive to the number of spikes available - F₁/F₀ increases as the number of spikes is reduced, even for phase-invariant complex cells. Moreover, many complex cells encountered in the laboratory exhibit some phase sensitivity, evident as modulation of their responses at the fundamental frequency. There currently exists no objective quantitative means of assessing the significance or otherwise of these modulations. Here we derive a statistical basis for objectively assessing whether the modulation of neuronal responses is reliable, thereby adding a level of statistical certainty to measures of phase sensitivity. We apply our statistical analysis to neuronal responses to moving sine-wave gratings recorded from 367 cells in cat primary visual cortex. We find that approximately 60% of complex cells exhibit

  3. Visualizing Wnt Palmitoylation in Single Cells.

    Science.gov (United States)

    Gao, Xinxin; Hannoush, Rami N

    2016-01-01

    Wnt palmitoylation regulates its secretion and signaling activity in cells. Methods to monitor cellular Wnt palmitoylation are instrumental in investigating Wnt activity, secretion, and its interaction with cellular membrane compartments. This protocol describes a method we have recently developed to detect cellular Wnt palmitoylation. The method, combining click chemistry, bio-orthogonal fatty acid probes, and proximity ligation assay (PLA), provides high sensitivity and subcellular resolution for detection of Wnt palmitoylation. It is also compatible with multiple imaging platforms, and is applicable to detecting palmitoylated forms of other fatty acylated proteins. PMID:27590146

  4. Improving user-friendliness by using visually supported speech recognition

    NARCIS (Netherlands)

    Waals, J.A.J.S.; Kooi, F.L.; Kriekaard, J.J.

    2002-01-01

    While speech recognition in principle may be one of the most natural interfaces, in practice it is not due to the lack of user-friendliness. Words are regularly interpreted wrong, and subjects tend to articulate in an exaggerated manner. We explored the potential of visually supported error correcti

  5. Improving Aviation Safety with information Visualization: A Flight Simulation Study

    Science.gov (United States)

    Aragon, Cecilia R.; Hearst, Marti

    2005-01-01

    Many aircraft accidents each year are caused by encounters with invisible airflow hazards. Recent advances in aviation sensor technology offer the potential for aircraft-based sensors that can gather large amounts of airflow velocity data in real-time. With this influx of data comes the need to study how best to present it to the pilot - a cognitively overloaded user focused on a primary task other than that of information visualization. In this paper, we present the results of a usability study of an airflow hazard visualization system that significantly reduced the crash rate among experienced helicopter pilots flying a high fidelity, aerodynamically realistic fixed-base rotorcraft flight simulator into hazardous conditions. We focus on one particular aviation application, but the results may be relevant to user interfaces in other operationally stressful environments.

  6. Intuitive Source Code Visualization Tools for Improving Student Comprehension: BRICS

    CERN Document Server

    Pearson, Christopher; Coady, Yvonne

    2008-01-01

    Even relatively simple code analysis can be a daunting task for many first year students. Perceived complexity, coupled with foreign and harsh syntax, often outstrips the ability for students to take in what they are seeing in terms of their verbal memory. That is, first year students often lack the experience to encode critical building blocks in source code, and their interrelationships, into their own words. We believe this argues for the need for IDEs to provide additional support for representations that would appeal directly to visual memory. In this paper, we examine this need for intuitive source code visualization tools that are easily accessible to novice programmers, discuss the requirements for such a tool, and suggest a novel idea that takes advantage of human peripheral vision to achieve stronger overall code structure awareness.

  7. Finding Relevant Items: Attentional Guidance Improves Visual Selection Processes

    Science.gov (United States)

    Stork, Sonja; Hild, Isabella; Wiesbeck, Mathey; Zaeh, Michael F.; Schubö, Anna

    In daily life and at work people are confronted with complex information. Especially elderly or disabled users might be overburdened by the amount of information and distracted by irrelevant items. Due to this, they possibly fail to find and select relevant items in visual search. This could be demotivating for the use of media like the internet or could result in an inability to achieve certain job requirements. A method for supporting performance in visual search tasks is the guidance of attention. The present study compares different methods for attentional guidance. Results show a benefit for peripheral exogenous cues realized as luminance changes in comparison to endogenous central cues. Possible applications for the proposed attentional guidance method are discussed.

  8. Visual Tools and Narratives: New Ways to Improve Financial Literacy

    OpenAIRE

    Annamaria Lusardi; Anya Savikhin Samek; Arie Kapteyn; Lewis Glinert; Angela Hung; Aileen Heinberg

    2014-01-01

    We developed and experimentally evaluated four novel educational programs delivered online: an informational brochure, a visual interactive tool, a written narrative, and a video narrative. The programs were designed to inform people about risk diversification, an essential concept for financial decision- making. The effectiveness of these programs was evaluated using the RAND American Life Panel. Participants were exposed to one of the programs, and then asked to answer questions measuring f...

  9. In vivo cell biology of cancer cells visualized with fluorescent proteins.

    Science.gov (United States)

    Hoffman, Robert M

    2005-01-01

    This chapter describes a new cell biology where the behavior of individual cells can be visualized in the living animal. Previously it has been demonstrated that fluorescent proteins can be used for whole-body imaging of metastatic tumor growth, bacterial infection, and gene expression. An example of the new cell biology is dual-color fluorescence imaging using red fluorescent protein (RFP)-expressing tumors transplanted in green fluorescent protein (GFP)-expressing transgenic mice. These models show with great clarity the details of tumor-stroma interactions and especially tumor-induced angiogenesis, tumor-infiltrating lymphocytes, stromal fibroblasts, and macrophages. Another example is the color coding of cells with RFP or GFP such that both cell types can be simultaneously visualized in vivo. Stem cells can also be visualized and tracked in vivo. Mice in which the regulatory elements of the stem cell marker nestin drive GFP expression enable nascent vasculature to be visualized interacting with transplanted RFP-expressing cancer cells. Nestin-driven GFP expression can also be used to visualize hair follicle stem cells. Dual-color cells expressing GFP in the nucleus and RFP in the cytoplasm enable real-time visualization of nuclear-cytoplasm dynamics including cell cycle events and apoptosis. Highly elongated cancer cells in capillaries in living mice were observed within skin flaps. The migration velocities of the cancer cells in the capillaries were measured by capturing images of the dual-color fluorescent cells over time. The cells in the capillaries elongated to fit the width of these vessels. The use of the dual-color cancer cells differentially labeled in the cytoplasm and nucleus and associated fluorescent imaging provide a powerful tool to understand the mechanism of cancer cell migration and deformation in small vessels.

  10. Visual Working Memory in Deaf Children with Diverse Communication Modes: Improvement by Differential Outcomes

    Science.gov (United States)

    Lopez-Crespo, Ginesa; Daza, Maria Teresa; Mendez-Lopez, Magdalena

    2012-01-01

    Although visual functions have been proposed to be enhanced in deaf individuals, empirical studies have not yet established clear evidence on this issue. The present study aimed to determine whether deaf children with diverse communication modes had superior visual memory and whether their performance was improved by the use of differential…

  11. Improving Empathy and Communication Skills of Visually Impaired Early Adolescents through a Psycho-Education Program

    Science.gov (United States)

    Yildiz, Mehmet Ali; Duy, Baki

    2013-01-01

    The purpose of this study was to investigate the effectiveness of an interpersonal communication skills psycho-education program to improve empathy and communication skills of visually impaired adolescents. Participants of the study were sixteen early adolescents schooling in an elementary school for visually impaired youth in Diyarbakir. The…

  12. Visual Design Guidelines for Improving Learning from Dynamic and Interactive Digital Text

    Science.gov (United States)

    Jin, Sung-Hee

    2013-01-01

    Despite the dynamic and interactive features of digital text, the visual design guidelines for digital text are similar to those for printed text. The purpose of this study was to develop visual design guidelines for improving learning from dynamic and interactive digital text and to validate them by controlled testing. Two structure design…

  13. Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein

    DEFF Research Database (Denmark)

    Liu, Xiangdong; Martens, Helle; Schulz, Alexander

    Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein.......Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein....

  14. Improved visualization of delayed perfusion in lung MRI

    Energy Technology Data Exchange (ETDEWEB)

    Risse, Frank [Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg (Germany); Eichinger, Monika [Department of Radiology, German Cancer Research Center, Heidelberg (Germany); Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg (Germany); Semmler, Wolfhard [Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg (Germany); Puderbach, Michael, E-mail: m.puderbach@dkfz.de [Department of Radiology, German Cancer Research Center, Heidelberg (Germany)

    2011-01-15

    Introduction: The investigation of pulmonary perfusion by three-dimensional (3D) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was proposed recently. Subtraction images are generated for clinical evaluation, but temporal information is lost and perfusion defects might therefore be masked in this process. The aim of this study is to demonstrate a simple analysis strategy and classification for 3D-DCE-MRI perfusion datasets in the lung without omitting the temporal information. Materials and methods: Pulmonary perfusion measurements were performed in patients with different lung diseases using a 1.5 T MR-scanner with a time-resolved 3D-GRE pulse sequence. 25 3D-volumes were acquired after iv-injection of 0.1 mmol/kg KG Gadolinium-DTPA. Three parameters were determined for each pixel: (1) peak enhancement S{sub n,max} normalized to the arterial input function to detect regions of reduced perfusion; (2) time between arterial peak enhancement in the large pulmonary artery and tissue peak enhancement {tau} to visualize regions with delayed bolus onset; and (3) ratio R = S{sub n,max}/{tau} was calculated to visualize impaired perfusion, irrespectively of whether related to reduced or delayed perfusion. Results: A manual selection of peak perfusion images is not required. Five different types of perfusion can be found: (1) normal perfusion; (2) delayed non-reduced perfusion; (3) reduced non-delayed perfusion; (4) reduced and delayed perfusion; and (5) no perfusion. Types II and IV could not be seen in subtraction images since the temporal information is necessary for this purpose. Conclusions: The analysis strategy in this study allows for a simple and observer-independent visualization and classification of impaired perfusion in dynamic contrast-enhanced pulmonary perfusion MRI by using the temporal information of the datasets.

  15. Action video game playing is associated with improved visual sensitivity, but not alterations in visual sensory memory.

    Science.gov (United States)

    Appelbaum, L Gregory; Cain, Matthew S; Darling, Elise F; Mitroff, Stephen R

    2013-08-01

    Action video game playing has been experimentally linked to a number of perceptual and cognitive improvements. These benefits are captured through a wide range of psychometric tasks and have led to the proposition that action video game experience may promote the ability to extract statistical evidence from sensory stimuli. Such an advantage could arise from a number of possible mechanisms: improvements in visual sensitivity, enhancements in the capacity or duration for which information is retained in visual memory, or higher-level strategic use of information for decision making. The present study measured the capacity and time course of visual sensory memory using a partial report performance task as a means to distinguish between these three possible mechanisms. Sensitivity measures and parameter estimates that describe sensory memory capacity and the rate of memory decay were compared between individuals who reported high evels and low levels of action video game experience. Our results revealed a uniform increase in partial report accuracy at all stimulus-to-cue delays for action video game players but no difference in the rate or time course of the memory decay. The present findings suggest that action video game playing may be related to enhancements in the initial sensitivity to visual stimuli, but not to a greater retention of information in iconic memory buffers. PMID:23709062

  16. Fourier-based automatic alignment for improved Visual Cryptography schemes.

    Science.gov (United States)

    Machizaud, Jacques; Chavel, Pierre; Fournel, Thierry

    2011-11-01

    In Visual Cryptography, several images, called "shadow images", that separately contain no information, are overlapped to reveal a shared secret message. We develop a method to digitally register one printed shadow image acquired by a camera with a purely digital shadow image, stored in memory. Using Fourier techniques derived from Fourier Optics concepts, the idea is to enhance and exploit the quasi periodicity of the shadow images, composed by a random distribution of black and white patterns on a periodic sampling grid. The advantage is to speed up the security control or the access time to the message, in particular in the cases of a small pixel size or of large numbers of pixels. Furthermore, the interest of visual cryptography can be increased by embedding the initial message in two shadow images that do not have identical mathematical supports, making manual registration impractical. Experimental results demonstrate the successful operation of the method, including the possibility to directly project the result onto the printed shadow image.

  17. Effect of Contrast on Visual Spatial Summation in Different Cell Categories in Cat Primary Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Ke Chen

    Full Text Available Multiple cell classes have been found in the primary visual cortex, but the relationship between cell types and spatial summation has seldom been studied. Parvalbumin-expressing inhibitory interneurons can be distinguished from pyramidal neurons based on their briefer action potential durations. In this study, we classified V1 cells into fast-spiking units (FSUs and regular-spiking units (RSUs and then examined spatial summation at high and low contrast. Our results revealed that the excitatory classical receptive field and the suppressive non-classical receptive field expanded at low contrast for both FSUs and RSUs, but the expansion was more marked for the RSUs than for the FSUs. For most V1 neurons, surround suppression varied as the contrast changed from high to low. However, FSUs exhibited no significant difference in the strength of suppression between high and low contrast, although the overall suppression decreased significantly at low contrast for the RSUs. Our results suggest that the modulation of spatial summation by stimulus contrast differs across populations of neurons in the cat primary visual cortex.

  18. Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills.

    Science.gov (United States)

    Bolognini, Nadia; Fregni, Felipe; Casati, Carlotta; Olgiati, Elena; Vallar, Giuseppe

    2010-08-19

    Recent evidence suggests that behavioural gains induced by behavioural training are maximized when combined with techniques of cortical neuromodulation, such as transcranial Direct Current Stimulation (tDCS). Here we address the validity of this appealing approach by investigating the effect of coupling a multisensory visual field exploration training with tDCS of the posterior parietal cortex (PPC). The multisensory visual field exploration training consisted in the practice of visual search through the systematic audio-visual stimulation of the visual field. Neurologically unimpaired participants performed a bimodal exploration training for 30 min, while simultaneously receiving anodal-excitatory PPC tDCS or sham tDCS. In two different experiments, the left and the right hemisphere were stimulated. Outcome measures included visual exploration speed at different time intervals during the training, and the post-training effects on tests assessing visual scanning and visuo-spatial orienting. Results show that PPC tDCS applied to the right, but not to the left, hemisphere increases the training-induced behavioural improvement of visual exploration, as compared to sham tDCS. In addition, right PPC tDCS brings about an improvement of covert visual orienting, in a task different from the visual search practice. In an additional experiment, we confirm that right parietal tDCS by itself, even without the associated training, can lead to enhancement of visual search. Overall, anodal PPC tDCS is a promising technique to enhance visuo-spatial abilities, when combined to a visual field exploration training task. PMID:20599813

  19. Improvement in Visual Search with Practice : Mapping Learning-Related Changes in Neurocognitive Stages of Processing

    NARCIS (Netherlands)

    Clark, Kait; Appelbaum, L. Gregory; van den Berg, Berry; Mitroff, Stephen R.; Woldorff, Marty G.

    2015-01-01

    Practice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus-response processing chain facilitate this behavioral change? Improved search perfo

  20. An improved method to visualize eosinophils in eosinophilic esophagitis.

    Science.gov (United States)

    Rubio, C A; Glaessgen, A

    2006-01-01

    We previously found in Giemsa-stained colorectal sections from IBD patients that eosinophilic granulocytes turned fluorescent when excited with indirect fluorescent light, while other inflammatory cells were non-fluorescent. We now studied with that method, the frequency of eosinophilic granulocytes in sections from patients with eosinophilic esophagitis (EE). Cell counting was done in consecutive sections stained with Giemsa stain using indirect fluorescence light (G-IFL setting) and with hematoxylin-eosin using transmitted light (HE-TL setting) in 5 cases of EE and in 10 consecutive cases of reflux esophagitis (RE) grade 2. In EE 45.0 eosinophils/case (range 39-51) were recorded with the G-IFL setting but only 33.4 eosinophils/case (range 28-39) with the HE-TL setting (p cell counting is not necessary. PMID:17091778

  1. Communicative interactions improve visual detection of biological motion.

    Directory of Open Access Journals (Sweden)

    Valeria Manera

    Full Text Available BACKGROUND: In the context of interacting activities requiring close-body contact such as fighting or dancing, the actions of one agent can be used to predict the actions of the second agent. In the present study, we investigated whether interpersonal predictive coding extends to interactive activities--such as communicative interactions--in which no physical contingency is implied between the movements of the interacting individuals. METHODOLOGY/PRINCIPAL FINDINGS: Participants observed point-light displays of two agents (A and B performing separate actions. In the communicative condition, the action performed by agent B responded to a communicative gesture performed by agent A. In the individual condition, agent A's communicative action was substituted with a non-communicative action. Using a simultaneous masking detection task, we demonstrate that observing the communicative gesture performed by agent A enhanced visual discrimination of agent B. CONCLUSIONS/SIGNIFICANCE: Our finding complements and extends previous evidence for interpersonal predictive coding, suggesting that the communicative gestures of one agent can serve as a predictor for the expected actions of the respondent, even if no physical contact between agents is implied.

  2. Model of local velocity in the primary visual cortical cells.

    Science.gov (United States)

    Sherman, I; Spitzer, H

    1995-06-01

    A motion model for the early stages of motion processing in the visual cortex that focuses on velocity properties is presented. The model presents analytically the correlation between the velocity tuning curve and various cell parameters. The building block for this model is the rebound response, which makes possible the detection of spatial and temporal edges. The model suggests that adjacent subunits in the primary cortical cells display different strengths in their rebound responses, and thus a synergistic response is evoked in the preferred direction. The analysis deals separately with the two cutoff points of the velocity tuning curves. The model predicts a linear relation between the low cutoff point and the receptive-field size and an inverse correlation with the integration time. The high cutoff point is inversely correlated with the cell threshold. PMID:7769506

  3. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    Science.gov (United States)

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  4. Visual Servoed Three-Dimensional Cell Rotation System.

    Science.gov (United States)

    Wang, Zenan; Latt, Win Tun; Tan, Steven Yih Min; Ang, Wei Tech

    2015-10-01

    Three-dimensional (3-D) positioning and orientation of embryos/oocytes is necessary to facilitate micromanipulation tasks such as cell injection and cellular structural biopsy commonly performed under a microscope. Conventional cell orientation is performed manually by using a vacuum equipped micropipette to aspirate and release the cell, which is a trial-and-error approach. The conventional method relies heavily on the skill of the operator; it also suffers from low precision, low success rate and low controllability. These drawbacks illustrate the need for a systematic 3-D cell rotational system to automate the cell orientation process. In this paper, we present a noninvasive single cell rotation system that can automatically orientate a zebrafish embryo to a desired position when both the cytoplasm and the yolk are in the focal plane. A three-point-contact model for cell rotation that involves a custom-designed rotational stage is introduced to provide precise rotational position control. A vision recognition algorithm is also proposed to enable the visual servoing function of the system. Experimental results show that the proposed system can achieve high success rates of 92.5% (x-axis rotation with 40 trails) and 97.5% (about the z-axis with 80 trails). The system can also successfully complete 3-D cell orientation at an average speed of 31 s/cell with a high in-plane rotation accuracy of 0.3 (°) . As a high precise, high controllable and deterministic cell manipulating system, it provides a starting point for automated cell manipulation for intracytoplasmic sperm injection and embryo biopsy for preimplantation genetic diagnosis. PMID:25993702

  5. Visual Improvement for Hepatic Abscess Sonogram by Segmentation after Curvelet Denoising

    Directory of Open Access Journals (Sweden)

    Mohammed Tarek GadAllah

    2013-06-01

    Full Text Available A wise automated method for wisely improving the visualization of hepatic abscess sonogram, a modest trial is being done to denoise and reduce the ultrasound scan speckles wisely and effectively. As an effective way for improving the diagnostic decision; improved sonogram for hepatic abscess is reconstructed by ultrasound scan image segmentation after denoising in Curvelet transform domain. Better sonogram visualization is required for better human interpretation. Speckle noise filtering of medical ultrasound images is needed for enhanced diagnosis. Double thresholding segmentation was applied on, an ultrasound scan image for a Liver with amebic abscess, after it had been denoised in Curvelet transform domain. The result is enhanced wise effect on the hepatic abscess sonogram image's visualization which improves physicians' decisions. Moreover, this method effectively reduces the memory storage size for the image which consequently decreases computation processing time.

  6. Improved microcalcification visualization using dual-energy digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chia-Jung [Dept. of Medical Imaging and Radiological Sciences, Chung Shan Medical Univ., Taichung (Taiwan, Province of China); Chen, Ran-Chou [Dept. of Biomedical Imaging and Radiological Sciences, National Yang-Ming Univ., Taipei (Taiwan, Province of China); Dept. of Radiology, Taipei City Hospital, Taipei (Taiwan, Province of China); Peng, Hui-Ling [Dept. of Diagnostic Radiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei (Taiwan, Province of China); Hsu, Wen-Lin [School of Medicine, Tzu-Chi Univ., Hualien (Taiwan, Province of China); Dept. of Radiation Oncology, Buddhist Tzu-Chi General Hospital, Hualien (Taiwan, Province of China); Lee, Jason JS [Dept. of Biomedical Imaging and Radiological Sciences, National Yang-Ming Univ., Taipei (Taiwan, Province of China)], e-mail: jslee@ym.edu.tw, hwl@tzuchi.com.tw

    2013-07-15

    Background: Dual-energy digital mammography (DEDM), involving a combination of high-energy (HE) and low-energy (LE) images, has been investigated as offering a potential improvement in microcalcification detection obscured by overlapping tissue structures. Purpose: To explore the possibility to improve detection of microcalcifications using the DEDM technique. Material and Methods: Three DEDM protocols were performed by adjusting the effective tube current time product (mAs) of LE image at the same (100%), one half (50%), and one-quarter (25%) of that used in HE image acquisition, named DEDM{sub 100%}, DEDM{sub 50%}, and DEDM{sub 25%}, respectively. A single-energy digital mammography (SEDM) method was also used as a control. A total of 525 regions of interest (ROIs) were used to compare the performance of the DEDM to that of SEDM using free-response receiver-operating characteristic (FROC) and areas under the FROC curve (A{sub z}). Results: All DEDM protocols ranked significantly higher than the SEDM method (P < 0.001). The true-positive fraction was 0.90 for an average of 0.017 - 0.042 false-positive per image using the DEDM{sub 100%}, 0.017 - 0.114 using the DEDM{sub 50%}, 0.021 - 0.148 using the DEDM{sub 25%}, and 0.134 - 0.422 using the SEDM. The estimated A{sub z} values were 0.915 - 0.940, 0.867 - 0.935, 0.824 - 0.930, and 0.567 - 0.673, respectively. Conclusion: The DEDM{sub 50%} protocol provided a trade-off benefit between accurate microcalcification detectability and radiation dose for any tissue density. Therefore, the DEDM{sub 50%} has the potential to minimize excess radiation dose without a negative impact on image quality which could improve earlier diagnosis of breast cancer.

  7. Improving texture optimization with application to visualizing meat products

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Laursen, Lasse Farnung

    2011-01-01

    et al. in 2007. This method accepts a number of 2D input exemplars, from which it generates a solid texture volume. The volume is iteratively improved via an expectation maximization algorithm. The bottleneck of Texture Optimization occurs during a nearest neighbor search, between texture patches...... from the 2D input exemplars and the generated texture volume. We examine the current procedures for minimizing the bottleneck and present a novel approach which increases the speed of the synthesis algorithm while minimizing loss of quality. The nearest neighbor search is performed in a high...

  8. Direct Visualization of De novo Lipogenesis in Single Living Cells

    Science.gov (United States)

    Li, Junjie; Cheng, Ji-Xin

    2014-10-01

    Increased de novo lipogenesis is being increasingly recognized as a hallmark of cancer. Despite recent advances in fluorescence microscopy, autoradiography and mass spectrometry, direct observation of de novo lipogenesis in living systems remains to be challenging. Here, by coupling stimulated Raman scattering (SRS) microscopy with isotope labeled glucose, we were able to trace the dynamic metabolism of glucose in single living cells with high spatial-temporal resolution. As the first direct visualization, we observed that glucose was largely utilized for lipid synthesis in pancreatic cancer cells, which occurs at a much lower rate in immortalized normal pancreatic epithelial cells. By inhibition of glycolysis and fatty acid synthase (FAS), the key enzyme for fatty acid synthesis, we confirmed the deuterium labeled lipids in cancer cells were from de novo lipid synthesis. Interestingly, we also found that prostate cancer cells exhibit relatively lower level of de novo lipogenesis, but higher fatty acid uptake compared to pancreatic cancer cells. Together, our results demonstrate a valuable tool to study dynamic lipid metabolism in cancer and other disorders.

  9. NMR structure improvement: A structural bioinformatics & visualization approach

    Science.gov (United States)

    Block, Jeremy N.

    The overall goal of this project is to enhance the physical accuracy of individual models in macromolecular NMR (Nuclear Magnetic Resonance) structures and the realism of variation within NMR ensembles of models, while improving agreement with the experimental data. A secondary overall goal is to combine synergistically the best aspects of NMR and crystallographic methodologies to better illuminate the underlying joint molecular reality. This is accomplished by using the powerful method of all-atom contact analysis (describing detailed sterics between atoms, including hydrogens); new graphical representations and interactive tools in 3D and virtual reality; and structural bioinformatics approaches to the expanded and enhanced data now available. The resulting better descriptions of macromolecular structure and its dynamic variation enhances the effectiveness of the many biomedical applications that depend on detailed molecular structure, such as mutational analysis, homology modeling, molecular simulations, protein design, and drug design.

  10. Visualizing Improved Spin Coupling in Large Magnetic Molecules

    Science.gov (United States)

    Donner, Judith; Broschinski, Jan-Philipp; Feldscher, Bastian; Glaser, Thorsten; Khajetoorians, Alexander Ako; Wegner, Daniel

    In an attempt to combine a high spin ground state and a large magnetic anisotropy in one molecule, triplesalen-based complexes are promising building blocks for a new generation of single molecule magnets (SMMs). The spin coupling in these molecules is based on the spin polarization effect, which requires a delocalized aromatic π-system in the central carbon ring of the complex. Unfortunately, chemical analysis indicates that this ring can change its configuration to [6]radialene, therefore causing a loss of aromaticity and weakening the magnetic coupling. We have employed a combination of scanning tunneling microscopy (STM) and spectroscopy (STS) to investigate single Cu3-triplesalen and Cu3-triplesalalen molecules, the latter being designed to show an enhanced intramolecular spin coupling. The large molecules were deposited in situ using the unconventional techniques pulse injection and rapid heating. A thorough structural and spectroscopic analysis allows us to discuss the electronic properties of the two complexes, with a special focus on the state of the central carbon ring. We find that even small changes in the ligand structure have a drastic influence on the intramolecular spin coupling, which opens the way for an improved rational design of future SMMs.

  11. Visual appearance and CMT score of foremilk of individual quarters in relation to cell count of cows milked automatically.

    Science.gov (United States)

    Rasmussen, Morten D; Bjerring, Martin; Skjøth, Flemming

    2005-02-01

    The objectives of the study were: to evaluate the interaction between visual appearance and California mastitis test (CMT) score of the foremilk in relation to the cell count of the milk; to evaluate the consequences of sorting milk according to these criteria; and to explore whether visual appearance and CMT score of foremilk depended on the time interval between milkings. Measuring somatic cell count (SCC) in composite milk only and discarding milk above certain thresholds will not ensure that milk from all cows with visually abnormal foremilk is withheld from delivery. Low thresholds of SCC will reduce the frequency of cows with abnormal milk but increase the discarding of milk from cows with visually normal foremilk. CMT score of foremilk differentiated better between cows with high and low SCC in composite milk than visual inspection of foremilk. CMT scores of foremilk decreased with increasing interval between milkings within cow, whereas the visual appearance was independent of the interval. We propose that visual appearance of the foremilk should be kept as a criterion for sorting milk at time of milking. For test purposes, the use of visual appearance of foremilk for differentiation between normal and abnormal milk has to be done on multiple milkings. Additionally, CMT scoring of foremilk improves correct classification of normal and abnormal quarters and especially when including data from the previous milking. PMID:15747731

  12. Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells.

    Science.gov (United States)

    Schürmann, Matthias; Frese, Natalie; Beyer, André; Heimann, Peter; Widera, Darius; Mönkemöller, Viola; Huser, Thomas; Kaltschmidt, Barbara; Kaltschmidt, Christian; Gölzhäuser, Armin

    2015-11-18

    Cell membranes are composed of 2D bilayers of amphipathic lipids, which allow a lateral movement of the respective membrane components. These components are arranged in an inhomogeneous manner as transient micro- and nanodomains, which are believed to be crucially involved in the regulation of signal transduction pathways in mammalian cells. Because of their small size (diameter 10-200 nm), membrane nanodomains cannot be directly imaged using conventional light microscopy. Here, direct visualization of cell membrane nanodomains by helium ion microscopy (HIM) is presented. It is shown that HIM is capable to image biological specimens without any conductive coating and that HIM images clearly allow the identification of nanodomains in the ultrastructure of membranes with 1.5 nm resolution. The shape of these nanodomains is preserved by fixation of the surrounding unsaturated fatty acids while saturated fatty acids inside the nanodomains are selectively removed. Atomic force microscopy, fluorescence microscopy, 3D structured illumination microscopy, and direct stochastic optical reconstruction microscopy provide additional evidence that the structures in the HIM images of cell membranes originate from membrane nanodomains. The nanodomains observed by HIM have an average diameter of 20 nm and are densely arranged with a minimal nearest neighbor distance of ≈ 15 nm.

  13. Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells.

    Science.gov (United States)

    Schürmann, Matthias; Frese, Natalie; Beyer, André; Heimann, Peter; Widera, Darius; Mönkemöller, Viola; Huser, Thomas; Kaltschmidt, Barbara; Kaltschmidt, Christian; Gölzhäuser, Armin

    2015-11-18

    Cell membranes are composed of 2D bilayers of amphipathic lipids, which allow a lateral movement of the respective membrane components. These components are arranged in an inhomogeneous manner as transient micro- and nanodomains, which are believed to be crucially involved in the regulation of signal transduction pathways in mammalian cells. Because of their small size (diameter 10-200 nm), membrane nanodomains cannot be directly imaged using conventional light microscopy. Here, direct visualization of cell membrane nanodomains by helium ion microscopy (HIM) is presented. It is shown that HIM is capable to image biological specimens without any conductive coating and that HIM images clearly allow the identification of nanodomains in the ultrastructure of membranes with 1.5 nm resolution. The shape of these nanodomains is preserved by fixation of the surrounding unsaturated fatty acids while saturated fatty acids inside the nanodomains are selectively removed. Atomic force microscopy, fluorescence microscopy, 3D structured illumination microscopy, and direct stochastic optical reconstruction microscopy provide additional evidence that the structures in the HIM images of cell membranes originate from membrane nanodomains. The nanodomains observed by HIM have an average diameter of 20 nm and are densely arranged with a minimal nearest neighbor distance of ≈ 15 nm. PMID:26436577

  14. Refreshing memory traces: thinking of an item improves retrieval from visual working memory.

    Science.gov (United States)

    Souza, Alessandra S; Rerko, Laura; Oberauer, Klaus

    2015-03-01

    This article provides evidence that refreshing, a hypothetical attention-based process operating in working memory (WM), improves the accessibility of visual representations for recall. "Thinking of", one of several concurrently active representations, is assumed to refresh its trace in WM, protecting the representation from being forgotten. The link between refreshing and WM performance, however, has only been tenuously supported by empirical evidence. Here, we controlled which and how often individual items were refreshed in a color reconstruction task by presenting cues prompting participants to think of specific WM items during the retention interval. We show that the frequency with which an item is refreshed improves recall of this item from visual WM. Our study establishes a role of refreshing in recall from visual WM and provides a new method for studying the impact of refreshing on the amount of information we can keep accessible for ongoing cognition. PMID:25557544

  15. Dynamic culture improves cell reprogramming efficiency.

    Science.gov (United States)

    Sia, Junren; Sun, Raymond; Chu, Julia; Li, Song

    2016-06-01

    Cell reprogramming to pluripotency is an inefficient process and various approaches have been devised to improve the yield of induced pluripotent stem cells. However, the effect of biophysical factors on cell reprogramming is not well understood. Here we showed that, for the first time, dynamic culture with orbital shaking significantly improved the reprogramming efficiency in adherent cells. Manipulating the viscosity of the culture medium suggested that the improved efficiency is mainly attributed to convective mixing rather than hydrodynamic shear stress. Temporal studies demonstrated that the enhancement of reprogramming efficiency required the dynamic culture in the middle but not early phase. In the early phase, fibroblasts had a high proliferation rate, but as the culture became over-confluent in the middle phase, expression of p57 was upregulated to inhibit cell proliferation and consequently, cell reprogramming. Subjecting the over confluent culture to orbital shaking prevented the upregulation of p57, thus improving reprogramming efficiency. Seeding cells at low densities to avoid over-confluency resulted in a lower efficiency, and optimal reprogramming efficiency was attained at a high seeding density with dynamic culture. Our findings provide insight into the underlying mechanisms of how dynamic culture condition regulate cell reprogramming, and will have broad impact on cell engineering for regenerative medicine and disease modeling.

  16. Interactive Visualization Tools to Improve Learning and Teaching in Online Learning Environments

    Science.gov (United States)

    Kuosa, Kirsi; Distante, Damiano; Tervakari, Anne; Cerulo, Luigi; Fernández, Alejandro; Koro, Juho; Kailanto, Meri

    2016-01-01

    This paper presents two interactive visualization tools for learning management systems (LMS) in order to improve learning and teaching in online courses. The first tool was developed at the Intelligent Information Systems Laboratory (IISLab) at the Tampere University of Technology (TUT). The tool is used to analyse students' activity from…

  17. Improved Zirconia Oxygen-Separation Cell

    Science.gov (United States)

    Walsh, John V.; Zwissler, James G.

    1988-01-01

    Cell structure distributes feed gas more evenly for more efficent oxygen production. Multilayer cell structure containing passages, channels, tubes, and pores help distribute pressure evenly over zirconia electrolytic membrane. Resulting more uniform pressure distribution expected to improve efficiency of oxygen production.

  18. A Robot-Assisted Cell Manipulation System with an Adaptive Visual Servoing Method

    OpenAIRE

    Yu Xie; Feng Zeng; Wenming Xi; Yunlei Zhou; Houde Liu; Mingliang Chen

    2016-01-01

    Robot-assisted cell manipulation is gaining attention for its ability in providing high throughput and high precision cell manipulation for the biological industry. This paper presents a visual servo microrobotic system for cell microinjection. We investigated the automatic cell autofocus method that reduced the complexity of the system. Then, we produced an adaptive visual processing algorithm to detect the location of the cell and micropipette toward the uneven illumination problem. Fourtee...

  19. Music training improves verbal but not visual memory: cross-sectional and longitudinal explorations in children.

    Science.gov (United States)

    Ho, Yim-Chi; Cheung, Mei-Chun; Chan, Agnes S

    2003-07-01

    The hypothesis that music training can improve verbal memory was tested in children. The results showed that children with music training demonstrated better verbal but not visual memory than did their counterparts without such training. When these children were followed up after a year, those who had begun or continued music training demonstrated significant verbal memory improvement. Students who discontinued the training did not show any improvement. Contrary to the differences in verbal memory between the groups, their changes in visual memory were not significantly different. Consistent with previous findings for adults (A. S. Chan, Y. Ho, & M. Cheung, 1998), the results suggest that music training systematically affects memory processing in accordance with possible neuroanatomical modifications in the left temporal lobe.

  20. Improved biolistic transfection of hair cells.

    Directory of Open Access Journals (Sweden)

    Hongyu Zhao

    Full Text Available Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C and PMCA2 (ATP2B2; plasma-membrane Ca(2+-ATPase isoform 2 to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells.

  1. Inducing attention not to blink: auditory entrainment improves conscious visual processing.

    Science.gov (United States)

    Ronconi, Luca; Pincham, Hannah L; Szűcs, Dénes; Facoetti, Andrea

    2016-09-01

    Our ability to allocate attention at different moments in time can sometimes fail to select stimuli occurring in close succession, preventing visual information from reaching awareness. This so-called attentional blink (AB) occurs when the second of two targets (T2) is presented closely after the first (T1) in a rapid serial visual presentation (RSVP). We hypothesized that entrainment to a rhythmic stream of stimuli-before visual targets appear-would reduce the AB. Experiment 1 tested the effect of auditory entrainment by presenting sounds with a regular or irregular interstimulus interval prior to a RSVP where T1 and T2 were separated by three possible lags (1, 3 and 8). Experiment 2 examined visual entrainment by presenting visual stimuli in place of auditory stimuli. Results revealed that irrespective of sensory modality, arrhythmic stimuli preceding the RSVP triggered an alerting effect that improved the T2 identification at lag 1, but impaired the recovery from the AB at lag 8. Importantly, only auditory rhythmic entrainment was effective in reducing the AB at lag 3. Our findings demonstrate that manipulating the pre-stimulus condition can reduce deficits in temporal attention characterizing the human cognitive architecture, suggesting innovative trainings for acquired and neurodevelopmental disorders. PMID:26215434

  2. Visual evoked potentials (VEP and visual acuity improvement after cytidine 52 -diphosphocholine (CDP-Choline therapy in amblyopic patient

    Directory of Open Access Journals (Sweden)

    Regina Halfeld Furtado de Mendonça

    2012-10-01

    Full Text Available Citicoline may be used in many neurological disorders. Combined treatment of citicoline with patching in amblyopia has previously been researched. The purpose of this paper is to illustrate the effect of citicoline in non-patching amblyopic patient. A 11-year-old amblyopic boy underwent complete ophthalmological examinations, including VEP with flash and pattern stimulus. Two averages of 100 sweep were performed for flash stimulus. Pattern reversal stimulus obtained with high contrast was performed with 60', 30' and 15' checks stimuli. The VEP was repeated 90 days later after a therapy with citicoline and vitamin and the results compared with the responses of the previous recording session. The visual acuity (VA was 0,7 in the RE and 1,0 in the LE. The VEP pattern amplitude was normal in both eyes. Delayed in latency was detected for all spatial frequency stimulus (SFS in the RE. Delay in latency was detected only for high SFS in the LE. After the treatment, the VA was 1,0 in both eyes. The latency was normalized with low SFS on the RE and with high SFS on the LE. The flash VEP was normal before and after the therapy. In conclusion, the citicoline demonstrated that it was effective in the treatment of amblyopic eye without patching. The VA and the VEP latency improvement demonstrated that the citicoline enhance the transmission of the electric impulse from retina to visual cortex. Further research is required to understand the immediate and long-term effect of coline treatment in amblyopic patients.

  3. Concurrent visuomotor behaviour improves form discrimination in a patient with visual form agnosia.

    Science.gov (United States)

    Schenk, Thomas; Milner, A David

    2006-09-01

    It is now well established that the visual brain is divided into two visual streams, the ventral and the dorsal stream. Milner and Goodale have suggested that the ventral stream is dedicated for processing vision for perception and the dorsal stream vision for action [A.D. Milner & M.A. Goodale (1995) The Visual Brain in Action, Oxford University Press, Oxford]. However, it is possible that ongoing processes in the visuomotor stream will nevertheless have an effect on perceptual processes. This possibility was examined in the present study. We have examined the visual form-discrimination performance of the form-agnosic patient D.F. with and without a concurrent visuomotor task, and found that her performance was significantly improved in the former condition. This suggests that the visuomotor behaviour provides cues that enhance her ability to recognize the form of the target object. In control experiments we have ruled out proprioceptive and efferent cues, and therefore propose that D.F. can, to a significant degree, access the object's visuomotor representation in the dorsal stream. Moreover, we show that the grasping-induced perceptual improvement disappears if the target objects only differ with respect to their shape but not their width. This suggests that shape information per se is not used for this grasping task.

  4. Microperimetric Biofeedback Training Improved Visual Acuity after Successful Macular Hole Surgery

    Directory of Open Access Journals (Sweden)

    Tomoko Ueda-Consolvo

    2015-01-01

    Full Text Available Purpose. To evaluate the efficacy of setting a preferred retinal locus relocation target (PRT and performing Macular Integrity Assessment (MAIA biofeedback training in patients showing insufficient recovery of best corrected visual acuity (BCVA despite successful closure of an idiopathic macular hole (MH. Methods. Retrospective interventional case series. Nine eyes of 9 consecutive patients with the decimal BCVA of less than 0.6 at more than 3 months after successful MH surgery were included. A PRT was chosen based on MAIA microperimetry and the patients underwent MAIA biofeedback training. BCVA, reading speed, fixation stability, and 63% bivariate contour ellipse area (BCEA were evaluated before and after the training. Statistical analysis was carried out using paired Student’s t-test. Results. PRT was chosen on the nasal side of the closed MH fovea in 8 patients. After the MAIA training, BCVA improved in all patients. The mean logMAR value of BCVA significantly improved from 0.33 to 0.12 (p=0.007. Reading speed improved in all patients (p=0.29, fixation stability improved in 5 patients (p=0.70, and 63% BCEA improved in 7 patients (p=0.21, although these improvements were not statistically significant. Conclusion. MAIA biofeedback training improved visual acuity in patients with insufficient recovery of BCVA after successful MH surgery.

  5. Direct fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Farooque, M. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  6. Visual Tracking Based on an Improved Online Multiple Instance Learning Algorithm

    OpenAIRE

    Li Jia Wang; Hua Zhang

    2016-01-01

    An improved online multiple instance learning (IMIL) for a visual tracking algorithm is proposed. In the IMIL algorithm, the importance of each instance contributing to a bag probability is with respect to their probabilities. A selection strategy based on an inner product is presented to choose weak classifier from a classifier pool, which avoids computing instance probabilities and bag probability M times. Furthermore, a feedback strategy is presented to update weak classifiers. In the feed...

  7. Elbow arthroscopy: a new setup to avoid visual paradox and improve triangulation.

    Science.gov (United States)

    Sinha, Apurv; Pydah, Satya Kanth V; Webb, Mark

    2013-05-01

    Elbow arthroscopy is a useful diagnostic and therapeutic tool for various conditions. Conventional arthroscopy with the patient in the prone or lateral position where the screen is placed on the opposite side makes it difficult to interpret the image, results in visual paradox, and is associated with difficult triangulation. We present a modified setup for the operating room to help eliminate these problems and improve triangulation.

  8. Improved micromorph tandem cell performance through enhanced top cell currents

    Energy Technology Data Exchange (ETDEWEB)

    Platz, R.; Vaucher, N.P.; Fischer, D.; Meier, J.; Shah, A. [Univ. de Neuchatel (Switzerland). Inst. de Microtechnique

    1997-12-31

    Two approaches to increasing the current in the amorphous silicon top cell of an amorphous silicon/microcrystalline silicon (a-Si:H/{micro}c-Si:H) tandem cell are presented. The goal is to raise the stabilized efficiency of such cells. The deposition of the amorphous top cell at higher than standard substrate temperature is shown to reduce the optical gap of the i-layer and to increase the current which is generated with a given i-layer thickness. Furthermore, a selectively reflecting ZnO interface layer between the component cells is presented as a viable tool for enhancing the current generation in the top cell by selective reflection of light. The authors present a micromorph tandem cell containing the amorphous top cell deposited at high substrate temperature, and additionally the ZnO mirror layer. A top cell thickness of 150 nm is shown to be sufficient to provide a current density of 13mA/cm{sup 2} in the top cell. Finally, the influence of such thin top cells on the stabilized efficiency of the tandem cell is investigated by experiment and by means of semi-empirical modeling. Model and experiment confirm that such reduced-gap top cells, together with current enhancement due to the mirror layer, have a high potential for improving the stabilized efficiency of micromorph tandem cells.

  9. Improved Gene Targeting through Cell Cycle Synchronization.

    Directory of Open Access Journals (Sweden)

    Vasiliki Tsakraklides

    Full Text Available Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications.

  10. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot.

    Science.gov (United States)

    Tidoni, Emmanuele; Gergondet, Pierre; Kheddar, Abderrahmane; Aglioti, Salvatore M

    2014-01-01

    Advancement in brain computer interfaces (BCI) technology allows people to actively interact in the world through surrogates. Controlling real humanoid robots using BCI as intuitively as we control our body represents a challenge for current research in robotics and neuroscience. In order to successfully interact with the environment the brain integrates multiple sensory cues to form a coherent representation of the world. Cognitive neuroscience studies demonstrate that multisensory integration may imply a gain with respect to a single modality and ultimately improve the overall sensorimotor performance. For example, reactivity to simultaneous visual and auditory stimuli may be higher than to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet, knowledge about whether audio-visual integration may improve the control of a surrogate is meager. To explore this issue, we provided human footstep sounds as audio feedback to BCI users while controlling a humanoid robot. Participants were asked to steer their robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that audio-visual synchrony between footsteps sound and actual humanoid's walk reduces the time required for steering the robot. Thus, auditory feedback congruent with the humanoid actions may improve motor decisions of the BCI's user and help in the feeling of control over it. Our results shed light on the possibility to increase robot's control through the combination of multisensory feedback to a BCI user. PMID:24987350

  11. Adapting the iSNOBAL model for improved visualization in a GIS environment

    Science.gov (United States)

    Johansen, W. J.; Delparte, D.

    2014-12-01

    Snowmelt is a primary means of crucial water resources in much of the western United States. Researchers are developing models that estimate snowmelt to aid in water resource management. One such model is the image snowcover energy and mass balance (iSNOBAL) model. It uses input climate grids to simulate the development and melting of snowpack in mountainous regions. This study looks at applying this model to the Reynolds Creek Experimental Watershed in southwestern Idaho, utilizing novel approaches incorporating geographic information systems (GIS). To improve visualization of the iSNOBAL model, we have adapted it to run in a GIS environment. This type of environment is suited to both the input grid creation and the visualization of results. The data used for input grid creation can be stored locally or on a web-server. Kriging interpolation embedded within Python scripts are used to create air temperature, soil temperature, humidity, and precipitation grids, while built-in GIS and existing tools are used to create solar radiation and wind grids. Additional Python scripting is then used to perform model calculations. The final product is a user-friendly and accessible version of the iSNOBAL model, including the ability to easily visualize and interact with model results, all within a web- or desktop-based GIS environment. This environment allows for interactive manipulation of model parameters and visualization of the resulting input grids for the model calculations. Future work is moving towards adapting the model further for use in a 3D gaming engine for improved visualization and interaction.

  12. Playing shooter and driving videogames improves top-down guidance in visual search.

    Science.gov (United States)

    Wu, Sijing; Spence, Ian

    2013-05-01

    Playing action videogames is known to improve visual spatial attention and related skills. Here, we showed that playing action videogames also improves classic visual search, as well as the ability to locate targets in a dual search that mimics certain aspects of an action videogame. In Experiment 1A, first-person shooter (FPS) videogame players were faster than nonplayers in both feature search and conjunction search, and in Experiment 1B, they were faster and more accurate in a peripheral search and identification task while simultaneously performing a central search. In Experiment 2, we showed that 10 h of play could improve the performance of nonplayers on each of these tasks. Three different genres of videogames were used for training: two action games and a 3-D puzzle game. Participants who played an action game (either an FPS or a driving game) achieved greater gains on all search tasks than did those who trained using the puzzle game. Feature searches were faster after playing an action videogame, suggesting that players developed a better target template to guide search in a top-down manner. The results of the dual search suggest that, in addition to enhancing the ability to divide attention, playing an action game improves the top-down guidance of attention to possible target locations. The results have practical implications for the development of training tools to improve perceptual and cognitive skills.

  13. A Robot-Assisted Cell Manipulation System with an Adaptive Visual Servoing Method

    Directory of Open Access Journals (Sweden)

    Yu Xie

    2016-06-01

    Full Text Available Robot-assisted cell manipulation is gaining attention for its ability in providing high throughput and high precision cell manipulation for the biological industry. This paper presents a visual servo microrobotic system for cell microinjection. We investigated the automatic cell autofocus method that reduced the complexity of the system. Then, we produced an adaptive visual processing algorithm to detect the location of the cell and micropipette toward the uneven illumination problem. Fourteen microinjection experiments were conducted with zebrafish embryos. A 100% success rate was achieved either in autofocus or embryo detection, which verified the robustness of the proposed automatic cell manipulation system.

  14. Improving the spelling ability of Grade 3 learners through visual imaging teaching strategies

    Directory of Open Access Journals (Sweden)

    Annalene van Staden

    2011-08-01

    Full Text Available This paper discusses two key cognitive theories underlying spelling acquisition, i.e. the developmental stage theory and the overlapping waves theory. Within the developmental stage framework, learning to spell is viewed as a process of moving from spelling that represents sound to spelling that represents meaning, following a sequence of qualitatively distinct stages in a linear fashion. In contrast, proponents of the overlapping waves theory emphasise the use of different instructional approaches at any given time. This model is process-orientated and stresses the adaptation of strategies to meet the needs of the task. Other researchers maintain that spelling is a natural process and emphasise the importance of invented spelling practices and creative writing embedded in whole-language programmes. There is, however, a lack of research validating the efficacy of an exclusively naturalistic approach to spelling. In general, research findings support a combination of incidental learning and direct instruction as most beneficial for learners with spelling problems. Thus, this study was undertaken to develop a visual imagery programme for Grade 3 learners by compromising between direct instruction in specific spelling skills (i.e. visual imaging strategies whilst also immersing learners in meaningful authentic reading activities. It was hypothesised that the spelling abilities of Afrikaans-speaking Grade 3 learners can be improved significantly by exposing them to a spelling programme that focuses on visual imaging, immediate feedback and self-correcting strategies. Researchers opposed to visual teaching methods for spelling moreover postulate, among other things, that learners with auditory preferences will not benefit from a visual approach to the teaching of spelling. In this empirical study the possible relation between preferential learning styles and spelling performance was also investigated.

  15. Real-Time Visualization and Quantification of Contractile Ring Proteins in Single Living Cells.

    Science.gov (United States)

    Davidson, Reshma; Liu, Yajun; Gerien, Kenneth S; Wu, Jian-Qiu

    2016-01-01

    Single-cell microscopy provides a powerful tool to visualize cellular and subcellular processes in wild-type and mutant cells by observing fluorescently tagged proteins. Here, we describe three simple methods to visualize fission yeast cells: gelatin slides, coverslip-bottom dishes, and tetrad fluorescence microscopy. These imaging methods and data analysis using free software make it possible to quantify protein localization, dynamics, and concentration with high spatial and temporal resolution. In fission yeast, the actomyosin contractile ring is essential for cytokinesis. We use the visualization and quantification of contractile ring proteins as an example to demonstrate how to use these methods.

  16. Spatially valid proprioceptive cues improve the detection of a visual stimulus

    DEFF Research Database (Denmark)

    Jackson, Carl P T; Miall, R Chris; Balslev, Daniela

    2010-01-01

    Vision and proprioception are the main sensory modalities that convey hand location and direction of movement. Fusion of these sensory signals into a single robust percept is now well documented. However, it is not known whether these modalities also interact in the spatial allocation of attention......, which has been demonstrated for other modality pairings. The aim of this study was to test whether proprioceptive signals can spatially cue a visual target to improve its detection. Participants were instructed to use a planar manipulandum in a forward reaching action and determine during this movement...... whether a near-threshold visual target appeared at either of two lateral positions. The target presentation was followed by a masking stimulus, which made its possible location unambiguous, but not its presence. Proprioceptive cues were given by applying a brief lateral force to the participant's arm...

  17. Retrospective cues based on object features improve visual working memory performance in older adults.

    Science.gov (United States)

    Gilchrist, Amanda L; Duarte, Audrey; Verhaeghen, Paul

    2016-01-01

    Research with younger adults has shown that retrospective cues can be used to orient top-down attention toward relevant items in working memory. We examined whether older adults could take advantage of these cues to improve memory performance. Younger and older adults were presented with visual arrays of five colored shapes; during maintenance, participants were presented either with an informative cue based on an object feature (here, object shape or color) that would be probed, or with an uninformative, neutral cue. Although older adults were less accurate overall, both age groups benefited from the presentation of an informative, feature-based cue relative to a neutral cue. Surprisingly, we also observed differences in the effectiveness of shape versus color cues and their effects upon post-cue memory load. These results suggest that older adults can use top-down attention to remove irrelevant items from visual working memory, provided that task-relevant features function as cues. PMID:26208404

  18. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    Science.gov (United States)

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. PMID:27194709

  19. An improved visualization-based force-measurement technique for short-duration hypersonic facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Stuart J.; Karl, Sebastian [Institute of Aerodynamics and Flow Technology, Spacecraft Section, German Aerospace Center (DLR), Goettingen (Germany)

    2010-06-15

    This article is concerned with describing and exploring the limitations of an improved version of a recently proposed visualization-based technique for the measurement of forces and moments in short-duration hypersonic wind tunnels. The technique is based on tracking the motion of a free-flying body over a sequence of high-speed visualizations; while this idea is not new in itself, the use of high-speed digital cinematography combined with a highly accurate least-squares tracking algorithm allows improved results over what have been previously possible with such techniques. The technique precision is estimated through the analysis of artificially constructed and experimental test images, and the resulting error in acceleration measurements is characterized. For wind-tunnel scale models, position measurements to within a few microns are shown to be readily attainable. Image data from two previous experimental studies in the T5 hypervelocity shock tunnel are then reanalyzed with the improved technique: the uncertainty in the mean drag acceleration is shown to be reduced to the order of the flow unsteadiness, 2-3%, and time-resolved acceleration measurements are also shown to be possible. The response time of the technique for the configurations studied is estimated to be {proportional_to}0.5 ms. Comparisons with computations using the DLR TAU code also yield agreement to within the overall experimental uncertainty. Measurement of the pitching moment for blunt geometries still appears challenging, however. (orig.)

  20. Planetary rover navigation: improving visual odometry via additional images and multisensor fusion

    Science.gov (United States)

    Casalino, G.; Zereik, E.; Simetti, E.; Turetta, A.; Torelli, S.; Sperindé, A.

    2013-12-01

    Visual odometry (VO) is very important for a mobile robot, above all in a planetary scenario, to accurately estimate the rover occurred motion. The present work deals with the possibility to improve a previously developed VO technique by means of additional image processing, together with suitable mechanisms such as the classical Extended/Iterated Kalman Filtering and also Sequence Estimators. The possible employment of both techniques is then addressed and, consequently, a better behaving integration scheme is proposed. Moreover, the eventuality of exploiting other localization sensors is also investigated, leading to a final multisensor scheme.

  1. THE IMPROVEMENT OF AUDIO-VISUAL BASED DANCE APPRECIATION LEARNING AMONG PRIMARY TEACHER EDUCATION STUDENTS OF MAKASSAR STATE UNIVERSITY

    OpenAIRE

    Wahira

    2014-01-01

    This research aimed to improve the skill in appreciating dances owned by the students of Primary Teacher Education of Makassar State University, to improve the perception towards audio-visual based art appreciation, to increase the students’ interest in audio-visual based art education subject, and to increase the students’ responses to the subject. This research was classroom action research using the research design created by Kemmis & MC. Taggart, which was conducted to 42 students of Prim...

  2. Circadian plasticity in photoreceptor cells controls visual coding efficiency in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Martin Barth

    Full Text Available In the fly Drosophila melanogaster, neuronal plasticity of synaptic terminals in the first optic neuropil, or lamina, depends on early visual experience within a critical period after eclosion. The current study revealed two additional and parallel mechanisms involved in this type of synaptic terminal plasticity. First, an endogenous circadian rhythm causes daily oscillations in the volume of photoreceptor cell terminals. Second, daily visual experience precisely modulates the circadian time course and amplitude of the volume oscillations that the photoreceptor-cell terminals undergo. Both mechanisms are separable in their molecular basis. We suggest that the described neuronal plasticity in Drosophila ensures continuous optimal performance of the visual system over the course of a 24 h-day. Moreover, the sensory system of Drosophila cannot only account for predictable, but also for acute, environmental changes. The volumetric changes in the synaptic terminals of photoreceptor cells are accompanied by circadian and light-induced changes of presynaptic ribbons as well as extensions of epithelial glial cells into the photoreceptor terminals, suggesting that the architecture of the lamina is altered by both visual exposure and the circadian clock. Clock-mutant analysis and the rescue of PER protein rhythmicity exclusively in all R1-6 cells revealed that photoreceptor-cell plasticity is autonomous and sufficient to control visual behavior. The strength of a visually guided behavior, the optomotor turning response, co-varies with synaptic-terminal volume oscillations of photoreceptor cells when elicited at low light levels. Our results show that behaviorally relevant adaptive processing of visual information is performed, in part, at the level of visual input level.

  3. Visiting Richard Serra’s Promenade sculpture improves postural control and judgment of subjective visual vertical.

    Directory of Open Access Journals (Sweden)

    Zoï eKapoula

    2014-12-01

    Full Text Available Body sway while maintaining an upright quiet stance reflects an active process of balance based on the integration of visual, vestibular, somatosensory and proprioceptive inputs. Richard Serra’s Promenade sculpture featured in the 2008 Monumenta exhibition at the Grand Palais in Paris, France is herein hypothesised to have stimulated the body’s vertical and longitudinal axes as it showcased 5 monumental rectangular solids pitched at a 1.69° angle.Using computerised dynamic posturography we measured the body sway of 23 visitors when fixating a cross, or when observing the artwork (fixating it or actively exploring it with eye movements before and after walking around and alongside the sculpture (i.e., before and after a promenade. A first fixation at the sculpture increased medio-lateral stability (in terms of spectral power of body sway. Eye movement exploration in the depth of the sculpture increased antero-posterior stability (in terms of spectral power and cancelling time of body sway at the expense of medio-lateral stability (in terms of cancelling time. Moreover, a medio-lateral instability associated with eye movement exploration before the promenade (in terms of body sway sensu stricto was cancelled after the promenade. Finally, the overall medio-lateral stability (in terms of spectral power increased after the promenade.Fourteen additional visitors were asked to sit in a dark room and adjust a luminous line to what they considered to be the earth-vertical axis. The promenade executed within the sculpted environment afforded by Serra’s monumental statuary works resulted in significantly improved performances on the subjective visual vertical test.We attribute these effects to the sculpted environment provided by the exhibition which may have acted as a kind of physiologic training ground thereby improving the visitors’ overall sense of visual perspective, equilibrium and gravity.

  4. Active training and driving-specific feedback improve older drivers' visual search prior to lane changes

    Directory of Open Access Journals (Sweden)

    Lavallière Martin

    2012-03-01

    Full Text Available Abstract Background Driving retraining classes may offer an opportunity to attenuate some effects of aging that may alter driving skills. Unfortunately, there is evidence that classroom programs (driving refresher courses do not improve the driving performance of older drivers. The aim of the current study was to evaluate if simulator training sessions with video-based feedback can modify visual search behaviors of older drivers while changing lanes in urban driving. Methods In order to evaluate the effectiveness of the video-based feedback training, 10 older drivers who received a driving refresher course and feedback about their driving performance were tested with an on-road standardized evaluation before and after participating to a simulator training program (Feedback group. Their results were compared to a Control group (12 older drivers who received the same refresher course and in-simulator active practice as the Feedback group without receiving driving-specific feedback. Results After attending the training program, the Control group showed no increase in the frequency of the visual inspection of three regions of interests (rear view and left side mirrors, and blind spot. In contrast, for the Feedback group, combining active training and driving-specific feedbacks increased the frequency of blind spot inspection by 100% (32.3 to 64.9% of verification before changing lanes. Conclusions These results suggest that simulator training combined with driving-specific feedbacks helped older drivers to improve their visual inspection strategies, and that in-simulator training transferred positively to on-road driving. In order to be effective, it is claimed that driving programs should include active practice sessions with driving-specific feedbacks. Simulators offer a unique environment for developing such programs adapted to older drivers' needs.

  5. Improving the discrimination of hand motor imagery via virtual reality based visual guidance.

    Science.gov (United States)

    Liang, Shuang; Choi, Kup-Sze; Qin, Jing; Pang, Wai-Man; Wang, Qiong; Heng, Pheng-Ann

    2016-08-01

    While research on the brain-computer interface (BCI) has been active in recent years, how to get high-quality electrical brain signals to accurately recognize human intentions for reliable communication and interaction is still a challenging task. The evidence has shown that visually guided motor imagery (MI) can modulate sensorimotor electroencephalographic (EEG) rhythms in humans, but how to design and implement efficient visual guidance during MI in order to produce better event-related desynchronization (ERD) patterns is still unclear. The aim of this paper is to investigate the effect of using object-oriented movements in a virtual environment as visual guidance on the modulation of sensorimotor EEG rhythms generated by hand MI. To improve the classification accuracy on MI, we further propose an algorithm to automatically extract subject-specific optimal frequency and time bands for the discrimination of ERD patterns produced by left and right hand MI. The experimental results show that the average classification accuracy of object-directed scenarios is much better than that of non-object-directed scenarios (76.87% vs. 69.66%). The result of the t-test measuring the difference between them is statistically significant (p = 0.0207). When compared to algorithms based on fixed frequency and time bands, contralateral dominant ERD patterns can be enhanced by using the subject-specific optimal frequency and the time bands obtained by our proposed algorithm. These findings have the potential to improve the efficacy and robustness of MI-based BCI applications. PMID:27282228

  6. Forging partnerships between optometrists and ergonomists to improve visual comfort and productivity in the workplace.

    Science.gov (United States)

    Long, Jennifer

    2014-01-01

    Ergonomists and optometrists often have mutual clients/patients with complex visual needs in the workplace but communication between the professionals is usually indirect through the client/patient. This paper describes a joint professional development meeting between optometrists and ergonomists in Canberra, Australia, which included a discussion to explore how to improve communication between the two professions. Optometrists and ergonomists reported they would prefer more information before conducting assessments and providing advice. Vision screening forms commonly in use for computer workers were viewed as inadequate to meet these needs. Communication between the two professions was hampered by absence of contact details of the optometrist/ergonomist, perceptions that the other profession is too busy to talk, privacy considerations in sharing information and funding issues for shared care arrangements. There are opportunities for increasing awareness of good vision in workplaces. Communication between optometrists and ergonomists can be improved by developing information-sharing documents relevant to modern workplaces.

  7. Improved orbits and parallaxes for eight visual binaries with unrealistic previous masses using the Hipparcos parallax

    CERN Document Server

    Docobo, J A; Malkov, O Yu; Campo, P P; Chulkov, D A

    2016-01-01

    Improved orbits are presented for the visual binaries WDS 02366+1227, WDS 02434-6643, WDS 03244-1539, WDS 08507+1800, WDS 09128-6055, WDS 11532-1540, WDS 17375+2419, and WDS 22408-0333. The latest orbits for these binaries were demonstrating a great inconsistency between the systemic mass obtained through Kepler's Third Law and that calculated as a sum of their components' mass through standard mass-luminosity and mass-spectrum relationships. Our improvement allowed us to obtain consistent systemic masses for WDS 02434-6643 and WDS 09128-6055 without a need for changing the Hipparcos parallax. For the remaining 6 pairs, we suggest the use of their dynamical parallax as a reliable distance estimate unless more precise parallax is reported. Astrophysical and dynamical properties of individual objects are discussed.

  8. Functional clustering drives encoding improvement in a developing brain network during awake visual learning.

    Directory of Open Access Journals (Sweden)

    Kaspar Podgorski

    2012-01-01

    Full Text Available Sensory experience drives dramatic structural and functional plasticity in developing neurons. However, for single-neuron plasticity to optimally improve whole-network encoding of sensory information, changes must be coordinated between neurons to ensure a full range of stimuli is efficiently represented. Using two-photon calcium imaging to monitor evoked activity in over 100 neurons simultaneously, we investigate network-level changes in the developing Xenopus laevis tectum during visual training with motion stimuli. Training causes stimulus-specific changes in neuronal responses and interactions, resulting in improved population encoding. This plasticity is spatially structured, increasing tuning curve similarity and interactions among nearby neurons, and decreasing interactions among distant neurons. Training does not improve encoding by single clusters of similarly responding neurons, but improves encoding across clusters, indicating coordinated plasticity across the network. NMDA receptor blockade prevents coordinated plasticity, reduces clustering, and abolishes whole-network encoding improvement. We conclude that NMDA receptors support experience-dependent network self-organization, allowing efficient population coding of a diverse range of stimuli.

  9. Improving visual functions in adult amblyopia with combined perceptual training and transcranial random noise stimulation (tRNS

    Directory of Open Access Journals (Sweden)

    Gianluca eCampana

    2014-12-01

    Full Text Available Amblyopia is a visual disorder due to an abnormal pattern of functional connectivity of the visual cortex and characterized by several visual deficits of spatial vision including impairments of visual acuity (VA and of the contrast sensitivity function (CSF. Despite being a developmental disorder caused by reduced visual stimulation during early life (critical period, several studies have shown that extensive visual perceptual training can improve VA and CSF in people with amblyopia even in adulthood. With the present study we assessed whether a much shorter perceptual training regime, in association with high-frequency transcranial electrical stimulation (hf-tRNS, was able to improve visual functions in a group of adult participants with amblyopia. Results show that, in comparison with previous studies where a large number sessions with a similar training regime were used (Polat, Ma-Naim, Belkin & Sagi, 2004, here just eight sessions of training in contrast detection under lateral masking conditions combined with hf-tRNS, were able to substantially improve VA and CSF in adults with amblyopia.

  10. Visualization and orchestration of the dynamic molecular society in cells

    Institute of Scientific and Technical Information of China (English)

    Xuebiao Yao; Guowei Fang

    2009-01-01

    @@ Visualization of specific molecules and their interactions in real space and time is essential to delineate how cellular plasticity and dynamics are achieved and orchestrated as perturbation of cellular plasticity and dynamics is detrimental to health. Elucidation of cellular dynamics requires molecular imaging at nanometer scale at millisecond resolution. The 1st International Conference on Cellular Dynamics and Chemical Biology held in Hefei, China (from 12 September to 15 September,2008) launched the quest by bringing synergism among photonics, chemistry and biology.

  11. Pineal photoreceptor cells are required for maintaining the circadian rhythms of behavioral visual sensitivity in zebrafish.

    Directory of Open Access Journals (Sweden)

    Xinle Li

    Full Text Available In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.

  12. Visualizing and quantifying cell phenotype using soft X-ray tomography

    OpenAIRE

    McDermott, Gerry; Fox, Douglas M.; Epperly, Lindsay; Wetzler, Modi; Barron, Annelise E.; Le Gros, Mark A.; Larabell, Carolyn A.

    2012-01-01

    Soft X-ray tomography (SXT) is an imaging technique capable of characterizing and quantifying the structural phenotype of cells. In particular, SXT is used to visualize the internal architecture of fully hydrated, intact eukaryotic and prokaryotic cells at high spatial resolution (50 nm or better). Image contrast in SXT is derived from the biochemical composition of the cell, and obtained without the need to use potentially damaging contrast-enhancing agents, such as heavy metals. The cells a...

  13. Improving X-ray CT based visualization of particulate organic matter in soil

    Science.gov (United States)

    Maenhout, Peter; Sleutel, Steven; Van Hoorebeke, Luc; Cnudde, Veerle; De Neve, Stefaan

    2015-04-01

    Soil pore network structure can have a significant impact on microbial utilization of soil organic matter and hence its stability. This stabilization is essentially the result of suboptimal conditions for substrate and metabolite diffusion connected to moisture distribution and aeration. All these factors depend on the spatial organization of the pore network. Because of the small dimensions of the soil pores, X-ray Computed Tomography (CT) is commonly used to study the soil pore network. This non-destructive technique allows to visualize the 3D architecture of soils at scales relevant for microbial activity. Despite recent advances in software development, a main constraint on the use of X-ray CT visualization for soil applications is the limited soil phase differentiation, largely due to a low X-ray attenuation contrast. Application of heavy element contrast stains that enhance X-ray attenuation of targeted structures could facilitate phase determination. Recently, the effectiveness and selectivity of different staining agents towards water, SOM and mineral matter (MM) has been investigated. Subsequent staining of water and SOM resulted in the selection of four staining agents that successfully increased the attenuation of SOM. The potential of these agents (lead nitrate, lead acetate, silver nitrate and phosphomolybdenic acid) to selectively stain OM was further tested in MM/OM mixtures. Among the tested staining agents different selectivity towards the mineral sand fraction was observed. This suggests that soil matrices of different mineral compositions probably require specific selection of compatible staining agents. Therefore, it is important to test the selectivity of staining agents towards different mineral soil fractions. A study concerning the compatibility of four staining agents towards silt and clay will be presented. Finally, improved visualization of organic matter and other soil fractions will contribute to more accurate and efficient processing

  14. Performance improvements from imagery:evidence that internal visual imagery is superior to external visual imagery for slalom performance

    Directory of Open Access Journals (Sweden)

    Nichola eCallow

    2013-10-01

    Full Text Available We report three experiments investigating the hypothesis that use of internal visual imagery (IVI would be superior to external visual imagery (EVI for the performance of different slalom-based motor tasks. In Experiment 1, three groups of participants (IVI, EVI, and a control group performed a driving-simulation slalom task. The IVI group achieved significantly quicker lap times than EVI and the control group. In Experiment 2, participants performed a downhill running slalom task under both IVI and EVI conditions. Performance was again quickest in the IVI compared to EVI condition, with no differences in accuracy. Experiment 3 used the same group design as Experiment 1, but with participants performing a downhill ski-slalom task. Results revealed the IVI group to be significantly more accurate than the control group, with no significant differences in time taken to complete the task. These results support the beneficial effects of IVI for slalom-based tasks, and significantly advances our knowledge related to the differential effects of visual imagery perspectives on motor performance.

  15. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  16. Improved dimensionally-reduced visual cortical network using stochastic noise modeling.

    Science.gov (United States)

    Tao, Louis; Praissman, Jeremy; Sornborger, Andrew T

    2012-04-01

    In this paper, we extend our framework for constructing low-dimensional dynamical system models of large-scale neuronal networks of mammalian primary visual cortex. Our dimensional reduction procedure consists of performing a suitable linear change of variables and then systematically truncating the new set of equations. The extended framework includes modeling the effect of neglected modes as a stochastic process. By parametrizing and including stochasticity in one of two ways we show that we can improve the systems-level characterization of our dimensionally reduced neuronal network model. We examined orientation selectivity maps calculated from the firing rate distribution of large-scale simulations and stochastic dimensionally reduced models and found that by using stochastic processes to model the neglected modes, we were able to better reproduce the mean and variance of firing rates in the original large-scale simulations while still accurately predicting the orientation preference distribution.

  17. Visual Tracking Based on an Improved Online Multiple Instance Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Li Jia Wang

    2016-01-01

    Full Text Available An improved online multiple instance learning (IMIL for a visual tracking algorithm is proposed. In the IMIL algorithm, the importance of each instance contributing to a bag probability is with respect to their probabilities. A selection strategy based on an inner product is presented to choose weak classifier from a classifier pool, which avoids computing instance probabilities and bag probability M times. Furthermore, a feedback strategy is presented to update weak classifiers. In the feedback update strategy, different weights are assigned to the tracking result and template according to the maximum classifier score. Finally, the presented algorithm is compared with other state-of-the-art algorithms. The experimental results demonstrate that the proposed tracking algorithm runs in real-time and is robust to occlusion and appearance changes.

  18. Aversive reinforcement improves visual discrimination learning in free-flying honeybees.

    Directory of Open Access Journals (Sweden)

    Aurore Avarguès-Weber

    Full Text Available BACKGROUND: Learning and perception of visual stimuli by free-flying honeybees has been shown to vary dramatically depending on the way insects are trained. Fine color discrimination is achieved when both a target and a distractor are present during training (differential conditioning, whilst if the same target is learnt in isolation (absolute conditioning, discrimination is coarse and limited to perceptually dissimilar alternatives. Another way to potentially enhance discrimination is to increase the penalty associated with the distractor. Here we studied whether coupling the distractor with a highly concentrated quinine solution improves color discrimination of both similar and dissimilar colors by free-flying honeybees. As we assumed that quinine acts as an aversive stimulus, we analyzed whether aversion, if any, is based on an aversive sensory input at the gustatory level or on a post-ingestional malaise following quinine feeding. METHODOLOGY/PRINCIPAL FINDINGS: We show that the presence of a highly concentrated quinine solution (60 mM acts as an aversive reinforcer promoting rejection of the target associated with it, and improving discrimination of perceptually similar stimuli but not of dissimilar stimuli. Free-flying bees did not use remote cues to detect the presence of quinine solution; the aversive effect exerted by this substance was mediated via a gustatory input, i.e. via a distasteful sensory experience, rather than via a post-ingestional malaise. CONCLUSION: The present study supports the hypothesis that aversion conditioning is important for understanding how and what animals perceive and learn. By using this form of conditioning coupled with appetitive conditioning in the framework of a differential conditioning procedure, it is possible to uncover discrimination capabilities that may remain otherwise unsuspected. We show, therefore, that visual discrimination is not an absolute phenomenon but can be modulated by experience.

  19. Improving the Efficiency and Ease of Healthcare Analysis Through Use of Data Visualization Dashboards.

    Science.gov (United States)

    Stadler, Jennifer G; Donlon, Kipp; Siewert, Jordan D; Franken, Tessa; Lewis, Nathaniel E

    2016-06-01

    The digitization of a patient's health record has profoundly impacted medicine and healthcare. The compilation and accessibility of medical history has provided clinicians an unprecedented, holistic account of a patient's conditions, procedures, medications, family history, and social situation. In addition to the bedside benefits, this level of information has opened the door for population-level monitoring and research, the results of which can be used to guide initiatives that are aimed at improving quality of care. Cerner Corporation partners with health systems to help guide population management and quality improvement projects. With such an enormous and diverse client base-varying in geography, size, organizational structure, and analytic needs-discerning meaning in the data and how they fit with that particular hospital's goals is a slow, difficult task that requires clinical, statistical, and technical literacy. This article describes the development of dashboards for efficient data visualization at the healthcare facility level. Focusing on two areas with broad clinical importance, sepsis patient outcomes and 30-day hospital readmissions, dashboards were developed with the goal of aggregating data and providing meaningful summary statistics, highlighting critical performance metrics, and providing easily digestible visuals that can be understood by a wide range of personnel with varying levels of skill and areas of expertise. These internal-use dashboards have allowed associates in multiple roles to perform a quick and thorough assessment on a hospital of interest by providing the data to answer necessary questions and to identify important trends or opportunities. This automation of a previously manual process has greatly increased efficiency, saving hours of work time per hospital analyzed. Additionally, the dashboards have standardized the analysis process, ensuring use of the same metrics and processes so that overall themes can be compared across

  20. Visualization of multivalent histone modification in a single cell reveals highly concerted epigenetic changes on differentiation of embryonic stem cells

    DEFF Research Database (Denmark)

    Hattori, Naoko; Niwa, Tohru; Kimura, Kana;

    2013-01-01

    . Bivalent modification was clearly visualized by iChmo in wild-type embryonic stem cells (ESCs) known to have it, whereas rarely in Suz12 knockout ESCs and mouse embryonic fibroblasts known to have little of it. iChmo was applied to analysis of epigenetic and phenotypic changes of heterogeneous cell......Combinations of histone modifications have significant biological roles, such as maintenance of pluripotency and cancer development, but cannot be analyzed at the single cell level. Here, we visualized a combination of histone modifications by applying the in situ proximity ligation assay, which...... population, namely, ESCs at an early stage of differentiation, and this revealed that the bivalent modification disappeared in a highly concerted manner, whereas phenotypic differentiation proceeded with large variations among cells. Also, using this method, we were able to visualize a combination...

  1. Developmental improvements in the resolution and capacity of visual working memory share a common source.

    Science.gov (United States)

    Simmering, Vanessa R; Miller, Hilary E

    2016-08-01

    The nature of visual working memory (VWM) representations is currently a source of debate between characterizations as slot-like versus a flexibly-divided pool of resources. Recently, a dynamic neural field model has been proposed as an alternative account that focuses more on the processes by which VWM representations are formed, maintained, and used in service of behavior. This dynamic model has explained developmental increases in VWM capacity and resolution through strengthening excitatory and inhibitory connections. Simulations of developmental improvements in VWM resolution suggest that one important change is the accuracy of comparisons between items held in memory and new inputs. Thus, the ability to detect changes is a critical component of developmental improvements in VWM performance across tasks, leading to the prediction that capacity and resolution should correlate during childhood. Comparing 5- to 8-year-old children's performance across color discrimination and change detection tasks revealed the predicted correlation between estimates of VWM capacity and resolution, supporting the hypothesis that increasing connectivity underlies improvements in VWM during childhood. These results demonstrate the importance of formalizing the processes that support the use of VWM, rather than focusing solely on the nature of representations. We conclude by considering our results in the broader context of VWM development. PMID:27329264

  2. Possible improvement of solar cell efficiency

    International Nuclear Information System (INIS)

    We present the development of a new solar cell prototype in order to improve photovoltaic efficiency. In this model we show that the material can have three successive incident ray absorptions instead of two currently, by varying the incidence angle, the aperture between the summits of two neighbouring pyramids and their height. This study concerns in particular the photovoltaic parameters such as the spectral response. This model was checked for angles varying between 54 and 60 deg and for pyramid heights between 5 and 10 μm. For these values of incidence angle, the apertures between the summits of two neighbouring pyramids varied respectively from 14.54 to 11.54 μm for a pyramid angle height of 10 μm

  3. Improvement of fine motor skills in children with visual impairment: an explorative study

    NARCIS (Netherlands)

    Reimer, A.M.; Cox, R.F.; Nijhuis-Van der Sanden, M.W.G.; Boonstra, F.N.

    2011-01-01

    In this study we analysed the potential spin-off of magnifier training on the fine-motor skills of visually impaired children. The fine-motor skills of 4- and 5-year-old visually impaired children were assessed using the manual skills test for children (6-12 years) with a visual impairment (ManuVis)

  4. Long-Term Impact of Improving Visualization Abilities of Minority Engineering and Technology Students: Preliminary Results

    Science.gov (United States)

    Study, Nancy E.

    2011-01-01

    Previous studies found that students enrolled in introductory engineering graphics courses at a historically black university (HBCU) had significantly lower than average test scores on the Purdue Spatial Visualization Test: Visualization of Rotations (PSVT) when it was administered during the first week of class. Since the ability to visualize is…

  5. Improvement of Fine Motor Skills in Children with Visual Impairment: An Explorative Study

    Science.gov (United States)

    Reimer, A. M.; Cox, R. F. A.; Nijhuis-Van der Sanden, M. W. G.; Boonstra, F. N.

    2011-01-01

    In this study we analysed the potential spin-off of magnifier training on the fine-motor skills of visually impaired children. The fine-motor skills of 4- and 5-year-old visually impaired children were assessed using the manual skills test for children (6-12 years) with a visual impairment (ManuVis) and movement assessment for children (Movement…

  6. Improvement of fine motor skills in children with visual impairment: An explorative study

    NARCIS (Netherlands)

    Reimer, A.M.; Cox, R.F.A.; Nijhuis-Van der Sanden, M.W.G.; Boonstra, F.N.

    2011-01-01

    In this study we analysed the potential spin-off of magnifier training on the fine-motor skills of visually impaired children. The fine-motor skills of 4- and 5-year-old visually impaired children were assessed using the manual skills test for children (6-12 years) with a visual impairment (ManuVis)

  7. 3D-dynamic visualization of complex molecular cell biology processes : 1-year university students' understanding of visualizations of signal transduction

    OpenAIRE

    Jacobsson, Johan Lars Henrik

    2008-01-01

    This study deals with the use of 3D-dynamic visualizations for teaching complex molecular cell biology concepts. The focus is on signal transduction, which is a concept that constitutes an important part of biological systems. 3D-dynamic visualizations (animations) were produced and shown for a total of 24 students attending a course in molecular cell biology at Karlstad University, Sweden. Data were collected by questionnaires and interviews which were structured around the understandability...

  8. Common transcriptional mechanisms for visual photoreceptor cell differentiation among Pancrustaceans.

    Directory of Open Access Journals (Sweden)

    Simpla Mahato

    2014-07-01

    Full Text Available A hallmark of visual rhabdomeric photoreceptors is the expression of a rhabdomeric opsin and uniquely associated phototransduction molecules, which are incorporated into a specialized expanded apical membrane, the rhabdomere. Given the extensive utilization of rhabdomeric photoreceptors in the eyes of protostomes, here we address whether a common transcriptional mechanism exists for the differentiation of rhabdomeric photoreceptors. In Drosophila, the transcription factors Pph13 and Orthodenticle (Otd direct both aspects of differentiation: rhabdomeric opsin transcription and rhabdomere morphogenesis. We demonstrate that the orthologs of both proteins are expressed in the visual systems of the distantly related arthropod species Tribolium castaneum and Daphnia magna and that their functional roles are similar in these species. In particular, we establish that the Pph13 homologs have the ability to bind a subset of Rhodopsin core sequence I sites and that these sites are present in key phototransduction genes of both Tribolium and Daphnia. Furthermore, Pph13 and Otd orthologs are capable of executing deeply conserved functions of photoreceptor differentiation as evidenced by the ability to rescue their respective Drosophila mutant phenotypes. Pph13 homologs are equivalent in their ability to direct both rhabdomere morphogenesis and opsin expression within Drosophila, whereas Otd paralogs demonstrate differential abilities to regulate photoreceptor differentiation. Finally, loss-of-function analyses in Tribolium confirm the conserved requirement of Pph13 and Otd in regulating both rhabdomeric opsin transcription and rhabdomere morphogenesis. Taken together, our data identify components of a regulatory framework for rhabdomeric photoreceptor differentiation in Pancrustaceans, providing a foundation for defining ancestral regulatory modules of rhabdomeric photoreceptor differentiation.

  9. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Science.gov (United States)

    Takahashi, Tadanobu; Agarikuchi, Takashi; Kurebayashi, Yuuki; Shibahara, Nona; Suzuki, Chihiro; Kishikawa, Akiko; Fukushima, Keijo; Takano, Maiko; Suzuki, Fumie; Wada, Hirohisa; Otsubo, Tadamune; Ikeda, Kiyoshi; Minami, Akira; Suzuki, Takashi

    2015-01-01

    Mumps viruses show diverse cytopathic effects (CPEs) of infected cells and viral plaque formation (no CPE or no plaque formation in some cases) depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl)-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac), was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study), even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  10. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Mumps viruses show diverse cytopathic effects (CPEs of infected cells and viral plaque formation (no CPE or no plaque formation in some cases depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac, was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study, even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  11. Improving the extent of malignant glioma resection by dual intraoperative visualization approach.

    Directory of Open Access Journals (Sweden)

    Ilker Y Eyüpoglu

    Full Text Available Despite continuing debates around cytoreductive surgery in malignant gliomas, there is broad consensus that increased extent of tumor reduction improves overall survival. However, maximization of the extent of tumor resection is hampered by difficulty in intraoperative discrimination between normal and pathological tissue. In this context, two established methods for tumor visualization, fluorescence guided surgery with 5-ALA and intraoperative MRI (iMRI with integrated functional neuronavigation were investigated as a dual intraoperative visualization (DIV approach. Thirty seven patients presumably suffering from malignant gliomas (WHO grade III or IV according to radiological appearance were included. Twenty-one experimental sequences showing complete resection according to the 5-ALA technique were confirmed by iMRI. Fourteen sequences showing complete resection according to the 5-ALA technique could not be confirmed by iMRI, which detected residual tumor. Further analysis revealed that these sequences could be classified as functional grade II tumors (adjacent to eloquent brain areas. The combination of fluorescence guided resection and intraoperative evaluation by high field MRI significantly increased the extent of tumor resection in this subgroup of malignant gliomas located adjacent to eloquent areas from 61.7% to 100%; 5-ALA alone proved to be insufficient in attaining gross total resection without the danger of incurring postoperative neurological deterioration. Furthermore, in the case of functional grade III gliomas, iMRI in combination with functional neuronavigation was significantly superior to the 5-ALA resection technique. The extent of resection could be increased from 57.1% to 71.2% without incurring postoperative neurological deficits.

  12. A Model of Generating Visual Place Cells Based on Environment Perception and Similar Measure

    Science.gov (United States)

    2016-01-01

    It is an important content to generate visual place cells (VPCs) in the field of bioinspired navigation. By analyzing the firing characteristic of biological place cells and the existing methods for generating VPCs, a model of generating visual place cells based on environment perception and similar measure is abstracted in this paper. VPCs' generation process is divided into three phases, including environment perception, similar measure, and recruiting of a new place cell. According to this process, a specific method for generating VPCs is presented. External reference landmarks are obtained based on local invariant characteristics of image and a similar measure function is designed based on Euclidean distance and Gaussian function. Simulation validates the proposed method is available. The firing characteristic of the generated VPCs is similar to that of biological place cells, and VPCs' firing fields can be adjusted flexibly by changing the adjustment factor of firing field (AFFF) and firing rate's threshold (FRT). PMID:27597859

  13. A Model of Generating Visual Place Cells Based on Environment Perception and Similar Measure

    Directory of Open Access Journals (Sweden)

    Yang Zhou

    2016-01-01

    Full Text Available It is an important content to generate visual place cells (VPCs in the field of bioinspired navigation. By analyzing the firing characteristic of biological place cells and the existing methods for generating VPCs, a model of generating visual place cells based on environment perception and similar measure is abstracted in this paper. VPCs’ generation process is divided into three phases, including environment perception, similar measure, and recruiting of a new place cell. According to this process, a specific method for generating VPCs is presented. External reference landmarks are obtained based on local invariant characteristics of image and a similar measure function is designed based on Euclidean distance and Gaussian function. Simulation validates the proposed method is available. The firing characteristic of the generated VPCs is similar to that of biological place cells, and VPCs’ firing fields can be adjusted flexibly by changing the adjustment factor of firing field (AFFF and firing rate’s threshold (FRT.

  14. A Model of Generating Visual Place Cells Based on Environment Perception and Similar Measure.

    Science.gov (United States)

    Zhou, Yang; Wu, Dewei

    2016-01-01

    It is an important content to generate visual place cells (VPCs) in the field of bioinspired navigation. By analyzing the firing characteristic of biological place cells and the existing methods for generating VPCs, a model of generating visual place cells based on environment perception and similar measure is abstracted in this paper. VPCs' generation process is divided into three phases, including environment perception, similar measure, and recruiting of a new place cell. According to this process, a specific method for generating VPCs is presented. External reference landmarks are obtained based on local invariant characteristics of image and a similar measure function is designed based on Euclidean distance and Gaussian function. Simulation validates the proposed method is available. The firing characteristic of the generated VPCs is similar to that of biological place cells, and VPCs' firing fields can be adjusted flexibly by changing the adjustment factor of firing field (AFFF) and firing rate's threshold (FRT). PMID:27597859

  15. Indexing Large Visual Vocabulary by Randomized Dimensions Hashing for High Quantization Accuracy: Improving the Object Retrieval Quality

    Science.gov (United States)

    Yang, Heng; Wang, Qing; He, Zhoucan

    The bag-of-visual-words approach, inspired by text retrieval methods, has proven successful in achieving high performance in object retrieval on large-scale databases. A key step of these methods is the quantization stage which maps the high-dimensional image feature vectors to discriminatory visual words. In this paper, we consider the quantization step as the nearest neighbor search in large visual vocabulary, and thus proposed a randomized dimensions hashing (RDH) algorithm to efficiently index and search the large visual vocabulary. The experimental results have demonstrated that the proposed algorithm can effectively increase the quantization accuracy compared to the vocabulary tree based methods which represent the state-of-the-art. Consequently, the object retrieval performance can be significantly improved by our method in the large-scale database.

  16. The role of starburst amacrine cells in visual signal processing

    Science.gov (United States)

    TAYLOR, W.R.; SMITH, R.G.

    2012-01-01

    Starburst amacrine cells (SBACs) within the adult mammalian retina provide the critical inhibition that underlies the receptive field properties of direction-selective ganglion cells (DSGCs). The SBACs generate direction-selective output of GABA that differentially inhibits the DSGCs. We review the biophysical mechanisms that produce directional GABA release from SBACs and test a network model that predicts the effects of reciprocal inhibition between adjacent SBACs. The results of the model simulations suggest that reciprocal inhibitory connections between closely spaced SBACs should be spatially selective, while connections between more widely spaced cells could be indiscriminate. SBACs were initially identified as cholinergic neurons and were subsequently shown to contain release both acetylcholine and GABA. While the role of the GABAergic transmission is well established, the role of the cholinergic transmission remains unclear. PMID:22310373

  17. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation

    Directory of Open Access Journals (Sweden)

    Brian G. Ballios

    2015-06-01

    Full Text Available The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs. The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability.

  18. Visualizing how cancer chromosome abnormalities form in living cells

    Science.gov (United States)

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  19. Visual documentation process of historic building refurbishment "Improving energy efficiency by insulating wall cavity"

    Science.gov (United States)

    Bennadji, A.

    2013-07-01

    The North East of Scotland's construction method is similar to most popular building typologies in the UK. This typology can vary in term of external material (Granite, brick or stone) but with a secondary, usually timber sub frame with a lining on its interior. Insulation was seldom a consideration when such buildings were completed. Statistics shows that 80% of existing buildings in the UK will need to be upgraded. The lack of knowledge in dealing with old building fabric's manipulation has a negative impact on buildings' integrity. The documentation of such process seems to be an important step that buildings' actors should undertake to communicate a practical knowledge that is still at incubation stage. We wanted for this documentation to be visual, as descriptions might mislead none specialised and specialised in the field due to the innovative approach our method was conducted with. For the Scottish context this research/experiment will concentrate on existing granite wall buildings with plastered lath internal wall. It is unfortunate to see the commonly beautiful interiors of Scottish buildings disappearing, when the internal linings are removed. Skips are filled with old Plaster and Lath and new linings have to be supplied and fitted. Excessive waste is created in this change. This paper is based on a historic building energy improvement case study financed by the European commission and the Scottish Government. The pilot study consists of insulating an 18th century house using an innovative product and method. The project was a response to a call by the CIC start (Construction Innovation Club), aiming to establish a link between SMEs and the Universities. The project saw the day in collaboration with Icynene Canada, KDL Kishorn (see full list in the acknowledgment). This paper describes the process through which the team went through to improve the building envelope without damaging the buildings original features (Loveday et all). The energy efficiency

  20. [Visual quality needs to be improved in non-surgical optical correction].

    Science.gov (United States)

    Xie, Peiying

    2016-01-01

    Optical correction is the basis of optometry. Optimized visual quality through optical correction is more challenging and more scientific as visual quality is becoming more closely related to social integration and development. There are many visual quality problems associated with various non-surgical optical correction methods in different aspects and degrees. This article discusses in depth some of the problems regarding optical correction with spectacles for different age groups, from children to seniors. The use of soft contact lenses, rigid gas-permeable contact lenses, and orthokeratology lenses is also evaluated. Moreover, some suggestions and recommendations on promoting visual quality through optical correction are provided. PMID:26899215

  1. CDy6, a photostable probe for long-term real-time visualization of mitosis and proliferating cells.

    Science.gov (United States)

    Jeong, Yun-Mi; Duanting, Zhai; Hennig, Holger; Samanta, Animesh; Agrawalla, Bikram Keshari; Bray, Mark-Anthony; Carpenter, Anne E; Chang, Young-Tae

    2015-02-19

    Long-term real-time visualization of lysosomal dynamics has been challenging at the onset of mitosis due to the lack of fluorescent probes enabling convenient imaging of dividing cells. We developed a long-term real-time photostable mitotic or proliferating marker, CDy6, a BODIPY-derived compound of designation yellow 6, which labels lysosome. In long-term real-time, CDy6 displayed a sharp increase in intensity and change in localization in mitosis, improved photostability, and decreased toxicity compared with other widely used lysosomal and DNA markers, and the ability to label cells in mouse xenograft models. Therefore, CDy6 may open new possibilities to target and trace lysosomal contents during mitosis and to monitor cell proliferation, which can further our knowledge of the basic underlying biological mechanisms in the management of cancer.

  2. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  3. THE IMPROVEMENT OF AUDIO-VISUAL BASED DANCE APPRECIATION LEARNING AMONG PRIMARY TEACHER EDUCATION STUDENTS OF MAKASSAR STATE UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Wahira

    2014-06-01

    Full Text Available This research aimed to improve the skill in appreciating dances owned by the students of Primary Teacher Education of Makassar State University, to improve the perception towards audio-visual based art appreciation, to increase the students’ interest in audio-visual based art education subject, and to increase the students’ responses to the subject. This research was classroom action research using the research design created by Kemmis & MC. Taggart, which was conducted to 42 students of Primary Teacher Education of Makassar State University. The data collection was conducted using observation, questionnaire, and interview. The techniques of data analysis applied in this research were descriptive qualitative and quantitative. The results of this research were: (1 the students’ achievement in audio-visual based dance appreciation improved: precycle 33,33%, cycle I 42,85% and cycle II 83,33%, (2 the students’ perception towards the audio-visual based dance appreciation improved: cycle I 59,52%, and cycle II 71,42%. The students’ perception towards the subject obtained through structured interview in cycle I and II was 69,83% in a high category, (3 the interest of the students in the art education subject, especially audio-visual based dance appreciation, increased: cycle I 52,38% and cycle II 64,28%, and the students’ interest in the subject obtained through structured interview was 69,50 % in a high category. (3 the students’ response to audio-visual based dance appreciation increased: cycle I 54,76% and cycle II 69,04% in a good category.

  4. Improving UGV teleoperation performance using novel visualization techniques and manual interfaces

    Science.gov (United States)

    Vozar, Steven; Tilbury, Dawn M.

    2012-06-01

    Unmanned ground vehicles (UGVs) are well-suited to a variety of tasks that are dangerous or repetitive for humans to perform. Despite recent advances, UGVs still suffer from reliability issues, and human operation failures have been identified as one root cause of UGV system failure. However, most literature relevant to UGV reliability does not address the effects of human errors or the user interface. Our previous work investigated the issue of user situational awareness and sense of presence in the robot workspace by implementing a Mixed Reality interface featuring a first-person video feed with an Augmented Reality overlay and a third-person Virtual Reality display. The interface was evaluated in a series of user tests in which users manually controlled a UGV with a manipulator arm using traditional input modalities including a computer mouse, keyboard and gamepad. In this study, we learned that users found it challenging to mentally map commands from the manual inputs to the robot arm behavior. Also, switching between control modalities seemed to add to the cognitive load during teleoperation tasks. A master-slave style manual controller can provide an intuitive one-to-one mapping from user input to robot pose, and has the potential to improve both operator situational awareness for teleoperation tasks and decrease mission completion time. This paper describes the design and implementation of a teleoperated UGV with a Mixed Reality visualization interface and a master-slave controller that is suitable for teleoperated mobile manipulation tasks.

  5. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization

    Directory of Open Access Journals (Sweden)

    Shibli Nisar

    2016-01-01

    Full Text Available Short Time Fourier Transform (STFT is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT. Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection.

  6. Dense codes at high speeds: varying stimulus properties to improve visual speller performance

    NARCIS (Netherlands)

    Geuze, J.; Farquhar, J.D.R.; Desain, P.W.M.

    2012-01-01

    This paper investigates the effect of varying different stimulus properties on performance of the visual speller. Each of the different stimulus properties has been tested in previous literature and has a known effect on visual speller performance. This paper investigates whether a combination of th

  7. Can Dynamic Visualizations Improve Middle School Students' Understanding of Energy in Photosynthesis?

    Science.gov (United States)

    Ryoo, Kihyun; Linn, Marcia C.

    2012-01-01

    Dynamic visualizations have the potential to make abstract scientific phenomena more accessible and visible to students, but they can also be confusing and difficult to comprehend. This research investigates how dynamic visualizations, compared to static illustrations, can support middle school students in developing an integrated understanding of…

  8. Noise-improved signal detection in cat primary visual cortex via a well-balanced stochastic resonance-like procedure.

    Science.gov (United States)

    Funke, Klaus; Kerscher, Nicolas J; Wörgötter, Florentin

    2007-09-01

    Adding noise to a weak signal can paradoxically improve signal detection, a process called 'stochastic resonance' (SR). In the visual system, noise might be introduced by the image jitter resulting from high-frequency eye movements, like eye microtremor and microsaccades. To test whether this kind of noise might be beneficial or detrimental for cortical signal detection, we performed single-unit recordings from area 17 of anaesthetized cats while jittering the visual stimulus in a frequency and amplitude range resembling the possible range of eye movements. We used weak, sub- and peri-threshold visual stimuli, on top of which we superimposed noise with variable jitter amplitude. In accordance with the typical SR effect, we found that small noise levels actually increased the signal-to-noise ratio (SNR) of previously weak cortical visual responses, while originally strong responses were little affected or even reduced. Above a certain noise level, the SNR dropped a little, but not as a result of increased background activity - as would be proposed by SR theory - but because of a lowered response to signal and noise. Therefore, it seems that the ascending visual pathway optimally utilizes signal detection improvement by a SR-like process, while at the same time preventing spurious noise-induced activity and keeping the SNR sufficiently high.

  9. Accounting for the phase, spatial frequency and orientation demands of the task improves metrics based on the visual Strehl ratio.

    Science.gov (United States)

    Young, Laura K; Love, Gordon D; Smithson, Hannah E

    2013-09-20

    Advances in ophthalmic instrumentation have allowed high order aberrations to be measured in vivo. These measurements describe the distortions to a plane wavefront entering the eye, but not the effect they have on visual performance. One metric for predicting visual performance from a wavefront measurement uses the visual Strehl ratio, calculated in the optical transfer function (OTF) domain (VSOTF) (Thibos et al., 2004). We considered how well such a metric captures empirical measurements of the effects of defocus, coma and secondary astigmatism on letter identification and on reading. We show that predictions using the visual Strehl ratio can be significantly improved by weighting the OTF by the spatial frequency band that mediates letter identification and further improved by considering the orientation of phase and contrast changes imposed by the aberration. We additionally showed that these altered metrics compare well to a cross-correlation-based metric. We suggest a version of the visual Strehl ratio, VScombined, that incorporates primarily those phase disruptions and contrast changes that have been shown independently to affect object recognition processes. This metric compared well to VSOTF for letter identification and was the best predictor of reading performance, having a higher correlation with the data than either the VSOTF or cross-correlation-based metric.

  10. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    International Nuclear Information System (INIS)

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed

  11. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function

    Energy Technology Data Exchange (ETDEWEB)

    Reinis, S.; Landolt, J.P.; Weiss, D.S.; Money, K.E.

    1984-03-01

    The spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique. Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease over time after D2O injection. In pilot studies, the cats were injected with D2O. Within 8-10 min afterward, signs of positional nystagmus commenced; and within 30 min, problems in maintaining balance were noted. This continued for 7-8 h before disappearing. In the labyrinthectomized animals, such effects were not observed.

  12. Functionalized Graphitic Supports for Improved Fuel Cell Catalyst Stability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) together with the University of Connecticut (UCONN) proposes to demonstrate the improved fuel cell catalyst support durability offered...

  13. Globally visualizing the microtubule-dependent transport behaviors of influenza virus in live cells.

    Science.gov (United States)

    Liu, Shu-Lin; Zhang, Li-Juan; Wang, Zhi-Gang; Zhang, Zhi-Ling; Wu, Qiu-Mei; Sun, En-Ze; Shi, Yun-Bo; Pang, Dai-Wen

    2014-04-15

    Understanding the microtubule-dependent behaviors of viruses in live cells is very meaningful for revealing the mechanisms of virus infection and endocytosis. Herein, we used a quantum dots-based single-particle tracking technique to dynamically and globally visualize the microtubule-dependent transport behaviors of influenza virus in live cells. We found that the intersection configuration of microtubules can interfere with the transport behaviors of the virus in live cells, which lead to the changing and long-time pausing of the transport behavior of viruses. Our results revealed that most of the viruses moved along straight microtubules rapidly and unidirectionally from the cell periphery to the microtubule organizing center (MTOC) near the bottom of the cell, and the viruses were confined in the grid of microtubules near the top of the cell and at the MTOC near the bottom of the cell. These results provided deep insights into the influence of entire microtubule geometry on the virus infection.

  14. Visualizing tropoelastin in a long-term human elastic fibre cell culture model.

    Science.gov (United States)

    Halm, M; Schenke-Layland, K; Jaspers, S; Wenck, H; Fischer, F

    2016-02-04

    Elastin is an essential protein found in a variety of tissues where resilience and flexibility are needed, such as the skin and the heart. When aiming to engineer suitable implants, elastic fibres are needed to allow adequate tissue renewal. However, the visualization of human elastogenesis remains in the dark. To date, the visualization of human tropoelastin (TE) production in a human cell context and its fibre assembly under live cell conditions has not been achieved. Here, we present a long-term cell culture model of human dermal fibroblasts expressing fluorescence-labelled human TE. We employed a lentiviral system to stably overexpress Citrine-labelled TE to build a fluorescent fibre network. Using immunofluorescence, we confirmed the functionality of the Citrine-tagged TE. Furthermore, we visualized the fibre assembly over the course of several days using confocal microscopy. Applying super resolution microscopy, we were able to investigate the inner structure of the elastin-fibrillin-1 fibre network. Future investigations will allow the tracking of TE produced under various conditions. In tissue engineering applications the fluorescent fibre network can be visualized under various conditions or it serves as a tool for investigating fibre degradation processes in disease-in-a-dish-models.

  15. Visualizing tropoelastin in a long-term human elastic fibre cell culture model

    Science.gov (United States)

    Halm, M.; Schenke-Layland, K.; Jaspers, S.; Wenck, H.; Fischer, F.

    2016-01-01

    Elastin is an essential protein found in a variety of tissues where resilience and flexibility are needed, such as the skin and the heart. When aiming to engineer suitable implants, elastic fibres are needed to allow adequate tissue renewal. However, the visualization of human elastogenesis remains in the dark. To date, the visualization of human tropoelastin (TE) production in a human cell context and its fibre assembly under live cell conditions has not been achieved. Here, we present a long-term cell culture model of human dermal fibroblasts expressing fluorescence-labelled human TE. We employed a lentiviral system to stably overexpress Citrine-labelled TE to build a fluorescent fibre network. Using immunofluorescence, we confirmed the functionality of the Citrine-tagged TE. Furthermore, we visualized the fibre assembly over the course of several days using confocal microscopy. Applying super resolution microscopy, we were able to investigate the inner structure of the elastin–fibrillin-1 fibre network. Future investigations will allow the tracking of TE produced under various conditions. In tissue engineering applications the fluorescent fibre network can be visualized under various conditions or it serves as a tool for investigating fibre degradation processes in disease-in-a-dish-models. PMID:26842906

  16. An improved hydrothermal diamond anvil cell.

    Science.gov (United States)

    Li, Jiankang; Bassett, W A; Chou, I-Ming; Ding, Xin; Li, Shenghu; Wang, Xinyan

    2016-05-01

    A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces. The HDAC-VT having three driver screws offers the advantage of greater control and stability even though it sacrifices some of the size of solid angle. The greater control allows better sealing of samples, while greater stability results in longer survival for anvils and ceramic parts. This improved design retains several beneficial features of the original HDAC-V as well. These include the small collar that surrounds the heater and sample chamber forming an Ar + H2 gas chamber to protect diamonds and their heating parts from being oxidized. Three linear ball bearings, when used, fit to the three posts prevent seizing that can result from deterioration of lubricant at high temperatures. Positioning the posts and bearings outside of the gas chamber as in HDAC-V also prevents seizing and possible deformation due to overheating. In order to control the heating rate precisely with computer software, we use Linkam T95 and have replaced the Linkam 1400XY heating stage with the HDAC-VT allowing the HDAC to be heated to 950 °C at a rate from 0.01 °C/min to 50 °C/min. We have used the HDAC-VT and Linkam T95 to observe in situ nucleation and growth of zabuyelite in aqueous fluid and to homogenize melt inclusions in quartz from three porphyry deposits in Shanxi, China. PMID:27250393

  17. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function.

    Directory of Open Access Journals (Sweden)

    Derek G Groenendyk

    Full Text Available Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth's surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization

  18. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function.

    Science.gov (United States)

    Groenendyk, Derek G; Ferré, Ty P A; Thorp, Kelly R; Rice, Amy K

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth's surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape

  19. No age deficits in the ability to use attention to improve visual working memory.

    Science.gov (United States)

    Souza, Alessandra S

    2016-08-01

    Maintenance of information in mind to the moment-to-moment cognition is accomplished by working memory (WM). WM capacity is reduced in old age, but the nature of this decline is yet not clear. The current study examined the hypothesis that the decline in visual WM performance with age is related to a reduced ability to use attention to control the contents of WM. Young (M = 26 years) and old (M = 71 years) adults performed a color reproduction task in which the precise color of a set of dots had to be maintained in mind over a brief interval and later reproduced using a continuous color wheel. Attention was manipulated by presenting a spatial cue before the onset of the memory array (a precue) or during the maintenance phase (retro-cue). The cue indicated with 100% certainty the item to be tested at the end of the trial. A precue allows the selective encoding of only the relevant item to WM, whereas a retro-cue allows WM contents to be updated by refreshing the relevant (cued) item and removing nonrelevant (noncued) items. Aging was associated with a lower capacity in the baseline (no-cue) condition. Precues and (to a smaller extent) retro-cues improved WM performance (in terms of probability of recall and memory precision). Critically, the benefits of cueing were of similar magnitude in young and older adults showing that the ability to use attention to selectively encode and update the contents of WM is preserved with aging. (PsycINFO Database Record PMID:27253868

  20. Visualization and cellular hierarchy inference of single-cell data using SPADE.

    Science.gov (United States)

    Anchang, Benedict; Hart, Tom D P; Bendall, Sean C; Qiu, Peng; Bjornson, Zach; Linderman, Michael; Nolan, Garry P; Plevritis, Sylvia K

    2016-07-01

    High-throughput single-cell technologies provide an unprecedented view into cellular heterogeneity, yet they pose new challenges in data analysis and interpretation. In this protocol, we describe the use of Spanning-tree Progression Analysis of Density-normalized Events (SPADE), a density-based algorithm for visualizing single-cell data and enabling cellular hierarchy inference among subpopulations of similar cells. It was initially developed for flow and mass cytometry single-cell data. We describe SPADE's implementation and application using an open-source R package that runs on Mac OS X, Linux and Windows systems. A typical SPADE analysis on a 2.27-GHz processor laptop takes ∼5 min. We demonstrate the applicability of SPADE to single-cell RNA-seq data. We compare SPADE with recently developed single-cell visualization approaches based on the t-distribution stochastic neighborhood embedding (t-SNE) algorithm. We contrast the implementation and outputs of these methods for normal and malignant hematopoietic cells analyzed by mass cytometry and provide recommendations for appropriate use. Finally, we provide an integrative strategy that combines the strengths of t-SNE and SPADE to infer cellular hierarchy from high-dimensional single-cell data. PMID:27310265

  1. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Ziomkiewicz, Iwona; Schulz, Alexander

    2013-01-01

    of cellulose fibril orientation and growth. The fluorescent dye Pontamine Fast Scarlet 4BS (PFS) was shown to stain cellulose with high specificity and could be used to visualize cellulose bundles in cell walls of Arabidopsis root epidermal cells with confocal microscopy. The resolution limit of confocal...... as alternatives 3D-structured illumination microscopy (3D-SIM) and confocal microscopy, combined with image deconvolution. Both methods offer lower resolution than STORM, but enable 3D imaging. While 3D-SIM produced strong artifacts, deconvolution gave good results. The resolution was improved over conventional...... confocal microscopy and the approach could be used to demonstrate differences in fibril orientation in different layers of the cell wall as well as particular cellulose fortifications around plasmodesmata. Conclusions Super-resolution light microscopy of PFS-stained cellulose fibrils is possible...

  2. Visualizing spatiotemporal dynamics of multicellular cell-cycle progressions with fucci technology.

    Science.gov (United States)

    Sakaue-Sawano, Asako; Miyawaki, Atsushi

    2014-05-01

    The visualization of cell-cycle behavior of individual cells within complex tissues presents an irresistible challenge to biologists studying multicellular structures. However, the transition from G1 to S in the cell cycle is difficult to monitor despite the fact that the process involves the critical decision to initiate a new round of DNA replication. Here, we use ubiquitination oscillators that control cell-cycle transitions to develop genetically encoded fluorescent probes for cell-cycle progression. Fucci (fluorescent ubiquitination-based cell-cycle indicator) probes exploit the regulation of cell-cycle-dependent ubiquitination to effectively label individual nuclei in G1 phase red, and those in S/G2/M phases green. Cultured cells and transgenic mice constitutively expressing the probes have been generated, such that every cell nucleus shows either red or green fluorescence. This protocol details two experiments that use biological samples expressing Fucci probes. One experiment involves time-lapse imaging of cells stably expressing a Fucci derivative (Fucci2), which allows for the exploration of the spatiotemporal patterns of cell-cycle dynamics during structural and behavioral changes of cultured cells. The other experiment involves large-field, high-resolution imaging of fixed sections of Fucci transgenic mouse embryos, which provides maps that illustrate cell proliferation versus differentiation in various developing organs.

  3. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  4. Multispectral fingerprinting for improved in vivo cell dynamics analysis

    Directory of Open Access Journals (Sweden)

    Cooper Cameron HJ

    2010-09-01

    Full Text Available Abstract Background Tracing cell dynamics in the embryo becomes tremendously difficult when cell trajectories cross in space and time and tissue density obscure individual cell borders. Here, we used the chick neural crest (NC as a model to test multicolor cell labeling and multispectral confocal imaging strategies to overcome these roadblocks. Results We found that multicolor nuclear cell labeling and multispectral imaging led to improved resolution of in vivo NC cell identification by providing a unique spectral identity for each cell. NC cell spectral identity allowed for more accurate cell tracking and was consistent during short term time-lapse imaging sessions. Computer model simulations predicted significantly better object counting for increasing cell densities in 3-color compared to 1-color nuclear cell labeling. To better resolve cell contacts, we show that a combination of 2-color membrane and 1-color nuclear cell labeling dramatically improved the semi-automated analysis of NC cell interactions, yet preserved the ability to track cell movements. We also found channel versus lambda scanning of multicolor labeled embryos significantly reduced the time and effort of image acquisition and analysis of large 3D volume data sets. Conclusions Our results reveal that multicolor cell labeling and multispectral imaging provide a cellular fingerprint that may uniquely determine a cell's position within the embryo. Together, these methods offer a spectral toolbox to resolve in vivo cell dynamics in unprecedented detail.

  5. Use of NeuroEyeCoach™ to Improve Eye Movement Efficacy in Patients with Homonymous Visual Field Loss

    Science.gov (United States)

    Zihl, Josef

    2016-01-01

    Visual field deficits are common in patients with damaged retinogeniculostriate pathways. The patient's eye movements are often affected leading to inefficient visual search. Systematic eye movement training also called compensatory therapy is needed to allow patients to develop effective coping strategies. There is a lack of evidence-based, clinical gold-standard registered medical device accessible to patients at home or in clinical settings and NeuroEyeCoach (NEC) is developed to address this need. In three experiments, we report on performance of patients on NEC compared to the data obtained previously on the earlier versions of the search task (n = 32); we assessed whether the self-administered computerised tasks can be used to monitor the progress (n = 24) and compared the findings in a subgroup of patients to a healthy control group. Performance on cancellation tasks, simple visual search, and self-reported responses on activities of daily living was compared, before and after training. Patients performed similarly well on NEC as on previous versions of the therapy; the inbuilt functionality for pre- and postevaluation functions was sensitive to allowing assessment of improvements; and improvements in patients were significantly greater than those in a group of healthy adults. In conclusion, NeuroEyeCoach can be used as an effective rehabilitation tool to develop compensatory strategies in patients with visual field deficits after brain injury.

  6. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function.

    Science.gov (United States)

    Reinis, S; Landolt, J P; Weiss, D S; Money, K E

    1984-03-01

    /he spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent (14)--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique (19). Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. In cats with intact labyrinths, D2O changed the optimal length of the light bar that was able to stimulate the cortical cell as well as the path on which it evoked the response of the cell. Both values, which constitute the receptive field of the cell, changed approximately proportionately. This effect usually lasts for less than 4.5 h. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells (and the other cellular characteristics studied) did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease

  7. Training regimen involving cyclic induction of pupil constriction during far accommodation improves visual acuity in myopic children

    Directory of Open Access Journals (Sweden)

    Kenji Yuda

    2010-04-01

    Full Text Available Kenji Yuda1, Hiroshi Uozato2, Naoto Hara3, Wolfram Tetzlaff4, Satoru Hisahara5, Hiroko Horie6, Satomi Nakajima6, Hidenori Horie6,71Kikuna Yuda Eye Clinic, Yokohama, Japan; 2Department of Ophthalmology and Visual Science, Kitasato  University, Kanagawa, Japan; 3Department of Ophthalmology, Yokohama Dental and Medical Clinic, Kanagawa Dental College, Yokohama, Japan; 4ICORD, International Collaboration on Repair Discoveries, Univ. of British Columbia, Vancouver, BC, Canada; 5Panasonic Shikoku Electronics Co., Ltd., Yokohama, Japan; 6TechnoMaster Co., Ltd., Yokohama, Japan; 7Research Center of Brain and Oral Science, Kanagawa Dental College, Yokosuka, JapanPurpose: Myopia in school-age children has become increasingly prevalent in industrialized countries, especially in Asia. A large population of school-age children still suffers from low visual acuity. We have developed a novel, safe and noninvasive training method to activate a pupillary constriction response during far accommodation that results in improved visual acuity.Methods: Myopic children (n = 95 were treated for 3-minute sessions up to twice a week for 12–106 weeks. We stimulated quick cycles of near/far accommodation by displaying a visual object on a LCD screen and moving the screen in cycles from a near (25 cm to a far (70 cm point and back, while keeping the retinal projection size and brightness of the object constant. Results: Mechanistically, we noted pupillary constriction upon far accommodation in trained myopic children, which was not seen in normal subjects or in untrained myopic children. Eighty five percent (52/61 of trained myopic right eyes with two sessions weekly experienced improved visual acuity (VA by more than 0.1 logMAR units with an average improvement of 0.30 ± 0.03 standard error of mean (SEM logMAR units. With maintained training, most eyes’ improved VA stayed almost constant, for more than 50 weeks in the case of 12 long trained subjects

  8. Environmental enrichment preserved lifelong ocular dominance plasticity, but did not improve visual abilities.

    Science.gov (United States)

    Greifzu, Franziska; Kalogeraki, Evgenia; Löwel, Siegrid

    2016-05-01

    In standard cage (SC)-raised mice, ocular dominance (OD) plasticity of the primary visual cortex (V1) induced by monocular deprivation (MD) is maximal in juveniles, declines in adults, and is absent beyond postnatal day (PD) 110. Raising mice in an enriched environment (EE) preserved a juvenile-like OD plasticity after 7 days of MD until at least PD196, mediated by reductions of deprived eye responses in V1. Whether the sensitive phase for OD plasticity can be prolonged into older age and whether long-term EE modifies visual abilities was not yet known. Here, we demonstrate that EE raising enables lifelong OD plasticity. In contrast to PD200 EE-mice, the preserved OD shift in both >PD400 and >PD700 EE-mice was mediated by increases in open eye responses in V1 (adult OD plasticity). When SC-mice were transferred to EE after PD110, OD plasticity was restored until PD922. Moreover, visual abilities tested by both optomotry and the visual water task and interindividual variability were not different between PD700 SC- and EE-mice. Taken together, EE raising enabled a lifelong OD plasticity but did not affect basic visual performance.

  9. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.

    Directory of Open Access Journals (Sweden)

    Alex Costa

    Full Text Available Selective Plane Illumination Microscopy (SPIM is an imaging technique particularly suited for long term in-vivo analysis of transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET. Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca(2+ probe Cameleon, in the cytosol or nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca(2+ dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological phenomenon, namely Ca(2+ signal percolation, predicted in previous studies, has been directly visualized.

  10. The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex

    OpenAIRE

    Finn, Ian M.; Priebe, Nicholas J.; Ferster, David

    2007-01-01

    Simple cells in primary visual cortex exhibit contrast-invariant orientation tuning, in seeming contradiction to feed-forward models relying on lateral geniculate nucleus (LGN) input alone. Contrast invariance has therefore been thought to depend on the presence of intracortical lateral inhibition. In vivo intracellular recordings instead suggest that contrast invariance can be explained by three properties of the excitatory pathway. 1) Depolarizations evoked by orthogonal stimuli are determi...

  11. Method of constructing an improved electrochemical cell

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry

    1984-10-09

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  12. A CAI System for Visually Impaired Children to Improve Abilities of Orientation and Mobility

    Science.gov (United States)

    Yoneda, Takahiro; Kudo, Hiroaki; Minagawa, Hiroki; Ohnishi, Noboru; Matsubara, Shizuya

    Some visually impaired children have difficulty in simple locomotion, and need orientation and mobility training. We developed a computer assisted instruction system which assists this training. A user realizes a task given by a tactile map and synthesized speech. The user walks around a room according to the task. The system gives the gap of walk path from its target path via both auditory and tactile feedback after the end of a task. Then the user can understand how well the user walked. We describe the detail of the proposed system and task, and the experimental result with three visually impaired children.

  13. An Improved Model of Producing Saliency Map for Visual Attention System

    Science.gov (United States)

    Huang, Jingang; Kong, Bin; Cheng, Erkang; Zheng, Fei

    The iLab Neuromorphic Vision Toolkit (iINVT), steadily kept up to date by the group around Laurent Itti, is one of the currently best known attention systems. Their model of bottom up or saliency-based visual attention as well as their implementation serves as a basis for many research groups. How to combine the feature maps finally into the saliency map is a key point for this kind of visual attention system. We modified the original model of Laurent Itti to make it more corresponding with our perception.

  14. Real-time visualization of oxygen partial pressures in straight channels of running polymer electrolyte fuel cell with water plugging

    Science.gov (United States)

    Nagase, Katsuya; Suga, Takeo; Nagumo, Yuzo; Uchida, Makoto; Inukai, Junji; Nishide, Hiroyuki; Watanabe, Masahiro

    2015-01-01

    Visualization inside polymer electrolyte fuel cells (PEFCs) for elucidating the reaction distributions is expected to improve the performance, durability, and stability. An oxygen-sensitive film of a luminescent porphyrin was used to visualize the oxygen partial pressures in five straight gas-flow channels of a running PEFC with liquid-water blockages formed at the end of the channels. The blockage greatly lowered and unstabilized the cell voltage. The oxygen partial pressure decreased nearly to 0 kPa in the blocked channel. With a water blockage in a channel, the oxygen partial pressures in the adjacent channels were lowered due to an extra demand of oxygen consumption. When the number of the blocked channels increased, the oxygen partial pressure in the unblocked channels became much lowered. When the water blockages disappeared, the oxygen partial pressures quickly returned to the values before plugging. The influence of the cross flows of air through the gas diffusion layers in straight channels was much smaller than that in serpentine flow channels.

  15. Nanostructured upconverters for improved solar cell performance

    Science.gov (United States)

    MacQueen, Rowan W.; Schulze, Tim F.; Khoury, Tony; Cheng, Yuen Yap; Stannowski, Bernd; Lips, Klaus; Crossley, Maxwel J.; Schmidt, Timothy

    2013-09-01

    Triplet-triplet annihilation photon upconversion (TTA-UC) is a promising candidate for mitigating sub-band gap absorption losses in solar cells. In TTA-UC, sensitiser dyes absorb sub-band gap photons, cross to a triplet state, and transfer triplet excitons to emitter dyes. Two triplet-excited emitters can undergo TTA, raising one emitter to a higher-energy bright singlet state. The quadratic efficiency of TTA-UC at device-relevant light intensities motivates a push towards the higher chromophore densities achievable in the solid phase. We have begun this process by tethering tetrakisquinoxalino palladium porphyrin to 20nm silica nanoparticles using peptide chemistry techniques, achieving a total-volume concentration of 1.5mM. The phosphorescence kinetics of the tethered porphyrins was measured to quantify quenching by rubrene emitter. Upconverter performance was measured in a solar cell enhancement experiment.

  16. Improving target detection in visual search through the augmenting multi-sensory cues

    NARCIS (Netherlands)

    Hancock, P.A.; Mercado, J.E.; Merlo, J.; Erp, J.B.F. van

    2013-01-01

    The present experiment tested 60 individuals on a multiple screen, visual target detection task. Using a within-participant design, individuals received no-cue augmentation, an augmenting tactile cue alone, an augmenting auditory cue alone or both of the latter augmentations in combination. Results

  17. Improving visual attention : the effect of Warning signs with different formats

    OpenAIRE

    Yao, Zheng; SUTO, Hidetsugu

    2015-01-01

    Designed warning signs were applied in this study to describe the performance of visual attention with different formats of stimulation. The dependent variables had be obtained from an eye movement experiment. A new proposal about how to sort experimental materials will be proposed.

  18. Improving Synthetic Biology Communication: Recommended Practices for Visual Depiction and Digital Submission of Genetic Designs.

    Science.gov (United States)

    Hillson, Nathan J; Plahar, Hector A; Beal, Jacob; Prithviraj, Ranjini

    2016-06-17

    Research is communicated more effectively and reproducibly when articles depict genetic designs consistently and fully disclose the complete sequences of all reported constructs. ACS Synthetic Biology is now providing authors with updated guidance and piloting a new tool and publication workflow that facilitate compliance with these recommended practices and standards for visual representation and data exchange.

  19. From Open Geographical Data to Tangible Maps: Improving the Accessibility of Maps for Visually Impaired People

    Science.gov (United States)

    Ducasse, J.; Macé, M.; Jouffrais, C.

    2015-08-01

    Visual maps must be transcribed into (interactive) raised-line maps to be accessible for visually impaired people. However, these tactile maps suffer from several shortcomings: they are long and expensive to produce, they cannot display a large amount of information, and they are not dynamically modifiable. A number of methods have been developed to automate the production of raised-line maps, but there is not yet any tactile map editor on the market. Tangible interactions proved to be an efficient way to help a visually impaired user manipulate spatial representations. Contrary to raised-line maps, tangible maps can be autonomously constructed and edited. In this paper, we present the scenarios and the main expected contributions of the AccessiMap project, which is based on the availability of many sources of open spatial data: 1/ facilitating the production of interactive tactile maps with the development of an open-source web-based editor; 2/ investigating the use of tangible interfaces for the autonomous construction and exploration of a map by a visually impaired user.

  20. Improving Synthetic Biology Communication: Recommended Practices for Visual Depiction and Digital Submission of Genetic Designs.

    Science.gov (United States)

    Hillson, Nathan J; Plahar, Hector A; Beal, Jacob; Prithviraj, Ranjini

    2016-06-17

    Research is communicated more effectively and reproducibly when articles depict genetic designs consistently and fully disclose the complete sequences of all reported constructs. ACS Synthetic Biology is now providing authors with updated guidance and piloting a new tool and publication workflow that facilitate compliance with these recommended practices and standards for visual representation and data exchange. PMID:27267452

  1. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    Science.gov (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems.

  2. Spontaneous Resolution of Retinal Pigment Epithelial Detachments and Visual Improvement in Patient with MPGN II: A Case Report

    Directory of Open Access Journals (Sweden)

    T. Empeslidis

    2012-01-01

    Full Text Available A 31-year-old female suffering from membranoproliferative glomerulonephritis type II (MPGN II presented to the Eye Casualty Department reporting a history of blurred and distorted vision. The patient appeared to have drusenoid retinal epithelial detachments and minimal intraretinal fluid. The subretinal deposits, basal lamina drusen, and pigment epithelial detachment appeared to resemble a “stars in the sky” picture with no symmetry between the eyes. The retinal pigment epithelial detachments improved and flattened over 18 month. and the best corrected visual acuity improved in the most affected eye. There was no evidence of neovascularization, and the intraretinal fluid disappeared spontaneously.

  3. An improved self-calibration approach based on adaptive genetic algorithm for position-based visual servo

    Institute of Scientific and Technical Information of China (English)

    Ding LIU; Xiongjun WU; Yanxi YANG

    2008-01-01

    An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper.Our approach introduces an extension of Mendonca-Cipolla and G.Chesi's self-calibration for the positionbased visual servo technique which exploits the singular value property of the essential matrix.Specifically,a suitable dynamic online cost function is generated according to the property of the three singular values.The visual servo process is carried out simultaneous to the dynamic self-calibration,and then the cost function is minirmzed using the adaptive genetic algorithm instead of the gradient descent method in G.Chesi's approach.Moreover,this method overcomes the limitation that the initial parameters must be selected close to the true value,which is not constant in many cases.It is not necessary to know exactly the camera intrinsic parameters when using our approach,instead,coarse coding bounds ot the five parameters are enough for the algorithm,which can be done once and for all off-line.Besides,this algorithm does not require knowledge of the 3D model of the object.Simulation experiments are carried out and the results demonstrate that the proposed approach provides a fast convergence speed and robustness against unpredictable perturbalaons of camera parameters,and it is an effective and efficient visual scrvo algorithm.

  4. Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    CERN Document Server

    Chattopadhyay, Manojit; Dan, Pranab K; 10.1007/s00170-010-2802-4

    2011-01-01

    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in t...

  5. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    OpenAIRE

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to...

  6. Optimizing autologous cell grafts to improve stem cell gene therapy.

    Science.gov (United States)

    Psatha, Nikoletta; Karponi, Garyfalia; Yannaki, Evangelia

    2016-07-01

    Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts. PMID:27106799

  7. A two- and three-dimensional approach for visualizing human embryonic stem cell differentiation

    DEFF Research Database (Denmark)

    Brøchner, Christian Beltoft; Vestentoft, Peter S; Lynnerup, Niels;

    2010-01-01

    Undifferentiated human embryonic stem cells are characterized by expression of specific cell markers like the transcription factors OCT4, SOX2, and NANOG, the stage-specific embryonic antigen SSEA4, and the tumor-related antigens TRA-1-60 and TRA-1-81 and by their ability to differentiate under...... be accomplished. An extended version of this technique even allows for a high-magnification 3D-reconstruction of an area of interest (AOI), e.g., the developing hepatic stem cells. These techniques allow both a 2D and a 3D visualization of hESC colonies and lead to new insights into and information about...... the interaction of stem cells....

  8. Performance of the Sellick maneuver significantly improves when residents and trained nurses use a visually interactive guidance device in simulation

    International Nuclear Information System (INIS)

    We examined the proper performance of the Sellick maneuver, a maneuver used to reduce the risk of aspiration of stomach contents during induction of general anesthesia, using a novel device that measures and visualizes the force applied to the cricoid cartilage using thin-film force sensitive resistors in a form suitable for in vivo use. Performance was tested in three stages with twenty anaesthesiology residents and twenty trained operating room nurses. Firstly, subjects applied force to the cricoid cartilage as was customary to them. Secondly, subjects used the device to guide the application of that force. Thirdly, subjects were again asked to perform the manoeuvre without visual guidance. Each test lasted 1 min and the amount of force applied was measured throughout. Overall, the Sellick maneuver was often not applied properly, with large variance between individual subjects. Performance and inter-subject consistency improved to a very highly significant degree when subjects were able to use the device as a visual guide (p < 0.001). Subsequent significant improvements in performances during the last, unguided test demonstrated that the device initiated learning. (paper)

  9. Towards Improving the Mental Model of Software Developers through Cartographic Visualization

    CERN Document Server

    Kuhn, Adrian; Nierstrasz, Oscar

    2010-01-01

    Software is intangible and knowledge about software systems is typically tacit. The mental model of software developers is thus an important factor in software engineering. It is our vision that developers should be able to refer to code as being "up in the north", "over in the west", or "down-under in the south". We want to provide developers, and everyone else involved in software development, with a *shared*, spatial and stable mental model of their software project. We aim to reinforce this by embedding a cartographic visualization in the IDE (Integrated Development Environment). The visualization is always visible in the bottom-left, similar to the GPS navigation device for car drivers. For each development task, related information is displayed on the map. In this paper we present CODEMAP, an eclipse plug-in, and report on preliminary results from an ongoing user study with professional developers and students.

  10. Data visualization

    CERN Document Server

    Azzam, Tarek

    2013-01-01

    Do you communicate data and information to stakeholders? In Part 1, we introduce recent developments in the quantitative and qualitative data visualization field and provide a historical perspective on data visualization, its potential role in evaluation practice, and future directions. Part 2 delivers concrete suggestions for optimally using data visualization in evaluation, as well as suggestions for best practices in data visualization design. It focuses on specific quantitative and qualitative data visualization approaches that include data dashboards, graphic recording, and geographic information systems (GIS). Readers will get a step-by-step process for designing an effective data dashboard system for programs and organizations, and various suggestions to improve their utility.

  11. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice

    Directory of Open Access Journals (Sweden)

    Mohammadreza Gholami

    2014-02-01

    Conclusion: Administration of melatonin (20 mg/kg simultaneously with transplantation of spermatogonial stem cells in azoospermia mouse testis increases the efficiency of transplantation and improves structural properties of the testes tissue.

  12. Tools for Improving the Characterization and Visualization of Changes in Neuro-Oncology Patients

    OpenAIRE

    Hsu, William; Taira, Ricky K.

    2010-01-01

    Capturing how a patient’s medical problems change over time is important for understanding the progression of a disease, its effects, and response to treatment. We describe two prototype tools that are being developed as part of a data processing pipeline for standardizing, structuring, and visualizing problems and findings documented in clinical reports associated with neuro-oncology patients. Given a list of problems and findings identified using a natural language processing (NLP) system, ...

  13. Improved MOGA-tuning and visualization for a hybrid control system

    OpenAIRE

    Stirrup, R.; Chipperfield, A.J.

    2005-01-01

    A hybrid controller is developed for a solar-thermal power plant using a gain-scheduled controller with feedforward to control the more linear operating regimes and a fuzzy PI incremental controller for the highly nonlinear operating region of the plant. An enhanced method of MOGA-tuning is employed by first optimizing the number of input/output membership functions using neuro-fuzzy data clustering. Enhancements to the visualization properties of the MOGA's graphical user interface are evalu...

  14. Allium sativum L. Improves Visual Memory and Attention in Healthy Human Volunteers

    OpenAIRE

    Sara Tasnim; Parsa Sanjana Haque; Md. Sazzadul Bari; Md Monir Hossain; Sardar Mohd. Ashraful Islam; Mohammad Shahriar; Mohiuddin Ahmed Bhuiyan; Muhammad Shahdaat Bin Sayeed

    2015-01-01

    Studies have shown that Allium sativum L. (AS) protects amyloid-beta peptide-induced apoptosis, prevents oxidative insults to neurons and synapses, and thus prevent Alzheimer's disease progression in experimental animals. However, there is no experimental evidence in human regarding its putative role in memory and cognition. We have studied the effect of AS consumption by healthy human volunteers on visual memory, verbal memory, attention, and executive function in comparison to control subje...

  15. Direct visualization of Agrobacterium-delivered VirE2 in recipient cells.

    Science.gov (United States)

    Li, Xiaoyang; Yang, Qinghua; Tu, Haitao; Lim, Zijie; Pan, Shen Q

    2014-02-01

    Agrobacterium tumefaciens is a natural genetic engineer widely used to deliver DNA into various recipients, including plant, yeast and fungal cells. The bacterium can transfer single-stranded DNA molecules (T-DNAs) and bacterial virulence proteins, including VirE2. However, neither the DNA nor the protein molecules have ever been directly visualized after the delivery. In this report, we adopted a split-GFP approach: the small GFP fragment (GFP11) was inserted into VirE2 at a permissive site to create the VirE2-GFP11 fusion, which was expressed in A. tumefaciens; and the large fragment (GFP1-10) was expressed in recipient cells. Upon delivery of VirE2-GFP11 into the recipient cells, GFP fluorescence signals were visualized. VirE2-GFP11 was functional like VirE2; the GFP fusion movement could indicate the trafficking of Agrobacterium-delivered VirE2. As the natural host, all plant cells seen under a microscope received the VirE2 protein in a leaf-infiltration assay; most of VirE2 moved at a speed of 1.3-3.1 μm sec⁻¹ in a nearly linear direction, suggesting an active trafficking process. Inside plant cells, VirE2-GFP formed filamentous structures of different lengths, even in the absence of T-DNA. As a non-natural host recipient, 51% of yeast cells received VirE2, which did not move inside yeast. All plant cells seen under a microscope transiently expressed the Agrobacterium-delivered transgene, but only 0.2% yeast cells expressed the transgene. This indicates that Agrobacterium is a more efficient vector for protein delivery than T-DNA transformation for a non-natural host recipient: VirE2 trafficking is a limiting factor for the genetic transformation of a non-natural host recipient. The split-GFP approach could enable the real-time visualization of VirE2 trafficking inside recipient cells. PMID:24299048

  16. Verbal to visual code switching improves working memory in older adults: An fMRI study

    Directory of Open Access Journals (Sweden)

    Mariko eOsaka

    2012-02-01

    Full Text Available The effects of verbal to visual code switching training on working memory performance were investigated in the elderly. Twenty-five elderly people were introduced to a verbal to visual code switching strategy (training group while the other 25 were not (control group. During this strategy training period, participants in the training group practiced focusing their attention on a target word both by drawing the target’s figure and by forming mental images of the target. To explore the neural substrates underlying strategy effects, fMRI was used to measure brain activity of the elderly in both groups while they performed a working memory task (reading span test, RST, before and after the attention training period. RST recognition accuracy was enhanced only in the training group. fMRI data for this group showed increased activation in the anterior cingulate cortex (ACC, a region that typically shows activation in young adults performing the RST. Furthermore, activation was found both in the left and right inferior parietal lobule (IPL and right superior parietal lobule (SPL, while there was no activation in these areas for the control group. These findings suggest that using a strategy of verbal to visual code switching helped the elderly participants to maintain the words in working memory.

  17. An amalgamation of 3D city models in urban air quality modelling for improving visual impact analysis

    DEFF Research Database (Denmark)

    Ujang, U.; Anton, F.; Ariffin, A.;

    2015-01-01

    Geographical Information Systems (GISs) can be seen as a common tool to map and visualize the air quality index based on geographical locations. However, in urban areas, the area resolution for air quality models is less than 2 kilometres.Since the main emissions agent in urban areas...... as physical data input. The Level of Details (LoD) in 3D city models (i.e. LoD1 and LoD2) ascertains the potentials of implementing air quality modelling for urban areas. Therefore, this research is focused towards investigating the integration of 3D city models in air quality modelling for urban areas....... The results presented show the simplicity of using 3D city models as a physical data input in air quality modelling and the 3D air quality will improve insight for visual impact analysis (i.e. analysing the immersion of are circulation zone). The results are advantageous for city planners, architects...

  18. Visualization of the interstitial cells of cajal (ICC) network in mice.

    Science.gov (United States)

    Chen, Yu; Shamu, Tambudzai; Chen, Hui; Besmer, Peter; Sawyers, Charles L; Chi, Ping

    2011-01-01

    The interstitial cells of Cajal (ICC) are mesenchymal derived "pacemaker cells" of the gastrointestinal (GI) tract that generate spontaneous slow waves required for peristalsis and mediate neuronal input from the enteric nervous system 1. Different subtypes of ICC form distinct networks in the muscularis of the GI tract (2,3). Loss or injury to these networks is associated with a number of motility disorders(4). ICC cells express the KIT receptor tyrosine kinase on the plasma membrane and KIT immunostaining has been used for the past 15 years to label the ICC network(5,6). Importantly, normal KIT activity is required for ICC development(5,6). Neoplastic transformation of ICC cells results in gastrointestinal stromal tumor (GIST), that frequently harbor gain-of-function KIT mutations(7,8). We recently showed that ETV1 is a lineage-specific survival factor expressed in the ICC/GIST lineage and is a master transcriptional regulator required for both normal ICC network formation and for of GIST tumorigenesis(9). We further demonstrate that it cooperates with activating KIT mutations in tumorigenesis. Here, we describe methods for visualization of ICC networks in mice, largely based on previously published protocols(10,11). More recently, the chloride channel anoctamin 1 (ANO1) has also been characterized as a specific membrane marker of ICC(11,12). Because of their plasma membrane localization, immunofluorescence of both proteins can be used to visualize the ICC networks. Here, we describe visualization of the ICC networks by fixed-frozen cyrosections and whole mount preparations.

  19. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere

    DEFF Research Database (Denmark)

    Steidle, A.; Sigl, K.; Schuhegger, R.;

    2001-01-01

    -negative derivatives of Pseudomonas putida IsoF and Serratia liquefaciens MG1, two strains that are capable of colonizing tomato roots. These AHL monitor strains were used to visualize communication between defined bacterial populations in the rhizosphere of axenically grown tomato plants. Furthermore, we integrated...... developed and characterized novel Gfp-based monitor strains that allow in situ visualization of AHL-mediated communication between individual cells in the plant rhizosphere. For this purpose, three Gfp-based AHL sensor plasmids that respond to different spectra of AHL molecules were transferred into AHL...... AHL molecules. The results strongly support the view that AHL signal molecules serve as a universal language for communication between the different bacterial populations of the rhizosphere consortium....

  20. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies.

  1. Ciprofloxacin Improves the Stemness of Human Dermal Papilla Cells

    Directory of Open Access Journals (Sweden)

    Chayanin Kiratipaiboon

    2016-01-01

    Full Text Available Improvement in the expansion method of adult stem cells may augment their use in regenerative therapy. Using human dermal papilla cell line as well as primary dermal papilla cells as model systems, the present study demonstrated that ciprofloxacin treatment could prevent the loss of stemness during culture. Clonogenicity and stem cell markers of dermal papilla cells were shown to gradually decrease in the culture in a time-dependent manner. Treatment of the cells with nontoxic concentrations of ciprofloxacin could maintain both stem cell morphology and clonogenicity, as well as all stem cells markers. We found that ciprofloxacin exerted its effect through ATP-dependent tyrosine kinase/glycogen synthase kinase3β dependent mechanism which in turn upregulated β-catenin. Besides, ciprofloxacin was shown to induce epithelial-mesenchymal transition in DPCs as the transcription factors ZEB1 and Snail were significantly increased. Furthermore, the self-renewal proteins of Wnt/β-catenin pathway, namely, Nanog and Oct-4 were significantly upregulated in the ciprofloxacin-treated cells. The effects of ciprofloxacin in preserving stem cell features were confirmed in the primary dermal papilla cells directly obtained from human hair follicles. Together, these results revealed a novel application of ciprofloxacin for stem cell maintenance and provided the underlying mechanisms that are responsible for the stemness in dermal papilla cells.

  2. Demonstration of a visual cell-based assay for screening glucose transporter 4 translocation modulators in real time

    Indian Academy of Sciences (India)

    Maleppillil Vavachan Vijayakumar; Amrendra Kumar Ajay; Manoj Kumar Bhat

    2010-12-01

    Insulin-stimulated translocation of glucose transporter 4 (GLUT4) to cell membrane leading to glucose uptake is the rate-limiting step in diabetes. It is also a defined target of antidiabetic drug research. Existing GLUT4 translocation assays are based on time-consuming immunoassays and are hampered by assay variability and low sensitivity. We describe a real-time, visual, cell-based qualitative GLUT4 translocation assay using CHO-HIRc-myc-GLUT4eGFP cells that stably express myc- and eGFP-tagged GLUT4 in addition to human insulin receptor (HIRc). GLUT4 translocation is visualized by live cell imaging based on GFP fluorescence by employing a cooled charge-coupled device camera attached to a fluorescent microscope. This video imaging method and further quantitative analysis of GLUT4 on the cell membrane provide rapid and foolproof visual evidence that this method is suitable for screening GLUT4 translocation modulators.

  3. Focal electrical stimulation of major ganglion cell types in the primate retina for the design of visual prostheses.

    Science.gov (United States)

    Jepson, Lauren H; Hottowy, Pawel; Mathieson, Keith; Gunning, Deborah E; Dabrowski, Wladyslaw; Litke, Alan M; Chichilnisky, E J

    2013-04-24

    Electrical stimulation of retinal neurons with an advanced retinal prosthesis may eventually provide high-resolution artificial vision to the blind. However, the success of future prostheses depends on the ability to activate the major parallel visual pathways of the human visual system. Electrical stimulation of the five numerically dominant retinal ganglion cell types was investigated by simultaneous stimulation and recording in isolated peripheral primate (Macaca sp.) retina using multi-electrode arrays. ON and OFF midget, ON and OFF parasol, and small bistratified ganglion cells could all be activated directly to fire a single spike with submillisecond latency using brief pulses of current within established safety limits. Thresholds for electrical stimulation were similar in all five cell types. In many cases, a single cell could be specifically activated without activating neighboring cells of the same type or other types. These findings support the feasibility of direct electrical stimulation of the major visual pathways at or near their native spatial and temporal resolution.

  4. Fast, memory-efficient cell location in unstructured grids for visualization.

    Science.gov (United States)

    Garth, Christoph; Joy, Kenneth I

    2010-01-01

    Applying certain visualization techniques to datasets described on unstructured grids requires the interpolation of variables of interest at arbitrary locations within the dataset's domain of definition. Typical solutions to the problem of finding the grid element enclosing a given interpolation point make use of a variety of spatial subdivision schemes. However, existing solutions are memory- intensive, do not scale well to large grids, or do not work reliably on grids describing complex geometries. In this paper, we propose a data structure and associated construction algorithm for fast cell location in unstructured grids, and apply it to the interpolation problem. Based on the concept of bounding interval hierarchies, the proposed approach is memory-efficient, fast and numerically robust. We examine the performance characteristics of the proposed approach and compare it to existing approaches using a number of benchmark problems related to vector field visualization. Furthermore, we demonstrate that our approach can successfully accommodate large datasets, and discuss application to visualization on both CPUs and GPUs.

  5. Improving the visualization of electron-microscopy data through optical flow interpolation

    KAUST Repository

    Carata, Lucian

    2013-01-01

    Technical developments in neurobiology have reached a point where the acquisition of high resolution images representing individual neurons and synapses becomes possible. For this, the brain tissue samples are sliced using a diamond knife and imaged with electron-microscopy (EM). However, the technique achieves a low resolution in the cutting direction, due to limitations of the mechanical process, making a direct visualization of a dataset difficult. We aim to increase the depth resolution of the volume by adding new image slices interpolated from the existing ones, without requiring modifications to the EM image-capturing method. As classical interpolation methods do not provide satisfactory results on this type of data, the current paper proposes a re-framing of the problem in terms of motion volumes, considering the depth axis as a temporal axis. An optical flow method is adapted to estimate the motion vectors of pixels in the EM images, and this information is used to compute and insert multiple new images at certain depths in the volume. We evaluate the visualization results in comparison with interpolation methods currently used on EM data, transforming the highly anisotropic original dataset into a dataset with a larger depth resolution. The interpolation based on optical flow better reveals neurite structures with realistic undistorted shapes, and helps to easier map neuronal connections. © 2011 ACM.

  6. Visa: AN Automatic Aware and Visual Aids Mechanism for Improving the Correct Use of Geospatial Data

    Science.gov (United States)

    Hong, J. H.; Su, Y. T.

    2016-06-01

    With the fast growth of internet-based sharing mechanism and OpenGIS technology, users nowadays enjoy the luxury to quickly locate and access a variety of geospatial data for the tasks at hands. While this sharing innovation tremendously expand the possibility of application and reduce the development cost, users nevertheless have to deal with all kinds of "differences" implicitly hidden behind the acquired georesources. We argue the next generation of GIS-based environment, regardless internet-based or not, must have built-in knowledge to automatically and correctly assess the fitness of data use and present the analyzed results to users in an intuitive and meaningful way. The VISA approach proposed in this paper refer to four different types of visual aids that can be respectively used for addressing analyzed results, namely, virtual layer, informative window, symbol transformation and augmented TOC. The VISA-enabled interface works in an automatic-aware fashion, where the standardized metadata serve as the known facts about the selected geospatial resources, algorithms for analyzing the differences of temporality and quality of the geospatial resources were designed and the transformation of analyzed results into visual aids were automatically executed. It successfully presents a new way for bridging the communication gaps between systems and users. GIS has been long seen as a powerful integration tool, but its achievements would be highly restricted if it fails to provide a friendly and correct working platform.

  7. Spatial phase sensitivity of complex cells in primary visual cortex depends on stimulus contrast.

    Science.gov (United States)

    Meffin, H; Hietanen, M A; Cloherty, S L; Ibbotson, M R

    2015-12-01

    Neurons in primary visual cortex are classified as simple, which are phase sensitive, or complex, which are significantly less phase sensitive. Previously, we have used drifting gratings to show that the phase sensitivity of complex cells increases at low contrast and after contrast adaptation while that of simple cells remains the same at all contrasts (Cloherty SL, Ibbotson MR. J Neurophysiol 113: 434-444, 2015; Crowder NA, van Kleef J, Dreher B, Ibbotson MR. J Neurophysiol 98: 1155-1166, 2007; van Kleef JP, Cloherty SL, Ibbotson MR. J Physiol 588: 3457-3470, 2010). However, drifting gratings confound the influence of spatial and temporal summation, so here we have stimulated complex cells with gratings that are spatially stationary but continuously reverse the polarity of the contrast over time (contrast-reversing gratings). By varying the spatial phase and contrast of the gratings we aimed to establish whether the contrast-dependent phase sensitivity of complex cells results from changes in spatial or temporal processing or both. We found that most of the increase in phase sensitivity at low contrasts could be attributed to changes in the spatial phase sensitivities of complex cells. However, at low contrasts the complex cells did not develop the spatiotemporal response characteristics of simple cells, in which paired response peaks occur 180° out of phase in time and space. Complex cells that increased their spatial phase sensitivity at low contrasts were significantly overrepresented in the supragranular layers of cortex. We conclude that complex cells in supragranular layers of cat cortex have dynamic spatial summation properties and that the mechanisms underlying complex cell receptive fields differ between cortical layers.

  8. Exercise and physical training improve physical function in older adults with visual impairments but their effect on falls is unclear: a systematic review

    Directory of Open Access Journals (Sweden)

    Michael Gleeson

    2014-09-01

    [Gleeson M, Sherrington C, Keay L (2014 Exercise and physical training improve physical function in older adults with visual impairments but their effect on falls is unclear: a systematic review. Journal of Physiotherapy 60: 130–135

  9. Visualizing the Histotripsy Process: Bubble Cloud-Cancer Cell Interactions in a Tissue-Mimicking Environment.

    Science.gov (United States)

    Vlaisavljevich, Eli; Maxwell, Adam; Mancia, Lauren; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2016-10-01

    Histotripsy is a non-invasive ultrasonic ablation method that uses cavitation to mechanically fractionate tissue into acellular debris. With a sufficient number of pulses, histotripsy can completely fractionate tissue into a liquid-appearing homogenate with no cellular structures. The location, shape and size of lesion formation closely match those of the cavitation cloud. Previous work has led to the hypothesis that the rapid expansion and collapse of histotripsy bubbles fractionate tissue by inducing large stress and strain on the tissue structures immediately adjacent to the bubbles. In the work described here, the histotripsy bulk tissue fractionation process is visualized at the cellular level for the first time using a custom-built 2-MHz transducer incorporated into a microscope stage. A layer of breast cancer cells were cultured within an optically transparent fibrin-based gel phantom to mimic cells inside a 3-D extracellular matrix. To test the hypothesis, the cellular response to single and multiple histotripsy pulses was investigated using high-speed optical imaging. Bubbles were always generated in the extracellular space, and significant cell displacement/deformation was observed for cells directly adjacent to the bubble during both bubble expansion and collapse. The largest displacements were observed during collapse for cells immediately adjacent to the bubble, with cells moving more than 150-300 μm in less than 100 μs. Cells often underwent multiple large deformations (>150% strain) over multiple pulses, resulting in the bisection of cells multiple times before complete removal. To provide theoretical support to the experimental observations, a numerical simulation was conducted using a single-bubble model, which indicated that histotripsy exerts the largest strains and cell displacements in the regions immediately adjacent to the bubble. The experimental and simulation results support our hypothesis, which helps to explain the formation of the

  10. Tools for improving the characterization and visualization of changes in neuro-oncology patients.

    Science.gov (United States)

    Hsu, William; Taira, Ricky K

    2010-11-13

    Capturing how a patient's medical problems change over time is important for understanding the progression of a disease, its effects, and response to treatment. We describe two prototype tools that are being developed as part of a data processing pipeline for standardizing, structuring, and visualizing problems and findings documented in clinical reports associated with neuro-oncology patients. Given a list of problems and findings identified using a natural language processing (NLP) system, we have created a mapping tool that assigns an observation of a problem to one of nine classes that describe change. The second tool utilizes iconic representations of the nine classes to generate a timeline interface, enabling users to pan, zoom, and filter the data. The result of this preliminary work is an automated approach for understanding and summarizing the evolution of a problem within the patient electronic medical record.

  11. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    Directory of Open Access Journals (Sweden)

    Nazli eEmadi

    2014-11-01

    Full Text Available Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (< 8 Hz oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance.

  12. Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures.

    Science.gov (United States)

    Iwai, Masakazu; Yokono, Makio; Kurokawa, Kazuo; Ichihara, Akira; Nakano, Akihiko

    2016-01-01

    The intricate molecular processes underlying photosynthesis have long been studied using various analytic approaches. However, the three-dimensional (3D) dynamics of such photosynthetic processes remain unexplored due to technological limitations related to investigating intraorganellar mechanisms in vivo. By developing a system for high-speed 3D laser scanning confocal microscopy combined with high-sensitivity multiple-channel detection, we visualized excitation energy dynamics in thylakoid structures within chloroplasts of live Physcomitrella patens cells. Two distinct thylakoid structures in the chloroplast, namely the grana and stroma lamellae, were visualized three-dimensionally in live cells. The simultaneous detection of the shorter (than ~670 nm) and longer (than ~680 nm) wavelength regions of chlorophyll (Chl) fluorescence reveals different spatial characteristics-irregular and vertical structures, respectively. Spectroscopic analyses showed that the shorter and longer wavelength regions of Chl fluorescence are affected more by free light-harvesting antenna proteins and photosystem II supercomplexes, respectively. The high-speed 3D time-lapse imaging of the shorter and longer wavelength regions also reveals different structural dynamics-rapid and slow movements within 1.5 seconds, respectively. Such structural dynamics of the two wavelength regions of Chl fluorescence would indicate excitation energy dynamics between light-harvesting antenna proteins and photosystems, reflecting the energetically active nature of photosynthetic proteins in thylakoid membranes. PMID:27416900

  13. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  14. Improved Computational Model of Grid Cells Based on Column Structure

    Institute of Scientific and Technical Information of China (English)

    Yang Zhou; Dewei Wu; Weilong Li; Jia Du

    2016-01-01

    To simulate the firing pattern of biological grid cells, this paper presents an improved computational model of grid cells based on column structure. In this model, the displacement along different directions is processed by modulus operation, and the obtained remainder is associated with firing rate of grid cell. Compared with the original model, the improved parts include that: the base of modulus operation is changed, and the firing rate in firing field is encoded by Gaussian⁃like function. Simulation validates that the firing pattern generated by the improved computational model is more consistent with biological characteristic than original model. Besides, the firing pattern is badly influenced by the cumulative positioning error, but the computational model can also generate the regularly hexagonal firing pattern when the real⁃time positioning results are modified.

  15. The Design and Development of a User-Controlled Visual Aid for Improving Students' Understanding in Introductory Statistics

    Science.gov (United States)

    Vaughn, Brandon K.; Wang, Pei-Yu

    2009-01-01

    The use of visual aids is expected to have a positive effect on students' learning. However, not all visual aids work equally well. A recent meta-analytic research which examined 42 studies has found that the use of animated visuals does not facilitate learning (Anglin, Vaez & Cunnincham, 2004). The failure of visual aids can be attributed to…

  16. Postnatal development of layer III pyramidal cells in the primary visual, inferior temporal, and prefrontal cortices of the marmoset

    OpenAIRE

    Hirosato eAoi; Tomofumi eOga; Tetsuya eSasaki; Ichiro eFujita; Noritaka eIchinohe

    2013-01-01

    Abnormalities in the processes of the generation and/or pruning of dendritic spines have been implicated in several mental disorders including autism and schizophrenia. We have chosen to examine the common marmoset (Callithrix jacchus) as a primate model to explore the processes. As a first step, we studied the postnatal development of basal dendritic trees and spines of layer-III pyramidal cells in the primary visual sensory cortex (V1), a visual association cortex (inferior temporal area, T...

  17. An improved simulated annealing algorithm for standard cell placement

    Science.gov (United States)

    Jones, Mark; Banerjee, Prithviraj

    1988-01-01

    Simulated annealing is a general purpose Monte Carlo optimization technique that was applied to the problem of placing standard logic cells in a VLSI ship so that the total interconnection wire length is minimized. An improved standard cell placement algorithm that takes advantage of the performance enhancements that appear to come from parallelizing the uniprocessor simulated annealing algorithm is presented. An outline of this algorithm is given.

  18. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  19. Improved Membrane Materials for PEM Fuel Cell Application

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  20. Using Visual Aids to Improve Communication of Risks about Health: A Review

    Directory of Open Access Journals (Sweden)

    Rocio Garcia-Retamero

    2012-01-01

    Full Text Available Recent research has shown that patients frequently experience difficulties understanding health-relevant numerical concepts. A prominent example is denominator neglect, or the tendency to pay too much attention to numerators in ratios (e.g., number of treated patients who died with insufficient attention to denominators (e.g., overall number of treated patients. Denominator neglect can lead to inaccurate assessments of treatment risk reduction and thus can have important consequences for decisions about health. Here, we reviewed a series of studies investigating (1 different factors that can influence patients’ susceptibility to denominator neglect in medical decision making—including numerical or language-related abilities; (2 the extent to which denominator neglect can be attenuated by using visual aids; and (3 a factor that moderates the effectiveness of such aids (i.e., graph literacy. The review spans probabilistic national U.S. and German samples, as well as immigrant (i.e., Polish people living in the United Kingdom and undergraduate samples in Spain. Theoretical and prescriptive implications are discussed.

  1. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides.

    Science.gov (United States)

    Martin, Robert M; Herce, Henry D; Ludwig, Anne K; Cardoso, M Cristina

    2016-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide.

  2. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides.

    Science.gov (United States)

    Martin, Robert M; Herce, Henry D; Ludwig, Anne K; Cardoso, M Cristina

    2016-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide. PMID:27576711

  3. Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation

    Science.gov (United States)

    Nasiri-Avanaki, M. R.; Aber, Ahmed; Hojjatoleslami, S. A.; Sira, Mano; Schofield, John B.; Jones, Carole; Podoleanu, A. Gh.

    2012-03-01

    Basal cell carcinoma (BCC) is the most common form of skin cancer. To improve the diagnostic accuracy, additional non-invasive methods of making a preliminary diagnosis have been sought. We have implemented an En-Face optical coherence tomography (OCT) for this study in which the dynamic focus was integrated into it. With the dynamic focus scheme, the coherence gate moves synchronously with the peak of confocal gate determined by the confocal interface optics. The transversal resolution is then conserved throughout the depth range and an enhanced signal is returned from all depths. The Basal Cell Carcinoma specimens were obtained from the eyelid a patient. The specimens under went analysis by DF-OCT imaging. We searched for remarkable features that were visualized by OCT and compared these findings with features presented in the histology slices.

  4. Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?

    Directory of Open Access Journals (Sweden)

    Manuel Schottdorf

    Full Text Available It has been argued that the emergence of roughly periodic orientation preference maps (OPMs in the primary visual cortex (V1 of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs. The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moiré-Interference between hexagonal ON/OFF RGC mosaics. While this Moiré-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.

  5. CUBIC Protocol Visualizes Protein Expression at Single Cell Resolution in Whole Mount Skin Preparations.

    Science.gov (United States)

    Liang, Huazheng; Akladios, Bassem; Canales, Cesar P; Francis, Richard; Hardeman, Edna H; Beverdam, Annemiek

    2016-01-01

    The skin is essential for our survival. The outer epidermal layer consists of the interfollicular epidermis, which is a stratified squamous epithelium covering most of our body, and epidermal appendages such as the hair follicles and sweat glands. The epidermis undergoes regeneration throughout life and in response to injury. This is enabled by K14-expressing basal epidermal stem/progenitor cell populations that are tightly regulated by multiple regulatory mechanisms active within the epidermis and between epidermis and dermis. This article describes a simple method to clarify full thickness mouse skin biopsies, and visualize K14 protein expression patterns, Ki67 labeled proliferating cells, Nile Red labeled sebocytes, and DAPI nuclear labeling at single cell resolution in 3D. This method enables accurate assessment and quantification of skin anatomy and pathology, and of abnormal epidermal phenotypes in genetically modified mouse lines. The CUBIC protocol is the best method available to date to investigate molecular and cellular interactions in full thickness skin biopsies at single cell resolution. PMID:27584943

  6. IMHEX fuel cell repeat component manufacturing continuous improvement accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Jakaitis, L.A.; Petraglia, V.J.; Bryson, E.S. [M-C Power Corp., Burr Ridge, IL (United States)] [and others

    1996-12-31

    M-C Power is taking a power generation technology that has been proven in the laboratory and is making it a commercially competitive product. There are many areas in which this technology required scale up and refinement to reach the market entry goals for the IMHEX{reg_sign} molten carbonate fuel cell power plant. One of the primary areas that needed to be addressed was the manufacturing of the fuel cell stack. Up to this point, the fuel cell stack and associated components were virtually hand made for each system to be tested. M-C Power has now continuously manufactured the repeat components for three 250 kW stacks. M-C Power`s manufacturing strategy integrated both evolutionary and revolutionary improvements into its comprehensive commercialization effort. M-C Power`s objectives were to analyze and continuously improve stack component manufacturing and assembly techniques consistent with established specifications and commercial scale production requirements. Evolutionary improvements are those which naturally occur as the production rates are increased and experience is gained. Examples of evolutionary (learning curve) improvements included reducing scrap rates and decreasing raw material costs by buying in large quantities. Revolutionary improvements result in significant design and process changes to meet cost and performance requirements of the market entry system. Revolutionary changes often involve identifying new methods and developing designs to accommodate the new process. Based upon our accomplishments, M-C Power was able to reduce the cost of continuously manufactured fuel cell repeat components from the first to third 250 kW stack by 63%. This paper documents the continuous improvement accomplishments realized by M-C Power during IMHEX{reg_sign} fuel cell repeat component manufacturing.

  7. Thermal Pretreatment Improves Viability of Cryopreserved Human Endothelial Cells.

    Science.gov (United States)

    Hofmann, Nicola; Sun, Huan; Chatterjee, Anamika; Saha, Debapriya; Glasmacher, Birgit

    2015-10-01

    A high survival rate of cryopreserved cells requires optimal cooling and thawing rates in the presence of a cryoprotective agent (CPA) or a combination of CPAs in adequate concentrations. One of the most widely used CPAs, dimethyl sulfoxide (Me2SO), however is toxic at high concentrations and has detrimental effects on cellular functions. Additional processing steps are necessary to remove the CPA after thawing, which make the process expensive and time consuming. Therefore it is of great interest to develop new cryoprotective strategies to replace the currently used CPAs or to reduce their concentration. The aim of this study was to investigate if thermal activation of human pulmonary microvascular endothelial cells (HPMEC ST-1.6R), prior to cryopreservation, could improve their post-thaw viability since the resulting heat shock protein expression acts as an intrinsic cellular protection mechanism. The results of this study suggest that both heat and cold shock pretreatments improve cryopreservation outcome of the HPMEC ST-1.6R cells. By re-cultivating cells after heat shock treatment before cryopreservation, a significant increase in cellular membrane integrity and adherence capacity could be achieved. However a combination of thermal activation and cryopreservation with alternative CPAs such as ectoine and L-proline could not further enhance the cell viability. The results of this study showed that pretreatment of endothelial cells with thermal activation could be used to reduce the Me2SO concentration required in order to preserve cell viability after cryopreservation. PMID:26419006

  8. Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels.

    Science.gov (United States)

    Steinberg, Fabian; Pixa, Nils Henrik; Doppelmayr, Michael

    2016-01-01

    Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research. PMID:27642526

  9. Fabrication approaches for plasmon-improved photovoltaic cells

    DEFF Research Database (Denmark)

    Gritti, Claudia; Malureanu, Radu; Kardynal, B.;

    During this talk we will present various fabrication approaches to improve the performance of photovoltaic (PV) cells by using metallic nanoparticles in order to generate photocurrent below the bandgap. This effect is possible due to the generation of surface plasmon polaritons (SPPs) in optimized...

  10. Combining [(11)C]-AnxA5 PET Imaging with Serum Biomarkers for Improved Detection in Live Mice of Modest Cell Death in Human Solid Tumor Xenografts

    OpenAIRE

    Q. Cheng; Lu, L; Grafström, J; Olofsson, MH; Thorell, JO; Samén, E; K. Johansson; Ahlzén, HS; Stone-Elander, S; Linder, S; Arnér, Elias S.J.

    2012-01-01

    BACKGROUND: In vivo imaging using Annexin A5-based radioligands is a powerful technique for visualizing massive cell death, but has been less successful in monitoring the modest cell death typically seen in solid tumors after chemotherapy. Here we combined dynamic positron emission tomography (PET) imaging using Annexin A5 with a serum-based apoptosis marker, for improved sensitivity and specificity in assessment of chemotherapy-induced cell death in a solid tumor model. METHODOLOGY/...

  11. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory

    Science.gov (United States)

    Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects’ performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode. PMID:27314235

  12. Improvement of distension and mural visualization of bowel loops using neutral oral contrasts in abdominal computed tomography

    Institute of Scientific and Technical Information of China (English)

    Jahanbakhsh; Hashemi; Yasmin; Davoudi; Mina; Taghavi; Masoud; Pezeshki; Rad; Amien; Mahajeri; Moghadam

    2014-01-01

    AIM: To assess and compare the image quality of 4% sorbitol and diluted iodine 2%(positive oral contrast agent) in abdomino-pelvic multi-detector computed tomography.METHODS: Two-hundred patients, referred to the Radiology Department of a central educational hospital for multi-detector row abdominal-pelvic computed tomography, were randomly divided into two groups: the first group received 1500 m L of 4% sorbitol solution as a neutral contrast agent, while in the second group 1500 m L of meglumin solution as a positive contrast agent was administered in a one-way randomized prospective study. The results were independently reviewed by two radiologists. Luminal distension and mural thickness and mucosal enhancement were compared between the two groups. Statistical analysis of the results was performed by Statistical Package for the Social Sciences software version 16 and the Mann-Whitney test at a confidence level of 95%. RESULTS: Use of neutral oral contrast agent significantly improved visualization of the small bowel wall thickness and mural appearance in comparison with administration of positive contrast agent(P < 0.01). In patients who received sorbitol, the small bowel showed better distention compared with those who received iodine solution as a positive contrast agent(P < 0.05). CONCLUSION: The results of the study demonstrated that oral administration of sorbitol solution allows better luminal distention and visualization of mural features than iodine solution as a positive contrast agent.

  13. Efficiency improvements in GaAs-on-Si solar cells

    Science.gov (United States)

    Vernon, S. M.; Tobin, S. P.; Haven, V. E.; Bajgar, C.; Dixon, T. M.

    The thermal cycle growth (TCG) method is shown to be effective in improving GaAs/Si photovoltaic performance. Transmission electron microscope studies revealed that dislocation densities were reduced by approximately an order of magnitude and minority-carrier lifetimes increased by more than a factor of two. The efficiency of GaAs-on-Si cells were increased from 11.2 percent to 17.6 percent (one-sun) and from 13.9 percent to 18.5 percent (concentrated light) by use of the TCG technique. Improvements in basic GaAs cell growth and processing technology were also responsible for a portion of these increases, as GaAs/GaAs control cell efficiencies climbed from 21.3 to 24.3 percent over the span of these experiments.

  14. The Geology Robot: A Collaborative Effort for improving Outcrop Visualization and Analysis

    Science.gov (United States)

    Fredrick, K. C.; Valoski, M. P.; Rodi, A. F.

    2010-12-01

    Geologic mapping is one of the most important skills a geologist will attempt to master during their education and well into their career. Mapping requires the ability to identify rocks and minerals, an understanding of geologic principles of history, deformation, and tectonics, as well as the ability to access the geology in question. As a student, the first two items are cognitive, and generally gained through education and experience. However, the third involves external, especially physical factors, often outside of a student’s control. Mapping and outcrop analysis can be difficult in areas of especially varied terrain depending on one’s will and physical ability. In our area of southwestern Pennsylvania, steep terrain and dense vegetation dominate the landscape. Road cuts are often the only options for identifying local bedrock. Many outcrops are avoided based on their sheer size or integrity, which can pose risks of physical harm. In order to address some of these concerns, we have developed a robot, able to scale and image rocks in the vertical. The principle behind the robot’s capabilities is to reach steep or over-steep cliff faces to view and measure rock type and stratigraphic relationships. The robot carries a movable camera, allowing the operator a clear view of the rock face in an area that he or she wouldn’t normally be able to access. The robot is suspended from climbing rope over the cliff edge and connected to a power source and video monitor. The current prototype is operated with a handheld remote control including independent camera manipulation. Future development may include detachable wheel tracks for navigating less than vertical surfaces and a coring bit for sampling. Potential uses exist beyond visualization for classroom instruction, including detailed mapping, evaluating geological engineering challenges, viewing down-well conditions in large-bore wells, etc. We believe this robot will allow students (and possibly professionals

  15. Dynamic visualization the whole process of cytotoxic T lymphocytes killing the B16 tumor cells in vitro

    Science.gov (United States)

    Qi, Shuhong; Zhang, Zhihong

    2016-03-01

    Cytotoxic T lymphocytes (CTLs) played a key role in the immune system to destroy the tumor cells. Although some mechanisms of CTLs killing the tumor cells are revealed already, the dynamic information of CTLs interaction with tumor cells are still not known very clearly. Here we used confocal microscopy to visualize the whole process of CTLs killing the tumor cells in vitro. The imaging data showed that CTLs destroyed the target tumor cells rapidly and efficiently. Several CTLs surrounded one or some tumor cells and the average time for CTLs destroying one tumor cell is just a few minutes in vitro. The study displayed the temporal events of CTLs interacting with tumor cells at the beginning and finally killing them and directly presented the efficient tumor cell cytotoxicity of the CTLs. The results helped us to deeply understand the mechanism of the CTLs destroying the tumor cells and to develop the cancer immunotherapy.

  16. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity

    Science.gov (United States)

    Morin, Lawrence P.; Blanchard, Jane H.; Provencio, Ignacio

    2003-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) receives direct retinal input via the retinohypothalamic tract (RHT), and the retinal ganglion cells contributing to this projection may be specialized with respect to direct regulation of the circadian clock. However, some ganglion cells forming the RHT bifurcate, sending axon collaterals to the intergeniculate leaflet (IGL) through which light has secondary access to the circadian clock. The present studies provide a more extensive examination of ganglion cell bifurcation and evaluate whether ganglion cells projecting to several subcortical visual nuclei contain melanopsin, a putative ganglion cell photopigment. The results showed that retinal ganglion cells projecting to the SCN send collaterals to the IGL, olivary pretectal nucleus, and superior colliculus, among other places. Melanopsin-immunoreactive (IR) ganglion cells are present in the hamster retina, and some of these cells project to the SCN, IGL, olivary pretectal nucleus, or superior colliculus. Triple-label analysis showed that melanopsin-IR cells bifurcate and project bilaterally to each SCN, but not to the other visual nuclei evaluated. The melanopsin-IR cells have photoreceptive characteristics optimal for circadian rhythm regulation. However, the presence of moderately widespread bifurcation among ganglion cells projecting to the SCN, and projection by melanopsin-IR cells to locations distinct from the SCN and without known rhythm function, suggest that this ganglion cell type is generalized, rather than specialized, with respect to the conveyance of photic information to the brain. Copyright 2003 Wiley-Liss, Inc.

  17. Diode Laser 810 Nm as a Potential Treatment to Improve Visual Function in Nonarteritic Anterior Ischemic Optic Neuropathy (NAION

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Heidari

    2011-01-01

    Full Text Available Nonarteritic anterior ischemic optic neuropathy (NAION is one of the most widespread visually disabling diseases in the middle-aged and elderly population. The optic nerve damage appears to result from a perfusion insufficiency in the short posterior ciliary arteries leading to infarction of the retrolaminar portion of the optic disc. Induced Heat shock protein (Hsp is known to have neuroprotective effects against ischemic injury of the central nervous system in mammals. Transpupillary thermotherapy (TTT application to the optic nerve head induces Hsp70 expression. We hypothesize that Transpupillary thermotherapy (TTT could be a novel method for improving and preserving the function of the optic nerve fibers in the eye with NAION. An 810-nm diode laser beam is focused to the center of the optic nerve head to induce Hsp. Controlled prospective and randomized clinical trial is necessary to confirm conclusively the effectiveness of this method.

  18. Quantitative operando visualization of the energy band depth profile in solar cells.

    Science.gov (United States)

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-01-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580

  19. Quantitative operando visualization of the energy band depth profile in solar cells

    Science.gov (United States)

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-07-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.

  20. Contact lenses fitting teaching: learning improvement with monitor visualization of webcam video recordings

    Science.gov (United States)

    Gargallo, Ana; Arines, Justo

    2014-08-01

    We have adapted low cost webcams to the slit lamps objectives with the aim of improving contact lens fitting practice. With this solution we obtain good quality pictures and videos, we also recorded videos of eye examination, evaluation routines of contact lens fitting, and the final practice exam of our students. In addition, the video system increases the interactions between students because they could see what their colleagues are doing and take conscious of their mistakes, helping and correcting each others. We think that the proposed system is a low cost solution for supporting the training in contact lens fitting practice.

  1. Allogeneic Transplantation of Müller-Derived Retinal Ganglion Cells Improves Retinal Function in a Feline Model of Ganglion Cell Depletion.

    Science.gov (United States)

    Becker, Silke; Eastlake, Karen; Jayaram, Hari; Jones, Megan F; Brown, Robert A; McLellan, Gillian J; Charteris, David G; Khaw, Peng T; Limb, G Astrid

    2016-02-01

    Human Müller glia with stem cell characteristics (hMGSCs) have been shown to improve retinal function upon transplantation into rat models of retinal ganglion cell (RGC) depletion. However, their translational potential may depend upon successful engraftment and improvement of retinal function in experimental models with anatomical and functional features resembling those of the human eye. We investigated the effect of allogeneic transplantation of feline Müller glia with the ability to differentiate into cells expressing RGC markers, following ablation of RGCs by N-methyl-d-aspartate (NMDA). Unlike previous observations in the rat, transplantation of hMGSC-derived RGCs into the feline vitreous formed aggregates and elicited a severe inflammatory response without improving visual function. In contrast, allogeneic transplantation of feline MGSC (fMGSC)-derived RGCs into the vitrectomized eye improved the scotopic threshold response (STR) of the electroretinogram (ERG). Despite causing functional improvement, the cells did not attach onto the retina and formed aggregates on peripheral vitreous remnants, suggesting that vitreous may constitute a barrier for cell attachment onto the retina. This was confirmed by observations that cellular scaffolds of compressed collagen and enriched preparations of fMGSC-derived RGCs facilitated cell attachment. Although cells did not migrate into the RGC layer or the optic nerve, they significantly improved the STR and the photopic negative response of the ERG, indicative of increased RGC function. These results suggest that MGSCs have a neuroprotective ability that promotes partial recovery of impaired RGC function and indicate that cell attachment onto the retina may be necessary for transplanted cells to confer neuroprotection to the retina. Significance: Müller glia with stem cell characteristics are present in the adult human retina, but they do not have regenerative ability. These cells, however, have potential for

  2. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rui-ping Zhang

    2015-01-01

    Full Text Available An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  3. visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7–8. Superparamagnet-ic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cordvia the subarachnoid space. An outer magnetic ifeld was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesen-chymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunolfuorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guid-ance. Our data conifrm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic ifeld guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively trackedin vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  4. Bradykinin preconditioning improves therapeutic potential of human endothelial progenitor cells in infarcted myocardium.

    Directory of Open Access Journals (Sweden)

    Zulong Sheng

    Full Text Available OBJECTIVES: Stem cell preconditioning (PC is a powerful approach in reducing cell death after transplantation. We hypothesized that PC human endothelial progenitor cells (hEPCs with bradykinin (BK enhance cell survival, inhibit apoptosis and repair the infarcted myocardium. METHODS: The hEPCs were preconditioned with or without BK. The hEPCs apoptosis induced by hypoxia along with serum deprivation was determined by annexin V-fluorescein isothiocyanate/ propidium iodide staining. Cleaved caspase-3, Akt and eNOS expressions were determined by Western blots. Caspase-3 activity and vascular endothelial growth factor (VEGF levels were assessed in hEPCs. For in vivo studies, the survival and cardiomyocytes apoptosis of transplanted hEPCs were assessed using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodi- carbocyanine,4-chlorobenzenesul-fonate salt labeled hEPCs and TUNEL staining. Infarct size and cardiac function were measured at 10 days after transplantation, and the survival of transplanted hEPCs were visualized using near-infrared optical imaging. RESULTS: In vitro data showed a marked suppression in cell apoptosis following BK PC. The PC reduced caspase-3 activation, increased the Akt, eNOS phosphorylation and VEGF levels. In vivo data in preconditioned group showed a robust cell anti-apoptosis, reduction in infarct size, and significant improvement in cardiac function. The effects of BK PC were abrogated by the B2 receptor antagonist HOE140, the Akt and eNOS antagonists LY294002 and L-NAME, respectively. CONCLUSIONS: The activation of B2 receptor-dependent PI3K/Akt/eNOS pathway by BK PC promotes VEGF secretion, hEPC survival and inhibits apoptosis, thereby improving cardiac function in vivo. The BK PC hEPC transplantation for stem cell-based therapies is a novel approach that has potential for clinical used.

  5. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells

    OpenAIRE

    Gaub, Benjamin M.; Berry, Michael H.; Holt, Amy E.; Reiner, Andreas; Kienzler, Michael A; Dolgova, Natalia; Nikonov, Sergei; Aguirre, Gustavo D.; Beltran, William A.; Flannery, John G.; Isacoff, Ehud Y.

    2014-01-01

    We restored visual function to animal models of human blindness using a chemical compound that photosensitizes a mammalian ion channel. Virus-mediated expression of this light sensor in surviving retinal cells of blind mice restored light responses in vitro, reanimated innate light avoidance, and enabled learned visually guided behavior. The treatment also restored light responses to the retina of blind dogs. Patients that might benefit from this treatment would need to have intact ganglion c...

  6. High frequency, cell type-specific visualization of fluorescent-tagged genomic sites in interphase and mitotic cells of living Arabidopsis plants

    Directory of Open Access Journals (Sweden)

    van der Winden Johannes

    2010-01-01

    on the promoter used to drive expression of the RP-FP fusion protein gene, the fluorescent tagged sites can be visualized at high frequency in different cell types. The ability to observe fluorescent dots on both interphase and mitotic chromosomes allows tagged sites to be tracked throughout the cell cycle. These improvements enhance the versatility of the fluorescent tagging technique for future studies of chromosome arrangement and dynamics in living plants.

  7. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex.

    Science.gov (United States)

    Raudies, Florian; Hasselmo, Michael E

    2015-11-01

    Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432

  8. Improved molecular toolkit for cAMP studies in live cells

    Directory of Open Access Journals (Sweden)

    Nicol Xavier

    2011-07-01

    Full Text Available Abstract Background cAMP is a ubiquitous second messenger involved in a wide spectrum of cellular processes including gene transcription, cell proliferation, and axonal pathfinding. Precise spatiotemporal manipulation and monitoring in live cells are crucial for investigation of cAMP-dependent pathways, but existing tools have several limitations. Findings We have improved the suitability of cAMP manipulating and monitoring tools for live cell imaging. We attached a red fluorescent tag to photoactivated adenylyl cyclase (PACα that enables reliable visualization of this optogenetic tool for cAMP manipulation in target cells independently of its photoactivation. We show that replacement of CFP/YFP FRET pair with GFP/mCherry in the Epac2-camps FRET probe reduces photobleaching and stabilizes the noise level during imaging experiments. Conclusions The modifications of PACα and Epac2-camps enhance these tools for in vitro cAMP studies in cultured living cells and in vivo studies in live animals in a wide range of experiments, and particularly for long term time-lapse imaging.

  9. Improvement of Method for Accessing Oracle Database Based on Visual Basic%基于Visual Basic访问Oracle数据库方法的改进

    Institute of Scientific and Technical Information of China (English)

    金艳; 徐涛

    2011-01-01

    针对Visual Basic在客户端远程访问Oracle数据库的问题,介绍了客户端无需安装Oracle客户端软件的连接方式,以简化Visual Basic客户端的复杂性,提高访问效率.重点介绍了ADO技术,设计了基于ADO技术建立VB和Oracle 数据库的连接方法.

  10. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    Science.gov (United States)

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  11. Improved generalized cell mapping for global analysis of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Three main parts of generalized cell mapping are improved for global analysis. A simple method, which is not based on the theory of digraphs, is presented to locate complete self-cycling sets that corre- spond to attractors and unstable invariant sets involving saddle, unstable periodic orbit and chaotic saddle. Refinement for complete self-cycling sets is developed to locate attractors and unstable in- variant sets with high degree of accuracy, which can start with a coarse cell structure. A nonuniformly interior-and-boundary sampling technique is used to make the refinement robust. For homeomorphic dissipative dynamical systems, a controlled boundary sampling technique is presented to make gen- eralized cell mapping method with refinement extremely accurate to obtain invariant sets. Recursive laws of group absorption probability and expected absorption time are introduced into generalized cell mapping, and then an optimal order for quantitative analysis of transient cells is established, which leads to the minimal computational work. The improved method is applied to four examples to show its effectiveness in global analysis of dynamical systems.

  12. Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex

    Directory of Open Access Journals (Sweden)

    Daniel James Miller

    2014-05-01

    Full Text Available Determining the cellular composition of specific brain regions is crucial to our understanding of the function of neurobiological systems. It is therefore useful to identify the extent to which different methods agree when estimating the same properties of brain circuitry. In this study, we estimated the number of neuronal and non-neuronal cells in the primary visual cortex (area 17 or V1 of both hemispheres from a single chimpanzee. Specifically, we processed samples distributed across V1 of the right hemisphere after cortex was flattened into a sheet using two variations of the isotropic fractionator cell and neuron counting method. We processed the left hemisphere as serial brain slices for stereological investigation. The goal of this study was to evaluate the agreement between these methods in the most direct manner possible by comparing estimates of cell density across one brain region of interest in a single individual. In our hands, these methods produced similar estimates of the total cellular population (approximately 1 billion as well as the number of neurons (approximately 675 million in chimpanzee V1, providing evidence that both techniques estimate the same parameters of interest. In addition, our results indicate the strengths of each distinct tissue preparation procedure, highlighting the importance of attention to anatomical detail. In summary, we found that the isotropic fractionator and the stereological optical fractionator produced concordant estimates of the cellular composition of V1, and that this result supports the conclusion that chimpanzees conform to the primate pattern of exceptionally high packing density in V1. Ultimately, our data suggest that investigators can optimize their experimental approach by using any of these counting methods to obtain reliable cell and neuron counts.

  13. Improvement of Dye Solar Cell Efficiency by Photoanode Posttreatment

    Directory of Open Access Journals (Sweden)

    Tanja Ivanovska

    2014-01-01

    Full Text Available The basic concept for efficiency improvement in dye-sensitized solar cells (DSSC is limiting the electron-hole recombination. One way to approach the problem is to improve the photogenerated charge carriers lifetime and consequently reduce their recombination probability. We are reporting on a facile posttreatment of the mesoporous photoanode by using a colloidal solution of TiO2 nanoparticles. We have investigated the outcome of the different sintering temperature of the posttreated photoanodes on their morphology as well as on the conversion efficiency of the DSSC. The DSSCs composed of posttreated photoanodes at 450°C showed an increase in JSC and consequently an increase in efficiency of 10%. Investigations were made to determine the electron recombination via the electrolyte by the OCVD technique. We found that the posttreatment has the effect of reducing the surface trap states and thus increases the electron lifetime, which is responsible for the increase of the overall cell efficiency.

  14. Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse.

    Directory of Open Access Journals (Sweden)

    Marc Bajénoff

    Full Text Available Memory CD8(+ T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m. Memory CD8(+ T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8(+ T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8(+ T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8(+ T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8(+ T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8(+ T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8(+ T produce inflammatory cytokines such as IFN-gamma and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8(+ T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8(+ T cells provide a local response by secreting effector molecules around infected cells.

  15. Visualizing Nanoscale Distribution of Corrosion Cells by Open-Loop Electric Potential Microscopy.

    Science.gov (United States)

    Honbo, Kyoko; Ogata, Shoichiro; Kitagawa, Takuya; Okamoto, Takahiro; Kobayashi, Naritaka; Sugimoto, Itto; Shima, Shohei; Fukunaga, Akira; Takatoh, Chikako; Fukuma, Takeshi

    2016-02-23

    Corrosion is a traditional problem but still one of the most serious problems in industry. To reduce the huge economic loss caused by corrosion, tremendous effort has been made to understand, predict and prevent it. Corrosion phenomena are generally explained by the formation of corrosion cells at a metal-electrolyte interface. However, experimental verification of their nanoscale distribution has been a major challenge owing to the lack of a method able to visualize the local potential distribution in an electrolytic solution. In this study, we have investigated the nanoscale corrosion behavior of Cu fine wires and a duplex stainless steel by in situ imaging of local corrosion cells by open-loop electric potential microscopy (OL-EPM). For both materials, potential images obtained by OL-EPM show nanoscale contrasts, where areas of higher and lower potential correspond to anodic areas (i.e., corrosion sites) and cathodic areas, respectively. This imaging capability allows us to investigate the real-time transition of local corrosion sites even when surface structures show little change. This is particularly useful for investigating reactions under surface oxide layers or highly corrosion-resistant materials as demonstrated here. The proposed technique should be applicable to the study of other redox reactions on a battery electrode or a catalytic material. The results presented here open up such future applications of OL-EPM in nanoscale electrochemistry. PMID:26811989

  16. Visualization of NRAS RNA G-Quadruplex Structures in Cells with an Engineered Fluorogenic Hybridization Probe.

    Science.gov (United States)

    Chen, Shuo-Bin; Hu, Ming-Hao; Liu, Guo-Cai; Wang, Jin; Ou, Tian-Miao; Gu, Lian-Quan; Huang, Zhi-Shu; Tan, Jia-Heng

    2016-08-24

    The RNA G-quadruplex is an important secondary structure formed by guanine-rich RNA sequences. However, its folding studies have mainly been studied in vitro. Accurate identification of RNA G-quadruplex formation within a sequence of interest remains difficult in cells. Herein, and based on the guanine-rich sequence in the 5'-UTR of NRAS mRNA, we designed and synthesized the first G-quadruplex-triggered fluorogenic hybridization (GTFH) probe, ISCH-nras1, for the unique visualization of the G-quadruplexes that form in this region. ISCH-nras1 is made up of two parts: The first is a fluorescent light-up moiety specific to G-quadruplex structures, and the second is a DNA molecule that can hybridize with a sequence that is adjacent to the guanine-rich sequence in the NRAS mRNA 5'-UTR. Further evaluation studies indicated that ISCH-nras1 could directly and precisely detect the targeted NRAS RNA G-quadruplex structures, both in vitro and in cells. Thus, this GTFH probe was a useful tool for directly investigating the folding of G-quadruplex structures within an RNA of interest and represents a new direction for the design of smart RNA G-quadruplex probes. PMID:27508892

  17. Improved Single-Source Precursors for Solar-Cell Absorbers

    Science.gov (United States)

    Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius

    2007-01-01

    Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).

  18. Comparative study on direction selectivity and functional organization of the primary visual cortical cells in monkeys and cats

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Although the directionally selective cells in many visual cortical areas are organized in columnar manner, the functional organization of direction selectivity of area Vl in the monkey still remains unclear. We quantitatively studied the proportion of directionally selective cells, direction selectivity and the functional organization of the striate cortical cells in the monkey and compared those with the cat. The results show that the direction selectivity and directional organization of striate cortical cells in the monkey are significantly weaker than those in the cat, suggesting that the species difference between the two kinds of animal is related to their different anatomic pathways.

  19. Comparative study on direction selectivity and functional organization of the primary visual cortical cells in monkeys and cats

    Institute of Scientific and Technical Information of China (English)

    寿天德; 周逸峰; 俞洪波

    2000-01-01

    Although the directionally selective cells in many visual cortical areas are organized in columnar manner, the functional organization of direction selectivity of area VI in the monkey still remains unclear. We quantitatively studied the proportion of directionally selective cells, direction selectivity and the functional organization of the striate cortical cells in the monkey and compared those with the cat. The results show that the direction selectivity and directional organization of striate cortical cells in the monkey are significantly weaker than those in the cat, suggesting that the species difference between the two kinds of animal is related to their different anatomic pathways.

  20. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    International Nuclear Information System (INIS)

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p 2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  1. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy

    Science.gov (United States)

    Cerviño, Laura I.; Gupta, Sonia; Rose, Mary A.; Yashar, Catheryn; Jiang, Steve B.

    2009-11-01

    Late cardiac complications may arise after left-breast radiation therapy. Deep-inspiration breath hold (DIBH) allows reduction of the irradiated heart volume at the same time as it reduces tumor bed motion and increases lung sparing. In the present study, we have evaluated the improvement in reproducibility and stability of the DIBH for left-breast-cancer treatment when visual coaching is provided with the aid of 3D video surface imaging and video goggles. Five left-breast-cancer patients and fifteen healthy volunteers were asked to perform a series of DIBHs without and with visual coaching. Reproducibility and stability of DIBH were measured for each individual with and without visual coaching. The average reproducibility and stability changed from 2.1 mm and 1.5 mm, respectively, without visual feedback to 0.5 mm and 0.7 mm with visual feedback, showing a significant statistical difference (p 2 mm) in reproducibility and stability were observed in 35% and 15% of the subjects, respectively. The average chest wall excursion of the DIBH with respect to the free breathing preceding the DIBH was found to be 11.3 mm. The reproducibility and stability of the DIBH improve significantly from the visual coaching provided to the patient, especially in those patients with poor reproducibility and stability.

  2. Improved Electrodes and Electrolytes for Dye-Based Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Harry R. Allcock; Thomas E. Mallouk; Mark W. Horn

    2011-10-26

    The most important factor in limiting the stability of dye-sensitized solar cells is the use of volatile liquid solvents in the electrolytes, which causes leakage during extended operation especially at elevated temperatures. This, together with the necessary complex sealing of the cells, seriously hampers the industrial-scale manufacturing and commercialization feasibilities of DSSCs. The objective of this program was to bring about a significant improvement in the performance and longevity of dye-based solar cells leading to commercialization. This had been studied in two ways first through development of low volatility solid, gel or liquid electrolytes, second through design and fabrication of TiO2 sculptured thin film electrodes.

  3. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    International Nuclear Information System (INIS)

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines

  4. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  5. Improved Cathode Structure for a Direct Methanol Fuel Cell

    Science.gov (United States)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  6. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    Science.gov (United States)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  7. Assessing the role of cell-surface molecules in central synaptogenesis in the Drosophila visual system.

    Directory of Open Access Journals (Sweden)

    Sandra Berger-Müller

    Full Text Available A hallmark of the central nervous system is its spatial and functional organization in synaptic layers. During neuronal development, axons form transient contacts with potential post-synaptic elements and establish synapses with appropriate partners at specific layers. These processes are regulated by synaptic cell-adhesion molecules. In the Drosophila visual system, R7 and R8 photoreceptor subtypes target distinct layers and form en passant pre-synaptic terminals at stereotypic loci of the axonal shaft. A leucine-rich repeat transmembrane protein, Capricious (Caps, is known to be selectively expressed in R8 axons and their recipient layer, which led to the attractive hypothesis that Caps mediates R8 synaptic specificity by homophilic adhesion. Contradicting this assumption, our results indicate that Caps does not have a prominent role in synaptic-layer targeting and synapse formation in Drosophila photoreceptors, and that the specific recognition of the R8 target layer does not involve Caps homophilic axon-target interactions. We generated flies that express a tagged synaptic marker to evaluate the presence and localization of synapses in R7 and R8 photoreceptors. These genetic tools were used to assess how the synaptic profile is affected when axons are forced to target abnormal layers by expressing axon guidance molecules. When R7 axons were mistargeted to the R8-recipient layer, R7s either maintained an R7-like synaptic profile or acquired a similar profile to r8s depending on the overexpressed protein. When R7 axons were redirected to a more superficial medulla layer, the number of presynaptic terminals was reduced. These results indicate that cell-surface molecules are able to dictate synapse loci by changing the axon terminal identity in a partially cell-autonomous manner, but that presynapse formation at specific sites also requires complex interactions between pre- and post-synaptic elements.

  8. Speaking through images: Implementing interaction through the visual language of The Economist. When the visual language becomes a useful tool to activate and improve communicative competence.

    OpenAIRE

    Leonzini, Luisella

    2012-01-01

    This paper will give examples of how the multi-semiotic visual language of “The Economist” provides a resourceful tool for triggering interaction and implementing learners’ spoken production. Images may activate various forms of communication by depicting metaphors as semantic shifts; the metaphorical semiotic code needs to be contextualised, with vehicle, topic and ground decoded first and then re-constructed as the final step. As a result the viewer will be involved in a process of interact...

  9. An Assessment of Gadonanotubes as Magnetic Nanolabels for Improved Stem Cell Detection and Retention in Cardiomyoplasty

    Science.gov (United States)

    Tran, Lesa A.

    In this work, gadolinium-based carbon nanocapsules are developed as a novel nanotechnology that addresses the shortcomings of current diagnostic and therapeutic methods of stem cell-based cardiomyoplasty. With cardiovascular disease (CVD) responsible for approximately 30% of deaths worldwide, the growing need for improved cardiomyoplasty has spurred efforts in nanomedicine to develop innovative techniques to enhance the therapeutic retention and diagnostic tracking of transplanted cells. Having previously been demonstrated as a high-performance T1-weighted magnetic resonance imaging (MRI) contrast agent, Gadonanotubes (GNTs) are shown for the first time to intracellularly label pig bone marrow-derived mesenchymal stem cells (MSCs). Without the use of a transfection agent, micromolar concentrations of GNTs deliver up to 109 Gd3+ ions per cell, allowing for MSCs to be visualized in a 1.5 T clinical MRI scanner. The cellular response to the intracellular incorporation of GNTs is also assessed, revealing that GNTs do not compromise the viability, differentiation potential, or phenotype characteristics of the MSCs. However, it is also found that GNT-labeled MSCs exhibit a decreased response to select cell adhesion proteins and experience a nonapoptotic, non-proliferative cell cycle arrest, from which the cells recover 48 h after GNT internalization. In tandem with developing GNTs as a new stem cell diagnostic agent, this current work also explores for the first time the therapeutic application of the magnetically-active GNTs as a magnetic facilitator to increase the retention of transplanted stem cells during cardiomyoplasty. In vitro flow chamber assays, ex vivo perfusion experiments, and in vivo porcine injection procedures all demonstrate the increased magnetic-assisted retention of GNT-labeled MSCs in the presence of an external magnetic field. These studies prove that GNTs are a powerful 'theranostic' agent that provides a novel platform to simultaneously monitor

  10. In vivo visualizing the dynamics of bone marrow stem cells in mouse retina and choroidal-retinal circulation

    Science.gov (United States)

    Wang, Heuy-Ching H.; Zwick, Harry; Edsall, Peter R.; Cheramie, Rachel D.; Lund, David J.; Stuck, Bruce

    2007-02-01

    It has recently been shown that bone marrow cells can differentiate into various lineage cells including neural cells in vitro and in vivo. Therefore it is an attractive therapeutic intervention to apply autologous bone marrow-derived stem cells that may offer neuroprotection to laser-induced retinal injuries. The purpose of this study is to develop a method with which to visualize bone marrow stem cells dynamics in mouse retinal circulation. We have used a physiological method, confocal scanning laser ophthalmoscope (SLO), to track the highly enriched stem/progenitor cells circulating in the retina. Stem cells were enriched by immunomagnetic depletion of cells committed to the T- and B lymphocytic, myeloid and erythorid lineages. CellTracker TM Green-labeled stem cells were injected into the tail veins of mice with laser-induced focal retinal injuries. Bone marrow stem cells labeled with CellTracker TM Green were visible in the retinal circulation for as long as 1 hour and 30 minutes. These studies suggest that stem cell-enriched bone marrow cells may have the ability to mobilize into laser-induced retinal injuries and possibly further proliferate, differentiate and functionally integrate into the retina.

  11. Blockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice

    Directory of Open Access Journals (Sweden)

    John Martin Barrett

    2015-08-01

    Full Text Available Retinitis pigmentosa (RP is a progressive retinal dystrophy that causes visual impairment and eventual blindness. Retinal prostheses are the best currently available vision-restoring treatment for RP, but only restore crude vision. One possible contributing factor to the poor quality of vision achieved with prosthetic devices is the pathological retinal ganglion cell (RGC hyperactivity that occurs in photoreceptor dystrophic disorders. Gap junction blockade with meclofenamic acid (MFA was recently shown to diminish RGC hyperactivity and improve the signal-to-noise ratio (SNR of RGC responses to light flashes and electrical stimulation in the rd10 mouse model of RP. We sought to extend these results to spatiotemporally patterned optogenetic stimulation in the faster-degenerating rd1 model and compare the effectiveness of a number of drugs known to disrupt rd1 hyperactivity.We crossed rd1 mice with a transgenic mouse line expressing the light-sensitive cation channel channelrhodopsin2 (ChR2 in RGCs, allowing them to be stimulated directly using high-intensity blue light. We used 60-channel ITO multielectrode arrays to record ChR2-mediated RGC responses from wholemount, ex-vivo retinas to full-field and patterned stimuli before and after application of MFA, 18-ß-glycyrrhetinic acid (18BGA, another gap junction blocker or flupirtine (Flu, a Kv7 potassium channel opener. All three drugs decreased spontaneous RGC firing, but 18BGA and Flu also decreased the sensitivity of RGCs to optogenetic stimulation. Nevertheless, all three drugs improved the SNR of ChR2-mediated responses. MFA also made it easier to discern motion direction of a moving bar from RGC population responses.Our results support the hypothesis that reduction of pathological RGC spontaneous activity characteristic in retinal degenerative disorders may improve the quality of visual responses in retinal prostheses and they provide insights into how best to achieve this for optogenetic

  12. Blockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice.

    Science.gov (United States)

    Barrett, John M; Degenaar, Patrick; Sernagor, Evelyne

    2015-01-01

    Retinitis pigmentosa (RP) is a progressive retinal dystrophy that causes visual impairment and eventual blindness. Retinal prostheses are the best currently available vision-restoring treatment for RP, but only restore crude vision. One possible contributing factor to the poor quality of vision achieved with prosthetic devices is the pathological retinal ganglion cell (RGC) hyperactivity that occurs in photoreceptor dystrophic disorders. Gap junction blockade with meclofenamic acid (MFA) was recently shown to diminish RGC hyperactivity and improve the signal-to-noise ratio (SNR) of RGC responses to light flashes and electrical stimulation in the rd10 mouse model of RP. We sought to extend these results to spatiotemporally patterned optogenetic stimulation in the faster-degenerating rd1 model and compare the effectiveness of a number of drugs known to disrupt rd1 hyperactivity. We crossed rd1 mice with a transgenic mouse line expressing the light-sensitive cation channel channelrhodopsin2 (ChR2) in RGCs, allowing them to be stimulated directly using high-intensity blue light. We used 60-channel ITO multielectrode arrays to record ChR2-mediated RGC responses from wholemount, ex-vivo retinas to full-field and patterned stimuli before and after application of MFA, 18-β-glycyrrhetinic acid (18BGA, another gap junction blocker) or flupirtine (Flu, a Kv7 potassium channel opener). All three drugs decreased spontaneous RGC firing, but 18BGA and Flu also decreased the sensitivity of RGCs to optogenetic stimulation. Nevertheless, all three drugs improved the SNR of ChR2-mediated responses. MFA also made it easier to discern motion direction of a moving bar from RGC population responses. Our results support the hypothesis that reduction of pathological RGC spontaneous activity characteristic in retinal degenerative disorders may improve the quality of visual responses in retinal prostheses and they provide insights into how best to achieve this for optogenetic prostheses

  13. A Simple, Visually Oriented Communication System to Improve Postoperative Care Following Microvascular Free Tissue Transfer: Development, Results, and Implications.

    Science.gov (United States)

    Henderson, Peter W; Landford, Wilmina; Gardenier, Jason; Otterburn, David M; Rohde, Christine H; Spector, Jason A

    2016-07-01

    Background Communication, particularly transmission of information between the surgical and nursing teams, has been identified as one of the most crucial determinants of patient outcomes. Nonetheless, transfer of information among and between the physician and nursing teams in the immediate postoperative period is often informal, verbal, and inconsistent. Methods An iterative process of multidisciplinary information gathering was undertaken to create a novel postoperative communication system (the "Pop-form"). Once developed, nurses were surveyed on multiple measures regarding the perceived likelihood that it would improve their ability to provide directed patient care. Data were quantified using a Likert scale (0-10), and statistically analyzed. Results The Pop-form records and transfers operative details, specific anatomic monitoring parameters, and senior physician contact information. Sixty-eight nurses completed surveys. The perceived usefulness of different components of the Pop-form system was as follows: 8.9 for the description of the procedure; 9.3 for the operative diagram; 9.4 for the monitoring details and parameters; and 9.4 for the direct contact information for the appropriate surgical team member. All respondents were in favor of widespread adoption of the Pop-form. Conclusion This uniform, visual communication system requires less than 1 minute to compose, yet formalizes and standardizes inter-team communication, and therefore shows promise for improving outcomes following microvascular free tissue transfer. We believe that this simple, innovative communication tool has the potential to be more broadly applied to many other health care settings. PMID:26872024

  14. Improved fullerene nanofiber electrodes used in direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q [Nano Craft Technologies Co., Ltd., Tsukuba (Japan); Zhang, Y [Nationals Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Miyazawa, K; Kato, R; Hotta, K; Wakahara, T [National Institute for Materials Science, Tsukuba (Japan)], E-mail: yi.zhang@aist.go.jp, E-mail: q.wang@aist.go.jp

    2009-04-01

    Platinum supported on fullerene nanofibers as possible electrodes for direct methanol fuel cells (DMFC) were studied. Fullerene nanofiber with 20 wt% Pt loading was mixed with 5 wt% Nafion solution. The mixture paste was coated on Nafion 117 membrane and sandwiched with silicon plates. To increase the surface reaction area of catalyst, nanoimprint was used to fabricate micro-patterns in the Nafion proton exchange membrane. Nanoimprint pattern consisted of dots of 500 nm-in-diameter, 140 nm-in-depth and 1 {mu}m-in-spacing. The nanoimprint of the treated proton exchange membrane (PEM) was carried out in a desktop thermal nanoimprint system (NI273, Nano Craft Tech. Corp., Japan) at the optimized conditions of 130 {sup 0}C and pressure of 3 MPa for 6 min. Then the Pt-coated PEM was sandwiched with micro-channelled silicon plates to form a micro-DMFC. With passively feeding of 1 M methanol solution and air at room temperature, the as-prepared cell had the open circuit voltage of 0.34 V and the maximum power density of 0.30 mW/cm{sup 2}. Compared with a fresh cell, the results shows that nanofibers used in nanoimprinted PEM have an improvement on the performance of micro fuel cells.

  15. Toward an Improved Haptic Zooming Algorithm for Graphical Information Accessed by Individuals Who Are Blind and Visually Impaired

    Science.gov (United States)

    Rastogi, Ravi; Pawluk, Dianne T. V.

    2013-01-01

    An increasing amount of information content used in school, work, and everyday living is presented in graphical form. Unfortunately, it is difficult for people who are blind or visually impaired to access this information, especially when many diagrams are needed. One problem is that details, even in relatively simple visual diagrams, can be very…

  16. Visualization of radiation-induced cell cycle-associated events in tumor cells expressing the fusion protein of Azami Green and the destruction box of human Geminin

    International Nuclear Information System (INIS)

    Ionizing radiation (IR) influences cell cycle-associated events in tumor cells. We expressed the fusion protein of Azami Green (AG) and the destruction box plus nuclear localization signal of human Geminin, an inhibitor of DNA replication licensing factor, in oral tumor cells. This approach allowed us to visualize G2 arrest in living cells following irradiation. The combination of time-lapse imaging analysis allowed us to observe the nuclear envelope break down (NEBD) at early M phase, and disappearance of fluorescence (DF) at the end of M phase. The duration from NEBD to DF was not much affected in irradiated cells; however, most of daughter cells harbored double-strand breaks. Complete DF was also observed in cells exhibiting abnormal mitosis or cytokinesis. We conclude that the fluorescent Geminin probe could function as a stable cell cycle indicator irrespective of genome integrity.

  17. Comparison between numerical simulation and visualization experiment on water behavior in single straight flow channel polymer electrolyte fuel cells

    Science.gov (United States)

    Masuda, Hiromitsu; Ito, Kohei; Oshima, Toshihiro; Sasaki, Kazunari

    A relationship between a flooding and a cell voltage drop for polymer electrolyte fuel cell was investigated experimentally and numerically. A visualization cell, which has single straight gas flow channel (GFC) and observation window, was fabricated to visualize the flooding in GFC. We ran the cell with changing operation condition, and measured the time evolution of cell voltage and took the images of cathode GFC. Considering the operation condition, we executed a developed numerical simulation, which is based on multiphase mixture model with a formulation on water transport through the surface of polymer electrolyte membrane and the interface of gas diffusion layer/GFC. As a result in experiment, we found that the cell voltage decreased with time and this decrease was accelerated by larger current and smaller air flow rate. Our simulation succeeded to demonstrate this trend of cell voltage. In experiment, we also found that the water flushing in GFC caused an immediate voltage change, resulting in voltage recovery or electricity generation stop. Although our simulation could not replicate this immediate voltage change, the supersaturated area obtained by our simulation well corresponded to fogging area appeared on the window surface in the GFC.

  18. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond

    International Nuclear Information System (INIS)

    Biological molecules conjugating with nanoparticles are valuable for applications including bio-imaging, bio-detection, and bio-sensing. Nanometer-sized diamond particles have excellent electronic and chemical properties for bio-conjugation. In this study, we manipulated the carboxyl group produced on the surface of nanodiamond (carboxylated nanodiamond, cND) for conjugating with alpha-bungarotoxin (α-BTX), a neurotoxin derived from Bungarus multicinctus with specific blockade of alpha7-nicotinic acetylcholine receptor (α7-nAChR). The electrostatic binding of cND-α-BTX was mediated by the negative charge of the cND and the positive charge of the α-BTX in physiological pH conditions. Sodium dodecyl sulfate-polyacrylamide gel analysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF-MS) spectra displayed that α-BTX proteins were conjugated with cND particles via non-covalent bindings. The green fluorescence of the cND particles combining with the red fluorescence of tetramethylrhodamine-labeled α-BTX presented a yellow color at the same location, which indicated that α-BTX proteins were conjugated with cND particles. Xenopus laevis's oocytes expressed the human α7-nAChR proteins by microinjection with α7-nAChR mRNA. The cND-α-BTX complexes were bound to α7-nAChR locating on the cell membrane of oocytes and human lung A549 cancer cells analyzed by laser scanning confocal microscopy. The choline-evoked α7-nAChR-mediated inward currents of the oocytes were blocked by cND-α-BTX complexes in a concentration-dependent manner using two-electrode voltage-clamp recording. Furthermore, the fluorescence intensity of cND-α-BTX binding on A549 cells could be quantified by flow cytometry. These results indicate that cND-conjugated α-BTX still preserves its biological activity in blocking the function of α7-nAChR, and provide a visual system showing the binding of α-BTX to α7-nAChR

  19. Visualization and quantitative analysis of extrachromosomal telomere-repeat DNA in individual human cells by Halo-FISH.

    Science.gov (United States)

    Komosa, Martin; Root, Heather; Meyn, M Stephen

    2015-02-27

    Current methods for characterizing extrachromosomal nuclear DNA in mammalian cells do not permit single-cell analysis, are often semi-quantitative and frequently biased toward the detection of circular species. To overcome these limitations, we developed Halo-FISH to visualize and quantitatively analyze extrachromosomal DNA in single cells. We demonstrate Halo-FISH by using it to analyze extrachromosomal telomere-repeat (ECTR) in human cells that use the Alternative Lengthening of Telomeres (ALT) pathway(s) to maintain telomere lengths. We find that GM847 and VA13 ALT cells average ∼80 detectable G/C-strand ECTR DNA molecules/nucleus, while U2OS ALT cells average ∼18 molecules/nucleus. In comparison, human primary and telomerase-positive cells contain 300), range widely in length (200 kb) and are composed of primarily G- or C-strand telomere-repeat DNA. Halo-FISH enables, for the first time, the simultaneous analysis of ECTR DNA and chromosomal telomeres in a single cell. We find that ECTR DNA comprises ∼15% of telomere-repeat DNA in GM847 and VA13 cells, but <4% in U2OS cells. In addition to its use in ALT cell analysis, Halo-FISH can facilitate the study of a wide variety of extrachromosomal DNA in mammalian cells. PMID:25662602

  20. Visualization rhetoric: framing effects in narrative visualization.

    Science.gov (United States)

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation. PMID:22034342

  1. Visualization rhetoric: framing effects in narrative visualization.

    Science.gov (United States)

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation.

  2. Behavior of a metabolic cycling population at the single cell level as visualized by fluorescent gene expression reporters.

    Directory of Open Access Journals (Sweden)

    Sunil Laxman

    Full Text Available BACKGROUND: During continuous growth in specific chemostat cultures, budding yeast undergo robust oscillations in oxygen consumption that are accompanied by highly periodic changes in transcript abundance of a majority of genes, in a phenomenon called the Yeast Metabolic Cycle (YMC. This study uses fluorescent reporters of genes specific to different YMC phases in order to visualize this phenomenon and understand the temporal regulation of gene expression at the level of individual cells within the cycling population. METHODOLOGY: Fluorescent gene expression reporters for different phases of the YMC were constructed and stably integrated into the yeast genome. Subsequently, these reporter-expressing yeast were used to visualize YMC dynamics at the individual cell level in cultures grown in a chemostat or in a microfluidics platform under varying glucose concentrations, using fluorescence microscopy and quantitative Western blots. CONCLUSIONS: The behavior of single cells within a metabolic cycling population was visualized using phase-specific fluorescent reporters. The reporters largely recapitulated genome-specified mRNA expression profiles. A significant fraction of the cell population appeared to exhibit basal expression of the reporters, supporting the hypothesis that there are at least two distinct subpopulations of cells within the cycling population. Although approximately half of the cycling population initiated cell division in each permissive window of the YMC, metabolic synchrony of the population was maintained. Using a microfluidics platform we observed that low glucose concentrations appear to be necessary for metabolic cycling. Lastly, we propose that there is a temporal window in the oxidative growth phase of the YMC where the cycling population segregates into at least two subpopulations, one which will enter the cell cycle and one which does not.

  3. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells.

    Science.gov (United States)

    Deng, Ruijie; Tang, Longhua; Tian, Qianqian; Wang, Ying; Lin, Lei; Li, Jinghong

    2014-02-24

    The ability to quantitate and visualize microRNAs (miRNAs) in situ in single cells would greatly facilitate the elucidation of miRNA-mediated regulatory circuits and their disease associations. A toehold-initiated strand-displacement process was used to initiate rolling circle amplification of specific miRNAs, an approach that achieves both stringent recognition and in situ amplification of the target miRNA. This assay, termed toehold-initiated rolling circle amplification (TIRCA), can be utilized to identify miRNAs at physiological temperature with high specificity and to visualize individual miRNAs in situ in single cells within 3 h. TIRCA is a competitive candidate technique for in situ miRNA imaging and may help us to understand the role of miRNAs in cellular processes and human diseases in more detail.

  4. Use of visual CO2 feedback as a retrofit solution for improving classroom air quality

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Da Silva, Nuno Alexandre Faria

    2015-01-01

    Carbon dioxide (CO2) sensors that provide a visual indication were installed in classrooms during normal school operation. During 2-week periods, teachers and students were instructed to open the windows in response to the visual CO2 feedback in 1week and open them, as they would normally do...... other pair with no cooling. Classrooms were matched by grade. Providing visual CO2 feedback reduced CO2 levels, as more windows were opened in this condition. This increased energy use for heating and reduced the cooling requirement in summertime. Split cooling reduced the frequency of window opening...

  5. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus.

    Science.gov (United States)

    Rodig, Scott J; Cheng, Jingwei; Wardzala, Jacek; DoRosario, Andrew; Scanlon, Jessica J; Laga, Alvaro C; Martinez-Fernandez, Alejandro; Barletta, Justine A; Bellizzi, Andrew M; Sadasivam, Subhashini; Holloway, Dustin T; Cooper, Dylan J; Kupper, Thomas S; Wang, Linda C; DeCaprio, James A

    2012-12-01

    A human polyomavirus was recently discovered in Merkel cell carcinoma (MCC) specimens. The Merkel cell polyomavirus (MCPyV) genome undergoes clonal integration into the host cell chromosomes of MCC tumors and expresses small T antigen and truncated large T antigen. Previous studies have consistently reported that MCPyV can be detected in approximately 80% of all MCC tumors. We sought to increase the sensitivity of detection of MCPyV in MCC by developing antibodies capable of detecting large T antigen by immunohistochemistry. In addition, we expanded the repertoire of quantitative PCR primers specific for MCPyV to improve the detection of viral DNA in MCC. Here we report that a novel monoclonal antibody detected MCPyV large T antigen expression in 56 of 58 (97%) unique MCC tumors. PCR analysis specifically detected viral DNA in all 60 unique MCC tumors tested. We also detected inactivating point substitution mutations of TP53 in the two MCC specimens that lacked large T antigen expression and in only 1 of 56 tumors positive for large T antigen. These results indicate that MCPyV is present in MCC tumors more frequently than previously reported and that mutations in TP53 tend to occur in MCC tumors that fail to express MCPyV large T antigen. PMID:23114601

  6. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus

    Science.gov (United States)

    Rodig, Scott J.; Cheng, Jingwei; Wardzala, Jacek; DoRosario, Andrew; Scanlon, Jessica J.; Laga, Alvaro C.; Martinez-Fernandez, Alejandro; Barletta, Justine A.; Bellizzi, Andrew M.; Sadasivam, Subhashini; Holloway, Dustin T.; Cooper, Dylan J.; Kupper, Thomas S.; Wang, Linda C.; DeCaprio, James A.

    2012-01-01

    A human polyomavirus was recently discovered in Merkel cell carcinoma (MCC) specimens. The Merkel cell polyomavirus (MCPyV) genome undergoes clonal integration into the host cell chromosomes of MCC tumors and expresses small T antigen and truncated large T antigen. Previous studies have consistently reported that MCPyV can be detected in approximately 80% of all MCC tumors. We sought to increase the sensitivity of detection of MCPyV in MCC by developing antibodies capable of detecting large T antigen by immunohistochemistry. In addition, we expanded the repertoire of quantitative PCR primers specific for MCPyV to improve the detection of viral DNA in MCC. Here we report that a novel monoclonal antibody detected MCPyV large T antigen expression in 56 of 58 (97%) unique MCC tumors. PCR analysis specifically detected viral DNA in all 60 unique MCC tumors tested. We also detected inactivating point substitution mutations of TP53 in the two MCC specimens that lacked large T antigen expression and in only 1 of 56 tumors positive for large T antigen. These results indicate that MCPyV is present in MCC tumors more frequently than previously reported and that mutations in TP53 tend to occur in MCC tumors that fail to express MCPyV large T antigen. PMID:23114601

  7. Targeting dendritic cells for improved HIV-1 vaccines.

    Science.gov (United States)

    Smed-Sörensen, Anna; Loré, Karin

    2013-01-01

    As dendritic cells (DCs) have the unique capacity to activate antigen-naive T cells they likely play a critical role in eliciting immune responses to vaccines. DCs are therefore being explored as attractive targets for vaccines, but understanding the interaction of DCs and clinically relevant vaccine antigens and adjuvants is a prerequisite. The HIV-1/AIDS epidemic continues to be a significant health problem, and despite intense research efforts over the past 30 years a protective vaccine has not yet been developed. A common challenge in vaccine design is to find a vaccine formulation that best shapes the immune response to protect against and/or control the given pathogen. Here, we discuss the importance of understanding the diversity, anatomical location and function of different human DC subsets in order to identify the optimal target cells for an HIV-1 vaccine. We review human DC interactions with some of the HIV-1 vaccine antigen delivery vehicles and adjuvants currently utilized in preclinical and clinical studies. Specifically, the effects of distinctly different vaccine adjuvants in terms of activation of DCs and improving DC function and vaccine efficacy are discussed. The susceptibility and responses of DCs to recombinant adenovirus vectors are reviewed, as well as the strategy of directly targeting DCs by using DC marker-specific monoclonal antibodies coupled to an antigen. PMID:22975879

  8. Carbon material optimized biocathode for improving microbial fuel cell performance

    Directory of Open Access Journals (Sweden)

    Hairti eTursun

    2016-01-01

    Full Text Available To improve the performance of microbial fuel cells (MFCs, the biocathode electrode material of double-chamber was optimized. Alongside the basic carbon fiber brush, three carbon materials namely graphite granules, activated carbon granules and activated carbon powder, were added to the cathode-chambers to improve power generation. The result shows that the addition of carbon materials increased the amount of available electroactive microbes on the electrode surface and thus promote oxygen reduction rate, which improved the generation performance of the MFCs. The Output current (external resistance = 1000 Ω greatly increased after addition of the three carbon materials and maximum power densities in current stable phase increased by 47.4%, 166.1% and 33.5%, respectively. Additionally, coulombic efficiencies of the MFC increased by 16.3%, 64.3% and 20.1%, respectively. These results show that MFC when optimized with activated carbon granules show better power generation, higher chemical oxygen demands (COD removal rate and coulombic efficiency.

  9. Carbon Material Optimized Biocathode for Improving Microbial Fuel Cell Performance.

    Science.gov (United States)

    Tursun, Hairti; Liu, Rui; Li, Jing; Abro, Rashid; Wang, Xiaohui; Gao, Yanmei; Li, Yuan

    2016-01-01

    To improve the performance of microbial fuel cells (MFCs), the biocathode electrode material of double-chamber was optimized. Alongside the basic carbon fiber brush, three carbon materials namely graphite granules, activated carbon granules (ACG) and activated carbon powder, were added to the cathode-chambers to improve power generation. The result shows that the addition of carbon materials increased the amount of available electroactive microbes on the electrode surface and thus promote oxygen reduction rate, which improved the generation performance of the MFCs. The Output current (external resistance = 1000 Ω) greatly increased after addition of the three carbon materials and maximum power densities in current stable phase increased by 47.4, 166.1, and 33.5%, respectively. Additionally, coulombic efficiencies of the MFC increased by 16.3, 64.3, and 20.1%, respectively. These results show that MFC when optimized with ACG show better power generation, higher chemical oxygen demands removal rate and coulombic efficiency. PMID:26858695

  10. A double dissociation of the acuity and crowding limits to letter identification, and the promise of improved visual screening.

    Science.gov (United States)

    Song, Shuang; Levi, Dennis M; Pelli, Denis G

    2014-05-05

    Here, we systematically explore the size and spacing requirements for identifying a letter among other letters. We measure acuity for flanked and unflanked letters, centrally and peripherally, in normals and amblyopes. We find that acuity, overlap masking, and crowding each demand a minimum size or spacing for readable text. Just measuring flanked and unflanked acuity is enough for our proposed model to predict the observer's threshold size and spacing for letters at any eccentricity. We also find that amblyopia in adults retains the character of the childhood condition that caused it. Amblyopia is a developmental neural deficit that can occur as a result of either strabismus or anisometropia in childhood. Peripheral viewing during childhood due to strabismus results in amblyopia that is crowding limited, like peripheral vision. Optical blur of one eye during childhood due to anisometropia without strabismus results in amblyopia that is acuity limited, like blurred vision. Furthermore, we find that the spacing:acuity ratio of flanked and unflanked acuity can distinguish strabismic amblyopia from purely anisometropic amblyopia in nearly perfect agreement with lack of stereopsis. A scatter diagram of threshold spacing versus acuity, one point per patient, for several diagnostic groups, reveals the diagnostic power of flanked acuity testing. These results and two demonstrations indicate that the sensitivity of visual screening tests can be improved by using flankers that are more tightly spaced and letter like. Finally, in concert with Strappini, Pelli, Di Pace, and Martelli (submitted), we jointly report a double dissociation between acuity and crowding. Two clinical conditions-anisometropic amblyopia and apperceptive agnosia-each selectively impair either acuity A or the spacing:acuity ratio S/A, not both. Furthermore, when we specifically estimate crowding, we find a double dissociation between acuity and crowding. Models of human object recognition will need to

  11. Documentation of high impact visualizations and improvement plans for utilization of VisIt for reactor simulation

    Energy Technology Data Exchange (ETDEWEB)

    R.Childs, H; Bremer, D J

    2008-10-03

    The primary goal of this milestone was to enable the visualization and analysis needs of the campaign's simulation codes. This goal was well accomplished. We have extended the VisIt visualization and analysis tool to be suitable for the Nek, UNIC, SAS, and DIABLO code teams. This represented a significant development effort, primarily in terms of tuning the processing of the very large data sets produced by the Nek code. As a result of our development, and of the support we provided, these groups have been able to successfully accomplish their visualization and analysis activities using VisIt. Visualization is an important part of the simulation process. It allows stakeholders to explore simulations and discover phenomena, to confirm assumptions, and to convey findings to a larger audience. Further, visualization software is complex and is an active research area, especially in the area of visualization of very large data sets, such as those produced by the Reactor campaign's Nek code. To meet the campaign's visualization and analysis needs, we chose to leverage the existing software tool, VisIt. VisIt is an open source, parallel visualization and analysis tool for interactively exploring scientific data. The tool represents approximately fifty man-years worth of effort, much of which was dedicated to techniques for processing large data and also to user interfaces. VisIt originated in the DOE's Advanced Simulation and Computing Initiative (ASCI) program, but is also actively developed by the Office of Science's Scientific Discovery through Advanced Computing (SciDAC) program, as well as by the at large open source community, including university partners. Our work for this effort consisted of both customizing VisIt to meet Reactor campaign needs and of providing support for stakeholders in the Reactor campaign to ensure they were successful using the tool.

  12. Dual-energy CT-cholangiography in potential donors for living-related liver transplantation: Improved biliary visualization by intravenous morphine co-medication

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, C.M., E-mail: christof.sommer@med.uni-heidelberg.de [Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg (Germany); Schwarzwaelder, C.B.; Stiller, W. [Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg (Germany); Schindera, S.T. [Department of Diagnostic, Interventional, and Pediatric Radiology, University Hospital and University of Berne, Berne (Switzerland); Heye, T.; Stampfl, U.; Bellemann, N.; Holzschuh, M. [Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg (Germany); Schmidt, J.; Weitz, J. [Department of General, Abdominal and Transplantation Surgery, University Hospital Heidelberg, Heidelberg (Germany); Grenacher, L.; Kauczor, H.U.; Radeleff, B.A. [Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg (Germany)

    2012-09-15

    Purpose: To prospectively evaluate whether intravenous morphine co-medication improves bile duct visualization of dual-energy CT-cholangiography. Materials and methods: Forty potential donors for living-related liver transplantation underwent CT-cholangiography with infusion of a hepatobiliary contrast agent over 40 min. Twenty minutes after the beginning of the contrast agent infusion, either normal saline (n = 20 patients; control group [CG]) or morphine sulfate (n = 20 patients; morphine group [MG]) was injected. Forty-five minutes after initiation of the contrast agent, a dual-energy CT acquisition of the liver was performed. Applying dual-energy post-processing, pure iodine images were generated. Primary study goals were determination of bile duct diameters and visualization scores (on a scale of 0 to 3: 0—not visualized; 3—excellent visualization). Results: Bile duct visualization scores for second-order and third-order branch ducts were significantly higher in the MG compared to the CG (2.9 ± 0.1 versus 2.6 ± 0.2 [P < 0.001] and 2.7 ± 0.3 versus 2.1 ± 0.6 [P < 0.01], respectively). Bile duct diameters for the common duct and main ducts were significantly higher in the MG compared to the CG (5.9 ± 1.3 mm versus 4.9 ± 1.3 mm [P < 0.05] and 3.7 ± 1.3 mm versus 2.6 ± 0.5 mm [P < 0.01], respectively). Conclusion: Intravenous morphine co-medication significantly improved biliary visualization on dual-energy CT-cholangiography in potential donors for living-related liver transplantation.

  13. In-situ visualization of N2 evolution in operating direct hydrazine hydrate fuel cell by soft X-ray radiography

    Science.gov (United States)

    Sakamoto, Tomokazu; Deevanhxay, Phengxay; Asazawa, Koichiro; Tsushima, Shohji; Hirai, Shuichiro; Tanaka, Hirohisa

    2014-04-01

    Soft X-ray radiography technique was firstly applied to operating direct hydrazine hydrate fuel cell (DHFCs) in order to visualize N2 gas behaviors with high spatial and temporal resolution. Two different cells for in-situ visualization of N2 gas in the DHFCs in in-plane and through-plane direction were designed and fabricated. The utilization of soft X-ray made the visualization of generated N2 behavior in the DHFC possible with the spatial resolution of 1.5 μm and the temporal resolution of 2.0 s frame-1. In the in-plane visualization, the inhomogeneous N2 gas distribution, suggesting non-uniform reaction distribution in the anode of DHFC, was observed. In the through-plane visualization, N2 gas accumulation under the rib of anode and discharge to the channel was clearly observed, which are related with cell performance instability.

  14. A Comparison of Pain Assessment Measures in Pediatric Sickle Cell Disease: Visual Analog Scale Versus Numeric Rating Scale.

    Science.gov (United States)

    Myrvik, Matthew P; Drendel, Amy L; Brandow, Amanda M; Yan, Ke; Hoffmann, Raymond G; Panepinto, Julie A

    2015-04-01

    Given the availability of various pain severity scales, greater understanding of the agreement between pain scales is warranted. We compared Visual Analog Scale (VAS) and Numeric Rating Scale (NRS) pain severity ratings in children with sickle cell disease (SCD) to identify the relationship and agreement between pain scale ratings. Twenty-eight patients (mean ± SD age, 14.65 ± 3.12 y, 50% female) receiving pain interventions within the emergency department completed serial VAS and NRS pain severity ratings every 30 minutes. Data were used to calculate the relationship (Spearman correlation) and agreement (Bland-Altman approach) between the VAS and NRS. One hundred twenty-eight paired VAS-NRS measurements were obtained. VAS and NRS ratings were significantly correlated for the initial assessment (rs = 0.88, P < 0.001) and all assessments (rs = 0.87, P < 0.001). Differences between VAS and NRS means were -0.52 (P = 0.006) for the initial assessment and -0.86 (P < 0.001) across all assessments. The difference between VAS and NRS ratings decreased as pain severity increased across all assessments (P = 0.027), but not the initial assessment. Within pediatric patients with SCD, VAS and NRS ratings were found to trend together; however, VAS scores were found to be significantly lower than NRS scores across assessments. The agreement between the 2 measures improved at increasing levels of pain severity. These findings demonstrate that the VAS and NRS are similar, but cannot be used interchangeably when assessing self-reported pain in SCD.

  15. Does an increase in compression force really improve visual image quality in mammography? – An initial investigation

    International Nuclear Information System (INIS)

    Objective: Literature speculates that visual image quality (IQ) and compression force levels may be directly related. This small study investigates whether a relationship exists between compression force levels and visual IQ. Method: To investigate how visual IQ varies with different levels of compression force, 39 clients were selected over a 6 year screening period that had received markedly different amounts of compression force on each of their three sequential screens. Images for the 3 screening episodes for all women were scored visually using 3 different IQ scales. Results: Correlation coefficients between the 3 IQ scales were positive and high (0.82, 0.9 and 0.85). For the scales, the IQ scores their correlation does not vary significantly, even though different compression levels had been applied. Kappa IQ scale 1: 0.92, 0.89, 0.89. ANOVA IQ scale 2: p = 0.98, p = 0.55, p = 0.56. ICC IQ scale 3: 0.97, 0.93, 0.91. Conclusion: For the 39 clients there is no difference in visual IQ when different amounts of compression are applied. We believe that further work should be conducted into compression force and image quality as ‘higher levels’ of compression force may not be justified in the attainment of suitable visual image quality

  16. Targeting of 111In-Labeled Dendritic Cell Human Vaccines Improved by Reducing Number of Cells

    NARCIS (Netherlands)

    Aarntzen, E.H.J.G.; Srinivas, M.; Bonetto, F.J.; Cruz, L.J.; Verdijk, P.; Schreibelt, G.; Rakt, M.W.M.M. van de; Lesterhuis, W.J.; Riel, M. van; Punt, C.J.A.; Adema, G.J.; Heerschap, A.; Figdor, C.G.; Oyen, W.J.G.; Vries, I.J.M. de

    2013-01-01

    PURPOSE: Anticancer dendritic cell (DC) vaccines require the DCs to relocate to lymph nodes (LN) to trigger immune responses. However, these migration rates are typically very poor. Improving the targeting of ex vivo generated DCs to LNs might increase vaccine efficacy and reduce costs. We investiga

  17. Organic photovoltaic cells: from performance improvement to manufacturing processes.

    Science.gov (United States)

    Youn, Hongseok; Park, Hui Joon; Guo, L Jay

    2015-05-20

    Organic photovoltaics (OPVs) have been pursued as a next generation power source due to their light weight, thin, flexible, and simple fabrication advantages. Improvements in OPV efficiency have attracted great attention in the past decade. Because the functional layers in OPVs can be dissolved in common solvents, they can be manufactured by eco-friendly and scalable printing or coating technologies. In this review article, the focus is on recent efforts to control nanomorphologies of photoactive layer and discussion of various solution-processed charge transport and extraction materials, to maximize the performance of OPV cells. Next, recent works on printing and coating technologies for OPVs to realize solution processing are reviewed. The review concludes with a discussion of recent advances in the development of non-traditional lamination and transfer method towards highly efficient and fully solution-processed OPV.

  18. Improved cell-free RNA and protein synthesis system.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available Cell-free RNA and protein synthesis (CFPS is becoming increasingly used for protein production as yields increase and costs decrease. Advances in reconstituted CFPS systems such as the Protein synthesis Using Recombinant Elements (PURE system offer new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, protein microarrays, isotopic labeling, and incorporating unnatural amino acids. In this study, using firefly luciferase synthesis as a reporter system, we improved PURE system productivity up to 5 fold by adding or adjusting a variety of factors that affect transcription and translation, including Elongation factors (EF-Ts, EF-Tu, EF-G, and EF4, ribosome recycling factor (RRF, release factors (RF1, RF2, RF3, chaperones (GroEL/ES, BSA and tRNAs. The work provides a more efficient defined in vitro transcription and translation system and a deeper understanding of the factors that limit the whole system efficiency.

  19. Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells.

    Science.gov (United States)

    Sakalis, Philippe A; van Heusden, G Paul H; Hooykaas, Paul J J

    2014-02-01

    Type IV secretion systems (T4SS) can mediate the translocation of bacterial virulence proteins into host cells. The plant pathogen Agrobacterium tumefaciens uses a T4SS to deliver a VirD2-single stranded DNA complex as well as the virulence proteins VirD5, VirE2, VirE3, and VirF into host cells so that these become genetically transformed. Besides plant cells, yeast and fungi can efficiently be transformed by Agrobacterium. Translocation of virulence proteins by the T4SS has so far only been shown indirectly by genetic approaches. Here we report the direct visualization of VirE2 protein translocation by using bimolecular fluorescence complementation (BiFC) and Split GFP visualization strategies. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part, either fused to VirE2 (for BiFC) or not (Split GFP). Fluorescent filaments became visible in recipient cells 20-25 h after the start of the cocultivation indicative of VirE2 protein translocation. Evidence was obtained that filament formation was due to the association of VirE2 with the microtubuli. PMID:24376037

  20. Modeling solar cells: A method for improving their efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acevedo, Arturo, E-mail: amorales@solar.cinvestav.mx [Centro de Investigacion y de Estudios Avanzados del IPN, Electrical Engineering Department, Avenida IPN No. 2508, 07360 Mexico, D.F. (Mexico); Hernandez-Como, Norberto; Casados-Cruz, Gaspar [Centro de Investigacion y de Estudios Avanzados del IPN, Electrical Engineering Department, Avenida IPN No. 2508, 07360 Mexico, D.F. (Mexico)

    2012-09-20

    After a brief discussion on the theoretical basis for simulating solar cells and the available programs for doing this we proceed to discuss two examples that show the importance of doing numerical simulation of solar cells. We shall concentrate in silicon Heterojunction Intrinsic Thin film aSi/cSi (HIT) and CdS/CuInGaSe{sub 2} (CIGS) solar cells. In the first case, we will show that numerical simulation indicates that there is an optimum transparent conducting oxide (TCO) to be used in contact with the p-type aSi:H emitter layer although many experimental researchers might think that the results can be similar without regard of the TCO film used. In this case, it is shown that high work function TCO materials such as ZnO:Al are much better than smaller work function films such as ITO. HIT solar cells made with small work function TCO layers (<4.8 eV) will never be able to reach the high efficiencies already reported experimentally. It will also be discussed that simulations of CIGS solar cells by different groups predict efficiencies around 18-19% or even less, i.e. below the record efficiency reported experimentally (20.3%). In addition, the experimental band-gap which is optimum in this case is around 1.2 eV while several theoretical results predict a higher optimum band-gap (1.4-1.5 eV). This means that there are other effects not included in most of the simulation models developed until today. One of them is the possible presence of an interfacial (inversion) layer between CdS and CIGS. It is shown that this inversion layer might explain the smaller observed optimum band-gap, but some efficiency is lost. It is discussed that another possible explanation for the higher experimental efficiency is the possible variation of Ga concentration in the CIGS film causing a gradual variation of the band-gap. This band-gap grading might help improve the open-circuit voltage and, if it is appropriately done, it can also cause the enhancement of the photo-current density.

  1. Improvement of uncorrected visual acuity (UCVA and contrast sensitivity (UCCS with perceptual learning and transcranial random noise stimulation (tRNS in individuals with mild myopia

    Directory of Open Access Journals (Sweden)

    Rebecca eCamilleri

    2014-10-01

    Full Text Available Perceptual learning has been shown to produce an improvement of visual acuity (VA and contrast sensitivity (CS both in subjects with amblyopia and refractive defects such as myopia or presbyopia. Transcranial random noise stimulation (tRNS has proven to be efficacious in accelerating neural plasticity and boosting perceptual learning in healthy participants. In this study we investigated whether a short behavioural training regime using a contrast detection task combined with online tRNS was as effective in improving visual functions in participants with mild myopia compared to a two-month behavioural training regime without tRNS (Camilleri et al., 2014. After two weeks of perceptual training in combination with tRNS, participants showed an improvement of 0.15 LogMAR in uncorrected VA (UCVA that was comparable with that obtained after eight weeks of training with no tRNS, and an improvement in uncorrected CS (UCCS at various spatial frequencies (whereas no UCCS improvement was seen after eight weeks of training with no tRNS. On the other hand, a control group that trained for two weeks without stimulation did not show any significant UCVA or UCCS improvement. These results suggest that the combination of behavioural and neuromodulatory techniques can be fast and efficacious in improving sight in individuals with mild myopia.

  2. Compact Flyeye concentrator with improved irradiance uniformity on solar cell

    Science.gov (United States)

    Zhuang, Zhenfeng; Yu, Feihong

    2013-08-01

    A Flyeye concentrator with improved irradiance distribution on the solar cell in a concentrator photovoltaic system is proposed. This Flyeye concentrator is composed of four surfaces: a refractive surface, mirror surface, freeform surface, and transmissive surface. Based on the principles of geometrical optics, the contours of the proposed Flyeye concentrator are calculated according to Fermat's principle, the edge-ray principle, and the ray reversibility principle without solving partial differential equations or using an optimization algorithm, therefore a slope angle control method is used to construct the freeform surface. The solid model is established by applying a symmetry of revolution around the optical axis. Additionally, the optical performance for the Flyeye concentrator is simulated and analyzed by Monte-Carlo method. Results show that the Flyeye concentrator optical efficiency of >96.2% is achievable with 1333× concentration ratio and ±1.3 deg acceptance angle, and 1.3 low aspect ratio (average thickness to entry aperture diameter ratio). Moreover, comparing the Flyeye concentrator specification to that of the Köhler concentrator and the traditional Fresnel-type concentrator, results indicate that this concentrator has the advantages of improved uniformity, reduced thickness, and increased tolerance to the incident sunlight.

  3. Human Embryonic and Hepatic Stem Cell Differentiation Visualized in Two and Three Dimensions Based on Serial Sections

    DEFF Research Database (Denmark)

    Vestentoft, Peter S.; Brøchner, Christian B; Lynnerup, Niels;

    2015-01-01

    Pluripotent human embryonic stem cells (hESCs) are characterized by two defining properties, self-renewal and differentiation. Self-renewing hESCs express transcription factors OCT4, SOX2, and NANOG, and surface markers SSEA-4 and TRA-1-60 and TRA-1-81 and their ability to differentiate...... of an entire colony is accomplished using 3D image processing software such as Mimics(®) or Amira(®). An extended version of this technique even allows for a high-magnification 3D-reconstruction of, e.g., hepatic stem cells in developing liver. These techniques combined allow for both a 2- and a 3-dimensional...... visualization of hESC colonies and stem cells in organs, which leads to new insights into and information about the interaction of stem cells with their surroundings....

  4. Direct visualization of secretion from single bovine adrenal chromaffin cells by laser-induced native fluorescence imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong, W.; Yeung, E.S. [Ames Laboratory---USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

    1998-03-01

    Direct visualization of the secretion process of individual bovine adrenal chromaffin cells was achieved with laser-induced native fluorescence imaging microscopy. By monitoring the native fluorescence of catecholamines excited by the 275 nm laser line with an intensified charge-coupled-device (CCD) camera, we obtained good temporal and spatial resolution simultaneously without using additional fluorescent probes. Large variations were found among individual cells in terms of the amounts of catecholamines secreted and the rates of secretion. Different regions of a cell also behave differently during the secretion process. However, the degree of this local heterogeneity is smaller than in neurons and neuralgia. The influence of deep-ultraviolet (UV) laser excitation on cells is also discussed. This quantitative imaging technique provides a useful noninvasive approach for the study of dynamic cellular changes and the understanding of the molecular mechanisms of secretory processes. {copyright} {ital 1998} {ital Society for Applied Spectroscopy}

  5. Integration of interactive three-dimensional image post-processing software into undergraduate radiology education effectively improves diagnostic skills and visual-spatial ability

    Energy Technology Data Exchange (ETDEWEB)

    Rengier, Fabian, E-mail: fabian.rengier@web.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Häfner, Matthias F. [University Hospital Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Unterhinninghofen, Roland [Karlsruhe Institute of Technology (KIT), Institute for Anthropomatics, Department of Informatics, Adenauerring 2, 76131 Karlsruhe (Germany); Nawrotzki, Ralph; Kirsch, Joachim [University of Heidelberg, Institute of Anatomy and Cell Biology, Im Neuenheimer Feld 307, 69120 Heidelberg (Germany); Kauczor, Hans-Ulrich [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Giesel, Frederik L. [University of Heidelberg, Institute of Anatomy and Cell Biology, Im Neuenheimer Feld 307, 69120 Heidelberg (Germany); University Hospital Heidelberg, Department of Nuclear Medicine, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany)

    2013-08-15

    Purpose: Integrating interactive three-dimensional post-processing software into undergraduate radiology teaching might be a promising approach to synergistically improve both visual-spatial ability and radiological skills, thereby reducing students’ deficiencies in image interpretation. The purpose of this study was to test our hypothesis that a hands-on radiology course for medical students using interactive three-dimensional image post-processing software improves radiological knowledge, diagnostic skills and visual-spatial ability. Materials and methods: A hands-on radiology course was developed using interactive three-dimensional image post-processing software. The course consisted of seven seminars held on a weekly basis. The 25 participating fourth- and fifth-year medical students learnt to systematically analyse cross-sectional imaging data and correlated the two-dimensional images with three-dimensional reconstructions. They were instructed by experienced radiologists and collegiate tutors. The improvement in radiological knowledge, diagnostic skills and visual-spatial ability was assessed immediately before and after the course by multiple-choice tests comprising 64 questions each. Wilcoxon signed rank test for paired samples was applied. Results: The total number of correctly answered questions improved from 36.9 ± 4.8 to 49.5 ± 5.4 (p < 0.001) which corresponded to a mean improvement of 12.6 (95% confidence interval 9.9–15.3) or 19.8%. Radiological knowledge improved by 36.0% (p < 0.001), diagnostic skills for cross-sectional imaging by 38.7% (p < 0.001), diagnostic skills for other imaging modalities – which were not included in the course – by 14.0% (p = 0.001), and visual-spatial ability by 11.3% (p < 0.001). Conclusion: The integration of interactive three-dimensional image post-processing software into undergraduate radiology education effectively improves radiological reasoning, diagnostic skills and visual-spatial ability, and thereby

  6. Integration of interactive three-dimensional image post-processing software into undergraduate radiology education effectively improves diagnostic skills and visual-spatial ability

    International Nuclear Information System (INIS)

    Purpose: Integrating interactive three-dimensional post-processing software into undergraduate radiology teaching might be a promising approach to synergistically improve both visual-spatial ability and radiological skills, thereby reducing students’ deficiencies in image interpretation. The purpose of this study was to test our hypothesis that a hands-on radiology course for medical students using interactive three-dimensional image post-processing software improves radiological knowledge, diagnostic skills and visual-spatial ability. Materials and methods: A hands-on radiology course was developed using interactive three-dimensional image post-processing software. The course consisted of seven seminars held on a weekly basis. The 25 participating fourth- and fifth-year medical students learnt to systematically analyse cross-sectional imaging data and correlated the two-dimensional images with three-dimensional reconstructions. They were instructed by experienced radiologists and collegiate tutors. The improvement in radiological knowledge, diagnostic skills and visual-spatial ability was assessed immediately before and after the course by multiple-choice tests comprising 64 questions each. Wilcoxon signed rank test for paired samples was applied. Results: The total number of correctly answered questions improved from 36.9 ± 4.8 to 49.5 ± 5.4 (p < 0.001) which corresponded to a mean improvement of 12.6 (95% confidence interval 9.9–15.3) or 19.8%. Radiological knowledge improved by 36.0% (p < 0.001), diagnostic skills for cross-sectional imaging by 38.7% (p < 0.001), diagnostic skills for other imaging modalities – which were not included in the course – by 14.0% (p = 0.001), and visual-spatial ability by 11.3% (p < 0.001). Conclusion: The integration of interactive three-dimensional image post-processing software into undergraduate radiology education effectively improves radiological reasoning, diagnostic skills and visual-spatial ability, and thereby

  7. Quantify and improve PEM fuel cell durability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grahl-Madsen, L.; Odgaard, M.; Munksgaard Nielsen, R. (IRD Fuel Cell A/S, Svendborg (Denmark)); Li, Q.; Jensen, Jens Oluf (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Andersen, Shuang Ma; Speder, J.; Skou, E. (Syddansk Univ. (SDU), Odense (Denmark))

    2010-07-01

    approx 4,000 hours of operation correspond to a loss of catalytic active area of 58% for the anode and 69% for the cathode respectively, and the MEA can be expected to perform equivalent to MEAs with less than half the catalyst loating. DMFC durability tests were carried out on both Nafion and Hydrocarbon membrane based MEAs using different electrode designs. Several single DMFC cells and stacks have been tested up to 3,000 hours. The degradation rates found for both single cells and stacks were in the range between 10-90 muV/hours per cell, depending on the MEA configuration. Certain performance losses incurred by the cell during the steady-state operation were recovered, fully or in part, after the regular OCV hold. Regeneration of the Pt-catalyst particles include electro-reduction of the surface PtO that gradually forms over time, surface electro-oxidation of adsorbed poisons (namely CO formed from methanol crossover), and chemical reduction of PtO and/or PtOH via crossover methanol. The HT PEM FC results indicate that a degradation rate of approx 5 muV/h for HT PEM FC can be expected under continuous operation with hydrogen and air at 150-160 C, corresponding to a lifetime of 12,000 hours before 10% performance loss. This lifetime is somewhat shorter than aimed at in the national Danish HT PEM Road map (2009: 20,000 h), but it is in this context important to remember the limited knowledge on HT PEM lifetime at the time of the roadmap definition in 2008. The accelerated durability test with potential cycling showed significant catalyst degradation, primarily due to the corrosion of carbon supports, which triggers the platinum sintering/agglomeration. Modified catalyst supports in form of graphite or carbon nanotubes improve the catalyst and therefore the PBI cell durability. (LN)

  8. Ontogenetic improvement of visual function in the medaka Oryzias latipes based on an optomotor testing system for larval and adult fish

    Science.gov (United States)

    Carvalho, P.S.M.; Noltie, D.B.; Tillitt, D.E.

    2002-01-01

    We developed a system for evaluation of visual function in larval and adult fish. Both optomotor (swimming) and optokinetic (eye movement) responses were monitored and recorded using a system of rotating stripes. The system allowed manipulation of factors such as width of the stripes used, rotation speed of the striped drum, and light illuminance levels within both the scotopic and photopic ranges. Precise control of these factors allowed quantitative measurements of visual acuity and motion detection. Using this apparatus, we tested the hypothesis that significant posthatch ontogenetic improvements in visual function occur in the medaka Oryzias latipes, and also that this species shows significant in ovo neuronal development. Significant improvements in the acuity angle alpha (ability to discriminate detail) were observed from approximately 5 degrees at hatch to 1 degree in the oldest adult stages. In addition, we measured a significant improvement in flicker fusion thresholds (motion detection skills) between larval and adult life stages within both the scotopic and photopic ranges of light illuminance. Ranges of flicker fusion thresholds (X?? ?? SD) at log I=1.96 (photopic) varied from 37.2 ?? 1.6 cycles/s in young adults to 18.6 ?? 1.6 cycles/s in young larvae 10 days posthatch. At log I= - 2.54 (scotopic), flicker fusion thresholds varied from 5.8 ?? 0.7 cycles/s in young adults to 1.7 ?? 0.4 cycles/s in young larvae 10 days posthatch. Light sensitivity increased approximately 2.9 log units from early hatched larval stages to adults. The demonstrated ontogenetic improvements in visual function probably enable the fish to explore new resources, thereby enlarging their fundamental niche. ?? 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.

  9. Improving the performance of monocular visual simultaneous localisation and mapping through the use of a gimballed camera

    Science.gov (United States)

    Playle, Nicholas

    In this thesis modern vision based localisation methods are discussed and contrasted with existing satellite based approaches. Shortcomings are noted and potential solutions are highlighted. A novel method of using a gimballed camera to perform visual Simultaneous Localisation and Mapping (SLAM) is proposed, along with a control algorithm to point the camera toward feature dense regions. This method is then modularly coupled with existing visual SLAM techniques allowing seamless integration across different platforms. Ground tests are performed to verify operation of the gimbal controller and rotation inverser. Results from experimental flight tests are incorporated as a final means of obtaining information to verify gimbal operation.

  10. Visual selection and maintenance of the cell lines with high plant regeneration ability and low ploidy level in Dianthus acicularis by monitoring with flow cytometry analysis.

    Science.gov (United States)

    Shiba, Tomonori; Mii, Masahiro

    2005-12-01

    Efficient plant regeneration system from cell suspension cultures was established in D. acicularis (2n=90) by monitoring ploidy level and visual selection of the cultures. The ploidy level of the cell cultures closely related to the shoot regeneration ability. The cell lines comprising original ploidy levels (2C+4C cells corresponding to DNA contents of G1 and G2 cells of diploid plant, respectively) showed high regeneration ability, whereas those containing the cells with 8C or higher DNA C-values showed low or no regeneration ability. The highly regenerable cell lines thus selected consisted of compact cell clumps with yellowish color and relatively moderate growth, suggesting that it is possible to select visually the highly regenerable cell lines with the original ploidy level. All the regenerated plantlets from the highly regenerable cell cultures exhibited normal phenotypes and no variations in ploidy level were observed by flow cytometry (FCM) analysis.

  11. Three dimensional visualization and fractal analysis of mosaic patches in rat chimeras: cell assortment in liver, adrenal cortex and cornea.

    Directory of Open Access Journals (Sweden)

    Stephen Iannaccone

    Full Text Available The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations.

  12. Three dimensional visualization and fractal analysis of mosaic patches in rat chimeras: cell assortment in liver, adrenal cortex and cornea.

    Science.gov (United States)

    Iannaccone, Stephen; Zhou, Yue; Walterhouse, David; Taborn, Greg; Landini, Gabriel; Iannaccone, Philip

    2012-01-01

    The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division) switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations.

  13. The Method of Improving Non-computer Major's Interest in Visual Basic%提高非计算机专业Visual Basic课程学习兴趣的方法

    Institute of Scientific and Technical Information of China (English)

    程传鹏

    2011-01-01

    Visual Basic language is based on Windows platform,object-oriented visual programming language,with its intuitive,easy to learn the characteristics.Therefore,many universities regard the VB as a non-computer professional to teach computer basic course.This paper analyzes the common problems of VB teaching in non computer science students.Combined with teaching practice,the corresponding improved method is put forward,and the good result is achieved in actual teaching.%Visual Basic语言是一种基于Windows平台的,面向对象的可视化编程语言,由于其具备了直观、简单易学的特性,因此,很多大学都把VB作为非计算机专业的计算机公共基础课来讲授。本文分析了VB教学在非计算机专业学生中所普遍存在的问题,结合教学实际,提出了相应的改进方法,这种方法在笔者的实际教学中取得了较好的效果。

  14. Google Earth Mapping Exercises for Structural Geology Students--A Promising Intervention for Improving Penetrative Visualization Ability

    Science.gov (United States)

    Giorgis, Scott

    2015-01-01

    Three-dimensional thinking skills are extremely useful for geoscientists, and at the undergraduate level, these skills are often emphasized in structural geology courses. Google Earth is a powerful tool for visualizing the three-dimensional nature of data collected on the surface of Earth. The results of a 5 y pre- and posttest study of the…

  15. In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-hydroxydopamine-induced mouse model of Parkinson disease.

    Science.gov (United States)

    Im, Hyung-Jun; Hwang, Do Won; Lee, Han Kyu; Jang, Jaeho; Lee, Song; Youn, Hyewon; Jin, Yeona; Kim, Seung U; Kim, E Edmund; Kim, Yong Sik; Lee, Dong Soo

    2013-06-01

    Transplantation of neural stem cells (NSCs) has been proposed as a treatment for Parkinson disease (PD). The aim of this study was to monitor the viability of transplanted NSCs expressing the enhanced luciferase gene in a mouse model of PD in vivo. The PD animal model was induced by unilateral injection of 6-hydroxydopamine (6-OHDA). The behavioral test using apomorphine-induced rotation and positron emission tomography with [18F]N-(3-fluoropropyl)-2'-carbomethoxy-3'-(4-iodophenyl)nortropane ([18F]FP-CIT) were conducted. HB1.F3 cells transduced with an enhanced firefly luciferase retroviral vector (F3-effLuc cells) were transplanted into the right striatum. In vivo bioluminescence imaging was repeated for 2 weeks. Four weeks after transplantation, [18F]FP-CIT PET and the rotation test were repeated. All 6-OHDA-injected mice showed markedly decreased [18F]FP-CIT uptake in the right striatum. Transplanted F3-effLuc cells were visualized on the right side of the brain in all mice by bioluminescence imaging. The bioluminescence intensity of the transplanted F3-effLuc cells gradually decreased until it was undetectable by 10 days. The behavioral test showed that stem cell transplantation attenuated the motor symptoms of PD. No significant change was found in [18F]FP-CIT imaging after cell transplantation. We successfully established an in vivo bioluminescence imaging system for the detection of transplanted NSCs in a mouse model of PD. NSC transplantation induced behavioral improvement in PD model mice.

  16. Electrochemical Cell with Improved Water or Gas Management

    Science.gov (United States)

    Smith, William F. (Inventor); McElroy, James F. (Inventor); LaGrange, Jay W. (Inventor)

    2015-01-01

    An electrochemical cell having a water/gas porous separator prepared from a polymeric material and one or more conductive cell components that pass through, or are located in close proximity to, the water/gas porous separator, is provided. The inventive cell provides a high level of in-cell electrical conductivity.

  17. Cell therapy strategies and improvements for muscular dystrophy

    OpenAIRE

    Quattrocelli, Mattia; Cassano, Marco; Crippa, Stefania; Perini, Ilaria; Sampaolesi, Maurilio

    2010-01-01

    Understanding stem cell commitment and differentiation is a critical step towards clinical translation of cell therapies. In past few years, several cell types have been characterized and transplanted in animal models for different diseased tissues, eligible for a cell-mediated regeneration. Skeletal muscle damage is a challenge for cell- and gene-based therapeutical approaches, given the unique architecture of the tissue and the clinical relevance of acute damages or dystrophies. In this rev...

  18. An improved alkaline direct formate paper microfluidic fuel cell.

    Science.gov (United States)

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator.

  19. An improved alkaline direct formate paper microfluidic fuel cell.

    Science.gov (United States)

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator. PMID:26572774

  20. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies. PMID:17855129

  1. Adult stem cells in mice : visualization and characterization using genetic mouse models

    NARCIS (Netherlands)

    Snippert, H.J.G.

    2011-01-01

    The onset of each living organism starts with pluripotent stem cells that have the ability to differentiate into all the different cell types of an organism. However, during the earliest stages of development, the pluripotent stem cells will stepwise lose their developmental potential. The cells tha

  2. A dual-mode turn-on fluorescent BODIPY-based probe for visualization of mercury ions in living cells.

    Science.gov (United States)

    Wang, Yue; Pan, Fuchao; Zhang, Yuanlin; Peng, Fangfang; Huang, Zhentao; Zhang, Weijuan; Zhao, Weili

    2016-08-01

    A novel turn-on fluorescent 8-amino BODIPY-based probe carrying a thiourea unit as the mercury ion recognition unit has been developed. Due to the cascade reaction processes, consecutive color changes reflecting the electronic absorption and emission responses were observed upon addition of increased concentrations of mercury(ii) ions. The likely sensing mechanism was proposed as mercury ion-promoted cyclization and subsequent hydrolysis. The probe displayed a selective response to mercury ions over other metal ions. Additionally, experiments with living Human Hepatoma SMMC-7721 cells to visualize intracellular mercury ions in biological systems were carried out with the probe. PMID:27251011

  3. How a (subcellular coincidence detection mechanism featuring layer-5 pyramidal cells may help produce various visual phenomena

    Directory of Open Access Journals (Sweden)

    Talis eBachmann

    2015-12-01

    Full Text Available Perceptual phenomena such as spatio-temporal illusions and masking are typically explained by psychological (cognitive processing theories or large-scale neural theories involving inter-areal connectivity and neural circuits comprising of hundreds or more interconnected single cells. Subcellular mechanisms are hardly used for such purpose. Here a mechanistic theoretical view is presented on how a subcellular brain mechanism of integration of presynaptic signals that arrive at different compartments of layer-5 pyramidal neurons could explain a couple of spatiotemporal visual-phenomenal effects unfolding along very brief time intervals within the range of sub-second temporal scale.

  4. Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex

    Science.gov (United States)

    Pakan, Janelle MP; Lowe, Scott C; Dylda, Evelyn; Keemink, Sander W; Currie, Stephen P; Coutts, Christopher A; Rochefort, Nathalie L

    2016-01-01

    Cortical responses to sensory stimuli are modulated by behavioral state. In the primary visual cortex (V1), visual responses of pyramidal neurons increase during locomotion. This response gain was suggested to be mediated through inhibitory neurons, resulting in the disinhibition of pyramidal neurons. Using in vivo two-photon calcium imaging in layers 2/3 and 4 in mouse V1, we reveal that locomotion increases the activity of vasoactive intestinal peptide (VIP), somatostatin (SST) and parvalbumin (PV)-positive interneurons during visual stimulation, challenging the disinhibition model. In darkness, while most VIP and PV neurons remained locomotion responsive, SST and excitatory neurons were largely non-responsive. Context-dependent locomotion responses were found in each cell type, with the highest proportion among SST neurons. These findings establish that modulation of neuronal activity by locomotion is context-dependent and contest the generality of a disinhibitory circuit for gain control of sensory responses by behavioral state. DOI: http://dx.doi.org/10.7554/eLife.14985.001 PMID:27552056

  5. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    KAUST Repository

    Cusick, Roland D.

    2013-12-17

    Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m 2-cat) and wastewater (WW: 0.3 to 1.7 W/m2), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m2; WW: 1.9 W/m2). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m2-mem; WW: 1.7 W/m2) and 2-CP (Acetate: 1.3 W/m2-mem; WW: 0.6 W/m2) reactors were much higher than previous MRCs (0.3-0.5 W/m2-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment. © 2013 American Chemical Society.

  6. Balsamic Vinegar Improves High Fat-Induced Beta Cell Dysfunction via Beta Cell ABCA1

    Directory of Open Access Journals (Sweden)

    Hannah Seok

    2012-08-01

    Full Text Available BackgroundThe aim of this study was to investigate the effects of balsamic vinegar on β-cell dysfunction.MethodsIn this study, 28-week-old Otsuka Long-Evans Tokushima Fatty (OLETF rats were fed a normal chow diet or a high-fat diet (HFD and were provided with tap water or dilute balsamic vinegar for 4 weeks. Oral glucose tolerance tests and histopathological analyses were performed thereafter.ResultsIn rats fed both the both chow diet and the HFD, the rats given balsamic vinegar showed increased insulin staining in islets compared with tap water administered rats. Balsamic vinegar administration also increased β-cell ATP-binding cassette transporter subfamily A member 1 (ABCA1 expression in islets and decreased cholesterol levels.ConclusionThese findings provide the first evidence for an anti-diabetic effect of balsamic vinegar through improvement of β-cell function via increasing β-cell ABCA1 expression.

  7. Amniotic membrane covering promotes healing of cornea epithelium and improves visual acuity after debridement for fungal keratitis

    Institute of Scientific and Technical Information of China (English)

    Bo; Zeng; Ping; Wang; Ling-Juan; Xu; Xin-Yu; Li; Hong; Zhang; Gui-Gang; Li

    2014-01-01

    AIM:To investigate the effect of amniotic membrane covering(AMC) on the healing of cornea epithelium and visual acuity for fungal keratitis after debridement.METHODS:Twenty fungal keratitis patients were divided into two groups randomly, the AMC group and the control group, ten patients each group. Both debridement of the infected cornea tissue and standard anti-fungus drugs treatments were given to every patients, monolayer amniotic membrane were sutured to the surface of the entire cornea and bulbar conjunctiva with 10-0 nylon suture for patients in the AMC group.The diameter of the ulcer was determined with slit lamp microscope and the depth of the infiltration was determined with anterior segment optical coherence tomography. Uncorrected visual acuity(UCVA) was tested before surgery and three month after healing of the epithelial layer. The healing time of the cornea epithelium, visual acuity(VA) was compared between the two groups using t- test.RESULTS:There was no statistical difference of the diameter of the ulcer, depth of the infiltration, height of the hypopyon and VA between the two groups beforesurgery(P >0.05). The average healing time of the AMC group was 6.89 ±2.98 d, which was statistically shorter than that of the control group(10.23±2.78d)(P <0.05).The average UCVA of the AMC group was 0.138 ±0.083,which was statistically better than that of the control group(0.053±0.068)(P <0.05).CONCLUSION:AMC surgery could promote healing of cornea epithelium after debridement for fungal keratitis and lead to better VA outcome.

  8. Using Immersive Visualizations to Improve Decision Making and Enhancing Public Understanding of Earth Resource and Climate Issues

    Science.gov (United States)

    Yu, K. C.; Raynolds, R. G.; Dechesne, M.

    2008-12-01

    New visualization technologies, from ArcGIS to Google Earth, have allowed for the integration of complex, disparate data sets to produce visually rich and compelling three-dimensional models of sub-surface and surface resource distribution patterns. The rendering of these models allows the public to quickly understand complicated geospatial relationships that would otherwise take much longer to explain using traditional media. We have impacted the community through topical policy presentations at both state and city levels, adult education classes at the Denver Museum of Nature and Science (DMNS), and public lectures at DMNS. We have constructed three-dimensional models from well data and surface observations which allow policy makers to better understand the distribution of groundwater in sandstone aquifers of the Denver Basin. Our presentations to local governments in the Denver metro area have allowed resource managers to better project future ground water depletion patterns, and to encourage development of alternative sources. DMNS adult education classes on water resources, geography, and regional geology, as well as public lectures on global issues such as earthquakes, tsunamis, and resource depletion, have utilized the visualizations developed from these research models. In addition to presenting GIS models in traditional lectures, we have also made use of the immersive display capabilities of the digital "fulldome" Gates Planetarium at DMNS. The real-time Uniview visualization application installed at Gates was designed for teaching astronomy, but it can be re-purposed for displaying our model datasets in the context of the Earth's surface. The 17-meter diameter dome of the Gates Planetarium allows an audience to have an immersive experience---similar to virtual reality CAVEs employed by the oil exploration industry---that would otherwise not be available to the general public. Public lectures in the dome allow audiences of over 100 people to comprehend

  9. Audio-Visual Biofeedback Does Not Improve the Reliability of Target Delineation Using Maximum Intensity Projection in 4-Dimensional Computed Tomography Radiation Therapy Planning

    International Nuclear Information System (INIS)

    Purpose: To investigate whether coaching patients' breathing would improve the match between ITVMIP (internal target volume generated by contouring in the maximum intensity projection scan) and ITV10 (generated by combining the gross tumor volumes contoured in 10 phases of a 4-dimensional CT [4DCT] scan). Methods and Materials: Eight patients with a thoracic tumor and 5 patients with an abdominal tumor were included in an institutional review board-approved prospective study. Patients underwent 3 4DCT scans with: (1) free breathing (FB); (2) coaching using audio-visual (AV) biofeedback via the Real-Time Position Management system; and (3) coaching via a spirometer system (Active Breathing Coordinator or ABC). One physician contoured all scans to generate the ITV10 and ITVMIP. The match between ITVMIP and ITV10 was quantitatively assessed with volume ratio, centroid distance, root mean squared distance, and overlap/Dice coefficient. We investigated whether coaching (AV or ABC) or uniform expansions (1, 2, 3, or 5 mm) of ITVMIP improved the match. Results: Although both AV and ABC coaching techniques improved frequency reproducibility and ABC improved displacement regularity, neither improved the match between ITVMIP and ITV10 over FB. On average, ITVMIP underestimated ITV10 by 19%, 19%, and 21%, with centroid distance of 1.9, 2.3, and 1.7 mm and Dice coefficient of 0.87, 0.86, and 0.88 for FB, AV, and ABC, respectively. Separate analyses indicated a better match for lung cancers or tumors not adjacent to high-intensity tissues. Uniform expansions of ITVMIP did not correct for the mismatch between ITVMIP and ITV10. Conclusions: In this pilot study, audio-visual biofeedback did not improve the match between ITVMIP and ITV10. In general, ITVMIP should be limited to lung cancers, and modification of ITVMIP in each phase of the 4DCT data set is recommended

  10. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus

    OpenAIRE

    Scott J Rodig; Cheng, Jingwei; Wardzala, Jacek; Dorosario, Andrew; Scanlon, Jessica J.; Laga, Alvaro C.; Martinez-Fernandez, Alejandro; Barletta, Justine A.; Bellizzi, Andrew M.; Sadasivam, Subhashini; Holloway, Dustin T.; Cooper, Dylan J.; Kupper, Thomas S.; Wang, Linda C; DeCaprio, James A.

    2012-01-01

    A human polyomavirus was recently discovered in Merkel cell carcinoma (MCC) specimens. The Merkel cell polyomavirus (MCPyV) genome undergoes clonal integration into the host cell chromosomes of MCC tumors and expresses small T antigen and truncated large T antigen. Previous studies have consistently reported that MCPyV can be detected in approximately 80% of all MCC tumors. We sought to increase the sensitivity of detection of MCPyV in MCC by developing antibodies capable of detecting large T...

  11. Matrigel improves functional properties of primary human salivary gland cells.

    Science.gov (United States)

    Maria, Ola M; Zeitouni, Anthony; Gologan, Olga; Tran, Simon D

    2011-05-01

    Currently, there is no effective treatment available to patients with irreversible loss of functional salivary acini caused by Sjogren's syndrome or after radiotherapy for head and neck cancer. A tissue-engineered artificial salivary gland would help these patients. The graft cells for this device must establish tight junctions in addition to being of fluid-secretory nature. This study analyzed a graft source from human salivary glands (huSG) cultured on Matrigel. Cells were obtained from parotid and submandibular glands, expanded in vitro, and then plated on either Matrigel-coated (2 mg/mL) or uncoated culture dish. Immunohistochemistry, transmission electron microscopy, quantitative real-time-polymerase chain reaction, Western blot, and transepithelial electrical resistance were employed. On Matrigel, huSG cells adopted an acinar phenotype by forming three-dimensional acinar-like units (within 24 h of plating) as well as a monolayer of cells. On uncoated surfaces (plastic), huSG cells only formed monolayers of ductal cells. Both types of culture conditions allowed huSG cells to express tight junction proteins (claudin-1, -2, -3, -4; occludin; JAM-A; and ZO-1) and adequate transepithelial electrical resistance. Importantly, 99% of huSG cells on Matrigel expressed α-amylase and the water channel protein Aquaporin-5, as compared to cells on plastic. Transmission electron microscopy confirmed an acinar phenotype with many secretory granules. Matrigel increased the secretion of α-amylase two to five folds into the media, downregulated certain salivary genes, and regulated the translation of acinar proteins. This three-dimensional in vitro serum-free cell culture method allows the organization and differentiation of huSG cells into salivary cells with an acinar phenotype.

  12. fMRI evidence of improved visual function in patients with progressive retinitis pigmentosa by eye-movement training

    Directory of Open Access Journals (Sweden)

    Masako Yoshida

    2014-01-01

    Full Text Available To evaluate changes in the visual processing of patients with progressive retinitis pigmentosa (RP who acquired improved reading capability by eye-movement training (EMT, we performed functional magnetic resonance imaging (fMRI before and after EMT. Six patients with bilateral concentric contraction caused by pigmentary degeneration of the retina and 6 normal volunteers were recruited. Patients were given EMT for 5 min every day for 8–10 months. fMRI data were acquired on a 3.0-Tesla scanner while subjects were performing reading tasks. In separate experiments (before fMRI scanning, visual performances for readings were measured by the number of letters read correctly in 5 min. Before EMT, activation areas of the primary visual cortex of patients were 48.8% of those of the controls. The number of letters read correctly in 5 min was 36.6% of those by the normal volunteers. After EMT, the activation areas of patients were not changed or slightly decreased; however, reading performance increased in 5 of 6 patients, which was 46.6% of that of the normal volunteers (p< 0.05. After EMT, increased activity was observed in the frontal eye fields (FEFs of all patients; however, increases in the activity of the parietal eye fields (PEFs were observed only in patients who showed greater improvement in reading capability. The improvement in reading ability of the patients after EMT is regarded as an effect of the increased activity of FEF and PEF, which play important roles in attention and working memory as well as the regulation of eye movements.

  13. A multifunctional magneto-fluorescent nanocomposite for visual recognition of targeted cancer cells

    Science.gov (United States)

    Acharya, Amitabha; Rawat, Kiran; Bhat, Kaisar Ahmad; Patial, Vikram; Padwad, Yogendra S.

    2015-11-01

    A multifunctional hybrid nanocomposite material of iron oxide nanoparticles and CdS quantum dots was synthesized by a direct amide coupling reaction. The prepared nanoparticles were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential studies. The TEM studies suggested that the sizes of the particles were in the range of 13.5 ± 1 nm. The energy dispersive x-ray (EDX) analysis confirmed the presence of Fe, Cd and S in the nanocomposites. To check the utility of this nanocomposite as a molecular imaging probe, these nanoparticles were further conjugated with folic acid. The folic acid conjugated nanocomposites were treated with rat glioma cells (C6, folic acid receptor over-expressing cell lines), human lung adenocarcinoma epithelial cells (A549, folic acid receptor negative cell lines) and normal mouse splenocytes for cell uptake and cytotoxicity studies. The nanoparticle internalization to C6 cells was confirmed by green fluorescence emission from these cells. Prussian blue staining studies suggested the intracellular presence of iron oxide. Further it was found that folic acid conjugated nanocomposites were significantly toxic to C6 cells only after 48 h but not to A549 cells or splenocytes. These studies indicated that the prepared nanocomposites have the potential to be used as delivery agent for magnetic and fluorescent materials towards folic acid receptor over-expressing cells and thus can find their application in the field of in vitro imaging diagnosis.

  14. Study on Improvement Countermeasures for Visualized Logistics Information Platform%物流可视化信息平台问题及改进对策研究

    Institute of Scientific and Technical Information of China (English)

    唐雨薇

    2015-01-01

    探讨了可视化技术对物流信息平台的影响,对当前物流可视化信息平台存在的问题进行了详细介绍,并引入RFID技术对物流可视化信息平台进行改进,增强了物流可视化信息平台的透明度,使整个物流供应链体系都可以动态追踪与掌控物流配送过程,实现了可视化物流技术的协同管理.%In this paper, we discussed the influence of the visualization technology on the logistics information platform, introduced in detail the problems existing in the current visualized logistics information platform, and at the end introduced the RFID technology to improve it by enhancing the transparency of the platform and realizing the collaborative management of the logistics supply chain system using the visualization technologies.

  15. Improving pattern discovery and visualization of SAGE data through poisson-based self-adaptive neural networks.

    Science.gov (United States)

    Zheng, Huiru; Wang, Haiying; Azuaje, Francisco

    2008-07-01

    Serial analysis of gene expression (SAGE) allows a detailed, simultaneous analysis of thousands of genes without the need for prior, complete gene sequence information. However, due to its inherent complexity and the lack of complete structural and function knowledge, mining vast collections of SAGE data to extract useful knowledge poses great challenges to traditional analytical techniques. Moreover, SAGE data are characterized by a specific statistical model that has not been incorporated into traditional data analysis techniques. The analysis of SAGE data requires advanced, intelligent computational techniques, which consider the underlying biology and the statistical nature of SAGE data. By addressing the statistical properties demonstrated by SAGE data, this paper presents a new self-adaptive neural network, Poisson-based growing self-organizing map (PGSOM), which implements novel weight adaptation and neuron growing strategies. An empirical study of key dynamic mechanisms of PGSOM is presented. It was tested on three datasets, including synthetic and experimental SAGE data. The results indicate that, in comparison to traditional techniques, the PGSOM offers significant advantages in the context of pattern discovery and visualization in SAGE data. The pattern discovery and visualization platform discussed in this paper can be applied to other problem domains where the data are better approximated by a Poisson distribution.

  16. How to improve the on-site MOE assessment of old timber beams combining NDT and visual strength grading

    Science.gov (United States)

    Cavalli, Alberto; Togni, Marco

    2013-09-01

    For the conservation and restoration of old timber structures, the knowledge of the mechanical properties of each element is fundamental. For this reason, various nondestructive techniques were developed and investigated since the 1990s. Some of them provide very good results, but the solutions and the proposed models were applied only in few circumstances as a consequence of the on-site restrictive working conditions: no possibility to remove the elements, limitation to ends and faces accessibility and unknown density. The on-site inspection, including the visual strength grading, has been identified as the first step for the timber assessment. In this research, 13 old timber members of Silver Fir (Abies alba Mill.) were visually graded and tested with different nondestructive techniques for the density and modulus of elasticity (MOE) estimation: flexural and longitudinal vibrational tests, stress wave transmission time and Pilodyn penetration depth. The timber elements were also tested in a four-point bending test to determinate the local and global MOE. Finally, a reliable method, applicable to the limiting on-site conditions, was proposed and the results were showed.

  17. Dehydroepiandrosterone inhibits cell proliferation and improves viability by regulating S phase and mitochondrial permeability in primary rat Leydig cells

    Science.gov (United States)

    LIU, LIN; WANG, DIAN; LI, LONGLONG; DING, XIAO; MA, HAITIAN

    2016-01-01

    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement and exhibits putative anti-aging properties. However, the molecular basis of the actions of DHEA, particularly on the biological characteristics of target cells, remain unclear. The aim of the current study was to investigate the effects of DHEA on cell viability, cell proliferation, cell cycle and mitochondrial function in primary rat Leydig cells. Adult Leydig cells were purified by Percoll gradient centrifugation, and cell proliferation was detected using a Click-iT® EdU Assay kit and cell cycle assessment performed using flow cytometry. Mitochondrial membrane potential was detected using JC-1 staining assay. The results of the current study demonstrate that DHEA decreased cell proliferation in a dose-dependent manner, whereas it improved cell viability in a time-dependent and dose-dependent manner. Flow cytometry analysis demonstrated that DHEA treatment increased the S phase cell population and decreased the G2/M cell population. Cyclin A and CDK2 mRNA levels were decreased in primary rat Leydig cells following DHEA treatment. DHEA treatment decreased the transmembrane electrical gradient in primary Leydig cells, whereas treatment significantly increased succinate dehydrogenase activity. These results indicated that DHEA inhibits primary rat Leydig cell proliferation by decreasing cyclin mRNA level, whereas it improves cells viability by modulating the permeability of the mitochondrial membrane and succinate dehydrogenase activity. These findings may demonstrate an important molecular mechanism by which DHEA activity is mediated. PMID:27220727

  18. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors.

    Science.gov (United States)

    Wyckoff, Jeffrey B; Wang, Yarong; Lin, Elaine Y; Li, Jiu-feng; Goswami, Sumanta; Stanley, E Richard; Segall, Jeffrey E; Pollard, Jeffrey W; Condeelis, John

    2007-03-15

    Although the presence of macrophages in tumors has been correlated with poor prognosis, until now there was no direct observation of how macrophages are involved in hematogenous metastasis. In this study, we use multiphoton microscopy to show, for the first time, that tumor cell intravasation occurs in association with perivascular macrophages in mammary tumors. Furthermore, we show that perivascular macrophages of the mammary tumor are associated with tumor cell intravasation in the absence of local angiogenesis. These results show that the interaction between macrophages and tumor cells lying in close proximity defines a microenvironment that is directly involved in the intravasation of cancer cells in mammary tumors.

  19. Topology optimization for improving the performance of solar cells

    NARCIS (Netherlands)

    Gupta, D.K.; Langelaar, M.; Keulen, F. van; Barink, M.

    2014-01-01

    This work introduces the application of Topology Optimization (TO) to design optimal front metallization patterns for solar cells and increase their power output. A challenging aspect of the solar cell electrode design problem is the strong nonlinear relation between the active layer current and the

  20. Exploiting human memory B cell heterogeneity for improved vaccine efficacy

    Directory of Open Access Journals (Sweden)

    Noel Thomas Pauli

    2011-12-01

    Full Text Available The major goal in vaccination is establishment of long-term, prophylactic humoral memory to a pathogen. Two major components to long-lived humoral memory are plasma cells for the production of specific immunoglobulin and memory B cells that survey for their specific antigen in the periphery for later affinity maturation, proliferation, and differentiation. The study of human B cell memory has been aided by the discovery of a general marker for B cell memory, expression of CD27; however, new data suggests the existence of CD27- memory B cells as well. These recently described non-canonical memory populations have increasingly pointed to the heterogeneity of the memory compartment. The novel B memory subsets in humans appear to have unique origins, localization, and functions compared to what was considered to be a classical memory B cell. In this article, we review the known B cell memory subsets, the establishment of B cell memory in vaccination and infection, and how understanding these newly described subsets can inform vaccine design and disease treatment.

  1. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth requ

  2. Declarative Visualization Queries

    Science.gov (United States)

    Pinheiro da Silva, P.; Del Rio, N.; Leptoukh, G. G.

    2011-12-01

    In an ideal interaction with machines, scientists may prefer to write declarative queries saying "what" they want from a machine than to write code stating "how" the machine is going to address the user request. For example, in relational database, users have long relied on specifying queries using Structured Query Language (SQL), a declarative language to request data results from a database management system. In the context of visualizations, we see that users are still writing code based on complex visualization toolkit APIs. With the goal of improving the scientists' experience of using visualization technology, we have applied this query-answering pattern to a visualization setting, where scientists specify what visualizations they want generated using a declarative SQL-like notation. A knowledge enhanced management system ingests the query and knows the following: (1) know how to translate the query into visualization pipelines; and (2) how to execute the visualization pipelines to generate the requested visualization. We define visualization queries as declarative requests for visualizations specified in an SQL like language. Visualization queries specify what category of visualization to generate (e.g., volumes, contours, surfaces) as well as associated display attributes (e.g., color and opacity), without any regards for implementation, thus allowing scientists to remain partially unaware of a wide range of visualization toolkit (e.g., Generic Mapping Tools and Visualization Toolkit) specific implementation details. Implementation details are only a concern for our knowledge-based visualization management system, which uses both the information specified in the query and knowledge about visualization toolkit functions to construct visualization pipelines. Knowledge about the use of visualization toolkits includes what data formats the toolkit operates on, what formats they output, and what views they can generate. Visualization knowledge, which is not

  3. Improved infiltration of stem cells on electrospun nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Shabani, Iman [Polymer Engineering Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Department of Stem Cells and Tissue Engineering, Stem Cell Technology Co. Ltd., Tehran (Iran, Islamic Republic of); Haddadi-Asl, Vahid [Polymer Engineering Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Seyedjafari, Ehsan [Department of Biotechnology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Department of Stem Cells and Tissue Engineering, Stem Cell Technology Co. Ltd., Tehran (Iran, Islamic Republic of); Babaeijandaghi, Farshad [Department of Stem Cells and Tissue Engineering, Stem Cell Technology Co. Ltd., Tehran (Iran, Islamic Republic of); Faculty of Medicine, Tehran University of Medical Science, Tehran (Iran, Islamic Republic of); Soleimani, Masoud, E-mail: soleim_m@modares.ac.ir [Hematology Department, Faculty of Medical Science, Tarbiat Modares University, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of)

    2009-04-24

    Nanofibrous scaffolds have been recently used in the field of tissue engineering because of their nano-size structure which promotes cell attachment, function, proliferation and infiltration. In this study, nanofibrous polyethersulfone (PES) scaffolds was prepared via electrospinning. The scaffolds were surface modified by plasma treatment and collagen grafting. The surface changes then investigated by contact angle measurements and FTIR-ATR. The results proved grafting of the collagen on nanofibers surface and increased hydrophilicity after plasma treatment and collagen grafting. The cell interaction study was done using stem cells because of their ability to differentiate to different kinds of cell lines. The cells had normal morphology on nanofibers and showed very high infiltration through collagen grafted PES nanofibers. This infiltration capability is very useful and needed to make 3D scaffolds in tissue engineering.

  4. Improved infiltration of stem cells on electrospun nanofibers

    International Nuclear Information System (INIS)

    Nanofibrous scaffolds have been recently used in the field of tissue engineering because of their nano-size structure which promotes cell attachment, function, proliferation and infiltration. In this study, nanofibrous polyethersulfone (PES) scaffolds was prepared via electrospinning. The scaffolds were surface modified by plasma treatment and collagen grafting. The surface changes then investigated by contact angle measurements and FTIR-ATR. The results proved grafting of the collagen on nanofibers surface and increased hydrophilicity after plasma treatment and collagen grafting. The cell interaction study was done using stem cells because of their ability to differentiate to different kinds of cell lines. The cells had normal morphology on nanofibers and showed very high infiltration through collagen grafted PES nanofibers. This infiltration capability is very useful and needed to make 3D scaffolds in tissue engineering.

  5. Visualization of immediate immune responses to pioneer metastatic cells in the lung.

    Science.gov (United States)

    Headley, Mark B; Bins, Adriaan; Nip, Alyssa; Roberts, Edward W; Looney, Mark R; Gerard, Audrey; Krummel, Matthew F

    2016-03-24

    Lung metastasis is the lethal determinant in many cancers and a number of lines of evidence point to monocytes and macrophages having key roles in its development. Yet little is known about the immediate fate of incoming tumour cells as they colonize this tissue, and even less known about how they make first contact with the immune system. Primary tumours liberate circulating tumour cells (CTCs) into the blood and we have developed a stable intravital two-photon lung imaging model in mice for direct observation of the arrival of CTCs and subsequent host interaction. Here we show dynamic generation of tumour microparticles in shear flow in the capillaries within minutes of CTC entry. Rather than dispersing under flow, many of these microparticles remain attached to the lung vasculature or independently migrate along the inner walls of vessels. Using fluorescent lineage reporters and flow cytometry, we observed 'waves' of distinct myeloid cell subsets that load differentially and sequentially with this CTC-derived material. Many of these tumour-ingesting myeloid cells collectively accumulated in the lung interstitium along with the successful metastatic cells and, as previously understood, promote the development of successful metastases from surviving tumour cells. Although the numbers of these cells rise globally in the lung with metastatic exposure and ingesting myeloid cells undergo phenotypic changes associated with microparticle ingestion, a consistently sparse population of resident conventional dendritic cells, among the last cells to interact with CTCs, confer anti-metastatic protection. This work reveals that CTC fragmentation generates immune-interacting intermediates, and defines a competitive relationship between phagocyte populations for tumour loading during metastatic cell seeding. PMID:26982733

  6. Visualization of specific gene expression in individual Salmonella typhimurium cells by in situ PCR

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Holmstrøm, Kim; Molin, Søren

    1997-01-01

    RNAs in individual cells was estimated from standard population level beta-galactosidase assays, Cells estimated to contain a single lac mRNA were detected as containing lac mRNA by the in situ PCR method. Conclusively, we demonstrate the potential of in situ PCR for detection of even poorly expressed m...

  7. Visualization of the specific interaction of sulfonylurea-incorporated polymer with insulinoma cell line MIN6.

    Science.gov (United States)

    Park, Keun-Hong; Akaike, Toshihiro

    2004-02-01

    A derivative of sulfonylurea (SU) that mimics glibenclamide in chemical structure was synthesized and incorporated into a water-soluble polymeric backbone as a biospecific polymer for stimulating insulin secretion. In this study, a backbone polymer fluorescence-labeled with rodamine-B isothiocyanate was found to be strongly adsorbed onto MIN6 cells, probably due to its specific interaction mediated by SU receptors on the cell membrane. The intensity of fluorescence on the cells was significantly increased by increasing the incubation time and polymer concentration. To verify the specific interaction between the SU (K(+) channel closer)-incorporated copolymer and MIN6 cells, the cells were pretreated with diazoxide, an agonist of the ATP-sensitive K(+) channel (K(+) channel opener), before adding the polymer to the cell culture medium. This treatment suppressed the interaction between SU and MIN6 cells. A confocal laser microscopic study confirmed this effect. The results of this study provide evidence that SU-incorporated copolymer stimulates insulin secretion through the specific interactions of SU moieties in the polymer with MIN6 cells.

  8. Transient maintenance in bioreactor improves health of neuronal cells.

    Science.gov (United States)

    Di Loreto, Silvia; Sebastiani, Pierluigi; Benedetti, Elisabetta; Zimmitti, Vincenzo; Caracciolo, Valentina; Amicarelli, Fernanda; Cimini, Annamaria; Adorno, Domenico

    2006-01-01

    To examine whether a neuronal cell suspension can be held in vitro for a relatively short period without compromising survival rates and functionality, we have set up an experimental protocol planning 24 h of suspension culture in a rotary wall vessel (RWV) bioreactor before plating in a conventional adherent system. Apoptosis measurement and activated caspase-8, -9, and -3 detection have demonstrated that survey of the cells was not affected. The activity of major antioxidant enzymes (AOE), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), was significantly decreased in RWV-maintained cells. A significant decrease of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) is coupled with a level of activated nuclear factor-kappaB (NF-kappaB) protein significantly lower in RVW cells than in the control. On the contrary, the level of IL-6 expression did not change between the test and the control. A significant up-regulation of growth-associated protein-43 (GAP-43), peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta), and acyl-CoA synthetase 2 (ACS2) in RWV cells has been detected. We provide the evidence that primary neuronal cells, at an early stage of development, can be maintained in a suspension condition before adherent plating. This experimental environment does not induce detrimental effects but may have an activator role, leading cells to development and maturation in a tridimensional state.

  9. Fabrication of gold nanodot arrays on a transparent substrate as a nanobioplatform for label-free visualization of living cells

    International Nuclear Information System (INIS)

    Two-dimensional gold (Au) nanodot arrays on a transparent substrate were fabricated for imaging of living cells. A nanoporous alumina mask with large-area coverage capability was prepared by a two-step chemical wet etching process after a second anodization. Highly ordered Au nanodot arrays were formed on indium-tin-oxide (ITO) glass using very thin nanoporous alumina of approximately 200 nm thickness as an evaporation mask. The large-area Au nanodot arrays on ITO glass were modified with RGD peptide (arginine; glycine; aspartic acid) containing a cysteine (Cys) residue and then used to immobilize human cancer HeLa cells, the morphology of which was observed by confocal microscopy. The confocal micrographs of living HeLa cells on Au nanodot arrays revealed enhanced contrast and resolution, which enabled discernment of cytoplasmic organelles more clearly. These results suggest that two-dimensional Au nanodot arrays modified with RGD peptide on ITO glass have potential as a biocompatible nanobioplatform for the label-free visualization and adhesion of living cells.

  10. Intelligent Control for Improvements in PEM Fuel Cell Flow Performance

    Institute of Scientific and Technical Information of China (English)

    Jonathan G Williams; Guoping Liu; Senchun Chai; David Rees

    2008-01-01

    The performance of fuel cells and the vehicle applications they are embedded into depends on a delicate balance of the correct temperature, humidity, reactant pressure, purity and flow rate. This paper successfully investigates the problem related to flow control with implementation on a single cell membrane electrode assembly (MEA). This paper presents a systematic approach for performing system identification using recursive least squares identification to account for the non-linear parameters of the fuel cell. Then, it presents a fuzzy controller with a simplified rule base validated against real time results with the existing flow controller which calculates the flow required from the stoichiometry value.

  11. Shear stress-induced improvement of red blood cell deformability

    OpenAIRE

    Meram, Ece; Yılmaz, Bahar D.; Bas, Ceren; Atac, Nazlı; Yalçın, Ö.; Başkurt, Oguz K.; Meiselman, Herbert J.

    2013-01-01

    Classically, it is known that red blood cell (RBC) deformability is determined by the geometric and material properties of these cells. Experimental evidence accumulated during the last decade has introduced the concept of active regulation of RBC deformability. This regulation is mainly related to altered associations between membrane skeletal proteins and integral proteins, with the latter serving to anchor the skeleton to the lipid matrix. It has been hypothesized that shear stress induces...

  12. Efficiency improvement of silicon nanostructure-based solar cells

    International Nuclear Information System (INIS)

    Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ∼181.1% and a decrease in reflectivity of ∼144.3%. The performance of the SNS-based solar cells was found to be optimized (∼11.86%) in an SNS with a length of ∼300 nm, an aspect ratio of ∼5, surface coverage of ∼84.9% and a reflectivity of ∼6.1%. The ∼16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production. (paper)

  13. Improved analytical current voltage characteristics of a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yli-Koski, M.; Tuominen, E.; Acerbis, M.; Sinkkonen, J.

    1997-12-31

    Application of the Green`s function method to the calculation of the current voltage characteristics of a pn-junction solar cell makes possible to extract more reliable and exact information about the behavior of the cell. With this method not only the minority carrier diffusion currents but also the drift currents in quasi- neutral regions of the solar cell can be taken into consideration. Furthermore, this approach is not limited to an exponentially decaying minority carrier generation function but is valid for any type of optical generation. In addition, the injection boundary condition is exploited with the result that not only the pn-diode current but also the current resulting from the optical generation depends on the voltage of the solar cell. Applying the method also gives the so called position dependent collection efficiency function which is defined as the probability that an electron-hole pair created at a certain point inside the solar cell will contribute to the current leaving the cell. (orig.) 15 refs.

  14. Improved Activation toward Primary Colorectal Cancer Cells by Antigen-Specific Targeting Autologous Cytokine-Induced Killer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Schlimper

    2012-01-01

    Full Text Available Adoptive therapy of malignant diseases with cytokine-induced killer (CIK cells showed promise in a number of trials; the activation of CIK cells from cancer patients towards their autologous cancer cells still needs to be improved. Here, we generated CIK cells ex vivo from blood lymphocytes of colorectal cancer patients and engineered those cells with a chimeric antigen receptor (CAR with an antibody-defined specificity for carcinoembryonic antigen (CEA. CIK cells thereby gained a new specificity as defined by the CAR and showed increase in activation towards CEA+ colon carcinoma cells, but less in presence of CEA− cells, indicated by increased secretion of proinflammatory cytokines. Redirected CIK activation was superior by CAR-mediated CD28-CD3ζ than CD3ζ signaling only. CAR-engineered CIK cells from colon carcinoma patients showed improved activation against their autologous, primary carcinoma cells from biopsies resulting in more efficient tumour cell lysis. We assume that adoptive therapy with CAR-modified CIK cells shows improved selectivity in targeting autologous tumour lesions.

  15. Comparison of Narrowband Imaging with Autofluorescence Imaging for Endoscopic Visualization of Superficial Squamous Cell Carcinoma Lesions of the Esophagus

    Directory of Open Access Journals (Sweden)

    Haruhisa Suzuki

    2012-01-01

    Full Text Available Aim. To compare narrowband imaging (NBI and autofluorescence imaging (AFI endoscopic visualization for identifying superficial esophageal squamous cell carcinoma (SCC. Methods. Twenty-four patients with superficial esophageal carcinomas diagnosed at previous hospitals were enrolled in this study. Lesions were initially detected using white-light endoscopy and then observed with both NBI and AFI. Endoscopic images documented each method, and three endoscopists experienced in esophageal imaging retrospectively reviewed respective images of histologically confirmed esophageal SCCs. Images were assessed for quality in identifying superficial SCCs and rated as excellent, fair, or poor by the three reviewers with interobserver agreement calculated using kappa (κ statistics. Results. Thirty-one lesions histologically confirmed as superficial esophageal SCCs were detected in 24 patients. NBI images of 27 lesions (87% were rated as excellent, three as fair, and one as poor compared to AFI images of 19 lesions (61% rated as excellent, 10 as fair and two as poor (P<0.05. Moderate interobserver agreement (κ=0.42, 95% CI 0.24–0.60 resulted in NBI while fair agreement (κ=0.35, 95% CI 0.18–0.51 was achieved using AFI. Conclusion. NBI may be more effective than AFI for visualization of esophageal SCC.

  16. Visual detection of Akt mRNA in living cell using gold nanoparticle beacon

    Science.gov (United States)

    Ma, Yi; Tian, Caiping; Li, Siwen; Wang, Zhaohui; Gu, Yueqing

    2014-09-01

    PI3K-Akt signaling pathway plays the key role in cell apoptosis and survival, and the components of PI3K /Akt signaling pathway are often abnormally expressed in human tumors. Therefore, determination of the Akt (protein kinase B, PKB) messenger ribonucleic acid (mRNA) expression is significantly important in understanding the mechanism of tumor progression. In this study, we designed a special hairpin deoxyribonucleic acid (DNA) functionalized with gold nanoparticles and fluorescein isothiocyanate(FITC) as a beacon for detecting human Akt mRNA. Spectrofluorometer was used to detect the fluorescence quenching and recovery of the beacons, and laser confocal scanning microscopy was adopted to image Akt mRNA in cells. The results showed that this beacon could sensitively and quantitatively measure the Akt mRNA in living cells . This strategy is potentially useful for the cellular imaging of RNA or protein expression in living cells.

  17. VISUALIZATION OF LIP AND BASAL-CELL SKIN CANCER IN HIGH-FREQUENCY ELECTRICAL FIELD

    OpenAIRE

    Zabunyan G. A.; Ovsiyenko P. G.

    2015-01-01

    In patients, there has been registered luminescence of skin sites affected by basal cell skin cancer at stage III in high-frequency electric field. The diagnosis was confirmed by histological analysis of excised cancer sites

  18. Visualization and identification of IL-7 producing cells in reporter mice.

    Directory of Open Access Journals (Sweden)

    Renata I Mazzucchelli

    Full Text Available Interleukin-7 (IL-7 is required for lymphocyte development and homeostasis although the actual sites of IL-7 production have never been clearly identified. We produced a bacterial artificial chromosome (BAC transgenic mouse expressing ECFP in the Il7 locus. The construct lacked a signal peptide and ECFP (enhanced cyan fluorescent protein accumulated inside IL-7-producing stromal cells in thoracic thymus, cervical thymus and bone marrow. In thymus, an extensive reticular network of IL-7-containing processes extended from cortical and medullary epithelial cells, closely contacting thymocytes. Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with IL-7-producing cells as we demonstrate by intravital imaging.

  19. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA.

    Directory of Open Access Journals (Sweden)

    Tomomi Ando

    Full Text Available Adenosine 5'-triphosphate (ATP is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV, a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome.

  20. In Situ SUMOylation and DeSUMOylation Assays: Fluorescent Methods to Visualize SUMOylation and DeSUMOylation in Permeabilized Cells.

    Science.gov (United States)

    Yuasa, Eri; Saitoh, Hisato

    2016-01-01

    This chapter deals with the fluorescence detection of SUMOylation and deSUMOylation in semi-intact cultured human cells, the so-called "in situ SUMOylation assay" and the "in situ deSUMOylation assay," respectively. In the in situ SUMOylation assay, the recombinant green-fluorescence protein fused to the SUMO1 (GFP-SUMO1) protein is used to visualize the nuclear rim, nucleolus, and nuclear bodies. These GFP signals represent cellular regions where SUMOylation efficiently takes place. If the recombinant SUMO-specific protease SENP1-catalytic domain is added after in situ SUMOylation, GFP signals can be erased. Therefore, the in situ SUMOylation assay can be used to assess deSUMOylation enzymatic activity. PMID:27631804

  1. Visualization of the gas flow in fuel cell bipolar plates using molecular flow seeding and micro-particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Christian; Wlokas, Irenaeus; Schulz, Christof [University of Duisburg-Essen, IVG and CeNIDE, Duisburg (Germany); Schoot, Nadine van der; Lindken, Ralph [Center for Fuel Cell Technology ZBT GmbH, Duisburg (Germany); Kronemayer, Helmut [University of Duisburg-Essen, IVG and CeNIDE, Duisburg (Germany); BASF SE, Ludwigshafen (Germany)

    2012-03-15

    Main components of proton exchange membrane fuel cells are bipolar plates that electrically connect the electrodes and provide a gas flow to the membrane. We investigate the flow in the channel structures of bipolar plates. Flow seeding is used to visualize the propagating and mixing gas stream. It is shown that a part of the gas is transported perpendicularly to the channel structure. An analysis of the diffusion compared with the convection shows different transport behavior for both flow directions. Additionally, the convective flow field is investigated in detail near the channel wall using Micro-PIV in a Reynolds-number-scaled liquid fluid system. For a more exact comparison of the experimental setups, flow seeding in both gas and liquid systems is performed. (orig.)

  2. Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex.

    Science.gov (United States)

    Klein, Carsten; Evrard, Henry C; Shapcott, Katharine A; Haverkamp, Silke; Logothetis, Nikos K; Schmid, Michael C

    2016-04-01

    Electrical microstimulation and more recently optogenetics are widely used to map large-scale brain circuits. However, the neuronal specificity achieved with both methods is not well understood. Here we compare cell-targeted optogenetics and electrical microstimulation in the macaque monkey brain to functionally map the koniocellular lateral geniculate nucleus (LGN) projection to primary visual cortex (V1). Selective activation of the LGN konio neurons with CamK-specific optogenetics caused selective electrical current inflow in the supra-granular layers of V1. Electrical microstimulation targeted at LGN konio layers revealed the same supra-granular V1 activation pattern as the one elicited by optogenetics. Taken together, these findings establish a selective koniocellular LGN influence on V1 supra-granular layers, and they indicate comparable capacities of both stimulation methods to isolate thalamo-cortical circuits in the primate brain.

  3. Blockade of pathological retinal ganglion cell hyperactivity improves optogenetically evoked light responses in rd1 mice

    OpenAIRE

    John Martin Barrett; Patrick Degenaar

    2015-01-01

    Retinitis pigmentosa (RP) is a progressive retinal dystrophy that causes visual impairment and eventual blindness. Retinal prostheses are the best currently available vision-restoring treatment for RP, but only restore crude vision. One possible contributing factor to the poor quality of vision achieved with prosthetic devices is the pathological retinal ganglion cell (RGC) hyperactivity that occurs in photoreceptor dystrophic disorders. Gap junction blockade with meclofenamic acid (MFA) was ...

  4. Novel and improved yeast cell factories for biosustainable processes

    DEFF Research Database (Denmark)

    Workman, Mhairi

    2014-01-01

    utilizing traditionally applied cell factories are generally based on a limited range of substrates (mainly glucose). However, a wider diversity in substrate range is highly desirable in developing biorefinery scenarios where feed-stocks containing a number of carbon sources are typically employed....... In addition to plant biomass hydrolysates, glycerol is of interest here, being available in amounts relevant for industrial scale bioprocesses due to increased production of biodiesel. The well characterised cell factory Saccharomyces cerevisiae exhibits a clear preference for glucose as a carbon source...... with relevant applications as cell factories (including Pichia spp. and Yarrowia lipolytica) and other less well characterized strains (e.g. Pachysolen tannophilus). This presentation will address how we evaluate cellular performance with a view to utilizing yeast species in industrial biotechnology...

  5. Cell line profiling to improve monoclonal antibody production.

    Science.gov (United States)

    Kang, Sohye; Ren, Da; Xiao, Gang; Daris, Kristi; Buck, Lynette; Enyenihi, Atim A; Zubarev, Roman; Bondarenko, Pavel V; Deshpande, Rohini

    2014-04-01

    Mammalian cell culture performance is influenced by both intrinsic (genetic) and extrinsic (media and process) factors. In this study, intrinsic capacity of various monoclonal antibody-producing Chinese Hamster Ovary (CHO) cell lines was compared by exposing them to the same culture condition. Microarray-based transcriptomics and LC-MS/MS shotgun proteomics technologies were utilized to obtain expression landscape of different cell lines. Specific transcripts and proteins correlating with productivity, growth rate and cell size have been identified. The proteomics analysis results showed a strong correlation between the intracellular protein expression levels of the recombinant DHFR and productivity. In contrast, neither the light chain nor the heavy chain of the recombinant monoclonal antibody showed correlation to productivity. Other top ranked proteins which demonstrated positive correlation to productivity included the adaptor protein complex subunits AP3D1and AP2B2, DNA repair protein DDB1 and the ER translocation complex component, SRPR. The subunits of molecular chaperone T-complex protein 1 and the regulator of mitochondrial one-carbon metabolism MTHFD2 showed negative correlation to productivity. The transcriptomics analysis has identified the regulators of calcium signaling, Tmem20 and Rcan1, as the top ranked genes displaying positive and negative correlation to productivity, respectively. For the second part of the study, the principal component analysis (PCA) was generated to view the underlying global structure of the expression data. A clear division and expression polarity was observed between the two distinct clusters of cell lines, independent of link to productivity or any other traits examined. The primary component of the PCA generated from either transcriptomics or proteomics data displayed a strong correlation to cell size and doubling time, while none of the main principal components showed correlation to productivity. Our findings suggest

  6. Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model.

    Directory of Open Access Journals (Sweden)

    Mya S Thu

    Full Text Available BACKGROUND: Treatment strategies for the highly invasive brain tumor, glioblastoma multiforme, require that cells which have invaded into the surrounding brain be specifically targeted. The inherent tumor-tropism of neural stem cells (NSCs to primary and invasive tumor foci can be exploited to deliver therapeutics to invasive brain tumor cells in humans. Use of the strategy of converting prodrug to drug via therapeutic transgenes delivered by immortalized therapeutic NSC lines have shown efficacy in animal models. Thus therapeutic NSCs are being proposed for use in human brain tumor clinical trials. In the context of NSC-based therapies, MRI can be used both to non-invasively follow dynamic spatio-temporal patterns of the NSC tumor targeting allowing for the optimization of treatment strategies and to assess efficacy of the therapy. Iron-labeling of cells allows their presence to be visualized and tracked by MRI. Thus we aimed to iron-label therapeutic NSCs without affecting their cellular physiology using a method likely to gain United States Federal Drug Administration (FDA approval. METHODOLOGY: For human use, the characteristics of therapeutic Neural Stem Cells must be clearly defined with any pertubation to the cell including iron labeling requiring reanalysis of cellular physiology. Here, we studied the effect of iron-loading of the therapeutic NSCs, with ferumoxide-protamine sulfate complex (FE-Pro on viability, proliferation, migratory properties and transgene expression, when compared to non-labeled cells. FE-Pro labeled NSCs were imaged by MRI at tumor sites, after intracranial administration into the hemisphere contralateral to the tumor, in an orthotopic human glioma xenograft mouse model. CONCLUSION: FE-Pro labeled NSCs retain their proliferative status, tumor tropism, and maintain stem cell character, while allowing in vivo cellular MRI tracking at 7 Tesla, to monitor their real-time migration and distribution at brain tumor sites

  7. Visualization of the chromosome scaffold and intermediates of loop domain compaction in extracted mitotic cells.

    Science.gov (United States)

    Sheval, Eugene V; Polyakov, Vladimir Y

    2006-12-01

    A novel extraction protocol for cells cultured on coverslips is described. Observations of the extraction process in a perfusion chamber reveal that cells of all mitotic stages are not detached from coverslips during extraction, and all stages can be recognized using phase contrast images. We studied the extracted cell morphology and distribution of a major scaffold component - topoisomerase IIalpha, in extracted metaphase and anaphase cells. An extraction using 2M NaCl leads to destruction of chromosomes at the light microscope level. Immunogold studies demonstrate that the only residual structure observed is an axial chromosome scaffold that contains topoisomerase IIalpha. In contrast, mitotic chromosomes are swelled only partially after an extraction using dextran sulphate and heparin, and it appears that this treatment does not lead to total destruction of loop domains. In this case, the chromosome scaffold and numerous structures resembling small rosettes are revealed inside extracted cells. The rosettes observed condense after addition of Mg2+-ions and do not contain topoisomerase IIalpha suggesting that these structures correspond to intermediates of loop domain compaction. We propose a model of chromosome structure in which the loop domains are condensed into highly regular structures with rosette organization. PMID:17029868

  8. Entropic and Near-Field Improvements of Thermoradiative Cells

    Science.gov (United States)

    Hsu, Wei-Chun; Tong, Jonathan K.; Liao, Bolin; Huang, Yi; Boriskina, Svetlana V.; Chen, Gang

    2016-10-01

    A p-n junction maintained at above ambient temperature can work as a heat engine, converting some of the supplied heat into electricity and rejecting entropy by interband emission. Such thermoradiative cells have potential to harvest low-grade heat into electricity. By analyzing the entropy content of different spectral components of thermal radiation, we identify an approach to increase the efficiency of thermoradiative cells via spectrally selecting long-wavelength photons for radiative exchange. Furthermore, we predict that the near-field photon extraction by coupling photons generated from interband electronic transition to phonon polariton modes on the surface of a heat sink can increase the conversion efficiency as well as the power generation density, providing more opportunities to efficiently utilize terrestrial emission for clean energy. An ideal InSb thermoradiative cell can achieve a maximum efficiency and power density up to 20.4% and 327 Wm‑2, respectively, between a hot source at 500 K and a cold sink at 300 K. However, sub-bandgap and non-radiative losses will significantly degrade the cell performance.

  9. Real-time visualization of prion transport in single live cells using quantum dots

    International Nuclear Information System (INIS)

    Prion diseases are fatal neurodegenerative disorders resulting from structural conversion of the cellular isoform of PrPC to the infectious scrapie isoform PrPSc. It is believed that such structural alteration may occur within the internalization pathway. However, there is no direct evidence to support this hypothesis. Employing quantum dots (QDs) as a probe, we have recorded a real-time movie demonstrating the process of prion internalization in a living cell for the first time. The entire internalization process can be divided into four discrete but connected stages. In addition, using methyl-beta-cyclodextrin to disrupt cell membrane cholesterol, we show that lipid rafts play an important role in locating cellular PrPC to the cell membrane and in initiating PrPC endocytosis.

  10. Real-time visualization of prion transport in single live cells using quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Kan [State Key Laboratory of Virology and Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Li, Shu [AIDS Research Centre, Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing 100730 (China); Xie, Min [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Wu, Di; Wang, WenXi; Chen, Rui; Huang, Liqin; Huang, Tao [State Key Laboratory of Virology and Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Pang, Daiwen, E-mail: dwpang@whu.edu.cn [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Xiao, Gengfu, E-mail: xiaogf@wh.iov.cn [State Key Laboratory of Virology and Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China)

    2010-04-09

    Prion diseases are fatal neurodegenerative disorders resulting from structural conversion of the cellular isoform of PrP{sup C} to the infectious scrapie isoform PrP{sup Sc}. It is believed that such structural alteration may occur within the internalization pathway. However, there is no direct evidence to support this hypothesis. Employing quantum dots (QDs) as a probe, we have recorded a real-time movie demonstrating the process of prion internalization in a living cell for the first time. The entire internalization process can be divided into four discrete but connected stages. In addition, using methyl-beta-cyclodextrin to disrupt cell membrane cholesterol, we show that lipid rafts play an important role in locating cellular PrP{sup C} to the cell membrane and in initiating PrP{sup C} endocytosis.

  11. Visualization of Water Accumulation Process in Polymer Electrolyte Fuel Cell Using Neutron Radiography

    Science.gov (United States)

    Murakawa, Hideki; Sugimoto, Katsumi; Kitamura, Nobuki; Sawada, Masataka; Asano, Hitoshi; Takenaka, Nobuyuki; Saito, Yasushi

    In order to clarify the water-accumulation phenomena in an operating polymer electrolyte fuel cell (PEFC), the water distribution in a small fuel cell was measured in the through-plane direction by using neutron radiography. The fuel cell had nine parallel channels for classifying the water-accumulation process in the gas diffusion layer (GDL) under the lands and channels. The experimental results were compared with numerical results. The water accumulation in the GDL under the lands was larger than that under the channels during the period of early PEFC operation. The difference of the water accumulation in the GDL under the land and channel was related to the water vapor. Because of the land, the vapor fraction in the GDL under the land was also higher than that under the channel. As a result, condensation was easy to occur in the GDL under the land.

  12. VISUALIZATION OF DYNAMIC ORGANIZATION OF CYTOSKELETON GELS IN LIVING CELLS BY HYBRID-SPM

    Institute of Scientific and Technical Information of China (English)

    K.Kawabata; Y.Sado; M.Nagayama; T.Nitta; K.Nemoto; Y.Koyama; H.Haga

    2003-01-01

    We succeeded in performing of hybrid Scanning Probe Microscopy (hybrid-SPM) in which mechanical-SPM and fluorescence microscopy are combined. This technique is able to measure simultaneously mechanical properties and distribution of cytoskeletons of living cells by using green fluorescent protein. We measured evolution of both local elasticity and distributions of actin stress fibers in an identical fibroblast living in physiological conditions. The SPM experiments revealed that stiffer lines develop in living cells, which correspond to actin stress fibers. The elasticity of the actin stress fibers is as high as 100 kPa. We discuss mechanical effects on the development of actin filament networks.

  13. Cllmodulin in tip-growing plant cells, visualized by fluorescing calmodulin-binding phenothiazines.

    Science.gov (United States)

    Haußer, I; Herth, W; Reiss, H D

    1984-09-01

    Calmodulin (CaM) was visualized light-microscopically by the fluorescent CaM inhibitors fluphenazine and chlorpromazine, both phenothiazines, during polar tip growth of pollen tubes of Lilium longiflorum, root hairs of Lepidium sativum, moss caulonema of Funaria hygrometrica, fungal hyphae of Achlya spec. and in the alga Acetabularia mediterranea, as well as during multipolar tip growth in Micrasterias denticulata. Young pollen tubes and root hairs showed tip fluorescence; at later stages and in the growing parts of the other subjects the fluorescence was almost uniform. After treatment with cytochalasin B, punctuate fluorescence occurred in the clear zone adjacent to the tip of pollen tubes. The observations indicate that there is CaM in all our tested systems detectable with this method. It may play a key role in starting polar growth. As in pollen tubes, CaM might be in part associated with the microfilament network at the tip, and thus regulate vesicle transport and cytoplasmic streaming. PMID:24253945

  14. Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1

    Directory of Open Access Journals (Sweden)

    Mouland Andrew J

    2010-05-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 uses cellular proteins and machinery to ensure transmission to uninfected cells. Although the host proteins involved in the transport of viral components toward the plasma membrane have been investigated, the dynamics of this process remain incompletely described. Previously we showed that the double-stranded (dsRNA-binding protein, Staufen1 is found in the HIV-1 ribonucleoprotein (RNP that contains the HIV-1 genomic RNA (vRNA, Gag and other host RNA-binding proteins in HIV-1-producing cells. Staufen1 interacts with the nucleocapsid domain (NC domain of Gag and regulates Gag multimerization on membranes thereby modulating HIV-1 assembly. The formation of the HIV-1 RNP is dynamic and likely central to the fate of the vRNA during the late phase of the HIV-1 replication cycle. Results Detailed molecular imaging of both the intracellular trafficking of virus components and of virus-host protein complexes is critical to enhance our understanding of factors that contribute to HIV-1 pathogenesis. In this work, we visualized the interactions between Gag and host proteins using bimolecular and trimolecular fluorescence complementation (BiFC and TriFC analyses. These methods allow for the direct visualization of the localization of protein-protein and protein-protein-RNA interactions in live cells. We identified where the virus-host interactions between Gag and Staufen1 and Gag and IMP1 (also known as VICKZ1, IGF2BP1 and ZBP1 occur in cells. These virus-host interactions were not only detected in the cytoplasm, but were also found at cholesterol-enriched GM1-containing lipid raft plasma membrane domains. Importantly, Gag specifically recruited Staufen1 to the detergent insoluble membranes supporting a key function for this host factor during virus assembly. Notably, the TriFC experiments showed that Gag and Staufen1 actively recruited protein partners when tethered to mRNA. Conclusions The

  15. Prose Learning in Children and Adults with Down Syndrome: The Use of Visual and Mental Image Strategies to Improve Recall

    Science.gov (United States)

    de la Iglesia, Carmen J. F.; Buceta, M. Jose; Campos, Alfredo

    2005-01-01

    Background: Research indicates that the use of mental imagery is a rich source of possibilities for improving learning in participants with learning disabilities and intellectual disability. Method: We undertook two experiments designed to assess the effectiveness of using imagery in prose learning for participants with Down syndrome (DS). The…

  16. Schwann cell coculture improves the therapeutic effect of bone marrow stromal cells on recovery in spinal cord-injured mice.

    Science.gov (United States)

    Xu, Xiaoyun; Geremia, Nicole; Bao, Feng; Pniak, Anna; Rossoni, Melissa; Brown, Arthur

    2011-01-01

    Studies of bone marrow stromal cells (MSCs) transplanted into the spinal cord-injured rat give mixed results: some groups report improved locomotor recovery while others only demonstrate improved histological appearance of the lesion. These studies show no clear correlation between neurological improvements and MSC survival. We examined whether MSC survival in the injured spinal cord could be enhanced by closely matching donor and recipient mice for genetic background and marker gene expression and whether exposure of MSCs to a neural environment (Schwann cells) prior to transplantation would improve their survival or therapeutic effects. Mice underwent a clip compression spinal cord injury at the fourth thoracic level and cell transplantation 7 days later. Despite genetic matching of donors and recipients, MSC survival in the injured spinal cord was very poor (∼1%). However, we noted improved locomotor recovery accompanied by improved histopathological appearance of the lesion in mice receiving MSC grafts. These mice had more white and gray matter sparing, laminin expression, Schwann cell infiltration, and preservation of neurofilament and 5-HT-positive fibers at and below the lesion. There was also decreased collagen and chondroitin sulphate proteoglycan deposition in the scar and macrophage activation in mice that received the MSC grafts. The Schwann cell cocultured MSCs had greater effects than untreated MSCs on all these indices of recovery. Analyses of chemokine and cytokine expression revealed that MSC/Schwann cell cocultures produced far less MCP-1 and IL-6 than MSCs or Schwann cells cultured alone. Thus, transplanted MSCs may improve recovery in spinal cord-injured mice through immunosuppressive effects that can be enhanced by a Schwann cell coculturing step. These results indicate that the temporary presence of MSCs in the injured cord is sufficient to alter the cascade of pathological events that normally occurs after spinal cord injury, generating a

  17. Immunohistochemical visualization of neurons and specific glial cells for stereological application in the porcine neocortex

    DEFF Research Database (Denmark)

    Lyck, Lise; Jelsing, Jacob; Jensen, Pia Søndergaard;

    2006-01-01

    The pig is becoming an increasingly used non-primate model in basic experimental studies of human neurological diseases. In spite of the widespread use of immunohistochemistry and cell type specific markers, the application of immunohistochemistry in the pig brain has not been systematically...

  18. Fluorescent Probes for Nucleic Acid Visualization in Fixed and Live Cells

    Directory of Open Access Journals (Sweden)

    Alexandre S. Boutorine

    2013-12-01

    Full Text Available This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i sequence-specific peptides and proteins; (ii triplex-forming oligonucleotides and (iii polyamide oligo(N-methylpyrrole/N-methylimidazole minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.

  19. Visualizing pancreatic {beta}-cell mass with [{sup 11}C]DTBZ

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Norman Ray [Department of Radiology, Columbia University Medical School, New York, NY 10032 (United States); Souza, Fabiola [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States); Witkowski, Piotr [Department of Medicine, Columbia University Medical School, New York, NY 10032 (United States); Maffei, Antonella [Institute of Genetics and Biophysics ' Adriano Buzzati-Traverso' , CNR, Naples 80131 (Italy); Raffo, Anthony [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States); Herron, Alan [Center for Comparative Medicine and The Department of Pathology, Baylor College of Medicine, Houston, TX 77030 (United States); Kilbourn, Michael [Department of Radiology, University of Michigan, Ann Arbor, MI 48109-0638 (United States); Jurewicz, Agata [Department of Radiology, Columbia University Medical School, New York, NY 10032 (United States); Herold, Kevan [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States); Liu, Eric [Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, MD 20854 (United States); Hardy, Mark Adam [Department of Medicine, Columbia University Medical School, New York, NY 10032 (United States); Van Heertum, Ronald [Department of Radiology, Columbia University Medical School, New York, NY 10032 (United States); Harris, Paul Emerson [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States)]. E-mail: peh1@columbia.edu

    2006-10-15

    {beta}-Cell mass (BCM) influences the total amount of insulin secreted, varies by individual and by the degree of insulin resistance, and is affected by physiologic and pathologic conditions. The islets of Langerhans, however, appear to have a reserve capacity of insulin secretion and, overall, assessments of insulin and blood glucose levels remain poor measures of BCM, {beta}-cell function and progression of diabetes. Thus, novel noninvasive determinations of BCM are needed to provide a quantitative endpoint for novel therapies of diabetes, islet regeneration and transplantation. Built on previous gene expression studies, we tested the hypothesis that the targeting of vesicular monoamine transporter 2 (VMAT2), which is expressed by {beta} cells, with [{sup 11}C]dihydrotetrabenazine ([{sup 11}C]DTBZ), a radioligand specific for VMAT2, and the use of positron emission tomography (PET) can provide a measure of BCM. In this report, we demonstrate decreased radioligand uptake within the pancreas of Lewis rats with streptozotocin-induced diabetes relative to their euglycemic historical controls. These studies suggest that quantitation of VMAT2 expression in {beta} cells with the use of [{sup 11}C]DTBZ and PET represents a method for noninvasive longitudinal estimates of changes in BCM that may be useful in the study and treatment of diabetes.

  20. Visualizing the molecular sociology at the HeLa cell nuclear periphery

    NARCIS (Netherlands)

    Mahamid, Julia; Pfeffer, Stefan; Schaffer, Miroslava; Villa, Elizabeth; Danev, Radostin; Cuellar, Luis Kuhn; Förster, Friedrich; Hyman, Anthony A; Plitzko, Jürgen M; Baumeister, Wolfgang

    2016-01-01

    The molecular organization of eukaryotic nuclear volumes remains largely unexplored. Here we combined recent developments in cryo-electron tomography (cryo-ET) to produce three-dimensional snapshots of the HeLa cell nuclear periphery. Subtomogram averaging and classification of ribosomes revealed th

  1. Three-dimensional visualization of virus-infected cells by serial sectioning: an electron microscopic study using resin embedded cells.

    Science.gov (United States)

    Schauflinger, Martin; Villinger, Clarissa; Walther, Paul

    2013-01-01

    In this paper we show how to obtain a three-dimensional model of virus-infected cells by serial sectioning of resin embedded samples and transmission electron microscopic imaging. The method bases on sample fixation by high pressure freezing and processing by freeze substitution with the goal to preserve the structures of interest close to the natural state, as previously described (Walther et al., High pressure freezing for scanning transmission electron tomography analysis of cellular organelles. In: Mossman BT, Taatjes DJ (eds) Cell imaging techniques, vol 931, Methods in molecular biology. Humana Press, Totowa, NJ, pp 525-535, 2013). Advantages of serial sectioning compared to that of other tomographic methods are as follows: No special and expensive additional equipment is required. Relatively large volumes, such as whole cells, can be three-dimensionally reconstructed in a reasonable amount of time. Serial sectioning is a non-destructive method; the sections can be stored, re-imaged, or processed for immunogold labeling when more specific data are requested or when new scientific questions are raised (e.g., higher magnifications, protein distributions). We have recently used this method to obtain a three-dimensional model of the complete assembly complex of an HCMV infected cell, which allowed a detailed insight into this virally induced compartment (Schauflinger et al., Cell Microbiol 15(2):305-314, 2013).

  2. Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

    2014-10-01

    Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

  3. Solid-State NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool. (authors)

  4. Visual responses of ganglion cells of a New-World primate, the capuchin monkey, Cebus apella.

    Science.gov (United States)

    Lee, B B; Silveira, L C; Yamada, E S; Hunt, D M; Kremers, J; Martin, P R; Troy, J B; da Silva-Filho, M

    2000-11-01

    1. The genetic basis of colour vision in New-World primates differs from that in humans and other Old-World primates. Most New-World primate species show a polymorphism; all males are dichromats and most females trichromats. 2. In the retina of Old-World primates such as the macaque, the physiological correlates of trichromacy are well established. Comparison of the retinae in New- and Old-World species may help constrain hypotheses as to the evolution of colour vision and the pathways associated with it. 3. Ganglion cell behaviour was recorded from trichromatic and dichromatic members of a New-World species (the capuchin monkey, Cebus apella) and compared with macaque data. Despite some differences in quantitative detail (such as a temporal response extended to higher frequencies), results from trichromatic animals strongly resembled those from the macaque. 4. In particular, cells of the parvocellular (PC) pathway showed characteristic frequency-dependent changes in responsivity to luminance and chromatic modulation, cells of the magnocellular (MC) pathway showed frequency-doubled responses to chromatic modulation, and the surround of MC cells received a chromatic input revealed on changing the phase of heterochromatically modulated lights. 5. Ganglion cells of dichromats were colour-blind versions of those of trichromats. 6. This strong physiological homology is consistent with a common origin of trichromacy in New- and Old-World monkeys; in the New-World primate the presence of two pigments in the middle-to-long wavelength range permits full expression of the retinal mechanisms of trichromatic vision. PMID:11432364

  5. Methods to Improve Adoptive T-Cell Therapy for Melanoma

    DEFF Research Database (Denmark)

    Donia, Marco; Hansen, Morten; Sendrup, Sarah L;

    2013-01-01

    desirable. In this study, we demonstrated that a high in vitro tumor reactivity of infusion products was associated with clinical responses upon adoptive transfer. In addition, we systematically characterized the responses of a series of TIL products to relevant autologous short term-cultured melanoma cell...... lines from 12 patients. We provide evidence that antitumor reactivity of both CD8(+) and CD4(+) T cells could be enhanced in most TIL products by autologous melanoma sensitization by pretreatment with low-dose IFN-γ. IFN-γ selectively enhanced responses to tumor-associated antigens other than melanoma...... differentiation antigens. In addition, IFN-γ treatment was invariably associated with restored/increased cancer immunogenicity as demonstrated by upregulation of major histocompatibility complex molecules. These findings suggest a potential synergism between IFN-γ and ACT, and have important implications...

  6. Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus.

    Science.gov (United States)

    Li, Lisha; Li, Furong; Gao, Feng; Yang, Yali; Liu, Yuanyuan; Guo, Pingping; Li, Yulin

    2016-05-01

    Bone-marrow-derived stem cells can regenerate pancreatic tissue in a model of type 1 diabetes mellitus. Mesenchymal stem cells (MSCs) form the main part of bone marrow. We show that the intrapancreatic transplantation of MSCs elevates serum insulin and C-peptide, while decreasing blood glucose. MSCs engrafted into the damaged rat pancreas become distributed into the blood vessels, acini, ducts, and islets. Renascent islets, islet-like clusters, and a small number of MSCs expressing insulin protein have been observed in the pancreas of diabetic rats. Intrapancreatic transplantation of MSCs triggers a series of molecular and cellular events, including differentiation towards the pancreas directly and the provision of a niche to start endogenous pancreatic regeneration, which ameliorates hypoinsulinemia and hyperglycemia caused by streptozotocin. These data establish the many roles of MSCs in the restoration of the function of an injured organ. PMID:26650464

  7. Improved assay for surface hydrophobic avidity of Candida albicans cells.

    OpenAIRE

    Hazen, K C; LeMelle, W G

    1990-01-01

    A simple method that distinguishes among hydrophobic avidity levels of highly hydrophobic isolates of the pathogenic fungus Candida albicans is described. This method involves mixing polystyrene microspheres at different concentrations with a constant concentration of yeast cells and plotting the data in accordance with the Langmuir isotherm equation. A 10-fold difference between the C. albicans isolates with the lowest and highest avidity (KH) values was found. This method may also demonstra...

  8. Improving the performance of solid oxide fuel cell systems

    OpenAIRE

    Halinen, Matias

    2015-01-01

    Solid oxide fuel cell (SOFC) systems can provide power production at a high electrical efficiency and with very low emissions. Furthermore, they retain their high electrical efficiency over a wide range of output power and offer good fuel flexibility, which makes them well suited for a range of applications. Currently SOFC systems are under investigation by researchers as well as being developed by industrial manufacturers. The first commercial SOFC systems have been on the market for some...

  9. Stem Cell-Based Therapeutics to Improve Wound Healing

    OpenAIRE

    Hu, Michael S.; Tripp Leavitt; Samir Malhotra; Dominik Duscher; Pollhammer, Michael S.; Walmsley, Graham G.; Zeshaan N. Maan; Alexander T. M. Cheung; Manfred Schmidt; Georg M. Huemer; Longaker, Michael T.; Peter Lorenz, H.

    2015-01-01

    Issues surrounding wound healing have garnered deep scientific interest as well as booming financial markets invested in novel wound therapies. Much progress has been made in the field, but it is unsurprising to find that recent successes reveal new challenges to be addressed. With regard to wound healing, large tissue deficits, recalcitrant wounds, and pathological scar formation remain but a few of our most pressing challenges. Stem cell-based therapies have been heralded as a promising mea...

  10. Audio-Visual Biofeedback Does Not Improve the Reliability of Target Delineation Using Maximum Intensity Projection in 4-Dimensional Computed Tomography Radiation Therapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei, E-mail: wlu@umm.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Neuner, Geoffrey A.; George, Rohini; Wang, Zhendong; Sasor, Sarah [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Huang, Xuan [Research and Development, Care Management Department, Johns Hopkins HealthCare LLC, Glen Burnie, Maryland (United States); Regine, William F.; Feigenberg, Steven J.; D' Souza, Warren D. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States)

    2014-01-01

    Purpose: To investigate whether coaching patients' breathing would improve the match between ITV{sub MIP} (internal target volume generated by contouring in the maximum intensity projection scan) and ITV{sub 10} (generated by combining the gross tumor volumes contoured in 10 phases of a 4-dimensional CT [4DCT] scan). Methods and Materials: Eight patients with a thoracic tumor and 5 patients with an abdominal tumor were included in an institutional review board-approved prospective study. Patients underwent 3 4DCT scans with: (1) free breathing (FB); (2) coaching using audio-visual (AV) biofeedback via the Real-Time Position Management system; and (3) coaching via a spirometer system (Active Breathing Coordinator or ABC). One physician contoured all scans to generate the ITV{sub 10} and ITV{sub MIP}. The match between ITV{sub MIP} and ITV{sub 10} was quantitatively assessed with volume ratio, centroid distance, root mean squared distance, and overlap/Dice coefficient. We investigated whether coaching (AV or ABC) or uniform expansions (1, 2, 3, or 5 mm) of ITV{sub MIP} improved the match. Results: Although both AV and ABC coaching techniques improved frequency reproducibility and ABC improved displacement regularity, neither improved the match between ITV{sub MIP} and ITV{sub 10} over FB. On average, ITV{sub MIP} underestimated ITV{sub 10} by 19%, 19%, and 21%, with centroid distance of 1.9, 2.3, and 1.7 mm and Dice coefficient of 0.87, 0.86, and 0.88 for FB, AV, and ABC, respectively. Separate analyses indicated a better match for lung cancers or tumors not adjacent to high-intensity tissues. Uniform expansions of ITV{sub MIP} did not correct for the mismatch between ITV{sub MIP} and ITV{sub 10}. Conclusions: In this pilot study, audio-visual biofeedback did not improve the match between ITV{sub MIP} and ITV{sub 10}. In general, ITV{sub MIP} should be limited to lung cancers, and modification of ITV{sub MIP} in each phase of the 4DCT data set is recommended.

  11. Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling

    OpenAIRE

    Mureli, Shwetha; Gans, Christopher P.; Bare, Dan J; Geenen, David L.; Kumar, Nalin M.; Banach, Kathrin

    2012-01-01

    Mesenchymal stem cells (MSCs) were shown to improve cell survival and alleviate cardiac arrhythmias when transplanted into cardiac tissue; however, little is known about the mechanism by which MSCs modify the electrophysiological properties of cardiac tissue. We aimed to distinguish the influence of cell-cell coupling between myocytes and MSCs from that of MSC-derived paracrine factors on the spontaneous activity and conduction velocity (θ) of multicellular cardiomyocyte preparations. HL-1 ce...

  12. An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations

    KAUST Repository

    Chi, Cheng

    2015-05-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. In addition, a shock sensor is in- troduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently. The improved ghost-cell method is validated against five test cases: (a) double Mach reflections on a ramp, (b) supersonic flows in a wind tunnel with a forward- facing step, (c) supersonic flows over a circular cylinder, (d) smooth Prandtl-Meyer expansion flows, and (e) steady shock-induced combustion over a wedge. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Implementation of the improved ghost-cell method in reacting Euler flows further validates its general applicability for compressible flow simulations.

  13. Visualizing Single Cell Biology: Nanosims Studies of Carbon and Nitrogen Metabolism in Diazotrophic Cyanobacteria

    Science.gov (United States)

    Pett-Ridge, J.; Finzi, J. A.; Capone, D. G.; Popa, R.; Nealson, K. H.; Ng, W.; Spormann, A. M.; Hutcheon, I. D.; Weber, P. K.

    2007-12-01

    Filamentous nitrogen fixing (diazotrophic) cyanobacteria are key players in global nutrient cycling, but the relationship between CO2- and N2-fixation and intercellular exchange of these elements remains poorly understood in many genera. These bacteria are faced with the challenge of isolating regions of N-fixation (O2 inhibited) and photosynthetic (O2 producing) activity. We used isotope labeling in conjunction with a high-resolution isotope and elemental mapping technique (NanoSIMS) to quantitatively describe 13C and 15N uptake and transport in two aquatic cyanobacteria grown on NaH13CO3 and 15N2. The technical challenges of tracing isotopes within individual bacteria can be overcome with high resolution Secondary Ion Mass Spectrometry (NanoSIMS). In NanoSIMS analysis, samples are sputtered with an energetic primary beam (Cs+, O-) liberating secondary ions that are separated by the mass spectrometer and detected in a suite of electron multipliers. Five isotopic species may be analyzed concurrently with spatial resolution as fine as 50nm. A high sensitivity isotope ratio 'map' can then be generated for the analyzed area. Using sequentially harvested cyanobacteria in conjunction with enriched H13CO3 and 15N2 incubations, we measured temporal enrichment patterns that evolve over the course of a day's growth and suggest tightly regulated changes in fixation kinetics. With a combination of TEM, SEM and NanoSIMS analyses, we also mapped the distribution of C, N and Mo (a critical nitrogenase co-factor) isotopes in intact cells. Our results suggest that NanoSIMS mapping of metal enzyme co-factors may be a powerful method of identifying physiological and morphological characteristics within individual bacterial cells, and could be used to provide a 3-dimensional context for more traditional analyses such as immunogold labeling. Finally, we resolved patterns of isotope enrichment at multiple spatial scales: sub-cellular variation, cell-cell differences along filaments

  14. Can lessons designed with Gestalt laws of visual perception improve students' understanding of the phases of the moon?

    Science.gov (United States)

    Wistisen, Michele

    There has been limited success teaching elementary students about the phases of the moon using diagrams, personal observations, and manipulatives. One possible reason for this is that instruction has failed to apply Gestalt principles of perceptual organization to the lesson materials. To see if fourth grade students' understanding could be improved, four lessons were designed and taught using the Gestalt laws of Figure-Ground, Symmetry, and Similarity. Students (n = 54) who were taught lessons applying the Gestalt principles scored 12% higher on an assessment than students (n = 51) who only were taught lessons using the traditional methods. Though scores showed significant improvement, it is recommended to follow the American Association for the Advancement of Science guidelines and wait until 9th grade to instruct students about the phases.

  15. Improving speech recognition on a mobile robot platform through the use of top-down visual queues

    OpenAIRE

    Ross, Robert; O'Donoghue, R. P. S.; O'Hare, G. M. P.

    2003-01-01

    In many real-world environments, Automatic Speech Recognition (ASR) technologies fail to provide adequate performance for applications such as human robot dialog. Despite substantial evidence that speech recognition in humans is performed in a top-down as well as bottom-up manner, ASR systems typically fail to capitalize on this, instead relying on a purely statistical, bottom up methodology. In this paper we advocate the use of a knowledge based approach to improving ASR in domains such as m...

  16. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    Science.gov (United States)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  17. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kandlikar, Satish G. [Rochester Inst. of Technology, Rochester, NY (United States); Lu, Zijie [Rochester Inst. of Technology, Rochester, NY (United States); Rao, Navalgund [Rochester Inst. of Technology, Rochester, NY (United States); Sergi, Jacqueline [Rochester Inst. of Technology, Rochester, NY (United States); Rath, Cody [Rochester Inst. of Technology, Rochester, NY (United States); McDade, Christopher [Rochester Inst. of Technology, Rochester, NY (United States); Trabold, Thomas [General Motors, Honeoye Falls, NY (United States); Owejan, Jon [General Motors, Honeoye Falls, NY (United States); Gagliardo, Jeffrey [General Motors, Honeoye Falls, NY (United States); Allen, Jeffrey [Michigan Technological Univ., Houghton, MI (United States); Yassar, Reza S. [Michigan Technological Univ., Houghton, MI (United States); Medici, Ezequiel [Michigan Technological Univ., Houghton, MI (United States); Herescu, Alexandru [Michigan Technological Univ., Houghton, MI (United States)

    2010-05-30

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions.

  18. Organelle interactions and possible degradation pathways visualized in high-pressure frozen algal cells.

    Science.gov (United States)

    Aichinger, N; Lütz-Meindl, U

    2005-08-01

    Summary Organelle interactions, although essential for both anabolic and catabolic pathways in plant cells have not been examined in detail so far. In the present study the structure of different organelle-organelle, organelle-vesicle and organelle-membrane interactions were investigated in growing and nongrowing cells of the green alga Micrasterias denticulata by use of high pressure freeze fixation and energy filtering transmission electron microscopy. It became clear that contacts between mitochondria always occur by formation of a cone-shaped protuberance of one of the mitochondria which penetrates into its fusion partner. In the same way, structural interactions between mitochondria and mucilage vesicles and between microbodies and mucilage vesicles are achieved. Lytic compartments contact mitochondria or mucilage vesicles again by forming protuberances and by extending their contents into the respective compartment. Detached portions of mitochondria are found inside lytic compartments as a consequence of such interactions. Mitochondria found in contact with the plasma membrane reveal structural disintegration. Our study shows that interactions of organelles and vesicles are frequent events in Micrasterias cells of different ages. The interactive contacts between lytic compartments and organelles or vesicles suggest a degradation pathway different from autophagy processes described in the literature. Both the interactions between vesicles and organelles and the degradation pathways occur independently from cytoskeleton function as demonstrated by use of cytochalasin D and the microtubule inhibitor amiprophos-methyl. PMID:16159344

  19. Dynamic visualization of dendritic cell-antigen interactions in the skin following transcutaneous immunization.

    Directory of Open Access Journals (Sweden)

    Teerawan Rattanapak

    Full Text Available Delivery of vaccines into the skin provides many advantages over traditional parenteral vaccination and is a promising approach due to the abundance of antigen presenting cells (APC residing in the skin including Langerhans cells (LC and dermal dendritic cells (DDC. However, the main obstacle for transcutaneous immunization (TCI is the effective delivery of the vaccine through the stratum corneum (SC barrier to the APC in the deeper skin layers. This study therefore utilized microneedles (MN and a lipid-based colloidal delivery system (cubosomes as a synergistic approach for the delivery of vaccines to APC in the skin. The process of vaccine uptake and recruitment by specific types of skin APC was investigated in real-time over 4 hours in B6.Cg-Tg (Itgax-EYFP 1 Mnz/J mice by two-photon microscopy. Incorporation of the vaccine into a particulate delivery system and the use of MN preferentially increased vaccine antigen uptake by a highly motile subpopulation of skin APC known as CD207⁺ DC. No uptake of antigen or any response to immunisation by LC could be detected.

  20. Nanoscale dimples for improved absorption in organic solar cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Rubahn, Horst-Günter; Madsen, Morten

    -beam evaporation of few nanometers of Al followed by a micrometer layer of Al via sputter deposition. The samples are then anodized to form nano-scale pores of controlled sizes. The anodization of the prepared samples occurs in an electrochemical cell in H2SO4, H2C2O4 and H3PO4 solutions, different electrolyte...... solution and control of anodization parameters (sample temperature, voltage) allows the tuning of the AAO pore diameter and interpore distance. Subsequently, the fabricated AAO is selectively etched in H2CrO4/H3PO4 mixtures, in order to reveal the underlying Al nanoscale dimples, which are present...

  1. A TP-FRET-based two-photon fluorescent probe for ratiometric visualization of endogenous sulfur dioxide derivatives in mitochondria of living cells and tissues.

    Science.gov (United States)

    Yang, Xiaoguang; Zhou, Yibo; Zhang, Xiufang; Yang, Sheng; Chen, Yun; Guo, Jingru; Li, Xiaoxuan; Qing, Zhihe; Yang, Ronghua

    2016-08-11

    A ratiometric two-photon fluorescent probe for SO2 derivatives was first proposed based on acedan-merocyanine dyads via a TP-FRET strategy. It was successfully applied to visualization of the fluctuations of enzymatically generated SO2 derivatives in the mitochondria of HepG2 cells and rat liver tissues using two-photon fluorescence microscopy imaging. PMID:27469474

  2. Improving the performance of conventional and column froth flotation cells

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, B.J. [CQ Inc., Homer City, PA (United States)

    1995-11-01

    Many existing mining operations hover on the brink of producing competitively priced fuel with marginally acceptable sulfur levels. To remain competitive, these operations need to improve the yield of their coal processing facilities, lower the sulfur content of their clean coal, or lower the ash content of their clean coal. Fine coal cleaning processes offer the best opportunity for coal producers to increase their yield of high quality product. Over 200 coal processing plants in the U.S. already employ some type of conventional or column flotation device to clean fines. an increase in efficiency in these existing circuits could be the margin required to make these coal producers competitive.

  3. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  4. Exploring interoperability: The advancements and challenges of improving data discovery, access, and visualization of scientific data through the NOAA Earth Information System (NEIS). (Invited)

    Science.gov (United States)

    Stewart, J.; Lynge, J.; Hackathorn, E.; MacDermaid, C.; Pierce, R.; Smith, J.

    2013-12-01

    Interoperability is a complex subject and often leads to different definitions in different environments. An interoperable framework of web services can improve the user experience by providing an interface for interaction with data regardless of it's format or physical location. This in itself improves accessibility to data, fosters data exploration and use, and provides a framework for new tools and applications. With an interoperable system you have: -- Data ready for action. Services model facilitates agile response to events. Services can be combined or reused quickly, upgraded or modified independently. -- Any data available through an interoperable framework can be operated on or combined with other data. Integrating standardized formats and access. -- New and existing systems have access to wide variety of data. Any new data added is easily incorporated with minimal changes required. The possibilities are limitless. The NOAA Earth Information System (NEIS) at the Earth System Research Laboratory (ESRL) is continuing research into an interoperable framework of layered services designed to facilitate the discovery, access, integration, visualization, and understanding of all NOAA (past, present, and future) data. An underlying philosophy of NEIS is to take advantage of existing off-the-shelf technologies and standards to minimize development of custom code allowing everyone to take advantage of the framework to meet these goals above. This framework, while built by NOAA are not limited to NOAA data or applications. Any other data available through similar services or applications that understand these standards can work interchangeably. Two major challenges are under active research at ESRL are data discoverability and fast access to big data. This presentation will provide an update on development of NEIS, including these challenges, the findings, and recommendations on what is needed for an interoperable system, as well as ongoing research activities

  5. Durable, Low-cost, Improved Fuel Cell Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chris Roger; David Mountz; Wensheng He; Tao Zhang

    2011-03-17

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton

  6. Improvement of visualization efficiency for the nondestructive inspection image of internal defects in plate type nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kyu; Park, Nak Kyu; Baik, Sung Hoon; Lee, Yoon Sang; Cheong, Yong Moo [KAERI, Daejeon (Korea, Republic of); Kang, Young June [Chonbuk National Univ., Chonju (Korea, Republic of)

    2012-10-15

    signal processing is almost instantaneous. As a disadvantage, LIT is more sensitive to mechanic vibrations. So, in order to properly detect internal defects, several inspection parameters, such as acquisition time, processing methods, external stimulation, vibration environment etc., must be optimized when the assessment procedure is developed. If a current inspection image showing the information of internal defects is displayed on the monitor in real time, it will be helpful for the practical field application of nondestructive evaluations. For this purpose, a real time visualization technique for the detection of internal defects was developed in this paper. An active laser speckle interferometer with periodic thermal power was adopted to detect the defects. The laser speckle interferometer is sensitive to very small displacement at a resolution of nanometers by superposing the speckle patterns of two different object states. Amplitude and phase differences in deformation among intact and defective areas have been widely used for the detection of internal defects in plate specimens.

  7. Visual agnosia.

    Science.gov (United States)

    Álvarez, R; Masjuan, J

    2016-03-01

    Visual agnosia is defined as an impairment of object recognition, in the absence of visual acuity or cognitive dysfunction that would explain this impairment. This condition is caused by lesions in the visual association cortex, sparing primary visual cortex. There are 2 main pathways that process visual information: the ventral stream, tasked with object recognition, and the dorsal stream, in charge of locating objects in space. Visual agnosia can therefore be divided into 2 major groups depending on which of the two streams is damaged. The aim of this article is to conduct a narrative review of the various visual agnosia syndromes, including recent developments in a number of these syndromes.

  8. IL-12 directs further maturation of ex vivo differentiated NK cells with improved therapeutic potential.

    Directory of Open Access Journals (Sweden)

    Dorit Lehmann

    Full Text Available The possibility to modulate ex vivo human NK cell differentiation towards specific phenotypes will contribute to a better understanding of NK cell differentiation and facilitate tailored production of NK cells for immunotherapy. In this study, we show that addition of a specific low dose of IL-12 to an ex vivo NK cell differentiation system from cord blood CD34(+ stem cells will result in significantly increased proportions of cells with expression of CD62L as well as KIRs and CD16 which are preferentially expressed on mature CD56(dim peripheral blood NK cells. In addition, the cells displayed decreased expression of receptors such as CCR6 and CXCR3, which are typically expressed to a lower extent by CD56(dim than CD56(bright peripheral blood NK cells. The increased number of CD62L and KIR positive cells prevailed in a population of CD33(+NKG2A(+ NK cells, supporting that maturation occurs via this subtype. Among a series of transcription factors tested we found Gata3 and TOX to be significantly downregulated, whereas ID3 was upregulated in the IL-12-modulated ex vivo NK cells, implicating these factors in the observed changes. Importantly, the cells differentiated in the presence of IL-12 showed enhanced cytokine production and cytolytic activity against MHC class I negative and positive targets. Moreover, in line with the enhanced CD16 expression, these cells exhibited improved antibody-dependent cellular cytotoxicity for B-cell leukemia target cells in the presence of the clinically applied antibody rituximab. Altogether, these data provide evidence that IL-12 directs human ex vivo NK cell differentiation towards more mature NK cells with improved properties for potential cancer therapies.

  9. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex.

    Science.gov (United States)

    Medini, Paolo

    2011-11-23

    Connectivity and dendritic properties are determinants of plasticity that are layer and cell-type specific in the neocortex. However, the impact of experience-dependent plasticity at the level of synaptic inputs and spike outputs remains unclear along vertical cortical microcircuits. Here I compared subthreshold and suprathreshold sensitivity to prolonged monocular deprivation (MD) in rat binocular visual cortex in layer 4 and layer 2/3 pyramids (4Ps and 2/3Ps) and in thick-tufted and nontufted layer 5 pyramids (5TPs and 5NPs), which innervate different extracortical targets. In normal rats, 5TPs and 2/3Ps are the most binocular in terms of synaptic inputs, and 5NPs are the least. Spike responses of all 5TPs were highly binocular, whereas those of 2/3Ps were dominated by either the contralateral or ipsilateral eye. MD dramatically shifted the ocular preference of 2/3Ps and 4Ps, mostly by depressing deprived-eye inputs. Plasticity was profoundly different in layer 5. The subthreshold ocular preference shift was sevenfold smaller in 5TPs because of smaller depression of deprived inputs combined with a generalized loss of responsiveness, and was undetectable in 5NPs. Despite their modest ocular dominance change, spike responses of 5TPs consistently lost their typically high binocularity during MD. The comparison of MD effects on 2/3Ps and 5TPs, the main affected output cells of vertical microcircuits, indicated that subthreshold plasticity is not uniquely determined by the initial degree of input binocularity. The data raise the question of whether 5TPs are driven solely by 2/3Ps during MD. The different suprathreshold plasticity of the two cell populations could underlie distinct functional deficits in amblyopia.

  10. [Lymph node preparation in colorectal cancer. Ex vivo methylene blue injection as a novel technique to improve lymph node visualization].

    Science.gov (United States)

    Märkl, B; Kerwel, T; Jähnig, H; Anthuber, M; Arnholdt, H

    2008-07-01

    The UICC requires investigation of a minimum of 12 lymph nodes for adequate lymph node staging in colorectal cancer. Despite that, many authors recommend investigation of a larger number, and different techniques, such as fat clearance, have therefore been developed. In this study we introduce a novel technique involving ex vivo lymph node staining with intraarterial methylene blue injection in colon cancer. We compared 14 cases in which methylene injection was used with 14 cases from our records in which conventional investigation techniques were applied. The lymph node harvest differed highly significantly (pmethylene blue group and the unstained group, respectively. The largest difference occurred in the size group 2-4 mm (191 vs 70 lymph nodes). In 6 cases in the unstained group additional embedding of fatty tissue was necessary to reach an adequate number of investigated lymph nodes. Methylene blue injection is a novel and highly effective method that will improve lymph node preparation in colorectal cancer.

  11. Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord.

    NARCIS (Netherlands)

    Ritfeld, G.J.; Nandoe Tewarie, R.D.S.; Rahiem, S.T.; Hurtado, A.; Roos, R.A.; Grotenhuis, A.; Oudega, M.

    2010-01-01

    We tested whether reducing macrophage infiltration would improve the survival of allogeneic bone marrow stromal cells (BMSC) transplanted in the contused adult rat thoracic spinal cord. Treatment with cyclosporine, minocycline, or methylprednisolone all resulted in a significant decrease in macropha

  12. The use of Electrolyte Additives to Improve the High Temperature Resilience of Li-Ion Cells

    Science.gov (United States)

    Smart, Marshall C.; Lucht, B. L.; Ratnakumar, Bugga V.

    2007-01-01

    This viewgraph presentation reviews the use of electrolyte additves to improve the resillience of Lithium ion cells. The objective of this work is to identify lithium-ion electrolytes, which will lead to Li-ion cells with a wide operational temperature range (+60 to -60 C), and to develop Li-ion electrolytes which result in cells that display improved high temperature resilience. Significant improvement in the high temperature resilience of Li-ion cells containing these additives was observed, with the most dramatic benefit being displayed by addition of DMAc. When the electrochemical properties of the individual electrodes were analyzed, the degradation of the anode kinetics was slowed most dramatically by the incorporation of DMAc into the electrolytes. Whereas, the greatest retention in the cathode kinetics was observed in the cell containing the electrolyte with VC added.

  13. ERC product improvement activities for direct fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, C.; Carlson, G.; Doyon, J. [and others

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  14. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    Directory of Open Access Journals (Sweden)

    K J Kelly

    Full Text Available Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  15. Combining Concentrated Autologous Bone Marrow Stem Cells Injection With Core Decompression Improves Outcome for Patients with Early-Stage Osteonecrosis of the Femoral Head: A Comparative Study.

    Science.gov (United States)

    Tabatabaee, Reza Mostafavi; Saberi, Sadegh; Parvizi, Javad; Mortazavi, Seyed Mohammad Javad; Farzan, Mahmoud

    2015-09-01

    The management of early-stage osteonecrosis of the femoral head (ONFH) remains challenging. This study aimed to evaluate the effects of core decompression and concentrated bone marrow implantation on ONFH. The study recruited 28 hips with early ONFH randomly assigned into two groups of core decompression with (group A) and without (group B) bone marrow injection. Patients were evaluated using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaire, Visual Analogue Scale (VAS) pain index, and MRI. The mean WOMAC and VAS scores in all patients improved significantly (PBone marrow stem cell injection with core decompression can be effective in early ONFH. PMID:26143238

  16. An improved ghost-cell immersed boundary method for compressible flow simulations

    KAUST Repository

    Chi, Cheng

    2016-05-20

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost-cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl-Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward-facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Visual art and visual perception

    NARCIS (Netherlands)

    Koenderink, Jan J.

    2015-01-01

    Visual art and visual perception ‘Visual art’ has become a minor cul-de-sac orthogonal to THE ART of the museum directors and billionaire collectors. THE ART is conceptual, instead of visual. Among its cherished items are the tins of artist’s shit (Piero Manzoni, 1961, Merda d’Artista) “worth their

  18. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination.

    Science.gov (United States)

    Bonifaz, Laura C; Bonnyay, David P; Charalambous, Anna; Darguste, Dara I; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K; Moltedo, Bruno; Moran, Thomas M; Steinman, Ralph M

    2004-03-15

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic alpha-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the alphaDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell-mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models.

  19. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    Science.gov (United States)

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types. PMID:27259361

  20. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    Science.gov (United States)

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-01

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types.

  1. Improved photobiological H2 production in engineered green algal cells.

    Science.gov (United States)

    Kruse, Olaf; Rupprecht, Jens; Bader, Klaus-Peter; Thomas-Hall, Skye; Schenk, Peer Martin; Finazzi, Giovanni; Hankamer, Ben

    2005-10-01

    Oxygenic photosynthetic organisms use solar energy to split water (H2O) into protons (H+), electrons (e-), and oxygen. A select group of photosynthetic microorganisms, including the green alga Chlamydomonas reinhardtii, has evolved the additional ability to redirect the derived H+ and e- to drive hydrogen (H2) production via the chloroplast hydrogenases HydA1 and A2 (H2 ase). This process occurs under anaerobic conditions and provides a biological basis for solar-driven H2 production. However, its relatively poor yield is a major limitation for the economic viability of this process. To improve H2 production in Chlamydomonas, we have developed a new approach to increase H+ and e- supply to the hydrogenases. In a first step, mutants blocked in the state 1 transition were selected. These mutants are inhibited in cyclic e- transfer around photosystem I, eliminating possible competition for e- with H2ase. Selected strains were further screened for increased H2 production rates, leading to the isolation of Stm6. This strain has a modified respiratory metabolism, providing it with two additional important properties as follows: large starch reserves (i.e. enhanced substrate availability), and a low dissolved O2 concentration (40% of the wild type (WT)), resulting in reduced inhibition of H2ase activation. The H2 production rates of Stm6 were 5-13 times that of the control WT strain over a range of conditions (light intensity, culture time, +/- uncoupler). Typically, approximately 540 ml of H2 liter(-1) culture (up to 98% pure) were produced over a 10-14-day period at a maximal rate of 4 ml h(-1) (efficiency = approximately 5 times the WT). Stm6 therefore represents an important step toward the development of future solar-powered H2 production systems. PMID:16100118

  2. Efficiency Improvement of Heterojunction Polymer Photovoltaic Cells through Controlling the Morphology of the Polymer Film

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Polymer photovoltaic cells, which provide clean and renewable energy sources, have gained more and more attention. Polymer photovoltaic cells have the advantage of low fabrication cost and high mechanical flexibility. Polymers can be processed through a solution process, so that a homogeneous polymer film could be readily prepared in a large area. Recently, the light-to-electricity conversion efficiency of the polymer photovoltaic cells was improved significantly[1-2]. Polymer donor and organi...

  3. Germanium-doped carbon dots as a new type of fluorescent probe for visualizing the dynamic invasions of mercury(ii) ions into cancer cells

    Science.gov (United States)

    Yuan, Yun Huan; Li, Rong Sheng; Wang, Qiang; Wu, Zhu Lian; Wang, Jian; Liu, Hui; Huang, Cheng Zhi

    2015-10-01

    Carbon dots doped with germanium (GeCDs) were firstly prepared by a new simple 15 min carbonation synthesis route, exhibiting excitation-independent photoluminescence (PL), which could avoid autofluorescence in bioimaging applications. The as-prepared GeCDs have low cell toxicity, good biocompatibility, high intracellular delivery efficiency, stability and could be applied for detection of mercury(ii) ions with excellent selectivity in complicated medium. It is to be noted that the as-prepared GeCDs used as a new type of probe for visualization of dynamic invasions of mercury(ii) ions into Hep-2 cells display greatly different properties from most of the previously reported CDs which are regularly responsive to iron ions. All the results suggest that the GeCDs can be employed for visualization and monitoring of the significant physiological changes of living cells induced by Hg2+.Carbon dots doped with germanium (GeCDs) were firstly prepared by a new simple 15 min carbonation synthesis route, exhibiting excitation-independent photoluminescence (PL), which could avoid autofluorescence in bioimaging applications. The as-prepared GeCDs have low cell toxicity, good biocompatibility, high intracellular delivery efficiency, stability and could be applied for detection of mercury(ii) ions with excellent selectivity in complicated medium. It is to be noted that the as-prepared GeCDs used as a new type of probe for visualization of dynamic invasions of mercury(ii) ions into Hep-2 cells display greatly different properties from most of the previously reported CDs which are regularly responsive to iron ions. All the results suggest that the GeCDs can be employed for visualization and monitoring of the significant physiological changes of living cells induced by Hg2+. Electronic supplementary information (ESI) available: Experimental section and additional figures (Fig. S1-15). See DOI: 10.1039/c5nr05326a

  4. 一种实时的单目视觉SLAM改进算法%An improved real-time monocular visual SLAM algorithm

    Institute of Scientific and Technical Information of China (English)

    李全科; 曾连荪

    2015-01-01

    针对目前 SLAM 算法实时性和鲁棒性的问题,提出了一种改进的实时单目视觉 SLAM算法。该算法采用一个摄像头作为外部传感器来提取机器人行进过程中周围环境的特征信息,用实时性良好的 FAST 提取环境特征点,结合逆深度参数化进行特征点非延时初始化,用压缩扩展卡尔曼滤波更新地图。实验研究表明,该方法提高了算法的鲁棒性和实时性。%Aiming at the problem of robust SLAM algorithm, an improved real-time monocular visual SLAM algorithm is proposed. Taking a camera as its external sensor, this algorithm can obtain the feature information of the surrounding. It obtains the feature points of environment by using FAST which has good real-time capability. With the combination of inverse depth parametrization, the feature points begin to initialize without delay. The map is updated by the CEKF. The experimental study shows that this method improves the robustness and real-time of the algorithm.

  5. SYNTHESIZABLE AND PROTOTYPIC VISUAL-TACTILE SYSTEM-IN FPGA: AN ALTERNATIVE TO ANALYSIS AND IMPROVEMENT OF THE VOICE QUALITY FOR THE HEARING IMPAIRED PEOPLE

    Directory of Open Access Journals (Sweden)

    Rodrigo Leone Alves

    2016-04-01

    Full Text Available Oral communication comprises one of the most important forms of social interaction. The process of learning the spoken language depends on the hearing, therefore, the total or partial loss of hearing sensitivity hinders such aspect. Digital signal processing techniques with non-invasive character are used for diagnosis, support and improvement of the voice quality of the deaf. Thus, the present study aims to propose and develop a system of analysis and correction of vocal disorders by means of visual and tactile feedback with module implemented in programmable device type FPGA (Field Programmable Gate Array. The results point to the potential of a proposed intervention as a helper for sensory substitution, being based on the monitoring and control of speech, in order to allow for the assessment and remediation by means of an electronic resource, allowing deaf individuals to obtain a support for learning the spoken language. The possibilities for improvements in communication skills observed in this study are dependent on the capability of the device together with the speech therapist, integrating therapies with the support of the family, the time and the motivation of the user, factors that cooperate for the success of this approach.

  6. Micro-PIV (micro particle image velocimetry) visualization of red blood cells (RBCs) sucked by a female mosquito

    International Nuclear Information System (INIS)

    A mosquito's pump is a highly effective system in the small suction domain. To understand a mosquito's blood suction mechanism, we analysed the characteristics of red blood cells (RBCs) in human blood during and after suction by a female mosquito. Focussing on the flow patterns of the RBCs in human blood being sucked by a mosquito, we visualized blood flow by using a micro-particle image velocimetry (μ-PIV) system, which combines an optical microscope and a PIV method. In an ex vivo experiment, a female mosquito was supplied diluted blood at the tip of the proboscis. We examined the blood flow around the tip of the proboscis and observed that RBCs were periodically sucked towards a hole around the tip. The sucked RBCs then homogeneously flowed parallel to the inner surface of the proboscis without adhering to the wall. Furthermore, using a bioelectric recording system, we directly measured electrical signals generated during suction by the pump muscles located in the mosquito's head. We found that the electrical signal power was synchronized with the acceleration of the RBCs in the sucking phase. A histological stain method was adapted for the observation of the form and internal structure of RBCs in the mosquito. Although the blood flow analysis revealed that the RBCs underwent shear stress during suction, RBCs in the mosquito's stomach maintained their original shape

  7. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  8. In Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination

    Science.gov (United States)

    Bonifaz, Laura C.; Bonnyay, David P.; Charalambous, Anna; Darguste, Dara I.; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K.; Moltedo, Bruno; Moran, Thomas M.; Steinman, Ralph M.

    2004-01-01

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic α-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the αDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell–mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models. PMID:15024047

  9. Improved performance in GaInNAs solar cells by hydrogen passivation

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, M.; Whiteside, V. R.; Keay, J. C.; Meleco, A.; Sellers, I. R. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, Oklahoma 73019 (United States); Hossain, K.; Golding, T. D. [Amethyst Research Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); Leroux, M.; Al Khalfioui, M. [CRHEA-CNRS, Rue Bernard Gregory, Valbonne 06560 (France)

    2015-04-06

    The effect of UV-activated hydrogenation on the performance of GaInNAs solar cells is presented. A proof-of-principle investigation was performed on non-optimum GaInNAs cells, which allowed a clearer investigation of the role of passivation on the intrinsic nitrogen-related defects in these materials. Upon optimized hydrogenation of GaInNAs, a significant reduction in the presence of defect and impurity based luminescence is observed as compared to that of unpassivated reference material. This improvement in the optical properties is directly transferred to an improved performance in solar cell operation, with a more than two-fold improvement in the external quantum efficiency and short circuit current density upon hydrogenation. Temperature dependent photovoltaic measurements indicate a strong contribution of carrier localization and detrapping processes, with non-radiative processes dominating in the reference materials, and evidence for additional strong radiative losses in the hydrogenated solar cells.

  10. Improved performance in GaInNAs solar cells by hydrogen passivation

    Science.gov (United States)

    Fukuda, M.; Whiteside, V. R.; Keay, J. C.; Meleco, A.; Sellers, I. R.; Hossain, K.; Golding, T. D.; Leroux, M.; Al Khalfioui, M.

    2015-04-01

    The effect of UV-activated hydrogenation on the performance of GaInNAs solar cells is presented. A proof-of-principle investigation was performed on non-optimum GaInNAs cells, which allowed a clearer investigation of the role of passivation on the intrinsic nitrogen-related defects in these materials. Upon optimized hydrogenation of GaInNAs, a significant reduction in the presence of defect and impurity based luminescence is observed as compared to that of unpassivated reference material. This improvement in the optical properties is directly transferred to an improved performance in solar cell operation, with a more than two-fold improvement in the external quantum efficiency and short circuit current density upon hydrogenation. Temperature dependent photovoltaic measurements indicate a strong contribution of carrier localization and detrapping processes, with non-radiative processes dominating in the reference materials, and evidence for additional strong radiative losses in the hydrogenated solar cells.

  11. [Three photons quantum-cutting system on the rear surface of cells to improve the efficiencies of solar cells].

    Science.gov (United States)

    Yao, Wen-ting; Chen, Xiao-bo; Cheng, Huan-li; Zhou, Gu; Deng, Zhi-wei; Li, Yong-liang; Yan, Da-dong; Peng, Fang-lin

    2015-02-01

    The authors present a solar cell model with a three photons quantum-cutting system on the rear surface, then the method of calculation of limiting efficiencies was used to get the maximum efficiency 58.58% at the band gap Eg=0.9315 eV, and in contrast with two-photons quantum-cutting system, it is greatly improved. The result can prove that the three-photons quantum-cutting has a great sense to improve the efficiencies of solar cells. It is the exciting development for us to find out the useful luminescence materials to get the high efficiency.

  12. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    Science.gov (United States)

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images.

  13. Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers.

    Science.gov (United States)

    Wilson, Emma H; Harris, Tajie H; Mrass, Paulus; John, Beena; Tait, Elia D; Wu, Gregory F; Pepper, Marion; Wherry, E John; Dzierzinski, Florence; Roos, David; Haydon, Philip G; Laufer, Terri M; Weninger, Wolfgang; Hunter, Christopher A

    2009-02-20

    To understand lymphocyte behavior in the brain, we used two-photon microscopy to visualize effector CD8(+) T cells during toxoplasmic encephalitis. These cells displayed multiple behaviors with two distinct populations of cells apparent: one with a constrained pattern of migration and one with a highly migratory subset. The proportion of these populations varied over time associated with changes in antigen availability as well as T cell expression of the inhibitory receptor PD1. Unexpectedly, the movement of infiltrating cells was closely associated with an infection-induced reticular system of fibers. This observation suggests that, whereas in other tissues pre-existing scaffolds exist that guide lymphocyte migration, in the brain specialized structures are induced by inflammation that guide migration of T cells in this immune-privileged environment.

  14. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    Science.gov (United States)

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  15. Roles of Treg/Th17 Cell Imbalance and Neuronal Damage in the Visual Dysfunction Observed in Experimental Autoimmune Optic Neuritis Chronologically.

    Science.gov (United States)

    Liu, Yuanyuan; You, Caiyun; Zhang, Zhuhong; Zhang, Jingkai; Yan, Hua

    2015-12-01

    Optic neuritis associated with multiple sclerosis and its animal model, experimental autoimmune optic neuritis (EAON), is characterized by inflammation, T cell activation, demyelination, and neuronal damage, which might induce permanent vision loss. Elucidating the chronological relationship among the features is critical for treatment of demyelinating optic neuritis. EAON was induced in C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein subcutaneously, and visual function was assessed by flash-visual evoked potential (F-VEP) at days 7, 11, 14, 19, 23, 28 post-immunization. Retinal ganglion cell (RGC) apoptosis was measured by terminal-deoxynucleotidyl transferase-mediated nick-end labeling. Demyelination and axonal damage were verified with myelin basic protein (MBP) and β-amyloid precursor protein staining, respectively. Real-time polymerase chain reaction quantified IL-17, IL-1β, TGF-β, FoxP3, IL-6, and IL-10 mRNA expression in the optic nerve, as well as FoxP3 and IL-17 staining. Systemic changes of Th17 and Treg cells were tested by flow cytometry in spleen. F-VEP latency was prolonged at 11 days and peaked at 23 days commensurate with demyelination. However, F-VEP amplitude was reduced at 11 days, preceding axon damage, and was exacerbated at 23 days when a peak in RGC apoptosis was detected. Th17 cells up-regulated as early as 7 days and peaked at 11 days, while Treg cells down-regulated inversely compared to Th17 cells change as verified by IL-17 and FoxP3 expression; spleen cell samples were slightly different, demonstrating marked changed at 14 days. Treg/Th17 cell imbalance in the optic nerve precedes and may initiate neuronal damage of axons and RGCs. These changes are commensurate with the appearances of visual dysfunction reflected in F-VEP and hence may offer a novel therapeutic avenue for vision preservation.

  16. Numerical simulations for the effiency improvement of hybrid dye-microcrystalline silicon pin-solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Burdorf, Sven; Bauer, Gottfried Heinrich; Brueggemann, Rudolf [Institut fuer Physik, Carl von Ossietzky Universitaet, Oldenburg (Germany)

    2011-07-01

    Hybrid solar cells consisting of dye sensitizers incorporated in the i-layer of microcrystalline silicon pin solar cell have been proposed and even recently processed. The dye sensitizer molecules are embedded in the matrix and enhance the overall absorption of the dye-matrix system due to their high absorption coefficient in the spectral range interesting for photovoltaic applications. However, the charge transport properties of dyes are quite poor. Microcrystalline silicon on the other hand has acceptable charge transport properties, while the absorption, given a layer thickness in the micron range, is relatively poor. This contribution investigates the effiency improvement of hybrid dye-microcrystalline solar cells compared to pure microcrystalline solar cells by simulation. The results indicate that, under optimal conditions, the effiency can be improved by more than 20 % compared to a pure microcrystalline silicon cell. The thickness reduction for the hybrid system can be as large as 50 % for the same effiency.

  17. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells.

    Science.gov (United States)

    Ryuzaki, Sou; Onoe, Jun

    2013-01-01

    Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells.

  18. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells

    Directory of Open Access Journals (Sweden)

    Sou Ryuzaki

    2013-07-01

    Full Text Available Hetero-junction organic photovoltaic (OPV cells consisting of donor (D and acceptor (A layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (VOC, of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the VOC for zinc octaethylporphyrin [Zn(OEP]/C60 hetero-junction OPV cells [ITO/Zn(OEP/C60/Al]. It was found that crystallization of Zn(OEP films increases the number of inter-molecular charge transfer (IMCT excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A interface was found to play a key role in determining the VOC for the OPV cells.

  19. Visualization of the African swine fever virus infection in living cells by incorporation into the virus particle of green fluorescent protein-p54 membrane protein chimera

    International Nuclear Information System (INIS)

    Many stages of African swine fever virus infection have not yet been studied in detail. To track the behavior of African swine fever virus (ASFV) in the infected cells in real time, we produced an infectious recombinant ASFV (B54GFP-2) that expresses and incorporates into the virus particle a chimera of the p54 envelope protein fused to the enhanced green fluorescent protein (EGFP). The incorporation of the fusion protein into the virus particle was confirmed immunologically and it was determined that p54-EGFP was fully functional by confirmation that the recombinant virus made normal-sized plaques and presented similar growth curves to the wild-type virus. The tagged virus was visualized as individual fluorescent particles during the first stages of infection and allowed to visualize the infection progression in living cells through the viral life cycle by confocal microscopy. In this work, diverse potential applications of B54GFP-2 to study different aspects of ASFV infection are shown. By using this recombinant virus it was possible to determine the trajectory and speed of intracellular virus movement. Additionally, we have been able to visualize for first time the ASFV factory formation dynamics and the cytophatic effect of the virus in live infected cells. Finally, we have analyzed virus progression along the infection cycle and infected cell death as time-lapse animations

  20. Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: improving the efficiency of cell line generation.

    Science.gov (United States)

    Porter, Alison J; Racher, Andrew J; Preziosi, Richard; Dickson, Alan J

    2010-01-01

    Transfectants with a wide range of cellular phenotypes are obtained during the process of cell line generation. For the successful manufacture of a therapeutic protein, a means is required to identify a cell line with desirable growth and productivity characteristics from this phenotypically wide-ranging transfectant population. This identification process is on the critical path for first-in-human studies. We have stringently examined a typical selection strategy used to isolate cell lines suitable for cGMP manufacturing. One-hundred and seventy-five transfectants were evaluated as they progressed through the different assessment stages of the selection strategy. High producing cell lines, suitable for cGMP manufacturing, were identified. However, our analyses showed that the frequency of isolation of the highest producing cell lines was low and that ranking positions were not consistent between each assessment stage, suggesting that there is potential to improve upon the strategy. Attempts to increase the frequency of isolation of the 10 highest producing cell lines, by in silico analysis of alternative selection strategies, were unsuccessful. We identified alternative strategies with similar predictive capabilities to the typical selection strategy. One alternate strategy required fewer cell lines to be progressed at the assessment stages but the stochastic nature of the models means that cell line numbers are likely to change between programs. In summary, our studies illuminate the potential for improvement to this and future selection strategies, based around use of assessments that are more informative or that reduce variance, paving the way to improved efficiency of generation of manufacturing cell lines. PMID:20623584

  1. Secretion and membrane recycling in plant cells: novel intermediary structures visualized in ultrarapidly frozen sycamore and carrot suspension-culture cells.

    Science.gov (United States)

    Staehelin, L A; Chapman, R L

    1987-05-01

    Freeze-fracture electron microscopy of propane-jet-frozen samples has been employed to investigate vesicle-mediated secretion and membrane recycling events in carrot (Daucus carota L.) and sycamore maple (Acer pseudoplatanus L.) suspension-culture cells. Stabilization of the cells by means of ultrarapid freezing has enabled us to preserve the cells in a turgid state and to visualize new intermediate membrane configurations related to these events. Indeed, many of the observed membrane configurations, such as flattened membrane vesicles with slit-shaped membrane fusion sites and horseshoe-shaped membrane infoldings, appear to result from the action of turgor forces on the plasma membrane. Individual cells exhibited great variations in numbers and types of membrane configurations postulated to be related to secretion and membrane-recycling events. In the majority of cells, the different membrane profiles displayed a patchy distribution, and within each patch the membrane configurations tended to be of the same stage. This result indicates that secretory events are triggered in domains measuring from 0.1 to about 10 μm in diameter. Based on an extensive analysis of the different membrane configurations seen in our samples, we have formulated the following model of vesicle-mediated secretion in plant cells: Fusion of a secretory vesicle with the plasma membrane leads to the formation of a single, narrow-necked pore that increases in diameter up to about 60 nm. During discharge, the vesicle is flattened, forming a disc-shaped structure perpendicular to the plane of the plasma membrane. As the vesicle is flattened, the pore is converted to a slit, the maximum length of which coincides with the diameter of the flattened vesicle. The flattened vesicle then tips over and concomitantly the plasma-membrane slit becomes curved into a horseshoe-shaped configuration as it extends along the outer margins of the tipped-over vesicle. Some coated pits are present interspersed

  2. Cell cycle is disturbed in mucopolysaccharidosis type II fibroblasts, and can be improved by genistein.

    Science.gov (United States)

    Moskot, Marta; Gabig-Cimińska, Magdalena; Jakóbkiewicz-Banecka, Joanna; Węsierska, Magdalena; Bocheńska, Katarzyna; Węgrzyn, Grzegorz

    2016-07-01

    Mucopolysaccharidoses (MPSs) are inherited metabolic diseases caused by mutations resulting in deficiency of one of enzymes involved in degradation of glycosaminoglycans (GAGs). These compounds accumulate in cells causing their dysfunctions. Genistein is a molecule previously found to both modify GAG metabolism and modulate cell cycle. Therefore, we investigated whether the cell cycle is affected in MPS cells and if genistein can influence this process. Fibroblasts derived from patients suffering from MPS types I, II, IIIA and IIIB, as well as normal human fibroblasts (the HDFa cell line) were investigated. MTT assay was used for determination of cell proliferation, and the cell cycle was analyzed by using the MUSE® Cell Analyzer. While effects of genistein on cell proliferation were similar in both normal and MPS fibroblasts, fractions of cells in the G0/G1 phase were higher, and number of cells entering the S and G2/M phases was considerably lower in MPS II fibroblasts relative to control cells. Somewhat similar tendency, though significantly less pronounced, could be noted in MPS I, but only at longer times of incubation. However, this was not observed in MPS IIIA and MPS IIIB fibroblasts. Genistein (5, 7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) was found to be able to partially correct the disturbances in the MPS II cell cycle, and to some extent in MPS I, at higher concentrations of this compound. The tendency to increase the fractions of cells entering the S and G2/M phases was also observed in MPS IIIA and IIIB fibroblasts treated with genistein. In conclusion, this is the first report indicating that the cell cycle can be impaired in MPS cells. The finding that genistein can improve the MPS II (and to some extent also MPS I) cell cycle provides an input to our knowledge on the molecular mechanisms of action of this compound. PMID:27016302

  3. Improving the Quality of the Deteriorated Regions of Multicrystalline Silicon Ingots during General Solar Cell Processes

    Institute of Scientific and Technical Information of China (English)

    WU Shan-Shan; WANG Lei; YANG De-Ren

    2011-01-01

    @@ The behavior of wafers and solar cells from the border of a multicrystalline silicon(mc-Si)ingot, which contain deteriorated regions, is investigated.It is found that the diffusion length distribution of minority carriers in the cells is uniform, and high efficiency of the solar cells(about 16%)is achieved.It is considered that the quality of the deteriorated regions could be improved to be similar to that of adjacent regions.Moreover, it is indicated that during general solar cell fabrication, phosphorus gettering and hydrogen passivation could significantly improve the quality of deteriorated regions, while aluminum gettering by RTP could not.Therefore, it is suggested that the border of a me-Si ingot could be used to fabricate high efficiency solar cells, which will increase me-Si utilization effectively.%The behavior of wafers and solar cells from the border of a multicrystalline silicon (mc-Si) ingot, which contain deteriorated regions, is investigated. It is found that the diffusion length distribution of minority carriers in the cells is uniform, and high efficiency of the solar cells (about 16%) is achieved. It is considered that the quality of the deteriorated regions could be improved to be similar to that of adjacent regions. Moreover, it is indicated that during general solar cell fabrication, phosphorus gettering and hydrogen passivation could significantly improve the quality of deteriorated regions, while aluminum gettering by RTP could not. Therefore, it is suggested that the border of a mc-Si ingot could be used to fabricate high efficiency solar cells, which will increase mc-Si utilization effectively.

  4. IL-15 improves the cytotoxicity of cytokine-induced killer cells against leukemia cells by upregulating CD3+CD56+ cells and downregulating regulatory T cells as well as IL-35.

    Science.gov (United States)

    Tao, Qianshan; Chen, Tianping; Tao, Lili; Wang, Huiping; Pan, Ying; Xiong, Shudao; Zhai, Zhimin

    2013-01-01

    Cytokine-induced killer (CIK) cells are usually generated from peripheral blood mononuclear cells with the stimulation of IL-2 in vitro. Unlike the conventional IL-2-stimulated CIK cells (IL-2-CIK cells), we investigated the characteristics and potential mechanism of IL-15-stimulated CIK cells (IL-15-CIK cells) in this study. Compared with IL-2-CIK cells, the percentage of CD3CD56 cells was significantly increased in IL-15-CIK cells, but the expression of regulatory T (Treg) cells and IL-35 was significantly decreased in IL-15-CIK cells. Meanwhile, the in vitro cytotoxicity against human myeloid leukemia cells K562 of IL-15-CIK cells was significantly augmented compared with IL-2-CIK cells. These data suggest that IL-15 may improve the cytotoxicity of CIK cells against leukemia cells by upregulating CD3CD56 cells and downregulating Treg cells and IL-35.

  5. Improved antibody production in Chinese hamster ovary cells by ATF4 overexpression

    OpenAIRE

    Haredy, Ahmad M.; Nishizawa, Akitoshi; Honda, Kohsuke; Ohya, Tomoshi; Ohtake, Hisao; Omasa, Takeshi

    2013-01-01

    To improve antibody production in Chinese hamster ovary (CHO) cells, the humanized antibody-producing CHO DP-12-SF cell line was transfected with the gene encoding activating transcription factor 4 (ATF4), a central factor in the unfolded protein response. Overexpression of ATF4 significantly enhanced the production of antibody in the CHO DP-12-SF cell line. The specific IgG production rate of in the ATF4-overexpressing CHO-ATF4-16 cells was approximately 2.4 times that of the parental host c...

  6. Improved culture-based isolation of differentiating endothelial progenitor cells from mouse bone marrow mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Haruki Sekiguchi

    Full Text Available Numerous endothelial progenitor cell (EPC-related investigations have been performed in mouse experiments. However, defined characteristics of mouse cultured EPC have not been examined. We focused on fast versus slow adherent cell population in bone marrow mononuclear cells (BMMNCs in culture and examined their characteristics. After 24 h-culture of BMMNCs, attached (AT cells and floating (FL cells were further cultured in endothelial differentiation medium separately. Immunological and molecular analyses exhibited more endothelial-like and less monocyte/macrophage-like characteristics in FL cells compared with AT cells. FL cells formed thick/stable tube and hypoxia or shear stress overload further enhanced these endothelial-like features with increased angiogenic cytokine/growth factor mRNA expressions. Finally, FL cells exhibited therapeutic potential in a mouse myocardial infarction model showing the specific local recruitment to ischemic border zone and tissue preservation. These findings suggest that slow adherent (FL but not fast attached (AT BMMNCs in culture are EPC-rich population in mouse.

  7. Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines.

    Science.gov (United States)

    Romand, Sandrine; Jostock, Thomas; Fornaro, Mara; Schmidt, Joerg; Ritter, Anett; Wilms, Burkhard; Laux, Holger

    2016-05-01

    Chinese Hamster Ovary (CHO) cells are widely used for the large-scale production of recombinant biopharmaceuticals. However, attempts to express IGF-1 (a mutated human Insulin-like growth factor 1 Ea peptide (hIGF-1Ea mut)) in CHO cells resulted in poor cell growth and low productivity (0.1-0.2 g/L). Human IGF-1 variants negatively impacted CHO cell growth via the IGF-1 receptor (IGF-1R). Therefore knockout (KO) of the IGF-1R gene in two different CHO cell lines as well as knockdown (KD) of IGF-1R in one CHO cell line were performed. These cell line engineering approaches decreased significantly the hIGF-1 mediated cell growth inhibition and increased productivity of both KO CHO cell lines as well as of the KD CHO cell line. A productivity increase of 10-fold at pool level and sevenfold at clone level was achieved, resulting in a titer of 1.3 g/L. This data illustrate that cell line engineering approaches are powerful tools to improve the yields of recombinant proteins which are difficult to produce in CHO cells. Biotechnol. Bioeng. 2016;113: 1094-1101. © 2015 Wiley Periodicals, Inc. PMID:26523469

  8. Inhibiting CD146 by its Monoclonal Antibody AA98 Improves Radiosensitivity of Cervical Cancer Cells.

    Science.gov (United States)

    Cheng, Huawen

    2016-01-01

    BACKGROUND Cervical cancer is one of the major causes of cancer death of females worldwide. Radiotherapy is considered effective for cervical cancer treatment, but the low radiosensitivity found in some cases severely affects therapeutic outcomes. This study aimed to reveal the role of CD146, an important adhesion molecule facilitating tumor angiogenesis, in regulating radiosensitivity of cervical cancer cells. MATERIAL AND METHODS CD146 protein expression was compared in normal cells, cervical cancer cells with lower radiosensitivity, and cervical cancer cells with higher sensitivity from cervical squamous cell carcinoma patients. Anti-CD146 monoclonal antibody AA98 was used to inhibit CD146 in human cervical cancer SiHa cells with relatively low radiosensitivity, and then the cell survival and apoptosis changes after radiation were detected by colony formation assay and flow cytometry. RESULTS CD146 protein was significantly up-regulated in cervical cancer cells (Pcancer cells with lower radiosensitivity. The SiHa cells treated with AA98 showed more obvious inhibition in cell survival (Papoptosis (Pcancer cells, which might allow improvement in treatment outcome in cervical cancer. Further studies are necessary for understanding the detailed mechanism of CD146 in regulating radiosensitivity. PMID:27647179

  9. Traffic Visualization

    DEFF Research Database (Denmark)

    Picozzi, Matteo; Verdezoto, Nervo; Pouke, Matti;

    2013-01-01

    In this paper, we present a space-time visualization to provide city's decision-makers the ability to analyse and uncover important "city events" in an understandable manner for city planning activities. An interactive Web mashup visualization is presented that integrates several visualization te...

  10. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells.

    Science.gov (United States)

    Gaub, Benjamin M; Berry, Michael H; Holt, Amy E; Reiner, Andreas; Kienzler, Michael A; Dolgova, Natalia; Nikonov, Sergei; Aguirre, Gustavo D; Beltran, William A; Flannery, John G; Isacoff, Ehud Y

    2014-12-23

    Most inherited forms of blindness are caused by mutations that lead to photoreceptor cell death but spare second- and third-order retinal neurons. Expression of the light-gated excitatory mammalian ion channel light-gated ionotropic glutamate receptor (LiGluR) in retinal ganglion cells (RGCs) of the retina degeneration (rd1) mouse model of blindness was previously shown to restore some visual functions when stimulated by UV light. Here, we report restored retinal function in visible light in rodent and canine models of blindness through the use of a second-generation photoswitch for LiGluR, maleimide-azobenzene-glutamate 0 with peak efficiency at 460 nm (MAG0(460)). In the blind rd1 mouse, multielectrode array recordings of retinal explants revealed robust and uniform light-evoked firing when LiGluR-MAG0(460) was targeted to RGCs and robust but diverse activity patterns in RGCs when LiGluR-MAG0(460) was targeted to ON-bipolar cells (ON-BCs). LiGluR-MAG0(460) in either RGCs or ON-BCs of the rd1 mouse reinstated innate light-avoidance behavior and enabled mice to distinguish between different temporal patterns of light in an associative learning task. In the rod-cone dystrophy dog model of blindness, LiGluR-MAG0(460) in RGCs restored robust light responses to retinal explants and intravitreal delivery of LiGluR and MAG0(460) was well tolerated in vivo. The results in both large and small animal models of photoreceptor degeneration provide a path to clinical translation. PMID:25489083

  11. Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance

    Directory of Open Access Journals (Sweden)

    Nader Shehata

    2015-11-01

    Full Text Available This paper discusses the effect of adding reduced erbium-doped ceria nanoparticles (REDC NPs as a coating on silicon solar cells. Reduced ceria nanoparticles doped with erbium have the advantages of both improving conductivity and optical conversion of solar cells. Oxygen vacancies in ceria nanoparticles reduce Ce4+ to Ce3+ which follow the rule of improving conductivity of solar cells through the hopping mechanism. The existence of Ce3+ helps in the down-conversion from 430 nm excitation to 530 nm emission. The erbium dopant forms energy levels inside the low-phonon ceria host to up-convert the 780 nm excitations into green and red emissions. When coating reduced erbium-doped ceria nanoparticles on the back side of a solar cell, a promising improvement in the solar cell efficiency has been observed from 15% to 16.5% due to the mutual impact of improved electric conductivity and multi-optical conversions. Finally, the impact of the added coater on the electric field distribution inside the solar cell has been studied.

  12. THE IMPROVEMENT OF INFARCTED MYOCARDIAL CONTRACTILE FORCE AFTER AUTOLOGOUS SKELETAL MUSCLE SATELLITE CELL IMPLANTATION

    Institute of Scientific and Technical Information of China (English)

    钟竑; 朱洪生; 张臻

    2002-01-01

    Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harvested from gluteus max of adult mongrel dogs and the cells were cultured and expanded before being labeled with DAPI (4, 6-diamidino-2-phenylindone). The labeled cells were then implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) coronary artery. Specimens were taken at 2nd, 4th, 8th week after myoblast implantation for histologic and contractile force evaluation, respectively. Results The satellite cells with fluorescence had been observed in the infarct site and also in papi-llary muscle with consistent oriented direction of host myocardium. A portion of the implanted cells had differen-tiated into muscle fibers. Two weeks after implantation, the myocardial contractile force showed no significant difference between the cell implant group and control group. At 4 and 8 week, the contractile force in the cell implant group was better than that in control group. Conclusion The skeletal muscle satellite cells, implanted into infarct myocardium by intracoronary arterial perfusion, could disseminate through the entire infarcted zone with myocardial regeneration and improve the contractile function of the infarcted myocardium.

  13. Ice-Binding Protein Derived from Glaciozyma Can Improve the Viability of Cryopreserved Mammalian Cells.

    Science.gov (United States)

    Kim, Hak Jun; Shim, Hye Eun; Lee, Jun Hyuck; Kang, Yong-Cheol; Hur, Young Baek

    2015-12-28

    Ice-binding proteins (IBPs) can inhibit ice recrystallization (IR), a major cause of cell death during cryopreservation. IBPs are hypothesized to improve cell viability after cryopreservation by alleviating the cryoinjury caused by IR. In our previous studies, we showed that supplementation of the freezing medium with the recombinant IBP of the Arctic yeast Glaciozyma sp. (designated as LeIBP) could reduce post-thaw hemolysis of human red blood cells and increase the survival of cryopreserved diatoms. Here, we showed that LeIBP could improve the viability of cryopreserved mammalian cells. Human cervical cancer cells (HeLa), mouse fibroblasts (NIH/3T3), human preosteoblasts (MC3T3-E1), Chinese hamster ovary cells (CHO-K1), and human keratinocytes (HaCaT) were evaluated. These mammalian cells were frozen in dimethyl sulfoxide (DMSO)/fetal bovine serum (FBS) solution with or without 0.1 mg/ml LeIBP at a cooling rate of -1°C/min in a -80°C freezer overnight. The minimum effective concentration (0.1 mg/ml) of LeIBP was determined, based on the viability of HeLa cells after treatment with LeIBP during cryopreservation and the IR inhibition assay results. The post-thaw viability of mammalian cells was examined. In all cases, cell viability was significantly enhanced by more than 10% by LeIBP supplementation in 5% DMSO/5% FBS: viability increased by 20% for HeLa cells, 28% for NIH/3T3 cells, 21% for MC3T3-E1, 10% for CHO-K1, and 20% for HaCaT. Furthermore, addition of LeIBP reduced the concentrations of toxic DMSO and FBS down to 5%. Therefore, we demonstrated that LeIBP can increase the viability of cryopreserved mammalian cells by inhibiting IR.

  14. Liposomal Nanomedicine with Short Chain Sphingolipids Modulate Tumor Cell Membrane Permeability Modulate Tumor Cell Membrane Permeability and Improve Chemotherapy

    NARCIS (Netherlands)

    L.R.C. Pedrosa (Lília R. Cordeiro)

    2014-01-01

    markdownabstract__Abstract__ Chapter 6 discusses the significance of the results described in this thesis and future perspectives. The main goal of the thesis was the application of SCS enriched liposomes to improve chemotherapy outcome, by enhancing drug bioavailability in target tumor cells. De

  15. Improving clinical examination in acute tibial fractures by enhancing visual cues: the case for always 'cutting back' a tibial back-slab and marking the dorsalis pedis pulse.

    Science.gov (United States)

    Thomas, Alasdair; Kimber, Cheryl; Bramwell, Donald; Jaarsma, Ruurd

    2016-08-01

    Look, feel, move is a simple and widely taught sequence to be followed when undertaking a clinical examination in orthopaedics (Maher et al., 1994; McRae, 1999; Solomon et al., 2010). The splinting of an acute tibial fracture with a posterior back-slab is also common practice; with the most commonly taught design involving covering the dorsum of the foot with bandaging (Charnley, 1950; Maher et al., 1994; McRae, 1989). We investigated the effect of the visual cues provided by exposing the dorsum of the foot and marking the dorsalis pedis pulse. We used a clinical simulation in which we compared the quality of the recorded clinical examination undertaken by 30 nurses. The nurses were randomly assigned to assess a patient with either a traditional back-slab or one in which the dorsal bandaging had been cut back and the dorsalis pedis pulse marked. We found that the quality of the recorded clinical examination was significantly better in the cut-back group. Previous studies have shown that the cut-back would not alter the effectiveness of the back-slab as a splint (Zagorski et al., 1993). We conclude that all tibial back-slabs should have the bandaging on the dorsum of the foot cut back and the location of the dorsalis pedis pulse marked. This simple adaptation will improve the subsequent clinical examinations undertaken and recorded without reducing the back-slab's effectiveness as a splint. PMID:27236718

  16. Improving clinical examination in acute tibial fractures by enhancing visual cues: the case for always 'cutting back' a tibial back-slab and marking the dorsalis pedis pulse.

    Science.gov (United States)

    Thomas, Alasdair; Kimber, Cheryl; Bramwell, Donald; Jaarsma, Ruurd

    2016-08-01

    Look, feel, move is a simple and widely taught sequence to be followed when undertaking a clinical examination in orthopaedics (Maher et al., 1994; McRae, 1999; Solomon et al., 2010). The splinting of an acute tibial fracture with a posterior back-slab is also common practice; with the most commonly taught design involving covering the dorsum of the foot with bandaging (Charnley, 1950; Maher et al., 1994; McRae, 1989). We investigated the effect of the visual cues provided by exposing the dorsum of the foot and marking the dorsalis pedis pulse. We used a clinical simulation in which we compared the quality of the recorded clinical examination undertaken by 30 nurses. The nurses were randomly assigned to assess a patient with either a traditional back-slab or one in which the dorsal bandaging had been cut back and the dorsalis pedis pulse marked. We found that the quality of the recorded clinical examination was significantly better in the cut-back group. Previous studies have shown that the cut-back would not alter the effectiveness of the back-slab as a splint (Zagorski et al., 1993). We conclude that all tibial back-slabs should have the bandaging on the dorsum of the foot cut back and the location of the dorsalis pedis pulse marked. This simple adaptation will improve the subsequent clinical examinations undertaken and recorded without reducing the back-slab's effectiveness as a splint.

  17. D-amphetamine improves attention performance in adolescent Wistar, but not in SHR rats, in a two-choice visual discrimination task.

    Science.gov (United States)

    Bizot, Jean-Charles; Cogrel, Nicolas; Massé, Fabienne; Chauvin, Virgile; Brault, Léa; David, Sabrina; Trovero, Fabrice

    2015-09-01

    The validity of spontaneous hypertensive rat (SHR) as a model of attention deficit hyperactivity disorder (ADHD) has been explored by comparing SHR with Wistar rats in a test of attention, the two-choice visual discrimination task (2-CVDT). Animals were 4-5 weeks old during the training phase of the experiment and 6-7 weeks old during the testing phase in which they were tested with D-amphetamine, a stimulant drug used for the treatment of ADHD. As compared to Wistar, SHR showed a slightly better attention performance, a slightly lower impulsivity level, and a lower general activity during the training phase, but these differences disappeared or lessened thereafter, during the testing phase. D-amphetamine (0.5, 1 mg/kg) improved attention performance in Wistar, but not in SHR, and did not modify impulsivity and activity in the two strains. In conclusion, the present study did not demonstrate that SHR represents a valid model of ADHD, since it did not show face validity regarding the behavioral symptoms of ADHD and predictive validity regarding the effect of a compound used for the treatment of ADHD. On the other hand, this study showed that the 2-CVDT may represent a suitable tool for evaluating in adolescent Wistar rats the effect on attention of compounds intended for the treatment of ADHD. PMID:26037943

  18. Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.

    Science.gov (United States)

    Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J

    2016-03-01

    Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance. PMID:26859777

  19. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-01-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  20. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    Science.gov (United States)

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  1. Visual Language in Visual Communication

    OpenAIRE

    Jia Wang

    2009-01-01

    In visual communication the design information is mainly communicated by visual language, the correct use of which is the standard of evaluation of a graphic design composition. Therefore it is necessary to understand and percept visual language properly. It will be helpful for viewers to percept the desired information from the designer as well as the significance within the work.

  2. Exogenous DNA internalisation by sperm cells is improved by combining lipofection and restriction enzyme mediated integration.

    Science.gov (United States)

    Churchil, R R; Gupta, J; Singh, A; Sharma, D

    2011-06-01

    1. Three types of exogenous DNA inserts, i.e. complete linearised pVIVO2-GFP/LacZ vector (9620 bp), the LacZ gene (5317 bp) and the GFP gene (2152 bp) were used to transfect chicken spermatozoa through simple incubation of sperm cells with insert. 2. PCR assay, Dot Blot hybridisation and Southern hybridisation showed the successful internalisation of exogenous DNA by chicken sperm cells. 3. Lipofection and Restriction Enzyme Mediated Integration (REMI) were used to improve the rate of internalisation of exogenous DNA by sperm cells. 4. Results from dot blot as well as Southern hybridisation were semi-quantified and improved exogenous DNA uptake by sperm cells through lipofection and REMI. Stronger signals were observed from hybridisation of LacZ as well as GFP specific probe with the DNA from lipofected exogenous DNA transfected sperm DNA in comparison with those transfected with nude exogenous DNA.

  3. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    International Nuclear Information System (INIS)

    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation

  4. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Barenghi, R. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Farkas, B.; Romano, I. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scaglione, S. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Brandi, F. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, 56124-Pisa (Italy)

    2014-11-01

    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation.

  5. Manipulating Light to Understand and Improve Solar Cells (494th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Eisaman, Matthew [BNL, Sustainable Energy Technologies Department

    2014-04-16

    Energy consumption around the world is projected to approximately triple by the end of the century, according to the 2005 Report from the U.S. Department of Energy's Basic Energy Sciences Workshop on Solar Energy Utilization. Much will change in those next 86 years, but for all the power the world needs—for everything from manufacturing and transportation to air conditioning and charging cell phone batteries—improved solar cells will be crucial to meet this future energy demand with renewable energy sources. At Brookhaven Lab, scientists are probing solar cells and exploring variations within the cells—variations that are so small they are measured in billionths of a meter—in order to make increasingly efficient solar cells and ultimately help reduce the overall costs of deploying solar power plants. Dr. Eisaman will discuss DOE's Sunshot Initiative, which aims to reduce the cost of solar cell-generated electricity by 2020. He will also discuss how he and collaborators at Brookhaven Lab are probing different material compositions within solar cells, measuring how efficiently they collect electrical charge, helping to develop a new class of solar cells, and improving solar-cell manufacturing processes.

  6. Improvement of a Si solar cell efficiency using pure and Fe3+ doped PVA films

    Science.gov (United States)

    Khalifa, N.; Kaouach, H.; Chtourou, R.

    2015-07-01

    One of the most important key driving the economic viability of solar cells is the high efficiency. This research focuses on the enhancement of commercial Si solar cell performance by deposing a pure and Fe3+ doped polyvinyl alcohol (PVA) layer on the top of the Si wafer of the considered cells. The use of such polymer to improve solar cells efficiency is actually a first. The authors will rely on the optical characteristics of the pure and doped PVA films including absorption and emission properties to justify the effect on Si cells. Commercial monocrystalline silicon solar cells of 15 cm2 (0.49 V/460 mA) are used in this work. Films of almost 80 μm of the ferric polymer are deposed on the cells. Films with the same thickness are characterized by UV-Vis spectroscopy and photoluminescent emission of the films is then investigated. The electrical properties of the cells with and without the organometallic layer are evaluated. It will be deduced an important improvement of all electrical parameters, including short-circuit current, open-circuit voltage, fill factor and spatially the conversion efficiency by almost 3%.

  7. A neural network model on self-organizing emergence of simple-cell receptive field with orientation selectivity in visual cortex

    Institute of Scientific and Technical Information of China (English)

    YANG; Qian(

    2001-01-01

    [1]Hubel, D. H.. Wiesel. T. N., Receptive fields of single neuron in the cat striate cortex, Journal of Physiology, 1959, 148:574-591.[2]Hubel. D. H.. Wiesel, T. N., Functional architecture macaque monkey visual cortexm, Proc. Roy. Soc. B, 1977, 198: 1-59.[3]Shou. T. D., Brain Mechanisms of Visual Information Processing (in Chinese), Shanghai: Shanghai Science-Technology and Education Press, 1997, 188-197.[4]Ferster, D., Chung, S., Wheat, H., Orientation selectivity of thalamic input to simple cells of cat visual cortex, Nature,1996, 380: 249-252.[5]Vidyasagar. T. R., Pei, X., Volgushev, M., Multiple mechanisms underlying the orientation selectivity of visual cortical neurons. TINS, 1996, 19: 272-277.[6]Artun, O. B., Shouval, H. Z., Cooper, L. N., The effect of dynamic synapses on spatiotemporal receptive fields in visual cortex, Proc. Natl. Acad. Sci. USA, 1998, 95:11999-12003.[7]Rolls, E. T.. Tovee, M. J., Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex, J.Neurophysiology, 1995,73: 713-726.[8]Olshausen. B. A.. Field, D. J., Sparse coding with an overcomplete basis set: A strategy employed by V 1 ? Vision Research,1997.37: 3311-3325.[9]Bell. A. J., Sejnoswski, T. J., The "Independent components" of natural scenes are edge filters, Vision Research, 1997, 37:3327-3338.[10]Dan, Y., Atick, J. J., Reid, R. C., Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory, Journal of Neuroscience, 1996, 16:3351-3362.[11]Field. D. J., Relations between the statistics of natural images and the response properties of cortical cells, Journal of the Optical Society of America A, 1987, 4: 2379-2394.[12]DeAngelis, G. C., Ohzawa, I., Freeman, R. D., Receptive filed dynamics in the central visual pathway, TINS, 1995,18:451-458.[13]Wang, Y. J., Qi, X. L., Chen, Y. Z., Simulations of receptive fields dynamics, TINS, 1996, 19: 385-386.

  8. BINDING TO AND RETENTION BY MUCOSAL CELLS OF THE TAMARINDUS INDICA SEED POLYSACCHARIDE: VISUAL EVALUATION BY MEANS OF INORGANIC AND ORGANIC MARKERS

    Directory of Open Access Journals (Sweden)

    P.C. Braga*, M. Dal Sasso, M. Culici

    2012-06-01

    Full Text Available The aim of this study was to investigate the possibility of using inorganic and organic markers to visualize the ability of the transparent polysaccharide (TSP polymer isolated from the endosperm of the seed kernel of Tamarindus indica, a tree that mainly grows in India and South-East Asia, to bind to human mucosal cells. A layer of human buccal cells was prepared on slides and overlaid by 0.2 ml of 0.6, 0.3, 0.15 and 0.075 % TSP solutions in phosphate buffer and then colloidal carbon black particles were deposited on the slides. The unbound colloidal carbon black particles were cleared by thoroughly washing the slides. The slides were then examined by means of Nomarski interference contrast microscopy in order to visualize the degree of surface retention of the black particles by the buccal cells. The same procedure was followed using Escherichia coli as organic markers. The clearly visible binding of black carbon particles to the cells treated with polymer revealed the presence of a thin layer of TSP covering the cells (untreated cells had no black carbon particles binding. The presence of the TSP has also been confirmed by a significant reduction in bacterial adhesiveness. Both markers made it possible to visualize the binding of the thin transparent layer of TSP and its retention, which was proportional to the degree of dilution. Using Escherichia coli it has been observed the possibility of counteracting the lock-and-key mechanism of micro-organism adhesion using the bioadhesive properties of this polymer to prevent possible contact between microorganism adhesins and complementary receptors.

  9. Using Storyboarding Techniques to Identify Design Opportunities: When Students Employ Storyboards, They Are Better Able to Understand the Complexity of a Products's Use and Visualize Areas for Improvement

    Science.gov (United States)

    Reeder, Kevin

    2005-01-01

    The movie industry heavily relies on storyboards as an effective way to visually describe the process of a movie. The storyboard visually describes how the movie flows from beginning to end, how the characters are interacting, and where transitions and/or gaps exist in the storyline. The storyboard is an effective tool in industrial design as…

  10. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries?

    OpenAIRE

    Damous, Luciana L.; Nakamuta, Juliana S.; Saturi de Carvalho, Ana ET; Carvalho, Katia Candido; Soares-Jr, José Maria; Simões, Manuel Jesus; Krieger, José Eduardo; Baracat, Edmund Chada

    2015-01-01

    Background A major concern in ovarian transplants is substantial follicle loss during the initial period of hypoxia. Adipose tissue-derived stem cells (ASCs) have been employed to improve angiogenesis when injected into ischemic tissue. This study evaluated the safety and efficacy of adipose tissue-derived stem cells (ASCs) therapy in the freshly grafted ovaries 30 days after injection. Methods Rat ASCs (rASCs) obtained from transgenic rats expressing green fluorescent protein (GFP)-(5 × 104 ...

  11. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency

    OpenAIRE

    Qiang Tu; Jia Yin; Jun Fu; Jennifer Herrmann; Yuezhong Li; Yulong Yin; Francis Stewart, A.; Rolf Müller; Youming Zhang

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and re...

  12. Low dose of corticosterone treatment with exercise increases hippocampal cell proliferation, and improves cognition

    Institute of Scientific and Technical Information of China (English)

    Suk-Yu Yau; Jada Chia-Di Lee; Benson Wui-Man Lau; Tatia M.C. Lee; Yick-Pang Ching; Siu-Wa Tang; Kwok-Fai So

    2011-01-01

    Intermediate level of stress is beneficial for brain functions, whereas extreme low level or high level of stress is deleterious. We have previously shown that chronic exposure to high doses of corticosterone (CORT) suppressed hippocampal plasticity and physical exercise in terms of running counteracted the detrimental effects of CORT treatment. We aimed to study whether a mild stress, that mimicked by a treatment with low CORT dose, improved hippocampal plasticity in terms of hippocampal cell proliferation and dendritic remodeling, and to examine whether running with CORT treatment showed an additive effect on improving hippocampal plasticity. The rats were treated with 20 mg/kg CORT for 14 days with or without running, followed by Morris water maze test or forced swim test. The hippocampal proliferating cells was labeled by intraperitoneal injection of 5-bromo-2'-deoxyuridine. The dendritic morphology was analyzed using Golgi staining method. Treatment with 20 mg/kg CORT alone yielded a higher number of hippocampal cell proliferation and significantly increased dendritic branching compared to vehicle-treated non-runners, but had no behavioral effects. In contrast, CORT treatment with running showed an additive increase in hippocampal cell proliferation and dendritic remodeling that was associated with improved spatial learning and decreased depression-like behavior; however, there was no additive improvement in behavior compared to vehicle-treated runners. These findings suggest that mild stress does not always cause detrimental effect on the brain, and combining mild stress with running could promote hippocampal plasticity via inducing cell proliferation and dendritic remodeling.

  13. Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Thomsen, Preben Dybdahl; Betts, Dean H.

    2009-01-01

      BACKGROUND AIMS: A robust methodology for the isolation of cord blood-derived multipotent mesenchymal stromal cells (CB-MSCs) from fresh umbilical cord blood has not been reported in any species. The objective of this study was to improve the isolation procedure for equine CB-MSCs. METHODS: Pre......Cyte-EQ medium is superior to Ficoll-Paque PREMIUM density medium for the isolation of putative equine CB MSC and that MSC-qualified FBS may improve the isolation efficiency....

  14. Closed-Cell Aluminum Foam of Improved Sound Absorption Ability: Manufacture and Properties

    OpenAIRE

    Alexandra Byakova; Svyatoslav Gnyloskurenko; Yuriy Bezimyanniy; Takashi Nakamura

    2014-01-01

    The paper presents a new method for the production of the closed-cell Al foams of improved sound absorbing ability. Final heat treatment procedure including heating below the solidus temperature followed by water quenching is proposed as an alternative method to machining, which is used commonly for improvement of the sound absorption coefficient. Several kinds of foams based on AlZnMg-alloys comprising brittle eutectic domains of interdendritic redundant phase have been produced by the Alpor...

  15. Spatial Control of Cell-Nanosurface Interactions by Tantalum Oxide Nanodots for Improved Implant Geometry.

    Science.gov (United States)

    Dhawan, Udesh; Pan, Hsu An; Lee, Chia Hui; Chu, Ying Hao; Huang, Guewha Steven; Lin, Yan Ren; Chen, Wen Liang

    2016-01-01

    Nanotopological cues can be exploited to understand the nature of interactions between cells and their microenvironment to generate superior implant geometries. Nanosurface parameters which modulate the cell behavior and characteristics such as focal adhesions, cell morphology are not clearly understood. Here, we studied the role of different nanotopographic dimensions in modulating the cell behavior, characteristics and ultimately the cell fate and accordingly, a methodology to improve implant surface geometry is proposed. Tantalum oxide nanodots of 50, 100nm dot diameter with an inter-dot spacing of 20, 70nm and heights 40, 100nm respectively, were engineered on Silicon substrates. MG63 cells were cultured for 72 hours and the modulation in morphology, focal adhesions, cell extensible area, cell viability, transcription factors and genes responsible for bone protein secretion as a function of the nanodot diameter, inter-dot distance and nanodot height were evaluated. Nanodots of 50nm diameter with a 20nm inter-dot spacing and 40nm height enhanced cell spreading area by 40%, promoted cell viability by 70% and upregulated transcription factors and genes twice as much, as compared to the 100nm nanodots with 70nm inter-dot spacing and 100nm height. Favorable interactions between cells and all dimensions of 50nm nanodot diameter were observed, determined with Scanning electron microscopy and Immunofluorescence staining. Nanodot height played a vital role in controlling the cell fate. Dimensions of nanodot features which triggered a transition in cell characteristics or behavior was also defined through statistical analysis. The findings of this study provide insights in the parameters of nanotopographic features which can vitally control the cell fate and should therefore be taken into account when designing implant geometries. PMID:27362432

  16. Dyslexia: the Role of Vision and Visual Attention.

    Science.gov (United States)

    Stein, John

    2014-01-01

    Dyslexia is more than just difficulty with translating letters into sounds. Many dyslexics have problems with clearly seeing letters and their order. These difficulties may be caused by abnormal development of their visual "magnocellular" (M) nerve cells; these mediate the ability to rapidly identify letters and their order because they control visual guidance of attention and of eye fixations. Evidence for M cell impairment has been demonstrated at all levels of the visual system: in the retina, in the lateral geniculate nucleus, in the primary visual cortex and throughout the dorsal visuomotor "where" pathway forward from the visual cortex to the posterior parietal and prefrontal cortices. This abnormality destabilises visual perception; hence, its severity in individuals correlates with their reading deficit. Treatments that facilitate M function, such as viewing text through yellow or blue filters, can greatly increase reading progress in children with visual reading problems. M weakness may be caused by genetic vulnerability, which can disturb orderly migration of cortical neurones during development or possibly reduce uptake of omega-3 fatty acids, which are usually obtained from fish oils in the diet. For example, M cell membranes require replenishment of the omega-3 docosahexaenoic acid to maintain their rapid responses. Hence, supplementing some dyslexics' diets with DHA can greatly improve their M function and their reading. PMID:25346883

  17. Perceptual grouping enhances visual plasticity

    OpenAIRE

    T. Mastropasqua; Turatto, M.

    2013-01-01

    Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer's discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidat...

  18. Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles.

    Science.gov (United States)

    Liu, Kong; Qu, Shengchun; Zhang, Xinhui; Tan, Furui; Wang, Zhanguo

    2013-02-18

    Silicon nanowire (SiNW) arrays show an excellent light-trapping characteristic and high mobility for carriers. Surface plasmon resonance of silver nanoparticles (AgNPs) can be used to increase light scattering and absorption in solar cells. We fabricated a new kind of SiNW/organic hybrid solar cell by introducing AgNPs. Reflection spectra confirm the improved light scattering of AgNP-decorated SiNW arrays. A double-junction tandem structure was designed to manufacture our hybrid cells. Both short-circuit current and external quantum efficiency measurements show an enhancement in optical absorption of organic layer, especially at lower wavelengths.

  19. Fibronectin-Alginate microcapsules improve cell viability and protein secretion of encapsulated Factor IX-engineered human mesenchymal stromal cells.

    Science.gov (United States)

    Sayyar, Bahareh; Dodd, Megan; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna; Hortelano, Gonzalo

    2015-01-01

    Continuous delivery of proteins by engineered cells encapsu-lated in biocompatible polymeric microcapsules is of considerable therapeutic potential. However, this technology has not lived up to expectations due to inadequate cell--matrix interactions and subsequent cell death. In this study we hypoth-esize that the presence of fibronectin in an alginate matrix may enhance the viability and functionality of encapsulated human cord blood-derived mesenchymal stromal cells (MSCs) expressing the human Factor IX (FIX) gene. MSCs were encapsulated in alginate-PLL microcapsules containing 10, 100, or 500 μg/ml fibronectin to ameliorate cell survival. MSCs in microcapsules with 100 and 500 μg/ml fibronectin demonstrated improved cell viability and proliferation and higher FIX secretion compared to MSCs in non-supplemented microcapsules. In contrast, 10 μg/ml fibronectin did not significantly affect the viability and protein secretion from the encapsulated cells. Differentiation studies demonstrated osteogenic (but not chondrogenic or adipogenic) differentiation capability and efficient FIX secretion of the enclosed MSCs in the fibronectin-alginate suspension culture. Thus, the use of recombinant MSCs encapsulated in fibronectin-alginate microcapsules in basal or osteogenic cultures may be of practical use in the treatment of hemophilia B. PMID:24564349

  20. SCF increases in utero-labeled stem cells migration and improves wound healing.

    Science.gov (United States)

    Zgheib, Carlos; Xu, Junwang; Mallette, Andrew C; Caskey, Robert C; Zhang, Liping; Hu, Junyi; Liechty, Kenneth W

    2015-01-01

    Diabetic skin wounds lack the ability to heal properly and constitute a major and significant complication of diabetes. Nontraumatic lower extremity amputations are the number one complication of diabetic skin wounds. The complexity of their pathophysiology requires an intervention at many levels to enhance healing and wound closure. Stem cells are a promising treatment for diabetic skin wounds as they have the ability to correct abnormal healing. Stem cell factor (SCF), a chemokine expressed in the skin, can induce stem cells migration, however the role of SCF in diabetic skin wound healing is still unknown. We hypothesize that SCF would correct the impairment and promote the healing of diabetic skin wounds. Our results show that SCF improved wound closure in diabetic mice and increased HIF-1α and vascular endothelial growth factor (VEGF) expression levels in these wounds. SCF treatment also enhanced the migration of red fluorescent protein (RFP)-labeled skin stem cells via in utero intra-amniotic injection of lenti-RFP at E8. Interestingly these RFP+ cells are present in the epidermis, stain negative for K15, and appear to be distinct from the already known hair follicle stem cells. These results demonstrate that SCF improves diabetic wound healing in part by increasing the recruitment of a unique stem cell population present in the skin.

  1. Improved method and apparatus for electrostatically sorting biological cells. [DOE patent application

    Science.gov (United States)

    Merrill, J.T.

    An improved method of sorting biological cells in a conventional cell sorter apparatus includes generating a fluid jet containing cells to be sorted, measuring the distance between the centers of adjacent droplets in a zone thereof defined at the point where the fluid jet separates into descrete droplets, setting the distance between the center of a droplet in said separation zone and the position along said fluid jet at which the cell is optically sensed for specific characteristics to be an integral multiple of said center-to-center distance, and disabling a charger from electrically charging a specific droplet if a cell is detected by the optical sensor in a position wherein it will be in the neck area between droplets during droplet formation rather than within a predetermined distance from the droplet center.

  2. A METHOD OF IMPROVING THE PRODUCTION OF BIOMASS OR A DESIRED PRODUCT FROM A CELL

    DEFF Research Database (Denmark)

    1998-01-01

    the F¿1? ATPase or portions thereof is expressed, may be selected from prokaryotes and eukaryotes. In particular the DNA encoding F¿1? or a portion thereof may be derived from bacteria and eukaryotic microorganisms such as yeasts, other fungi and cell lines of higher organisms and be selected from......The production of biomass or a desired product from a cell can be improved by inducing conversion of ATP to ADP without primary effects on other cellular metabolites or functions which is achieved by expressing an uncoupled ATPase activity in said cell and incubating the cell with a suitable...... substrate to produce said biomass or product. This is conveniently done by expressing in said cell the soluble part (F¿1?) of the membrane bound (F¿0?F¿1? type) H?+¿-ATPase or a portion of F¿1? exhibiting ATPase activity. The organism from which the F¿1? ATPase or portions thereof is derived, or in which...

  3. Improved carrier extraction of solar cell using transparent current spreading layer

    International Nuclear Information System (INIS)

    An as-deposited ultra thin metal film was fine-etched to a mesh with average optical transmittance of 70.83%. When this metal mesh was applied to the fabrication of solar cell, it was transparent and conductive to be used as a current-spreading layer. Such a current-spreading layer was good for the carrier extraction of illuminated solar cell. Then the non-uniform two-dimensional current flow on the resistive central emitter region of solar cell can be reduced efficiently by this metal mesh. The metal mesh integrated solar cell can result in improvements of 26.15% for short-circuit current and 30% for the conversion efficiency, respectively. - Highlights: • An as-deposited thin metal thin film is fine-etched to a transparent mesh. • A transparent metal mesh acts as a current-spreading layer for solar cells. • A transparent metal mesh allows photons going through and carriers conducting

  4. Mining and visualization of microarray and metabolomic data reveal extensive cell wall remodeling during winter hardening in Sitka spruce (Picea sitchensis

    Directory of Open Access Journals (Sweden)

    Ruth eGrene

    2012-10-01

    Full Text Available Microarray gene expression profiling is a powerful technique to understand complex developmental processes, but making biologically meaningful inferences from such studies has always been challenging. We previously reported a microarray study of the freezing acclimation period in Sitka spruce (Picea sitchensis in which a large number of candidate genes for climatic adaptation were identified. In the current paper, we apply additional systems biology tools to these data to further probe changes in the levels of genes and metabolites and activities of associated pathways that regulate this complex developmental transition. One aspect of this adaptive process that is not well understood is the role of the cell wall. Our data suggest coordinated metabolic and signaling responses leading to cell wall remodeling. Co-expression of genes encoding proteins associated with biosynthesis of structural and non-structural cell wall carbohydrates was observed, which may be regulated by ethylene signaling components. At the same time, numerous genes, whose products are putatively localized to the endomembrane system and involved in both the synthesis and trafficking of cell wall carbohydrates, were up-regulated. Taken together, these results suggest a link between ethylene signaling and biosynthesis, and targeting of cell wall related gene products during the period of winter hardening. ALPINE, an in-house plugin for the Cytoscape visualization environment that utilizes the existing GeneMANIA and Mosaic plugins, together with the use of visualization tools, provided images of proposed signaling processes that became active over the time course of winter hardening, particularly at later time points in the process. The resulting visualizations have the potential to reveal novel, hypothesis-generating, gene association patterns in the context of targeted subcellular location.

  5. Platinum nanoparticle interlayer promoted improvement in photovoltaic performance of silicon/PEDOT:PSS hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xiao-Qing; Liu, L.F., E-mail: lifeng.liu@inl.int

    2015-01-15

    Inorganic–organic hybrid solar cells have attracted considerable interest in recent years for their low production cost, good mechanical flexibility and ease of processing of polymer films over a large area. Particularly, silicon/conducting polymer hybrid solar cells are extensively investigated and widely believed to be a low-cost alternative to the crystalline silicon solar cells. However, the power conversion efficiency of silicon/conducting polymer solar cells remains low in case hydrogen-terminated silicon is used. In this paper, we report that by introducing a platinum nanoparticle interlayer between the hydrogen-terminated silicon and the conducting polymer poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonate), namely PEDOT:PSS, the power conversion efficiency of the resulting Si/PEDOT:PSS hybrid solar cells can be improved by a factor of 2–3. The possible mechanism responsible for the improvement has been investigated using different techniques including impedance spectroscopy, Mott–Schottky analysis and intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). The results show that with a platinum nanoparticle interlayer, both the series resistance and charge transport/transfer resistance of the Si/PEDOT:PSS hybrid solar cells are reduced leading to an increased short circuit current density, and the built-in voltage at the space charge region is raised facilitating electron-hole separation. Moreover, the lifetime of charge carriers in the Si/PEDOT:PSS solar cells is extended, namely, the recombination is effectively suppressed which also contributes to the improvement of photovoltaic performance. - Graphical abstract: A platinum nanoparticle interlayer electrolessly deposited between the n-Si:H and PEDOT:PSS can markedly improve the photovoltaic performance of the resulting Si/PEDOT:PSS hybrid solar cells. - Highlights: • A Pt nanoparticle layer is introduced between the Si and PEDOT:PSS in hybrid cells. • The Pt interlayer

  6. A neural network model on self-organizing emergence of simple-cell receptive field with orientation selectivity in visual cortex

    Institute of Scientific and Technical Information of China (English)

    杨谦; 齐翔林; 汪云九

    2001-01-01

    In order to probe into the self-organizing emergence of simple cell orientation selectivity,we tried to construct a neural network model that consists of LGN neurons and simple cells in visual cortex and obeys the Hebbian learning rule. We investigated the neural coding and representation of simple cells to a natural image by means of this model. The results show that the structures of their receptive fields are determined by the preferred orientation selectivity of simple cells.However, they are also decided by the emergence of self-organization in the unsupervision learning process. This kind of orientation selectivity results from dynamic self-organization based on the interactions between LGN and cortex.

  7. Improving chemotherapy for patients with advanced non-small cell lung cancer

    DEFF Research Database (Denmark)

    von Plessen, Christian

    2011-01-01

    . MATERIALS AND METHODS: The thesis combines methods from different knowledge domains. In a randomised trial, we compared three with six courses of platinum-based chemotherapy for advanced NSCLC. In a quality improvement study, we used logistic improvement tools, qualitative and quantitative patient and staff....... The general section of the thesis describes approaches to system-wide improvements and introduces a quality improvement matrix. CONCLUSION: We conclude from our randomised trial and related research that chemotherapy beyond three courses is not beneficial for patients with advanced NSCLC. The report from......INTRODUCTION: Lung cancer is the third most common mortal disease in industrialised countries and the prognosis has been slow to improve. The largest subgroup has locally advanced or metastatic non-small cell lung cancer (NSCLC). Unfortunately, these patients can usually not be cured and the main...

  8. Surface modification of hydrophobic polymers for improvement of endothelial cell-surface interactions

    NARCIS (Netherlands)

    Dekker, A.; Reitsma, K.; Beugeling, T.; Bantjes, A.; Feijen, J.; Kirkpatrick, C.J.; Aken, van W.G.

    1992-01-01

    The aim of this study is to improve the interaction of endothelial cells with polymers used in vascular prostheses. Polytetrafluoroethylene (PTFE; Teflon) films were treated by means of nitrogen and oxygen plasmas. Depending on the plasma exposure time, modified PTFE surfaces showed water-contact an

  9. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    Energy Technology Data Exchange (ETDEWEB)

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2016-05-17

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  10. Improved quality of optical coherence tomography imaging of basal cell carcinomas using speckle reduction

    DEFF Research Database (Denmark)

    Mogensen, Mette; Jørgensen, Thomas Martini; Thrane, Lars;

    2010-01-01

    suggests a method for improving OCT image quality for skin cancer imaging. EXPERIMENTAL DESIGN: OCT is an optical imaging method analogous to ultrasound. Two basal cell carcinomas (BCC) were imaged using an OCT speckle reduction technique (SR-OCT) based on repeated scanning by altering the distance between...

  11. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization

    NARCIS (Netherlands)

    Westenbrink, B. Daan; Lipsic, Erik; van der Meer, Peter; van der Harst, Pirn; Oeseburg, Hisko; Sarvaas, Gideon J. Du Marchie; Koster, Johan; Voors, Adriaan A.; van Veldhuisen, Dirk J.; van Gilst, Wiek H.; Schoemaker, Regien G.

    2007-01-01

    Aims Erythropoietin (EPO) improves cardiac function and induces neovascutarization in chronic heart failure (CHF), although the exact mechanism has not been elucidated. We studied the effects of EPO on homing and incorporation of endothelial progenitor cells (EPC) into the myocardial microvasculatur

  12. Improvement of pentathiophene/fullerene planar heterojunction photovoltaic cells by improving the organic films morphology through the anode buffer bilayer

    Science.gov (United States)

    El Jouad, Zouhair; Cattin, Linda; Martinez, Francisco; Neculqueo, Gloria; Louarn, Guy; Addou, Mohammed; Predeep, Padmanabhan; Manuvel, Jayan; Bernède, Jean-Christian

    2016-05-01

    Organic photovoltaic cells (OPVCs) are based on a heterojunction electron donor (ED)/electron acceptor (EA). In the present work, the electron donor which is also the absorber of light is pentathiophene. The typical cells were ITO/HTL/pentathiophene/fullerene/Alq3/Al with HTL (hole transport layer) = MoO3, CuI, MoO3/CuI. After optimisation of the pentathiophene thickness, 70 nm, the highest efficiency, 0.81%, is obtained with the bilayer MoO3/CuI as HTL. In order to understand these results the pentathiophene films deposited onto the different HTLs were characterized by scanning electron microscopy, atomic force microscopy, X-rays diffraction, optical absorption and electrical characterization. It is shown that CuI improves the conductivity of the pentathiophene layer through the modification of the film structure, while MoO3 decreases the leakage current. Using the bilayer MoO3/CuI allows cumulating the advantages of each layer. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  13. Metallization improvement on fabrication of interdigitated backside and double sided buried contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiun-Hua; Cotter, Jeffrey E. [Center of Excellence for Advanced Silicon Photovoltaics and Photonics, University of New South Wales, Sydney NSW 2052 (Australia)

    2005-04-01

    Metallization based on electroless metal plating of nickel and copper is a simple, cost-effective process used in the fabrication of Buried Contact silicon solar cells. Whereas the electroless Ni-Cu metallization scheme works well for metal deposition on early Buried Contact solar cells, in which deposition was required only on phosphorus diffused contact regions, more care is required for advanced Buried Contact solar cell designs that require simultaneous deposition on to both phosphorus and boron diffused contact regions. In this paper, we examine two key issues related to the metallization in these solar cells. Firstly we demonstrate an improved buffered hydrofluoric acid etch process for simultaneous removal of borosilicate and borophosphosilicate glasses from the contact regions prior to electroless deposition of nickel with good etch selectivity against silicon dioxide masking films. Secondly, we demonstrate an improved process for nucleation of the nickel layer on both phosphorus and boron diffused contact areas based on immersion palladium chloride activation of the plating surfaces. N-type double-sided buried contact solar cells metallized by processing introduced in this study show improvement on absolute efficiency of more than 3%.

  14. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan, E-mail: quan_haotj@126.com

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  15. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    International Nuclear Information System (INIS)

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer

  16. Immunohistochemical visualization of insulin receptors in formalin-fixed bovine ovaries post mortem and in granulosa cells collected in vivo.

    Science.gov (United States)

    Bossaert, P; De Cock, H; Leroy, J L M R; De Campeneere, S; Bols, P E J; Filliers, M; Opsomer, G

    2010-06-01

    Insulin is crucial for granulosa cell (GC) function, follicle growth and ovulation in cows; low insulin levels increase the risk for anoestrus. Apart from insulin concentration, alterations in the insulin receptor (IR) density on GC may affect follicular growth and steroidogenesis. Data about the IR protein distribution in the bovine follicle are scarce. Therefore, we aimed to develop a quantifiable staining method for IR protein on histological sections of bovine follicles in different developmental stages, and to apply this technique on GC obtained in living cows. In a first experiment, bovine ovaries were collected post mortem, formalin fixed, routinely processed, and stained with monoclonal murine IR-antibodies, peroxidase-labeled goat anti-mouse antibodies, and substrate chromogen. Based on their diameter, follicles were morphologically classified as small antral (SAF; n = 141), dominant (DF; n=28) or subordinate (SF; n=8); DF and SF were further classified as healthy or atretic based on the ratio of estrogen and progesterone concentrations in their follicular fluid. Using specialized software, the proportion of pixels displaying a positive staining signal was computed as a measure for IR density in three selected follicular regions: GC, theca (T) and stroma (STR). Results were analyzed in an ANOVA model with follicle type, region and health status as fixed factors. In SAF, DF, and SF, IR density was notably higher in GC than T or STR; the latter two displayed very low or no IR presence. The IR density in SAF was stronger than in DF and tended to be stronger than in SF. Staining intensity was not altered in atretic compared to healthy follicles. In corpus luteum, cumulus-oocyte complexes and pre-antral follicles, no IR could be detected. In a second experiment, GC samples were collected from 20 live cows on 30 and 70 d post partum by transvaginal follicular fluid aspiration, projected on glass slides, and stained using the protocol described above. Most

  17. Differentiated cells derived from fetal neural stem cells improve motor deficits in a rat model of Parkinson’s disease

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Hao Song; Aifang Shen; Chao Chen; Yanming Liu; Yabing Dong; Fabin Han 

    2015-01-01

    Objective:Parkinson’s disease (PD), which is one of the most common neuro‐degenerative disorders, is characterized by the loss of dopamine (DA) neurons in the substantia nigra in the midbrain. Experimental and clinical studies have shown that fetal neural stem cells (NSCs) have therapeutic effects in neurological disorders. The aim of this study was to examine whether cells that were differentiated from NSCs had therapeutic effects in a rat model of PD. Methods:NSCs were isolated from 14‐week‐old embryos and induced to differentiate into neurons, DA neurons, and glial cells, and these cells were characterized by their expression of the following markers:βⅢ‐tubulin and microtubule‐associated protein 2 (neurons), tyrosine hydroxylase (DA neurons), and glial fibrillary acidic protein (glial cells). After a 6‐hydroxydopamine (6‐OHDA)‐lesioned rat model of PD was generated, the differentiated cells were transplanted into the striata of the 6‐OHDA‐lesioned PD rats. Results:The motor behaviors of the PD rats were assessed by the number of apomorphine‐induced rotation turns. The results showed that the NSCs differentiated in vitro into neurons and DA neurons with high efficiencies. After transplantation into the striata of the PD rats, the differentiated cells significantly improved the motor deficits of the transplanted PD rats compared to those of the control nontransplanted PD rats by decreasing the apomorphine‐induced turn cycles as early as 4 weeks after transplantation. Immunofluorescence analyses showed that the differentiated DA neurons survived more than 16 weeks. Conclusions:Our results showed that cells that were differentiated from NSCs had therapeutic effects in a rat PD model, which suggests that differentiated cells may be an effective treatment for patients with PD.

  18. Closed-Cell Aluminum Foam of Improved Sound Absorption Ability: Manufacture and Properties

    Directory of Open Access Journals (Sweden)

    Alexandra Byakova

    2014-08-01

    Full Text Available The paper presents a new method for the production of the closed-cell Al foams of improved sound absorbing ability. Final heat treatment procedure including heating below the solidus temperature followed by water quenching is proposed as an alternative method to machining, which is used commonly for improvement of the sound absorption coefficient. Several kinds of foams based on AlZnMg-alloys comprising brittle eutectic domains of interdendritic redundant phase have been produced by the Alporas-like melting process to realize the method above. Opening of the closed cell structure required for ensuring high sound absorption ability has been achieved by cracking the walls between neighboring cells, making them gas permeable. They ultimately looked like Helmholtz micro-perforated resonators. Processing parameters and other variables that are favorable both for foaming regime and for final heat treatment are discussed and specified.

  19. Improving the Efficiency of Organic Solar Cells upon Addition of Polyvinylpyridine

    Directory of Open Access Journals (Sweden)

    Rita Rodrigues

    2014-12-01

    Full Text Available We report on the efficiency improvement of organic solar cells (OPVs based on the low energy gap polyfluorene derivative, APFO-3, and the soluble C60 fullerene PCBM, upon addition of a residual amount of poly (4-vinylpyridine (PVP. We find that the addition of 1% by weight of PVP with respect to the APFO-3 content leads to an increase of efficiency from 2.4% to 2.9%. Modifications in the phase separation details of the active layer were investigated as a possible origin of the efficiency increase. At high concentrations of PVP, the blend morphology is radically altered as observed by Atomic Force Microscopy. Although the use of low molecular weight additives is a routine method to improve OPVs efficiency, this report shows that inert polymers, in terms of optical and charge transport properties, may also improve the performance of polymer-based solar cells.

  20. Copper sulfate improves pullulan production by bioconversion using whole cells of Aureobasidium pullulans as the catalyst.

    Science.gov (United States)

    Wang, Dahui; Ju, Xiaomin; Zhang, Gaochuan; Wang, Donghua; Wei, Gongyuan

    2016-10-01

    The effects of mineral salts on pullulan production by bioconversion using whole cells of Aureobasidium pullulans CCTCC M 2012259 as the catalyst were investigated. Copper sulfate (CuSO4) improved pullulan production by 36.2% and 42.3% when added at the optimum concentration of 0.2mg/L to the bioconversion broth or seed medium, respectively, as compared with controls without CuSO4 addition. Pullulan production was further enhanced when CuSO4 was added to both seed medium and bioconversion broth simultaneously. In order to probe the mechanism of CuSO4 improvement, cell viability, membrane integrity, intracellular adenosine triphosphate (ATP) levels and the activities of key enzymes involved in pullulan biosynthesis were determined. As a result, CuSO4 increased the activities of key biosynthetic enzymes, maintained intracellular ATP at a higher level, and accelerated the rate of pullulan secretion, all of which contributed to improved pullulan production by bioconversion.