WorldWideScience

Sample records for cells facilitate neurite

  1. Prostaglandin E2 facilitates neurite outgrowth in a motor neuron-like cell line, NSC-34

    Hiroshi Nango

    2017-10-01

    Full Text Available Prostaglandin E2 (PGE2 exerts various biological effects by binding to E-prostanoid receptors (EP1-4. Although recent studies have shown that PGE2 induces cell differentiation in some neuronal cells such as mouse DRG neurons and sensory neuron-like ND7/23 cells, it is unclear whether PGE2 plays a role in differentiation of motor neurons. In the present study, we investigated the mechanism of PGE2-induced differentiation of motor neurons using NSC-34, a mouse motor neuron-like cell line. Exposure of undifferentiated NSC-34 cells to PGE2 and butaprost, an EP2-selective agonist, resulted in a reduction of MTT reduction activity without increase the number of propidium iodide-positive cells and in an increase in the number of neurite-bearing cells. Sulprostone, an EP1/3 agonist, also significantly lowered MTT reduction activity by 20%; however, no increase in the number of neurite-bearing cells was observed within the concentration range tested. PGE2-induced neurite outgrowth was attenuated significantly in the presence of PF-0441848, an EP2-selective antagonist. Treatment of these cells with dibutyryl-cAMP increased the number of neurite-bearing cells with no effect on cell proliferation. These results suggest that PGE2 promotes neurite outgrowth and suppresses cell proliferation by activating the EP2 subtype, and that the cAMP-signaling pathway is involved in PGE2-induced differentiation of NSC-34 cells. Keywords: Prostaglandin E2, E-prostanoid receptors, Motor neuron, Neurite outgrowth, cAMP

  2. Bifenthrin inhibits neurite outgrowth in differentiating PC12 cells.

    Tran, Van; Hoffman, Natalie; Mofunanaya, Adaobi; Pryor, Stephen C; Ojugbele, Olutosin; McLaughlin, Ashlea; Gibson, Lydia; Bonventre, Josephine A; Flynn, Katherine; Weeks, Benjamin S

    2006-02-01

    Bifenthrin is a third generation member of the synthetic pyrethroid family of insecticides. As a new pesticide within a relatively new class of pesticides, bifenthrin is considered relatively safe. Here, we used the PC12 neuronal cell line to examine the effect of bifenthrin on the formation of neurites and the potential developmental neurotoxicity of this pesticide. PC12 cells were exposed to varying concentrations of technical grade bifenthrin or Ortho Home Defense. Cell viability was determined using the AlmarBlue Toxicity Assay. Nontoxic concentrations of these chemicals were concomitantly with nerve growth factor and neurite outgrowth was assessed. Ortho Home Defense preparation reduced PC12 cell viability by approximately 50% and 70% at dilutions that correlate to bifenthrin concentrations of 10(-5) M and 10(-4) M, respectively. In contrast, technical grade bifenthrin, was not toxic to PC12 cells at 10(-3) M, which was the highest concentration tested that was soluble. At "nontoxic" concentrations of 10(-7) M and 10(-6) M, the Ortho Home Defense inhibited nerve growth factor-mediated neurite outgrowth by 30% and 55% respectively. Furthermore the nontoxic concentrations of technical grade bifenthrin of 10(-6) M and 10(-3) M inhibited neurite outgrowth by approximately 35% and 75% respectively. These data suggest that the toxicity of the Ortho Home Defense preparation was due to the "inert" additives in the preparation and not the bifenthrin itself. Further, these data suggest that, even in the absence of overt toxicity, bifenthrin may have deleterious effects to developing nervous system.

  3. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    Chen, Chih-Hao [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Neurosurgery, Department of Surgery, Kaohsiung Veterans General Hospital, Taiwan, ROC (China); Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Kuo, Shyh Ming [Department of Biomedical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Guei-Sheung [Centre for Eye Research Australia, University of Melbourne (Australia); Chen, Wan-Nan U. [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China); Chuang, Chin-Wen [Department of Electrical Engineering, I-Shou University, Taiwan, ROC (China); Liu, Li-Feng, E-mail: liulf@isu.edu.tw [Department of Biological Science and Technology, I-Shou University, Taiwan, ROC (China)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  4. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    Chen, Chih-Hao; Kuo, Shyh Ming; Liu, Guei-Sheung; Chen, Wan-Nan U.; Chuang, Chin-Wen; Liu, Li-Feng

    2012-01-01

    Highlights: ► Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. ► Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. ► 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 μm porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  5. Chimeric ZHHH neuroglobin acts as a cell membrane-penetrating inducer of neurite outgrowth.

    Takahashi, Nozomu; Onozuka, Wataru; Watanabe, Seiji; Wakasugi, Keisuke

    2017-09-01

    Neuroglobin (Ngb) is a heme protein expressed in the vertebrate brain. We previously engineered a chimeric Ngb protein, in which module M1 of human Ngb is replaced by that of zebrafish Ngb, and showed that the chimeric ZHHH Ngb has a cell membrane-penetrating activity similar to that of zebrafish Ngb and also rescues cells from death caused by hypoxia/reoxygenation as does human Ngb. Recently, it was reported that overexpression of mammalian Ngb in neuronal cells induces neurite outgrowth. In this study, we performed neurite outgrowth assays of chimeric Ngb using rat pheochromocytoma PC12 cells. Addition of chimeric Ngb, but not human or zebrafish Ngb, exogenously to the cell medium induces neurite outgrowth. On the other hand, the K7A/K9Q chimeric Ngb double mutant, which cannot translocate into cells, did not induce neurite outgrowth, suggesting that the cell membrane-penetrating activity of the chimeric Ngb is crucial for its neurite outgrowth-promoting activity. We also prepared several site-directed chimeric Ngb mutants and demonstrated that residues crucial for neurite outgrowth-inducing activity of the chimeric Ngb are not exactly the same as those for its neuroprotective activity.

  6. Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin

    Hansen, S M; Berezin, V; Bock, E

    2008-01-01

    Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact with the surro......Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact...... extracellular guidance cues to intracellular events and thereby regulating neurite outgrowth. In this review, we focus on two CAMs, the neural cell adhesion molecule (NCAM) and N-cadherin, and their ability to mediate signaling associated with a neurite outgrowth response. In particular, we will focus on direct...

  7. Bifenthrin causes neurite retraction in the absence of cell death: a model for pesticide associated neurodegeneration.

    Nandi, Avishek; Chandil, Daljit; Lechesal, Rethabile; Pryor, Stephen C; McLaughlin, Ashlea; Bonventre, Josephine A; Flynnx, Katherine; Weeks, Benjamin S

    2006-05-01

    Bifenthrin is a synthetic pyrethroid insecticide derivative of naturally occurring pyrethrins from chrysanthemum flowers. Bifenthrin is considered relatively safe and therefore incorporated as the active ingredient in preparations sold over the counter for household use. Recent studies have raised concern that chronic exposure to pesticides in the home setting may increase the risk for neurodegenerative diseases. To address this concer, in the present study, bifenthrin is added to pre-differentiated PC12 and effect of bifenthrin on the retraction of existing neurites is observed a model for neurodegeneration. PC12 cells were differentiated with nerve growth factor for twenty-four hours and then treated with what was determined to be a sublethal dose of bifenthrin for up to an additional 48 hours. The percent of cells with neurites was assessed at various times before and after nerve growth factor treatment. Bifenthrin toxicity was determined using trypan blue exclusion. Bifenthrin was not toxic to PC12 cells at concentrations ranging from 1 x 10(-10) M to 1 x 10(-4) M. Twenty-four hours after nerve growth factor treatment, a maximum percent of cells had formed neurites and with a treatment of 1 x 10(-5) M bifenthrin, approximately 80% of these neurites retracted in within 12 additional hours and almost all neurites had retracted within 48 hours. Trypan exclusion showed that these cells were viable. These data show that bifenthrin can stimulate the retraction of neurites in the absence of frank toxicity.

  8. DA-9801 promotes neurite outgrowth via ERK1/2-CREB pathway in PC12 cells.

    Won, Jong Hoon; Ahn, Kyong Hoon; Back, Moon Jung; Ha, Hae Chan; Jang, Ji Min; Kim, Ha Hyung; Choi, Sang-Zin; Son, Miwon; Kim, Dae Kyong

    2015-01-01

    In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)1/2-cAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 µg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.

  9. Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture

    Jingyu Jin

    2018-01-01

    Full Text Available As one major component of extracellular matrix (ECM in the central nervous system, chondroitin sulfate proteoglycans (CSPGs have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite outgrowth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growth remains poorly understood. Using cerebellar granule neuron (CGN culture, in this study, we evaluated the effects of different concentrations of both immobilized and soluble CSPGs on neuronal growth, including cell adhesion, spreading and neurite growth. Neurite length decreased while CSPGs concentration arised, meanwhile, a decrease in cell density accompanied by an increase in cell aggregates formation was observed. Soluble CSPGs also showed an inhibition on neurite outgrowth, but it required a higher concentration to induce cell aggregates formation than coated CSPGs. We also found that growth cone size was significantly reduced on CSPGs and neuronal cell spreading was restrained by CSPGs, attributing to an inhibition on lamellipodial extension. The effect of CSPGs on neuron adhesion was further evidenced by interference reflection microscopy (IRM which directly demonstrated that both CGNs and cerebral cortical neurons were more loosely adherent to a CSPG substrate. These data demonstrate that CSPGs have an effect on cell adhesion and spreading in addition to neurite outgrowth.

  10. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of); Jang, Deok-Jin [Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711 (Korea, Republic of); Lee, Jin-A, E-mail: leeja@hnu.kr [Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811 (Korea, Republic of)

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  11. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-01-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival

  12. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer

    Zhu, Bo; Luo, Shyh-Chyang; Zhao, Haichao; Lin, Hsing-An; Sekine, Jun; Nakao, Aiko; Chen, Chi; Yamashita, Yoshiro; Yu, Hsiao-Hua

    2014-07-01

    Although electrically stimulated neurite outgrowth on bioelectronic devices is a promising means of nerve regeneration, immunogenic scar formation can insulate electrodes from targeted cells and tissues, thereby reducing the lifetime of the device. Ideally, an electrode material capable of electrically interfacing with neurons selectively and efficiently would be integrated without being recognized by the immune system and minimize its response. Here we develop a cell membrane-mimicking conducting polymer possessing several attractive features. This polymer displays high resistance towards nonspecific enzyme/cell binding and recognizes targeted cells specifically to allow intimate electrical communication over long periods of time. Its low electrical impedance relays electrical signals efficiently. This material is capable to integrate biochemical and electrical stimulation to promote neural cellular behaviour. Neurite outgrowth is enhanced greatly on this new conducting polymer; in addition, electrically stimulated secretion of proteins from primary Schwann cells can also occur on it.

  13. Mechanosensitivity of Embryonic Neurites Promotes Their Directional Extension and Schwann Cells Progenitors Migration

    Gonzalo Rosso

    2017-11-01

    Full Text Available Background/Aims: Migration of Schwann cells (SCs progenitors and neurite outgrowth from embryonic dorsal root ganglions (DRGs are two central events during the development of the peripheral nervous system (PNS. How these two enthralling events preceding myelination are promoted is of great relevance from basic research and clinical aspects alike. Recent evidence demonstrates that biophysical cues (extracellular matrix stiffness and biochemical signaling act in concert to regulate PNS myelination. Microenvironment stiffness of SCs progenitors and embryonic neurites dynamically changes during development. Methods: DRG explants were isolated from day 12.5 to 13.5 mice embryos and plated on laminin-coated substrates with varied stiffness values. After 4 days in culture and immunostaining with specific markers, neurite outgrowth pattern, SCs progenitors migration, and growth cone shape and advance were analyzed with confocal fluorescence microscopy. Results: We found out that growing substrate stiffness promotes directional neurite outgrowth, SCs progenitors migration, growth cone advance and presumably axons fasciculation. Conclusions: DRG explants are in vitro models for the research of PNS development, myelination and regeneration. Consequently, we conclude the following: Our observations point out the importance of mechanosensitivity for the PNS. At the same time, they prompt the investigation of the important yet unclear links between PNS biomechanics and inherited neuropathies with myelination disorders such as Charcot-Marie-Tooth 1A and hereditary neuropathy with liability to pressure palsies. Finally, they encourage the consideration of mechanosensitivity in bioengineering of scaffolds to aid nerve regeneration after injury.

  14. Nanotechnology versus stem cell engineering: in vitro comparison of neurite inductive potentials.

    Morano, Michela; Wrobel, Sandra; Fregnan, Federica; Ziv-Polat, Ofra; Shahar, Abraham; Ratzka, Andreas; Grothe, Claudia; Geuna, Stefano; Haastert-Talini, Kirsten

    2014-01-01

    Innovative nerve conduits for peripheral nerve reconstruction are needed in order to specifically support peripheral nerve regeneration (PNR) whenever nerve autotransplantation is not an option. Specific support of PNR could be achieved by neurotrophic factor delivery within the nerve conduits via nanotechnology or stem cell engineering and transplantation. Here, we comparatively investigated the bioactivity of selected neurotrophic factors conjugated to iron oxide nanoparticles (np-NTFs) and of bone marrow-derived stem cells genetically engineered to overexpress those neurotrophic factors (NTF-BMSCs). The neurite outgrowth inductive activity was monitored in culture systems of adult and neonatal rat sensory dorsal root ganglion neurons as well as in the cell line from rat pheochromocytoma (PC-12) cell sympathetic culture model system. We demonstrate that np-NTFs reliably support numeric neurite outgrowth in all utilized culture models. In some aspects, especially with regard to their long-term bioactivity, np-NTFs are even superior to free NTFs. Engineered NTF-BMSCs proved to be less effective in induction of sensory neurite outgrowth but demonstrated an increased bioactivity in the PC-12 cell culture system. In contrast, primary nontransfected BMSCs were as effective as np-NTFs in sensory neurite induction and demonstrated an impairment of neuronal differentiation in the PC-12 cell system. Our results evidence that nanotechnology as used in our setup is superior over stem cell engineering when it comes to in vitro models for PNR. Furthermore, np-NTFs can easily be suspended in regenerative hydrogel matrix and could be delivered that way to nerve conduits for future in vivo studies and medical application.

  15. Quantitative assessment of neurite outgrowth in human embryonic stem-cell derived neurons using automated high-content image analysis

    During development neurons undergo a number of morphological changes including neurite outgrowth from the cell body. Exposure to neurotoxicants that interfere with this process may cause in permanent deficits in nervous system function. While many studies have used rodent primary...

  16. Nanotechnology versus stem cell engineering: in vitro comparison of neurite inductive potentials

    Morano M

    2014-11-01

    Full Text Available Michela Morano,1,* Sandra Wrobel,2,3,* Federica Fregnan,1 Ofra Ziv-Polat,4 Abraham Shahar,4 Andreas Ratzka,2 Claudia Grothe,2,3 Stefano Geuna,1 Kirsten Haastert-Talini2,3 1Department of Clinical and Biological Sciences, Università Degli Studi di Torino, Orbassano, Piemonte, Italy; 2Institute of Neuroanatomy, Hannover Medical School, Hannover, Lower-Saxony, Germany; 3Center for Systems Neuroscience (ZSN, Hannover, Lower-Saxony, Germany; 4NVR Research Ltd, Ness-Ziona, Israel *These authors contributed equally to this work and share first authorship Purpose: Innovative nerve conduits for peripheral nerve reconstruction are needed in order to specifically support peripheral nerve regeneration (PNR whenever nerve autotransplantation is not an option. Specific support of PNR could be achieved by neurotrophic factor delivery within the nerve conduits via nanotechnology or stem cell engineering and transplantation.Methods: Here, we comparatively investigated the bioactivity of selected neurotrophic factors conjugated to iron oxide nanoparticles (np-NTFs and of bone marrow-derived stem cells genetically engineered to overexpress those neurotrophic factors (NTF-BMSCs. The neurite outgrowth inductive activity was monitored in culture systems of adult and neonatal rat sensory dorsal root ganglion neurons as well as in the cell line from rat pheochromocytoma (PC-12 cell sympathetic culture model system.Results: We demonstrate that np-NTFs reliably support numeric neurite outgrowth in all utilized culture models. In some aspects, especially with regard to their long-term bioactivity, np-NTFs are even superior to free NTFs. Engineered NTF-BMSCs proved to be less effective in induction of sensory neurite outgrowth but demonstrated an increased bioactivity in the PC-12 cell culture system. In contrast, primary nontransfected BMSCs were as effective as np-NTFs in sensory neurite induction and demonstrated an impairment of neuronal differentiation in the PC-12 cell

  17. Navigating neurites utilize cellular topography of Schwann cell somas and processes for optimal guidance

    Lopez-Fagundo, Cristina; Mitchel, Jennifer A.; Ramchal, Talisha D.; Dingle, Yu-Ting L.; Hoffman-Kim, Diane

    2013-01-01

    The path created by aligned Schwann cells (SCs) after nerve injury underlies peripheral nerve regeneration. We developed geometric bioinspired substrates to extract key information needed for axon guidance by deconstructing the topographical cues presented by SCs. We have previously reported materials that directly replicate SC topography with micro- and nanoscale resolution, but a detailed explanation of the means of directed axon extension on SC topography has not yet been described. Here, using neurite tracing and time-lapse microscopy, we analyzed the SC features that influence axon guidance. Novel poly(dimethylsiloxane) materials, fabricated via photolithography, incorporated bioinspired topographical components with the shapes and sizes of aligned SCs, namely somas and processes, where the length of the processes were varied but the soma geometry and dimensions were kept constant. Rat dorsal root ganglia neurites aligned to all materials presenting bioinspired topography after a 5 days in culture and to bioinspired materials presenting soma and process features after only 17 hours in culture. Key findings of this study were: Neurite response to underlying bioinspired topographical features was time dependent, where at 5 days, neurites aligned most strongly to materials presenting combinations of soma and process features, with higher than average density of either process or soma features; but at 17 hours they aligned more strongly to materials presenting average densities of soma and process features and to materials presenting process features only. These studies elucidate the influence of SC topography on axon guidance in a time-dependent setting and have implications for the optimization of nerve regeneration strategies. PMID:23557939

  18. Binding of Cdc42 to phospholipase D1 is important in neurite outgrowth of neural stem cells

    Yoon, Mee-Sup; Cho, Chan Ho; Lee, Ki Sung; Han, Joong-Soo

    2006-01-01

    We previously demonstrated that phospholipase D (PLD) expression and PLD activity are upregulated during neuronal differentiation. In the present study, employing neural stem cells from the brain cortex of E14 rat embryos, we investigated the role of Rho family GTPases in PLD activation and in neurite outgrowth of neural stem cells during differentiation. As neuronal differentiation progressed, the expression levels of Cdc42 and RhoA increased. Furthermore, Cdc42 and PLD1 were mainly localized in neurite, whereas RhoA was localized in cytosol. Co-immunoprecipitation revealed that Cdc42 was bound to PLD1 during differentiation, whereas RhoA was associated with PLD1 during both proliferation and differentiation. These results indicate that the association between Cdc42 and PLD1 is related to neuronal differentiation. To examine the effect of Cdc42 on PLD activation and neurite outgrowth, we transfected dominant negative Cdc42 (Cdc42N17) and constitutively active Cdc42 (Cdc42V12) into neural stem cells, respectively. Overexpression of Cdc42N17 decreased both PLD activity and neurite outgrowth, whereas co-transfection with Cdc42N17 and PLD1 restored them. On the other hand, Cdc42V12 increased both PLD activity and neurite outgrowth, suggesting that active state of Cdc42 is important in upregulation of PLD activity which is responsible for the increase of neurite outgrowth

  19. Enhanced Neural Cell Adhesion and Neurite Outgrowth on Graphene-Based Biomimetic Substrates

    Suck Won Hong

    2014-01-01

    Full Text Available Neural cell adhesion and neurite outgrowth were examined on graphene-based biomimetic substrates. The biocompatibility of carbon nanomaterials such as graphene and carbon nanotubes (CNTs, that is, single-walled and multiwalled CNTs, against pheochromocytoma-derived PC-12 neural cells was also evaluated by quantifying metabolic activity (with WST-8 assay, intracellular oxidative stress (with ROS assay, and membrane integrity (with LDH assay. Graphene films were grown by using chemical vapor deposition and were then coated onto glass coverslips by using the scooping method. Graphene sheets were patterned on SiO2/Si substrates by using photolithography and were then covered with serum for a neural cell culture. Both types of CNTs induced significant dose-dependent decreases in the viability of PC-12 cells, whereas graphene exerted adverse effects on the neural cells just at over 62.5 ppm. This result implies that graphene and CNTs, even though they were the same carbon-based nanomaterials, show differential influences on neural cells. Furthermore, graphene-coated or graphene-patterned substrates were shown to substantially enhance the adhesion and neurite outgrowth of PC-12 cells. These results suggest that graphene-based substrates as biomimetic cues have good biocompatibility as well as a unique surface property that can enhance the neural cells, which would open up enormous opportunities in neural regeneration and nanomedicine.

  20. β-Hydroxy-β-Methylbutyrate (HMB) Promotes Neurite Outgrowth in Neuro2a Cells.

    Salto, Rafael; Vílchez, Jose D; Girón, María D; Cabrera, Elena; Campos, Nefertiti; Manzano, Manuel; Rueda, Ricardo; López-Pedrosa, Jose M

    2015-01-01

    β-Hydroxy-β-methylbutyrate (HMB) has been shown to enhance cell survival, differentiation and protein turnover in muscle, mainly activating phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases/ extracellular-signal-regulated kinases (MAPK/ERK) signaling pathways. Since these two pathways are related to neuronal survival and differentiation, in this study, we have investigated the neurotrophic effects of HMB in mouse neuroblastoma Neuro2a cells. In Neuro2a cells, HMB promotes differentiation to neurites independent from any effects on proliferation. These effects are mediated by activation of both the PI3K/Akt and the extracellular-signal-regulated kinases (ERK1/2) signaling as demonstrated by the use of specific inhibitors of these two pathways. As myocyte-enhancer factor 2 (MEF2) family of transcription factors are involved in neuronal survival and plasticity, the transcriptional activity and protein levels of MEF2 were also evaluated. HMB promoted MEF2-dependent transcriptional activity mediated by the activation of Akt and ERK1/2 pathways. Furthermore, HMB increases the expression of brain glucose transporters 1 (GLUT1) and 3 (GLUT3), and mTOR phosphorylation, which translates in a higher protein synthesis in Neuro2a cells. Furthermore, Torin1 and rapamycin effects on MEF2 transcriptional activity and HMB-dependent neurite outgrowth support that HMB acts through mTORC2. Together, these findings provide clear evidence to support an important role of HMB in neurite outgrowth.

  1. In vitro formation of the Merkel cell-neurite complex in embryonic mouse whiskers using organotypic co-cultures.

    Ishida, Kentaro; Saito, Tetsuichiro; Mitsui, Toshiyuki

    2018-06-01

    A Merkel cell-neurite complex is a touch receptor composed of specialized epithelial cells named Merkel cells and peripheral sensory nerves in the skin. Merkel cells are found in touch-sensitive skin components including whisker follicles. The nerve fibers that innervate Merkel cells of a whisker follicle extend from the maxillary branch of the trigeminal ganglion. Whiskers as a sensory organ attribute to the complicated architecture of the Merkel cell-neurite complex, and therefore it is intriguing how the structure is formed. However, observing the dynamic process of the formation of a Merkel cell-neurite complex in whiskers during embryonic development is still difficult. In this study, we tried to develop an organotypic co-culture method of a whisker pad and a trigeminal ganglion explant to form the Merkel cell-neurite complex in vitro. We initially developed two distinct culture methods of a single whisker row and a trigeminal ganglion explant, and then combined them. By dissecting and cultivating a single row from a whisker pad, the morphogenesis of whisker follicles could be observed under a microscope. After the co-cultivation of the whisker row with a trigeminal ganglion explant, a Merkel cell-neurite complex composed of Merkel cells, which were positive for both cytokeratin 8 and SOX2, Neurofilament-H-positive trigeminal nerve fibers and Schwann cells expressing Nestin, SOX2 and SOX10 was observed via immunohistochemical analyses. These results suggest that the process for the formation of a Merkel cell-neurite complex can be observed under a microscope using our organotypic co-culture method. © 2018 Japanese Society of Developmental Biologists.

  2. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in

  3. Electrical Stimulation of Schwann Cells Promotes Sustained Increases in Neurite Outgrowth

    Koppes, Abigail N.; Nordberg, Andrea L.; Paolillo, Gina M.; Goodsell, Nicole M.; Darwish, Haley A.; Zhang, Linxia; Thompson, Deanna M.

    2013-01-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite ou...

  4. Cocaine- and amphetamine-regulated transcript facilitates the neurite outgrowth in cortical neurons after oxygen and glucose deprivation through PTN-dependent pathway.

    Wang, Y; Qiu, B; Liu, J; Zhu, Wei-Guo; Zhu, S

    2014-09-26

    Cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide that plays neuroprotective roles in cerebral ischemia and reperfusion (I/R) injury in animal models or oxygen and glucose deprivation (OGD) in cultured neurons. Recent data suggest that intranasal CART treatment facilitates neuroregeneration in stroke brain. However, little is known about the effects of post-treatment with CART during the neuronal recovery after OGD and reoxygenation in cultured primary cortical neurons. The present study was to investigate the role of CART treated after OGD injury in neurons. Primary mouse cortical neurons were subjected to OGD and then treated with CART. Our data show that post-treatment with CART reduced the neuronal apoptosis caused by OGD injury. In addition, CART repaired OGD-impaired cortical neurons by increasing the expression of growth-associated protein 43 (GAP43), which promotes neurite outgrowth. This effect depends on pleiotrophin (PTN) as siRNA-mediated PTN knockdown totally abolished the increase in CART-stimulated GAP43 protein levels. In summary, our findings demonstrate that CART repairs the neuronal injury after OGD by facilitating neurite outgrowth through PTN-dependent pathway. The role for CART in neurite outgrowth makes it a new potential therapeutic agent for the treatment of neurodegenerative diseases. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Neurite outgrowth induced by a synthetic peptide ligand of neural cell adhesion molecule requires fibroblast growth factor receptor activation

    Rønn, L C; Doherty, P; Holm, A

    2000-01-01

    identified a neuritogenic ligand, termed the C3 peptide, of the first immunoglobulin (lg) module of NCAM using a combinatorial library of synthetic peptides. Here we investigate whether stimulation of neurite outgrowth by this synthetic ligand of NCAM involves FGFRs. In primary cultures of cerebellar neurons...... from wild-type mice, the C3 peptide stimulated neurite outgrowth. This response was virtually absent in cultures of cerebellar neurons from transgenic mice expressing a dominant-negative form of the FGFR1. Likewise, in PC12E2 cells transiently expressing a dominant-negative form of the mouse FGFR1...

  6. Pleurotus giganteus (Berk.) Karunarathna & K.D. Hyde: Nutritional value and in vitro neurite outgrowth activity in rat pheochromocytoma cells.

    Phan, Chia-Wei; Wong, Wei-Lun; David, Pamela; Naidu, Murali; Sabaratnam, Vikineswary

    2012-07-19

    Drugs dedicated to alleviate neurodegenerative diseases like Parkinson's and Alzheimer's have always been associated with debilitating side effects. Medicinal mushrooms which harness neuropharmacological compounds offer a potential possibility for protection against such diseases. Pleurotus giganteus (formerly known as Panus giganteus) has been consumed by the indigenous people in Peninsular Malaysia for many years. Domestication of this wild mushroom is gaining popularity but to our knowledge, medicinal properties reported for this culinary mushroom are minimal. The fruiting bodies P. giganteus were analysed for its nutritional values. Cytotoxicity of the mushroom's aqueous and ethanolic extracts towards PC12, a rat pheochromocytoma cell line was assessed by using 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Neurite outgrowth stimulation assay was carried out with nerve growth factor (NGF) as control. To elucidate signaling mechanisms involved by mushroom extract-induced neurite outgrowth, treatment of specific inhibitor for MEK/ERK and PI3K signalling pathway was carried out. The fruiting bodies of P. giganteus were found to have high carbohydrate, dietary fibre, potassium, phenolic compounds and triterpenoids. Both aqueous and ethanolic extracts induced neurite outgrowth of PC12 cells in a dose- and time-dependant manner with no detectable cytotoxic effect. At day 3, 25 μg/ml of aqueous extract and 15 μg/ml of ethanolic extract showed the highest percentage of neurite-bearing cells, i.e. 31.7 ± 1.1% and 33.3 ± 0.9%; respectively. Inhibition treatment results suggested that MEK/ERK and PI3K/Akt are responsible for neurite outgrowth of PC12 cells stimulated by P. giganteus extract. The high potassium content (1345.7 mg/100 g) may be responsible for promoting neurite extension, too. P. giganteus contains bioactive compounds that mimic NGF and are responsible for neurite stimulation. Hence, this mushroom may be

  7. Activation of transglutaminase 2 by nerve growth factor in differentiating neuroblastoma cells: A role in cell survival and neurite outgrowth.

    Algarni, Alanood S; Hargreaves, Alan J; Dickenson, John M

    2018-02-05

    NGF (nerve growth factor) and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 transamidase activity by NGF in retinoic acid-induced differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. The role of TG2 in NGF-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with NGF in N2a and SH-SY5Y cells. NGF mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON (Z-ZON-Val-Pro-Leu-OMe; Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-l-valinyl-l-prolinyl-l-leucinmethylester) and R283 (1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride) and by pharmacological inhibition of extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB) and protein kinase C (PKC), and removal of extracellular Ca 2+ . Fluorescence microscopy demonstrated NGF induced in situ TG2 activity. TG2 inhibition blocked NGF-induced attenuation of hypoxia-induced cell death and neurite outgrowth in both cell lines. Together, these results demonstrate that NGF stimulates TG2 transamidase activity via a ERK1/2, PKB and PKC-dependent pathway in differentiating mouse N2a and human SH-SY5Y neuroblastoma cells. Furthermore, NGF-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results suggest a novel and important role of TG2 in the cellular functions of NGF. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  9. The prescriptions from Shenghui soup enhanced neurite growth and GAP-43 expression level in PC12 cells.

    Zhang, Qi; Zhang, Zi-Jian; Wang, Xing-Hua; Ma, Jie; Song, Yue-Han; Liang, Mi; Lin, Sen-Xiang; Zhao, Jie; Zhang, Ao-Zhe; Li, Feng; Hua, Qian

    2016-09-20

    Shenghui soup is a traditional Chinese herbal medicine used in clinic for the treatment of forgetfulness. In order to understanding the prescription principle, the effects of "tonifying qi and strengthening spleen" group (TQSS) including Poria cocos (Schw.) Wolf. and Panax ginseng C.A.Mey and "eliminating phlegm and strengthening intelligence" group (EPSI) composed of Polygala tenuifolia Willd., Acorus calamus L. and Sinapis alba L from the herb complex on neurite growth in PC12 cells, two disassembled prescriptions derived from Shenghui soup and their molecular mechanisms were investigated. Firstly, CCK-8 kit was used to detect the impact of the two prescriptions on PC12 cell viability; and Flow cytometry was performed to measure the cell apoptosis when PC12 cells were treated with these drugs. Secondly, the effect of the two prescriptions on the differentiation of PC12 cells was observed. Finally, the mRNA and protein expression levels of GAP-43 were analyzed by RT-PCR and western blot, respectively. "Tonifying qi and strengthening spleen" prescription decreased cell viability in a dose-dependent manner, but had no significant effect on cell apoptosis. Meanwhile, it could improve neurite growth and elevate the mRNA and protein expression level of GAP-43. "Eliminating phlegm and strengthening intelligence" prescription also exerted the similar effects on cell viability and apoptosis. Furthermore, it could also enhance cell neurite growth, with a higher expression level of GAP-43 mRNA and protein. "Tonifying qi and strengthening spleen" and "eliminating phlegm and strengthening intelligence" prescriptions from Shenghui soup have a positive effect on neurite growth. Their effects are related to the up-regulating expression of GAP-43.

  10. Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors.

    Tamaki Ishima

    Full Text Available In addition to both the α1 adrenergic receptor and N-methyl-D-aspartate (NMDA receptor antagonists, ifenprodil binds to the sigma receptor subtypes 1 and 2. In this study, we examined the effects of ifenprodil on nerve growth factor (NGF-induced neurite outgrowth in PC12 cells. Ifenprodil significantly potentiated NGF-induced neurite outgrowth, in a concentration-dependent manner. In contrast, the α1 adrenergic receptor antagonist, prazosin and the NMDA receptor NR2B antagonist, Ro 25-6981 did not alter NGF-induced neurite outgrowth. Potentiation of NGF-induced neurite outgrowth mediated by ifenprodil was significantly antagonized by co-administration of the selective sigma-1 receptor antagonist, NE-100, but not the sigma-2 receptor antagonist, SM-21. Similarly, ifenprodil enhanced NGF-induced neurite outgrowth was again significantly reduced by the inositol 1,4,5-triphosphate (IP(3 receptor antagonists, xestospongin C and 2-aminoethoxydiphenyl borate (2-APB treatment. Furthermore, BAPTA-AM, a chelator of intracellular Ca(2+, blocked the effects of ifenprodil on NGF-induced neurite outgrowth, indicating the role of intracellular Ca(2+ in the neurite outgrowth. These findings suggest that activation at sigma-1 receptors and subsequent interaction with IP(3 receptors may mediate the pharmacological effects of ifenprodil on neurite outgrowth.

  11. The inverse F-BAR domain protein srGAP2 acts through srGAP3 to modulate neuronal differentiation and neurite outgrowth of mouse neuroblastoma cells.

    Yue Ma

    Full Text Available The inverse F-BAR (IF-BAR domain proteins srGAP1, srGAP2 and srGAP3 are implicated in neuronal development and may be linked to mental retardation, schizophrenia and seizure. A partially overlapping expression pattern and highly similar protein structures indicate a functional redundancy of srGAPs in neuronal development. Our previous study suggests that srGAP3 negatively regulates neuronal differentiation in a Rac1-dependent manner in mouse Neuro2a cells. Here we show that exogenously expressed srGAP1 and srGAP2 are sufficient to inhibit valporic acid (VPA-induced neurite initiation and growth in the mouse Neuro2a cells. While ectopic- or over-expression of RhoGAP-defective mutants, srGAP1(R542A and srGAP2(R527A exert a visible inhibitory effect on neuronal differentiation. Unexpectedly, knockdown of endogenous srGAP2 fails to facilitate the neuronal differentiation induced by VPA, but promotes neurite outgrowth of differentiated cells. All three IF-BAR domains from srGAP1-3 can induce filopodia formation in Neuro2a, but the isolated IF-BAR domain from srGAP2, not from srGAP1 and srGAP3, can promote VPA-induced neurite initiation and neuronal differentiation. We identify biochemical and functional interactions of the three srGAPs family members. We propose that srGAP3-Rac1 signaling may be required for the effect of srGAP1 and srGAP2 on attenuating neuronal differentiation. Furthermore, inhibition of Slit-Robo interaction can phenocopy a loss-of-function of srGAP3, indicating that srGAP3 may be dedicated to the Slit-Robo pathway. Our results demonstrate the interplay between srGAP1, srGAP2 and srGAP3 regulates neuronal differentiation and neurite outgrowth. These findings may provide us new insights into the possible roles of srGAPs in neuronal development and a potential mechanism for neurodevelopmental diseases.

  12. Enhanced differentiation of neural stem cells to neurons and promotion of neurite outgrowth by oxygen-glucose deprivation.

    Wang, Qin; Yang, Lin; Wang, Yaping

    2015-06-01

    Stroke has become the leading cause of mortality worldwide. Hypoxic or ischemic insults are crucial factors mediating the neural damage in the brain tissue of stroke patients. Neural stem cells (NSCs) have been recognized as a promising tool for the treatment of ischemic stroke and other neurodegenerative diseases due to their inducible pluripotency. In this study, we aim to mimick the cerebral hypoxic-ischemic injury in vitro using oxygen-glucose deprivation (OGD) strategy, and evaluate the effects of OGD on the NSC's neural differentiation, as well as the differentiated neurite outgrowth. Our data showed that NSCs under the short-term 2h OGD treatment are able to maintain cell viability and the capability to form neurospheres. Importantly, this moderate OGD treatment promotes NSC differentiation to neurons and enhances the performance of the mature neuronal networks, accompanying increased neurite outgrowth of differentiated neurons. However, long-term 6h and 8h OGD exposures in NSCs lead to decreased cell survival, reduced differentiation and diminished NSC-derived neurite outgrowth. The expressions of neuron-specific microtubule-associated protein 2 (MAP-2) and growth associated protein 43 (GAP-43) are increased by short-term OGD treatments but suppressed by long-term OGD. Overall, our results demonstrate that short-term OGD exposure in vitro induces differentiation of NSCs while maintaining their proliferation and survival, providing valuable insights of adopting NSC-based therapy for ischemic stroke and other neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Nanostructured Polyaniline Coating on ITO Glass Promotes the Neurite Outgrowth of PC 12 Cells by Electrical Stimulation.

    Wang, Liping; Huang, Qianwei; Wang, Jin-Ye

    2015-11-10

    A conducting polymer polyaniline (PANI) with nanostructure was synthesized on indium tin oxide (ITO) glass. The effect of electrical stimulation on the proliferation and the length of neurites of PC 12 cells was investigated. The dynamic protein adsorption on PANI and ITO surfaces in a cell culture medium was also compared with and without electrical stimulation. The adsorbed proteins were characterized using SDS-PAGE. A PANI coating on ITO surface was shown with 30-50 nm spherical nanostructure. The number of PC 12 cells was significantly greater on the PANI/ITO surface than on ITO and plate surfaces after cell seeding for 24 and 36 h. This result confirmed that the PANI coating is nontoxic to PC 12 cells. The electrical stimulation for 1, 2, and 4 h significantly enhanced the cell numbers for both PANI and ITO conducting surfaces. Moreover, the application of electrical stimulation also improved the neurite outgrowth of PC 12 cells, and the number of PC 12 cells with longer neurite lengths increased obviously under electrical stimulation for the PANI surface. From the mechanism, the adsorption of DMEM proteins was found to be enhanced by electrical stimulation for both PANI/ITO and ITO surfaces. A new band 2 (around 37 kDa) was observed from the collected adsorbed proteins when PC 12 cells were cultured on these surfaces, and culturing PC 12 cells also seemed to increase the amount of band 1 (around 90 kDa). When immersing PANI/ITO and ITO surfaces in a DMEM medium without a cell culture, the number of band 3 (around 70 kDa) and band 4 (around 45 kDa) proteins decreased compared to that of PC 12 cell cultured surfaces. These results are valuable for the design and improvement of the material performance for neural regeneration.

  14. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth

    Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan

    2016-05-01

    The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ~1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.The development of novel biomaterials that deliver precise regulatory signals to

  15. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth.

    Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan

    2016-05-21

    The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ∼1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.

  16. TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling.

    Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina

    2013-11-01

    The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John

  17. Salicin from Willow Bark can Modulate Neurite Outgrowth in Human Neuroblastoma SH-SY5Y Cells.

    Wölfle, Ute; Haarhaus, Birgit; Kersten, Astrid; Fiebich, Bernd; Hug, Martin J; Schempp, Christoph M

    2015-10-01

    Salicin from willow bark has been used throughout centuries in China and Europe for the treatment of pain, headache, and inflammatory conditions. Recently, it could be demonstrated that salicin binds and activates the bitter taste receptor TAS2R16. Studies on rodent tissues showed the general expression of bitter taste receptors (TAS2Rs) in rodent brain. Here, we demonstrate the expression of hTAS2R16 in human neuronal tissues and the neuroblastoma cell line SH-SY5Y. The functionality was analyzed in the neuroblastoma cell line SH-SY5Y after stimulation with salicin, a known TAS2R16 agonist. In this setting salicin induced in SH-SY5Y cells phosphorylation of ERK and CREB, the key transcription factor of neuronal differentiation. PD98059, an inhibitor of the ERK pathway, as well as probenecid, a TAS2R16 antagonist, inhibited receptor phosphorylation as well as neurite outgrowth. These data show that salicin might modulate neurite outgrowth by bitter taste receptor activation. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Neurite extension and neuronal differentiation of human induced pluripotent stem cell derived neural stem cells on polyethylene glycol hydrogels containing a continuous Young's Modulus gradient.

    Mosley, Matthew C; Lim, Hyun Ju; Chen, Jing; Yang, Yueh-Hsun; Li, Shenglan; Liu, Ying; Smith Callahan, Laura A

    2017-03-01

    Mechanotransduction in neural cells involves multiple signaling pathways that are not fully understood. Differences in lineage and maturation state are suggested causes for conflicting reports on neural cell mechanosensitivity. To optimize matrices for use in stem cell therapy treatments transplanting human induced pluripotent stem cell derived neural stem cells (hNSC) into lesions after spinal cord injury, the effects of Young's Modulus changes on hNSC behavior must be understood. The present study utilizes polyethylene glycol hydrogels containing a continuous gradient in Young's modulus to examine changes in the Young's Modulus of the culture substrate on hNSC neurite extension and neural differentiation. Changes in the Young's Modulus of the polyethylene glycol hydrogels was found to affect neurite extension and cellular organization on the matrices. hNSC cultured on 907 Pa hydrogels were found to extend longer neurites than hNSC cultured on other tested Young's Moduli hydrogels. The gene expression of β tubulin III and microtubule-associated protein 2 in hNSC was affected by changes in the Young's Modulus of the hydrogel. The combinatory method approach used in the present study demonstrates that hNSC are mechanosensitive and the matrix Young's Modulus should be a design consideration for hNSC transplant applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 824-833, 2017. © 2016 Wiley Periodicals, Inc.

  19. Conditioned medium of dental pulp cells stimulated by Chinese propolis show neuroprotection and neurite extension in vitro.

    Kudo, Daichi; Inden, Masatoshi; Sekine, Shin-Ichiro; Tamaoki, Naritaka; Iida, Kazuki; Naito, Eiji; Watanabe, Kazuhiro; Kamishina, Hiroaki; Shibata, Toshiyuki; Hozumi, Isao

    2015-03-04

    The purpose of this study was to clarify the effect of Chinese propolis on the expression level of neurotrophic factors in dental pulp cells (DPCs). We also investigated that the effects of the conditioned medium (CM) of DPCs stimulated by the propolis against oxidative and endoplasmic reticulum (ER) stresses in human neuroblastoma SH-SY5Y cells, and on neurite extensions in rat adrenal pheochromocytoma PC12 cells. To investigate the effect of the propolis on the levels of neurotrophic factors in DPCs, we performed a qRT-PCR experiment. As results, NGF, but not BDNF and NT-3, in DPCs was significantly elevated by the propolis in a concentration-dependent manner. H2O2-induced cell death was significantly inhibited by the treatment with the CM of DPCs. In addition, the treatment with the propolis-stimulated CM of DPCs had a more protective effect than that with the CM of DPCs. We also examine the effect of the propolis-stimulated CM of DPCs against a tunicamycin-induced ER stress. The treatment with the propolis-stimulated CM as well as the CM of DPCs significantly inhibited tunicamycin-induced cell death. Moreover, the treatment with the propolis-stimulated CM of DPCs significantly induced neurite outgrowth from PC12 cells than that with the CM of DPCs. These results suggest that the CM of DPCs as well as DPCs will be an efficient source of new treatments for neurodegenerative diseases and that the propolis promote the advantage of the CM of DPCs via producing neurotrophic factors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Non-cytotoxic Concentration of Cisplatin Decreases Neuroplasticity-Related Proteins and Neurite Outgrowth Without Affecting the Expression of NGF in PC12 Cells.

    Ferreira, Rafaela Scalco; Dos Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Fernandes, Laís Silva; Dos Santos, Antonio Cardozo

    2016-11-01

    Cisplatin is the most effective and neurotoxic platinum chemotherapeutic agent. It induces a peripheral neuropathy characterized by distal axonal degeneration that might progress to degeneration of cell bodies and apoptosis. Most symptoms occur nearby distal axonal branches and axonal degeneration might induce peripheral neuropathy regardless neuronal apoptosis. The toxic mechanism of cisplatin has been mainly associated with DNA damage, but cisplatin might also affect neurite outgrowth. Nevertheless, the neurotoxic mechanism of cisplatin remains unclear. We investigated the early effects of cisplatin on axonal plasticity by using non-cytotoxic concentrations of cisplatin and PC12 cells as a model of neurite outgrowth and differentiation. PC12 cells express NGF-receptors (trkA) and respond to NGF by forming neurites, branches and synaptic vesicles. For comparison, we used a neuronal model (SH-SY5Y cells) that does not express trkA nor responds to NGF. Cisplatin did not change NGF expression in PC12 cells and decreased neurite outgrowth in both models, suggesting a NGF/trkA independent mechanism. It also reduced axonal growth (GAP-43) and synaptic (synapsin I and synaptophysin) proteins in PC12 cells, without inducing mitochondrial damage or apoptosis. Therefore, cisplatin might affect axonal plasticity before DNA damage, NGF/trkA down-regulation, mitochondrial damage or neuronal apoptosis. This is the first study to show that neuroplasticity-related proteins might be early targets of the neurotoxic action of cisplatin and their role on cisplatin-induced peripheral neuropathy should be investigated in vivo.

  1. The output of neuronotrophic and neurite-promoting agents from rat brain astroglial cells: a microculture method for screening potential regulatory molecules.

    Rudge, J S; Manthorpe, M; Varon, S

    1985-04-01

    Throughout embryonic development, as well as in response to injury of the central nervous system, astroglial cells may present neurons with a critical supply of neuronotrophic and neurite-promoting factors which control, respectively, neuronal survival and axonal growth. The identification of such astroglial cell-derived factors, as well as of specific extrinsic agents regulating their production, will require the use of in vitro techniques. We define here a new microculture system in which added agents can be screened for their ability to enhance or inhibit the output of trophic and neurite-promoting factors from purified neonatal rat brain astroglial cells. With such a procedure, thousands of replicate secondary astroglial cultures can be set-up and maintained in chemically defined medium, on a defined substratum and in a viable, low proliferative stable state. These cultured astroglial cells release into their medium at least three distinct and separable types of agents addressing nerve cells in vitro: (i) high molecular weight trophic factors (Mr greater than 10,000) which support the survival of embryonic peripheral neurons; (ii) low molecular weight trophic agents (Mr less than 10,000) supporting embryonic central neurons; and (iii) polyornithine-binding neurite-promoting factors which enhance neuritic regeneration for both peripheral and central neurons. The temporal release patterns of these three agents from astroglial cultures are quite distinct suggesting that their output is independently regulated.

  2. The Secretome of Bone Marrow and Wharton Jelly Derived Mesenchymal Stem Cells Induces Differentiation and Neurite Outgrowth in SH-SY5Y Cells

    Ana O. Pires

    2014-01-01

    Full Text Available The goal of this study was to determine and compare the effects of the secretome of mesenchymal stem cells (MSCs isolated from human bone-marrow (BMSCs and the Wharton jelly surrounding the vein and arteries of the umbilical cord (human umbilical cord perivascular cells (HUCPVCs on the survival and differentiation of a human neuroblastoma cell line (SH-SY5Y. For this purpose, SH-SY5Y cells were differentiated with conditioned media (CM from the MSCs populations referred above. Retinoic acid cultured cells were used as control for neuronal differentiated SH-SY5Y cells. SH-SY5Y cells viability assessment revealed that the secretome of BMSCs and HUCPVCs, in the form of CM, was able to induce their survival. Moreover, immunocytochemical experiments showed that CM from both MSCs was capable of inducing neuronal differentiation of SH-SY5Y cells. Finally, neurite lengths assessment and quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR analysis demonstrated that CM from BMSCs and HUCPVCs differently induced neurite outgrowth and mRNA levels of neuronal markers exhibited by SH-SY5Y cells. Overall, our results show that the secretome of both BMSCs and HUCPVCs was capable of supporting SH-SY5Y cells survival and promoting their differentiation towards a neuronal phenotype.

  3. Role of transglutaminase 2 in PAC1 receptor mediated protection against hypoxia-induced cell death and neurite outgrowth in differentiating N2a neuroblastoma cells.

    Algarni, Alanood S; Hargreaves, Alan J; Dickenson, John M

    2017-03-15

    The PAC 1 receptor and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 activity by the PAC 1 receptor in retinoic acid-induced differentiating N2a neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. TG2 phosphorylation was monitored via immunoprecipitation and Western blotting. The role of TG2 in PAC 1 receptor-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with pituitary adenylate cyclase-activating polypeptide-27 (PACAP-27). PACAP-27 mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON and R283 and by pharmacological inhibition of protein kinase A (KT 5720 and Rp-cAMPs), protein kinase C (Ro 31-8220), MEK1/2 (PD 98059), and removal of extracellular Ca 2+ . Fluorescence microscopy demonstrated PACAP-27 induced in situ TG2 activity. TG2 inhibition blocked PACAP-27 induced attenuation of hypoxia-induced cell death and outgrowth of axon-like processes. TG2 activation and cytoprotection were also observed in human SH-SY5Y cells. Together, these results demonstrate that TG2 activity was stimulated downstream of the PAC 1 receptor via a multi protein kinase dependent pathway. Furthermore, PAC 1 receptor-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results highlight the importance of TG2 in the cellular functions of the PAC 1 receptor. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Disassembly of microtubules and inhibition of neurite outgrowth, neuroblastoma cell proliferation, and MAP kinase tyrosine dephosphorylation by dibenzyl trisulphide.

    Rösner, H; Williams, L A; Jung, A; Kraus, W

    2001-08-22

    Dibenzyl trisulphide (DTS), a main lipophilic compound in Petiveria alliacea L. (Phytolaccaceae), was identified as one of the active immunomodulatory compounds in extracts of the plant. To learn more about its biological activities and molecular mechanisms, we conducted one-dimensional NMR interaction studies with bovine serum albumin (BSA) and tested DTS and related compounds in two well-established neuronal cell-and-tissue culture systems. We found that DTS preferentially binds to an aromatic region of BSA which is rich in tyrosyl residues. In SH-SY5Y neuroblastoma cells, DTS attenuates the dephosphorylation of tyrosyl residues of MAP kinase (erk1/erk2). In the same neuroblastoma cell line and in Wistar 38 human lung fibroblasts, DTS causes a reversible disassembly of microtubules, but it did not affect actin dynamics. Probably due to the disruption of the microtubule dynamics, DTS also inhibits neuroblastoma cell proliferation and neurite outgrowth from spinal cord explants. Related dibenzyl compounds with none, one, or two sulphur atoms were found to be significantly less effective. These data confirmed that the natural compound DTS has a diverse spectrum of biological properties, including cytostatic and neurotoxic actions in addition to immunomodulatory activities.

  5. The protection of acetylcholinesterase inhibitor on β-amyloid-induced injury of neurite outgrowth via regulating axon guidance related genes expression in neuronal cells

    Shen, Jiao-Ning; Wang, Deng-Shun; Wang, Rui

    2012-01-01

    Cognitive deficits in AD correlate with progressive synaptic dysfunction and loss. The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role in cellular motility and cytokinesis. Acetylcholinesterase inhibitor has been found to protect cells against a broad range of reagents-induced injuries. Present studies examined if the effect of HupA on neurite outgrowth in Aβ-treated neuronal cells executed via regulating Rho-GTPase mediated axon guidance relative gene expressio...

  6. Cell death in neural precursor cells and neurons before neurite formation prevents the emergence of abnormal neural structures in the Drosophila optic lobe.

    Hara, Yusuke; Sudo, Tatsuya; Togane, Yu; Akagawa, Hiromi; Tsujimura, Hidenobu

    2018-04-01

    Programmed cell death is a conserved strategy for neural development both in vertebrates and invertebrates and is recognized at various developmental stages in the brain from neurogenesis to adulthood. To understand the development of the central nervous system, it is essential to reveal not only molecular mechanisms but also the role of neural cell death (Pinto-Teixeira et al., 2016). To understand the role of cell death in neural development, we investigated the effect of inhibition of cell death on optic lobe development. Our data demonstrate that, in the optic lobe of Drosophila, cell death occurs in neural precursor cells and neurons before neurite formation and functions to prevent various developmental abnormalities. When neuronal cell death was inhibited by an effector caspase inhibitor, p35, multiple abnormal neuropil structures arose during optic lobe development-e.g., enlarged or fused neuropils, misrouted neurons and abnormal neurite lumps. Inhibition of cell death also induced morphogenetic defects in the lamina and medulla development-e.g., failures in the separation of the lamina and medulla cortices and the medulla rotation. These defects were reproduced in the mutant of an initiator caspase, dronc. If cell death was a mechanism for removing the abnormal neuropil structures, we would also expect to observe them in mutants defective for corpse clearance. However, they were not observed in these mutants. When dead cell-membranes were visualized with Apoliner, they were observed only in cortices and not in neuropils. These results suggest that the cell death occurs before mature neurite formation. Moreover, we found that inhibition of cell death induced ectopic neuroepithelial cells, neuroblasts and ganglion mother cells in late pupal stages, at sites where the outer and inner proliferation centers were located at earlier developmental stages. Caspase-3 activation was observed in the neuroepithelial cells and neuroblasts in the proliferation centers

  7. miR-103 Promotes Neurite Outgrowth and Suppresses Cells Apoptosis by Targeting Prostaglandin-Endoperoxide Synthase 2 in Cellular Models of Alzheimer's Disease.

    Yang, Hui; Wang, Hongcai; Shu, Yongwei; Li, Xuling

    2018-01-01

    miR-103 has been reported to be decreased in brain of transgenic mouse model of Alzheimer's disease (AD) and in cerebrospinal fluid (CSF) of AD patients, while the detailed mechanism of its effect on AD is obscure, thus this study aimed to investigate the effect of miR-103 expression on neurite outgrowth and cells apoptosis as well as its targets in cellular models of AD. Blank mimic (NC1-mimic), miR-103 mimic, blank inhibitor (NC2-mimic) and miR-103 inhibitor plasmids were transferred into PC12 cellular AD model and Cellular AD model of cerebral cortex neurons which were established by Aβ1-42 insult. Rescue experiment was subsequently performed by transferring Prostaglandin-endoperoxide synthase 2 (PTGS2) and miR-103 mimic plasmid. mRNA and protein expressions were detected by qPCR and Western Blot assays. Total neurite outgrowth was detected by microscope, cells apoptosis was determined by Hoechst/PI assay, and apoptotic markers Caspase 3 and p38 expressions were determined by Western Blot assay. In both PC12 and cerebral cortex neurons cellular AD models, miR-103 mimic increases the total neurite outgrowth compared with NC1-mimic, while miR-103 inhibitor decreases the total neurite outgrowth than NC2-inhibitor. The apoptosis rate was decreased in miR-103 mimic group than NC1-mimic group while increased in miR-103 inhibitor group than NC2-inhibitor group. PTGS2, Adisintegrin and metalloproteinase 10 (ADAM10) and neprilysin (NEP) were selected as target genes of miR-103 by bioinformatics analysis. And PTGS2 was found to be conversely regulated by miR-103 expression while ADAM10 and NEP were not affected. After transfection by PTGS2 and miR-103 mimic plasmid in PC12 cellular AD model, the total neurite growth was shortened compared with miR-103 mimic group, and cells apoptosis was enhanced which indicated PTGS2 mimic attenuated the influence of miR-103 mimic on progression of AD. In conclusion, miR-103 promotes total neurite outgrowth and inhibits cells apoptosis

  8. Neurite outgrowth stimulatory effects of myco synthesized AuNPs from Hericium erinaceus (Bull.: Fr.) Pers. on pheochromocytoma (PC-12) cells.

    Raman, Jegadeesh; Lakshmanan, Hariprasath; John, Priscilla A; Zhijian, Chan; Periasamy, Vengadesh; David, Pamela; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Hericium erinaceus has been reported to have a wide range of medicinal properties such as stimulation of neurite outgrowth, promotion of functional recovery of axonotmetic peroneal nerve injury, antioxidant, antihypertensive, and antidiabetic properties. In recent years, the green synthesis of gold nanoparticles (AuNPs) has attracted intense interest due to the potential use in biomedical applications. The aim of this study was to investigate the effects of AuNPs from aqueous extract of H. erinaceus on neurite outgrowth of rat pheochromocytoma (PC-12) cells. The formation of AuNPs was characterized by UV-visible spectrum, energy dispersive X-ray (EDX), field-emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), particle size distribution, and Fourier transform-infrared spectroscopy (FTIR). Furthermore, the neurite extension study of synthesized AuNPs was evaluated by in vitro assay. The AuNPs exhibited maximum absorbance between 510 and 600 nm in UV-visible spectrum. FESEM and TEM images showed the existence of nanoparticles with sizes of 20-40 nm. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. The purity and the crystalline properties were confirmed by EDX diffraction analysis, which showed strong signals with energy peaks in the range of 2-2.4 keV, indicating the existence of gold atoms. The synthesized AuNPs showed significant neurite extension on PC-12 cells. Nerve growth factor 50 ng/mL was used as a positive control. Treatment with different concentrations (nanograms) of AuNPs resulted in neuronal differentiation and neuronal elongation. AuNPs induced maximum neurite outgrowth of 13% at 600 ng/mL concentration. In this study, the AuNPs synthesis was achieved by a simple, low-cost, and rapid bioreduction approach. AuNPs were shown to have potential neuronal differentiation and stimulated neurite outgrowth. The water

  9. Light-Mediated Kinetic Control Reveals the Temporal Effect of the Raf/MEK/ERK Pathway in PC12 Cell Neurite Outgrowth

    Zhang, Kai; Duan, Liting; Ong, Qunxiang; Lin, Ziliang; Varman, Pooja Mahendra; Sung, Kijung; Cui, Bianxiao

    2014-01-01

    It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network. PMID:24667437

  10. Chemical constituents from Hericium erinaceus and their ability to stimulate NGF-mediated neurite outgrowth on PC12 cells.

    Zhang, Cheng-Chen; Yin, Xia; Cao, Chen-Yu; Wei, Jing; Zhang, Qiang; Gao, Jin-Ming

    2015-11-15

    One new meroterpenoid, named hericenone K (11), along with 10 known compounds (1-10), ergosterol peroxide (1), cerevisterol (2), 3β,5α,9α-trihydroxy-ergosta-7,22-dien-6-one (3), inoterpene A (4), astradoric acid C (5), betulin (6), oleanolic acid (7), ursolic acid (8), hemisceramide (9), and 3,4-dihydro-5-methoxy-2-methyl-2-(4'-methyl-2'-oxo-3'-pentenyl)-9(7H)-oxo-2H-furo[3,4-h]benzopyran (10), was isolated from the fruiting bodies of the mushroom Hericium erinaceus. Their structures were characterized on the basis of spectroscopic methods, as well as through comparison with previously reported data. Compounds 3-6, 8, and 9 were isolated from Hericium species for the first time. Compounds 10 and 11 was suggested to be racemic by the CD spectrum data and specific rotations, which ware resolved by chiral HPLC into respective enantiomers. Compounds 1-3, (±)-10, (-)-10 and (+)-10 in the presence of NGF (20 ng/mL) exerted a significant increase in neurite-bearing cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells

    Sharma, Aarti; Lambrechts, Anja; Le thi Hao; Le, Thanh T.; Sewry, Caroline A.; Ampe, Christophe; Burghes, Arthur H.M.; Morris, Glenn E.

    2005-01-01

    Spinal muscular atrophy (SMA) is caused by reduced levels of SMN (survival of motor neurons protein) and consequent loss of motor neurons. SMN is involved in snRNP transport and nuclear RNA splicing, but axonal transport of SMN has also been shown to occur in motor neurons. SMN also binds to the small actin-binding protein, profilin. We now show that SMN and profilin II co-localise in the cytoplasm of differentiating rat PC12 cells and in neurite-like extensions, especially at their growth cones. Many components of known SMN complexes were also found in these extensions, including gemin2 (SIP-1), gemin6, gemin7 and unrip (unr-interacting protein). Coilin p80 and Sm core protein immunoreactivity, however, were seen only in the nucleus. SMN is known to associate with β-actin mRNA and specific hnRNPs in axons and in neurite extensions of cultured nerve cells, and SMN also stimulates neurite outgrowth in cultures. Our results are therefore consistent with SMN complexes, rather than SMN alone, being involved in the transport of actin mRNPs along the axon as in the transport of snRNPs into the nucleus by similar SMN complexes. Antisense knockdown of profilin I and II isoforms inhibited neurite outgrowth of PC12 cells and caused accumulation of SMN and its associated proteins in cytoplasmic aggregates. BIAcore studies demonstrated a high affinity interaction of SMN with profilin IIa, the isoform present in developing neurons. Pathogenic missense mutations in SMN, or deletion of exons 5 and 7, prevented this interaction. The interaction is functional in that SMN can modulate actin polymerisation in vitro by reducing the inhibitory effect of profilin IIa. This suggests that reduced SMN in SMA might cause axonal pathfinding defects by disturbing the normal regulation of microfilament growth by profilins

  12. The protection of acetylcholinesterase inhibitor on β-amyloid-induced injury of neurite outgrowth via regulating axon guidance related genes expression in neuronal cells

    Shen, Jiao-Ning; Wang, Deng-Shun; Wang, Rui

    2012-01-01

    Cognitive deficits in AD correlate with progressive synaptic dysfunction and loss. The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role in cellular motility and cytokinesis. Acetylcholinesterase inhibitor has been found to protect cells against a broad range of reagents-induced injuries. Present studies examined if the effect of HupA on neurite outgrowth in Aβ-treated neuronal cells executed via regulating Rho-GTPase mediated axon guidance relative gene expression. Affymetrix cDNA microarray assay followed by real-time RT-PCR and Western Blotting analysis were used to elucidate and analyze the signaling pathway involved in Aβ and HupA’s effects. The effects of Aβ and HupA on the neurite outgrowth were further confirmed via immunofluorescence staining. Aβ up-regulated the mRNA expressions of NFAT5, LIMK1, EPHA1, NTN4 and RAC2 markedly in SH-SY5Y cells. Co-incubation of Aβ and HupA reversed or decreased the changes of NFAT5, NTN4, RAC2, CDC42 and SEMA4F. HupA treated alone increased NFAT5, LIMK1, NTN4 significantly. Following qRT-PCR validation showed that the correlation of the gene expression ratio between microarray and qRT-PCR is significant. Western blot result showed that the change of CDC42 protein is consistent with the mRNA level while RAC2 is not. The morphological results confirmed that HupA improved, or partly reversed, the Aβ-induced damage of neurite outgrowth. The protective effect of HupA from Aβ induced morphological injury might be correlative to, at least partially, regulating the network of neurite outgrowth related genes. PMID:23119107

  13. The protection of acetylcholinesterase inhibitor on β-amyloid-induced the injury of neurite outgrowth via regulating axon guidance related genes expression in neuronal cells.

    Shen, Jiao-Ning; Wang, Deng-Shun; Wang, Rui

    2012-01-01

    Cognitive deficits in AD correlate with progressive synaptic dysfunction and loss. The Rho family of small GTPases, including Rho, Rac, and Cdc42, has a central role in cellular motility and cytokinesis. Acetylcholinesterase inhibitor has been found to protect cells against a broad range of reagents-induced injuries. Present studies examined if the effect of HupA on neurite outgrowth in Aβ-treated neuronal cells executed via regulating Rho-GTPase mediated axon guidance relative gene expression. Affymetrix cDNA microarray assay followed by real-time RT-PCR and Western Blotting analysis were used to elucidate and analyze the signaling pathway involved in Aβ and HupA's effects. The effects of Aβ and HupA on the neurite outgrowth were further confirmed via immunofluorescence staining. Aβ up-regulated the mRNA expressions of NFAT5, LIMK1, EPHA1, NTN4 and RAC2 markedly in SH-SY5Y cells. Co-incubation of Aβ and HupA reversed or decreased the changes of NFAT5, NTN4, RAC2, CDC42 and SEMA4F. HupA treated alone increased NFAT5, LIMK1, NTN4 significantly. Following qRT-PCR validation showed that the correlation of the gene expression ratio between microarray and qRT-PCR is significant. Western blot result showed that the change of CDC42 protein is consistent with the mRNA level while RAC2 is not. The morphological results confirmed that HupA improved, or partly reversed, the Aβ-induced damage of neurite outgrowth. The protective effect of HupA from Aβ induced morphological injury might be correlative to, at least partially, regulating the network of neurite outgrowth related genes.

  14. Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1

    Ma, Qinlong; Chen, Chunhai; Deng, Ping; Zhu, Gang; Lin, Min; Zhang, Lei; Xu, Shangcheng; He, Mindi; Lu, Yonghui; Duan, Weixia; Pi, Huifeng; Cao, Zhengwang; Pei, Liping; Li, Min; Liu, Chuan; Zhang, Yanwen; Zhong, Min; Zhou, Zhou; Yu, Zhengping

    2016-01-01

    Exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) can enhance hippocampal neurogenesis in adult mice. However, little is focused on the effects of ELF-EMFs on embryonic neurogenesis. Here, we studied the potential effects of ELF-EMFs on embryonic neural stem cells (eNSCs). We exposed eNSCs to ELF-EMF (50 Hz, 1 mT) for 1, 2, and 3 days with 4 hours per day. We found that eNSC proliferation and maintenance were significantly enhanced after ELF-EMF exposure in proliferation medium. ELF-EMF exposure increased the ratio of differentiated neurons and promoted the neurite outgrowth of eNSC-derived neurons without influencing astrocyes differentiation and the cell apoptosis. In addition, the expression of the proneural genes, NeuroD and Ngn1, which are crucial for neuronal differentiation and neurite outgrowth, was increased after ELF-EMF exposure. Moreover, the expression of transient receptor potential canonical 1 (TRPC1) was significantly up-regulated accompanied by increased the peak amplitude of intracellular calcium level induced by ELF-EMF. Furthermore, silencing TRPC1 expression eliminated the up-regulation of the proneural genes and the promotion of neuronal differentiation and neurite outgrowth induced by ELF-EMF. These results suggest that ELF-EMF exposure promotes the neuronal differentiation and neurite outgrowth of eNSCs via up-regulation the expression of TRPC1 and proneural genes (NeuroD and Ngn1). These findings also provide new insights in understanding the effects of ELF-EMF exposure on embryonic brain development. PMID:26950212

  15. Effect of Exosomes from Rat Adipose-Derived Mesenchymal Stem Cells on Neurite Outgrowth and Sciatic Nerve Regeneration After Crush Injury.

    Bucan, Vesna; Vaslaitis, Desiree; Peck, Claas-Tido; Strauß, Sarah; Vogt, Peter M; Radtke, Christine

    2018-06-21

    Peripheral nerve injury requires optimal conditions in both macro-environment and microenvironment for promotion of axonal regeneration. However, most repair strategies of traumatic peripheral nerve injury often lead to dissatisfying results in clinical outcome. Though various strategies have been carried out to improve the macro-environment, the underlying molecular mechanism of axon regeneration in the microenvironment provided by nerve conduit remains unclear. In this study, we evaluate the effects of from adipose-derived mesenchymal stem cells (adMSCs) originating exosomes with respect to sciatic nerve regeneration and neurite growth. Molecular and immunohistochemical techniques were used to investigate the presence of characteristic exosome markers. A co-culture system was established to determine the effect of exosomes on neurite elongation in vitro. The in vivo walking behaviour of rats was evaluated by footprint analysis, and the nerve regeneration was assessed by immunocytochemistry. adMSCs secrete nano-vesicles known as exosomes, which increase neurite outgrowth in vitro and enhance regeneration after sciatic nerve injury in vivo. Furthermore, we showed the presence of neural growth factors transcripts in adMSC exosomes for the first time. Our results demonstrate that exosomes, constitutively produced by adMSCs, are involved in peripheral nerve regeneration and have the potential to be utilised as a therapeutic tool for effective tissue-engineered nerves.

  16. Zebrafish diras1 Promoted Neurite Outgrowth in Neuro-2a Cells and Maintained Trigeminal Ganglion Neurons In Vivo via Rac1-Dependent Pathway.

    Yeh, Chi-Wei; Hsu, Li-Sung

    2016-12-01

    The small GTPase Ras superfamily regulates several neuronal functions including neurite outgrowth and neuron proliferation. In this study, zebrafish diras1a and diras1b were identified and were found to be mainly expressed in the central nervous system and dorsal neuron ganglion. Overexpression of green fluorescent protein (GFP)-diras1a or GFP-diras1b triggered neurite outgrowth of Neuro-2a cells. The wild types, but not the C terminus truncated forms, of diras1a and diras1b elevated the protein level of Ras-related C3 botulinum toxin substrate 1 (Rac1) and downregulated Ras homologous member A (RhoA) expression. Glutathione S-transferase (GST) pull-down assay also revealed that diras1a and diras1b enhanced Rac1 activity. Interfering with Rac1, Pak1, or cyclin-dependent kinase 5 (CDK5) activity or with the Arp2/3 inhibitor prevented diras1a and diras1b from mediating the neurite outgrowth effects. In the zebrafish model, knockdown of diras1a and/or diras1b by morpholino antisense oligonucleotides not only reduced axon guidance but also caused the loss of trigeminal ganglion without affecting the precursor markers, such as ngn1 and neuroD. Co-injection with messenger RNA (mRNA) derived from mouse diras1 or constitutively active human Rac1 restored the population of trigeminal ganglion. In conclusion, we provided preliminary evidence that diras1 is involved in neurite outgrowth and maintains the number of trigeminal ganglions through the Rac1-dependent pathway.

  17. Human adipose tissue-derived multilineage progenitor cells exposed to oxidative stress induce neurite outgrowth in PC12 cells through p38 MAPK signaling

    Moriyama Mariko

    2012-08-01

    Full Text Available Abstract Background Adipose tissues contain populations of pluripotent mesenchymal stem cells that also secrete various cytokines and growth factors to support repair of damaged tissues. In this study, we examined the role of oxidative stress on human adipose-derived multilineage progenitor cells (hADMPCs in neurite outgrowth in cells of the rat pheochromocytoma cell line (PC12. Results We found that glutathione depletion in hADMPCs, caused by treatment with buthionine sulfoximine (BSO, resulted in the promotion of neurite outgrowth in PC12 cells through upregulation of bone morphogenetic protein 2 (BMP2 and fibroblast growth factor 2 (FGF2 transcription in, and secretion from, hADMPCs. Addition of N-acetylcysteine, a precursor of the intracellular antioxidant glutathione, suppressed the BSO-mediated upregulation of BMP2 and FGF2. Moreover, BSO treatment caused phosphorylation of p38 MAPK in hADMPCs. Inhibition of p38 MAPK was sufficient to suppress BMP2 and FGF2 expression, while this expression was significantly upregulated by overexpression of a constitutively active form of MKK6, which is an upstream molecule from p38 MAPK. Conclusions Our results clearly suggest that glutathione depletion, followed by accumulation of reactive oxygen species, stimulates the activation of p38 MAPK and subsequent expression of BMP2 and FGF2 in hADMPCs. Thus, transplantation of hADMPCs into neurodegenerative lesions such as stroke and Parkinson’s disease, in which the transplanted hADMPCs are exposed to oxidative stress, can be the basis for simple and safe therapies.

  18. Loss of Aβ-nerve endings associated with the Merkel cell-neurite complex in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis.

    Carrión, Daniela Calderón; Korkmaz, Yüksel; Cho, Britta; Kopp, Marion; Bloch, Wilhelm; Addicks, Klaus; Niedermeier, Wilhelm

    2016-03-30

    The Merkel cell-neurite complex initiates the perception of touch and mediates Aβ slowly adapting type I responses. Lichen planus is a chronic inflammatory autoimmune disease with T-cell-mediated inflammation, whereas hyperkeratosis is characterized with or without epithelial dysplasia in the oral mucosa. To determine the effects of lichen planus and hyperkeratosis on the Merkel cell-neurite complex, healthy oral mucosal epithelium and lesional oral mucosal epithelium of lichen planus and hyperkeratosis patients were stained by immunohistochemistry (the avidin-biotin-peroxidase complex and double immunofluorescence methods) using pan cytokeratin, cytokeratin 20 (K20, a Merkel cell marker), and neurofilament 200 (NF200, a myelinated Aβ- and Aδ-nerve fibre marker) antibodies. NF200-immunoreactive (ir) nerve fibres in healthy tissues and in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis were counted and statistically analysed. In the healthy oral mucosa, K20-positive Merkel cells with and without close association to the intraepithelial NF200-ir nerve fibres were detected. In the lesional oral mucosa of lichen planus and hyperkeratosis patients, extremely rare NF200-ir nerve fibres were detected only in the lamina propria. Compared with healthy tissues, lichen planus and hyperkeratosis tissues had significantly decreased numbers of NF200-ir nerve fibres in the oral mucosal epithelium. Lichen planus and hyperkeratosis were associated with the absence of Aβ-nerve endings in the oral mucosal epithelium. Thus, we conclude that mechanosensation mediated by the Merkel cell-neurite complex in the oral mucosal epithelium is impaired in lichen planus and hyperkeratosis.

  19. Neurite outgrowth in human induced pluripotent stem cell-derived neurons as a high-throughput screen for developmental neurotoxicity or neurotoxicity.

    Ryan, Kristen R; Sirenko, Oksana; Parham, Fred; Hsieh, Jui-Hua; Cromwell, Evan F; Tice, Raymond R; Behl, Mamta

    2016-03-01

    Due to the increasing prevalence of neurological disorders and the large number of untested compounds in the environment, there is a need to develop reliable and efficient screening tools to identify environmental chemicals that could potentially affect neurological development. Herein, we report on a library of 80 compounds screened for their ability to inhibit neurite outgrowth, a process by which compounds may elicit developmental neurotoxicity, in a high-throughput, high-content assay using human neurons derived from induced pluripotent stem cells (iPSC). The library contains a diverse set of compounds including those that have been known to be associated with developmental neurotoxicity (DNT) and/or neurotoxicity (NT), environmental compounds with unknown neurotoxic potential (e.g., polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs)), as well as compounds with no documented neurotoxic potential. Neurons were treated for 72h across a 6-point concentration range (∼0.3-100μM) in 384-well plates. Effects on neurite outgrowth were assessed by quantifying total outgrowth, branches, and processes. We also assessed the number ofviable cells per well. Concentration-response profiles were evaluated using a Hill model to derive benchmark concentration (BMC) values. Assay performance was evaluated using positive and negative controls and test replicates. Compounds were ranked by activity and selectivity (i.e., specific effects on neurite outgrowth in the absence of concomitant cytotoxicity) and repeat studies were conducted to confirm selectivity. Among the 80 compounds tested, 38 compounds were active, of which 16 selectively inhibited neurite outgrowth. Of these 16 compounds, 12 were known to cause DNT/NT and the remaining 4 compounds included 3 PAHs and 1 FR. In independent repeat studies, 14/16 selective compounds were reproducibly active in the assay, of which only 6 were selective for inhibition of neurite outgrowth. These 6 compounds were

  20. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    Flaskos, J., E-mail: flaskos@vet.auth.gr [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Nikolaidis, E. [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Harris, W. [School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); Sachana, M. [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hargreaves, A.J., E-mail: alan.hargreaves@ntu.ac.uk [School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom)

    2011-11-15

    Previous work in our laboratory has shown that sub-lethal concentrations (1-10 {mu}M) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1-10 {mu}M) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, there was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: Black-Right-Pointing-Pointer Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells Black-Right-Pointing-Pointer Acetylcholinesterase exhibits sustained inhibition throughout exposure Black-Right-Pointing-Pointer The levels of neurofilament heavy chain and GAP-43

  1. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    Flaskos, J.; Nikolaidis, E.; Harris, W.; Sachana, M.; Hargreaves, A.J.

    2011-01-01

    Previous work in our laboratory has shown that sub-lethal concentrations (1–10 μM) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1–10 μM) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, there was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: ► Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells ► Acetylcholinesterase exhibits sustained inhibition throughout exposure ► The levels of neurofilament heavy chain and GAP-43 protein are reduced ► Neurofilament heavy chain forms aggregates in cell

  2. The selective and inducible activation of endogenous PI 3-kinase in PC12 cells results in efficient NGF-mediated survival but defective neurite outgrowth.

    Ashcroft, M; Stephens, R M; Hallberg, B; Downward, J; Kaplan, D R

    1999-08-12

    The Trk/Nerve Growth Factor receptor mediates the rapid activation of a number of intracellular signaling proteins, including phosphatidylinositol 3-kinase (PI 3-kinase). Here, we describe a novel, NGF-inducible system that we used to specifically address the signaling potential of endogenous PI 3-kinase in NGF-mediated neuronal survival and differentiation processes. This system utilizes a Trk receptor mutant (Trk(def)) lacking sequences Y490, Y785 and KFG important for the activation of the major Trk targets; SHC, PLC-gammal, Ras, PI 3-kinase and SNT. Trk(def) was kinase active but defective for NGF-induced responses when stably expressed in PC12nnr5 cells (which lack detectable levels of TrkA and are non-responsive to NGF). The PI 3-kinase consensus binding site, YxxM (YVPM), was introduced into the insert region within the kinase domain of Trk(def). NGF-stimulated tyrosine phosphorylation of the Trk(def)+PI 3-kinase addback receptor, resulted in the direct association and selective activation of PI 3-kinase in vitro and the production of PI(3,4)P2 and PI(3,4,5)P3 in vivo (comparable to wild-type). PC12nnr5 cells stably expressing Trk(def) + PI 3-kinase, initiated neurite outgrowth but failed to stably extend and maintain these neurites in response to NGF as compared to PC12 parental cells, or PC12nnr5 cells overexpressing wild-type Trk. However, Trk(def) + PI 3-kinase was fully competent in mediating NGF-induced survival processes. We propose that while endogenous PI 3-kinase can contribute in part to neurite initiation processes, its selective activation and subsequent signaling to downstream effectors such as Akt, functions mainly to promote cell survival in the PC12 system.

  3. Constitutive Overexpression of the Basic Helix-Loop-Helix Nex1/MATH-2 Transcription Factor Promotes Neuronal Differentiation of PC12 Cells and Neurite Regeneration

    Uittenbogaard, Martine; Chiaramello, Anne

    2009-01-01

    Elucidation of the intricate transcriptional pathways leading to neural differentiation and the establishment of neuronal identity is critical to the understanding and design of therapeutic approaches. Among the important players, the basic helix-loop-helix (bHLH) transcription factors have been found to be pivotal regulators of neurogenesis. In this study, we investigate the role of the bHLH differentiation factor Nex1/MATH-2 in conjunction with the nerve growth factor (NGF) signaling pathway using the rat phenochromocytoma PC12 cell line. We report that the expression of Nex1 protein is induced after 5 hr of NGF treatment and reaches maximal levels at 24 hr, when very few PC12 cells have begun extending neurites and ceased cell division. Furthermore, our study demonstrates that Nex1 has the ability to trigger neuronal differentiation of PC12 cells in the absence of neurotrophic factor. We show that Nex1 plays an important role in neurite outgrowth and has the capacity to regenerate neurite outgrowth in the absence of NGF. These results are corroborated by the fact that Nex1 targets a repertoire of distinct types of genes associated with neuronal differentiation, such as GAP-43, βIII-tubulin, and NeuroD. In addition, our findings show that Nex1 up-regulates the expression of the mitotic inhibitor p21WAF1, thus linking neuronal differentiation to cell cycle withdrawal. Finally, our studies show that overexpression of a Nex1 mutant has the ability to block the execution of NGF-induced differentiation program, suggesting that Nex1 may be an important effector of the NGF signaling pathway. PMID:11782967

  4. Neurite outgrowth stimulatory effects of myco­synthesized AuNPs from Hericium erinaceus (Bull.: Fr. Pers. on pheochromocytoma (PC-12 cells

    Raman J

    2015-09-01

    Full Text Available Jegadeesh Raman,1 Hariprasath Lakshmanan,1 Priscilla A John,1,2 Chan Zhijian,3 Vengadesh Periasamy,3 Pamela David,1,4 Murali Naidu,1,4 Vikineswary Sabaratnam1,2 1Mushroom Research Centre, 2Institute of Biological Sciences, Faculty of Science, University of Malaya, 3Low Dimensional Materials Research Center (LDMRC, Department of Physics, Faculty of Science, 4Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia Background: Hericium erinaceus has been reported to have a wide range of medicinal properties such as stimulation of neurite outgrowth, promotion of functional recovery of axonotmetic peroneal nerve injury, antioxidant, antihypertensive, and antidiabetic properties. In recent years, the green synthesis of gold nanoparticles (AuNPs has attracted intense interest due to the potential use in biomedical applications. The aim of this study was to investigate the effects of AuNPs from aqueous extract of H. erinaceus on neurite outgrowth of rat pheochromocytoma (PC-12 cells. Methods: The formation of AuNPs was characterized by UV–visible spectrum, energy dispersive X-ray (EDX, field-emission scanning electron microscope (FESEM, transmission electron microscopy (TEM, particle size distribution, and Fourier transform-infrared spectroscopy (FTIR. Furthermore, the neurite extension study of synthesized AuNPs was evaluated by in vitro assay. Results: The AuNPs exhibited maximum absorbance between 510 and 600 nm in UV–visible spectrum. FESEM and TEM images showed the existence of nanoparticles with sizes of 20–40 nm. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. The purity and the crystalline properties were confirmed by EDX diffraction analysis, which showed strong signals with energy peaks in the range of 2–2.4 keV, indicating the existence of gold atoms. The synthesized AuNPs showed significant neurite

  5. Effects of huperzine A on secretion of nerve growth factor in cultured rat cortical astrocytes and neurite outgrowth in rat PC12 cells.

    Tang, Li-li; Wang, Rui; Tang, Xi-can

    2005-06-01

    To study the effects of huperzine A (HupA) on neuritogenic activity and the expression of nerve growth factor (NGF). After being treated with 10 micromol/L HupA, neurite outgrowth of PC12 cells was observed and counted under phase-contrast microscopy. Mitogenic activity was assayed by [3H]thymidine incorporation. Cell cytotoxicity was evaluated by lactate dehydrogenase (LDH) release. AChE activity, mRNA and protein expression were measured by the Ellman method, RT-PCR, and Western blot, respectively. NGF mRNA and protein levels were determined by RT-PCR and ELISA assays. Treatment of PC12 cells with 10 micromol/L HupA for 48 h markedly increased the number of neurite-bearing cells, but caused no significant alteration in cell viability or other signs of cytotoxicity. In addition to inhibiting AChE activity, 10 micromol/L HupA also increased the mRNA and protein levels of this enzyme. In addition, following 2 h exposure of the astrocytes to 10 micromol/L HupA, there was a significant up-regulation of mRNA for NGF and P75 low-affinity NGF receptor. The protein level of NGF was also increased after 24 h treatment with HupA. Our findings demonstrate for the first time that HupA has a direct or indirect neurotrophic activity, which might be beneficial in treatment of neurodegenerative disorders such as Alzheimer disease.

  6. The Traditional Japanese Herbal Medicine Hachimijiogan Elicits Neurite Outgrowth Effects in PC12 Cells and Improves Cognitive in AD Model Rats via Phosphorylation of CREB

    Kaori Kubota

    2017-11-01

    Full Text Available Hachimijiogan (HJG is a traditional herbal medicine that improves anxiety disorders in patients with dementia. In this study, we tested the hypothesis that HJG exerts neurotrophic factor-like effects to ameliorate memory impairment in Alzheimer disease (AD model rats. First, we describe that HJG acts to induce neurite outgrowth in PC12 cells (a rat pheochromocytoma cell line like nerve growth factor (NGF in a concentration-dependent manner (3 μg/ml HJG, p < 0.05; 10–500 μg/ml HJG, p < 0.001. While six herbal constituents of HJG, Rehmannia root, Dioscorea rhizome, Rhizoma Alismatis, Poria sclerotium, Moutan bark, and Cinnamon bark, could induce neurite outgrowth effects, the effect was strongest with HJG (500 μg/ml. Second, we demonstrated that HJG-induced neurite outgrowth was blocked by an inhibitor of cAMP response element binding protein (CREB, KG-501 (10 μM, p < 0.001. Moreover, HJG was observed to induce CREB phosphorylation 20–90 min after treatment (20 min, 2.50 ± 0.58-fold and CRE-mediated transcription in cultured PC12 cells (500 μg/ml, p < 0.01; 1000 μg/ml, p < 0.001. These results suggest a CREB-dependent mechanism underlies the neurotrophic effects of HJG. Finally, we examined improvements of memory impairment following HJG treatment using a Morris water maze in AD model animals (CI + Aβ rats. Repeated oral administration of HJG improved memory impairment (300 mg/kg, p < 0.05; 1000 mg/kg, p < 0.001 and induced CREB phosphorylation within the hippocampus (1000 mg/kg, p < 0.01. Together, our results suggest that HJG possesses neurotrophic effects similar to those of NGF, and can ameliorate cognitive dysfunction in a rat dementia model via CREB activation. Thus, HJG could potentially be a substitute for neurotrophic factors as a treatment for dementia.

  7. Human neutrophils facilitate tumor cell transendothelial migration.

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  8. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    Kolkova, K; Novitskaya, V; Pedersen, N

    2000-01-01

    , inhibitors of the nonreceptor tyrosine kinase p59(fyn), PLC, PKC and MEK and an activator of PKC, phorbol-12-myristate-13-acetate (PMA). MEK2 transfection rescued cells treated with all inhibitors. The same was found for PMA treatment, except when cells concomitantly were treated with the MEK inhibitor....... Arachidonic acid rescued cells treated with antibodies to the FGF receptor or the PLC inhibitor, but not cells in which the activity of PKC, p59(fyn), FAK, Ras, or MEK was inhibited. Interaction of NCAM with a synthetic NCAM peptide ligand, known to induce neurite outgrowth, was shown to stimulate...... phosphorylation of the MAP kinases extracellular signal-regulated kinases ERK1 and ERK2. The MAP kinase activation was sustained, because ERK1 and ERK2 were phosphorylated in PC12-E2 cells and primary hippocampal neurons even after 24 hr of cultivation on NCAM-expressing fibroblasts. Based on these results, we...

  9. Hydrogel Design for Supporting Neurite Outgrowth and Promoting Gene Delivery to Maximize Neurite Extension

    Shepard, Jaclyn A.; Stevans, Alyson C.; Holland, Samantha; Wang, Christine E.; Shikanov, Ariella; Shea, Lonnie D.

    2012-01-01

    Hydrogels capable of gene delivery provide a combinatorial approach for nerve regeneration, with the hydrogel supporting neurite outgrowth and gene delivery inducing the expression of inductive factors. This report investigates the design of hydrogels that balance the requirements for supporting neurite growth with those requirements for promoting gene delivery. Enzymatically-degradable PEG hydrogels encapsulating dorsal root ganglia explants, fibroblasts, and lipoplexes encoding nerve growth factor were gelled within channels that can physically guide neurite outgrowth. Transfection of fibroblasts increased with increasing concentration of Arg-Gly-Asp (RGD) cell adhesion sites and decreasing PEG content. The neurite length increased with increasing RGD concentration within 10% PEG hydrogels, yet was maximal within 7.5% PEG hydrogels at intermediate RGD levels. Delivering lipoplexes within the gel produced longer neurites than culture in NGF-supplemented media or co-culture with cells exposed to DNA prior to encapsulation. Hydrogels designed to support neurite outgrowth and deliver gene therapy vectors locally may ultimately be employed to address multiple barriers that limit regeneration. PMID:22038654

  10. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R., E-mail: mundy.william@epa.gov

    2011-11-15

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  11. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R.

    2011-01-01

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  12. Lion's Mane, Hericium erinaceus and Tiger Milk, Lignosus rhinocerotis (Higher Basidiomycetes) Medicinal Mushrooms Stimulate Neurite Outgrowth in Dissociated Cells of Brain, Spinal Cord, and Retina: An In Vitro Study.

    Samberkar, Snehlata; Gandhi, Sivasangkary; Naidu, Murali; Wong, Kah-Hui; Raman, Jegadeesh; Sabaratnam, Vikineswary

    2015-01-01

    Neurodegenerative disease is defined as a deterioration of the nervous system in the intellectual and cognitive capabilities. Statistics show that more than 80-90 million individuals age 65 and above in 2050 may be affected by neurodegenerative conditions like Alzheimer's and Parkinson's disease. Studies have shown that out of 2000 different types of edible and/or medicinal mushrooms, only a few countable mushrooms have been selected until now for neurohealth activity. Hericium erinaceus is one of the well-established medicinal mushrooms for neuronal health. It has been documented for its regenerative capability in peripheral nerve. Another mushroom used as traditional medicine is Lignosus rhinocerotis, which has been used for various illnesses. It has been documented for its neurite outgrowth potential in PC12 cells. Based on the regenerative capabilities of both the mushrooms, priority was given to select them for our study. The aim of this study was to investigate the potential of H. erinaceus and L. rhinocerotis to stimulate neurite outgrowth in dissociated cells of brain, spinal cord, and retina from chick embryo when compared to brain derived neurotrophic factor (BDNF). Neurite outgrowth activity was confirmed by the immu-nofluorescence method in all tissue samples. Treatment with different concentrations of extracts resulted in neuronal differentiation and neuronal elongation. H. erinaceus extract at 50 µg/mL triggered neurite outgrowth at 20.47%, 22.47%, and 21.70% in brain, spinal cord, and retinal cells. L. rhinocerotis sclerotium extract at 50 µg/mL induced maximum neurite outgrowth of 20.77% and 24.73% in brain and spinal cord, whereas 20.77% of neurite outgrowth was observed in retinal cells at 25 µg/mL, respectively.

  13. Vasoactive intestinal peptide-induced neurite remodeling in human neuroblastoma SH-SY5Y cells implicates the Cdc42 GTPase and is independent of Ras-ERK pathway

    Alleaume, Celine; Eychene, Alain; Harnois, Thomas; Bourmeyster, Nicolas; Constantin, Bruno; Caigneaux, Evelyne; Muller, Jean-Marc; Philippe, Michel

    2004-01-01

    Vasoactive intestinal peptide (VIP) is known to regulate proliferation or differentiation in normal and tumoral cells. SH-SY5Y is a differentiated cell subclone derived from the SK-N-SH human neuroblastoma cell line and possess all the components for an autocrine action of VIP. In the present study, we investigated the morphological changes and intracellular signaling pathways occurring upon VIP treatment of SH-SY5Y cells. VIP induced an early remodeling of cell projections: a branched neurite network spread out and prominent varicosities developed along neurites. Although activated by VIP, the Ras/ERK pathway was not required for the remodeling process. In contrast, pull-down experiments revealed a strong Cdc42 activation by VIP while expression of a dominant-negative Cdc42 prevented the VIP-induced neurite changes, suggesting an important role for this small GTPase in the process. These data provide the first evidence for a regulation of the activity of Rho family GTPases by VIP and bring new insights in the signaling pathways implicated in neurite remodeling process induced by VIP in neuroblastoma cells

  14. Characterization of BASP1-mediated neurite outgrowth

    Korshunova, Irina; Caroni, Pico; Kolkova, Kateryna

    2008-01-01

    The brain acid-soluble protein BASP1 (CAP-23, NAP-22) belongs to the family of growth-associated proteins, which also includes GAP-43, a protein recently shown to regulate neural cell adhesion molecule (NCAM)-mediated neurite outgrowth. Here, the effects of BASP1 overexpression were investigated...

  15. Endothelin-2/Vasoactive Intestinal Contractor: Regulation of Expression via Reactive Oxygen Species Induced by CoCl22, and Biological Activities Including Neurite Outgrowth in PC12 Cells

    Eiichi Kotake-Nara

    2006-01-01

    Full Text Available This paper reviews the local hormone endothelin-2 (ET-2, or vasoactive intestinal contractor (VIC, a member of the vasoconstrictor ET peptide family, where ET-2 is the human orthologous peptide of the murine VIC. While ET-2/VIC gene expression has been observed in some normal tissues, ET-2 recently has been reported to act as a tumor marker and as a hypoxia-induced autocrine survival factor in tumor cells. A recently published study reported that the hypoxic mimetic agent CoCl2 at 200 µM increased expression of the ET-2/VIC gene, decreased expression of the ET-1 gene, and induced intracellular reactive oxygen species (ROS increase and neurite outgrowth in neuronal model PC12 cells. The ROS was generated by addition of CoCl2 to the culture medium, and the CoCl2-induced effects were completely inhibited by the antioxidant N-acetyl cysteine. Furthermore, interleukin-6 (IL-6 gene expression was up-regulated upon the differentiation induced by CoCl2. These results suggest that expression of ET-2/VIC and ET-1 mediated by CoCl2-induced ROS may be associated with neuronal differentiation through the regulation of IL-6 expression. CoCl2 acts as a pro-oxidant, as do Fe(II, III and Cu(II. However, some biological activities have been reported for CoCl2 that have not been observed for other metal salts such as FeCl3, CuSO4, and NiCl2. The characteristic actions of CoCl2 may be associated with the differentiation of PC12 cells. Further elucidation of the mechanism of neurite outgrowth and regulation of ET-2/VIC expression by CoCl2 may lead to the development of treatments for neuronal disorders.

  16. Toward the Development of an Artificial Brain on a Micropatterned and Material-Regulated Biochip by Guiding and Promoting the Differentiation and Neurite Outgrowth of Neural Stem/Progenitor Cells.

    Liu, Yung-Chiang; Lee, I-Chi; Lei, Kin Fong

    2018-02-14

    An in vitro model mimicking the in vivo environment of the brain must be developed to study neural communication and regeneration and to obtain an understanding of cellular and molecular responses. In this work, a multilayered neural network was successfully constructed on a biochip by guiding and promoting neural stem/progenitor cell differentiation and network formation. The biochip consisted of 3 × 3 arrays of cultured wells connected with channels. Neurospheroids were cultured on polyelectrolyte multilayer (PEM) films in the culture wells. Neurite outgrowth and neural differentiation were guided and promoted by the micropatterns and the PEM films. After 5 days in culture, a 3 × 3 neural network was constructed on the biochip. The function and the connections of the network were evaluated by immunocytochemistry and impedance measurements. Neurons were generated and produced functional and recyclable synaptic vesicles. Moreover, the electrical connections of the neural network were confirmed by measuring the impedance across the neurospheroids. The current work facilitates the development of an artificial brain on a chip for investigations of electrical stimulations and recordings of multilayered neural communication and regeneration.

  17. Chlorpyrifos- and chlorpyrifos oxon-induced neurite retraction in pre-differentiated N2a cells is associated with transient hyperphosphorylation of neurofilament heavy chain and ERK 1/2

    Sindi, Ramya A., E-mail: ramya.sindi2010@my.ntu.ac.uk [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); School of Applied Medical Sciences, Umm Al-Qura University, Makkah (Saudi Arabia); Harris, Wayne [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); Arnott, Gordon [School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS (United Kingdom); Flaskos, John [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Lloyd Mills, Chris [School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS (United Kingdom); Hargreaves, Alan J., E-mail: alan.hargreaves@ntu.ac.uk [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom)

    2016-10-01

    Chlorpyrifos (CPF) and CPF-oxon (CPO) are known to inhibit neurite outgrowth but little is known about their ability to induce neurite retraction in differentiating neuronal cells. The aims of this study were to determine the ability of these compounds to destabilize neurites and to identify the key molecular events involved. N2a cells were induced to differentiate for 20 h before exposure to CPF or CPO for 2–8 h. Fixed cell monolayers labeled with carboxyfluorescein succinimidyl ester or immunofluorescently stained with antibodies to tubulin (B512) or phosphorylated neurofilament heavy chain (Ta51) showed time- and concentration-dependent reductions in numbers and length of axon-like processes compared to the control, respectively, retraction of neurites being observed within 2 h of exposure by live cell imaging. Neurofilament disruption was also observed in treated cells stained by indirect immunofluorescence with anti-phosphorylated neurofilament heavy chain (NFH) monoclonal antibody SMI34, while the microtubule network was unaffected. Western blotting analysis revealed transiently increased levels of reactivity of Ta51 after 2 h exposure and reduced levels of reactivity of the same antibody following 8 h treatment with both compounds, whereas reactivity with antibodies to anti-total NFH or anti-tubulin was not affected. The alteration in NFH phosphorylation at 2 h exposure was associated with increased activation of extracellular signal-regulated protein kinase ERK 1/2. However, increased levels of phosphatase activity were observed following 8 h exposure. These findings suggest for the first time that organophosphorothionate pesticide-induced neurite retraction in N2a cells is associated with transient increases in NFH phosphorylation and ERK1/2 activation. - Highlights: • Chlorpyrifos and chlorpyrifos oxon induced rapid neurite retraction in N2a cells. • This occurred following transient hyperphosphorylation of ERK 1/2. • It was concomitant with

  18. Chlorpyrifos- and chlorpyrifos oxon-induced neurite retraction in pre-differentiated N2a cells is associated with transient hyperphosphorylation of neurofilament heavy chain and ERK 1/2

    Sindi, Ramya A.; Harris, Wayne; Arnott, Gordon; Flaskos, John; Lloyd Mills, Chris; Hargreaves, Alan J.

    2016-01-01

    Chlorpyrifos (CPF) and CPF-oxon (CPO) are known to inhibit neurite outgrowth but little is known about their ability to induce neurite retraction in differentiating neuronal cells. The aims of this study were to determine the ability of these compounds to destabilize neurites and to identify the key molecular events involved. N2a cells were induced to differentiate for 20 h before exposure to CPF or CPO for 2–8 h. Fixed cell monolayers labeled with carboxyfluorescein succinimidyl ester or immunofluorescently stained with antibodies to tubulin (B512) or phosphorylated neurofilament heavy chain (Ta51) showed time- and concentration-dependent reductions in numbers and length of axon-like processes compared to the control, respectively, retraction of neurites being observed within 2 h of exposure by live cell imaging. Neurofilament disruption was also observed in treated cells stained by indirect immunofluorescence with anti-phosphorylated neurofilament heavy chain (NFH) monoclonal antibody SMI34, while the microtubule network was unaffected. Western blotting analysis revealed transiently increased levels of reactivity of Ta51 after 2 h exposure and reduced levels of reactivity of the same antibody following 8 h treatment with both compounds, whereas reactivity with antibodies to anti-total NFH or anti-tubulin was not affected. The alteration in NFH phosphorylation at 2 h exposure was associated with increased activation of extracellular signal-regulated protein kinase ERK 1/2. However, increased levels of phosphatase activity were observed following 8 h exposure. These findings suggest for the first time that organophosphorothionate pesticide-induced neurite retraction in N2a cells is associated with transient increases in NFH phosphorylation and ERK1/2 activation. - Highlights: • Chlorpyrifos and chlorpyrifos oxon induced rapid neurite retraction in N2a cells. • This occurred following transient hyperphosphorylation of ERK 1/2. • It was concomitant with

  19. Quantifying Spiral Ganglion Neurite and Schwann Behavior on Micropatterned Polymer Substrates.

    Cheng, Elise L; Leigh, Braden; Guymon, C Allan; Hansen, Marlan R

    2016-01-01

    The first successful in vitro experiments on the cochlea were conducted in 1928 by Honor Fell (Fell, Arch Exp Zellforsch 7(1):69-81, 1928). Since then, techniques for culture of this tissue have been refined, and dissociated primary culture of the spiral ganglion has become a widely accepted in vitro model for studying nerve damage and regeneration in the cochlea. Additionally, patterned substrates have been developed that facilitate and direct neural outgrowth. A number of automated and semi-automated methods for quantifying this neurite outgrowth have been utilized in recent years (Zhang et al., J Neurosci Methods 160(1):149-162, 2007; Tapias et al., Neurobiol Dis 54:158-168, 2013). Here, we describe a method to study the effect of topographical cues on spiral ganglion neurite and Schwann cell alignment. We discuss our microfabrication process, characterization of pattern features, cell culture techniques for both spiral ganglion neurons and spiral ganglion Schwann cells. In addition, we describe protocols for reducing fibroblast count, immunocytochemistry, and methods for quantifying neurite and Schwann cell alignment.

  20. Proteomic analysis of differentiating neuroblastoma cells treated with sub-lethal neurite inhibitory concentrations of diazinon: Identification of novel biomarkers of effect

    Harris, W.; Sachana, M.; Flaskos, J.; Hargreaves, A.J.

    2009-01-01

    In previous work we showed that sub-lethal levels of diazinon inhibited neurite outgrowth in differentiating N2a neuroblastoma cells. Western blotting analysis targeted at proteins involved in axon growth and stress responses, revealed that such exposure led to a reduction in the levels of neurofilament heavy chain, microtubule associated protein 1 B (MAP 1B) and HSP-70. The aim of this study was to apply the approach of 2 dimensional polyacrylamide gel electrophoresis and mass spectrometry to identify novel biomarkers of effect. A number of proteins were found to be up-regulated compared to the control on silver-stained gels. These were classified in to 3 main groups of proteins: cytosolic factors, chaperones and the actin-binding protein cofilin, all of which are involved in cell differentiation, survival or metabolism. The changes observed for cofilin were further confirmed by quantitative Western blotting analysis with anti-actin and anti-cofilin antibodies. Indirect immunofluorescence staining with the same antibodies indicated that the microfilament network was disrupted in diazinon-treated cells. Our data suggest that microfilament organisation is disrupted by diazinon exposure, which may be related to increased cofilin expression.

  1. Neurite, a finite difference large scale parallel program for the simulation of electrical signal propagation in neurites under mechanical loading.

    Julián A García-Grajales

    Full Text Available With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon

  2. Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation.

    Ali, Niwa; Zirak, Bahar; Rodriguez, Robert Sanchez; Pauli, Mariela L; Truong, Hong-An; Lai, Kevin; Ahn, Richard; Corbin, Kaitlin; Lowe, Margaret M; Scharschmidt, Tiffany C; Taravati, Keyon; Tan, Madeleine R; Ricardo-Gonzalez, Roberto R; Nosbaum, Audrey; Bertolini, Marta; Liao, Wilson; Nestle, Frank O; Paus, Ralf; Cotsarelis, George; Abbas, Abul K; Rosenblum, Michael D

    2017-06-01

    The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of T regs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Low-Intensity Pulsed Ultrasound Enhances Nerve Growth Factor-Induced Neurite Outgrowth through Mechanotransduction-Mediated ERK1/2-CREB-Trx-1 Signaling.

    Zhao, Lu; Feng, Yi; Hu, Hong; Shi, Aiwei; Zhang, Lei; Wan, Mingxi

    2016-12-01

    Enhancing the action of nerve growth factor (NGF) is a potential therapeutic approach to neural regeneration. To facilitate neural regeneration, we investigated whether combining low-intensity pulsed ultrasound (LIPUS) and NGF could promote neurite outgrowth, an essential process in neural regeneration. In the present study, PC12 cells were subjected to a combination of LIPUS (1 MHz, 30 or 50 mW/cm 2 , 20% duty cycle and 100-Hz pulse repetition frequency, 10 min every other day) and NGF (50 ng/mL) treatment, and then neurite outgrowth was compared. Our findings indicated that the combined treatment with LIPUS (50 mW/cm 2 ) and NGF (50 ng/mL) promotes neurite outgrowth that is comparable to that achieved by NGF (100 ng/mL) treatment alone. LIPUS significantly increased NGF-induced neurite length, but not neurite branching. These effects were attributed to the enhancing effects of LIPUS on NGF-induced phosphorylation of ERK1/2 and CREB and the expression of thioredoxin (Trx-1). Furthermore, blockage of stretch-activated ion channels with Gd 3+ suppressed the stimulating effects of LIPUS on NGF-induced neurite outgrowth and the downstream signaling activation. Taken together, our findings suggest that LIPUS enhances NGF-induced neurite outgrowth through mechanotransduction-mediated signaling of the ERK1/2-CREB-Trx-1 pathway. The combination of LIPUS and NGF could potentially be used for the treatment of nerve injury and neurodegenerative diseases. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Electric field-induced astrocyte alignment directs neurite outgrowth.

    Alexander, John K; Fuss, Babette; Colello, Raymond J

    2006-05-01

    The extension and directionality of neurite outgrowth are key to achieving successful target connections during both CNS development and during the re-establishment of connections lost after neural trauma. The degree of axonal elongation depends, in large part, on the spatial arrangement of astrocytic processes rich in growth-promoting proteins. Because astrocytes in culture align their processes on exposure to an electrical field of physiological strength, we sought to determine the extent to which aligned astrocytes affect neurite outgrowth. To this end, dorsal root ganglia cells were seeded onto cultured rat astrocytes that were pre-aligned by exposure to an electric field of physiological strength (500 mV mm(-1)). Using confocal microscopy and digital image analysis, we found that neurite outgrowth at 24 hours and at 48 hours is enhanced significantly and directed consistently along the aligned astrocyte processes. Moreover, this directed neurite outgrowth is maintained when grown on fixed, aligned astrocytes. Collectively, these results indicate that endogenous electric fields present within the developing CNS might act to align astrocyte processes, which can promote and direct neurite growth. Furthermore, these results demonstrate a simple method to produce an aligned cellular substrate, which might be used to direct regenerating neurites.

  5. Shoc2/Sur8 protein regulates neurite outgrowth.

    Gonzalo Leon

    Full Text Available The Shoc2 protein has been implicated in the positive regulation of the Ras-ERK pathway by increasing the functional binding interaction between Ras and Raf, leading to increased ERK activity. Here we found that Shoc2 overexpression induced sustained ERK phosphorylation, notably in the case of EGF stimulation, and Shoc2 knockdown inhibited ERK activation. We demonstrate that ectopic overexpression of human Shoc2 in PC12 cells significantly promotes neurite extension in the presence of EGF, a stimulus that induces proliferation rather than differentiation in these cells. Finally, Shoc2 depletion reduces both NGF-induced neurite outgrowth and ERK activation in PC12 cells. Our data indicate that Shoc2 is essential to modulate the Ras-ERK signaling outcome in cell differentiation processes involved in neurite outgrowth.

  6. DNA topoisomerase IIβ stimulates neurite outgrowth in neural differentiated human mesenchymal stem cells through regulation of Rho-GTPases (RhoA/Rock2 pathway) and Nurr1 expression.

    Zaim, Merve; Isik, Sevim

    2018-04-25

    DNA topoisomerase IIβ (topo IIβ) is known to regulate neural differentiation by inducing the neuronal genes responsible for critical neural differentiation events such as neurite outgrowth and axon guidance. However, the pathways of axon growth controlled by topo IIβ have not been clarified yet. Microarray results of our previous study have shown that topo IIβ silencing in neural differentiated primary human mesenchymal stem cells (hMSCs) significantly alters the expression pattern of genes involved in neural polarity, axonal growth, and guidance, including Rho-GTPases. This study aims to further analyze the regulatory role of topo IIβ on the process of axon growth via regulation of Rho-GTPases. For this purpose, topo IIβ was silenced in neurally differentiated hMSCs. Cells lost their morphology because of topo IIβ deficiency, becoming enlarged and flattened. Additionally, a reduction in both neural differentiation efficiency and neurite length, upregulation in RhoA and Rock2, downregulation in Cdc42 gene expression were detected. On the other hand, cells were transfected with topo IIβ gene to elucidate the possible neuroprotective effect of topo IIβ overexpression on neural-induced hMSCs. Topo IIβ overexpression prompted all the cells to exhibit neural cell morphology as characterized by longer neurites. RhoA and Rock2 expressions were downregulated, whereas Cdc42 expression was upregulated. Nurr1 expression level correlated with topo IIβ in both topo IIβ-overexpressed and -silenced cells. Furthermore, differential translocation of Rho-GTPases was detected by immunostaining in response to topo IIβ. Our results suggest that topo IIβ deficiency could give rise to neurodegeneration through dysregulation of Rho-GTPases. However, further in-vivo research is needed to demonstrate if re-regulation of Rho GTPases by topo IIβ overexpression could be a neuroprotective treatment in the case of neurodegenerative diseases.

  7. Electrospun silk fibroin scaffolds coated with reduced graphene promote neurite outgrowth of PC-12 cells under electrical stimulation.

    Aznar-Cervantes, Salvador; Pagán, Ana; Martínez, Jose G; Bernabeu-Esclapez, Antonia; Otero, Toribio F; Meseguer-Olmo, Luis; Paredes, Juan I; Cenis, Jose L

    2017-10-01

    Novel approaches to neural research require biocompatible materials capable to act as electrode structures or scaffolds for tissue engineering in order to stimulate or restore the functionality of damaged tissues. This work offers promising results that indicate the potential use of electrospun silk fibroin (SF) scaffolds coated with reduced graphene oxide (rGO) in this sense. The coated material becomes conductor and electroactive. A complete characterisation of SF/rGO scaffolds is provided in terms of electrochemistry, mechanical behaviour and chemical conformation of fibroin. The excellent biocompatibility of this novel material is proved with cultures of PC-12 cells. The coating with rGO improved the adhesion of cells in comparison with cells growing onto the surface of pure SF scaffolds. Also, the use of SF/rGO scaffolds combined with electrical stimulation promoted the differentiation into neural phenotypes reaching comparable or even superior levels to those obtained by means of the traditional treatment with neural growth factor (NGF). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Glial membranes at the node of Ranvier prevent neurite outgrowth

    Huang, Jeffrey K; Phillips, Greg R; Roth, Alejandro D

    2005-01-01

    of neurite outgrowth, including the oligodendrocyte myelin glycoprotein (OMgp). In rat spinal cord, OMgp was not localized to compact myelin, as previously thought, but to oligodendroglia-like cells, whose processes converge to form a ring that completely encircles the nodes. In OMgp-null mice, CNS nodes......Nodes of Ranvier are regularly placed, nonmyelinated axon segments along myelinated nerves. Here we show that nodal membranes isolated from the central nervous system (CNS) of mammals restricted neurite outgrowth of cultured neurons. Proteomic analysis of these membranes revealed several inhibitors...

  9. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Neurotrophins differentially stimulate the growth of cochlear neurites on collagen surfaces and in gels☆

    Xie, Joanna; Pak, Kwang; Evans, Amaretta; Kamgar-Parsi, Andy; Fausti, Stephen; Mullen, Lina; Ryan, Allen Frederic

    2013-01-01

    The electrodes of a cochlear implant are located far from the surviving neurons of the spiral ganglion, which results in decreased precision of neural activation compared to the normal ear. If the neurons could be induced to extend neurites toward the implant, it might be possible to stimulate more discrete subpopulations of neurons, and to increase the resolution of the device. However, a major barrier to neurite growth toward a cochlear implant is the fluid filling the scala tympani, which separates the neurons from the electrodes. The goal of this study was to evaluate the growth of cochlear neurites in three-dimensional extracellular matrix molecule gels, and to increase biocompatibility by using fibroblasts stably transfected to produce neurotrophin-3 and brain-derived neurotrophic factor. Spiral ganglion explants from neonatal rats were evaluated in cultures. They were exposed to soluble neurotrophins, cells transfected to secrete neurotrophins, and/or collagen gels. We found that cochlear neurites grew readily on collagen surfaces and in three-dimensional collagen gels. Co-culture with cells producing neurotrophin-3 resulted in increased numbers of neurites, and neurites that were longer than when explants were cultured with control fibroblasts stably transfected with green fluorescent protein. Brain-derived neurotrophic factor-producing cells resulted in a more dramatic increase in the number of neurites, but there was no significant effect on neurite length. It is suggested that extracellular matrix molecule gels and cells transfected to produce neurotrophins offer an opportunity to attract spiral ganglion neurites toward a cochlear implant. PMID:24459465

  11. Nanoparticle Facilitated Extracellular Electron Transfer in Microbial Fuel Cells

    2014-10-13

    harvestingelectrical power directly from waste and renewable biomass and thus represent a promising technology for sustainable energy production.1−5 Central...cell membrane (Figure 3e), serving as a porous semiconducting “ shell ” to facilitate the charge transport at bacteria/electrode or bacteria/bacteria

  12. Neurite outgrowth in human iPSC-derived neurons

    Data on morphology of rat and human neurons in cell cultureThis dataset is associated with the following publication:Druwe, I., T. Freudenrich , K. Wallace , T. Shafer , and W. Mundy. Comparison of Human Induced PluripotentStem Cell-Derived Neurons and Rat Primary CorticalNeurons as In Vitro Models of Neurite Outgrowth. Applied In vitro Toxicology. Mary Ann Liebert, Inc., Larchmont, NY, USA, 2(1): 26-36, (2016).

  13. Autophagy Facilitates Salmonella Replication in HeLa Cells

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  14. The Secretome of Bone Marrow and Wharton Jelly Derived Mesenchymal Stem Cells Induces Differentiation and Neurite Outgrowth in SH-SY5Y Cells

    Ana O. Pires; Andreia Neves-Carvalho; Nuno Sousa; António J. Salgado

    2014-01-01

    The goal of this study was to determine and compare the effects of the secretome of mesenchymal stem cells (MSCs) isolated from human bone-marrow (BMSCs) and the Wharton jelly surrounding the vein and arteries of the umbilical cord (human umbilical cord perivascular cells (HUCPVCs)) on the survival and differentiation of a human neuroblastoma cell line (SH-SY5Y). For this purpose, SH-SY5Y cells were differentiated with conditioned media (CM) from the MSCs populations referred above. Retinoic ...

  15. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes

    Matsumoto, K; Sato, C; Shimizu, N [Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193 (Japan); Naka, Y [Bio-Nano Electronics Research Center, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Whitby, R, E-mail: shimizu@toyonet.toyo.ac.jp [School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockroft Building, Lewes Road, Brighton BN2 4GJ (United Kingdom)

    2010-03-19

    Low concentrations (0.11-1.7 {mu}g ml{sup -1}) of functionalized carbon nanotubes (CNTs), which are multi-walled CNTs modified by amino groups, when added with nerve growth factor (NGF), promoted outgrowth of neuronal neurites in dorsal root ganglion (DRG) neurons and rat pheochromocytoma cell line PC12h cells in culture media. The quantity of active extracellular signal-regulated kinase (ERK) was higher after the addition of both 0.85 {mu}g ml{sup -1} CNTs and NGF than that with NGF alone. CNTs increased the number of cells with neurite outgrowth in DRG neurons and PC12h cells after the inhibition of the ERK signaling pathway using a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor. Active ERK proteins were detected in MEK inhibitor-treated neurons after the addition of CNTs to the culture medium. These results demonstrate that CNTs may stimulate neurite outgrowth by activation of the ERK signaling pathway. Thus, CNTs are biocompatible and are promising candidates for biological applications and devices.

  16. Target cell cyclophilins facilitate human papillomavirus type 16 infection.

    Bienkowska-Haba, Malgorzata; Patel, Hetalkumar D; Sapp, Martin

    2009-07-01

    Following attachment to primary receptor heparan sulfate proteoglycans (HSPG), human papillomavirus type 16 (HPV16) particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB) facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV-induced diseases.

  17. Target cell cyclophilins facilitate human papillomavirus type 16 infection.

    Malgorzata Bienkowska-Haba

    2009-07-01

    Full Text Available Following attachment to primary receptor heparan sulfate proteoglycans (HSPG, human papillomavirus type 16 (HPV16 particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV-induced diseases.

  18. The C1 domain-targeted isophthalate derivative HMI-1b11 promotes neurite outgrowth and GAP-43 expression through PKCα activation in SH-SY5Y cells.

    Talman, Virpi; Amadio, Marialaura; Osera, Cecilia; Sorvari, Salla; Boije Af Gennäs, Gustav; Yli-Kauhaluoma, Jari; Rossi, Daniela; Govoni, Stefano; Collina, Simona; Ekokoski, Elina; Tuominen, Raimo K; Pascale, Alessia

    2013-07-01

    Protein kinase C (PKC) is a family of serine/threonine phosphotransferases ubiquitously expressed and involved in multiple cellular functions, such as proliferation, apoptosis and differentiation. The C1 domain of PKC represents an attractive drug target, especially for developing PKC activators. Dialkyl 5-(hydroxymethyl)isophthalates are a novel group of synthetic C1 domain ligands that exhibit antiproliferative effect in HeLa cervical carcinoma cells. Here we selected two isophthalates, HMI-1a3 and HMI-1b11, and characterized their effects in the human neuroblastoma cell line SH-SY5Y. Both of the active isophthalates exhibited significant antiproliferative and differentiation-inducing effects. Since HMI-1b11 did not impair cell survival even at the highest concentration tested (20μM), and supported neurite growth and differentiation of SH-SY5Y cells, we focused on studying its downstream signaling cascades and effects on gene expression. Consistently, genome-wide gene expression microarray and gene set enrichment analysis indicated that HMI-1b11 (10μM) induced changes in genes mainly related to cell differentiation. In particular, further studies revealed that HMI-1b11 exposure induced up-regulation of GAP-43, a marker for neurite sprouting and neuronal differentiation. These effects were induced by a 7-min HMI-1b11 treatment and specifically depended on PKCα activation, since pretreatment with the selective inhibitor Gö6976 abolished the up-regulation of GAP-43 protein observed at 12h. In parallel, we found that a 7-min exposure to HMI-1b11 induced PKCα accumulation to the cytoskeleton, an effect that was again prevented by pretreatment with Gö6976. Despite similar binding affinities to PKC, the isophthalates had different effects on PKC-dependent ERK1/2 signaling: HMI-1a3-induced ERK1/2 phosphorylation was transient, while HMI-1b11 induced a rapid but prolonged ERK1/2 phosphorylation. Overall our data are in accordance with previous studies showing that

  19. Slit2 inactivates GSK3β to signal neurite outgrowth inhibition.

    Justin Byun

    Full Text Available Slit molecules comprise one of the four canonical families of axon guidance cues that steer the growth cone in the developing nervous system. Apart from their role in axon pathfinding, emerging lines of evidence suggest that a wide range of cellular processes are regulated by Slit, ranging from branch formation and fasciculation during neurite outgrowth to tumor progression and to angiogenesis. However, the molecular and cellular mechanisms downstream of Slit remain largely unknown, in part, because of a lack of a readily manipulatable system that produces easily identifiable traits in response to Slit. The present study demonstrates the feasibility of using the cell line CAD as an assay system to dissect the signaling pathways triggered by Slit. Here, we show that CAD cells express receptors for Slit (Robo1 and Robo2 and that CAD cells respond to nanomolar concentrations of Slit2 by markedly decelerating the rate of process extension. Using this system, we reveal that Slit2 inactivates GSK3β and that inhibition of GSK3β is required for Slit2 to inhibit process outgrowth. Furthermore, we show that Slit2 induces GSK3β phosphorylation and inhibits neurite outgrowth in adult dorsal root ganglion neurons, validating Slit2 signaling in primary neurons. Given that CAD cells can be conveniently manipulated using standard molecular biological methods and that the process extension phenotype regulated by Slit2 can be readily traced and quantified, the use of a cell line CAD will facilitate the identification of downstream effectors and elucidation of signaling cascade triggered by Slit.

  20. Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson's disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells

    Liu Lei

    2008-12-01

    Full Text Available Abstract Background Parkinson's disease, the most common adult neurodegenerative movement disorder, demonstrates a brain-wide pathology that begins pre-clinically with alpha-synuclein aggregates ("Lewy neurites" in processes of gut enteric and vagal motor neurons. Rostral progression into substantia nigra with death of dopamine neurons produces the motor impairment phenotype that yields a clinical diagnosis. The vast majority of Parkinson's disease occurs sporadically, and current models of sporadic Parkinson's disease (sPD can utilize directly infused or systemic neurotoxins. Results We developed a differentiation protocol for human SH-SY5Y neuroblastoma that yielded non-dividing dopaminergic neural cells with long processes that we then exposed to 50 nM rotenone, a complex I inhibitor used in Parkinson's disease models. After 21 days of rotenone, ~60% of cells died. Their processes retracted and accumulated ASYN-(+ and UB-(+ aggregates that blocked organelle transport. Mitochondrial movement velocities were reduced by 8 days of rotenone and continued to decline over time. No cytoplasmic inclusions resembling Lewy bodies were observed. Gene microarray analyses showed that the majority of genes were under-expressed. qPCR analyses of 11 mtDNA-encoded and 10 nDNA-encoded mitochondrial electron transport chain RNAs' relative expressions revealed small increases in mtDNA-encoded genes and lesser regulation of nDNA-encoded ETC genes. Conclusion Subacute rotenone treatment of differentiated SH-SY5Y neuroblastoma cells causes process retraction and partial death over several weeks, slowed mitochondrial movement in processes and appears to reproduce the Lewy neuritic changes of early Parkinson's disease pathology but does not cause Lewy body inclusions. The overall pattern of transcriptional regulation is gene under-expression with minimal regulation of ETC genes in spite of rotenone's being a complex I toxin. This rotenone-SH-SY5Y model in a

  1. Role of glial cell line-derived neurotrophic factor (GDNF)-neural cell adhesion molecule (NCAM) interactions in induction of neurite outgrowth and identification of a binding site for NCAM in the heel region of GDNF

    Nielsen, Janne; Gotfryd, Kamil; Li, Shizhong

    2009-01-01

    NCAM-induced neurite outgrowth by being independent of NCAM polysialylation. Additionally, we investigated the structural basis for GDNF-NCAM interactions and find that NCAM Ig3 is necessary for GDNF binding. Furthermore, we identify within the heel region of GDNF a binding site for NCAM...

  2. Conversion Disorder Presenting As Neuritic Leprosy

    Sayal SK

    2000-01-01

    Full Text Available Conversion disorder is not normally listed amongst the conditions in differential diagnosis of leprosy neuropathy. A case conversion reaction who was initially diagnosed as neuritic leprosy is reported. Patient responded to narcosuggestion and psychotherapy.

  3. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    Yoshinobu Uchihara

    2015-01-01

    Full Text Available Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

  4. Comparison of neurite density measured by MRI and histology after TBI.

    Shiyang Wang

    Full Text Available Functional recovery after brain injury in animals is improved by marrow stromal cells (MSC which stimulate neurite reorganization. However, MRI measurement of neurite density changes after injury has not been performed. In this study, we investigate the feasibility of MRI measurement of neurite density in an animal model of traumatic brain injury (TBI with and without MSC treatment.Fifteen male Wistar rats, were treated with saline (n = 6 or MSCs (n = 9 and were sacrificed at 6 weeks after controlled cortical impact (CCI. Healthy non-CCI rats (n = 5, were also employed. Ex-vivo MRI scans were performed two days after the rats were sacrificed. Multiple-shell hybrid diffusion imaging encoding scheme and spherical harmonic expansion of a two-compartment water diffusion displacement model were used to extract neurite related parameters. Bielshowski and Luxol Fast blue was used for staining axons and myelin, respectively. Modified Morris water maze and neurological severity score (mNSS test were performed for functional evaluation. The treatment effects, the correlations between neurite densities measured by MRI and histology, and the correlations between MRI and functional variables were calculated by repeated measures analysis of variance, the regression correlation analysis tests, and spearman correlation coefficients.Neurite densities exhibited a significant correlation (R(2>0.80, p<1E-20 between MRI and immuno-histochemistry measurements with 95% lower bound of the intra-correlation coefficient (ICC as 0.86. The conventional fractional anisotropy (FA correlated moderately with histological neurite density (R(2 = 0.59, P<1E-5 with 95% lower bound of ICC as 0.76. MRI data revealed increased neurite reorganization with MSC treatment compared with saline treatment, confirmed by histological data from the same animals. mNSS were significantly correlated with MRI neurite density in the hippocampus region.The present studies

  5. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  6. A low-cost microwell device for high-resolution imaging of neurite outgrowth in 3D

    Ren, Yuan; Mlodzianoski, Michael J.; Cheun Lee, Aih; Huang, Fang; Suter, Daniel M.

    2018-06-01

    Objective. Current neuronal cell culture is mostly performed on two-dimensional (2D) surfaces, which lack many of the important features of the native environment of neurons, including topographical cues, deformable extracellular matrix, and spatial isotropy or anisotropy in three dimensions. Although three-dimensional (3D) cell culture systems provide a more physiologically relevant environment than 2D systems, their popularity is greatly hampered by the lack of easy-to-make-and-use devices. We aim to develop a widely applicable 3D culture procedure to facilitate the transition of neuronal cultures from 2D to 3D. Approach. We made a simple microwell device for 3D neuronal cell culture that is inexpensive, easy to assemble, and fully compatible with commonly used imaging techniques, including super-resolution microscopy. Main results. We developed a novel gel mixture to support 3D neurite regeneration of Aplysia bag cell neurons, a system that has been extensively used for quantitative analysis of growth cone dynamics in 2D. We found that the morphology and growth pattern of bag cell growth cones in 3D culture closely resemble the ones of growth cones observed in vivo. We demonstrated the capability of our device for high-resolution imaging of cytoskeletal and signaling proteins as well as organelles. Significance. Neuronal cell culture has been a valuable tool for neuroscientists to study the behavior of neurons in a controlled environment. Compared to 2D, neurons cultured in 3D retain the majority of their native characteristics, while offering higher accessibility, control, and repeatability. We expect that our microwell device will facilitate a wider adoption of 3D neuronal cultures to study the mechanisms of neurite regeneration.

  7. Leukemia inhibitory factor (LIF) enhances MAP2 + and HUC/D + neurons and influences neurite extension during differentiation of neural progenitors derived from human embryonic stem cells.

    Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...

  8. The astrocyte/meningeal cell interface is a barrier to neurite outgrowth which can be overcome by manipulation of inhibitory molecules or axonal signalling pathways

    Shearer, Morven C; Niclou, Simone P; Brown, David; Asher, Richard A; Holtmaat, Anthony J D G; Levine, Joel M; Verhaagen, J.; Fawcett, James W

    2003-01-01

    Invading meningeal cells form a barrier to axon regeneration after damage to the spinal cord and other parts of the CNS, axons stopping at the interface between meningeal cells and astrocytes. Axon behavior was examined using an in vitro model of astrocyte/meningeal cell interfaces, created by

  9. Moringa oleifera with promising neuronal survival and neurite outgrowth promoting potentials.

    Hannan, Md Abdul; Kang, Ji-Young; Mohibbullah, Md; Hong, Yong-Ki; Lee, Hyunsook; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2014-02-27

    Moringa oleifera Lam. (Moringaceae) by virtue of its high nutritional as well as ethnomedical values has been gaining profound interest both in nutrition and medicinal research. The leaf of this plant is used in ayurvedic medicine to treat paralysis, nervous debility and other nerve disorders. In addition, research evidence also suggests the nootropic as well as neuroprotective roles of Moringa oleifera leaf in animal models. The aim of the present study was to evaluate the effect of Moringa oleifera leaf in the primary hippocampal neurons regarding its neurotrophic and neuroprotective properties. The primary culture of embryonic hippocampal neurons was incubated with the ethanol extract of Moringa oleifera leaf (MOE). After an indicated time, cultures were either stained directly with a lipophilic dye, DiO, or fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for neurite maturation and synaptogenesis were performed using Image J software. Neuronal viability was evaluated using trypan blue exclusion and lactate dehydrogenase assays. MOE promoted neurite outgrowth in a concentration-dependent manner with an optimal concentration of 30 μg/mL. As a very initial effect, MOE significantly promoted the earlier stages of neuronal differentiation. Subsequently, MOE significantly increased the number and length of dendrites, the length of axon, and the number and length of both dendrite and axonal branches, and eventually facilitated synaptogenesis. The β-carotene, one major compound of MOE, promoted neuritogensis, but the increase was not comparable with the effect of MOE. In addition, MOE supported neuronal survival by protecting neurons from naturally occurring cell death in vitro. Our findings indicate that MOE promotes axodendritic maturation as well as provides neuroprotection suggesting a promising pharmacological importance of this nutritionally and ethnomedically important plant for the well-being of nervous system. Copyright

  10. NGF-Dependent neurite outgrowth in PC12 cells overexpressing the Src homology 2-domain protein shb requires activation of the Rap1 pathway

    Lu, L.; Annerén, C.; Reedquist, K. A.; Bos, J. L.; Welsh, M.

    2000-01-01

    The Src homology 2 (SH2) domain adaptor protein Shb has been shown to transmit NGF- and FGF-2-dependent differentiation signals in PC12 cells. To study if this involves signaling through the small GTPase Rap1, Rap1 activity was assessed in Shb-overexpressing PC12 cells. We demonstrate that NGF and

  11. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  12. Actin Waves Do Not Boost Neurite Outgrowth in the Early Stages of Neuron Maturation

    Simone Mortal

    2017-12-01

    Full Text Available During neurite development, Actin Waves (AWs emerge at the neurite base and move up to its tip, causing a transient retraction of the Growth Cone (GC. Many studies have shown that AWs are linked to outbursts of neurite growth and, therefore, contribute to the fast elongation of the nascent axon. Using long term live cell-imaging, we show that AWs do not boost neurite outgrowth and that neurites without AWs can elongate for several hundred microns. Inhibition of Myosin II abolishes the transient GC retraction and strongly modifies the AWs morphology. Super-resolution nanoscopy shows that Myosin IIB shapes the growth cone-like AWs structure and is differently distributed in AWs and GCs. Interestingly, depletion of membrane cholesterol and inhibition of Rho GTPases decrease AWs frequency and velocity. Our results indicate that Myosin IIB, membrane tension, and small Rho GTPases are important players in the regulation of the AW dynamics. Finally, we suggest a role for AWs in maintaining the GCs active during environmental exploration.

  13. A peptide derived from a trans-homophilic binding site in neural cell adhesion molecule induces neurite outgrowth and neuronal survival

    Køhler, Lene B; Soroka, Vladislav; Korshunova, Irina

    2010-01-01

    The neural cell adhesion molecule (NCAM) plays a key role in neural development, regeneration, and synaptic plasticity. The crystal structure of a fragment of NCAM comprising the three N-terminal immunoglobulin (Ig)-like modules indicates that the first and second Ig modules bind to each other, t...

  14. Spontaneous Age-Related Neurite Branching in C. elegans

    Tank, Elizabeth M. H.; Rodgers, Kasey E.; Kenyon, Cynthia

    2011-01-01

    The analysis of morphological changes that occur in the nervous system during normal aging could provide insight into cognitive decline and neurodegenerative disease. Previous studies have suggested that the nervous system of C. elegans maintains its structural integrity with age despite the deterioration of surrounding tissues. Unexpectedly, we observed that neurons in aging animals frequently displayed ectopic branches, and that the prevalence of these branches increased with time. Within age-matched populations, the branching of mechnosensory neurons correlated with decreased response to light touch and decreased mobility. The incidence of branching was influenced by two pathways that can affect the rate of aging, the Jun kinase pathway and the insulin/IGF-1 pathway. Loss of Jun kinase signaling, which slightly shortens lifespan, dramatically increased and accelerated the frequency of neurite branching. Conversely, inhibition of the daf-2 insulin/IGF-1-like signaling pathway, which extends lifespan, delayed and suppressed branching, and this delay required DAF-16/FOXO activity. Both JNK-1 and DAF-16 appeared to act within neurons in a cell-autonomous manner to influence branching, and, through their tissue-specific expression, it was possible to disconnect the rate at which branching occurred from the overall rate of aging of the animal. Old age has generally been associated with the decline and deterioration of different tissues, except in the case of tumor cell growth. To our knowledge, this is the first indication that aging can potentiate another form of growth, the growth of neurite branches, in normal animals. PMID:21697377

  15. White cells facilitate opposite- and same-sex mating of opaque cells in Candida albicans.

    Li Tao

    2014-10-01

    Full Text Available Modes of sexual reproduction in eukaryotic organisms are extremely diverse. The human fungal pathogen Candida albicans undergoes a phenotypic switch from the white to the opaque phase in order to become mating-competent. In this study, we report that functionally- and morphologically-differentiated white and opaque cells show a coordinated behavior during mating. Although white cells are mating-incompetent, they can produce sexual pheromones when treated with pheromones of the opposite mating type or by physically interacting with opaque cells of the opposite mating type. In a co-culture system, pheromones released by white cells induce opaque cells to form mating projections, and facilitate both opposite- and same-sex mating of opaque cells. Deletion of genes encoding the pheromone precursor proteins and inactivation of the pheromone response signaling pathway (Ste2-MAPK-Cph1 impair the promoting role of white cells (MTLa in the sexual mating of opaque cells. White and opaque cells communicate via a paracrine pheromone signaling system, creating an environment conducive to sexual mating. This coordination between the two different cell types may be a trade-off strategy between sexual and asexual lifestyles in C. albicans.

  16. Identification of molecular pathways facilitating glioma cell invasion in situ.

    Ido Nevo

    Full Text Available Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion. In this study, we used a unique microarray profiling approach on a human glioma stem cell (GSC xenograft model to explore gene expression changes in situ in Invading Glioma Cells (IGCs compared to tumor core, as well as changes in host cells residing within the infiltrated microenvironment relative to the unaffected cortex. IGCs were found to have reduced expression of genes within the extracellular matrix compartment, and genes involved in cell adhesion, cell polarity and epithelial to mesenchymal transition (EMT processes. The infiltrated microenvironment showed activation of wound repair and tissue remodeling networks. We confirmed by protein analysis the downregulation of EMT and polarity related genes such as CD44 and PARD3 in IGCs, and EFNB3, a tissue-remodeling agent enriched at the infiltrated microenvironment. OLIG2, a proliferation regulator and glioma progenitor cell marker upregulated in IGCs was found to function in enhancing migration and stemness of GSCs. Overall, our results unveiled a more comprehensive picture of the complex and dynamic cell autonomous and tumor-host interactive pathways of glioma invasion than has been previously demonstrated. This suggests targeting of multiple pathways at the junction of invading tumor and microenvironment as a viable option for glioma therapy.

  17. HAMLET binding to α-actinin facilitates tumor cell detachment.

    Trulsson, Maria; Yu, Hao; Gisselsson, Lennart; Chao, Yinxia; Urbano, Alexander; Aits, Sonja; Mossberg, Ann-Kristin; Svanborg, Catharina

    2011-03-08

    Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed.

  18. The disaccharide moiety of bleomycin facilitates uptake by cancer cells.

    Schroeder, Benjamin R; Ghare, M Imran; Bhattacharya, Chandrabali; Paul, Rakesh; Yu, Zhiqiang; Zaleski, Paul A; Bozeman, Trevor C; Rishel, Michael J; Hecht, Sidney M

    2014-10-01

    The disaccharide moiety is responsible for the tumor cell targeting properties of bleomycin (BLM). While the aglycon (deglycobleomycin) mediates DNA cleavage in much the same fashion as bleomycin, it exhibits diminished cytotoxicity in comparison to BLM. These findings suggested that BLM might be modular in nature, composed of tumor-seeking and tumoricidal domains. To explore this possibility, BLM analogues were prepared in which the disaccharide moiety was attached to deglycobleomycin at novel positions, namely, via the threonine moiety or C-terminal substituent. The analogues were compared with BLM and deglycoBLM for DNA cleavage, cancer cell uptake, and cytotoxic activity. BLM is more potent than deglycoBLM in supercoiled plasmid DNA relaxation, while the analogue having the disaccharide on threonine was less active than deglycoBLM and the analogue containing the C-terminal disaccharide was slightly more potent. While having unexceptional DNA cleavage potencies, both glycosylated analogues were more cytotoxic to cultured DU145 prostate cancer cells than deglycoBLM. Dye-labeled conjugates of the cytotoxic BLM aglycons were used in imaging experiments to determine the extent of cell uptake. The rank order of internalization efficiencies was the same as their order of cytotoxicities toward DU145 cells. These findings establish a role for the BLM disaccharide in tumor targeting/uptake and suggest that the disaccharide moiety may be capable of delivering other cytotoxins to cancer cells. While the mechanism responsible for uptake of the BLM disaccharide selectively by tumor cells has not yet been established, data are presented which suggest that the metabolic shift to glycolysis in cancer cells may provide the vehicle for selective internalization.

  19. Angiotensin II facilitates breast cancer cell migration and metastasis.

    Sylvie Rodrigues-Ferreira

    Full Text Available Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.

  20. Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells.

    Soto-Cerrato, Vanessa; Manuel-Manresa, Pilar; Hernando, Elsa; Calabuig-Fariñas, Silvia; Martínez-Romero, Alicia; Fernández-Dueñas, Víctor; Sahlholm, Kristoffer; Knöpfel, Thomas; García-Valverde, María; Rodilla, Ananda M; Jantus-Lewintre, Eloisa; Farràs, Rosa; Ciruela, Francisco; Pérez-Tomás, Ricardo; Quesada, Roberto

    2015-12-23

    Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.

  1. Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells

    Saera Hihara

    2012-12-01

    Full Text Available Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (∼50 nm movement/30 ms, which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.

  2. mCell: Facilitating Mobile Communication of Small Groups

    Mikko T. Tarkiainen; Jonna Häkkilä; Jan Blom; Merja Haveri; Jyri Virtanen

    2008-01-01

    Mobile communication technology offers a potential platform for new types of communication applications. Here, we describe the development and experiences with a mobile group communication application, mCell, that runs on a mobile phone. We present the underlying design implications, the application implementation, and a user study, where three groups used the application for one month. The findings of the user study reveal general user experiences with the application and show different patt...

  3. Naftidrofuryl affects neurite regeneration by injured adult auditory neurons.

    Lefebvre, P P; Staecker, H; Moonen, G; van de Water, T R

    1993-07-01

    Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.

  4. Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking.

    Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A; Loh, Yuin-Han

    2014-05-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a "do-it-yourself" basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide.

  5. Active Achilles tendon kinesitherapy accelerates Achilles tendon repair by promoting neurite regeneration.

    Jielile, Jiasharete; Aibai, Minawa; Sabirhazi, Gulnur; Shawutali, Nuerai; Tangkejie, Wulanbai; Badelhan, Aynaz; Nuerduola, Yeermike; Satewalede, Turde; Buranbai, Darehan; Hunapia, Beicen; Jialihasi, Ayidaer; Bai, Jingping; Kizaibek, Murat

    2012-12-15

    Active Achilles tendon kinesitherapy facilitates the functional recovery of a ruptured Achilles tendon. However, protein expression during the healing process remains a controversial issue. New Zealand rabbits, aged 14 weeks, underwent tenotomy followed immediately by Achilles tendon microsurgery to repair the Achilles tendon rupture. The tendon was then immobilized or subjected to postoperative early motion treatment (kinesitherapy). Mass spectrography results showed that after 14 days of motion treatment, 18 protein spots were differentially expressed, among which, 12 were up-regulated, consisting of gelsolin isoform b and neurite growth-related protein collapsing response mediator protein 2. Western blot analysis showed that gelsolin isoform b was up-regulated at days 7-21 of motion treatment. These findings suggest that active Achilles tendon kinesitherapy promotes the neurite regeneration of a ruptured Achilles tendon and gelsolin isoform b can be used as a biomarker for Achilles tendon healing after kinesitherapy.

  6. Active Achilles tendon kinesitherapy accelerates Achilles tendon repair by promoting neurite regeneration☆

    Jielile, Jiasharete; Aibai, Minawa; Sabirhazi, Gulnur; Shawutali, Nuerai; Tangkejie, Wulanbai; Badelhan, Aynaz; Nuerduola, Yeermike; Satewalede, Turde; Buranbai, Darehan; Hunapia, Beicen; Jialihasi, Ayidaer; Bai, Jingping; Kizaibek, Murat

    2012-01-01

    Active Achilles tendon kinesitherapy facilitates the functional recovery of a ruptured Achilles tendon. However, protein expression during the healing process remains a controversial issue. New Zealand rabbits, aged 14 weeks, underwent tenotomy followed immediately by Achilles tendon microsurgery to repair the Achilles tendon rupture. The tendon was then immobilized or subjected to postoperative early motion treatment (kinesitherapy). Mass spectrography results showed that after 14 days of motion treatment, 18 protein spots were differentially expressed, among which, 12 were up-regulated, consisting of gelsolin isoform b and neurite growth-related protein collapsing response mediator protein 2. Western blot analysis showed that gelsolin isoform b was up-regulated at days 7–21 of motion treatment. These findings suggest that active Achilles tendon kinesitherapy promotes the neurite regeneration of a ruptured Achilles tendon and gelsolin isoform b can be used as a biomarker for Achilles tendon healing after kinesitherapy. PMID:25317130

  7. C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons.

    Huarcaya Najarro, Elvis; Ackley, Brian D

    2013-05-01

    Directed axonal growth is essential to establish neuronal networks. During the early development of the VD neurons, an anterior neurite that will become the VD axon extends along the anteroposterior (A/P) axis in the ventral nerve cord (VNC) in Caenorhabditis elegans. Little is known about the cellular and molecular mechanisms that are important for correct neurite growth in the VNC. In fmi-1/flamingo mutant animals, we observed that some postembryonically born VD neurons had a posterior neurite instead of a normal anterior neurite, which caused aberrant VD commissure patterning along the A/P axis. In addition, VD anterior neurites had underextension defects in the VNC in fmi-1 animals, whereas VD commissure growth along the dorsoventral (D/V) axis occurred normally in these animals, suggesting that fmi-1 is important for neurite growth along the A/P axis but not the D/V axis. We also uncovered unknown details of the early development of the VD neurons, indicating that the neurite defects arose during their early development. Interestingly, though fmi-1 is present at this time in the VNC, we did not observe FMI-1 in the VD neurons themselves, suggesting that fmi-1 might be working in a cell non-autonomous fashion. Furthermore, fmi-1 appears to be working in a novel pathway, independently from the planar cell polarity pathway and in parallel to lin-17/frizzled and dsh-1/dishevelled, to determine the direction of neurite growth. Our findings indicate that redundant developmental pathways regulate neurite growth in the VNC in C. elegans. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Resveratrol Enhances Neurite Outgrowth and Synaptogenesis Via Sonic Hedgehog Signaling Following Oxygen-Glucose Deprivation/Reoxygenation Injury

    Fanren Tang

    2017-09-01

    Full Text Available Background/Aims: Neurite outgrowth and synaptogenesis are critical steps for functional recovery after stroke. Resveratrol promotes neurite outgrowth and synaptogenesis, but the underlying mechanism is not well understood, although the Sonic hedgehog (Shh signaling pathway may be involved. Given that resveratrol activates sirtuin (Sirt1, the present study examined whether this is mediated by Shh signaling. Methods: Primary cortical neuron cultures were pretreated with drugs before oxygen-glucose deprivation/reoxygenation (OGD/R. Cell viability and apoptosis were evaluated with Cell Counting Kit 8 and by terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Neurite outgrowth and synaptogenesis were assessed by immunocytochemistry and western blotting, which was also used to examine the expression of Sirt1 and Shh signaling proteins. Results: Resveratrol and the Smoothened (Smo agonist purmophamine, which activates Shh signaling, increased viability, reduced apoptosis, and stimulated neurite outgrowth after OGD/R injury. Moreover, the expression of growth-associated protein(GAP-43, synaptophysin, Shh, Patched (Ptc-1, Smo, glioma-associated oncogene homolog (Gli-1, and Sirt1 were upregulated under these conditions. These effects were reversed by treatment with the Smo inhibitor cyclopamine, whereas the Sirt1 inhibitor sirtinol reduced the levels of Shh, Ptc-1, Smo, and Gli-1. Conclusions: Resveratrol reduces neuronal injury following OGD/R injury and enhances neurite outgrowth and synaptogenesis by activating Shh signaling, which in turn induces Sirt1.

  9. Concave microwell plate facilitates chondrogenesis from mesenchymal stem cells.

    Ko, Ji-Yun; Im, Gun-Il

    2016-11-01

    To compare in vitro chondrogenesis from bone marrow-derived mesenchymal stem cells using concave microwell plates with those obtained using culture tubes. Pellets cultured in concave microwell plates had a significantly higher level of GAG per DNA content and greater proteoglycan content than those cultured in tubes at day 7 and 14. Three chondrogenic markers, SOX-9, COL2A1 and aggrecan, showed significantly higher expression in pellets cultured in concave microwell plates than those cultured in tubes at day 7 and 14. At day 21, there was not a significant difference in the expression of these markers. COL10A1, the typical hypertrophy marker, was significantly lower in concave microwell plates during the whole culture period. Runx-2, a marker of hypertrophy and osteogenesis, was significantly lower at day 7 in pellets cultured in concave microwell plates than those cultured in tubes. Concave microwell plates provide a convenient and effective tool for the study of in vitro chondrogenesis and may replace the use of propylene culture tube.

  10. Chemoenzymatically prepared konjac ceramide inhibits NGF-induced neurite outgrowth by a semaphorin 3A-like action

    Seigo Usuki

    2016-03-01

    Full Text Available Dietary sphingolipids such as glucosylceramide (GlcCer are potential nutritional factors associated with prevention of metabolic syndrome. Our current understanding is that dietary GlcCer is degraded to ceramide and further metabolized to sphingoid bases in the intestine. However, ceramide is only found in trace amounts in food plants and thus is frequently taken as GlcCer in a health supplement. In the present study, we successfully prepared konjac ceramide (kCer using endoglycoceramidase I (EGCase I. Konjac, a plant tuber, is an enriched source of GlcCer (kGlcCer, and has been commercialized as a dietary supplement to improve dry skin and itching that are caused by a deficiency of epidermal ceramide. Nerve growth factor (NGF produced by skin cells is one of the itch factors in the stratum corneum of the skin. Semaphorin 3A (Sema 3A has been known to inhibit NGF-induced neurite outgrowth of epidermal nerve fibers. It is well known that the itch sensation is regulated by the balance between NGF and Sema 3A. In the present study, while kGlcCer did not show an in vitro inhibitory effect on NGF-induced neurite outgrowth of PC12 cells, kCer was demonstrated to inhibit a remarkable neurite outgrowth. In addition, the effect of kCer was similar to that of Sema 3A in cell morphological changes and neurite retractions, but different from C2-Ceramide. kCer showed a Sema 3A-like action, causing CRMP2 phosphorylation, which results in a collapse of neurite growth cones. Thus, it is expected that kCer is an advanced konjac ceramide material that may have neurite outgrowth-specific action to relieve uncontrolled and serious itching, in particular, from atopic eczema.

  11. Critical time window of neuronal cholesterol synthesis during neurite outgrowth.

    Fünfschilling, Ursula; Jockusch, Wolf J; Sivakumar, Nandhini; Möbius, Wiebke; Corthals, Kristina; Li, Sai; Quintes, Susanne; Kim, Younghoon; Schaap, Iwan A T; Rhee, Jeong-Seop; Nave, Klaus-Armin; Saher, Gesine

    2012-05-30

    Cholesterol is an essential membrane component enriched in plasma membranes, growth cones, and synapses. The brain normally synthesizes all cholesterol locally, but the contribution of individual cell types to brain cholesterol metabolism is unknown. To investigate whether cortical projection neurons in vivo essentially require cholesterol biosynthesis and which cell types support neurons, we have conditionally ablated the cholesterol biosynthesis in these neurons in mice either embryonically or postnatally. We found that cortical projection neurons synthesize cholesterol during their entire lifetime. At all stages, they can also benefit from glial support. Adult neurons that lack cholesterol biosynthesis are mainly supported by astrocytes such that their functional integrity is preserved. In contrast, microglial cells support young neurons. However, compensatory efforts of microglia are only transient leading to layer-specific neuronal death and the reduction of cortical projections. Hence, during the phase of maximal membrane growth and maximal cholesterol demand, neuronal cholesterol biosynthesis is indispensable. Analysis of primary neurons revealed that neurons tolerate only slight alteration in the cholesterol content and plasma membrane tension. This quality control allows neurons to differentiate normally and adjusts the extent of neurite outgrowth, the number of functional growth cones and synapses to the available cholesterol. This study highlights both the flexibility and the limits of horizontal cholesterol transfer in vivo and may have implications for the understanding of neurodegenerative diseases.

  12. Direct Conversion of Human Fibroblasts into Schwann Cells that Facilitate Regeneration of Injured Peripheral Nerve In Vivo.

    Sowa, Yoshihiro; Kishida, Tsunao; Tomita, Koichi; Yamamoto, Kenta; Numajiri, Toshiaki; Mazda, Osam

    2017-04-01

    Schwann cells (SCs) play pivotal roles in the maintenance and regeneration of the peripheral nervous system. Although transplantation of SCs enhances repair of experimentally damaged peripheral and central nerve tissues, it is difficult to prepare a sufficient number of functional SCs for transplantation therapy without causing adverse events for the donor. Here, we generated functional SCs by somatic cell reprogramming procedures and demonstrated their capability to promote peripheral nerve regeneration. Normal human fibroblasts were phenotypically converted into SCs by transducing SOX10 and Krox20 genes followed by culturing for 10 days resulting in approximately 43% directly converted Schwann cells (dSCs). The dSCs expressed SC-specific proteins, secreted neurotrophic factors, and induced neuronal cells to extend neurites. The dSCs also displayed myelin-forming capability both in vitro and in vivo. Moreover, transplantation of the dSCs into the transected sciatic nerve in mice resulted in significantly accelerated regeneration of the nerve and in improved motor function at a level comparable to that with transplantation of the SCs obtained from a peripheral nerve. The dSCs induced by our procedure may be applicable for novel regeneration therapy for not only peripheral nerve injury but also for central nerve damage and for neurodegenerative disorders related to SC dysfunction. Stem Cells Translational Medicine 2017;6:1207-1216. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  13. Vital role of protein kinase C-related kinase (PRK1) in the formation and stability of neurites during hypoxia

    Thauerer, Bettina; zur Nedden, Stephanie; Baier-Bitterlich, Gabriele

    2010-01-01

    Exposure of pheochromocytoma (PC12) cells to hypoxia (1% O2) favors differentiation at the expense of cell viability. Additional incubation with nerve growth factor (NGF) and guanosine, a purine nucleoside with neurotrophin characteristics, rescued cell viability and further enhanced the extension of neurites. In parallel, an increase in the activity of protein kinase C-related kinase (PRK1), which is known to be involved in regulation of the actin cytoskeleton, was observed in hypoxic cells....

  14. Induction of neurite outgrowth in 3D hydrogel-based environments

    Assunção-Silva, Rita C; Oliveira, Cátia Costa; Gomes, Eduardo D; Sousa, Nuno; Silva, Nuno A; Salgado, António J; Ziv-Polat, Ofra; Sahar, Abraham

    2015-01-01

    The ability of peripheral nervous system (PNS) axons to regenerate and re-innervate their targets after an injury has been widely recognized. However, despite the considerable advances made in microsurgical techniques, complete functional recovery is rarely achieved, especially for severe peripheral nerve injuries (PNIs). Therefore, alternative therapies that can successfully repair peripheral nerves are still essential. In recent years the use of biodegradable hydrogels enriched with growth-supporting and guidance cues, cell transplantation, and biomolecular therapies have been explored for the treatment of PNIs. Bearing this in mind, the aim of this study was to assess whether Gly-Arg-Gly-Asp-Ser synthetic peptide (GRGDS)-modified gellan gum (GG) based hydrogels could foster an amenable environment for neurite/axonal growth. Additionally, strategies to further improve the rate of neurite outgrowth were also tested, namely the use of adipose tissue derived stem cells (ASCs), as well as the glial derived neurotrophic factor (GDNF). In order to increase its stability and enhance its bioactivity, the GDNF was conjugated covalently to iron oxide nanoparticles (IONPs). The impact of hydrogel modification as well as the effect of the GDNF-IONPs on ASC behavior was also screened. The results revealed that the GRGDS-GG hydrogel was able to support dorsal root ganglia (DRG)-based neurite outgrowth, which was not observed for non-modified hydrogels. Moreover, the modified hydrogels were also able to support ASCs attachment. In contrast, the presence of the GDNF-IONPs had no positive or negative impact on ASC behavior. Further experiments revealed that the presence of ASCs in the hydrogel improved axonal growth. On the other hand, GDNF-IONPs alone or combined with ASCs significantly increased neurite outgrowth from DRGs, suggesting a beneficial role of the proposed strategy for future applications in PNI regenerative medicine. (note)

  15. Neurite regeneration in adult rat retinas exposed to advanced glycation end-products and regenerative effects of neurotrophin-4.

    Bikbova, Guzel; Oshitari, Toshiyuki; Yamamoto, Shuichi

    2013-10-09

    The purpose of this study was to determine the effect of low concentrations of advanced glycation end-products on neurite regeneration in isolated rat retinas, and to determine the effects of neurotrophin-4 on regeneration in advanced glycation end-products exposed retinas. Retinal explants of 4 adult Sprague-Dawley rats were cultured on collagen gel and were incubated in; (1) serum-free control culture media, (2) glucose-advanced glycation end-products-bovine serum albumin media, (3) glycolaldehyde-advanced glycation end-products-bovine serum albumin media, (4) glyceraldehyde-advanced glycation end-products-bovine serum albumin media, (5) glucose-advanced glycation end-products+neurotrophin-4 media, (6) glycolaldehyde-advanced glycation end-products+neurotrophin-4 media, or (7) glyceraldehyde-advanced glycation end-products+neurotrophin-4 supplemented culture media. After 7 days, the number of regenerating neurites from the explants was counted. Then, explants were fixed, cryosectioned, and stained for TUNEL. The ratio of TUNEL-positive cells to all cells in the ganglion cell layer was determined. Immunohistochemical examinations for the active-form of caspase-9 and apoptosis-inducing factor were performed. In retinas incubated with advanced glycation end-products containing media, the number of regenerating neurites were fewer than in retinas without advanced glycation end-products, and the number of TUNEL-positive cells and caspase-9- and apoptosis-inducing factor-immunopositive cells was significantly higher than in control media. Neurotrophin-4 supplementation increased the numbers of regenerating neuritis, and the number of TUNEL-positives, caspase-9-, and apoptosis-inducing factor-immunopositive cells were significantly fewer than that in advanced glycation end-products without neurotrophin-4 media. Low doses of advanced glycation end-products impede neurite regeneration in the rat retinas. Neurotrophin-4 significantly enhances neurite regeneration in

  16. New function of the adaptor protein SH2B1 in brain-derived neurotrophic factor-induced neurite outgrowth.

    Chien-Hung Shih

    Full Text Available Neurite outgrowth is an essential process for the establishment of the nervous system. Brain-derived neurotrophic factor (BDNF binds to its receptor TrkB and regulates axonal and dendritic morphology of neurons through signal transduction and gene expression. SH2B1 is a signaling adaptor protein that regulates cellular signaling in various physiological processes. The purpose of this study is to investigate the role of SH2B1 in the development of the central nervous system. In this study, we show that knocking down SH2B1 reduces neurite formation of cortical neurons whereas overexpression of SH2B1β promotes the development of hippocampal neurons. We further demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth and signaling using the established PC12 cells stably expressing TrkB, SH2B1β or SH2B1β mutants. Our data indicate that overexpressing SH2B1β enhances BDNF-induced MEK-ERK1/2, and PI3K-AKT signaling pathways. Inhibition of MEK-ERK1/2 and PI3K-AKT pathways by specific inhibitors suggest that these two pathways are required for SH2B1β-promoted BDNF-induced neurite outgrowth. Moreover, SH2B1β enhances BDNF-stimulated phosphorylation of signal transducer and activator of transcription 3 at serine 727. Finally, our data indicate that the SH2 domain and tyrosine phosphorylation of SH2B1β contribute to BDNF-induced signaling pathways and neurite outgrowth. Taken together, these findings demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth through enhancing pathways involved MEK-ERK1/2 and PI3K-AKT.

  17. Neurotrophin Promotes Neurite Outgrowth by Inhibiting Rif GTPase Activation Downstream of MAPKs and PI3K Signaling.

    Tian, Xiaoxia; Yan, Huijuan; Li, Jiayi; Wu, Shuang; Wang, Junyu; Fan, Lifei

    2017-01-13

    Members of the well-known semaphorin family of proteins can induce both repulsive and attractive signaling in neural network formation and their cytoskeletal effects are mediated in part by small guanosine 5'-triphosphatase (GTPases). The aim of this study was to investigate the cellular role of Rif GTPase in the neurotrophin-induced neurite outgrowth. By using PC12 cells which are known to cease dividing and begin to show neurite outgrowth responding to nerve growth factor (NGF), we found that semaphorin 6A was as effective as nerve growth factor at stimulating neurite outgrowth in PC12 cells, and that its neurotrophic effect was transmitted through signaling by mitogen-activated protein kinases (MAPKs) and phosphatidylinositol-3-kinase (PI3K). We further found that neurotrophin-induced neurite formation in PC12 cells could be partially mediated by inhibition of Rif GTPase activity downstream of MAPKs and PI3K signaling. In conclusion, we newly identified Rif as a regulator of the cytoskeletal rearrangement mediated by semaphorins.

  18. Active learning of neuron morphology for accurate automated tracing of neurites

    Gala, Rohan; Chapeton, Julio; Jitesh, Jayant; Bhavsar, Chintan; Stepanyants, Armen

    2014-01-01

    Automating the process of neurite tracing from light microscopy stacks of images is essential for large-scale or high-throughput quantitative studies of neural circuits. While the general layout of labeled neurites can be captured by many automated tracing algorithms, it is often not possible to differentiate reliably between the processes belonging to different cells. The reason is that some neurites in the stack may appear broken due to imperfect labeling, while others may appear fused due to the limited resolution of optical microscopy. Trained neuroanatomists routinely resolve such topological ambiguities during manual tracing tasks by combining information about distances between branches, branch orientations, intensities, calibers, tortuosities, colors, as well as the presence of spines or boutons. Likewise, to evaluate different topological scenarios automatically, we developed a machine learning approach that combines many of the above mentioned features. A specifically designed confidence measure was used to actively train the algorithm during user-assisted tracing procedure. Active learning significantly reduces the training time and makes it possible to obtain less than 1% generalization error rates by providing few training examples. To evaluate the overall performance of the algorithm a number of image stacks were reconstructed automatically, as well as manually by several trained users, making it possible to compare the automated traces to the baseline inter-user variability. Several geometrical and topological features of the traces were selected for the comparisons. These features include the total trace length, the total numbers of branch and terminal points, the affinity of corresponding traces, and the distances between corresponding branch and terminal points. Our results show that when the density of labeled neurites is sufficiently low, automated traces are not significantly different from manual reconstructions obtained by trained users. PMID

  19. Active learning of neuron morphology for accurate automated tracing of neurites

    Rohan eGala

    2014-05-01

    Full Text Available Automating the process of neurite tracing from light microscopy stacks of images is essential for large-scale or high-throughput quantitative studies of neural circuits. While the general layout of labeled neurites can be captured by many automated tracing algorithms, it is often not possible to differentiate reliably between the processes belonging to different cells. The reason is that some neurites in the stack may appear broken due to imperfect labeling, while others may appear fused due to the limited resolution of optical microscopy. Trained neuroanatomists routinely resolve such topological ambiguities during manual tracing tasks by combining information about distances between branches, branch orientations, intensities, calibers, tortuosities, colors, as well as the presence of spines or boutons. Likewise, to evaluate different topological scenarios automatically, we developed a machine learning approach that combines many of the above mentioned features. A specifically designed confidence measure was used to actively train the algorithm during user-assisted tracing procedure. Active learning significantly reduces the training time and makes it possible to obtain less than 1% generalization error rates by providing few training examples. To evaluate the overall performance of the algorithm a number of image stacks were reconstructed automatically, as well as manually by several trained users, making it possible to compare the automated traces to the baseline inter-user variability. Several geometrical and topological features of the traces were selected for the comparisons. These features include the total trace length, the total numbers of branch and terminal points, the affinity of corresponding traces, and the distances between corresponding branch and terminal points. Our results show that when the density of labeled neurites is sufficiently low, automated traces are not significantly different from manual reconstructions obtained by

  20. Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    Kito, Hiroaki; Yamazaki, Daiju; Ohya, Susumu; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2011-01-01

    Highlights: → We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. → The ER stress facilitated the expression of inward rectifier K + channel (K ir 2.1) and induced sustained membrane hyperpolarization. → The membrane hyperpolarization induced sustained Ca 2+ entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. → The K ir 2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K + channel (K ir 2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K ir channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca 2+ concentration due to Ca 2+ influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K ir 2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.

  1. Retrovirally transduced NCAM140 facilitates neuronal fate choice of hippocampal progenitor cells.

    Kim, Ju Hee; Lee, Jung-Ha; Park, Jin-Yong; Park, Chang-Hwan; Yun, Chae-Ok; Lee, Sang-Hun; Lee, Yong-Sung; Son, Hyeon

    2005-07-01

    Neural cell adhesion molecule (NCAM) influences proliferation and differentiation of neuronal cells. However, only a little is known about the downstream effects of NCAM signalling, such as alterations in gene transcription, which are associated with cell fate choice. To examine whether NCAM plays a role in cell fate choice during hippocampal neurogenesis, we performed a gain-of-function study, using a retroviral vector which contained full-length NCAM140 cDNA and the marker gene EGFP, and found that NCAM140 promoted neurogenesis by activating proneural transcription activators with concurrent inhibition of gliogenesis. The enhanced transcript levels of proneural transcription factors in NCAM140-transduced cells were down-regulated by treatment of the cells with mitogen-activated protein kinase kinase (MEK) inhibitor PD098059. Overall, these findings suggest that NCAM140 may facilitate hippocampal neurogenesis via regulation of proneurogenic transcription factors in an extracellular signal-regulated kinase (ERK)-dependent manner.

  2. Stabilization of Transfected Cells Expressing Low-Incidence Blood Group Antigens: Novel Methods Facilitating Their Use as Reagent-Cells.

    Cecilia González

    Full Text Available The identification of erythrocyte antibodies in the serum of patients rely on panels of human red blood cells (RBCs, which coexpress many antigens and are not easily available for low-incidence blood group phenotypes. These problems have been addressed by generating cell lines expressing unique blood group antigens, which may be used as an alternative to human RBCs. However, the use of cell lines implies several drawbacks, like the requirement of cell culture facilities and the high cost of cryopreservation. The application of cell stabilization methods could facilitate their use as reagent cells in clinical laboratories.We generated stably-transfected cells expressing low-incidence blood group antigens (Dia and Lua. High-expresser clones were used to assess the effect of TransFix® treatment and lyophilization as cell preservation methods. Cells were kept at 4°C and cell morphology, membrane permeability and antigenic properties were evaluated at several time-points after treatment.TransFix® addition to cell suspensions allows cell stabilization and proper antigen detection for at least 120 days, despite an increase in membrane permeability and a reduction in antigen expression levels. Lyophilized cells showed minor morphological changes and antigen expression levels were rather conserved at days 1, 15 and 120, indicating a high stability of the freeze-dried product. These stabilized cells have been proved to react specifically with human sera containing alloantibodies.Both stabilization methods allow long-term preservation of the transfected cells antigenic properties and may facilitate their distribution and use as reagent-cells expressing low-incidence antigens, overcoming the limited availability of such rare RBCs.

  3. Characterization of host lymphoid cells in antibody-facilitated bone marrow chimeras

    McCarthy, S.A.; Griffith, I.J.; Gambel, P.; Francescutti, L.H.; Wegmann, T.G.

    1985-01-01

    The authors have produced stable murine antibody-facilitated (AF) chimeras by the simultaneous injection of P1 bone marrow cells and anti-P2 monoclonal antibody into normal (unirradiated) adult (P1 X P2)F1 recipients. These AF chimeras are healthy, long-lived, and exhibit no overt signs of graft-versus-host disease. They are immunocompetent and tolerant of host, P2-encoded alloantigens. Donor cell engraftment and takeover, monitored by glucosephosphate isomerase isozyme patterns, is usually complete (greater than 95%) in the peripheral blood, bone marrow, and hemopoietic stem cell compartments of long-term (greater than 3 months posttransplantation) AF chimeras. The authors report here, however, that splenic, lymph node, and thymic leukocytes of AF chimeras represent donor/host chimeric populations. Spleen cell populations of AF chimeras exhibit substantial chimera-to-chimera variation in the preponderant residual host cell type(s) present. Interpretations of the implications of these findings are discussed

  4. Polymer microfiber meshes facilitate cardiac differentiation of c-kit{sup +} human cardiac stem cells

    Kan, Lijuan [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Thayer, Patrick [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Fan, Huimin [Research Institute of Heart Failure, Shanghai East Hospital of Tongji University, Shanghai (China); Ledford, Benjamin; Chen, Miao [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Goldstein, Aaron [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Cao, Guohua [School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); He, Jia-Qiang, E-mail: jiahe@vt.edu [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States)

    2016-09-10

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit{sup +} human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5 µm) elastomeric meshes consisting of aligned 1.7 µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increased expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. - Highlights: • First study to characterize c-kit{sup +} human cardiac stem cells on microfiber meshes. • Microfiber meshes seem reducing cell proliferation, but no effect on cell viability. • Microfiber meshes facilitate the elongation of human cardiac stem cells in culture. • Cardiac but not smooth muscle differentiation were enhanced on microfiber meshes. • Microfiber meshes may be used as cardiac patches in cell-based cardiac therapy.

  5. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy. © 2015 AlphaMed Press.

  6. A Lipopeptide Facilitate Induction of Mycobacterium leprae Killing in Host Cells

    Maeda, Yumi; Tamura, Toshiki; Fukutomi, Yasuo; Mukai, Tetsu; Kai, Masanori; Makino, Masahiko

    2011-01-01

    Little is known of the direct microbicidal activity of T cells in leprosy, so a lipopeptide consisting of the N-terminal 13 amino acids lipopeptide (LipoK) of a 33-kD lipoprotein of Mycobacterium leprae, was synthesized. LipoK activated M. leprae infected human dendritic cells (DCs) to induce the production of IL-12. These activated DCs stimulated autologous CD4+ or CD8+ T cells towards type 1 immune response by inducing interferon-gamma secretion. T cell proliferation was also evident from the CFSE labeling of target CD4+ or CD8+ T cells. The direct microbicidal activity of T cells in the control of M. leprae multiplication is not well understood. The present study showed significant production of granulysin, granzyme B and perforin from these activated CD4+ and CD8+ T cells when stimulated with LipoK activated, M. leprae infected DCs. Assessment of the viability of M. leprae in DCs indicated LipoK mediated T cell-dependent killing of M. leprae. Remarkably, granulysin as well as granzyme B could directly kill M. leprae in vitro. Our results provide evidence that LipoK could facilitate M. leprae killing through the production of effector molecules granulysin and granzyme B in T cells. PMID:22132248

  7. Neurite outgrowth mediated by translation elongation factor eEF1A1: a target for antiplatelet agent cilostazol.

    Kenji Hashimoto

    Full Text Available Cilostazol, a type-3 phosphodiesterase (PDE3 inhibitor, has become widely used as an antiplatelet drug worldwide. A recent second Cilostazol Stroke Prevention Study demonstrated that cilostazol is superior to aspirin for prevention of stroke after an ischemic stroke. However, its precise mechanisms of action remain to be determined. Here, we report that cilostazol, but not the PDE3 inhibitors cilostamide and milrinone, significantly potentiated nerve growth factor (NGF-induced neurite outgrowth in PC12 cells. Furthermore, specific inhibitors for the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP(3 receptors and several common signaling pathways (PLC-γ, PI3K, Akt, p38 MAPK, and c-Jun N-terminal kinase (JNK, and the Ras/Raf/ERK/MAPK significantly blocked the potentiation of NGF-induced neurite outgrowth by cilostazol. Using a proteomics analysis, we identified that levels of eukaryotic translation elongation factor eEF1A1 protein were significantly increased by treatment with cilostazol, but not cilostamide, in PC12 cells. Moreover, the potentiating effects of cilostazol on NGF-induced neurite outgrowth were significantly antagonized by treatment with eEF1A1 RNAi, but not the negative control of eEF1A1. These findings suggest that eEF1A1 and several common cellular signaling pathways might play a role in the mechanism of cilostazol-induced neurite outgrowth. Therefore, agents that can increase the eEF1A1 protein may have therapeutic relevance in diverse conditions with altered neurite outgrowth.

  8. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  9. Novel microchip-based tools facilitating live cell imaging and assessment of functional heterogeneity within NK cell populations

    Elin eForslund

    2012-10-01

    Full Text Available Each individual has a heterogeneous pool of NK cells consisting of cells that may be specialized towards specific functional responses such as secretion of cytokines or killing of tumor cells. Many conventional methods are not fit to characterize heterogeneous populations as they measure the average response of all cells. Thus, there is a need for experimental platforms that provide single cell resolution. In addition, there are also transient and stochastic variations in functional responses at the single cell level, calling for methods that allow studies of many events over extended times. This paper presents a versatile microchip platform enabling long-term microscopic studies of individual NK cells interacting with target cells. Each microchip contains an array of microwells, optimized for medium or high-resolution time-lapse imaging of single or multiple NK and target cells, or for screening of thousands of isolated NK-target cell interactions. Individual NK cells confined with target cells in small microwells is a suitable setup for high-content screening and rapid assessment of heterogeneity within populations, while microwells of larger dimensions are appropriate for studies of NK cell migration and sequential interactions with multiple target cells. By combining the chip technology with ultrasonic manipulation, NK and target cells can be forced to interact and positioned with high spatial accuracy within individual microwells. This setup effectively and synchronously creates NK-target conjugates at hundreds of parallel positions in the microchip. Thus, this facilitates assessment of temporal aspects of NK-target cell interactions, e.g. conjugation, immune synapse formation and cytotoxic events. The microchip platform presented here can be used to effectively address questions related to fundamental functions of NK cells that can lead to better understanding of how the behavior of individual cells add up to give a functional response at

  10. Facilitated Engraftment of Isolated Islets Coated With Expanded Vascular Endothelial Cells for Islet Transplantation.

    Barba-Gutierrez, D Alonso; Daneri-Navarro, A; Villagomez-Mendez, J Jesus Alejandro; Kanamune, J; Robles-Murillo, A Karina; Sanchez-Enriquez, S; Villafan-Bernal, J Rafael; Rivas-Carrillo, J D

    2016-03-01

    Diabetes is complex disease, which involves primary metabolic changes followed by immunological and vascular pathophysiological adjustments. However, it is mostly characterized by an unbalanced decreased number of the β-cells unable to maintain the metabolic requirements and failure to further regenerate newly functional pancreatic islets. The objective of this study was to analyze the properties of the endothelial cells to facilitate the islet cells engraftment after islet transplantation. We devised a co-cultured engineer system to coat isolated islets with vascular endothelial cells. To assess the cell integration of cell-engineered islets, we stained them for endothelial marker CD31 and nuclei counterstained with DAPI dye. We comparatively performed islet transplantations into streptozotocin-induced diabetic mice and recovered the islet grafts for morphometric analyses on days 3, 7, 10, and 30. Blood glucose levels were measured continuously after islet transplantation to monitor the functional engraftment and capacity to achieve metabolic control. Cell-engineered islets showed a well-defined rounded shape after co-culture when compared with native isolated islets. Furthermore, the number of CD31-positive cells layered on the islet surface showed a direct proportion with engraftment capacities and less TUNEL-positive cells on days 3 and 7 after transplantation. We observed that vascular endothelial cells could be functional integrated into isolated islets. We also found that islets that are coated with vascular endothelial cells increased their capacity to engraft. These findings indicate that islets coated with endothelial cells have a greater capacity of engraftment and thus establish a definitely vascular network to support the metabolic requirements. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The p75NTR tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells

    Khwaja, Fatima; Tabassum, Arshia; Allen, Jeff; Djakiew, Daniel

    2006-01-01

    The p75 neurotrophin receptor (p75 NTR ) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75 NTR retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted (ΔDD) dominant-negative antagonist of p75 NTR showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75 NTR -dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75 NTR expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75 NTR rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75 NTR was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75 NTR -dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75 NTR expressing prostate cancer cells

  12. The p75{sup NTR} tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells

    Khwaja, Fatima [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057-1436 (United States); Tabassum, Arshia [Toronto Western Hospital, Toronto, ON, M5T258 (Canada); Allen, Jeff [National Center for Complementary and Alternative Medicine, N.I.H., Bethesda, MD 20892 (United States); Djakiew, Daniel [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057-1436 (United States) and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057-1436 (United States)

    2006-03-24

    The p75 neurotrophin receptor (p75{sup NTR}) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75{sup NTR} retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted ({delta}DD) dominant-negative antagonist of p75{sup NTR} showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75{sup NTR}-dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75{sup NTR} expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75{sup NTR} rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75{sup NTR} was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75{sup NTR}-dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75{sup NTR} expressing prostate cancer cells.

  13. Breast cancer instructs dendritic cells to prime interleukin 13–secreting CD4+ T cells that facilitate tumor development

    Aspord, Caroline; Pedroza-Gonzalez, Alexander; Gallegos, Mike; Tindle, Sasha; Burton, Elizabeth C.; Su, Dan; Marches, Florentina; Banchereau, Jacques; Palucka, A. Karolina

    2007-01-01

    We previously reported (Bell, D., P. Chomarat, D. Broyles, G. Netto, G.M. Harb, S. Lebecque, J. Valladeau, J. Davoust, K.A. Palucka, and J. Banchereau. 1999. J. Exp. Med. 190: 1417–1426) that breast cancer tumors are infiltrated with mature dendritic cells (DCs), which cluster with CD4+ T cells. We now show that CD4+ T cells infiltrating breast cancer tumors secrete type 1 (interferon γ) as well as high levels of type 2 (interleukin [IL] 4 and IL-13) cytokines. Immunofluorescence staining of tissue sections revealed intense IL-13 staining on breast cancer cells. The expression of phosphorylated signal transducer and activator of transcription 6 in breast cancer cells suggests that IL-13 actually delivers signals to cancer cells. To determine the link between breast cancer, DCs, and CD4+ T cells, we implanted human breast cancer cell lines in nonobese diabetic/LtSz-scid/scid β2 microglobulin–deficient mice engrafted with human CD34+ hematopoietic progenitor cells and autologous T cells. There, CD4+ T cells promote early tumor development. This is dependent on DCs and can be partially prevented by administration of IL-13 antagonists. Thus, breast cancer targets DCs to facilitate its development. PMID:17438063

  14. Restoration of Mitochondrial NAD+ Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells.

    Son, Myung Jin; Kwon, Youjeong; Son, Taekwon; Cho, Yee Sook

    2016-12-01

    The fundamental tenet that aging is irreversible has been challenged by the development of reprogramming technology that can restore molecular and cellular age by reversing the progression of aging. The use of cells from aged individuals as sources for reprogramming or transplantation creates a major barrier in stem cell therapy with respect to cell quality and quantity. Here, we investigated the molecular features underlying senescence and rejuvenation during aged cell reprogramming and identified novel factors that can overcome age-associated barriers. Enzymes, such as nicotinamide nucleotide transhydrogenase (NNT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), that control mitochondrial NAD + levels appear to be susceptible to aging. In aged cells, mitochondrial NAD + levels decrease, accompanied by reduced SIRT3 activity; these changes severely impede cell fate transition. However, in cells collected from aged p16 knockout mice, which exhibit delayed cellular senescence, no changes in NNT or NMNAT3 expression were found. Importantly, restoring mitochondrial NAD + levels by overexpressing NNT and NMNAT3 enhanced reprogramming efficiency of aged somatic cells and extended the lifespan of human mesenchymal stem cells by delaying replicative senescence. These results demonstrate that maintenance of mitochondrial NAD + levels is critical for reversing the mechanisms of aging and ensuring that cells collected from aged individuals are of high quality. Stem Cells 2016;34:2840-2851. © 2016 AlphaMed Press.

  15. Morphological identification and development of neurite in Drosophila ventral nerve cord neuropil.

    Guangming Gan

    Full Text Available In Drosophila, ventral nerve cord (VNC occupies most of the larval central nervous system (CNS. However, there is little literature elaborating upon the specific types and growth of neurites as defined by their structural appearance in Drosophila larval VNC neuropil. Here we report the ultrastructural development of different types VNC neurites in ten selected time points in embryonic and larval stages utilizing transmission electron microscopy. There are four types of axonal neurites as classified by the type of vesicular content: clear vesicle (CV neurites have clear vesicles and some T-bar structures; Dense-core vesicle (DV neurites have dense-core vesicles and without T-bar structures; Mixed vesicle (MV neurites have mixed vesicles and some T-bar structures; Large vesicle (LV neurites are dominated by large, translucent spherical vesicles but rarely display T-bar structures. We found dramatic remodeling in CV neurites which can be divided into five developmental phases. The neurite is vacuolated in primary (P phase, they have mitochondria, microtubules or big dark vesicles in the second (S phase, and they contain immature synaptic features in the third (T phase. The subsequent bifurcate (B phase appears to undergo major remodeling with the appearance of the bifurcation or dendritic growth. In the final mature (M phase, high density of commensurate synaptic vesicles are distributed around T-bar structures. There are four kinds of morphological elaboration of the CVI neurite sub-types. First, new neurite produces at the end of axon. Second, new neurite bubbles along the axon. Third, the preexisting neurite buds and develops into several neurites. The last, the bundled axons form irregularly shape neurites. Most CVI neurites in M phase have about 1.5-3 µm diameter, they could be suitable to analyze their morphology and subcellular localization of specific proteins by light microscopy, and they could serve as a potential model in CNS in vivo

  16. Morphological identification and development of neurite in Drosophila ventral nerve cord neuropil.

    Gan, Guangming; Lv, Huihui; Xie, Wei

    2014-01-01

    In Drosophila, ventral nerve cord (VNC) occupies most of the larval central nervous system (CNS). However, there is little literature elaborating upon the specific types and growth of neurites as defined by their structural appearance in Drosophila larval VNC neuropil. Here we report the ultrastructural development of different types VNC neurites in ten selected time points in embryonic and larval stages utilizing transmission electron microscopy. There are four types of axonal neurites as classified by the type of vesicular content: clear vesicle (CV) neurites have clear vesicles and some T-bar structures; Dense-core vesicle (DV) neurites have dense-core vesicles and without T-bar structures; Mixed vesicle (MV) neurites have mixed vesicles and some T-bar structures; Large vesicle (LV) neurites are dominated by large, translucent spherical vesicles but rarely display T-bar structures. We found dramatic remodeling in CV neurites which can be divided into five developmental phases. The neurite is vacuolated in primary (P) phase, they have mitochondria, microtubules or big dark vesicles in the second (S) phase, and they contain immature synaptic features in the third (T) phase. The subsequent bifurcate (B) phase appears to undergo major remodeling with the appearance of the bifurcation or dendritic growth. In the final mature (M) phase, high density of commensurate synaptic vesicles are distributed around T-bar structures. There are four kinds of morphological elaboration of the CVI neurite sub-types. First, new neurite produces at the end of axon. Second, new neurite bubbles along the axon. Third, the preexisting neurite buds and develops into several neurites. The last, the bundled axons form irregularly shape neurites. Most CVI neurites in M phase have about 1.5-3 µm diameter, they could be suitable to analyze their morphology and subcellular localization of specific proteins by light microscopy, and they could serve as a potential model in CNS in vivo development.

  17. A cortical attractor network with Martinotti cells driven by facilitating synapses.

    Pradeep Krishnamurthy

    Full Text Available The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.

  18. Lewis lung carcinoma progression is facilitated by TIG-3 fibroblast cells.

    Yamauchi, Yoshikane; Izumi, Yotaro; Asakura, Keisuke; Kawai, Kenji; Wakui, Masatoshi; Ohmura, Mitsuyo; Suematsu, Makoto; Nomori, Hiroaki

    2013-09-01

    The interactions of tumor cells with stromal fibroblasts influence tumor biology, but the exact mechanisms involved are still unclear. In the present study, we evaluated the effects of a human lung fibroblast cell line, TIG-3, on Lewis lung carcinoma (LLC) cells both in vitro and in vivo. LLC and TIG-3 cells were co-cultured/co-implanted in vitro and in vivo. Cell invasion was assayed. Local tumor growth, as well as lung metastasis, were evaluated after subcutaneous cell co-implantation into NOD/SCID/γ-null (NOG) mice. LLC, and TIG-3 cells were pre-treated with either SB431542, a small molecule TGF-β receptor antagonist, or siRNA for transforming growth factor (TGF)-β before co-culture or co-implantation, and the effects of pre-treatments were compared both in cell culture and in mice. Subcutaneous LLC tumor growth (L group) in NOG mice was significantly increased by co-implantation of TIG-3 cells (L+T group) at four weeks. The number of macroscopic lung metastases was also significantly increased in the L+T group in comparison to the L group. In vitro cell invasion was significantly increased in the L+T group in comparison to the L group. In vitro expression of phosphorylated-SMAD3 was significantly increased in the L+T group in comparison to the L group. Furthermore, pre-treatment with either SB431542 or siRNA for TGF-β reduced the invasiveness both in culture and in mice. This study suggested that in vitro as well as in vivo progression of LLC was facilitated by co-culture/co-implantation with TIG-3 cells, and that this process was at least in part dependent on TGF-β-mediated interactions.

  19. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma

    Spel, Lotte; Boelens, Jaap-Jan; van der Steen, Dirk M.; Blokland, Nina J.G.; van Noesel, Max M.; Molenaar, Jan J.; Heemskerk, Mirjam H.M.

    2015-01-01

    Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20–40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses. PMID:26452036

  20. Strand transfer and elongation of HIV-1 reverse transcription is facilitated by cell factors in vitro.

    David Warrilow

    Full Text Available Recent work suggests a role for multiple host factors in facilitating HIV-1 reverse transcription. Previously, we identified a cellular activity which increases the efficiency of HIV-1 reverse transcription in vitro. Here, we describe aspects of the activity which shed light on its function. The cellular factor did not affect synthesis of strong-stop DNA but did improve downstream DNA synthesis. The stimulatory activity was isolated by gel filtration in a single fraction of the exclusion volume. Velocity-gradient purified HIV-1, which was free of detectable RNase activity, showed poor reverse transcription efficiency but was strongly stimulated by partially purified cell proteins. Hence, the cell factor(s did not inactivate an RNase activity that might degrade the viral genomic RNA and block completion of reverse transcription. Instead, the cell factor(s enhanced first strand transfer and synthesis of late reverse transcription suggesting it stabilized the reverse transcription complex. The factor did not affect lysis of HIV-1 by Triton X-100 in the endogenous reverse transcription (ERT system, and ERT reactions with HIV-1 containing capsid mutations, which varied the biochemical stability of viral core structures and impeded reverse transcription in cells, showed no difference in the ability to be stimulated by the cell factor(s suggesting a lack of involvement of the capsid in the in vitro assay. In addition, reverse transcription products were found to be resistant to exogenous DNase I activity when the active fraction was present in the ERT assay. These results indicate that the cell factor(s may improve reverse transcription by facilitating DNA strand transfer and DNA synthesis. It also had a protective function for the reverse transcription products, but it is unclear if this is related to improved DNA synthesis.

  1. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth

    Hsu, Ya-Yun [Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Tseng, Yu-Ting [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Lo, Yi-Ching, E-mail: yichlo@kmu.edu.tw [Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2013-11-01

    Reactive oxygen intermediates production and apoptotic damage induced by high glucose are major causes of neuronal damage in diabetic neuropathy. Berberine (BBR), a natural antidiabetes drug with PI3K-activating activity, holds promise for diabetes because of its dual antioxidant and anti-apoptotic activities. We have previously reported that BBR attenuated H{sub 2}O{sub 2} neurotoxicity via activating the PI3K/Akt/Nrf2-dependent pathway. In this study, we further explored the novel protective mechanism of BBR on high glucose-induced apoptotic death and neurite damage of SH-SY5Y cells. Results indicated BBR (0.1–10 nM) significantly attenuated reactive oxygen species (ROS) production, nucleus condensation, and apoptotic death in high glucose-treated cells. However, AG1024, an inhibitor of insulin growth factor-1 (IGF-1) receptor, significantly abolished BBR protection against high glucose-induced neuronal death. BBR also increased Bcl-2 expression and decreased cytochrome c release. High glucose down-regulated IGF-1 receptor and phosphorylation of Akt and GSK-3β, the effects of which were attenuated by BBR treatment. BBR also activated nuclear erythroid 2-related factor 2 (Nrf2), the key antioxidative transcription factor, which is accompanied with up-regulation of hemeoxygenase-1 (HO-1). Furthermore, BBR markedly enhanced nerve growth factor (NGF) expression and promoted neurite outgrowth in high glucose-treated cells. To further determine the role of the Nrf2 in BBR neuroprotection, RNA interference directed against Nrf2 was used. Results indicated Nrf2 siRNA abolished BBR-induced HO-1, NGF, neurite outgrowth and ROS decrease. In conclusion, BBR attenuated high glucose-induced neurotoxicity, and we are the first to reveal this novel mechanism of BBR as an Nrf2 activator against glucose neurotoxicity, providing another potential therapeutic use of BBR on the treatment of diabetic complications. - Highlights: • BBR attenuates high glucose-induced ROS

  2. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth

    Hsu, Ya-Yun; Tseng, Yu-Ting; Lo, Yi-Ching

    2013-01-01

    Reactive oxygen intermediates production and apoptotic damage induced by high glucose are major causes of neuronal damage in diabetic neuropathy. Berberine (BBR), a natural antidiabetes drug with PI3K-activating activity, holds promise for diabetes because of its dual antioxidant and anti-apoptotic activities. We have previously reported that BBR attenuated H 2 O 2 neurotoxicity via activating the PI3K/Akt/Nrf2-dependent pathway. In this study, we further explored the novel protective mechanism of BBR on high glucose-induced apoptotic death and neurite damage of SH-SY5Y cells. Results indicated BBR (0.1–10 nM) significantly attenuated reactive oxygen species (ROS) production, nucleus condensation, and apoptotic death in high glucose-treated cells. However, AG1024, an inhibitor of insulin growth factor-1 (IGF-1) receptor, significantly abolished BBR protection against high glucose-induced neuronal death. BBR also increased Bcl-2 expression and decreased cytochrome c release. High glucose down-regulated IGF-1 receptor and phosphorylation of Akt and GSK-3β, the effects of which were attenuated by BBR treatment. BBR also activated nuclear erythroid 2-related factor 2 (Nrf2), the key antioxidative transcription factor, which is accompanied with up-regulation of hemeoxygenase-1 (HO-1). Furthermore, BBR markedly enhanced nerve growth factor (NGF) expression and promoted neurite outgrowth in high glucose-treated cells. To further determine the role of the Nrf2 in BBR neuroprotection, RNA interference directed against Nrf2 was used. Results indicated Nrf2 siRNA abolished BBR-induced HO-1, NGF, neurite outgrowth and ROS decrease. In conclusion, BBR attenuated high glucose-induced neurotoxicity, and we are the first to reveal this novel mechanism of BBR as an Nrf2 activator against glucose neurotoxicity, providing another potential therapeutic use of BBR on the treatment of diabetic complications. - Highlights: • BBR attenuates high glucose-induced ROS production and

  3. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

    Jackson, Nicole M.; Ceresa, Brian P., E-mail: brian.ceresa@louisville.edu

    2016-08-15

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as a plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.

  4. Discovery of pyrroloimidazoles as agents stimulating neurite outgrowth

    Beck, Barbara; Leppert, Christian A.; Mueller, Bernhard K.; Dömling, Alexander

    2006-01-01

    A diverse library of substituted pyrroloimidazoles was assembled by a multicomponent reaction (MCR) of tosylmethyl isocyanides (TOSMIC), indole carbaldehydes and primary amines in a van Leusen reaction. A library of this scaffold was screened in a phenotypic assay for neurite outgrowth. Several

  5. The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology

    Jui-Heng Tseng

    2017-08-01

    Full Text Available The initiating events that promote tau mislocalization and pathology in Alzheimer’s disease (AD are not well defined, partly because of the lack of endogenous models that recapitulate tau dysfunction. We exposed wild-type neurons to a neuroinflammatory trigger and examined the effect on endogenous tau. We found that tau re-localized and accumulated within pathological neuritic foci, or beads, comprised of mostly hypo-phosphorylated, acetylated, and oligomeric tau. These structures were detected in aged wild-type mice and were enhanced in response to neuroinflammation in vivo, highlighting a previously undescribed endogenous age-related tau pathology. Strikingly, deletion or inhibition of the cytoplasmic shuttling factor HDAC6 suppressed neuritic tau bead formation in neurons and mice. Using mass spectrometry-based profiling, we identified a single neuroinflammatory factor, the metalloproteinase MMP-9, as a mediator of neuritic tau beading. Thus, our study uncovers a link between neuroinflammation and neuritic tau beading as a potential early-stage pathogenic mechanism in AD.

  6. Proteome-wide analysis of neural stem cell differentiation to facilitate transition to cell replacement therapies

    Žižková, Martina; Suchá, Rita; Tylečková, Jiřina; Jarkovská, Karla; Mairychová, Kateřina; Kotrčová, Eva; Marsala, M.; Gadher, S. J.; Kovářová, Hana

    2015-01-01

    Roč. 12, č. 1 (2015), s. 83-95 ISSN 1478-9450 R&D Projects: GA MŠk ED2.1.00/03.0124; GA TA ČR(CZ) TA01011466 Institutional support: RVO:67985904 Keywords : cell therapy * immunomodulation * neural stem cell differentiation * neural subpopulation * neurodegenerative disease Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.465, year: 2015

  7. Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans.

    Flonia Levy-Adam

    2008-06-01

    Full Text Available Heparanase is a heparan sulfate (HS degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys(158-Asp(171, termed KKDC was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity.

  8. A three-dimensional image processing program for accurate, rapid, and semi-automated segmentation of neuronal somata with dense neurite outgrowth

    Ross, James D.; Cullen, D. Kacy; Harris, James P.; LaPlaca, Michelle C.; DeWeerth, Stephen P.

    2015-01-01

    Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly and accurately assess complex morphological and functional interactions between neural cells. Current software-based identification methods of neural cells generally fall into two applications: (1) segmentation of cell nuclei in high-density constructs or (2) tracing of cell neurites in single cell investigations. We have developed novel methodologies to permit the systematic identification of populations of neuronal somata possessing rich morphological detail and dense neurite arborization throughout thick tissue or 3-D in vitro constructs. The image analysis incorporates several novel automated features for the discrimination of neurites and somata by initially classifying features in 2-D and merging these classifications into 3-D objects; the 3-D reconstructions automatically identify and adjust for over and under segmentation errors. Additionally, the platform provides for software-assisted error corrections to further minimize error. These features attain very accurate cell boundary identifications to handle a wide range of morphological complexities. We validated these tools using confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We demonstrated the robustness of these algorithms in a more complex arena through the automated segmentation of neural cells in ex vivo brain slices. These novel methods surpass previous techniques by improving the robustness and accuracy by: (1) the ability to process neurites and somata, (2) bidirectional segmentation correction, and (3) validation via software-assisted user input. This 3-D image analysis platform provides valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular matrix interactions. PMID

  9. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells

    Bhatt, Anant Narayan; Chauhan, Ankit; Khanna, Suchit; Rai, Yogesh; Singh, Saurabh; Soni, Ravi; Kalra, Namita; Dwarakanath, Bilikere S

    2015-01-01

    Cancer cells exhibit increased glycolysis for ATP production (the Warburg effect) and macromolecular biosynthesis; it is also linked with therapeutic resistance that is generally associated with compromised respiratory metabolism. Molecular mechanisms underlying radio-resistance linked to elevated glycolysis remain incompletely understood. We stimulated glycolysis using mitochondrial respiratory modifiers (MRMs viz. di-nitro phenol, DNP; Photosan-3, PS3; Methylene blue, MB) in established human cell lines (HEK293, BMG-1 and OCT-1). Glucose utilization and lactate production, levels of glucose transporters and glycolytic enzymes were investigated as indices of glycolysis. Clonogenic survival, DNA repair and cytogenetic damage were studied as parameters of radiation response. MRMs induced the glycolysis by enhancing the levels of two important regulators of glucose metabolism GLUT-1 and HK-II and resulted in 2 fold increase in glucose consumption and lactate production. This increase in glycolysis resulted in resistance against radiation-induced cell death (clonogenic survival) in different cell lines at an absorbed dose of 5 Gy. Inhibition of glucose uptake and glycolysis (using fasentin, 2-deoxy-D-glucose and 3-bromopyruvate) in DNP treated cells failed to increase the clonogenic survival of irradiated cells, suggesting that radio-resistance linked to inhibition of mitochondrial respiration is glycolysis dependent. Elevated glycolysis also facilitated rejoining of radiation-induced DNA strand breaks by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to a reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. These findings suggest that enhanced glycolysis generally observed in cancer cells may be responsible for the radio-resistance, partly by enhancing the repair of DNA damage

  10. Characterization of hemopoietic stem cell chimerism in antibody-facilitated bone marrow chimeras

    Francescutti, L.H.; Gambel, P.; Wegmann, T.G.

    1985-01-01

    The authors have previously described a model for bone marrow transplantation that involves preparation of the host with monoclonal antibody against class I or class II antigens instead of irradiation or cytotoxic drugs. This allows engraftment and subsequent repopulation of the host by donor tissue. They have previously reported on chimerism in the peripheral blood of P1----(P1 X P2)F1 animals. In this report, the authors describe the examination of the bone marrow and spleen stem cell chimerism of these antibody-facilitated (AF) chimeras, by determining, with an isozyme assay, the phenotype of methylcellulose colonies grown from stem cells. They have found a correlation between peripheral blood chimerism and the stem cell constitution of both spleen and bone marrow. The peripheral blood chimerism also correlates with the level of chimerism in macrophages derived from peritoneal exudate cells. These findings indicate that assaying the peripheral blood of such chimeras provides an excellent indication of the degree of chimerism at the stem cell level and stands in sharp contrast to the level of chimerism in certain lymphoid compartments

  11. Antigen storage compartments in mature dendritic cells facilitate prolonged cytotoxic T lymphocyte cross-priming capacity.

    van Montfoort, Nadine; Camps, Marcel G; Khan, Selina; Filippov, Dmitri V; Weterings, Jimmy J; Griffith, Janice M; Geuze, Hans J; van Hall, Thorbald; Verbeek, J Sjef; Melief, Cornelis J; Ossendorp, Ferry

    2009-04-21

    Dendritic cells (DCs) are crucial for priming of naive CD8(+) T lymphocytes to exogenous antigens, so-called "cross-priming." We report that exogenous protein antigen can be conserved for several days in mature DCs, coinciding with strong cytotoxic T lymphocyte cross-priming potency in vivo. After MHC class I peptide elution, protein antigen-derived peptide presentation is efficiently restored, indicating the presence of an intracellular antigen depot. We characterized this depot as a lysosome-like organelle, distinct from MHC class II compartments and recently described early endosomal compartments that allow acute antigen presentation in MHC class I. The storage compartments we report here facilitate continuous supply of MHC class I ligands. This mechanism ensures sustained cross-presentation by DCs, despite the short-lived expression of MHC class I-peptide complexes at the cell surface.

  12. Electrospun fiber surface nanotopography influences astrocyte-mediated neurite outgrowth.

    Johnson, Christopher D; D'Amato, Anthony R; Puhl, Devan L; Wich, Douglas M; Vespermann, Amanda; Gilbert, Ryan J

    2018-05-15

    Aligned, electrospun fiber scaffolds provide topographical guidance for regenerating neurons and glia after central nervous system injury. To date, no study has explored how fiber surface nanotopography affects astrocyte response to fibrous scaffolds. Astrocytes play important roles in the glial scar, the blood brain barrier, and in maintaining homeostasis in the central nervous system. In this study, electrospun poly L-lactic acid fibers were engineered with smooth, pitted, or divoted surface nanotopography. Cortical or spinal cord primary rat astrocytes were cultured on the surfaces for either 1 or 3 days to examine the astrocyte response over time. The results showed that cortical astrocytes were significantly shorter and broader on the pitted and divoted fibers compared to those on smooth fibers. However, spinal cord astrocyte morphology was not significantly altered by the surface features. These findings indicate that astrocytes from unique anatomical locations respond differently to the presence of nanotopography. Western Blot results show that the differences in morphology were not associated with significant changes in GFAP or vinculin in either astrocyte population, suggesting that surface pits and divots do not induce a reactive phenotype in either cortical or spinal cord astrocytes. Finally, astrocytes were co-cultured with dorsal root ganglia to determine how the surfaces affected astrocyte-mediated neurite outgrowth. Astrocytes cultured on the fibers for shorter periods of time (1 day) generally supported longer neurite outgrowth. Pitted and divoted fibers restricted spinal cord astrocyte-mediated neurite outgrowth, while smooth fibers increased 3 day spinal cord astrocyte-mediated neurite outgrowth. In total, fiber surface nanotopography can influence astrocyte elongation and influence the capability of astrocytes to direct neurites. Therefore, fiber surface characteristics should be carefully controlled to optimize astrocyte-mediated axonal

  13. Puerarin Facilitates T-Tubule Development of Murine Embryonic Stem Cell-Derived Cardiomyocytes

    Lu Wang

    2014-07-01

    Full Text Available Aims: The embryonic stem cell-derived cardiomyocytes (ES-CM is one of the promising cell sources for repopulation of damaged myocardium. However, ES-CMs present immature structure, which impairs their integration with host tissue and functional regeneration. This study used murine ES-CMs as an in vitro model of cardiomyogenesis to elucidate the effect of puerarin, the main compound found in the traditional Chinese medicine the herb Radix puerariae, on t-tubule development of murine ES-CMs. Methods: Electron microscope was employed to examine the ultrastructure. The investigation of transverse-tubules (t-tubules was performed by Di-8-ANEPPS staining. Quantitative real-time PCR was utilized to study the transcript level of genes related to t-tubule development. Results: We found that long-term application of puerarin throughout cardiac differentiation improved myofibril array and sarcomeres formation, and significantly facilitated t-tubules development of ES-CMs. The transcript levels of caveolin-3, amphiphysin-2 and junctophinlin-2, which are crucial for the formation and development of t-tubules, were significantly upregulated by puerarin treatment. Furthermore, puerarin repressed the expression of miR-22, which targets to caveolin-3. Conclusion: Our data showed that puerarin facilitates t-tubule development of murine ES-CMs. This might be related to the repression of miR-22 by puerarin and upregulation of Cav3, Bin1 and JP2 transcripts.

  14. ATM facilitates mouse gammaherpesvirus reactivation from myeloid cells during chronic infection.

    Kulinski, Joseph M; Darrah, Eric J; Broniowska, Katarzyna A; Mboko, Wadzanai P; Mounce, Bryan C; Malherbe, Laurent P; Corbett, John A; Gauld, Stephen B; Tarakanova, Vera L

    2015-09-01

    Gammaherpesviruses are cancer-associated pathogens that establish life-long infection in most adults. Insufficiency of Ataxia-Telangiectasia mutated (ATM) kinase leads to a poor control of chronic gammaherpesvirus infection via an unknown mechanism that likely involves a suboptimal antiviral response. In contrast to the phenotype in the intact host, ATM facilitates gammaherpesvirus reactivation and replication in vitro. We hypothesized that ATM mediates both pro- and antiviral activities to regulate chronic gammaherpesvirus infection in an immunocompetent host. To test the proposed proviral activity of ATM in vivo, we generated mice with ATM deficiency limited to myeloid cells. Myeloid-specific ATM deficiency attenuated gammaherpesvirus infection during the establishment of viral latency. The results of our study uncover a proviral role of ATM in the context of gammaherpesvirus infection in vivo and support a model where ATM combines pro- and antiviral functions to facilitate both gammaherpesvirus-specific T cell immune response and viral reactivation in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR.

    Yin, Yancun; Chen, Chen; Chen, Jinliang; Zhan, Renhui; Zhang, Qiang; Xu, Xiaoyan; Li, Defang; Li, Minjing

    2017-07-01

    The 78kDa glucose regulated protein (GRP78) is a multifunctional chaperone that is involved in a variety of cellular processes. Insulin like growth factor I receptor (IGF-IR) often aberrant expresses in many types of tumor cells. The IGF-IR signaling plays key roles in carcinogenesis and maintenance of the malignant phenotype. The crosstalk between GRP78 and IGF-IR molecules has not well been illuminated. Here, we demonstrated a reciprocal regulation of GRP78 expression and IGF-IR pathway activation. IGF-I induced GRP78 expression in hepatoma cells. IGF-IR knockdown or IGF-IR inhibitor repressed GRP78 expression. Both phosphatidylinositol 3-kianase (PI3K) and mitogen-activated protein kinase (MAPK) pathways involved in IGF-I induction of GRP78 expression. Interestingly, treatment of hepatoma cells with IGF-I re-distributes GRP78 from endoplasmic reticulum (ER) to cell surface and promotes its physical interaction with IGF-IR. Also, GRP78 promotes IGF-IR phosphorylation and activation. Blocked of GRP78 by small interfering RNA or inhibition of GRP78 function by (-)-epigallocatechin gallate (EGCG) blocks IGF-I induced IGF-IR phosphorylation and its downstream signaling. Further, blocked cell surface GRP78 with antibody inhibits IGF-I stimulated cellular proliferation and migration. These data reveal an essential role for the molecular chaperone GRP78 in IGF-IR signaling and implicate the use of GRP78 inhibitors in blocking IGF-IR signaling in hepatoma cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mitochondrial respiratory modifiers confer survival advantage by facilitating DNA repair in cancer cells

    Chauhan, Ankit; Khanna, Suchit; Singh, Saurabh; Rai, Yogesh; Soni, Ravi; Kalra, Namita; Dwarakanath, B.S.; Bhatt, Anant Narayan

    2014-01-01

    High rate of aerobic glycolysis (Warburg effect), one of the primary hallmarks of cancer cells, acquired during the multistep development of tumors is also responsible for therapeutic resistance. Underlying this hallmark is the compromised respiratory metabolism that contributes to the acquisition of the glycolytic phenotype for sustained ATP production and cell proliferation. Nevertheless, the exact mechanisms underlying the glycolysis-linked radio-resistance in cancer cells remain elusive. In this study, we transiently elevated glycolysis by treating human cell lines (HEK293, BMG-1 and OCT-1) with mitochondrial respiratory modifiers (MRMs) viz. 2,4-dinitrophenol, Photosan-3, and Methylene blue to examine if transient stimulation of glycolysis before irradiation using MRMs is sufficient to confer radioresistance. Treatment with MRMs led to a significant (two-fold) increase in glucose consumption and lactate production together with a robust increase in the protein levels of two key regulators of glucose metabolism, i.e. GLUT-1 and HK-II. MRMs also enhanced the clonogenic survival and facilitated DNA repair by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. Inhibition of glucose uptake by inhibitors like 2-deoxy-D-glucose (2-DG), 3-bromo pyruvate (3-BP) and fasentin under conditions of stimulated glycolysis not only reversed the effect but also sensitized the cells to radiation more profoundly. The inhibition of glycolysis using 2-DG also reduced the levels of Ku 70 (NHEJ) and Rad-51 (HR) proteins. Thus, our results suggest that enhanced glycolysis in cancer cells may confer radio-resistance and offers survival advantage partly by enhancing the repair of DNA damage. (author)

  17. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma

    Spel, Lotte; Boelens, Jaap Jan; Van Der Steen, Dirk M.; Blokland, Nina J G; van Noesel, Max M.; Molenaar, Jan J.; Heemskerk, Mirjam H M; Boes, Marianne; Nierkens, Stefan

    2015-01-01

    Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20-40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for

  18. Nanoscaled red blood cells facilitate breast cancer treatment by combining photothermal/photodynamic therapy and chemotherapy.

    Wan, Guoyun; Chen, Bowei; Li, Ling; Wang, Dan; Shi, Shurui; Zhang, Tao; Wang, Yue; Zhang, Lianyun; Wang, Yinsong

    2018-02-01

    Red blood cells (RBCs)-based vesicles have been widely used for drug delivery due to their unique advantages. Intact RBCs contain a large amount of oxyhemoglobin (oxyHb), which can assist with photodynamic therapy (PDT). Indocyanine green (ICG), a photosensitizer both for photothermal therapy (PTT) and PDT, shows potent anticancer efficacy when combined with chemotherapeutic drug doxorubicin (DOX). In this study, we prepared nanoscaled RBCs (RAs) containing oxyHb and gas-generating agent ammonium bicarbonate (ABC) for co-loading and controlled release of ICG and DOX, thus hoping to achieve synergistic effects of PTT/PDT and chemotherapy against breast cancer. Compared to free ICG, ICG and DOX co-loaded RAs (DIRAs) exhibited nearly identical PTT efficiency both in vitro and in vivo, but meanwhile their PDT efficiency was enhanced significantly. In mouse breast cancer cells, DIRAs significantly inhibited cell growth and induced cell apoptosis after laser irradiation. In breast tumor-bearing mice, intratumoral injection of DIRAs and followed by local laser irradiation almost completely ablated breast tumor and further suppressed tumor recurrence and metastasis. In conclusion, this biomimetic multifunctional nanosystem can facilitate breast cancer treatment by combining PTT/PDT and chemotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A Cbx8-containing polycomb complex facilitates the transition to gene activation during ES cell differentiation.

    Catherine Creppe

    2014-12-01

    Full Text Available Polycomb proteins play an essential role in maintaining the repression of developmental genes in self-renewing embryonic stem cells. The exact mechanism allowing the derepression of polycomb target genes during cell differentiation remains unclear. Our project aimed to identify Cbx8 binding sites in differentiating mouse embryonic stem cells. Therefore, we used a genome-wide chromatin immunoprecipitation of endogenous Cbx8 coupled to direct massive parallel sequencing (ChIP-Seq. Our analysis identified 171 high confidence peaks. By crossing our data with previously published microarray analysis, we show that several differentiation genes transiently recruit Cbx8 during their early activation. Depletion of Cbx8 partially impairs the transcriptional activation of these genes. Both interaction analysis, as well as chromatin immunoprecipitation experiments support the idea that activating Cbx8 acts in the context of an intact PRC1 complex. Prolonged gene activation results in eviction of PRC1 despite persisting H3K27me3 and H2A ubiquitination. The composition of PRC1 is highly modular and changes when embryonic stem cells commit to differentiation. We further demonstrate that the exchange of Cbx7 for Cbx8 is required for the effective activation of differentiation genes. Taken together, our results establish a function for a Cbx8-containing complex in facilitating the transition from a Polycomb-repressed chromatin state to an active state. As this affects several key regulatory differentiation genes this mechanism is likely to contribute to the robust execution of differentiation programs.

  20. Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes

    Coukos George

    2011-08-01

    Full Text Available Abstract Background Development of a standardized platform for the rapid expansion of tumor-infiltrating lymphocytes (TILs with anti-tumor function from patients with limited TIL numbers or tumor tissues challenges their clinical application. Methods To facilitate adoptive immunotherapy, we applied genetically-engineered K562 cell-based artificial antigen presenting cells (aAPCs for the direct and rapid expansion of TILs isolated from primary cancer specimens. Results TILs outgrown in IL-2 undergo rapid, CD28-independent expansion in response to aAPC stimulation that requires provision of exogenous IL-2 cytokine support. aAPCs induce numerical expansion of TILs that is statistically similar to an established rapid expansion method at a 100-fold lower feeder cell to TIL ratio, and greater than those achievable using anti-CD3/CD28 activation beads or extended IL-2 culture. aAPC-expanded TILs undergo numerical expansion of tumor antigen-specific cells, remain amenable to secondary aAPC-based expansion, and have low CD4/CD8 ratios and FOXP3+ CD4+ cell frequencies. TILs can also be expanded directly from fresh enzyme-digested tumor specimens when pulsed with aAPCs. These "young" TILs are tumor-reactive, positively skewed in CD8+ lymphocyte composition, CD28 and CD27 expression, and contain fewer FOXP3+ T cells compared to parallel IL-2 cultures. Conclusion Genetically-enhanced aAPCs represent a standardized, "off-the-shelf" platform for the direct ex vivo expansion of TILs of suitable number, phenotype and function for use in adoptive immunotherapy.

  1. Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination.

    Erickson, Andrea K; Jesudhasan, Palmy R; Mayer, Melinda J; Narbad, Arjan; Winter, Sebastian E; Pfeiffer, Julie K

    2018-01-10

    RNA viruses exist in genetically diverse populations due to high levels of mutations, many of which reduce viral fitness. Interestingly, intestinal bacteria can promote infection of several mammalian enteric RNA viruses, but the mechanisms and consequences are unclear. We screened a panel of 41 bacterial strains as a platform to determine how different bacteria impact infection of poliovirus, a model enteric virus. Most bacterial strains, including those extracted from cecal contents of mice, bound poliovirus, with each bacterium binding multiple virions. Certain bacterial strains increased viral co-infection of mammalian cells even at a low virus-to-host cell ratio. Bacteria-mediated viral co-infection correlated with bacterial adherence to cells. Importantly, bacterial strains that induced viral co-infection facilitated genetic recombination between two different viruses, thereby removing deleterious mutations and restoring viral fitness. Thus, bacteria-virus interactions may increase viral fitness through viral recombination at initial sites of infection, potentially limiting abortive infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation.

    Ahirwar, Dinesh K; Nasser, Mohd W; Ouseph, Madhu M; Elbaz, Mohamad; Cuitiño, Maria C; Kladney, Raleigh D; Varikuti, Sanjay; Kaul, Kirti; Satoskar, Abhay R; Ramaswamy, Bhuvaneswari; Zhang, Xiaoli; Ostrowski, Michael C; Leone, Gustavo; Ganju, Ramesh K

    2018-05-03

    The chemokine CXCL12 has been shown to regulate breast tumor growth, however, its mechanism in initiating distant metastasis is not well understood. Here, we generated a novel conditional allele of Cxcl12 in mice and used a fibroblast-specific Cre transgene along with various mammary tumor models to evaluate CXCL12 function in the breast cancer metastasis. Ablation of CXCL12 in stromal fibroblasts of mice significantly delayed the time to tumor onset and inhibited distant metastasis in different mouse models. Elucidation of mechanisms using in vitro and in vivo model systems revealed that CXCL12 enhances tumor cell intravasation by increasing vascular permeability and expansion of a leaky tumor vasculature. Furthermore, our studies revealed CXCL12 enhances permeability by recruiting endothelial precursor cells and decreasing endothelial tight junction and adherence junction proteins. High expression of stromal CXCL12 in large cohort of breast cancer patients was directly correlated to blood vessel density and inversely correlated to recurrence and overall patient survival. In addition, our analysis revealed that stromal CXCL12 levels in combination with number of CD31+ blood vessels confers poorer patient survival compared to individual protein level. However, no correlation was observed between epithelial CXCL12 and patient survival or blood vessel density. Our findings describe the novel interactions between fibroblasts-derived CXCL12 and endothelial cells in facilitating tumor cell intrvasation, leading to distant metastasis. Overall, our studies indicate that cross-talk between fibroblast-derived CXCL12 and endothelial cells could be used as novel biomarker and strategy for developing tumor microenvironment based therapies against aggressive and metastatic breast cancer.

  3. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells.

    Yuan, Yong; Zhou, Shungui; Zhao, Bo; Zhuang, Li; Wang, Yueqiang

    2012-07-01

    A one-pot method is exploited by adding graphene oxide (GO) and acetate into an microbial fuel cell (MFC) in which GO is microbially reduced, leading to in situ construction of a bacteria/graphene network in the anode. The obtained microbially reduced graphene (MRG) exhibits comparable conductivity and physical characteristics to the chemically reduced graphene. Electrochemical measurements reveal that the number of exoelectrogens involved in extracellular electron transfer (EET) to the solid electrode, increases due to the presence of graphene scaffolds, and the EET is facilitated in terms of electron transfer kinetics. As a result, the maximum power density of the MFC is enhanced by 32% (from 1440 to 1905 mW m(-2)) and the coulombic efficiency is improved by 80% (from 30 to 54%). The results demonstrate that the construction of the bacteria/graphene network is an effective alternative to improve the MFC performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A solution-processed binary cathode interfacial layer facilitates electron extraction for inverted polymer solar cells.

    Zhang, Xinyuan; Li, Zhiqi; Liu, Chunyu; Guo, Jiaxin; Shen, Liang; Guo, Wenbin

    2018-03-15

    The charge transfer and separation are significantly affected by the electron properties of the interface between the electron-donor layer and the carrier-transporting layer in polymer solar cells (PSCs). In this study, we investigate the electron extraction mechanism of PSCs with a low temperature solution-processed ZnO/PEI as electron transport layer. The incorporation of PEI layer can decrease the work function of ZnO and reduce interfacial barrier, which facilitates electron extraction and suppresses bimolecular recombination, leading to a significant performance enhancement. Furthermore, PEI layer can induce phase separation and passivite inorganic surface trap states as well as shift the interfacial energy offset between metal oxide and organic materials. This work offers a simple and effective way to improve the charge transporting property of organic photovoltaic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells.

    Garrison, Brian S; Rybak, Adrian P; Beerman, Isabel; Heesters, Balthasar; Mercier, Francois E; Scadden, David T; Bryder, David; Baron, Roland; Rossi, Derrick J

    2017-08-03

    The concept that tumor-initiating cells can co-opt the self-renewal program of endogenous stem cells as a means of enforcing their unlimited proliferative potential is widely accepted, yet identification of specific factors that regulate self-renewal of normal and cancer stem cells remains limited. Using a comparative transcriptomic approach, we identify ZNF521 / Zfp521 as a conserved hematopoietic stem cell (HSC)-enriched transcription factor in human and murine hematopoiesis whose function in HSC biology remains elusive. Competitive serial transplantation assays using Zfp521 -deficient mice revealed that ZFP521 regulates HSC self-renewal and differentiation. In contrast, ectopic expression of ZFP521 in HSCs led to a robust maintenance of progenitor activity in vitro. Transcriptional analysis of human acute myeloid leukemia (AML) patient samples revealed that ZNF521 is highly and specifically upregulated in AMLs with MLL translocations. Using an MLL-AF9 murine leukemia model and serial transplantation studies, we show that ZFP521 is not required for leukemogenesis, although its absence leads to a significant delay in leukemia onset. Furthermore, knockdown of ZNF521 reduced proliferation in human leukemia cell lines possessing MLL-AF9 translocations. Taken together, these results identify ZNF521/ZFP521 as a critical regulator of HSC function, which facilitates MLL-AF9-mediated leukemic disease in mice.

  6. IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway.

    Chen, Hongbin; Lin, Wei; Zhang, Yixian; Lin, Longzai; Chen, Jianhao; Zeng, Yongping; Zheng, Mouwei; Zhuang, Zezhong; Du, Houwei; Chen, Ronghua; Liu, Nan

    2016-07-26

    As a classic immunoregulatory and anti-inflammatory cytokine, interleukin-10 (IL-10) provides neuroprotection in cerebral ischemia in vivo or oxygen-glucose deprivation (OGD)-induced injury in vitro. However, it remains blurred whether IL-10 promotes neurite outgrowth and synapse formation in cultured primary cortical neurons after OGD injury. In order to evaluate its effect on neuronal apoptosis, neurite outgrowth and synapse formation, we administered IL-10 or IL-10 neutralizing antibody (IL-10NA) to cultured rat primary cortical neurons after OGD injury. We found that IL-10 treatment activated the Janus kinase 1 (JAK1)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. Moreover, IL-10 attenuated OGD-induced neuronal apoptosis by down-regulating the Bax expression and up-regulating the Bcl-2 expression, facilitated neurite outgrowth by increasing the expression of Netrin-1, and promoted synapse formation in cultured primary cortical neurons after OGD injury. These effects were partly abolished by JAK1 inhibitor GLPG0634. Contrarily, IL-10NA produced opposite effects on the cultured cortical neurons after OGD injury. Taken together, our findings suggest that IL-10 not only attenuates neuronal apoptosis, but also promotes neurite outgrowth and synapse formation via the JAK1/STAT3 signaling pathway in cultured primary cortical neurons after OGD injury.

  7. Electric field-induced astrocyte alignment directs neurite outgrowth

    ALEXANDER, JOHN K.; FUSS, BABETTE; COLELLO, RAYMOND J.

    2006-01-01

    The extension and directionality of neurite outgrowth are key to achieving successful target connections during both CNS development and during the re-establishment of connections lost after neural trauma. The degree of axonal elongation depends, in large part, on the spatial arrangement of astrocytic processes rich in growth-promoting proteins. Because astrocytes in culture align their processes on exposure to an electrical field of physiological strength, we sought to determine the extent t...

  8. Transcallosal Projections Require Glycoprotein M6-Dependent Neurite Growth and Guidance.

    Mita, Sakura; de Monasterio-Schrader, Patricia; Fünfschilling, Ursula; Kawasaki, Takahiko; Mizuno, Hidenobu; Iwasato, Takuji; Nave, Klaus-Armin; Werner, Hauke B; Hirata, Tatsumi

    2015-11-01

    The function of mature neurons critically relies on the developmental outgrowth and projection of their cellular processes. It has long been postulated that the neuronal glycoproteins M6a and M6b are involved in axon growth because these four-transmembrane domain-proteins of the proteolipid protein family are highly enriched on growth cones, but in vivo evidence has been lacking. Here, we report that the function of M6 proteins is required for normal axonal extension and guidance in vivo. In mice lacking both M6a and M6b, a severe hypoplasia of axon tracts was manifested. Most strikingly, the corpus callosum was reduced in thickness despite normal densities of cortical projection neurons. In single neuron tracing, many axons appeared shorter and disorganized in the double-mutant cortex, and some of them were even misdirected laterally toward the subcortex. Probst bundles were not observed. Upon culturing, double-mutant cortical and cerebellar neurons displayed impaired neurite outgrowth, indicating a cell-intrinsic function of M6 proteins. A rescue experiment showed that the intracellular loop of M6a is essential for the support of neurite extension. We propose that M6 proteins are required for proper extension and guidance of callosal axons that follow one of the most complex trajectories in the mammalian nervous system. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. GIT1 enhances neurite outgrowth by stimulating microtubule assembly

    Yi-sheng Li

    2016-01-01

    Full Text Available GIT1, a G-protein-coupled receptor kinase interacting protein, has been reported to be involved in neurite outgrowth. However, the neurobiological functions of the protein remain unclear. In this study, we found that GIT1 was highly expressed in the nervous system, and its expression was maintained throughout all stages of neuritogenesis in the brain. In primary cultured mouse hippocampal neurons from GIT1 knockout mice, there was a significant reduction in total neurite length per neuron, as well as in the average length of axon-like structures, which could not be prevented by nerve growth factor treatment. Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice. The GIT1 N terminal region, including the ADP ribosylation factor-GTPase activating protein domain, the ankyrin domains and the Spa2 homology domain, were sufficient to enhance axonal extension. Importantly, GIT1 bound to many tubulin proteins and microtubule-associated proteins, and it accelerated microtubule assembly in vitro. Collectively, our findings suggest that GIT1 promotes neurite outgrowth, at least partially by stimulating microtubule assembly. This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.

  10. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide.

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E

    2010-05-01

    beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.

  11. Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration

    Shumei Man

    2008-01-01

    Full Text Available Endothelial cells that functionally express blood brain barrier (BBB properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs and human umbilical vein endothelial cells (HUVECs. With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.

  12. The Adhesion Molecule KAL-1/anosmin-1 Regulates Neurite Branching through a SAX-7/L1CAM–EGL-15/FGFR Receptor Complex

    Carlos A. Díaz-Balzac

    2015-06-01

    Full Text Available Neurite branching is essential for correct assembly of neural circuits, yet it remains a poorly understood process. For example, the neural cell adhesion molecule KAL-1/anosmin-1, which is mutated in Kallmann syndrome, regulates neurite branching through mechanisms largely unknown. Here, we show that KAL-1/anosmin-1 mediates neurite branching as an autocrine co-factor with EGL-17/FGF through a receptor complex consisting of the conserved cell adhesion molecule SAX-7/L1CAM and the fibroblast growth factor receptor EGL-15/FGFR. This protein complex, which appears conserved in humans, requires the immunoglobulin (Ig domains of SAX-7/L1CAM and the FN(III domains of KAL-1/anosmin-1 for formation in vitro as well as function in vivo. The kinase domain of the EGL-15/FGFR is required for branching, and genetic evidence suggests that ras-mediated signaling downstream of EGL-15/FGFR is necessary to effect branching. Our studies establish a molecular pathway that regulates neurite branching during development of the nervous system.

  13. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells.

    Sanne Hindriksen

    Full Text Available The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC. We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B.

  14. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells.

    Hindriksen, Sanne; Bramer, Arne J; Truong, My Anh; Vromans, Martijn J M; Post, Jasmin B; Verlaan-Klink, Ingrid; Snippert, Hugo J; Lens, Susanne M A; Hadders, Michael A

    2017-01-01

    The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC). We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B.

  15. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2016-08-05

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba{sup 2+}-sensitive inward rectifier K{sup +} current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca{sup 2+} imaging study revealed that the hypoxic stress enhanced store-operated Ca{sup 2+} (SOC) entry, which was significantly reduced in the presence of 100 μM Ba{sup 2+}. On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba{sup 2+}. We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca{sup 2+} entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca{sup 2+} (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC

  16. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao; Asai, Kiyofumi; Imaizumi, Yuji

    2016-01-01

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba 2+ -sensitive inward rectifier K + current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level but not at mRNA level after the hypoxic culture. Ca 2+ imaging study revealed that the hypoxic stress enhanced store-operated Ca 2+ (SOC) entry, which was significantly reduced in the presence of 100 μM Ba 2+ . On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba 2+ . We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca 2+ entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca 2+ (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC channels were not affected by hypoxia.

  17. Ca2+ toxicity due to reverse Na+/Ca2+ exchange contributes to degeneration of neurites of DRG neurons induced by a neuropathy-associated Nav1.7 mutation

    Estacion, M.; Vohra, B. P. S; Liu, S.; Hoeijmakers, J.; Faber, C. G.; Merkies, I. S. J.; Lauria, G.; Black, J. A.

    2015-01-01

    Gain-of-function missense mutations in voltage-gated sodium channel Nav1.7 have been linked to small-fiber neuropathy, which is characterized by burning pain, dysautonomia and a loss of intraepidermal nerve fibers. However, the mechanistic cascades linking Nav1.7 mutations to axonal degeneration are incompletely understood. The G856D mutation in Nav1.7 produces robust changes in channel biophysical properties, including hyperpolarized activation, depolarized inactivation, and enhanced ramp and persistent currents, which contribute to the hyperexcitability exhibited by neurons containing Nav1.8. We report here that cell bodies and neurites of dorsal root ganglion (DRG) neurons transfected with G856D display increased levels of intracellular Na+ concentration ([Na+]) and intracellular [Ca2+] following stimulation with high [K+] compared with wild-type (WT) Nav1.7-expressing neurons. Blockade of reverse mode of the sodium/calcium exchanger (NCX) or of sodium channels attenuates [Ca2+] transients evoked by high [K+] in G856D-expressing DRG cell bodies and neurites. We also show that treatment of WT or G856D-expressing neurites with high [K+] or 2-deoxyglucose (2-DG) does not elicit degeneration of these neurites, but that high [K+] and 2-DG in combination evokes degeneration of G856D neurites but not WT neurites. Our results also demonstrate that 0 Ca2+ or blockade of reverse mode of NCX protects G856D-expressing neurites from degeneration when exposed to high [K+] and 2-DG. These results point to [Na+] overload in DRG neurons expressing mutant G856D Nav1.7, which triggers reverse mode of NCX and contributes to Ca2+ toxicity, and suggest subtype-specific blockade of Nav1.7 or inhibition of reverse NCX as strategies that might slow or prevent axon degeneration in small-fiber neuropathy. PMID:26156380

  18. Effect of Testosterone on Neuronal Morphology and Neuritic Growth of Fetal Lamb Hypothalamus-Preoptic Area and Cerebral Cortex in Primary Culture.

    Radhika C Reddy

    Full Text Available Testosterone plays an essential role in sexual differentiation of the male sheep brain. The ovine sexually dimorphic nucleus (oSDN, is 2 to 3 times larger in males than in females, and this sex difference is under the control of testosterone. The effect of testosterone on oSDN volume may result from enhanced expansion of soma areas and/or dendritic fields. To test this hypothesis, cells derived from the hypothalamus-preoptic area (HPOA and cerebral cortex (CTX of lamb fetuses were grown in primary culture to examine the direct morphological effects of testosterone on these cellular components. We found that within two days of plating, neurons derived from both the HPOA and CTX extend neuritic processes and express androgen receptors and aromatase immunoreactivity. Both treated and control neurites continue to grow and branch with increasing time in culture. Treatment with testosterone (10 nM for 3 days significantly (P < 0.05 increased both total neurite outgrowth (35% and soma size (8% in the HPOA and outgrowth (21% and number of branch points (33% in the CTX. These findings indicate that testosterone-induced somal enlargement and neurite outgrowth in fetal lamb neurons may contribute to the development of a fully masculine sheep brain.

  19. Frazzled/DCC facilitates cardiac cell outgrowth and attachment during Drosophila dorsal vessel formation.

    Macabenta, Frank D; Jensen, Amber G; Cheng, Yi-Shan; Kramer, Joseph J; Kramer, Sunita G

    2013-08-15

    Drosophila embryonic dorsal vessel (DV) morphogenesis is a highly stereotyped process that involves the migration and morphogenesis of 52 pairs of cardioblasts (CBs) in order to form a linear tube. This process requires spatiotemporally-regulated localization of signaling and adhesive proteins in order to coordinate the formation of a central lumen while maintaining simultaneous adhesion between CBs. Previous studies have shown that the Slit/Roundabout and Netrin/Unc5 repulsive signaling pathways facilitate site-specific loss of adhesion between contralateral CBs in order to form a luminal space. However, the concomitant mechanism by which attraction initiates CB outgrowth and discrete localization of adhesive proteins remains poorly understood. Here we provide genetic evidence that Netrin signals through DCC (Deleted in Colorectal Carcinoma)/UNC-40/Frazzled (Fra) to mediate CB outgrowth and attachment and that this function occurs prior to and independently of Netrin/UNC-5 signaling. fra mRNA is expressed in the CBs prior to and during DV morphogenesis. Loss-of-fra-function results in significant defects in cell shape and alignment between contralateral CB rows. In addition, CB outgrowth and attachment is impaired in both fra loss- and gain-of-function mutants. Deletion of both Netrin genes (NetA and NetB) results in CB attachment phenotypes similar to fra mutants. Similar defects are also seen when both fra and unc5 are deleted. Finally we show that Fra accumulates at dorsal and ventral leading edges of paired CBs, and this localization is dependent upon Netrin. We propose that while repulsive guidance mechanisms contribute to lumen formation by preventing luminal domains from coming together, site-specific Netrin/Frazzled signaling mediates CB attachment. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Single cell analysis facilitates staging of Blimp1-dependent primordial germ cells derived from mouse embryonic stem cells.

    John J Vincent

    Full Text Available The cell intrinsic programming that regulates mammalian primordial germ cell (PGC development in the pre-gonadal stage is challenging to investigate. To overcome this we created a transgene-free method for generating PGCs in vitro (iPGCs from mouse embryonic stem cells (ESCs. Using labeling for SSEA1 and cKit, two cell surface molecules used previously to isolate presumptive iPGCs, we show that not all SSEA1+/cKit+ double positive cells exhibit a PGC identity. Instead, we determined that selecting for cKit(bright cells within the SSEA1+ fraction significantly enriches for the putative iPGC population. Single cell analysis comparing SSEA1+/cKit(bright iPGCs to ESCs and embryonic PGCs demonstrates that 97% of single iPGCs co-express PGC signature genes Blimp1, Stella, Dnd1, Prdm14 and Dazl at similar levels to e9.5-10.5 PGCs, whereas 90% of single mouse ESC do not co-express PGC signature genes. For the 10% of ESCs that co-express PGC signature genes, the levels are significantly lower than iPGCs. Microarray analysis shows that iPGCs are transcriptionally distinct from ESCs and repress gene ontology groups associated with mesoderm and heart development. At the level of chromatin, iPGCs contain 5-methyl cytosine bases in their DNA at imprinted and non-imprinted loci, and are enriched in histone H3 lysine 27 trimethylation, yet do not have detectable levels of Mvh protein, consistent with a Blimp1-positive pre-gonadal PGC identity. In order to determine whether iPGC formation is dependent upon Blimp1, we generated Blimp1 null ESCs and found that loss of Blimp1 significantly depletes SSEA1/cKit(bright iPGCs. Taken together, the generation of Blimp1-positive iPGCs from ESCs constitutes a robust model for examining cell-intrinsic regulation of PGCs during the Blimp1-positive stage of development.

  1. Laminin-411 Is a Vascular Ligand for MCAM and Facilitates TH17 Cell Entry into the CNS

    Flanagan, Ken; Fitzgerald, Kent; Baker, Jeanne; Regnstrom, Karin; Gardai, Shyra; Bard, Frederique; Mocci, Simonetta; Seto, Pui; You, Monica; Larochelle, Catherine; Prat, Alexandre; Chow, Samuel; Li, Lauri; Vandevert, Chris; Zago, Wagner; Lorenzana, Carlos; Nishioka, Christopher; Hoffman, Jennifer; Botelho, Raquel; Willits, Christopher; Tanaka, Kevin; Johnston, Jennifer; Yednock, Ted

    2012-01-01

    TH17 cells enter tissues to facilitate pathogenic autoimmune responses, including multiple sclerosis (MS). However, the adhesion molecules involved in the unique migratory capacity of TH17 cells, into both inflamed and uninflamed tissues remain unclear. Herein, we characterize MCAM (CD146) as an adhesion molecule that defines human TH17 cells in the circulation; following in vitro restimulation of human memory T cells, nearly all of the capacity to secrete IL-17 is contained within the population of cells expressing MCAM. Furthermore, we identify the MCAM ligand as laminin 411, an isoform of laminin expressed within the vascular endothelial basement membranes under inflammatory as well as homeotstatic conditions. Purified MCAM-Fc binds to laminin 411 with an affinity of 27 nM, and recognizes vascular basement membranes in mouse and human tissue. MCAM-Fc binding was undetectable in tissue from mice with targeted deletion of laminin 411, indicating that laminin 411 is a major tissue ligand for MCAM. An anti-MCAM monoclonal antibody, selected for inhibition of laminin binding, as well as soluble MCAM-Fc, inhibited T cell adhesion to laminin 411 in vitro. When administered in vivo, the antibody reduced TH17 cell infiltration into the CNS and ameliorated disease in an animal model of MS. Our data suggest that MCAM and laminin 411 interact to facilitate TH17 cell entry into tissues and promote inflammation. PMID:22792325

  2. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    Irna Sufiawati

    Full Text Available Herpes simplex virus (HSV types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD. Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.

  3. Facilitation of syngeneic stem cell engraftment by anti-class I monoclonal antibody pretreatment of unirradiated recipients

    Voralia, M.; Semeluk, A.; Wegmann, T.G.

    1987-01-01

    We have established a murine model of syngeneic bone marrow transplantation based on the use of monoclonal antibody as the sole conditioning regimen in unirradiated recipients. Administration of a single injection of monoclonal antibody directed against major histocompatibility complex-encoded class I determinants facilitated permanent hemopoietic stem cell engraftment without any apparent side-effects. Whereas untreated hosts exhibited a maximal chimerism of 15% at donor cell doses of up to 12 X 10(7) bone marrow cells, pretreatment by 2 mg of anti-class I antibody one week prior to transplantation of 3 X 10(7) syngeneic bone marrow cells resulted in a mean donor representation of about 80%. The antibody can be given up to four weeks prior to transplantation, and the degree of donor engraftment observed is a function of the dose of antibody administered. The fact that specific antibody enhanced engraftment in two strain combinations indicates that antibody is the active agent in facilitating engraftment and that facilitation is not strain-restricted. Anti-class I antibodies of the IgG2a, but not IgG1, isotype are effective in promoting engraftment. Although the isotype requirement suggests a role for antibody-mediated cytotoxicity in promoting stem cell engraftment, the extensive time-frame of facilitation suggests that other effects of the antibody may also be involved. The model of syngeneic bone marrow transplantation we describe here will be useful in studying the mechanisms regulating stem cell engraftment and may have potential clinical application as an approach to autologous marrow transplantation

  4. Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells.

    Ernst, Katharina; Schmid, Johannes; Beck, Matthias; Hägele, Marlen; Hohwieler, Meike; Hauff, Patricia; Ückert, Anna Katharina; Anastasia, Anna; Fauler, Michael; Jank, Thomas; Aktories, Klaus; Popoff, Michel R; Schiene-Fischer, Cordelia; Kleger, Alexander; Müller, Martin; Frick, Manfred; Barth, Holger

    2017-06-02

    Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.

  5. Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult

    Choi, Dong-Hee; Lee, Kyoung-Hee; Kim, Ji-Hye; Kim, Moon Young; Lim, Jeong Hoon; Lee, Jongmin

    2012-01-01

    Highlights: ► 710 nm wavelength light (LED) has a protective effect in the stroke animal model. ► We determined the effects of LED irradiation in vitro stroke model. ► LED treatment promotes the neurite outgrowth through MAPK activation. ► The level of synaptic markers significantly increased with LED treatment. ► LED treatment protects cell death in the in vitro stroke model. -- Abstract: Objective: We previously reported that 710 nm Light-emitting Diode (LED) has a protective effect through cellular immunity activation in the stroke animal model. However, whether LED directly protects neurons suffering from neurodegeneration was entirely unknown. Therefore, we sought to determine the effects of 710 nm visible light irradiation on neuronal protection and neuronal outgrowth in an in vitro stroke model. Materials and methods: Primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation (OGD) and reoxygenation and normal conditions. An LED array with a peak wavelength of 710 nm was placed beneath the covered culture dishes with the room light turned off and were irradiated accordingly. LED treatments (4 min at 4 J/cm 2 and 50 mW/cm 2 ) were given once to four times within 8 h at 2 h intervals for 7 days. Mean neurite density, mean neurite diameter, and total fiber length were also measured after microtubule associated protein 2 (MAP2) immunostaining using the Axio Vision program. Synaptic marker expression and MAPK activation were confirmed by Western blotting. Results: Images captured after MAP2 immunocytochemistry showed significant (p < 0.05) enhancement of post-ischemic neurite outgrowth with LED treatment once and twice a day. MAPK activation was enhanced by LED treatment in both OGD-exposed and normal cells. The levels of synaptic markers such as PSD 95, GAP 43, and synaptophysin significantly increased with LED treatment in both OGD-exposed and normal cells (p < 0.05). Conclusion: Our data suggest that LED treatment may promote

  6. Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult

    Choi, Dong-Hee [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Medical Science, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Kyoung-Hee; Kim, Ji-Hye; Kim, Moon Young [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Lim, Jeong Hoon [Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of); Rehabilitation Medicine, Division of Neurology, Department of Medicine, National University Hospital, National University Health System (Singapore); Lee, Jongmin, E-mail: leej@kuh.ac.kr [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer 710 nm wavelength light (LED) has a protective effect in the stroke animal model. Black-Right-Pointing-Pointer We determined the effects of LED irradiation in vitro stroke model. Black-Right-Pointing-Pointer LED treatment promotes the neurite outgrowth through MAPK activation. Black-Right-Pointing-Pointer The level of synaptic markers significantly increased with LED treatment. Black-Right-Pointing-Pointer LED treatment protects cell death in the in vitro stroke model. -- Abstract: Objective: We previously reported that 710 nm Light-emitting Diode (LED) has a protective effect through cellular immunity activation in the stroke animal model. However, whether LED directly protects neurons suffering from neurodegeneration was entirely unknown. Therefore, we sought to determine the effects of 710 nm visible light irradiation on neuronal protection and neuronal outgrowth in an in vitro stroke model. Materials and methods: Primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation (OGD) and reoxygenation and normal conditions. An LED array with a peak wavelength of 710 nm was placed beneath the covered culture dishes with the room light turned off and were irradiated accordingly. LED treatments (4 min at 4 J/cm{sup 2} and 50 mW/cm{sup 2}) were given once to four times within 8 h at 2 h intervals for 7 days. Mean neurite density, mean neurite diameter, and total fiber length were also measured after microtubule associated protein 2 (MAP2) immunostaining using the Axio Vision program. Synaptic marker expression and MAPK activation were confirmed by Western blotting. Results: Images captured after MAP2 immunocytochemistry showed significant (p < 0.05) enhancement of post-ischemic neurite outgrowth with LED treatment once and twice a day. MAPK activation was enhanced by LED treatment in both OGD-exposed and normal cells. The levels of synaptic markers such as PSD 95, GAP 43, and synaptophysin significantly

  7. OP9-Lhx2 stromal cells facilitate derivation of hematopoietic progenitors both in vitro and in vivo

    Xiaoli Chen

    2015-09-01

    Full Text Available Generating engraftable hematopoietic stem cells (HSCs from pluripotent stem cells (PSCs is an ideal approach for obtaining induced HSCs for cell therapy. However, the path from PSCs to robustly induced HSCs (iHSCs in vitro remains elusive. We hypothesize that the modification of hematopoietic niche cells by transcription factors facilitates the derivation of induced HSCs from PSCs. The Lhx2 transcription factor is expressed in fetal liver stromal cells but not in fetal blood cells. Knocking out Lhx2 leads to a fetal hematopoietic defect in a cell non-autonomous role. In this study, we demonstrate that the ectopic expression of Lhx2 in OP9 cells (OP9-Lhx2 accelerates the hematopoietic differentiation of PSCs. OP9-Lhx2 significantly increased the yields of hematopoietic progenitor cells via co-culture with PSCs in vitro. Interestingly, the co-injection of OP9-Lhx2 and PSCs into immune deficient mice also increased the proportion of hematopoietic progenitors via the formation of teratomas. The transplantation of phenotypic HSCs from OP9-Lhx2 teratomas but not from the OP9 control supported a transient repopulating capability. The upregulation of Apln gene by Lhx2 is correlated to the hematopoietic commitment property of OP9-Lhx2. Furthermore, the enforced expression of Apln in OP9 cells significantly increased the hematopoietic differentiation of PSCs. These results indicate that OP9-Lhx2 is a good cell line for regeneration of hematopoietic progenitors both in vitro and in vivo.

  8. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells

    C. Buecker (Christa); H.H. Chen; J.M. Polo (Jose); L. Daheron (Laurence); L. Bu (Lei); T.S. Barakat (Tahsin Stefan); P. Okwieka (Patricia); A. Porter (Andrew); J.H. Gribnau (Joost); K. Hochedlinger (Konrad); N. Geijsen (Niels)

    2010-01-01

    textabstractMurine pluripotent stem cells can exist in two functionally distinct states, LIF-dependent embryonic stem cells (ESCs) and bFGF-dependent epiblast stem cells (EpiSCs). However, human pluripotent cells so far seemed to assume only an epiblast-like state. Here we demonstrate that human

  9. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    Boku, Shuken, E-mail: shuboku@med.hokudai.ac.jp [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Nakagawa, Shin [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takamura, Naoki [Pharmaceutical Laboratories, Dainippon Sumitomo Pharma Co. Ltd., Osaka (Japan); Kato, Akiko [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takebayashi, Minoru [Department of Psychiatry, National Hospital Organization Kure Medical Center, Kure (Japan); Hisaoka-Nakashima, Kazue [Department of Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima (Japan); Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan)

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  10. Membrane organization determines barrier properties of endothelial cells and short-chain sphingolipid-facilitated doxorubicin influx.

    van Hell, A J; Klymchenko, A; Gueth, D M; van Blitterswijk, W J; Koning, G A; Verheij, M

    2014-09-01

    The endothelial lining and its outer lipid membrane are the first major barriers drug molecules encounter upon intravenous administration. Our previous work identified lipid analogs that counteract plasma membrane barrier function for a series of amphiphilic drugs. For example, short-chain sphingolipids (SCS), like N-octanoyl-glucosylceramide, effectively elevated doxorubicin accumulation in tumor cells, both in vitro and in vivo, and in endothelial cells, whereas other (normal) cells remained unaffected. We hypothesize here that local membrane lipid composition and the degree of lipid ordering define SCS efficacy in individual cells. To this end, we study the differential effect of SCS on bovine aortic endothelial cells (BAEC) in its confluent versus proliferative state, as a model system. While their (plasma membrane) lipidome stays remarkably unaltered when BAECs reach confluency, their lipids segregate to form apical and basolateral domains. Using probe NR12S, we reveal that lipids in the apical membrane are more condensed/liquid-ordered. SCS preferentially attenuate the barrier posed by these condensed membranes and facilitate doxorubicin influx in these particular membrane regions. We confirm these findings in MDCK cells and artificial membranes. In conclusion, SCS-facilitated drug traversal acts on condensed membrane domains, elicited by confluency in resting endothelium. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    Boku, Shuken; Nakagawa, Shin; Takamura, Naoki; Kato, Akiko; Takebayashi, Minoru; Hisaoka-Nakashima, Kazue; Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro

    2013-01-01

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis

  12. Astrocytic αVβ3 integrin inhibits neurite outgrowth and promotes retraction of neuronal processes by clustering Thy-1.

    Rodrigo Herrera-Molina

    Full Text Available Thy-1 is a membrane glycoprotein suggested to stabilize or inhibit growth of neuronal processes. However, its precise function has remained obscure, because its endogenous ligand is unknown. We previously showed that Thy-1 binds directly to α(Vβ(3 integrin in trans eliciting responses in astrocytes. Nonetheless, whether α(Vβ(3 integrin might also serve as a Thy-1-ligand triggering a neuronal response has not been explored. Thus, utilizing primary neurons and a neuron-derived cell line CAD, Thy-1-mediated effects of α(Vβ(3 integrin on growth and retraction of neuronal processes were tested. In astrocyte-neuron co-cultures, endogenous α(Vβ(3 integrin restricted neurite outgrowth. Likewise, α(Vβ(3-Fc was sufficient to suppress neurite extension in Thy-1(+, but not in Thy-1(- CAD cells. In differentiating primary neurons exposed to α(Vβ(3-Fc, fewer and shorter dendrites were detected. This effect was abolished by cleavage of Thy-1 from the neuronal surface using phosphoinositide-specific phospholipase C (PI-PLC. Moreover, α(Vβ(3-Fc also induced retraction of already extended Thy-1(+-axon-like neurites in differentiated CAD cells as well as of axonal terminals in differentiated primary neurons. Axonal retraction occurred when redistribution and clustering of Thy-1 molecules in the plasma membrane was induced by α(Vβ(3 integrin. Binding of α(Vβ(3-Fc was detected in Thy-1 clusters during axon retraction of primary neurons. Moreover, α(Vβ(3-Fc-induced Thy-1 clustering correlated in time and space with redistribution and inactivation of Src kinase. Thus, our data indicates that α(Vβ(3 integrin is a ligand for Thy-1 that upon binding not only restricts the growth of neurites, but also induces retraction of already existing processes by inducing Thy-1 clustering. We propose that these events participate in bi-directional astrocyte-neuron communication relevant to axonal repair after neuronal damage.

  13. Up-regulation of K{sub ir}2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    Kito, Hiroaki [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Yamazaki, Daiju [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Department of Biological Chemistry, Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Ohya, Susumu; Yamamura, Hisao [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Imaizumi, Yuji, E-mail: yimaizum@phar.nagoya-cu.ac.jp [Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya (Japan)

    2011-07-29

    Highlights: {yields} We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. {yields} The ER stress facilitated the expression of inward rectifier K{sup +} channel (K{sub ir}2.1) and induced sustained membrane hyperpolarization. {yields} The membrane hyperpolarization induced sustained Ca{sup 2+} entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. {yields} The K{sub ir}2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K{sup +} channel (K{sub ir}2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K{sub ir} channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca{sup 2+} concentration due to Ca{sup 2+} influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K{sub ir}2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.

  14. AMP N1-Oxide, a Unique Compound of Royal Jelly, Induces Neurite Outgrowth from PC12 Vells via Signaling by Protein Kinase A Independent of that by Mitogen-Activated Protein Kinase

    Noriko Hattori

    2010-01-01

    Full Text Available Earlier we identified adenosine monophosphate (AMP N1-oxide as a unique compound of royal jelly (RJ that induces neurite outgrowth (neuritegenesis from cultured rat pheochromocytoma PC12 cells via the adenosine A2A receptor. Now, we found that AMP N1-oxide stimulated the phosphorylation of not only mitogen-activated protein kinase (MAPK but also that of cAMP/calcium-response element-binding protein (CREB in a dose-dependent manner. Inhibition of MAPK activation by a MEK inhibitor, PD98059, did not influence the AMP N1-oxide-induced neuritegenesis, whereas that of protein kinase A (PKA by a selective inhibitor, KT5720, significantly reduced neurite outgrowth. AMP N1-oxide also had the activity of suppressing the growth of PC12 cells, which correlated well with the neurite outgrowth-promoting activity. KT5720 restored the growth of AMP N1-oxide-treated PC12 cells. It is well known that nerve growth factor suppresses proliferation of PC12 cells before causing stimulation of neuronal differentiation. Thus, AMP N1-oxide elicited neuronal differentiation of PC12 cells, as evidenced by generation of neurites, and inhibited cell growth through adenosine A2A receptor-mediated PKA signaling, which may be responsible for characteristic actions of RJ.

  15. Microelectrode array-induced neuronal alignment directs neurite outgrowth: analysis using a fast Fourier transform (FFT).

    Radotić, Viktorija; Braeken, Dries; Kovačić, Damir

    2017-12-01

    Many studies have shown that the topography of the substrate on which neurons are cultured can promote neuronal adhesion and guide neurite outgrowth in the same direction as the underlying topography. To investigate this effect, isotropic substrate-complementary metal-oxide-semiconductor (CMOS) chips were used as one example of microelectrode arrays (MEAs) for directing neurite growth of spiral ganglion neurons. Neurons were isolated from 5 to 7-day-old rat pups, cultured 1 day in vitro (DIV) and 4 DIV, and then fixed with 4% paraformaldehyde. For analysis of neurite alignment and orientation, fast Fourier transformation (FFT) was used. Results revealed that on the micro-patterned surface of a CMOS chip, neurons orient their neurites along three directional axes at 30, 90, and 150° and that neurites aligned in straight lines between adjacent pillars and mostly followed a single direction while occasionally branching perpendicularly. We conclude that the CMOS substrate guides neurites towards electrodes by means of their structured pillar organization and can produce electrical stimulation of aligned neurons as well as monitoring their neural activities once neurites are in the vicinity of electrodes. These findings are of particular interest for neural tissue engineering with the ultimate goal of developing a new generation of MEA essential for improved electrical stimulation of auditory neurons.

  16. Neuronal adaptor FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1.

    Li, Wen; Tam, Ka Ming Vincent; Chan, Wai Wan Ray; Koon, Alex Chun; Ngo, Jacky Chi Ki; Chan, Ho Yin Edwin; Lau, Kwok-Fai

    2018-04-03

    Neurite outgrowth is a crucial process in developing neurons for neural network formation. Understanding the regulatory mechanisms of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration after nerve injury and in neurodegenerative disorders. FE65 is a brain-enriched adaptor that stimulates Rac1-mediated neurite elongation. However, the precise mechanism by which FE65 promotes the process remains elusive. Here, we show that ELMO1, a subunit of ELMO1-DOCK180 bipartite Rac1 GEF, interacts with the FE65 N-terminal region. Overexpression of FE65 and/or ELMO1 enhances whereas knockdown of FE65 or ELMO1 inhibits neurite outgrowth and Rac1 activation. The effect of FE65 alone or together with ELMO1 is attenuated by an FE65 double mutation that disrupts FE65-ELMO1 interaction. Notably, FE65 is found to activate ELMO1 by diminishing ELMO1 intramolecular autoinhibitory interaction and to promote the targeting of ELMO1 to the plasma membrane where Rac1 is activated. We also show that FE65, ELMO1 and DOCK180 form a tripartite complex. Knockdown of DOCK180 reduces the stimulatory effect of FE65-ELMO1 on Rac1 activation and neurite outgrowth. Thus, we identify a novel mechanism that FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating of ELMO1. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3

    2013-01-01

    Background Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity. Methods The stimulatory effect of mushrooms on neurite outgrowth was assessed in differentiating mouse neuroblastoma (N2a) cells. Neurite length was measured using Image-Pro Insight processor system. Neuritogenesis activity was further validated by fluorescence immunocytochemical staining of neurofilaments. In vitro cytotoxicity was investigated by using mouse embryonic fibroblast (BALB/3T3) and N2a cells for any embryo- and neuro-toxic effects; respectively. Results Aqueous extracts of Ganoderma lucidum, Lignosus rhinocerotis, Pleurotus giganteus and Grifola frondosa; as well as an ethanol extract of Cordyceps militaris significantly (p < 0.05) promoted the neurite outgrowth in N2a cells by 38.4 ± 4.2%, 38.1 ± 2.6%, 33.4 ± 4.6%, 33.7 ± 1.5%, and 35.8 ± 3.4%; respectively. The IC50 values obtained from tetrazolium (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) release assays showed no toxic effects following 24 h exposure of N2a and 3T3 cells to mushroom extracts. Conclusion Our results indicate that G. lucidum, L. rhinocerotis, P. giganteus, G. frondosa and C. militaris may be developed as safe and healthy dietary supplements for brain and cognitive health. PMID:24119256

  18. Facilitation of granule cell epileptiform activity by mossy fiber-released zinc in the pilocarpine model of temporal lobe epilepsy.

    Timofeeva, Olga; Nadler, J Victor

    2006-03-17

    Recurrent mossy fiber synapses in the dentate gyrus of epileptic brain facilitate the synchronous firing of granule cells and may promote seizure propagation. Mossy fiber terminals contain and release zinc. Released zinc inhibits the activation of NMDA receptors and may therefore oppose the development of granule cell epileptiform activity. Hippocampal slices from rats that had experienced pilocarpine-induced status epilepticus and developed a recurrent mossy fiber pathway were used to investigate this possibility. Actions of released zinc were inferred from the effects of chelation with 1 mM calcium disodium EDTA (CaEDTA). When granule cell population bursts were evoked by mossy fiber stimulation in the presence of 6 mM K(+) and 30 microM bicuculline, CaEDTA slowed the rate at which evoked bursting developed, but did not change the magnitude of the bursts once they had developed fully. The effects of CaEDTA were then studied on the pharmacologically isolated NMDA receptor- and AMPA/kainate receptor-mediated components of the fully developed bursts. CaEDTA increased the magnitude of NMDA receptor-mediated bursts and reduced the magnitude of AMPA/kainate receptor-mediated bursts. CaEDTA did not affect the granule cell bursts evoked in slices from untreated rats by stimulating the perforant path in the presence of bicuculline and 6 mM K(+). These results suggest that zinc released from the recurrent mossy fibers serves mainly to facilitate the recruitment of dentate granule cells into population bursts.

  19. Pure neuritic leprosy presenting as ulnar nerve neuropathy: a case report of electrodiagnostic, radiographic, and histopathological findings.

    Payne, Russell; Baccon, Jennifer; Dossett, John; Scollard, David; Byler, Debra; Patel, Akshal; Harbaugh, Kimberly

    2015-11-01

    Hansen's disease, or leprosy, is a chronic infectious disease with many manifestations. Though still a major health concern and leading cause of peripheral neuropathy in the developing world, it is rare in the United States, with only about 150 cases reported each year. Nevertheless, it is imperative that neurosurgeons consider it in the differential diagnosis of neuropathy. The causative organism is Mycobacterium leprae, which infects and damages Schwann cells in the peripheral nervous system, leading first to sensory and then to motor deficits. A rare presentation of Hansen's disease is pure neuritic leprosy. It is characterized by nerve involvement without the characteristic cutaneous stigmata. The authors of this report describe a case of pure neuritic leprosy presenting as ulnar nerve neuropathy with corresponding radiographic, electrodiagnostic, and histopathological data. This 11-year-old, otherwise healthy male presented with progressive right-hand weakness and numbness with no cutaneous abnormalities. Physical examination and electrodiagnostic testing revealed findings consistent with a severe ulnar neuropathy at the elbow. Magnetic resonance imaging revealed diffuse thickening and enhancement of the ulnar nerve and narrowing at the cubital tunnel. The patient underwent ulnar nerve decompression with biopsy. Pathology revealed acid-fast organisms within the nerve, which was pathognomonic for Hansen's disease. He was started on antibiotic therapy, and on follow-up he had improved strength and sensation in the ulnar nerve distribution. Pure neuritic leprosy, though rare in the United States, should be considered in the differential diagnosis of those presenting with peripheral neuropathy and a history of travel to leprosy-endemic areas. The long incubation period of M. leprae, the ability of leprosy to mimic other conditions, and the low sensitivity of serological tests make clinical, electrodiagnostic, and radiographic evaluation necessary for diagnosis

  20. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3.

    Phan, Chia-Wei; David, Pamela; Naidu, Murali; Wong, Kah-Hui; Sabaratnam, Vikineswary

    2013-10-11

    Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity. The stimulatory effect of mushrooms on neurite outgrowth was assessed in differentiating mouse neuroblastoma (N2a) cells. Neurite length was measured using Image-Pro Insight processor system. Neuritogenesis activity was further validated by fluorescence immunocytochemical staining of neurofilaments. In vitro cytotoxicity was investigated by using mouse embryonic fibroblast (BALB/3T3) and N2a cells for any embryo- and neuro-toxic effects; respectively. Aqueous extracts of Ganoderma lucidum, Lignosus rhinocerotis, Pleurotus giganteus and Grifola frondosa; as well as an ethanol extract of Cordyceps militaris significantly (p effects following 24 h exposure of N2a and 3T3 cells to mushroom extracts. Our results indicate that G. lucidum, L. rhinocerotis, P. giganteus, G. frondosa and C. militaris may be developed as safe and healthy dietary supplements for brain and cognitive health.

  1. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen.

    Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin

    2016-01-01

    Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.

  2. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    Wright, K.T.; Seabright, R.; Logan, A.; Lilly, A.J.; Khanim, F.; Bunce, C.M.; Johnson, W.E.B.

    2010-01-01

    Research highlights: → Extracellular Nm23H1 stimulates nerve growth. → Extracellular Nm23H1 provides pathfinding cues to growth cones. → The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. → The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  3. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    Wright, K.T. [Keele University at the RJAH Orthopaedic Hospital, Oswestry, Shropshire (United Kingdom); Seabright, R.; Logan, A. [Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, Birmingham University, Birmingham (United Kingdom); Lilly, A.J.; Khanim, F.; Bunce, C.M. [Biosciences, Birmingham University, Birmingham (United Kingdom); Johnson, W.E.B., E-mail: w.e.johnson@aston.ac.uk [Life and Health Sciences, Aston University, Birmingham (United Kingdom)

    2010-07-16

    Research highlights: {yields} Extracellular Nm23H1 stimulates nerve growth. {yields} Extracellular Nm23H1 provides pathfinding cues to growth cones. {yields} The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. {yields} The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  4. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate.

    Yin, Chengqian; He, Dan; Chen, Shuyang; Tan, Xiaoling; Sang, Nianli

    2016-07-26

    Molecular oxygen is the final electron acceptor in cellular metabolism but cancer cells often become adaptive to hypoxia, which promotes resistance to chemotherapy and radiation. The reduction of endogenous glycolytic pyruvate to lactate is known as an adaptive strategy for hypoxic cells. Whether exogenous pyruvate is required for hypoxic cell proliferation by either serving as an electron acceptor or a biosynthetic substrate remains unclear. By using both hypoxic and ρ0 cells defective in electron transfer chain, we show that exogenous pyruvate is required to sustain proliferation of both cancer and non-cancer cells that cannot utilize oxygen. Particularly, we show that absence of pyruvate led to glycolysis inhibition and AMPK activation along with decreased NAD+ levels in ρ0 cells; and exogenous pyruvate increases lactate yield, elevates NAD+/NADH ratio and suppresses AMPK activation. Knockdown of lactate dehydrogenase significantly inhibits the rescuing effects of exogenous pyruvate. In contrast, none of pyruvate-derived metabolites tested (including acetyl-CoA, α-ketoglutarate, succinate and alanine) can replace pyruvate in supporting ρ0 cell proliferation. Knockdown of pyruvate carboxylase, pyruvate dehydrogenase and citrate synthase do not impair exogenous pyruvate to rescue ρ0 cells. Importantly, we show that exogenous pyruvate relieves ATP insufficiency and mTOR inhibition and promotes proliferation of hypoxic cells, and that well-oxygenated cells release pyruvate, providing a potential in vivo source of pyruvate. Taken together, our data support a novel pyruvate cycle model in which oxygenated cells release pyruvate for hypoxic cells as an oxygen surrogate. The pyruvate cycle may be targeted as a new therapy of hypoxic cancers.

  5. Lowering T Cell Activation Thresholds and Deregulating Homeostasis to Facilitate Immunotherapeutic Responses to Treat Prostate Cancer

    Kwon, Eugene D

    2006-01-01

    ... to develop immune-based therapies for prostate cancer Hence, relatively straightforward manipulations that induce specific T cell responses against prostate tumors or epithelial tissues, especially...

  6. Structural Features Facilitating Tumor Cell Targeting and Internalization by Bleomycin and Its Disaccharide

    2016-01-01

    We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide–cytotoxin conjugates. PMID:25905565

  7. Structural features facilitating tumor cell targeting and internalization by bleomycin and its disaccharide.

    Yu, Zhiqiang; Paul, Rakesh; Bhattacharya, Chandrabali; Bozeman, Trevor C; Rishel, Michael J; Hecht, Sidney M

    2015-05-19

    We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide-cytotoxin conjugates.

  8. Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA.

    Andrew M Edwards

    2010-06-01

    Full Text Available Entry of Staphylococcus aureus into the bloodstream can lead to metastatic abscess formation and infective endocarditis. Crucial to the development of both these conditions is the interaction of S. aureus with endothelial cells. In vivo and in vitro studies have shown that the staphylococcal invasin FnBPA triggers bacterial invasion of endothelial cells via a process that involves fibronectin (Fn bridging to alpha(5beta(1 integrins. The Fn-binding region of FnBPA usually contains 11 non-identical repeats (FnBRs with differing affinities for Fn, which facilitate the binding of multiple Fn molecules and may promote integrin clustering. We thus hypothesized that multiple repeats are necessary to trigger the invasion of endothelial cells by S. aureus. To test this we constructed variants of fnbA containing various combinations of FnBRs. In vitro assays revealed that endothelial cell invasion can be facilitated by a single high-affinity, but not low-affinity FnBR. Studies using a nisin-inducible system that controlled surface expression of FnBPA revealed that variants encoding fewer FnBRs required higher levels of surface expression to mediate invasion. High expression levels of FnBPA bearing a single low affinity FnBR bound Fn but did not invade, suggesting that FnBPA affinity for Fn is crucial for triggering internalization. In addition, multiple FnBRs increased the speed of internalization, as did higher expression levels of FnBPA, without altering the uptake mechanism. The relevance of these findings to pathogenesis was demonstrated using a murine sepsis model, which showed that multiple FnBRs were required for virulence. In conclusion, multiple FnBRs within FnBPA facilitate efficient Fn adhesion, trigger rapid bacterial uptake and are required for pathogenesis.

  9. APRIL facilitates viral-induced erythroleukemia but is dispensable for T cell immunity and lymphomagenesis

    Hardenberg, Gijs; Fernandez, Leticia; Hendriks, Jenny; Chebli, Karim; Jacquet, Chantal; Sitbon, Marc; Hahne, Michel; Medema, Jan Paul

    2008-01-01

    The TNF family member, a proliferation-inducing ligand (APRIL), has been suggested to act as a costimulatory molecule in T cell responses. However, studies addressing this role in vivo are largely lacking. Here, we evaluated the effects of APRIL on physiological T cell responses in vivo. Although

  10. Heparanase-1-induced shedding of heparan sulfate from syndecan-1 in hepatocarcinoma cell facilitates lymphatic endothelial cell proliferation via VEGF-C/ERK pathway

    Yu, Shengjin; Lv, Huiming; Zhang, He; Jiang, Yu; Hong, Yu; Xia, Rongjun; Zhang, Qifang; Ju, Weiwei; Jiang, Lili; Ou, Geng; Zhang, Jinhui; Wang, Shujing; Zhang, Jianing

    2017-01-01

    Heparanase-1/syndecan-1 axis plays critical roles in tumorigenesis and development. The main mechanism includes heparanase-1 (HPA-1) degrades the heparan sulfate chain of syndecan-1 (SDC-1), and the following shedding of heparan sulfate from tumor cell releases and activates SDC-1 sequestered growth factors. However, the significance of Heparanase-1/syndecan-1 axis and its effects on the microenvironment of lymphatic metastasis in hepatocellular carcinogenesis (HCC) procession have not been reported. Herein, we found that HPA-1 could degrade the heparan sulfate on hepatocarcinoma cell surface. Importantly, HPA-1-induced shedding of heparan sulfate chain from SDC-1 facilitated the release of vascular endothelial growth factor C (VEGF-C) from SDC-1/VEGF-C complex into the medium of hepatocarcinoma cell. Further studies indicated that VEGF-C secretion from hepatocarcinoma cell promoted lymphatic endothelial cell growth through activating extracellular signal-regulated kinase (ERK) signaling. Taken together, this study reveals a novel existence of Heparanase-1/syndecan-1 axis in hepatocarcinoma cell and its roles in the cross-talking with the microenvironment of lymphatic metastasis. - Highlights: • SDC-1 anchors VEGF-C via its HS chains. • Secreted HPA-1 from hepatocarcinoma cell cleaves HS chains of SDC-1. • The shedding of SDC-1 HS chains releases VEGF-C from SDC-1/VEGF-C complex. • LMWH inhibits VEGF-C secretion through stabilizing SDC-1/VEGF-C complex. • VEGF-C secretion from hepatocarcinoma cell facilitates LEC growth via ERK signaling.

  11. Enrichment of Adipose-Derived Stromal Cells for BMPR1A Facilitates Enhanced Adipogenesis.

    Zielins, Elizabeth R; Paik, Kevin; Ransom, Ryan C; Brett, Elizabeth A; Blackshear, Charles P; Luan, Anna; Walmsley, Graham G; Atashroo, David A; Senarath-Yapa, Kshemendra; Momeni, Arash; Rennert, Robert; Sorkin, Michael; Seo, Eun Young; Chan, Charles K; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C

    2016-02-01

    Reconstruction of soft tissue defects has traditionally relied on the use of grafts and flaps, which may be associated with variable resorption and/or significant donor site morbidity. Cell-based strategies employing adipose-derived stromal cells (ASCs), found within the stromal vascular fraction (SVF) of adipose tissue, may offer an alternative strategy for soft tissue reconstruction. In this study, we investigated the potential of a bone morphogenetic protein receptor type 1A (BMPR1A)(+) subpopulation of ASCs to enhance de novo adipogenesis. Human lipoaspirate was enzymatically digested to isolate SVF and magnetic-activated cell separation was utilized to obtain BMPR1A(+) and BMPR1A(-) cells. These cells, along with unenriched cells, were expanded in culture and evaluated for adipogenic gene expression and in vitro adipocyte formation. Cells from each group were also labeled with a green fluorescent protein (GFP) lentivirus and transplanted into the inguinal fat pads, an adipogenic niche, of immunocompromised mice to determine their potential for de novo adipogenesis. Confocal microscopy along with staining of lipid droplets and vasculature was performed to evaluate the formation of mature adipocytes by transplanted cells. In comparison to BMPR1A(-) and unenriched ASCs, BMPR1A(+) cells demonstrated significantly enhanced adipogenesis when cultured in an adipogenic differentiation medium, as evidenced by increased staining with Oil Red O and increased expression of peroxisome proliferator-activating receptor gamma (PPAR-γ) and fatty acid-binding protein 4 (FABP4). BMPR1A(+) cells also formed significantly more adipocytes in vivo, as demonstrated by quantification of GFP+ adipocytes. Minimal formation of mature adipocytes was appreciated by BMPR1A(-) cells. BMPR1A(+) ASCs show an enhanced ability for adipogenesis in vitro, as shown by gene expression and histological staining. Furthermore, within an adipogenic niche, BMPR1A(+) cells possessed an increased capacity

  12. Optotransfection of mammalian cells based on a femtosecond laser and facilitated by gold nanorods

    Ma, Zili; Chan, Kam T; Wang, Jianfang; Kong, Siu K; He, Sailing

    2013-01-01

    The optotransfection of cells based on a femtosecond laser has attracted much attention owing to its high transfection efficiency and high cell viability since its first report by Konig. However, the low throughput in the original method also limits its use in practical applications. Gold nanoparticles (GNPs) have been reported to function as local receivers of light to relax the requirement of accurate optical alignment for the optotransfection of single cells. However, the visible light used in such work is not suitable for penetrating deep tissues in certain applications. In this study, we employed gold nanorods (GNRs) and an infrared femtosecond laser at the wavelength of 980 nm to realize optotransfection of cells with GFP. It was found that the surface coating of GNRs exhibited a significant effect on the process of cell permeabilization. (paper)

  13. S-phase Synchronization Facilitates the Early Progression of Induced-Cardiomyocyte Reprogramming through Enhanced Cell-Cycle Exit.

    Bektik, Emre; Dennis, Adrienne; Pawlowski, Gary; Zhou, Chen; Maleski, Danielle; Takahashi, Satoru; Laurita, Kenneth R; Deschênes, Isabelle; Fu, Ji-Dong

    2018-05-04

    Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, cell-cycle regulation, a fundamental biological process, has not been investigated during iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased percentage of 5-ethynyl-20-deoxyuridine (EdU)⁺/α-myosin heavy chain (αMHC)-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance cell-cycle exit of reprogrammed iCMs and yield more GFP high iCMs, which achieved an advanced reprogramming with more expression of cardiac genes than GFP low cells. However, S-phase synchronization did not enhance the reprogramming with a polycistronic-viral vector, in which cell-cycle exit had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.

  14. Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1.

    Ge, Rui; Liu, Lin; Dai, Wei; Zhang, Weigang; Yang, Yuqi; Wang, Huina; Shi, Qiong; Guo, Sen; Yi, Xiuli; Wang, Gang; Gao, Tianwen; Luan, Qi; Li, Chunying

    2016-06-01

    Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Hedgehog signaling in tumor cells facilitates osteoblast-enhanced osteolytic metastases.

    Shamik Das

    Full Text Available The remodeling process in bone yields numerous cytokines and chemokines that mediate crosstalk between osteoblasts and osteoclasts and also serve to attract and support metastatic tumor cells. The metastatic tumor cells disturb the equilibrium in bone that manifests as skeletal complications. The Hedgehog (Hh pathway plays an important role in skeletogenesis. We hypothesized that the Hh pathway mediates an interaction between tumor cells and osteoblasts and influences osteoblast differentiation in response to tumor cells. We have determined that breast tumor cells have an activated Hh pathway characterized by upregulation of the ligand, IHH and transcription factor GLI1. Breast cancer cells interact with osteoblasts and cause an enhanced differentiation of pre-osteoblasts to osteoblasts that express increased levels of the osteoclastogenesis factors, RANKL and PTHrP. There is sustained expression of osteoclast-promoting factors, RANKL and PTHrP, even after the osteoblast differentiation ceases and apoptosis sets in. Moreover, tumor cells that are deficient in Hh signaling are compromised in their ability to induce osteoblast differentiation and consequently are inefficient in causing osteolysis. The stimulation of osteoblast differentiation sets the stage for osteoclast differentiation and overall promotes osteolysis. Thus, in the process of developing newer therapeutic strategies against breast cancer metastasis to bone it would worthwhile to keep in mind the role of the Hh pathway in osteoblast differentiation in an otherwise predominant osteolytic phenomenon.

  16. The role of Runx2 in facilitating autophagy in metastatic breast cancer cells.

    Tandon, Manish; Othman, Ahmad H; Ashok, Vivek; Stein, Gary S; Pratap, Jitesh

    2018-01-01

    Breast cancer metastases cause significant patient mortality. During metastases, cancer cells use autophagy, a catabolic process to recycle nutrients via lysosomal degradation, to overcome nutritional stress for their survival. The Runt-related transcription factor, Runx2, promotes cell survival under metabolic stress, and regulates breast cancer progression and bone metastases. Here, we identify that Runx2 enhances autophagy in metastatic breast cancer cells. We defined Runx2 function in cellular autophagy by monitoring microtubule-associated protein light chain (LC3B-II) levels, an autophagy-specific marker. The electron and confocal microscopic analyses were utilized to identify alterations in autophagic vesicles. The Runx2 knockdown cells accumulate LC3B-II protein and autophagic vesicles due to reduced turnover. Interestingly, Runx2 promotes autophagy by enhancing trafficking of LC3B vesicles. Our mechanistic studies revealed that Runx2 promotes autophagy by increasing acetylation of α-tubulin sub-units of microtubules. Inhibiting autophagy decreased cell adhesion and survival of Runx2 knockdown cells. Furthermore, analysis of LC3B protein in clinical breast cancer specimens and tumor xenografts revealed significant association between high Runx2 and low LC3B protein levels. Our studies reveal a novel regulatory mechanism of autophagy via Runx2 and provide molecular insights into the role of autophagy in metastatic cancer cells. © 2017 Wiley Periodicals, Inc.

  17. Innate immune cell-derived microparticles facilitate hepatocarcinoma metastasis by transferring integrin α(M)β₂ to tumor cells.

    Ma, Jingwei; Cai, Wenqian; Zhang, Yi; Huang, Chunmei; Zhang, Huafeng; Liu, Jing; Tang, Ke; Xu, Pingwei; Katirai, Foad; Zhang, Jianmin; He, Wei; Ye, Duyun; Shen, Guan-Xin; Huang, Bo

    2013-09-15

    Mechanisms by which tumor cells metastasize to distant organs still remain enigmatic. Immune cells have been assumed to be the root of metastasis by their fusing with tumor cells. This fusion theory, although interpreting tumor metastasis analogically and intriguingly, is arguable to date. We show in this study an alternative explanation by immune cell-derived microparticles (MPs). Upon stimulation by PMA or tumor cell-derived supernatants, immune cells released membrane-based MPs, which were taken up by H22 tumor cells, leading to tumor cell migration in vitro and metastasis in vivo. The underlying molecular basis was involved in integrin α(M)β₂ (CD11b/CD18), which could be effectively relayed from stimulated innate immune cells to MPs, then to tumor cells. Blocking either CD11b or CD18 led to significant decreases in MP-mediated tumor cell metastasis. This MP-mediated transfer of immune phenotype to tumor cells might also occur in vivo. These findings suggest that tumor cells may usurp innate immune cell phenotypes via MP pathway for their metastasis, providing new insight into tumor metastatic mechanism.

  18. Retinoic acid combined with spermatogonial stem cell conditions facilitate the generation of mouse germ-like cells

    Dong, Guoyi; Shang, Zhouchun; Liu, Longqi

    2017-01-01

    Spermatogenic lineage has been directly generated in spermatogonial stem cell (SSC) conditions from human pluripotent stem cells (PSCs). However, it remains unknown whether mouse embryonic stem cells (ESCs) can directly differentiate into advanced male germ cell lineage in the same conditions. Here......, we showed rather low efficiency of germ-like cell generation from mouse ESCs in SSC conditions. Interestingly, addition of retinoic acid (RA) into SSC conditions enabled efficient differentiation of mouse ESCs into germ-like cells, as shown by the activation of spermatogenesis-associated genes...... such as Mvh, Dazl, Prdm14, Stella, Scp1, Scp3, Stra8 and Rec8. In contrast, for cells cultured in control medium, the activation of the above genes barely occurred. In addition, RA with SSC conditions yielded colonies of Acrosin-expressing cells and the positive ratio reached a peak at day 6. Our work thus...

  19. Bst1 is required for Candida albicans infecting host via facilitating cell wall anchorage of Glycosylphosphatidyl inositol anchored proteins

    Liu, Wei; Zou, Zui; Huang, Xin; Shen, Hui; He, Li Juan; Chen, Si Min; Li, Li Ping; Yan, Lan; Zhang, Shi Qun; Zhang, Jun Dong; Xu, Zheng; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2016-01-01

    Glycosylphosphatidyl inositol anchored proteins (GPI-APs) on fungal cell wall are essential for invasive infections. While the function of inositol deacylation of GPI-APs in mammalian cells has been previously characterized the impact of inositol deacylation in fungi and implications to host infection remains largely unexplored. Herein we describe our identification of BST1, an inositol deacylase of GPI-Aps in Candida albicans, was critical for GPI-APs cell wall attachment and host infection. BST1-deficient C. albicans (bst1Δ/Δ) was associated with severely impaired cell wall anchorage of GPI-APs and subsequen unmasked β-(1,3)-glucan. Consistent with the aberrant cell wall structures, bst1Δ/Δ strain did not display an invasive ability and could be recognized more efficiently by host immune systems. Moreover, BST1 null mutants or those expressing Bst1 variants did not display inositol deacylation activity and exhibited severely attenuated virulence and reduced organic colonization in a murine systemic candidiasis model. Thus, Bst1 can facilitate cell wall anchorage of GPI-APs in C. albicans by inositol deacylation, and is critical for host invasion and immune escape. PMID:27708385

  20. The neural cell adhesion molecule-derived peptide FGL facilitates long-term plasticity in the dentate gyrus in vivo

    Dallérac, Glenn; Zerwas, Meike; Novikova, Tatiana

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have...... a beneficial impact on normal memory functioning, as well as to rescue some pathological cognitive impairments. Whether its facilitating impact may be mediated through promoting neuronal plasticity is not known. The present study was therefore designed to test whether FGL modulates the induction...

  1. Alcohol facilitates CD1d loading, subsequent activation of NKT cells, and reduces the incidence of diabetes in NOD mice.

    Karsten Buschard

    Full Text Available BACKGROUND: Ethanol ('alcohol' is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules. METHODS: The study included cellular in vitro tests using α-galactosylceramide (αGalCer, and in vivo NOD mice experiments detecting diabetes incidence and performing behavioural and bacterial analyses. RESULTS: Alcohol in concentrations from 0.6% to 2.5% increased IL-2 production from NKT cells stimulated with αGalCer by 60% (p<0.05. CD1d expressed on HeLa cells contained significantly increasing amounts of αGalCer with increasing concentrations of alcohol, suggesting that alcohol facilitated the passive loading of αGalCer to CD1d. NOD mice were found to tolerate 5% ethanol in their drinking water without signs of impairment in liver function. Giving this treatment, the diabetes incidence declined significantly. Higher numbers of CD3+CD49b+ NKT cells were found in spleen and liver of the alcohol treated compared to the control mice (p<0.05, whereas the amount of CD4+Foxp3+ regulator T cells did not differ. Increased concentrations of IFN-γ were detected in 24-hour blood samples of alcohol treated mice. Behavioural studies showed no change in attitude of the ethanol-consuming mice, and bacterial composition of caecum samples was not affected by alcohol, disqualifying these as protective mechanisms. CONCLUSION: Alcohol facilitates the uptake of glycolipids and the stimulation of NKT cells, which are known to counteract Type 1 diabetes development. We propose that this is the acting mechanism by which treatment with alcohol reduces the incidence of diabetes in NOD mice. This is corroborated by epidemiology showing beneficial effect of alcohol to reduce the severity of atherosclerosis and related diseases.

  2. Sigma-1 receptor enhances neurite elongation of cerebellar granule neurons via TrkB signaling.

    Kimura, Yuriko; Fujita, Yuki; Shibata, Kumi; Mori, Megumi; Yamashita, Toshihide

    2013-01-01

    Sigma-1 receptor (Sig-1R) is an integral membrane protein predominantly expressed in the endoplasmic reticulum. Sig-1R demonstrates a high affinity to various synthetic compounds including well-known psychotherapeutic drugs in the central nervous system (CNS). For that, it is considered as an alternative target for psychotherapeutic drugs. On the cellular level, when Sig-1R is activated, it is known to play a role in neuroprotection and neurite elongation. These effects are suggested to be mediated by its ligand-operated molecular chaperone activity, and/or upregulation of various Ca(2+) signaling. In addition, recent studies show that Sig-1R activation induces neurite outgrowth via neurotrophin signaling. Here, we tested the hypothesis that Sig-1R activation promotes neurite elongation through activation of tropomyosin receptor kinase (Trk), a family of neurotrophin receptors. We found that 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-084), a selective Sig-1R agonist, significantly promoted neurite outgrowth, and K252a, a Trk inhibitor, attenuated Sig-1R-mediated neurite elongation in cerebellar granule neurons (CGNs). Moreover, we revealed that Sig-1R interacts with TrkB, and PRE-084 treatment enhances phosphorylation of Y515, but not Y706. Thus, our results indicate that Sig-1R activation promotes neurite outgrowth in CGNs through Y515 phosphorylation of TrkB.

  3. Progranulin facilitates conversion and function of regulatory T cells under inflammatory conditions.

    Fanhua Wei

    Full Text Available The progranulin (PGRN is known to protect regulatory T cells (Tregs from a negative regulation by TNF-α, and its levels are elevated in various kinds of autoimmune diseases. Whether PGRN directly regulates the conversion of CD4+CD25-T cells into Foxp3-expressing regulatory T cells (iTreg, and whether PGRN affects the immunosuppressive function of Tregs, however, remain unknown. In this study we provide evidences demonstrating that PGRN is able to stimulate the conversion of CD4+CD25-T cells into iTreg in a dose-dependent manner in vitro. In addition, PGRN showed synergistic effects with TGF-β1 on the induction of iTreg. PGRN was required for the immunosuppressive function of Tregs, since PGRN-deficient Tregs have a significant decreased ability to suppress the proliferation of effector T cells (Teff. In addition, PGRN deficiency caused a marked reduction in Tregs number in the course of inflammatory arthritis, although no significant difference was observed in the numbers of Tregs between wild type and PGRN deficient mice during development. Furthermore, PGRN deficiency led to significant upregulation of the Wnt receptor gene Fzd2. Collectively, this study reveals that PGRN directly regulates the numbers and function of Tregs under inflammatory conditions, and provides new insight into the immune regulatory mechanism of PGRN in the pathogenesis of inflammatory and immune-related diseases.

  4. Transplanted Human Umbilical Cord Mesenchymal Stem Cells Facilitate Lesion Repair in B6.Fas Mice

    Guang-ping Ruan

    2014-01-01

    Full Text Available Background. Systemic lupus erythematosus (SLE is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. Methods. We used human umbilical cord mesenchymal stem cell (H-UC-MSC transplantation to treat B6.Fas mice. Results. After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4+CD25+Foxp3+ T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. Conclusions. The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.

  5. Ecdysone signaling regulates specification of neurons with a male-specific neurite in Drosophila

    Binglong Zhang

    2018-02-01

    Full Text Available Some mAL neurons in the male brain form the ipsilateral neurite (ILN[+] in a manner dependent on FruBM, a male-specific transcription factor. FruBM represses robo1 transcription, allowing the ILN to form. We found that the proportion of ILN[+]-mALs in all observed single cell clones dropped from ∼90% to ∼30% by changing the heat-shock timing for clone induction from 4-5 days after egg laying (AEL to 6-7 days AEL, suggesting that the ILN[+]-mALs are produced predominantly by young neuroblasts. Upon EcR-A knockdown, ILN[+]-mALs were produced at a high rate (∼60%, even when heat shocked at 6-7 days AEL, yet EcR-B1 knockdown reduced the proportion of ILN[+]-mALs to ∼30%. Immunoprecipitation assays in S2 cells demonstrated that EcR-A and EcR-B1 form a complex with FruBM. robo1 reporter transcription was repressed by FruBM and ecdysone counteracted FruBM. We suggest that ecdysone signaling modulates the FruBM action to produce an appropriate number of male-type neurons.

  6. MiR-495-3p facilitates colon cancer cell proliferation via Wnt/β ...

    At present, molecular targets have been ... cells/well in six well ultra-low cluster plate and .... by spheroid formation assay after treatment with miR-495-3p simulations or inhibitor; *p < ..... subcellular dynamics and cyclin D1 mRNA transcription.

  7. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells.

    Bo Hu

    Full Text Available Human periodontal ligament cells (hPDLCs possess stem cell properties, which play a key role in periodontal regeneration. Physical stimulation at appropriate intensities such as low-intensity pulsed ultrasound (LIPUS enhances cell proliferation and osteogenic differentiation of mesechymal stem cells. However, the impacts of LIPUS on osteogenic differentiation of hPDLCs in vitro and its molecular mechanism are unknown. This study was undertaken to investigate the effects of LIPUS on osteogenic differentiation of hPDLCs. HPDLCs were isolated from premolars of adolescents for orthodontic reasons, and exposed to LIPUS at different intensities to determine an optimal LIPUS treatment dosage. Dynamic changes of alkaline phosphatase (ALP activities in the cultured cells and supernatants, and osteocalcin production in the supernatants after treatment were analyzed. Runx2 and integrin β1 mRNA levels were assessed by reverse transcription polymerase chain reaction analysis after LIPUS stimulation. Blocking antibody against integrinβ1 was used to assess the effects of integrinβ1 inhibitor on LIPUS-induced ALP activity, osteocalcin production as well as calcium deposition. Our data showed that LIPUS at the intensity of 90 mW/cm2 with 20 min/day was more effective. The ALP activities in lysates and supernatants of LIPUS-treated cells started to increase at days 3 and 7, respectively, and peaked at day 11. LIPUS treatment significantly augmented the production of osteocalcin after day 5. LIPUS caused a significant increase in the mRNA expression of Runx2 and integrin β1, while a significant decline when the integrinβ1 inhibitor was used. Moreover, ALP activity, osteocalcin production as well as calcium nodules of cells treated with both daily LIPUS stimulation and integrinβ1 antibody were less than those in the LIPUS-treated group. In conclusion, LIPUS promotes osteogenic differentiation of hPDLCs, which is associated with upregulation of Runx2 and

  8. The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis

    Perides, George; Zhuge, Yuzheng; Lin, Tina; Stins, Monique F; Bronson, Roderick T; Wu, Julian K

    2006-01-01

    Patients with metastatic tumors to the brain have a very poor prognosis. Increased metastatic potential has been associated with the fibrinolytic system. We investigated the role of the fibrinolytic enzyme plasmin in tumor cell migration across brain endothelial cells and growth of brain metastases in an experimental metastatic melanoma model. Metastatic tumors to the brain were established by direct injection into the striatum or by intracarotid injection of B16F10 mouse melanoma cells in C57Bl mice. The role of plasminogen in the ability of human melanoma cells to cross a human blood-brain barrier model was studied on a transwell system. Wild type mice treated with the plasmin inhibitor epsilon-aminocaproic acid (EACA) and plg -/- mice developed smaller tumors and survived longer than untreated wild type mice. Tumors metastasized to the brain of wild type mice treated with EACA and plg -/- less efficiently than in untreated wild type mice. No difference was observed in the tumor growth in any of the three groups of mice. Human melanoma cells were able to cross the human blood-brain barrier model in a plasmin dependent manner. Plasmin facilitates the development of tumor metastasis to the brain. Inhibition of the fibrinolytic system could be considered as means to prevent tumor metastasis to the brain

  9. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Lu, Su [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Tang, Huamei, E-mail: tanghuamei@gmail.com [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Peng, Zhihai, E-mail: zhihai.peng@hotmail.com [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China)

    2014-06-27

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation.

  10. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei; Lu, Su; Tang, Huamei; Peng, Zhihai

    2014-01-01

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation

  11. Involvement of PKCα in PMA-induced facilitation of exocytosis and vesicle fusion in PC12 cells

    Xue Renhao; Zhao Yanying; Chen Peng

    2009-01-01

    Phorbol-12-myristate-13-acetate, a stable analog of the important signaling membrane lipid diacylglycerol (DAG), is known to potentiate exocytosis and modulate vesicle fusion kinetics in neurons and endocrine cells. The exact mechanisms underlying the actions of PMA, however, is often not clear, largely because of the diversity of the DAG/PMA receptors involved in the exocytotic process, which include, most notably, various isoforms of protein kinase C (PKC). In this study, the roles of PKCα in PMA-mediated regulation of exocytosis were investigated by over-expressing wild-type PKCα (wt-PKCα) or dominant negative PKCα (dn-PKCα). Amperometric measurements based on carbon fiber microelectrodes demonstrated that PKCα has a key role in the PMA-mediated facilitation of exocytosis and vesicle fusion in neuroendocrine PC12 cells.

  12. Expression of arf tumor suppressor in spermatogonia facilitates meiotic progression in male germ cells.

    Michelle L Churchman

    2011-07-01

    Full Text Available The mammalian Cdkn2a (Ink4a-Arf locus encodes two tumor suppressor proteins (p16(Ink4a and p19(Arf that respectively enforce the anti-proliferative functions of the retinoblastoma protein (Rb and the p53 transcription factor in response to oncogenic stress. Although p19(Arf is not normally detected in tissues of young adult mice, a notable exception occurs in the male germ line, where Arf is expressed in spermatogonia, but not in meiotic spermatocytes arising from them. Unlike other contexts in which the induction of Arf potently inhibits cell proliferation, expression of p19(Arf in spermatogonia does not interfere with mitotic cell division. Instead, inactivation of Arf triggers germ cell-autonomous, p53-dependent apoptosis of primary spermatocytes in late meiotic prophase, resulting in reduced sperm production. Arf deficiency also causes premature, elevated, and persistent accumulation of the phosphorylated histone variant H2AX, reduces numbers of chromosome-associated complexes of Rad51 and Dmc1 recombinases during meiotic prophase, and yields incompletely synapsed autosomes during pachynema. Inactivation of Ink4a increases the fraction of spermatogonia in S-phase and restores sperm numbers in Ink4a-Arf doubly deficient mice but does not abrogate γ-H2AX accumulation in spermatocytes or p53-dependent apoptosis resulting from Arf inactivation. Thus, as opposed to its canonical role as a tumor suppressor in inducing p53-dependent senescence or apoptosis, Arf expression in spermatogonia instead initiates a salutary feed-forward program that prevents p53-dependent apoptosis, contributing to the survival of meiotic male germ cells.

  13. Three-dimensional co-culture facilitates the differentiation of embryonic stem cells into mature cardiomyocytes.

    Ou, Dong-Bo; He, Yong; Chen, Rui; Teng, Ji-Wei; Wang, Hong-Tao; Zeng, Di; Liu, Xiong-Tao; Ding, Lu; Huang, Jin-Yan; Zheng, Qiang-Sun

    2011-12-01

    The cardiomyocyte (CM) differentiation of embryonic stem cells (ESCs) is routinely cultured as two-dimensional (2D) monolayer, which doesn't mimic in vivo physiological environment and may lead to low differentiated level of ESCs. Here, we develop a novel strategy that enhances CM differentiation of ESCs in collagen matrix three-dimensional (3D) culture combined with indirect cardiac fibroblasts co-culture. ESCs were cultured in hanging drops to form embryoid bodies (EBs) and then applied on collagen matrix. The EBs were indirectly co-cultured with cardiac fibroblasts by the hanging cell culture inserts (PET 1 µm). The molecular expressions and ultrastructural characteristics of ESC-derived CMs (ESCMs) were analyzed by real time RT-PCR, immunocytochemistry, and Transmission Electron Microscopy (TEM). We found that the percentage of beating EBs with cardiac fibroblasts co-culture was significantly higher than that without co-culture after differentiation period of 8 days. Type I collagen used as 3D substrates enhanced the late-stage CM differentiation of ESCs and had effect on ultrastructural mature of ESCMs in late-stage development. The combined effects of 3D and co-culture that mimic in vivo physiological environment further improved the efficiency of CM differentiation from ESCs, resulting in fiber-like structures of cardiac cells with organized sarcomeric structure in ESCMs. This novel 3D co-culture system emphasizes the fact that the ESC differentiation is actively responding to cues from their environment and those cues can drive phenotypic control, which provides a useful in vitro model to investigate CM differentiation of stem cells. Copyright © 2011 Wiley Periodicals, Inc.

  14. Local ATP generation by brain-type creatine kinase (CK-B facilitates cell motility.

    Jan W P Kuiper

    Full Text Available BACKGROUND: Creatine Kinases (CK catalyze the reversible transfer of high-energy phosphate groups between ATP and phosphocreatine, thereby playing a storage and distribution role in cellular energetics. Brain-type CK (CK-B deficiency is coupled to loss of function in neural cell circuits, altered bone-remodeling by osteoclasts and complement-mediated phagocytotic activity of macrophages, processes sharing dependency on actomyosin dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide evidence for direct coupling between CK-B and actomyosin activities in cortical microdomains of astrocytes and fibroblasts during spreading and migration. CK-B transiently accumulates in membrane ruffles and ablation of CK-B activity affects spreading and migration performance. Complementation experiments in CK-B-deficient fibroblasts, using new strategies to force protein relocalization from cytosol to cortical sites at membranes, confirmed the contribution of compartmentalized CK-B to cell morphogenetic dynamics. CONCLUSION/SIGNIFICANCE: Our results provide evidence that local cytoskeletal dynamics during cell motility is coupled to on-site availability of ATP generated by CK-B.

  15. Mycolactone-mediated neurite degeneration and functional effects in cultured human and rat DRG neurons: Mechanisms underlying hypoalgesia in Buruli ulcer.

    Anand, U; Sinisi, M; Fox, M; MacQuillan, A; Quick, T; Korchev, Y; Bountra, C; McCarthy, T; Anand, P

    2016-01-01

    Mycolactone is a polyketide toxin secreted by the mycobacterium Mycobacterium ulcerans, responsible for the extensive hypoalgesic skin lesions characteristic of patients with Buruli ulcer. A recent pre-clinical study proposed that mycolactone may produce analgesia via activation of the angiotensin II type 2 receptor (AT2R). In contrast, AT2R antagonist EMA401 has shown analgesic efficacy in animal models and clinical trials for neuropathic pain. We therefore investigated the morphological and functional effects of mycolactone in cultured human and rat dorsal root ganglia (DRG) neurons and the role of AT2R using EMA401. Primary sensory neurons were prepared from avulsed cervical human DRG and rat DRG; 24 h after plating, neurons were incubated for 24 to 96 h with synthetic mycolactone A/B, followed by immunostaining with antibodies to PGP9.5, Gap43, β tubulin, or Mitotracker dye staining. Acute functional effects were examined by measuring capsaicin responses with calcium imaging in DRG neuronal cultures treated with mycolactone. Morphological effects: Mycolactone-treated cultures showed dramatically reduced numbers of surviving neurons and non-neuronal cells, reduced Gap43 and β tubulin expression, degenerating neurites and reduced cell body diameter, compared with controls. Dose-related reduction of neurite length was observed in mycolactone-treated cultures. Mitochondria were distributed throughout the length of neurites and soma of control neurons, but clustered in the neurites and soma of mycolactone-treated neurons. Functional effects: Mycolactone-treated human and rat DRG neurons showed dose-related inhibition of capsaicin responses, which were reversed by calcineurin inhibitor cyclosporine and phosphodiesterase inhibitor 3-isobutyl-1-Methylxanthine, indicating involvement of cAMP/ATP reduction. The morphological and functional effects of mycolactone were not altered by Angiotensin II or AT2R antagonist EMA401. Mycolactone induces toxic effects in DRG

  16. Activated NKT cells facilitated functional switch of myeloid-derived suppressor cells at inflammation sites in fulminant hepatitis mice.

    Wu, Danxiao; Shi, Yu; Wang, Cheng; Chen, Hanwen; Liu, Qiaoyun; Liu, Jianhua; Zhang, Lihuang; Wu, Yihua; Xia, Dajing

    2017-02-01

    Myeloid-derived suppressor cells (MDSCs) confer immunosuppressive properties, but their roles in fulminant hepatitis have not been well defined. In this study, we systematically examined the distribution of MDSCs in bone marrow (BM), liver and spleen, and their functional and differentiation status in an acute fulminant hepatitis mouse model induced by lipopolysaccharide and D-galactosamine (LPS-GalN). Moreover, the interaction between NKT cells and MDSCs was determined. Our study revealed that BM contained the largest pool of MDSCs during pathogenesis of fulminant hepatitis compared with liver and spleen. MDSCs in liver/spleen expressed higher levels of chemokine receptors such as CCR2, CX3CR1 and CXCR2. At inflamed tissues such as liver or spleen, activated NKT cells induced differentiation of MDSCs through cell-cell interaction, which markedly dampened the immunosuppressive effects and promoted MDSCs to produce pro-inflammatory cytokines and activate inflammatory cells. Our findings thus demonstrated an unexpected pro-inflammatory state for MDSCs, which was mediated by the activated NKT cells that precipitated the differentiation and functional evolution of these MDSCs at sites of inflammation. Copyright © 2016. Published by Elsevier GmbH.

  17. Directly Transforming PCR-Amplified DNA Fragments into Plant Cells Is a Versatile System That Facilitates the Transient Expression Assay

    Lu, Yuming; Chen, Xi; Wu, Yuxuan; Wang, Yanping; He, Yuqing; Wu, Yan

    2013-01-01

    A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments) based transient expression system (PCR-TES) for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells. PMID:23468926

  18. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis.

    Kawamoto, Shimpei; Maruya, Mikako; Kato, Lucia M; Suda, Wataru; Atarashi, Koji; Doi, Yasuko; Tsutsui, Yumi; Qin, Hongyan; Honda, Kenya; Okada, Takaharu; Hattori, Masahira; Fagarasan, Sidonia

    2014-07-17

    Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively. Diversified and selected IgAs contributed to maintenance of diversified and balanced microbiota, which in turn facilitated the expansion of Foxp3(+) T cells, induction of GCs, and IgA responses in the gut through a symbiotic regulatory loop. Thus, the adaptive immune system, through cellular and molecular components that are required for immune tolerance and through the diversification as well as selection of antibody repertoire, mediates host-microbial symbiosis by controlling the richness and balance of bacterial communities required for homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay.

    Yuming Lu

    Full Text Available A circular plasmid containing a gene coding sequence has been broadly used for studying gene regulation in cells. However, to accommodate a quick screen plasmid construction and preparation can be time consuming. Here we report a PCR amplified dsDNA fragments (PCR-fragments based transient expression system (PCR-TES for suiting in the study of gene regulation in plant cells. Instead of transforming plasmids into plant cells, transient expression of PCR-fragments can be applicable. The transformation efficiency and expression property of PCR-fragments are comparable to transformation using plasmids. We analyzed the transformation efficiency in PCR-TES at transcription and protein levels. Our results indicate that the PCR-TES is as versatile as the conventional transformation system using plasmid DNA. Through reconstituting PYR1-mediated ABA signaling pathway in Arabidopsis mesophyll protoplasts, we were not only validating the practicality of PCR-TES but also screening potential candidates of CDPK family members which might be involved in the ABA signaling. Moreover, we determined that phosphorylation of ABF2 by CPK4 could be mediated by ABA-induced PYR1 and ABI1, demonstrating a crucial role of CDPKs in the ABA signaling. In summary, PCR-TES can be applicable to facilitate analyzing gene regulation and for the screen of putative regulatory molecules at the high throughput level in plant cells.

  20. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment.

    Al Shaimaa Hasan

    Full Text Available Cardiosphere-derived cells (CDCs, one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1 into a regulatory anti-inflammatory phenotype (M2. Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages, but decreased the expression of CD86 (a marker for M1 macrophages 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair.

  1. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment

    Hasan, Al Shaimaa; Luo, Lan; Yan, Chen; Zhang, Tian-Xia; Urata, Yoshishige; Goto, Shinji; Mangoura, Safwat A.; Abdel-Raheem, Mahmoud H.; Zhang, Shouhua; Li, Tao-Sheng

    2016-01-01

    Cardiosphere-derived cells (CDCs), one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1) into a regulatory anti-inflammatory phenotype (M2). Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages), but decreased the expression of CD86 (a marker for M1 macrophages) 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair. PMID:27764217

  2. Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles

    Santillán-Urquiza, Esmeralda; Arteaga-Cardona, Fernando; Torres-Duarte, Cristina; Cole, Bryan; Wu, Bing; Méndez-Rojas, Miguel A.; Cherr, Gary N.

    2017-09-01

    Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc uptake of different sources of zinc: zinc sulfate, and ZnO and core-shell α-Fe2O3@ZnO nanoparticles, coated or uncoated with inulin, an edible and biocompatible polysaccharide. Using mussel haemocytes, a well-known model system to assess nanomaterial toxicity, we simultaneously assessed zinc accumulation and multiple cellular response endpoints. We found that intracellular zinc uptake was strongly enhanced by inulin coating, in comparison to the uncoated nanoparticles, while no significant effects on cell death, cell viability, mitochondrial membrane integrity, production of reactive oxygen species or lysosome abundance were observed at concentrations up to 20 ppm. Since no significant increments in toxicity were observed, the coated nanomaterials may be useful to increase in vivo zinc uptake for nutritional applications.

  3. Communication between integrin receptors facilitates epicardial cell adhesion and matrix organization.

    Pae, So Hyun; Dokic, Danijela; Dettman, Robert W

    2008-04-01

    Formation of the epicardium requires interactions between alpha(4)beta(1) integrin, and the extracellular matrix. We investigated the role of other integrins expressed by epicardial cells. We detected transcripts for alpha(5), alpha(8), alpha(v), beta(1), beta(3), and beta(5) integrins in the chick proepicardial organ (PE). We demonstrate that alpha(5)beta(1), alpha(8)beta(1), and alpha(v)beta(3) integrins are expressed by chick epicardial mesothelial cells (EMCs). Migration of EMCs in vitro was reduced by RGD-containing peptides. Using adenoviruses expressing an antisense to chick alpha(4) (AdGFPalpha4AS), full-length (Adhalpha4V5), and C-terminal deleted alpha(4) (Adhalpha4DeltaCV5), we found that EMCs were less able to adhere to vitronectin and fibronectin(120) indicating that alpha(4)beta(1) plays a role in regulating EMC adhesion to ligands of alpha(5)beta(1), alpha(8)beta(1), and alpha(v)beta(3). In Adhalpha4DeltaCV5-infected EMCs, alpha(5)beta(1) was diminished in fibrillar adhesions and new FN matrix assembly was abnormal. We propose that cooperation between alpha(4)beta(1) and RGD integrins is important for EMC adhesion and subepicardial matrix formation. (c) 2008 Wiley-Liss, Inc.

  4. Diffusion Tensor Imaging Tractography in Pure Neuritic Leprosy: First Experience Report and Review of the Literature

    Michele R. Colonna

    2016-01-01

    Full Text Available Five years after both right ulnar and median nerve decompression for paraesthesias and palsy, a patient, coming from Nigeria but living in Italy, came to our unit claiming to have persistent pain and combined median and ulnar palsy. Under suspicion of leprosy, skin and left sural nerve biopsy were performed. Skin tests were negative, but Schwann cells resulted as positive for acid-fast bacilli (AFB, leading to the diagnosis of Pure Neuritic Leprosy (PNL. The patient was given PB multidrug therapy and recovered from pain in two months. After nine months both High Resolution Ultrasonography (HRUS and Magnetic Resonance Imaging (MRI were performed, revealing thickening of the nerves. Since demyelination is common in PNL, the Authors started to use Diffusion Tensor Imaging Tractography (DTIT to get better morphological and functional data about myelination than does the traditional imaging. DTIT proved successful in showing myelin discontinuity, reorganization, and myelination, and the Authors suggest that it can give more information about the evolution of the disease, as well as further indications for surgery (nerve decompression, nerve transfers, and babysitting for distal effector protection, and should be added to traditional imaging tools in leprosy.

  5. Monocarboxylate transporter 4 facilitates cell proliferation and migration and is associated with poor prognosis in oral squamous cell carcinoma patients.

    Jiang Zhu

    Full Text Available Monocarboxylate transporter 4 (MCT4 is a cell membrane transporter of lactate. Recent studies have shown that MCT4 is over-expressed in various cancers; however, its role in cancer maintenance and aggressiveness has not been fully demonstrated. This study investigated the role of MCT4 in oral squamous cell carcinoma (OSCC, and found that it is highly expressed in OSCC patients by using immunohistochemistry. Moreover, this over-expression of MCT4 was closely associated with tumor size, TNM classification, lymphatic metastasis, distant metastasis and tumor recurrence, and also poor prognosis. To further study mechanisms of MCT4 in vitro, we used small-interfering RNA to silence its expression in OSCC cell lines. The results showed that knock-down of MCT4 decreased cell proliferation, migration, and invasion. The inhibition of proliferation was associated with down-regulation of p-AKT and p-ERK1/2, while decreased cell migration and invasion may be caused by down-regulation of integrin β4-SRC-FAK and MEK-ERK signaling. Together, these findings provide new insight into the critical role of MCT4 in cell proliferation and metastasis in OSCC.

  6. MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival.

    De He

    Full Text Available microRNAs (miRNAs play a critical role in tumorigenesis, either as a tumor suppressor or as an oncogenic miRNA, depending on different tumor types. To date, scientists have obtained a substantial amount of knowledge with regard to miRNAs in pancreatic cancer. However, the expression and function of miR-371-5p in pancreatic cancer has not been clearly elucidated. The aim of this study was to investigate the roles of miR-371-5p in pancreatic cancer and its association with the survival of patients with pancreatic cancer.The expression of miR-371-5p was examined in pancreatic duct adenocarcinoma (PDAC and their adjacent normal pancreatic tissues (ANPT or in pancreatic cancer cell lines by qRT-PCR. The association of miR-371-5p expression with overall survival was determined. The proliferation and apoptosis of SW-1990 and Panc-1 cells, transfected with miR-371-5p mimics or inhibitor, were assessed using MTT assay and flow cytometry, respectively. The tumorigenicity was evaluated via mice xenograft experiments. miR-371-5p promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP. Protein expression was analyzed by Western blot.The expression level of miR-371-5p was dramatically upregulated in clinical PDAC tissues compared with ANPT. Patients with high miR-371-5p expression had a significantly shorter survival than those with low miR-371-5p expression. The in vitro and in vivo assays showed that overexpression of miR-371-5p resulted in cell proliferation and increased tumor growth, which was associated with inhibitor of growth 1 (ING1 downregulation. Interestingly, we also found that ING1, in turn, inhibited expression of miR-371-5p in the promoter region.our study demonstrates a novel ING1-miR-371-5p regulatory feedback loop, which may have a critical role in PDAC. Thus miR-371-5p can prove to be a novel prognostic factor and therapeutic target for pancreatic cancer treatment.

  7. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  8. The third helix of the murine Hoxc8 homeodomain facilitates protein transduction in mammalian cells

    Kong, Kyoung-Ah; Gadi, Jogeswar; Park, Hyoung Woo; Bok, Jinwoong; Kim, Myoung Hee

    2008-01-01

    Previously, we have demonstrated that purified Hoxc8 homeoprotein has the ability to penetrate the cellular membrane and can be transduced efficiently into COS-7 cells. Moreover, the Hoxc8 protein is able to form a complex with DNA molecules in vitro and helps the DNA be delivered intracellularly, serving as a gene delivery vehicle. Here, we further analyzed the membrane transduction activity of Hoxc8 protein and provide the evidence that the 16 amino acid (a.a.191-206, 2.23 kDa) third helix of murine Hoxc8 protein is an efficient protein transduction domain (PTD). When the 16 amino acid peptide was fused at the carboxyl terminal of enhanced green fluorescence protein (EGFP), the fusion proteins were transduced efficiently into the primary pig fetal fibroblast cells. The transduction efficiency increased in a concentration-dependent manner up to 1 μM, and appeared to plateau above a concentration of 1 μM. When tandem multimers of PTD, EGFP-PTD(2), EGFP-PTD(3), EGFP-PTD(4), and EGFP-PTD(5), were analyzed at 500 nM of concentration, the penetrating efficiency increased in a dose-dependent manner. As the number of PTDs increased, the EGFP signal also increased, although the signal maintained plateau after EGFP-PTD(3). These results indicate that the 16 amino acid third helix is the key element responsible for the membrane transduction activity of Hoxc8 proteins, and further suggest that the small peptide could serve as a therapeutic delivery vehicle for large cargo proteins

  9. cAMP-induced activation of protein kinase A and p190B RhoGAP mediates down-regulation of TC10 activity at the plasma membrane and neurite outgrowth.

    Koinuma, Shingo; Takeuchi, Kohei; Wada, Naoyuki; Nakamura, Takeshi

    2017-11-01

    Cyclic AMP plays a pivotal role in neurite growth. During outgrowth, a trafficking system supplies membrane at growth cones. However, the cAMP-induced signaling leading to the regulation of membrane trafficking remains unknown. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking. Recent studies have shown a role of TC10 in neurite growth in NGF-treated PC12 cells. Here, we investigated a mechanical linkage between cAMP and TC10 in neuritogenesis. Plasmalemmal TC10 activity decreased abruptly after cAMP addition in neuronal cells. TC10 was locally inactivated at extending neurite tips in cAMP-treated PC12 cells. TC10 depletion led to a decrease in cAMP-induced neurite outgrowth. Constitutively active TC10 could not rescue this growth reduction, supporting our model for a role of GTP hydrolysis of TC10 in neuritogenesis by accelerating vesicle fusion. The cAMP-induced TC10 inactivation was mediated by PKA. Considering cAMP-induced RhoA inactivation, we found that p190B, but not p190A, mediated inactivation of TC10 and RhoA. Upon cAMP treatment, p190B was recruited to the plasma membrane. STEF depletion and Rac1-N17 expression reduced cAMP-induced TC10 inactivation. Together, the PKA-STEF-Rac1-p190B pathway leading to inactivation of TC10 and RhoA at the plasma membrane plays an important role in cAMP-induced neurite outgrowth. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  10. Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans.

    Chen, Angela; Contreras, Lydia M; Keitz, Benjamin K

    2017-09-15

    The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation. IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of organisms

  11. Working memory cells' behavior may be explained by cross-regional networks with synaptic facilitation.

    Sergio Verduzco-Flores

    2009-08-01

    Full Text Available Neurons in the cortex exhibit a number of patterns that correlate with working memory. Specifically, averaged across trials of working memory tasks, neurons exhibit different firing rate patterns during the delay of those tasks. These patterns include: 1 persistent fixed-frequency elevated rates above baseline, 2 elevated rates that decay throughout the tasks memory period, 3 rates that accelerate throughout the delay, and 4 patterns of inhibited firing (below baseline analogous to each of the preceding excitatory patterns. Persistent elevated rate patterns are believed to be the neural correlate of working memory retention and preparation for execution of behavioral/motor responses as required in working memory tasks. Models have proposed that such activity corresponds to stable attractors in cortical neural networks with fixed synaptic weights. However, the variability in patterned behavior and the firing statistics of real neurons across the entire range of those behaviors across and within trials of working memory tasks are typical not reproduced. Here we examine the effect of dynamic synapses and network architectures with multiple cortical areas on the states and dynamics of working memory networks. The analysis indicates that the multiple pattern types exhibited by cells in working memory networks are inherent in networks with dynamic synapses, and that the variability and firing statistics in such networks with distributed architectures agree with that observed in the cortex.

  12. Mutual facilitations of food waste treatment, microbial fuel cell bioelectricity generation and Chlorella vulgaris lipid production.

    Hou, Qingjie; Pei, Haiyan; Hu, Wenrong; Jiang, Liqun; Yu, Ze

    2016-03-01

    Food waste contains large amount of organic matter that may be troublesome for handing, storage and transportation. A microbial fuel cell (MFC) was successfully constructed with different inoculum densities of Chlorella vulgaris for promoting food waste treatment. Maximum COD removal efficiency was registered with 44% and 25 g CODL(-1)d(-1) of substrate degradation rate when inoculated with the optimal initial density (150 mg L(-1)) of C. vulgaris, which were 2.9 times and 3.1 times higher than that of the abiotic cathode. With the optimum inoculum density of C. vulgaris, the highest open circuit voltage, working voltage and power density of MFC were 260 mV, 170 mV and 19151 mW m(-3), respectively. Besides the high biodiesel quality, promoted by MFC stimulation the biomass productivity and highest total lipid content of C. vulgaris were 207 mg L(-1)d(-1) and 31%, which were roughly 2.7 times and 1.2 times higher than the control group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Demonstration of the dorsal pancreatic artery by CTA to facilitate superselective arterial infusion of stem cells into the pancreas

    Lin Yuning; Yang Xizhang; Chen Ziqian; Tan Jianming; Zhong Qun; Yang Li; Wu Zhixian

    2012-01-01

    Purpose: To investigate the diagnostic performance of 64-section CTA in the detection of dorsal pancreatic artery before interventional therapy for patients with diabetes. Materials and methods: The study was approved by the institutional ethics committee; written informed consent was obtained. Forty-two consecutive patients with diabetes received an experimental treatment of autologous bone marrow-derived stem cell transplantation by means of infusion into the dorsal pancreatic artery. All cases underwent abdominal CTA before angiography of pancreatic arteries in order to locate the origin and course of dorsal pancreatic artery. Angiography of coeliac artery, splenic artery, common hepatic artery and superior mesenteric artery were performed both in CTA and DSA. Superselective catheterization of dorsal pancreatic artery was carried out for the infusion of stem cell. Sensitivity, specificity and accuracy for the detection of dorsal pancreatic artery with CTA were calculated using DSA images as the reference standard. Results: Thirty-five and thirty-six dorsal pancreatic arteries were detected by CTA and DSA respectively. Dorsal pancreatic artery was not visualized in either CTA or DSA in 5 patients. The sensitivity, specificity and accuracy for CTA were 94.4%, 83.3% and 92.9%. Conclusion: 64-section CTA is accurate for the detection of dorsal pancreatic artery. It may be useful for the facilitation of superselective arterial infusion of stem cells to pancreas.

  14. Avian metapneumovirus M2:2 protein inhibits replication in Vero cells: modification facilitates live vaccine development.

    Clubbe, Jayne; Naylor, Clive J

    2011-11-28

    Throughout the world, avian metapneumovirus (AMPV) infection of subtype A is principally controlled by two live vaccines both derived from UK field strain #8544. Improvements of those vaccines by use of reverse genetics technology was found to be hampered by the inability of #8544 to replicate in the commonly exploited Vero cell based reverse genetics system. A systematic reverse genetics based genome modification of a DNA copy of #8544, employing sequence data from a Vero grown, #8544 derived, live vaccine; was used to determine mutations required to facilitate virus recovery and replication in Vero cells. This identified a single coding substitution in the M2:2 reading frame as responsible. Furthermore, ablation of M2:2 was found to elicit the same outcome. M2:2 sequence analysis of seven AMPVs found Vero cell adaption to be associated with non similar amino acid changes in M2:2. The study shows that M2:2 modification of field virus #8544 will enable research leading to improved vaccines. This may have more general application to other AMPV field strains. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure.

    Rodrigues, Olivier; Reshetnyak, Ganna; Grondin, Alexandre; Saijo, Yusuke; Leonhardt, Nathalie; Maurel, Christophe; Verdoucq, Lionel

    2017-08-22

    Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the At PIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability ( P f ) of guard cell protoplasts through activation of At PIP2;1. The use of HyPer, a genetic probe for intracellular hydrogen peroxide (H 2 O 2 ), revealed that both ABA and flg22 triggered an accumulation of H 2 O 2 in wild-type but not pip2;1 guard cells. Pretreatment of guard cells with flg22 or ABA facilitated the influx of exogenous H 2 O 2 Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6) were both necessary to flg22-induced P f and both phosphorylated At PIP2;1 on Ser121 in vitro. Accumulation of H 2 O 2 and stomatal closure as induced by flg22 was restored in pip2;1 guard cells by a phosphomimetic form (Ser121Asp) but not by a phosphodeficient form (Ser121Ala) of At PIP2;1. We propose a mechanism whereby phosphorylation of At PIP2;1 Ser121 by BAK1 and/or OST1 is triggered in response to flg22 to activate its water and H 2 O 2 transport activities. This work establishes a signaling role of plasma membrane aquaporins in guard cells and potentially in other cellular context involving H 2 O 2 signaling.

  16. Mast cells facilitate local VEGF release as an early event in the pathogenesis of postoperative peritoneal adhesions.

    Cahill, Ronan A

    2012-02-03

    BACKGROUND: Peritoneal injury sustained at laparotomy may evoke local inflammatory responses that result in adhesion formation. Peritoneal mast cells are likely to initiate this process, whereas vascular permeability\\/endothelial growth factor (VEGF) may facilitate the degree to which subsequent adhesion formation occurs. METHODS: Mast cell deficient mice (WBB6F1-\\/-), along with their mast cell sufficient counterparts (WBB6F1+\\/+), underwent a standardized adhesion-inducing operation (AIS) with subsequent sacrifice and adhesion assessment 14 days later in a blinded fashion. Additional CD-1 and WBB6F1+\\/+, and WBB6F1-\\/- mice were killed 2, 6, 12, and 24 hours after operation for measurement of VEGF by ELISA in systemic serum and peritoneal lavage fluid. Two further groups of CD-1 mice underwent AIS and received either a single perioperative dose of anti-VEGF monoclonal antibody (10 mug\\/mouse) or a similar volume of IgG isotypic antibody and adhesion formation 2 weeks later was evaluated. RESULTS: WBB6F1-\\/- mice had less adhesions then did their WBB6F1+\\/+ counterparts (median [interquartile range] adhesion score 3[3-3] vs 1.5[1-2] respectively; P < .003). Local VEGF release peaked 6 hours after AIS in both WBB6F1+\\/+ and CD-1 mice whereas levels remained at baseline in WBB6F1-\\/- mice. CD-1 mice treated with a single dose of anti-VEGF therapy during operation had less adhesions than controls (2[1.25-2] vs 3[2.25-3], P = .0002). CONCLUSIONS: Mast cells and VEGF are central to the formation of postoperative intra-abdominal adhesions with mast cells being responsible, either directly or indirectly, for VEGF release into the peritoneal cavity after operation. In tandem with the recent clinical success of anti-VEGF monoclonal antibodies in oncologic practice, our observations suggest an intriguing avenue for research and development of anti-adhesion strategy.

  17. Solo/Trio8, a membrane-associated short isoform of Trio, modulates endosome dynamics and neurite elongation.

    Sun, Ying-Jie; Nishikawa, Kaori; Yuda, Hideki; Wang, Yu-Lai; Osaka, Hitoshi; Fukazawa, Nobuna; Naito, Akira; Kudo, Yoshihisa; Wada, Keiji; Aoki, Shunsuke

    2006-09-01

    With DNA microarrays, we identified a gene, termed Solo, that is downregulated in the cerebellum of Purkinje cell degeneration mutant mice. Solo is a mouse homologue of rat Trio8-one of multiple Trio isoforms recently identified in rat brain. Solo/Trio8 contains N-terminal sec14-like and spectrin-like repeat domains followed by a single guanine nucleotide exchange factor 1 (GEF1) domain, but it lacks the C-terminal GEF2, immunoglobulin-like, and kinase domains that are typical of Trio. Solo/Trio8 is predominantly expressed in Purkinje neurons of the mouse brain, and expression begins following birth and increases during Purkinje neuron maturation. We identified a novel C-terminal membrane-anchoring domain in Solo/Trio8 that is required for enhanced green fluorescent protein-Solo/Trio8 localization to early endosomes (positive for both early-endosome antigen 1 [EEA1] and Rab5) in COS-7 cells and primary cultured neurons. Solo/Trio8 overexpression in COS-7 cells augmented the EEA1-positive early-endosome pool, and this effect was abolished via mutation and inactivation of the GEF domain or deletion of the C-terminal membrane-anchoring domain. Moreover, primary cultured neurons transfected with Solo/Trio8 showed increased neurite elongation that was dependent on these domains. These results suggest that Solo/Trio8 acts as an early-endosome-specific upstream activator of Rho family GTPases for neurite elongation of developing Purkinje neurons.

  18. Mucolipin 1 positively regulates TLR7 responses in dendritic cells by facilitating RNA transportation to lysosomes.

    Li, Xiaobing; Saitoh, Shin-Ichiroh; Shibata, Takuma; Tanimura, Natsuko; Fukui, Ryutaro; Miyake, Kensuke

    2015-02-01

    Toll-like receptor 7 (TLR7) and TLR9 sense microbial single-stranded RNA (ssRNA) and ssDNA in endolysosomes. Nucleic acid (NA)-sensing in endolysosomes is thought to be important for avoiding TLR7/9 responses to self-derived NAs. Aberrant self-derived NA transportation to endolysosomes predisposes to autoimmune diseases. To restrict NA-sensing in endolysosomes, TLR7/9 trafficking is tightly controlled by a multiple transmembrane protein Unc93B1. In contrast to TLR7/9 trafficking, little is known about a mechanism underlying NA transportation. We here show that Mucolipin 1 (Mcoln1), a member of the transient receptor potential (TRP) cation channel gene family, has an important role in ssRNA trafficking into lysosomes. Mcoln1(-/-) dendritic cells (DCs) showed impaired TLR7 responses to ssRNA. A mucolipin agonist specifically enhanced TLR7 responses to ssRNAs. The channel activity of Mcoln1 is activated by a phospholipid phosphatidylinositol (3,5) bisphosphate (PtdIns(3,5)P2), which is generated by a class III lipid kinase PIKfyve. A PIKfyve inhibitor completely inhibited TLR7 responses to ssRNA in DCs. Confocal analyses showed that ssRNA transportation to lysosomes in DCs was impaired by PIKfyve inhibitor as well as by the lack of Mcoln1. Transportation of TLR9 ligands was also impaired by the PIKfyve inhibitor. These results demonstrate that the PtdIns(3,5)P2-Mcoln1 axis has an important role in ssRNA transportation into lysosomes in DCs. © The Japanese Society for Immunology. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy.

  20. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan; Xu, Bo; Wang, Tianchang; Yang, Qi; Yang, Qin [State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing (China); Feng, Xudong, E-mail: xudong.feng@childrens.harvard.edu [Department of Medicine, Children' s Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (United States); Xia, Qing, E-mail: xqing@hsc.pku.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing (China)

    2015-06-10

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.

  1. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan; Xu, Bo; Wang, Tianchang; Yang, Qi; Yang, Qin; Feng, Xudong; Xia, Qing

    2015-01-01

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress

  2. Loss of protohaem IX farnesyltransferase in mature dentate granule cells impairs short-term facilitation at mossy fibre to CA3 pyramidal cell synapses.

    Booker, Sam A; Campbell, Graham R; Mysiak, Karolina S; Brophy, Peter J; Kind, Peter C; Mahad, Don J; Wyllie, David J A

    2017-03-15

    Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity. Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low-frequency dentate to CA3 glutamatergic synaptic transmission. High-frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase-deficient mice. Intact presynaptic mitochondrial function is critical for the short-term dynamics of mossy fibre to CA3 synaptic function. Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole-cell patch-clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV-deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy-fibre synapse because the amplitude, input-output relationship and 50 ms paired-pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short-term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired-pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect observed was not restricted to synapses

  3. Neuroligin-1 induces neurite outgrowth through interaction with neurexin-1ß and activation of fibroblast growth factor receptor-1

    Gjørlund, Michelle D; Nielsen, Janne; Pankratova, Stanislava

    2012-01-01

    Neurexin-1 (NRXN1) and neuroligin-1 (NLGN1) are synaptic cell adhesion molecules that connect pre- and postsynaptic neurons at synapses and mediate signaling across the synapse, which modulates synaptic activity and determines the properties of neuronal networks. Defects in the genes encoding NLGN1...... have been linked to cognitive diseases such as autism. The roles of both NRXN1 and NLGN1 during synaptogenesis have been studied extensively, but little is known about the role of these molecules in neuritogenesis, which eventually results in neuronal circuitry formation. The present study investigated...... the neuritogenic effect of NLGN1 in cultures of hippocampal neurons. Our results show that NLGN1, both in soluble and membrane-bound forms, induces neurite outgrowth that depends on the interaction with NRXN1ß and on activation of fibroblast growth factor receptor-1. In addition, we demonstrate that a synthetic...

  4. Complex mutual regulation of facilitates chromatin transcription (FACT) subunits on both mRNA and protein levels in human cells.

    Safina, Alfiya; Garcia, Henry; Commane, Mairead; Guryanova, Olga; Degan, Seamus; Kolesnikova, Kateryna; Gurova, Katerina V

    2013-08-01

    Facilitates chromatin transcription (FACT) is a chromatin remodeling complex with two subunits: SSRP1 and SPT16. Mechanisms controlling FACT levels are of interest, since the complex is not expressed in most differentiated cells, but is frequently upregulated in cancer, particularly in poorly differentiated, aggressive tumors. Moreover, inhibition of FACT expression or function in tumor cells interferes with their survival. Here we demonstrate that SSRP1 and SPT16 protein levels decline upon induction of cellular differentiation or senescence in vitro and that similar declines in protein levels for both SSRP1 and SPT16 occur upon RNAi-mediated knockdown of either SSRP1 or SPT16. The interdependence of SSRP1 and SPT16 protein levels was found to be due to their association with SSRP1 and SPT16 mRNAs, which stabilizes the proteins. In particular, presence of SSRP1 mRNA is critical for SPT16 protein stability. In addition, binding of SSRP1 and SPT16 mRNAs to the FACT complex increases the stability and efficiency of translation of the mRNAs. These data support a model in which the FACT complex is stable when SSRP1 mRNA is present, but quickly degrades when SSRP1 mRNA levels drop. In the absence of FACT complex, SSRP1 and SPT16 mRNAs are unstable and inefficiently translated, making reactivation of FACT function unlikely in normal cells. Thus, we have described a complex and unusual mode of regulation controlling cellular FACT levels that results in amplified and stringent control of FACT activity. The FACT dependence of tumor cells suggests that mechanisms controlling FACT levels could be targeted for anticancer therapy.

  5. Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations.

    Flores, África; Herry, Cyril; Maldonado, Rafael; Berrendero, Fernando

    2017-08-01

    Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  6. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    Pizzurro, Daniella M.; Dao, Khoi; Costa, Lucio G.

    2014-01-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  7. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    Pizzurro, Daniella M.; Dao, Khoi [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Costa, Lucio G. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Department of Neuroscience, University of Parma, Parma (Italy)

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  8. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by ß-amyloid peptide

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, WE

    2010-01-01

    Background and purpose: β-Amyloid peptide (Aβ) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. Experimental approach: We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Aβ-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Aβ and on neurite outgrowth in PC12 cells were investigated. Key results: Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Aβ1-42. Similar protective effects against Aβ1-42 were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Aβ load was markedly diminished in the brain of those animals after treatment with piracetam. Aβ production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Aβ-induced mitochondrial dysfunction and Aβ-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Conclusion and implications: Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Aβ on brain function. This article is commented on by Moncada, pp. 217–219 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00706.x and to view related papers by Pravdic et al. and Puerta et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00698.x and http://dx.doi.org/10.1111/j

  9. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  10. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    Jeong, Kwang Won

    2014-01-01

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators

  11. Chemical Constituents from Hericium erinaceus Promote Neuronal Survival and Potentiate Neurite Outgrowth via the TrkA/Erk1/2 Pathway.

    Zhang, Cheng-Chen; Cao, Chen-Yu; Kubo, Miwa; Harada, Kenichi; Yan, Xi-Tao; Fukuyama, Yoshiyasu; Gao, Jin-Ming

    2017-07-30

    Hericium erinaceus is a culinary-medicinal mushroom used traditionally in Eastern Asia to improve memory. In this work, we investigated the neuroprotective and neuritogenic effects of the secondary metabolites isolated from the MeOH extract of cultured mycelium of H. erinaceus and the primary mechanisms involved. One new dihydropyridine compound ( 6 ) and one new natural product ( 2 ) together with five known compounds ( 1 , 3 - 5 , 7 ) were obtained and their structures were elucidated by spectroscopic analysis, including 2D NMR and HRMS. The cell-based screening for bioactivity showed that 4-chloro-3,5-dimethoxybenzoic methyl ester ( 1 ) and a cyathane diterpenoid, erincine A ( 3 ), not only potentiated NGF-induced neurite outgrowth but also protected neuronally-differentiated cells against deprivation of NGF in PC12 pheochromocytoma cells. Additionally, compound 3 induced neuritogenesis in primary rat cortex neurons. Furthermore, our results revealed that TrkA-mediated and Erk1/2-dependant pathways could be involved in 1 and 3 -promoted NGF-induced neurite outgrowth in PC12 cells.

  12. Chemical Constituents from Hericium erinaceus Promote Neuronal Survival and Potentiate Neurite Outgrowth via the TrkA/Erk1/2 Pathway

    Cheng-Chen Zhang

    2017-07-01

    Full Text Available Hericium erinaceus is a culinary-medicinal mushroom used traditionally in Eastern Asia to improve memory. In this work, we investigated the neuroprotective and neuritogenic effects of the secondary metabolites isolated from the MeOH extract of cultured mycelium of H. erinaceus and the primary mechanisms involved. One new dihydropyridine compound (6 and one new natural product (2 together with five known compounds (1,3–5,7 were obtained and their structures were elucidated by spectroscopic analysis, including 2D NMR and HRMS. The cell-based screening for bioactivity showed that 4-chloro-3,5-dimethoxybenzoic methyl ester (1 and a cyathane diterpenoid, erincine A (3, not only potentiated NGF-induced neurite outgrowth but also protected neuronally-differentiated cells against deprivation of NGF in PC12 pheochromocytoma cells. Additionally, compound 3 induced neuritogenesis in primary rat cortex neurons. Furthermore, our results revealed that TrkA-mediated and Erk1/2-dependant pathways could be involved in 1 and 3-promoted NGF-induced neurite outgrowth in PC12 cells.

  13. MACC1 facilitates chemoresistance and cancer stem cell-like properties of colon cancer cells through the PI3K/AKT signaling pathway

    Wang, Jiankai; Wang, Wenjuan; Cai, Hongyi; Du, Binbin; Zhang, Lijuan; Ma, Wen; Hu, Yongguo; Feng, Shifang; Miao, Guoying

    2017-01-01

    With regards to colon cancer, resistance to 5-fluorouracil (5-FU)-based chemotherapy and cancer stem cells (CSCs) are considered important factors underlying therapy failure. Metastasis-associated colon cancer 1 (MACC1) has been associated with poor prognosis and the promotion of metastasis within several types of cancer. However, the biological behavior of MACC1 in chemoresistance and CSC-like properties remains unclear. In the present study, various methods including gene knockdown, gene overexpression, western blotting, quantitative polymerase chain reaction and MTT assay, have been adopted. According to the results of the present study, MACC1 was depleted in two colon cancer cell lines resistant to 5-FU; subsequently, CSC-like properties and 5-FU sensitivity were investigated. Within 5-FU-resistant cells, cell death was facilitated by MACC1 knockdown. Furthermore, sphere formation and the expression levels of pluripotent markers, including cluster of differentiation (CD) 44, CD133 and Nanog were reduced due to MACC1 depletion. Additionally, it was indicated that the phosphoinositide 3-kinase/protein kinase B signaling pathway may be associated with 5-FU resistance and CSC-like properties via MACC1. PMID:28990068

  14. Lipoteichoic Acid (LTA) and Lipopolysaccharides (LPS) from Periodontal Pathogenic Bacteria Facilitate Oncogenic Herpesvirus Infection within Primary Oral Cells

    Dai, Lu; DeFee, Michael R.; Cao, Yueyu; Wen, Jiling; Wen, Xiaofei; Noverr, Mairi C.; Qin, Zhiqiang

    2014-01-01

    Kaposi’s sarcoma (KS) remains the most common tumor arising in patients with HIV/AIDS, and involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk for periodontal diseases and oral carriage of a variety of bacteria. Whether interactions involving pathogenic bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity remains unknown. In the current study, our data indicate that pretreatment of primary human oral fibroblasts with two prototypical pathogen-associated molecular patterns (PAMPs) produced by oral pathogenic bacteria–lipoteichoic acid (LTA) and lipopolysaccharide (LPS), increase KSHV entry and subsequent viral latent gene expression during de novo infection. Further experiments demonstrate that the underlying mechanisms induced by LTA and/or LPS include upregulation of cellular receptor, increasing production of reactive oxygen species (ROS), and activating intracellular signaling pathways such as MAPK and NF-κB, and all of which are closely associated with KSHV entry or gene expression within oral cells. Based on these findings, we hope to provide the framework of developing novel targeted approaches for treatment and prevention of oral KSHV infection and KS development in high-risk HIV-positive patients. PMID:24971655

  15. SUMO-Modification of the La Protein Facilitates Binding to mRNA In Vitro and in Cells.

    Kota, Venkatesh; Sommer, Gunhild; Durette, Chantal; Thibault, Pierre; van Niekerk, Erna A; Twiss, Jeffery L; Heise, Tilman

    2016-01-01

    The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO), but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP) elements from the 5' untranslated regions (UTR) of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5' UTR of cyclin D1 (CCND1) mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality.

  16. SUMO-Modification of the La Protein Facilitates Binding to mRNA In Vitro and in Cells.

    Venkatesh Kota

    Full Text Available The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO, but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP elements from the 5' untranslated regions (UTR of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5' UTR of cyclin D1 (CCND1 mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality.

  17. Deficits in Neurite Density Underlie White Matter Structure Abnormalities in First-Episode Psychosis.

    Rae, Charlotte L; Davies, Geoff; Garfinkel, Sarah N; Gabel, Matt C; Dowell, Nicholas G; Cercignani, Mara; Seth, Anil K; Greenwood, Kathryn E; Medford, Nick; Critchley, Hugo D

    2017-11-15

    Structural abnormalities across multiple white matter tracts are recognized in people with early psychosis, consistent with dysconnectivity as a neuropathological account of symptom expression. We applied advanced neuroimaging techniques to characterize microstructural white matter abnormalities for a deeper understanding of the developmental etiology of psychosis. Thirty-five first-episode psychosis patients, and 19 healthy controls, participated in a quantitative neuroimaging study using neurite orientation dispersion and density imaging, a multishell diffusion-weighted magnetic resonance imaging technique that distinguishes white matter fiber arrangement and geometry from changes in neurite density. Fractional anisotropy (FA) and mean diffusivity images were also derived. Tract-based spatial statistics compared white matter structure between patients and control subjects and tested associations with age, symptom severity, and medication. Patients with first-episode psychosis had lower regional FA in multiple commissural, corticospinal, and association tracts. These abnormalities predominantly colocalized with regions of reduced neurite density, rather than aberrant fiber bundle arrangement (orientation dispersion index). There was no direct relationship with active symptoms. FA decreased and orientation dispersion index increased with age in patients, but not control subjects, suggesting accelerated effects of white matter geometry change. Deficits in neurite density appear fundamental to abnormalities in white matter integrity in early psychosis. In the first application of neurite orientation dispersion and density imaging in psychosis, we found that processes compromising axonal fiber number, density, and myelination, rather than processes leading to spatial disruption of fiber organization, are implicated in the etiology of psychosis. This accords with a neurodevelopmental origin of aberrant brain-wide structural connectivity predisposing individuals to

  18. Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp [Department of Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto (Japan); Usuki, Fusako [Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto (Japan); Cheng, Jinping; Zhao, Wenchang [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-05-01

    Methylmercury (MeHg) is a highly neurotoxic environmental chemical that can cause developmental impairments. Human fetuses and neonates are particularly susceptible to MeHg toxicity; however, the mechanisms governing its effects in the developing brain are unclear. In the present study, we investigated the effects of prenatal and lactational MeHg exposure on the developing cerebellum in rats. We demonstrated that exposure to 5 ppm MeHg decreased postnatal expression of pre- and postsynaptic proteins, suggesting an impairment in synaptic development. MeHg exposure also reduced neurite outgrowth, as shown by a decrease in the expression of the neurite marker neurofilament H. These changes were not observed in rats exposed to 1 ppm MeHg. In order to define the underlying mechanism, we investigated the effects of MeHg exposure on the tropomyosin receptor kinase (Trk) A pathway, which plays important roles in neuronal differentiation and synapse formation. We demonstrated suppression of the TrkA pathway on gestation day 20 in rats exposed to 5 ppm MeHg. In addition, down-regulation of eukaryotic elongation factor 1A1 (eEF1A1) was observed on postnatal day 1. eEF1A1 knockdown in differentiating PC12 cells impaired neurite outgrowth and synaptic protein expression, similar to the results of MeHg exposure in the cerebellum. These results suggest that suppression of the TrkA pathway and subsequent decreases in eEF1A1 expression induced by prenatal exposure to MeHg may lead to reduced neurite outgrowth and synaptic protein expression in the developing cerebellum. - Highlights: • Prenatal exposure to MeHg decreased postnatal expression of synaptic proteins. • MeHg exposure also reduced neurite outgrowth postnatally. • Suppression of the TrkA pathway and eEF1A1 expression was induced by MeHg exposure. • eEF1A1 knockdown impaired neurite outgrowth and synaptic protein expression.

  19. Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum

    Fujimura, Masatake; Usuki, Fusako; Cheng, Jinping; Zhao, Wenchang

    2016-01-01

    Methylmercury (MeHg) is a highly neurotoxic environmental chemical that can cause developmental impairments. Human fetuses and neonates are particularly susceptible to MeHg toxicity; however, the mechanisms governing its effects in the developing brain are unclear. In the present study, we investigated the effects of prenatal and lactational MeHg exposure on the developing cerebellum in rats. We demonstrated that exposure to 5 ppm MeHg decreased postnatal expression of pre- and postsynaptic proteins, suggesting an impairment in synaptic development. MeHg exposure also reduced neurite outgrowth, as shown by a decrease in the expression of the neurite marker neurofilament H. These changes were not observed in rats exposed to 1 ppm MeHg. In order to define the underlying mechanism, we investigated the effects of MeHg exposure on the tropomyosin receptor kinase (Trk) A pathway, which plays important roles in neuronal differentiation and synapse formation. We demonstrated suppression of the TrkA pathway on gestation day 20 in rats exposed to 5 ppm MeHg. In addition, down-regulation of eukaryotic elongation factor 1A1 (eEF1A1) was observed on postnatal day 1. eEF1A1 knockdown in differentiating PC12 cells impaired neurite outgrowth and synaptic protein expression, similar to the results of MeHg exposure in the cerebellum. These results suggest that suppression of the TrkA pathway and subsequent decreases in eEF1A1 expression induced by prenatal exposure to MeHg may lead to reduced neurite outgrowth and synaptic protein expression in the developing cerebellum. - Highlights: • Prenatal exposure to MeHg decreased postnatal expression of synaptic proteins. • MeHg exposure also reduced neurite outgrowth postnatally. • Suppression of the TrkA pathway and eEF1A1 expression was induced by MeHg exposure. • eEF1A1 knockdown impaired neurite outgrowth and synaptic protein expression.

  20. Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth

    Hopper, A P; Dugan, J M; Gill, A A; Haycock, J W; Claeyssens, F; Fox, O J L; May, P W

    2014-01-01

    In this study, we report the production of amine functionalized nanodiamond. The amine functionalized nanodiamond forms a conformal monolayer on a negatively charged surface produced via plasma polymerization of acrylic acid. Nanodiamond terminated surfaces were studied as substrates for neuronal cell culture. NG108-15 neuroblastoma-glyoma hybrid cells were successfully cultured upon amine functionalized nanodiamond coated surfaces for between 1 and 7 d. Additionally, primary dorsal root ganglion (DRG) neurons and Schwann cells isolated from Wistar rats were also successfully cultured over a period of 21 d illustrating the potential of the coating for applications in the treatment of peripheral nerve injury. (paper)

  1. Neurite outgrowth in human iPSC-derived neurons

    U.S. Environmental Protection Agency — Data on morphology of rat and human neurons in cell culture. This dataset is associated with the following publication: Druwe, I., T. Freudenrich , K. Wallace , T....

  2. TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs

    Shingo Suzuki

    2016-01-01

    Full Text Available Cystic fibrosis (CF is a recessive inherited disease associated with multiorgan damage that compromises epithelial and inflammatory cell function. Induced pluripotent stem cells (iPSCs have significantly advanced the potential of developing a personalized cell-based therapy for diseases like CF by generating patient-specific stem cells that can be differentiated into cells that repair tissues damaged by disease pathology. The F508del mutation in airway epithelial cell-derived CF-iPSCs was corrected with small/short DNA fragments (SDFs and sequence-specific TALENs. An allele-specific PCR, cyclic enrichment strategy gave ≃100-fold enrichment of the corrected CF-iPSCs after six enrichment cycles that facilitated isolation of corrected clones. The seamless SDF-based gene modification strategy used to correct the CF-iPSCs resulted in pluripotent cells that, when differentiated into endoderm/airway-like epithelial cells showed wild-type (wt airway epithelial cell cAMP-dependent Cl ion transport or showed the appropriate cell-type characteristics when differentiated along mesoderm/hematopoietic inflammatory cell lineage pathways.

  3. Effects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels

    Conovaloff, Aaron W.; Beier, Brooke L.; Irazoqui, Pedro P.; Panitch, Alyssa

    2011-01-01

    Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid. F...

  4. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To ove...

  5. Facilitating Transfers

    Kjær, Poul F.

    to specific logics of temporalisation and spatial expansion of a diverse set of social processes in relation to, for example, the economy, politics, science and the mass media. On this background, the paper will more concretely develop a conceptual framework for classifying different contextual orders...... that the essential functional and normative purpose of regulatory governance is to facilitate, stabilise and justify the transfer of condensed social components (such as economic capital and products, political decisions, legal judgements, religious beliefs and scientific knowledge) from one social contexts...

  6. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease.

    Kamagata, Koji; Hatano, Taku; Okuzumi, Ayami; Motoi, Yumiko; Abe, Osamu; Shimoji, Keigo; Kamiya, Kouhei; Suzuki, Michimasa; Hori, Masaaki; Kumamaru, Kanako K; Hattori, Nobutaka; Aoki, Shigeki

    2016-08-01

    We used neurite orientation dispersion and density imaging (NODDI) to quantify changes in the substantia nigra pars compacta (SNpc) and striatum in Parkinson disease (PD). Diffusion-weighted magnetic resonance images were acquired from 58 PD patients and 36 age- and sex-matched controls. The intracellular volume fraction (Vic), orientation dispersion index (OD), and isotropic volume fraction (Viso) of the basal ganglia were compared between groups. Multivariate logistic regression analysis determined which diffusion parameters were independent predictors of PD. Receiver operating characteristic (ROC) analysis compared the diagnostic accuracies of the evaluated indices. Pearson coefficient analysis correlated each diffusional parameter with disease severity. Vic in the contralateral SNpc and putamen were significantly lower in PD patients than in healthy controls (P disease severity. Multivariate logistic analysis revealed that Vic (P = 0.0000046) and mean diffusivity (P = 0.019) in the contralateral SNpc were the independent predictors of PD. In the ROC analysis, Vic in the contralateral SNpc showed the best diagnostic performance (mean cutoff, 0.62; sensitivity, 0.88; specificity, 0.83). NODDI is likely to be useful for diagnosing PD and assessing its progression. • Neurite orientation dispersion and density imaging (NODDI) is a new diffusion MRI technique • NODDI estimates neurite microstructure more specifically than diffusion tensor imaging • By using NODDI, nigrostriatal alterations in PD can be evaluated in vivo • NOODI is useful for diagnosing PD and assessing its disease progression.

  7. Modeling extracellular electrical stimulation: I. Derivation and interpretation of neurite equations.

    Meffin, Hamish; Tahayori, Bahman; Grayden, David B; Burkitt, Anthony N

    2012-12-01

    Neuroprosthetic devices, such as cochlear and retinal implants, work by directly stimulating neurons with extracellular electrodes. This is commonly modeled using the cable equation with an applied extracellular voltage. In this paper a framework for modeling extracellular electrical stimulation is presented. To this end, a cylindrical neurite with confined extracellular space in the subthreshold regime is modeled in three-dimensional space. Through cylindrical harmonic expansion of Laplace's equation, we derive the spatio-temporal equations governing different modes of stimulation, referred to as longitudinal and transverse modes, under types of boundary conditions. The longitudinal mode is described by the well-known cable equation, however, the transverse modes are described by a novel ordinary differential equation. For the longitudinal mode, we find that different electrotonic length constants apply under the two different boundary conditions. Equations connecting current density to voltage boundary conditions are derived that are used to calculate the trans-impedance of the neurite-plus-thin-extracellular-sheath. A detailed explanation on depolarization mechanisms and the dominant current pathway under different modes of stimulation is provided. The analytic results derived here enable the estimation of a neurite's membrane potential under extracellular stimulation, hence bypassing the heavy computational cost of using numerical methods.

  8. A Non-Destructive Culturing and Cell Sorting Method for Cardiomyocytes and Neurons Using a Double Alginate Layer

    Terazono, Hideyuki; Kim, Hyonchol; Hayashi, Masahito; Hattori, Akihiro; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-01-01

    A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES) cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture. PMID:22870332

  9. A non-destructive culturing and cell sorting method for cardiomyocytes and neurons using a double alginate layer.

    Hideyuki Terazono

    Full Text Available A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture.

  10. The prototypical proton-coupled oligopeptide transporter YdgR from Escherichia coli facilitates chloramphenicol uptake into bacterial cells

    Prabhala, Bala K; Aduri, Nanda G; Sharma, Neha

    2018-01-01

    . However, to date no report exists on any specific transport protein that facilitates Cam uptake. The proton-coupled oligopeptide transporter (POT) YdgR from Escherichia coli is a prototypical member of the POT family, functioning in proton-coupled uptake of di- and tripeptides. By following bacterial...

  11. The integrin alphav beta3 increases cellular stiffness and cytoskeletal remodeling dynamics to facilitate cancer cell invasion

    Mierke, Claudia Tanja

    2013-01-01

    The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3high or αvβ3low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3high cells showed a threefold increased cell invasion compared to αvβ3low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3high cells but not in αvβ3low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3high cells, whereas the invasiveness of β3 specific knock

  12. The integrin alphav beta3 increases cellular stiffness and cytoskeletal remodeling dynamics to facilitate cancer cell invasion

    Mierke, Claudia Tanja

    2013-01-01

    The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3 high or αvβ3 low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3 high cells showed a threefold increased cell invasion compared to αvβ3 low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3 high cells but not in αvβ3 low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3 low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3 high cells, whereas the invasiveness of β3 specific knock

  13. Facilitating participation

    Skøtt, Bo

    2018-01-01

    the resulting need for a redefinition of library competence. In doing this, I primarily address the first two questions from Chapter 1 and how they relate to the public’s informal, leisure-time activities in a networked society. In particular, I focus on the skills of reflexive self-perception and informed...... opinion formation. Further, I point out the significance which these informal leisure-time activities have for public library staff’s cultural dissemination skills. In this way, I take on the question of the skills required for facilitating the learning of a participatory public (cf. Chapter 1......), exemplifying with the competence required of library staff. My discussion will proceed by way of a literature review. In the next section, I shall explain how and what sources were chosen and section three and four present the theoretical framework and how the applied theories are related. In the fifth section...

  14. Facilitating Transfers

    Kjær, Poul F.

    2018-01-01

    Departing from the paradox that globalisation has implied an increase, rather than a decrease, in contextual diversity, this paper re-assesses the function, normative purpose and location of Regulatory Governance Frameworks in world society. Drawing on insights from sociology of law and world...... society studies, the argument advanced is that Regulatory Governance Frameworks are oriented towards facilitating transfers of condensed social components, such as economic capital and products, legal acts, political decisions and scientific knowledge, from one legally-constituted normative order, i.......e. contextual setting, to another. Against this background, it is suggested that Regulatory Governance Frameworks can be understood as schemes which act as ‘rites of passage’ aimed at providing legal stabilisation to social processes characterised by liminality, i.e ambiguity, hybridity and in-betweenness....

  15. Microsomal Prostaglandin E Synthase-1 Facilitates an Intercellular Interaction between CD4⁺ T Cells through IL-1β Autocrine Function in Experimental Autoimmune Encephalomyelitis.

    Takemiya, Takako; Takeuchi, Chisen; Kawakami, Marumi

    2017-12-19

    Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme that produces prostaglandin E₂ (PGE₂). In our previous study, we investigated the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, using mPGES - 1 -deficient ( mPGES-1 -/- ) and wild-type (wt) mice. We found that mPGES-1 facilitated inflammation, demyelination, and paralysis and was induced in vascular endothelial cells and macrophages and microglia around inflammatory foci. Here, we investigated the role of interleukin-1β (IL-1β) in the intercellular mechanism stimulated by mPGES-1 in EAE spinal cords in the presence of inflammation. We found that the area invaded by CD4-positive (CD4⁺) T cells was extensive, and that PGE₂ receptors EP1-4 were more induced in activated CD4⁺ T cells of wt mice than in those of mPGES - 1 -/- mice. Moreover, IL-1β and IL-1 receptor 1 (IL-1r1) were produced by 65% and 48% of CD4⁺ T cells in wt mice and by 44% and 27% of CD4⁺ T cells in mPGES-1 -/- mice. Furthermore, interleukin-17 (IL-17) was released from the activated CD4⁺ T cells. Therefore, mPGES-1 stimulates an intercellular interaction between CD4⁺ T cells by upregulating the autocrine function of IL-1β in activated CD4⁺ T cells, which release IL-17 to facilitate axonal and myelin damage in EAE mice.

  16. Polystyrene nanoparticles facilitate the internalization of impermeable biomolecules in non-tumour and tumour cells from colon epithelium

    Cabeza, Laura [University of Granada, Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER) (Spain); Cano-Cortés, Victoria; Rodríguez, María J. [University of Granada, Department of Pharmaceutical and Organic Chemistry (Spain); Vélez, Celia; Melguizo, Consolación, E-mail: melguizo@ugr.es [University of Granada, Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER) (Spain); Sánchez-Martín, Rosario M., E-mail: rmsanchez@ugr.es [University of Granada, Department of Pharmaceutical and Organic Chemistry (Spain); Prados, Jose [University of Granada, Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine (IBIMER) (Spain)

    2015-01-15

    Advanced colon cancer has a poor prognosis due to the limited effectiveness of current chemotherapies. Treatment failures may be avoided by the utilization of nanoparticles, which can enhance the effects of antitumor drugs, reduce their side effects and increase their directionality. Polystyrene nanoparticles have shown high biocompatibility and appropriate physicochemical properties and may represent a novel and more effective approach against colon cancer. In the present study, polystyrene nanoparticles were synthesized and fluorescently labelled, analyzing their cell internalization, intracellular localization and capacity to release transported molecules in tumour and non-tumour human colon cell lines (T84 and CCD-18). Flow cytometry and fluorescence microscopy studies demonstrated that polystyrene nanoparticles are an effective vehicle for the intracellular delivery of small molecules into colon epithelium cells. The percentage cell uptake was around 100 % in both T84 and CCD-18 cell lines after only 24 h of exposure and was cell confluence-independent. The polystyrene nanoparticles showed no cytotoxicity in either colon cell line. It was found that small molecules can be efficiently delivered into colon cells by using a disulphide bridge as release strategy. Analysis of the influence of the functionalization of the polystyrene nanoparticles surface on the internalization efficiency revealed some morphological changes in these cells. These results demonstrate that polystyrene nanoparticles may improve the transport of biomolecules into colon cells which could have a potential application in chemotherapeutic treatment against colon cancer.

  17. Polystyrene nanoparticles facilitate the internalization of impermeable biomolecules in non-tumour and tumour cells from colon epithelium

    Cabeza, Laura; Cano-Cortés, Victoria; Rodríguez, María J.; Vélez, Celia; Melguizo, Consolación; Sánchez-Martín, Rosario M.; Prados, Jose

    2015-01-01

    Advanced colon cancer has a poor prognosis due to the limited effectiveness of current chemotherapies. Treatment failures may be avoided by the utilization of nanoparticles, which can enhance the effects of antitumor drugs, reduce their side effects and increase their directionality. Polystyrene nanoparticles have shown high biocompatibility and appropriate physicochemical properties and may represent a novel and more effective approach against colon cancer. In the present study, polystyrene nanoparticles were synthesized and fluorescently labelled, analyzing their cell internalization, intracellular localization and capacity to release transported molecules in tumour and non-tumour human colon cell lines (T84 and CCD-18). Flow cytometry and fluorescence microscopy studies demonstrated that polystyrene nanoparticles are an effective vehicle for the intracellular delivery of small molecules into colon epithelium cells. The percentage cell uptake was around 100 % in both T84 and CCD-18 cell lines after only 24 h of exposure and was cell confluence-independent. The polystyrene nanoparticles showed no cytotoxicity in either colon cell line. It was found that small molecules can be efficiently delivered into colon cells by using a disulphide bridge as release strategy. Analysis of the influence of the functionalization of the polystyrene nanoparticles surface on the internalization efficiency revealed some morphological changes in these cells. These results demonstrate that polystyrene nanoparticles may improve the transport of biomolecules into colon cells which could have a potential application in chemotherapeutic treatment against colon cancer

  18. Creation of defined single cell resolution neuronal circuits on microelectrode arrays

    Pirlo, Russell Kirk

    2009-12-01

    The way cell-cell organization of neuronal networks influences activity and facilitates function is not well understood. Microelectrode arrays (MEAs) and advancing cell patterning technologies have enabled access to and control of in vitro neuronal networks spawning much new research in neuroscience and neuroengineering. We propose that small, simple networks of neurons with defined circuitry may serve as valuable research models where every connection can be analyzed, controlled and manipulated. Towards the goal of creating such neuronal networks we have applied microfabricated elastomeric membranes, surface modification and our unique laser cell patterning system to create defined neuronal circuits with single-cell precision on MEAs. Definition of synaptic connectivity was imposed by the 3D physical constraints of polydimethylsiloxane elastomeric membranes. The membranes had 20mum clear-through holes and 2-3mum deep channels which when applied to the surface of the MEA formed microwells to confine neurons to electrodes connected via shallow tunnels to direct neurite outgrowth. Tapering and turning of channels was used to influence neurite polarity. Biocompatibility of the membranes was increased by vacuum baking, oligomer extraction, and autoclaving. Membranes were bound to the MEA by oxygen plasma treatment and heated pressure. The MEA/membrane surface was treated with oxygen plasma, poly-D-lysine and laminin to improve neuron attachment, survival and neurite outgrowth. Prior to cell patterning the outer edge of culture area was seeded with 5x10 5 cells per cm and incubated for 2 days. Single embryonic day 7 chick forebrain neurons were then patterned into the microwells and onto the electrodes using our laser cell patterning system. Patterned neurons successfully attached to and were confined to the electrodes. Neurites extended through the interconnecting channels and connected with adjacent neurons. These results demonstrate that neuronal circuits can be

  19. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  20. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  1. Glycogen synthase kinase-3β facilitates cell apoptosis induced by high fluence low-power laser irradiation through acceleration of Bax translocation

    Huang, Lei; Wu, Shengnan; Xing, Da

    2011-03-01

    Glycogen synthase kinase-3β (GSK-3β) is a critical activator of cell apoptosis induced by a diverse array of insults. However, the effects of GSK-3β on the human lung adenocarcinoma cell (ASTC-a-1) apoptosis induced by high fluence low-power laser irradiation (HF-LPLI) are not clear. Here, we showed that GSK-3β was constantly translocated from cytoplasm to nucleus and activated during HF-LPLI-induced cell apoptosis. In addition, we found that co-overexpression of YFP-GSK-3β and CFP-Bax in ASTC-a-1 cells accelerated both Bax translocations to mitochondria and cell apoptosis, compared to the cells expressed CFP-Bax only under HF-LPLI treatment, indicating that GSK-3β facilitated ASTC-a-1 cells apoptosis through acceleration mitochondrial translocation of Bax. Our results demonstrate that GSK-3β exerts some of its pro-apoptotic effects in ASTC-a-1 cells by regulating the mitochondrial localization of Bax, a key component of the intrinsic apoptotic cascade.

  2. The effects of canine bone marrow stromal cells on neuritogenesis from dorsal root ganglion neurons in vitro.

    Kamishina, Hiroaki; Cheeseman, Jennifer A; Clemmons, Roger M

    2009-10-01

    The present in vitro study was designed to evaluate whether canine bone marrow stromal cells (BMSCs) promote neurite outgrowth from dorsal root ganglion (DRG) neurons. Bone marrow aspirates were collected from iliac crests of three young adult dogs. DRG neurons were cultured on BMSCs, fibroblasts, or laminin substrates. DRG neurons were also cultured in BMSC- or fibroblast-conditioned media. DRG neurons grown on BMSCs extended longer neurites and developed a much more elaborate conformation of branching neurites compared to those on fibroblasts or laminin. Quantitative analysis revealed that these effects were associated with the emergence of increased numbers of primary and branching neurites. The effect appears to be dependent upon cell-cell interactions rather than by elaboration of diffusible molecules. With more extensive investigations into the basic biology of canine BMSCs, their ability for promoting neurite outgrowth may be translated into a novel therapeutic strategy for dogs with a variety of neurological disorders.

  3. Herpes simplex virus type 2 glycoprotein H interacts with integrin αvβ3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells.

    Cheshenko, Natalia; Trepanier, Janie B; González, Pablo A; Eugenin, Eliseo A; Jacobs, William R; Herold, Betsy C

    2014-09-01

    Herpes simplex virus (HSV) entry requires multiple interactions at the cell surface and activation of a complex calcium signaling cascade. Previous studies demonstrated that integrins participate in this process, but their precise role has not been determined. These studies were designed to test the hypothesis that integrin αvβ3 signaling promotes the release of intracellular calcium (Ca2+) stores and contributes to viral entry and cell-to-cell spread. Transfection of cells with small interfering RNA (siRNA) targeting integrin αvβ3, but not other integrin subunits, or treatment with cilengitide, an Arg-Gly-Asp (RGD) mimetic, impaired HSV-induced Ca2+ release, viral entry, plaque formation, and cell-to-cell spread of HSV-1 and HSV-2 in human cervical and primary genital tract epithelial cells. Coimmunoprecipitation studies and proximity ligation assays indicated that integrin αvβ3 interacts with glycoprotein H (gH). An HSV-2 gH-null virus was engineered to further assess the role of gH in the virus-induced signaling cascade. The gH-2-null virus bound to cells and activated Akt to induce a small Ca2+ response at the plasma membrane, but it failed to trigger the release of cytoplasmic Ca2+ stores and was impaired for entry and cell-to-cell spread. Silencing of integrin αvβ3 and deletion of gH prevented phosphorylation of focal adhesion kinase (FAK) and the transport of viral capsids to the nuclear pore. Together, these findings demonstrate that integrin signaling is activated downstream of virus-induced Akt signaling and facilitates viral entry through interactions with gH by activating the release of intracellular Ca2+ and FAK phosphorylation. These findings suggest a new target for HSV treatment and suppression. Herpes simplex viruses are the leading cause of genital disease worldwide, the most common infection associated with neonatal encephalitis, and a major cofactor for HIV acquisition and transmission. There is no effective vaccine. These

  4. Inhibitory effects of brain-derived neurotrophic factor precursor on viability and neurite growth of murine hippocampal neurons

    Jia CHEN

    2014-10-01

    Full Text Available Objective To explore the mediation effect of p75 neurotrophin receptor (p75NTR in the effect of brainderived neurotrophic factor precursor (proBDNF on viability and neurite growth of murine hippocampal neurons. Methods  Hippocampal neurons were obtained from p75NTR+/+ and p75NTR-/- 18-day mice and primarily cultured. For p75NTR+/+ neurons, three experimental groups were set, i.e. control, proBDNF (30ng/ml, and proBDNF (30ng/ml+p75/Fc (30µg/ml groups. For p75NTR-/- neurons, two experimental groups were set, i.e. control and proBDNF (30ng/ml groups. MTT assays were performed after 24h to examine the viability of neonatal primary neurons. Immunofluorescent staining was conducted after 72h to investigate the neurite length. Results With MAP2 and DAPI double fluorescent staining it was identified that the neonatal hippocampal neurons were successfully cultured in vitro with high purity. For viability assay of p75NTR+/+ neurons, it was found that the absorbance value at 570nm (A570 in proBDNF group was significantly lower than that in control group (P0.05. With neurite growth assay of p75NTR+/+ neurons, it was found that the neurite length in proBDNF group was significantly shorter than that in control group (P0.05. With neurite growth assay of p75NTR-/- neurons, no difference in neurite length was observed between proBDNF group and control group. Conclusion proBDNF may inhibit the neuronal viability and neurite growth via p75NTR. DOI: 10.11855/j.issn.0577-7402.2014.09.03

  5. MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2

    Yunjia Zhang

    2016-06-01

    Full Text Available ABSTRACT MicroRNAs (miRNAs are critical for both development and function of the central nervous system. Significant evidence suggests that abnormal expression of miRNAs is associated with neurodevelopmental disorders. MeCP2 protein is an epigenetic regulator repressing or activating gene transcription by binding to methylated DNA. Both loss-of-function and gain-of-function mutations in the MECP2 gene lead to neurodevelopmental disorders such as Rett syndrome, autism and MECP2 duplication syndrome. In this study, we demonstrate that miR-130a inhibits neurite outgrowth and reduces dendritic spine density as well as dendritic complexity. Bioinformatics analyses, cell cultures and biochemical experiments indicate that miR-130a targets MECP2 and down-regulates MeCP2 protein expression. Furthermore, expression of the wild-type MeCP2, but not a loss-of-function mutant, rescues the miR-130a-induced phenotype. Our study uncovers the MECP2 gene as a previous unknown target for miR-130a, supporting that miR-130a may play a role in neurodevelopment by regulating MeCP2. Together with data from other groups, our work suggests that a feedback regulatory mechanism involving both miR-130a and MeCP2 may serve to ensure their appropriate expression and function in neural development.

  6. Distribution of precursor amyloid-β-protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neuritic plaques

    Lewis, D.A.; Higgins, G.A.; Young, W.G.; Goldgaber, D.; Gajdusek, D.C.; Wilson, M.C.; Morrison, J.H.

    1988-01-01

    Neurofibrillary tangles (NFT) and neuritic plaques (NP), two neuropathological markers of Alzheimer disease, may both contain peptide fragments derived from the human amyloid β protein. However, the nature of the relationship between NFT and NP and the source of the amyloid β proteins found in each have remained unclear. The authors used in situ hybridization techniques to map the anatomical distribution of precursor amyloid-β-protein mRNA in the neocortex of brains from three subjects with no known neurologic disease and from five patients with Alzheimer disease. In brains from control subjects, positively hybridizing neurons were present in cortical regions and layers that contain a high density of neuropathological markers in Alzheimer disease, as well as in those loci that contain NP but few NFT. Quantitative analyses of in situ hybridization patterns within layers III and V of the superior frontal cortex revealed that the presence of high numbers of NFT in Alzheimer-diseased brains was associated with a decrease in the number of positively hybridizing neurons compared to controls and Alzheimer-diseased brains with few NFT. These findings suggest that the expression of precursor amyloid-β-protein mRNA may be a necessary but is clearly not a sufficient prerequisite for NFT formation. In addition, these results may indicate that the amyloid β protein, present in NP in a given region or layer of cortex, is not derived from the resident neuronal cell bodies that express the mRNA for the precursor protein

  7. Oseltamivir Prophylaxis Reduces Inflammation and Facilitates Establishment of Cross-Strain Protective T Cell Memory to Influenza Viruses

    Bird, Nicola L.; Olson, Matthew R.; Hurt, Aeron C.; Oshansky, Christine M.; Oh, Ding Yuan; Reading, Patrick C.; Chua, Brendon Y.; Sun, Yilun; Tang, Li; Handel, Andreas; Jackson, David C.; Turner, Stephen J.; Thomas, Paul G.; Kedzierska, Katherine

    2015-01-01

    CD8(+) T cells directed against conserved viral regions elicit broad immunity against distinct influenza viruses, promote rapid virus elimination and enhanced host recovery. The influenza neuraminidase inhibitor, oseltamivir, is prescribed for therapy and prophylaxis, although it remains unclear how the drug impacts disease severity and establishment of effector and memory CD8(+) T cell immunity. We dissected the effects of oseltamivir on viral replication, inflammation, acute CD8(+) T cell r...

  8. Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations.

    Zhaojuan Yang

    Full Text Available The mammalian target of the rapamycin (mTOR pathway, which drives cell proliferation, is frequently hyperactivated in a variety of malignancies. Therefore, the inhibition of the mTOR pathway has been considered as an appropriate approach for cancer therapy. In this study, we examined the roles of mTOR in the maintenance and differentiation of cancer stem-like cells (CSCs, the conversion of conventional cancer cells to CSCs and continuous tumor growth in vivo. In H-Ras-transformed mouse liver tumor cells, we found that pharmacological inhibition of mTOR with rapamycin greatly increased not only the CD133+ populations both in vitro and in vivo but also the expression of stem cell-like genes. Enhancing mTOR activity by over-expressing Rheb significantly decreased CD133 expression, whereas knockdown of the mTOR yielded an opposite effect. In addition, mTOR inhibition severely blocked the differentiation of CD133+ to CD133- liver tumor cells. Strikingly, single-cell culture experiments revealed that CD133- liver tumor cells were capable of converting to CD133+ cells and the inhibition of mTOR signaling substantially promoted this conversion. In serial implantation of tumor xenografts in nude BALB/c mice, the residual tumor cells that were exposed to rapamycin in vivo displayed higher CD133 expression and had increased secondary tumorigenicity compared with the control group. Moreover, rapamycin treatment also enhanced the level of stem cell-associated genes and CD133 expression in certain human liver tumor cell lines, such as Huh7, PLC/PRC/7 and Hep3B. The mTOR pathway is significantly involved in the generation and the differentiation of tumorigenic liver CSCs. These results may be valuable for the design of more rational strategies to control clinical malignant HCC using mTOR inhibitors.

  9. A triad of lys12, lys41, arg78 spatial domain, a novel identified heparin binding site on tat protein, facilitates tat-driven cell adhesion.

    Jing Ai

    Full Text Available Tat protein, released by HIV-infected cells, has a battery of important biological effects leading to distinct AIDS-associated pathologies. Cell surface heparan sulfate protoglycans (HSPGs have been accepted as endogenous Tat receptors, and the Tat basic domain has been identified as the heparin binding site. However, findings that deletion or substitution of the basic domain inhibits but does not completely eliminate Tat-heparin interactions suggest that the basic domain is not the sole Tat heparin binding site. In the current study, an approach integrating computational modeling, mutagenesis, biophysical and cell-based assays was used to elucidate a novel, high affinity heparin-binding site: a Lys12, Lys41, Arg78 (KKR spatial domain. This domain was also found to facilitate Tat-driven β1 integrin activation, producing subsequent SLK cell adhesion in an HSPG-dependent manner, but was not involved in Tat internalization. The identification of this new heparin binding site may foster further insight into the nature of Tat-heparin interactions and subsequent biological functions, facilitating the rational design of new therapeutics against Tat-mediated pathological events.

  10. Autophagy induction by Bcr-Abl-expressing cells facilitates their recovery from a targeted or nontargeted treatment.

    Crowley, Lisa C

    2012-01-31

    Although Imatinib has transformed the treatment of chronic myeloid leukemia (CML), it is not curative due to the persistence of resistant cells that can regenerate the disease. We have examined how Bcr-Abl-expressing cells respond to two mechanistically different therapeutic agents, etoposide and Imatinib. We also examined Bcr-Abl expression at low and high levels as elevated expression has been associated with treatment failure. Cells expressing low levels of Bcr-Abl undergo apoptosis in response to the DNA-targeting agent (etoposide), whereas high-Bcr-Abl-expressing cells primarily induce autophagy. Autophagic populations engage a delayed nonapoptotic death; however, sufficient cells evade this and repopulate following the withdrawal of the drug. Non-Bcr-Abl-expressing 32D or Ba\\/F3 cells induce both apoptosis and autophagy in response to etoposide and can recover. Imatinib treatment induces both apoptosis and autophagy in all Bcr-Abl-expressing cells and populations rapidly recover. Inhibition of autophagy with ATG7 and Beclin1 siRNA significantly reduced the recovery of Imatinib-treated K562 cells, indicating the importance of autophagy for the recovery of treated cells. Combination regimes incorporating agents that disrupt Imatinib-induced autophagy would remain primarily targeted and may improve response to the treatment in CML.

  11. Oseltamivir Prophylaxis Reduces Inflammation and Facilitates Establishment of Cross-Strain Protective T Cell Memory to Influenza Viruses.

    Nicola L Bird

    Full Text Available CD8(+ T cells directed against conserved viral regions elicit broad immunity against distinct influenza viruses, promote rapid virus elimination and enhanced host recovery. The influenza neuraminidase inhibitor, oseltamivir, is prescribed for therapy and prophylaxis, although it remains unclear how the drug impacts disease severity and establishment of effector and memory CD8(+ T cell immunity. We dissected the effects of oseltamivir on viral replication, inflammation, acute CD8(+ T cell responses and the establishment of immunological CD8(+ T cell memory. In mice, ferrets and humans, the effect of osteltamivir on viral titre was relatively modest. However, prophylactic oseltamivir treatment in mice markedly reduced morbidity, innate responses, inflammation and, ultimately, the magnitude of effector CD8(+ T cell responses. Importantly, functional memory CD8(+ T cells established during the drug-reduced effector phase were capable of mounting robust recall responses. Moreover, influenza-specific memory CD4(+ T cells could be also recalled after the secondary challenge, while the antibody levels were unaffected. This provides evidence that long-term memory T cells can be generated during an oseltamivir-interrupted infection. The anti-inflammatory effect of oseltamivir was verified in H1N1-infected patients. Thus, in the case of an unpredicted influenza pandemic, while prophylactic oseltamivir treatment can reduce disease severity, the capacity to generate memory CD8(+ T cells specific for the newly emerged virus is uncompromised. This could prove especially important for any new influenza pandemic which often occurs in separate waves.

  12. Exploring the Use of MXit: A Cell-Phone Social Network to Facilitate Learning in Distance Education

    Makoe, Mpine

    2010-01-01

    The aim of this paper is to investigate the pedagogical suitability of using cell phones to enhance learning through social interaction in distance education. Social interaction was used as a conceptual framework to explore the potential for using "MXit"--a cell-phone instant messaging system--to support and enhance learning for distance…

  13. Oct2 and Obf1 as facilitators of B:T cell collaboration during a humoral immune response

    Lynn M Corcoran

    2014-03-01

    Full Text Available The Oct2 protein, encoded by the Pou2f2 gene, was originally predicted to act as a DNA binding transcriptional activator of immunoglobulin (Ig in B lineage cells. This prediction flowed from the earlier observation that an 8 bp sequence, the octamer motif, was a highly conserved component of most Ig gene promoters and enhancers, and evidence from over-expression and reporter assays confirmed Oct2-mediated, octamer-dependent gene expression. Complexity was added to the story when Oct1, an independently encoded protein, ubiquitously expressed from the Pou2f 1 gene, was characterised and found to bind to the octamer motif with almost identical specificity, and later, when the co-activator Obf1 (OCA-B, Bob.1, encoded by the Pou2af1 gene, was cloned. Obf1 joins Oct2 (and Oct1 on the DNA of a subset of octamer motifs to enhance their transactivation strength. While these proteins variously carried the mantle of determinants of Ig gene expression in B cells for many years, such a role has not been borne out for them by characterisation of mice lacking functional copies of the genes, either as single or as compound mutants. Instead, we and others have shown that Oct2 and Obf1 are required for B cells to mature fully in vivo, for B cells to respond to the T cell cytokines IL5 and IL4, and for B cells to produce IL6 normally during a T cell dependent immune response. We show here that Oct2 affects Syk gene expression, thus influencing B cell receptor signalling, and that Oct2 loss blocks Slamf1 expression in vivo as a result of incomplete B cell maturation. Upon IL4 signalling, Stat6 up-regulates Obf1, indirectly via Xbp1, to enable plasma cell differentiation. Thus, Oct2 and Obf1 enable B cells to respond normally to antigen receptor signals, to express surface receptors that mediate physical interaction with T cells, or to produce and respond to cytokines that are critical drivers of B cell and T cell differentiation during a humoral immune response.

  14. Propiece IL-1α facilitates the growth of acute T-lymphocytic leukemia cells through the activation of NF-κB and SP1.

    Zhang, Yinsheng; Yu, Xiao; Lin, Dandan; Lei, Lei; Hu, Bo; Cao, Fengzhang; Mei, Yu; Wu, Depei; Liu, Haiyan

    2017-02-28

    Interleukin 1α (IL-1α) is a pro-inflammatory cytokine that possesses multiple immune-regulatory functions. It is mainly expressed as the cell-associated form and not actively secreted in healthy tissues. The intracellular IL-1α has been shown to be a chromatin-associated cytokine and can affect transcription. There are spontaneous expressions of IL-1α in acute lymphocytic leukemia (ALL) blasts. However, the role of nuclear-localized IL-1α in ALL is not clear. Here we showed that overexpression of the nuclear form of IL-1α (propiece IL-1α) could promote proliferation and reduce apoptosis of T-ALL cells. It also increased the ALL cells' resistance to low serum concentration and cisplatin treatment. In vivo growth of the T-ALL cells overexpressing the propiece IL-1α were also enhanced compared to the control cells. Microarray analysis revealed many changes in gene expressions related to cell growth and stress, including a group of metallothionein genes. Moreover, the expressions of transcription factors, NFκB and specific protein 1 (SP1), were up-regulated by propiece IL-1α. Propiece IL-1α could bind to the promoter of SP1 and a binding sequence logo was identified. Therefore, nuclear expression of propiece IL-1α can facilitate the growth of T-ALL cells possibly through the activation of NFκB and SP1.

  15. Hsc70 facilitates TGF-β-induced activation of Smad2/3 in fibroblastic NRK-49F cells

    Ikezaki, Midori; Higashimoto, Natsuki; Matsumura, Ko; Ihara, Yoshito, E-mail: y-ihara@wakayama-med.ac.jp

    2016-08-26

    Heat-shock cognate protein 70 (Hsc70), a molecular chaperone constitutively expressed in the cell, is involved in the regulation of several cellular signaling pathways. In this study, we found that TGF-β-induced phosphorylation and nuclear translocation of Smad2/3 were suppressed in fibroblastic NRK-49F cells treated with small interfering RNA (siRNA) for Hsc70. In the cells underexpressing Hsc70, transcriptional induction of connective tissue growth factor (CTGF), a target gene of the TGF-β signaling, was also suppressed in the early phase of TGF-β stimulation. Upon stimulation with TGF-β, Hsc70 interacted with Smad2/3, suggesting functional interactions of Hsc70 and Smad2/3 for the activation of TGF-β-induced Smad signaling. Although the expression of heat-shock protein 70 (Hsp70) was upregulated in the cells treated with Hsc70 siRNA, TGF-β-induced Smad activation was not affected in the cells overexpressing Hsp70. Collectively, these results indicate that Hsc70, but not Hsp70, supportively regulates TGF-β-induced Smad signaling in NRK-49F cells. - Highlights: • Hsc70 siRNA treatment suppressed the expression of Hsc70 but induced the expression of Hsp70 in NRK-49F cells. • Hsc70 siRNA treatment suppressed the activation of Smad2/3 in the cells treated with TGF-β. • Hsc70 interacted with Smad2/3 on stimulation with TGF-β in the cells. • Hsp70 did not influence the TGF-β-induced activation of Smad2/3 in the cells overexpressing Hsp70.

  16. Lewis Lung Cancer Cells Promote SIGNR1(CD209b)-Mediated Macrophages Polarization Induced by IL-4 to Facilitate Immune Evasion.

    Yan, Xiaolong; Li, Wenhai; Pan, Lei; Fu, Enqing; Xie, Yonghong; Chen, Min; Mu, Deguang

    2016-05-01

    Tumor-associated macrophages are a prominent component of lung cancer and contribute to tumor progression by facilitating the immune evasion of cancer cells. DC-SIGN (CD209) assists in the immune evasion of a broad spectrum of pathogens and neoplasms by inhibiting the maturation of DCs and subsequent cytokines production. However, the expression of DC-SIGN in macrophages and its role in mediating immune evasion in lung cancer and the underlying mechanism remain unclear. Our study aimed to identify the immunosuppressive role of SIGNR1 in murine macrophage differentiation and lung cancer progression. We found that SIGNR1-positive RAW264.7 macrophages were enriched in mixed cultures with Lewis lung cancer cells (LLC) (ratio of RAW 264.7 to LLC being 1:1) after stimulation with IL-4. Moreover, LLC-educated macrophages exhibited significantly higher levels of IL-10 but lower IL-12 in response to IL-4 treatment as determined by RT-PCR and ELISA. However, inhibition of SIGNR1 markedly hampered the production of IL-10, indicating that SIGNR1 was indispensable for IL-4+LLC induced macrophage polarization towards the M2 subtype. Furthermore, polarized M2 cells immersed in a tumor microenvironment promoted the migration of LLCs, as measured by transwell assays, but migration was suppressed after blockade of SIGNR1 using CD209b antibody. In addition, IL-4+LLC-educated macrophages reduced the proliferation of the activated T cells and reduced IFN-γ-mediated Th1 response in T cells, while SIGNR1 inhibition rescued Th1 cell functions. In conclusion, murine SIGNR1 expressed in LLC-educated macrophages appears to mediate IL-4-induced RAW264.7 macrophage polarization and thus facilitate lung cancer evasion. © 2015 Wiley Periodicals, Inc.

  17. The neurite growth inhibitory effects of soluble TNFα on developing sympathetic neurons are dependent on developmental age.

    Nolan, Aoife M; Collins, Louise M; Wyatt, Sean L; Gutierrez, Humberto; O'Keeffe, Gerard W

    2014-01-01

    During development, the growth of neural processes is regulated by an array of cellular and molecular mechanisms which influence growth rate, direction and branching. Recently, many members of the TNF superfamily have been shown to be key regulators of neurite growth during development. The founder member of this family, TNFα can both promote and inhibit neurite growth depending on the cellular context. Specifically, transmembrane TNFα promotes neurite growth, while soluble TNFα inhibits it. While the growth promoting effects of TNFα are restricted to a defined developmental window of early postnatal development, whether the growth inhibitory effects of soluble TNFα occur throughout development is unknown. In this study we used the extensively studied, well characterised neurons of the superior cervical ganglion to show that the growth inhibitory effects of soluble TNFα are restricted to a specific period of late embryonic and early postnatal development. Furthermore, we show that this growth inhibitory effect of soluble TNFα requires NF-κB signalling at all developmental stages at which soluble TNFα inhibits neurite growth. These findings raise the possibility that increases in the amount of soluble TNFα in vivo, for example as a result of maternal inflammation, could negatively affect neurite growth in developing neurons at specific stages of development. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  18. Regulation of neurite morphogenesis by interaction between R7 regulator of G protein signaling complexes and G protein subunit Gα13.

    Scherer, Stephanie L; Cain, Matthew D; Kanai, Stanley M; Kaltenbronn, Kevin M; Blumer, Kendall J

    2017-06-16

    The R7 regulator of G protein signaling family (R7-RGS) critically regulates nervous system development and function. Mice lacking all R7-RGS subtypes exhibit diverse neurological phenotypes, and humans bearing mutations in the retinal R7-RGS isoform RGS9-1 have vision deficits. Although each R7-RGS subtype forms heterotrimeric complexes with Gβ 5 and R7-RGS-binding protein (R7BP) that regulate G protein-coupled receptor signaling by accelerating deactivation of G i/o α-subunits, several neurological phenotypes of R7-RGS knock-out mice are not readily explained by dysregulated G i/o signaling. Accordingly, we used tandem affinity purification and LC-MS/MS to search for novel proteins that interact with R7-RGS heterotrimers in the mouse brain. Among several proteins detected, we focused on Gα 13 because it had not been linked to R7-RGS complexes before. Split-luciferase complementation assays indicated that Gα 13 in its active or inactive state interacts with R7-RGS heterotrimers containing any R7-RGS isoform. LARG (leukemia-associated Rho guanine nucleotide exchange factor (GEF)), PDZ-RhoGEF, and p115RhoGEF augmented interaction between activated Gα 13 and R7-RGS heterotrimers, indicating that these effector RhoGEFs can engage Gα 13 ·R7-RGS complexes. Because Gα 13 /R7-RGS interaction required R7BP, we analyzed phenotypes of neuronal cell lines expressing RGS7 and Gβ 5 with or without R7BP. We found that neurite retraction evoked by Gα 12/13 -dependent lysophosphatidic acid receptors was augmented in R7BP-expressing cells. R7BP expression blunted neurite formation evoked by serum starvation by signaling mechanisms involving Gα 12/13 but not Gα i/o These findings provide the first evidence that R7-RGS heterotrimers interact with Gα 13 to augment signaling pathways that regulate neurite morphogenesis. This mechanism expands the diversity of functions whereby R7-RGS complexes regulate critical aspects of nervous system development and function. © 2017 by

  19. Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning.

    Tung, Hsuan; Wei, Sung-Chan; Lo, Huei-Ru; Chao, Yu-Chan

    2016-01-01

    Baculoviruses have gained popularity as pest control agents and for protein production in insect systems. These viruses are also becoming popular for gene expression, tissue engineering and gene therapy in mammalian systems. Baculovirus infection triggers a heat shock response, and this response is crucial for its successful infection of host insect cells. However, the viral protein(s) or factor(s) that trigger this response are not yet clear. Previously, we revealed that IE2-an early gene product of the baculovirus-could form unique nuclear bodies for the strong trans-activation of various promoters in mammalian cells. Here, we purified IE2 nuclear bodies from Vero E6 cells and investigated the associated proteins by using mass spectrometry. Heat shock proteins (HSPs) were found to be one of the major IE2-associated proteins. Our experiments show that HSPs are greatly induced by IE2 and are crucial for the trans-activation function of IE2. Interestingly, blocking both heat shock protein expression and the proteasome pathway preserved the IE2 protein and its nuclear body structure, and revived its function. These observations reveal that HSPs do not function directly to assist the formation of the nuclear body structure, but may rather protect IE2 from proteasome degradation. Aside from functional studies in mammalian cells, we also show that HSPs were stimulated and required to determine IE2 protein levels, in insect cells infected with baculovirus. Upon inhibiting the expression of heat shock proteins, baculovirus IE2 was substantially suppressed, resulting in a significantly suppressed viral titer. Thus, we demonstrate a unique feature in that IE2 can function in both insect and non-host mammalian cells to stimulate HSPs, which may be associated with IE2 stabilization and lead to the protection of the its strong gene activation function in mammalian cells. On the other hand, during viral infection in insect cells, IE2 could also strongly stimulate HSPs and

  20. Communication between corneal epithelial cells and trigeminal neurons is facilitated by purinergic (P2) and glutamatergic receptors.

    Oswald, Duane J; Lee, Albert; Trinidad, Monique; Chi, Cheryl; Ren, Ruiyi; Rich, Celeste B; Trinkaus-Randall, Vickery

    2012-01-01

    Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2) receptors resulting in mobilization of a Ca(2+) wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca(2+) wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca(2+) mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca(2+) mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca(2+) waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA) receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.

  1. Communication between corneal epithelial cells and trigeminal neurons is facilitated by purinergic (P2 and glutamatergic receptors.

    Duane J Oswald

    Full Text Available Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2 receptors resulting in mobilization of a Ca(2+ wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca(2+ wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca(2+ mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca(2+ mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca(2+ waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.

  2. 6-Thioguanine Reactivates Epigenetically Silenced Genes in Acute Lymphoblastic Leukemia Cells by Facilitating Proteasome-mediated Degradation of DNMT1

    Yuan, Bifeng; Zhang, Jing; Wang, Hongxia; Xiong, Lei; Cai, Qian; Wang, Tina; Jacobsen, Steven; Pradhan, Sriharsa; Wang, Yinsheng

    2011-01-01

    Thiopurines including 6-thioguanine (SG), 6-mercaptopurine and azathioprine are effective anticancer agents with remarkable success in clinical practice, especially in effective treatment of acute lymphoblastic leukemia (ALL). SG is understood to act as a DNA hypomethylating agent in ALL cells, however, the underlying mechanism leading to global cytosine demethylation remains unclear. Here we report that SG treatment results in reactivation of epigenetically silenced genes in T leukemia cells...

  3. Interaction of Munc18c and syntaxin4 facilitates invadopodium formation and extracellular matrix invasion of tumor cells.

    Brasher, Megan I; Martynowicz, David M; Grafinger, Olivia R; Hucik, Andrea; Shanks-Skinner, Emma; Uniacke, James; Coppolino, Marc G

    2017-09-29

    Tumor cell invasion involves targeted localization of proteins required for interactions with the extracellular matrix and for proteolysis. The localization of many proteins during these cell-extracellular matrix interactions relies on membrane trafficking mediated in part by SNAREs. The SNARE protein syntaxin4 (Stx4) is involved in the formation of invasive structures called invadopodia; however, it is unclear how Stx4 function is regulated during tumor cell invasion. Munc18c is known to regulate Stx4 activity, and here we show that Munc18c is required for Stx4-mediated invadopodium formation and cell invasion. Biochemical and microscopic analyses revealed a physical association between Munc18c and Stx4, which was enhanced during invadopodium formation, and that a reduction in Munc18c expression decreases invadopodium formation. We also found that an N-terminal Stx4-derived peptide associates with Munc18c and inhibits endogenous interactions of Stx4 with synaptosome-associated protein 23 (SNAP23) and vesicle-associated membrane protein 2 (VAMP2). Furthermore, expression of the Stx4 N-terminal peptide decreased invadopodium formation and cell invasion in vitro Of note, cells expressing the Stx4 N-terminal peptide exhibited impaired trafficking of membrane type 1 matrix metalloproteinase (MT1-MMP) and EGF receptor (EGFR) to the cell surface during invadopodium formation. Our findings implicate Munc18c as a regulator of Stx4-mediated trafficking of MT1-MMP and EGFR, advancing our understanding of the role of SNARE function in the localization of proteins that drive tumor cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Implementation of Indigenous Electronic Medical Record System to Facilitate Care of Sickle Cell Disease Patients in Chhattisgarh.

    Choubey, Mona; Mishra, Hrishikesh; Soni, Khushboo; Patra, Pradeep Kumar

    2016-02-01

    Sickle cell disease (SCD) is prevalent in central India including Chhattisgarh. Screening for SCD is being carried out by Government of Chhattisgarh. Electronic Medical Record (EMR) system was developed and implemented in two phases. Aim was to use informatics techniques and indigenously develop EMR system to improve the care of SCD patients in Chhattisgarh. EMR systems had to be developed to store and manage: i) huge data generated through state wide screening for SCD; ii) clinical data for SCD patients attending the outpatient department (OPD) of institute. 'State Wide Screening Data Interface' (SWSDI) was designed and implemented for storing and managing data generated through screening program. Further, 'Sickle Cell Patients Temporal Data Management System' (SCPTDMS) was developed and implemented for storing, managing and analysing sickle cell disease patients' data at OPD. Both systems were developed using VB.Net and MS SQL Server 2012. Till April 2015, SWSDI has data of 1294558 persons, out of which 121819 and 4087 persons are carriers and patients of sickle cell disease respectively. Similarly till June 2015, SCPTDMS has data of 3760 persons, of which 923 are sickle cell disease patients (SS) and 1355 are sickle cell carriers (AS). Both systems are proving to be useful in efficient storage, management and analysis of data for clinical and research purposes. The systems are an example of beneficial usage of medical informatics solutions for managing large data at community level.

  5. A neurite quality index and machine vision software for improved quantification of neurodegeneration.

    Romero, Peggy; Miller, Ted; Garakani, Arman

    2009-12-01

    Current methods to assess neurodegradation in dorsal root ganglion cultures as a model for neurodegenerative diseases are imprecise and time-consuming. Here we describe two new methods to quantify neuroprotection in these cultures. The neurite quality index (NQI) builds upon earlier manual methods, incorporating additional morphological events to increase detection sensitivity for the detection of early degeneration events. Neurosight is a machine vision-based method that recapitulates many of the strengths of NQI while enabling high-throughput screening applications with decreased costs.

  6. Three-dimensional fine structure of the organization of microtubules in neurite varicosities by ultra-high voltage electron microscope tomography.

    Nishida, Tomoki; Yoshimura, Ryoichi; Endo, Yasuhisa

    2017-09-01

    Neurite varicosities are highly specialized compartments that are involved in neurotransmitter/ neuromodulator release and provide a physiological platform for neural functions. However, it remains unclear how microtubule organization contributes to the form of varicosity. Here, we examine the three-dimensional structure of microtubules in varicosities of a differentiated PC12 neural cell line using ultra-high voltage electron microscope tomography. Three-dimensional imaging showed that a part of the varicosities contained an accumulation of organelles that were separated from parallel microtubule arrays. Further detailed analysis using serial sections and whole-mount tomography revealed microtubules running in a spindle shape of swelling in some other types of varicosities. These electron tomographic results showed that the structural diversity and heterogeneity of microtubule organization supported the form of varicosities, suggesting that a different distribution pattern of microtubules in varicosities is crucial to the regulation of varicosities development.

  7. Type I bHLH Proteins Daughterless and Tcf4 Restrict Neurite Branching and Synapse Formation by Repressing Neurexin in Postmitotic Neurons

    Mitchell D’Rozario

    2016-04-01

    Full Text Available Proneural proteins of the class I/II basic-helix-loop-helix (bHLH family are highly conserved transcription factors. Class I bHLH proteins are expressed in a broad number of tissues during development, whereas class II bHLH protein expression is more tissue restricted. Our understanding of the function of class I/II bHLH transcription factors in both invertebrate and vertebrate neurobiology is largely focused on their function as regulators of neurogenesis. Here, we show that the class I bHLH proteins Daughterless and Tcf4 are expressed in postmitotic neurons in Drosophila melanogaster and mice, respectively, where they function to restrict neurite branching and synapse formation. Our data indicate that Daughterless performs this function in part by restricting the expression of the cell adhesion molecule Neurexin. This suggests a role for these proteins outside of their established roles in neurogenesis.

  8. The neural cell adhesion molecule

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  9. Cytotoxicity Enhancement in Breast Cancer Cells with Carbonate Apatite-Facilitated Intracellular Delivery of Anti-Cancer Drugs

    Tahereh Fatemian

    2018-02-01

    Full Text Available Pharmacotherapy as the mainstay in the management of breast cancer has demonstrated various drawbacks, including non-targeted bio distribution and narrow therapeutic and safety windows. Thus, enhancements in pharmacodynamic and pharmacokinetic profiles of the classical anti-cancer drugs could lead to improved efficacy against cancer cells. Therefore, inorganic pH-dependent carbonate apatite (CA nanoparticles were utilized to efficiently deliver various drugs into cancer cells. Following characterization and various modifications in the structure of CA complexes with different drugs, lifted outcomes were achieved. Markedly, complexing paclitaxel with CA resulted in 20.71 ± 4.34% loading efficiency together with 24.14 ± 2.21% enhancement in cytotoxicity on MCF-7 cells plus superior in vivo anti-tumour efficacy compared to free paclitaxel.

  10. The central domain of yeast transcription factor Rpn4 facilitates degradation of reporter protein in human cells.

    Morozov, A V; Spasskaya, D S; Karpov, D S; Karpov, V L

    2014-10-16

    Despite high interest in the cellular degradation machinery and protein degradation signals (degrons), few degrons with universal activity along species have been identified. It has been shown that fusion of a target protein with a degradation signal from mammalian ornithine decarboxylase (ODC) induces fast proteasomal degradation of the chimera in both mammalian and yeast cells. However, no degrons from yeast-encoded proteins capable to function in mammalian cells were identified so far. Here, we demonstrate that the yeast transcription factor Rpn4 undergoes fast proteasomal degradation and its central domain can destabilize green fluorescent protein and Alpha-fetoprotein in human HEK 293T cells. Furthermore, we confirm the activity of this degron in yeast. Thus, the Rpn4 central domain is an effective interspecies degradation signal. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Cytotoxicity Enhancement in Breast Cancer Cells with Carbonate Apatite-Facilitated Intracellular Delivery of Anti-Cancer Drugs

    Fatemian, Tahereh; Chowdhury, Ezharul Hoque

    2018-01-01

    Pharmacotherapy as the mainstay in the management of breast cancer has demonstrated various drawbacks, including non-targeted bio distribution and narrow therapeutic and safety windows. Thus, enhancements in pharmacodynamic and pharmacokinetic profiles of the classical anti-cancer drugs could lead to improved efficacy against cancer cells. Therefore, inorganic pH-dependent carbonate apatite (CA) nanoparticles were utilized to efficiently deliver various drugs into cancer cells. Following characterization and various modifications in the structure of CA complexes with different drugs, lifted outcomes were achieved. Markedly, complexing paclitaxel with CA resulted in 20.71 ± 4.34% loading efficiency together with 24.14 ± 2.21% enhancement in cytotoxicity on MCF-7 cells plus superior in vivo anti-tumour efficacy compared to free paclitaxel. PMID:29401738

  12. Rearrangements of MYC gene facilitate risk stratification in diffuse large B-cell lymphoma patients treated with rituximab-CHOP

    Tzankov, Alexandar; Xu-Monette, Zijun Y; Gerhard, Marc

    2014-01-01

    In order to address the debatable prognostic role of MYC rearrangements in diffuse large B-cell lymphoma patients treated with rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone, we evaluated MYC rearrangements by fluorescence in situ hybridization in 563 cases using...... with the dual-fusion probes, 15 detectable only with the break-apart probes and 20 detectable with both dual-fusion probes and break-apart probes. MYC rearrangements correlated with germinal center B-cell origin (P=0.02), MYC protein expression (P=0.032), and larger tumor mass size (P=0.0003). Patients with MYC...... was prognostically additive. Radiotherapy seemed to diminish the prognostic effects of MYC rearrangements in diffuse large B-cell lymphoma patients since only 2/10 irradiated patients with MYC rearrangements died of/with disease, compared with 16/28 non-irradiated patients with MYC rearrangements. We conclude...

  13. Disruptive cell cycle regulation involving epigenetic downregulation of Cdkn2a (p16Ink4a) in early-stage liver tumor-promotion facilitating liver cell regeneration in rats

    Tsuchiya, Takuma; Wang, Liyun; Yafune, Atsunori; Kimura, Masayuki; Ohishi, Takumi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-01-01

    Cell cycle aberration was immunohistochemically examined in relation to preneoplastic liver cell foci expressing glutathione S-transferase placental form (GST-P) at early stages of tumor-promotion in rats with thioacetamide (TAA), a hepatocarcinogen facilitating liver cell regeneration. Immunoexpression of p16 Ink4a following exposure to other hepatocarcinogens/promoters and its DNA methylation status were also analyzed during early and late tumor-promotion stages. GST-P + liver cell foci increased cell proliferation and decreased apoptosis when compared with surrounding liver cells. In concordance with GST-P + foci, checkpoint proteins at G 1 /S (p21 Cip1 , p27 Kip1 and p16 Ink4a ) and G 2 /M (phospho-checkpoint kinase 1, Cdc25c and phospho-Wee1) were either up- or downregulated. Cellular distribution within GST-P + foci was either increased or decreased with proteins related to G 2 -M phase or DNA damage (topoisomerase IIα, phospho-histone H2AX, phospho-histone H3 and Cdc2). In particular, p16 Ink4a typically downregulated in GST-P + foci and regenerative nodules at early tumor-promotion stage with hepatocarcinogens facilitating liver cell regeneration and in neoplastic lesions at late tumor-promotion stage with hepatocarcinogens/promoters irrespective of regenerating potential. Hypermethylation at exon 2 of Cdkn2a was detected at both early- and late-stages. Thus, diverse disruptive expression of G 1 /S and G 2 /M proteins, which allows for clonal selection of GST-P + foci, results in the acquisition of multiple aberrant phenotypes to disrupt checkpoint function. Moreover, increased DNA-damage responses within GST-P + foci may be the signature of genetic alterations. Intraexonic hypermethylation may be responsible for p16 Ink4a -downregulation, which facilitates cell cycle progression in early preneoplastic lesions produced by repeated cell regeneration and late-stage neoplastic lesions irrespective of the carcinogenic mechanism.

  14. The Neural Cell Adhesion Molecule-Derived Peptide FGL Facilitates Long-Term Plasticity in the Dentate Gyrus in Vivo

    Dallerac, Glenn; Zerwas, Meike; Novikova, Tatiana; Callu, Delphine; Leblanc-Veyrac, Pascale; Bock, Elisabeth; Berezin, Vladimir; Rampon, Claire; Doyere, Valerie

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as…

  15. A Tumor-specific MicroRNA Recognition System Facilitates the Accurate Targeting to Tumor Cells by Magnetic Nanoparticles

    Yingting Yu

    2016-01-01

    Full Text Available Targeted therapy for cancer is a research area of great interest, and magnetic nanoparticles (MNPs show great potential as targeted carriers for therapeutics. One important class of cancer biomarkers is microRNAs (miRNAs, which play a significant role in tumor initiation and progression. In this study, a cascade recognition system containing multiple plasmids, including a Tet activator, a lacI repressor gene driven by the TetOn promoter, and a reporter gene repressed by the lacI repressor and influenced by multiple endogenous miRNAs, was used to recognize cells that display miRNA signals that are characteristic of cancer. For this purpose, three types of signal miRNAs with high proliferation and metastasis abilities were chosen (miR-21, miR-145, and miR-9. The response of this system to the human breast cancer MCF-7 cell line was 3.2-fold higher than that to the human breast epithelial HBL100 cell line and almost 7.5-fold higher than that to human embryonic kidney HEK293T cells. In combination with polyethyleneimine-modified MNPs, this recognition system targeted the tumor location in situ in an animal model, and an ≃42% repression of tumor growth was achieved. Our study provides a new combination of magnetic nanocarrier and gene therapy based on miRNAs that are active in vivo, which has potential for use in future cancer therapies.

  16. Cyclodextrin-facilitated bioconversion of 17 beta-estradiol by a phenoloxidase from Mucuna pruriens cell cultures

    Woerdenbag, H.J.; Pras, N.; Frijlink, H.W.; Lerk, C.F.; Malingré, T.M.

    1990-01-01

    After complexation with beta-cyclodextrin, the phenolic steroid 17 beta-estradiol could be ortho-hydroxylated into a catechol, mainly 4-hydroxyestradiol, by a phenoloxidase from in vitro grown cells of Mucuna pruriens. By complexation with beta-cyclodextrin the solubility of the steroid increased

  17. Stress-induced filament fragmentation of Calothrix elenkiniiI (Cyanobacteria) is facilitated by death of high-fluorescence cells

    Adamec, František; Kaftan, David; Nedbal, Ladislav

    2005-01-01

    Roč. 41, - (2005), s. 835-839 ISSN 0022-3646 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z6087904 Keywords : cyanobacteria * high-fluorescence cells Subject RIV: EE - Microbiology, Virology Impact factor: 2.502, year: 2005

  18. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis.

    Chen, Chun-Yuan; Rao, Shan-Shan; Ren, Lu; Hu, Xiong-Ke; Tan, Yi-Juan; Hu, Yin; Luo, Juan; Liu, Yi-Wei; Yin, Hao; Huang, Jie; Cao, Jia; Wang, Zhen-Xing; Liu, Zheng-Zhao; Liu, Hao-Ming; Tang, Si-Yuan; Xu, Ran; Xie, Hui

    2018-01-01

    Chronic non-healing wounds represent one of the most common complications of diabetes and need advanced treatment strategies. Exosomes are key mediators of cell paracrine action and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of exosomes from human urine-derived stem cells (USC-Exos) on diabetic wound healing and the underlying mechanism. Methods: USCs were characterized by flow cytometry and multipotent differentiation potential analyses. USC-Exos were isolated from the conditioned media of USCs and identified by transmission electron microscopy and flow cytometry. A series of functional assays in vitro were performed to assess the effects of USC-Exos on the activities of wound healing-related cells. Protein profiles in USC-Exos and USCs were examined to screen the candidate molecules that mediate USC-Exos function. The effects of USC-Exos on wound healing in streptozotocin-induced diabetic mice were tested by measuring wound closure rates, histological and immunofluorescence analyses. Meanwhile, the role of the candidate protein in USC-Exos-induced regulation of angiogenic activities of endothelial cells and diabetic wound healing was assessed. Results: USCs were positive for CD29, CD44, CD73 and CD90, but negative for CD34 and CD45. USCs were able to differentiate into osteoblasts, adipocytes and chondrocytes. USC-Exos exhibited a cup- or sphere-shaped morphology with a mean diameter of 51.57 ± 2.93 nm and positive for CD63 and TSG101. USC-Exos could augment the functional properties of wound healing-related cells including the angiogenic activities of endothelial cells. USC-Exos were enriched in the proteins that are involved in regulation of wound healing-related biological processes. Particularly, a pro-angiogenic protein called deleted in malignant brain tumors 1 (DMBT1) was highly expressed in USC-Exos. Further functional assays showed that DMBT1 protein was required for USC

  19. FADD cleavage by NK cell granzyme M enhances its self-association to facilitate procaspase-8 recruitment for auto-processing leading to caspase cascade.

    Wang, S; Xia, P; Shi, L; Fan, Z

    2012-04-01

    Granzyme M (GzmM), an orphan Gzm, is constitutively and abundantly expressed in innate effector natural killer cells. We previously demonstrated that GzmM induces caspase (casp)-dependent apoptosis and cytochrome c release from mitochondria. We also resolved the crystal structure for GzmM and generated its specific inhibitor. However, how GzmM causes casp activation has not been defined. Here we found that casp-8 is an initiator caspase in GzmM-induced casp cascade, which causes other casp activation and Bid cleavage. GzmM does not directly cleave procaspase-3 and Bid, whose processing is casp dependent. Casp-8 knockdown or deficient cells attenuate or abolish GzmM-induced proteolysis of procaspase-3 and Bid. Extrinsic death receptor pathway adaptor Fas-associated protein with death domain (FADD) contributes to GzmM-induced casp-8 activation. GzmM specifically cleaves FADD after Met 196 to generate truncated FADD (tFADD) that enhances its self-association for oligomerization. The oligomerized tFADD facilitates procaspase-8 recruitment to promote its auto-processing leading to casp activation cascade. FADD-deficient cells abrogate GzmM-induced activation of casp-8 and apoptosis as well as significantly inhibit lymphokine-activated killer cell-mediated cytotoxicity. FADD processing by GzmM can potentiate killing efficacy against tumor cells and intracellular pathogens.

  20. The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells.

    Robert A Taft

    Full Text Available There is a continual need to improve efficiency in creating precise genetic modifications in mice using embryonic stem cells (ESCs. We describe a novel approach resulting in 100% germline transmission from competent injected ESCs. We developed an F1 mouse host embryo (Perfect Host, PH that selectively ablates its own germ cells via tissue-specific induction of diphtheria toxin. This approach allows competent microinjected ESCs to fully dominate the germline, eliminating competition for this critical niche in the developing and adult animal. This is in contrast to conventional methods, where competition from host germ cells results in offspring derived from host cells and ESCs, necessitating extensive breeding of chimeras and genotyping to identify germline. The germline transmission process is also complicated by variability in the actual number of ESCs that colonize the germline niche and the proportion that are germline competent. To validate the PH approach we used ESC lines derived from 129 F1, BALB/cByJ, and BTBR backgrounds as well as an iPS line. Resulting chimeric males produced 194 offspring, all paternally derived from the introduced stem cells, with no offspring being derived from the host genome. We further tested this approach using eleven genetically modified C57BL/6N ESC lines (International Knockout Mouse Consortium. ESC germline transmission was observed in 9/11 (82% lines using PH blastocysts, compared to 6/11 (55% when conventional host blastocysts were used. Furthermore, less than 35% (83/240 of mice born in the first litters from conventional chimeras were confirmed to be of ESC-origin. By comparison, 100% (137/137 of the first litter offspring of PH chimeras were confirmed as ESC-derived. Together, these data demonstrate that the PH approach increases the probability of germline transmission and speeds the generation of ESC derived animals from chimeras. Collectively, this approach reduces the time and costs inherent in the

  1. Chitosan Stabilized Gold-Folate-Poly(lactide-co-glycolide) Nanoplexes Facilitate Efficient Gene Delivery in Hepatic and Breast Cancer Cells.

    Akinyelu, Jude; Singh, Moganavelli

    2018-07-01

    The biodegradable polymer, poly(lactide-co-glycolide) is a popular polymer of choice in many nanotherapeutic studies. Herein, we report on the synthesis and evaluation of four chitosan stabilized poly(lactide-co-glycolide) nanoparticles with and without coating with gold, and the targeting ligand, folic acid, as potential non-viral gene delivery vectors. The poly(lactide-co-glycolide) nanoparticles were synthesized via nanoprecipitation/solvent evaporation method in conjunction with the surface functionalizing folic acid and chitosan. The physiochemical properties (morphology, particle size, zeta potential, folic acid/chitosan presence, DNA binding), and biological properties (nuclease protection, in vitro cytotoxicity and transfection potential in human kidney, hepatocellular carcinoma and breast adenocarcinoma cells), of all four gene bound nanoparticles were evaluated. Gel retardation assays confirmed that all the nanoparticles were able to successfully bind the reporter plasmid, pCMV-luc DNA at varying weight ratios. The gold-folate-poly(lactide-co-glycolide) nanoplexes with the highest binding efficiency (w/w ratio 4:1), best protected the plasmid DNA as evidenced from the nuclease protection assays. Furthermore, these nanoplexes presented as spherical particles with an average particle size of 199.4 nm and zeta potential of 35.7 mV. Folic acid and chitosan functionalization of the nanoparticles was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy. All nanoplexes maintained over 90% cell viability in all cell lines investigated. Interestingly, the gold-folate-poly(lactide-co-glycolide) nanoplexes showed a greater transgene activity in the hepatic and breast cancer cells compared to the other nanocomplexes in the same cell lines. The favorable size, colloidal stability, low cytotoxicity, significant transgene expression, and nuclease protection ability in vitro, all provide support for the use of gold

  2. Multi-tasking Sulf1/Sulf2 enzymes do not only facilitate extracellular cell signalling but also participate in cell cycle related nuclear events.

    Krishnakumar, Kavithanjali; Chakravorty, Ishani; Foy, Wendy; Allen, Steve; Justo, Tiago; Mukherjee, Abir; Dhoot, Gurtej K

    2018-03-01

    This study demonstrates highly dynamic spatial and temporal pattern of SULF1/SULF2 expression in a number of neuronal cell types growing in normal culture medium that included their transient nuclear mobilisation. Their nuclear translocation became particularly apparent during cell proliferation as both SULF1/SULF2 demonstrated not only cell membrane associated expression, their known site of function but also transient nuclear mobilisation during nuclear cell division. Nuclear localisation was apparent not only by immunocytochemical staining but also confirmed by immunoblotting staining of isolated nuclear fractions of C6, U87 and N2A cells. Immunocytochemical analysis demonstrated rapid nuclear exit of both SULF1/SULF2 following cell division that was slightly delayed but not blocked in a fraction of the polyploid cells observed in C6 cells. The overexpression of both Sulf1 and Sulf2 genes in C6 and U87 cells markedly promoted in vitro growth of these cells accompanied by nuclear mobilisation while inhibition of both these genes inhibited cell proliferation with little or no nuclear SULF1/SULF2 mobilisation. SULF1/SULF2 activity in these cells thus demonstrated a clear co-ordination of extracellular cell signalling with nuclear events related to cell proliferation. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  3. CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells

    Kósa, János P; Horváth, Péter; Wölfling, János; Kovács, Dóra; Balla, Bernadett; Mátyus, Péter; Horváth, Evelin; Speer, Gábor; Takács, István; Nagy, Zsolt; Horváth, Henrik; Lakatos, Péter

    2013-01-01

    AIM: The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 (1,25-D3), is considered to be the main enzyme determining the biological half-life of 1,25-D3. During colorectal carcinogenesis, the expression and concentration of CYP24A1 increases significantly, suggesting that this phenomenon could be responsible for the proposed efficacy of 1,25-D3 in the treatment of CRC. The aim of this study was to investigate the anti-tumor effects of vitamin D3 on the human CRC cell line Caco-2 after inhibition of the cytochrome P450 component of CYP24A1 activity. METHODS: We examined the expression of CYP24A1 mRNA and the effects of 1,25-D3 on the cell line Caco-2 after inhibition of CYP24A1. Cell viability and proliferation were determined by means of sulforhodamine-B staining and bromodeoxyuridine incorporation, respectively, while cytotoxicity was estimated via the lactate dehydrogenase content of the cell culture supernatant. CYP24A1 expression was measured by real-time reverse transcription polymerase chain reaction. A number of tetralone compounds were synthesized to investigate their CP24A1 inhibitory activity. RESULTS: In response to 1,25-D3, CYP24A1 mRNA expression was enhanced significantly, in a time- and dose-dependent manner. Caco-2 cell viability and proliferation were not influenced by the administration of 1,25-D3 alone, but were markedly reduced by co-administration of 1,25-D3 and KD-35, a CYP24A1-inhibiting tetralone. Our data suggest that the mechanism of action of co-administered KD-35 and 1,25-D3 does not involve a direct cytotoxic effect, but rather the inhibition of cell proliferation. CONCLUSION: These findings demonstrate that the selective inhibition of CYP24A1 by compounds such as KD-35 may be a new approach for enhancement of the anti-tumor effect of 1,25-D3 on CRC. PMID

  4. A fusion of minicircle DNA and nanoparticle delivery technologies facilitates therapeutic genetic engineering of autologous canine olfactory mucosal cells.

    Delaney, Alexander M; Adams, Christopher F; Fernandes, Alinda R; Al-Shakli, Arwa F; Sen, Jon; Carwardine, Darren R; Granger, Nicolas; Chari, Divya M

    2017-06-29

    Olfactory ensheathing cells (OECs) promote axonal regeneration and improve locomotor function when transplanted into the injured spinal cord. A recent clinical trial demonstrated improved motor function in domestic dogs with spinal injury following autologous OEC transplantation. Their utility in canines offers promise for human translation, as dogs are comparable to humans in terms of clinical management and genetic/environmental variation. Moreover, the autologous, minimally invasive derivation of OECs makes them viable for human spinal injury investigation. Genetic engineering of transplant populations may augment their therapeutic potential, but relies heavily on viral methods which have several drawbacks for clinical translation. We present here the first proof that magnetic particles deployed with applied magnetic fields and advanced DNA minicircle vectors can safely bioengineer OECs to secrete a key neurotrophic factor, with an efficiency approaching that of viral vectors. We suggest that our alternative approach offers high translational potential for the delivery of augmented clinical cell therapies.

  5. Graphene Oxide Hybridized nHAC/PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells

    Liang, Chunyong; Luo, Yongchao; Yang, Guodong; Xia, Dan; Liu, Lei; Zhang, Xiaomin; Wang, Hongshui

    2018-01-01

    Biodegradable porous biomaterial scaffolds play a critical role in bone regeneration. In this study, the porous nano-hydroxyapatite/collagen/poly(lactic-co-glycolic acid)/graphene oxide (nHAC/PLGA/GO) composite scaffolds containing different amount of GO were fabricated by freeze-drying method. The results show that the synthesized scaffolds possess a three-dimensional porous structure. GO slightly improves the hydrophilicity of the scaffolds and reinforces their mechanical strength. Young's modulus of the 1.5 wt% GO incorporated scaffold is greatly increased compared to the control sample. The in vitro experiments show that the nHAC/PLGA/GO (1.5 wt%) scaffolds significantly cell adhesion and proliferation of osteoblast cells (MC3T3-E1). This present study indicates that the nHAC/PLGA/GO scaffolds have excellent cytocompatibility and bone regeneration ability, thus it has high potential to be used as scaffolds in the field of bone tissue engineering.

  6. Effects of 4-aminopyridine on organelle movement in cultured mouse dorsal root ganglion neurites.

    Hiruma, Hiromi; Kawakami, Tadashi

    2010-03-01

    Aminopyridines, widely used as a K(+) channel blocker, are membrane-permeable weak bases and have the ability to form vacuoles in the cytoplasm. The vacuoles originate from acidic organelles such as lysosomes. Here, we investigated the effects of 4-aminopyridine (4-AP) on organelle movement in neurites of cultured mouse dorsal root ganglion (DRG) neurons by using video-enhanced microscopy. Some experiments were carried out using fluorescent dyes for lysosomes and mitochondria and confocal microscopy. Treatment of DRG neurons with 4 mM 4-AP caused Brownian movement of some lysosomes within 5 min. The Brownian movement gradually became rapid and vacuoles were formed around individual lysosomes 10-20 min after the start of treatment. Axonal transport of organelles was inhibited by 4-AP. Lysosomes showing Brownian movement were not transported in longitudinal direction of the neurite and the transport of mitochondria was interrupted by vacuoles. The 4-AP-induced Brownian movement of lysosomes with vacuole formation and inhibition of axonal transport were prevented by the simultaneous treatment with vacuolar H(+) ATPase inhibitor bafilomycin A1 or in Cl(-)-free SO(4)(2-) medium. These results indicate that changes in organelle movement by 4-AP are related to vacuole formation and the vacuolar H(+) ATPase and Cl(-) are required for the effects of 4-AP.

  7. Cdh11 Acts as a Tumor Suppressor in a Murine Retinoblastoma Model by Facilitating Tumor Cell Death

    Marchong, Mellone N.; Yurkowski, Christine; Ma, Clement; Spencer, Clarellen; Pajovic, Sanja; Gallie, Brenda L.

    2010-01-01

    CDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal volumes in mice crossed with TAg-RB mice (p = 0.01). Mice null for Cdh11 presented with fewer TAg-positive cells at postnatal day 8 (PND8) (p = 0.01) and had fewer multifocal tumors at PND28 (p = 0.016), compared to mice with normal Cdh11 alleles. However, tumor growth was faster in Cdh11-null mice between PND8 and PND84 (p = 0.003). In tumors of Cdh11-null mice, cell death was decreased 5- to 10-fold (p<0.03 for all markers), while proliferation in vivo remained unaffected (p = 0.121). Activated caspase-3 was significantly decreased and β-catenin expression increased in Cdh11 knockdown experiments in vitro. These data suggest that Cdh11 displays tumor suppressor properties in vivo and in vitro in murine retinoblastoma through promotion of cell death. PMID:20421947

  8. Cdh11 acts as a tumor suppressor in a murine retinoblastoma model by facilitating tumor cell death.

    Mellone N Marchong

    2010-04-01

    Full Text Available CDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal volumes in mice crossed with TAg-RB mice (p = 0.01. Mice null for Cdh11 presented with fewer TAg-positive cells at postnatal day 8 (PND8 (p = 0.01 and had fewer multifocal tumors at PND28 (p = 0.016, compared to mice with normal Cdh11 alleles. However, tumor growth was faster in Cdh11-null mice between PND8 and PND84 (p = 0.003. In tumors of Cdh11-null mice, cell death was decreased 5- to 10-fold (p<0.03 for all markers, while proliferation in vivo remained unaffected (p = 0.121. Activated caspase-3 was significantly decreased and beta-catenin expression increased in Cdh11 knockdown experiments in vitro. These data suggest that Cdh11 displays tumor suppressor properties in vivo and in vitro in murine retinoblastoma through promotion of cell death.

  9. Resistin facilitates VEGF-C-associated lymphangiogenesis by inhibiting miR-186 in human chondrosarcoma cells.

    Su, Chen-Ming; Tang, Chih-Hsin; Chi, Meng-Ju; Lin, Chih-Yang; Fong, Yi-Chin; Liu, Yueh-Ching; Chen, Wei-Cheng; Wang, Shih-Wei

    2018-05-03

    Chondrosarcoma is a common primary malignant tumor of the bone that can metastasize through the vascular system to other organs. A key step in the metastatic process, lymphangiogenesis, involves vascular endothelial growth factor-C (VEGF-C). However, the effects of lymphangiogenesis in chondrosarcoma metastasis remain to be clarified. Accumulating evidence shows that resistin, a cytokine secreted from adipocytes and monocytes, also promotes tumor pathogenesis. Notably, chondrosarcoma can easily metastasize. In this study, we demonstrate that resistin enhances VEGF-C expression and lymphatic endothelial cells (LECs)-associated lymphangiogenesis in human chondrosarcoma cells. We also show that resistin triggers VEGF-C-dependent lymphangiogenesis via the c-Src signaling pathway and down-regulating micro RNA (miR)-186. Overexpression of resistin in chondrosarcoma cells significantly enhanced VEGF-C production and LECs-associated lymphangiogenesis in vitro and tumor-related lymphangiogenesis in vivo. Resistin levels were positively correlated with VEGF-C-dependent lymphangiogenesis via the down-regulation of miR-186 expression in clinical samples from chondrosarcoma tissue. This study is the first to evaluate the mechanism underlying resistin-induced promotion of LECs-associated lymphangiogenesis via the upregulation of VEGF-C expression in human chondrosarcomas. We suggest that resistin may represent a molecular target in VEGF-C-associated tumor lymphangiogenesis in chondrosarcoma metastasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Layer 6 cortical neurons require Reelin-Dab1 signaling for cellular orientation, Golgi deployment, and directed neurite growth into the marginal zone.

    O'Dell, Ryan S; Ustine, Candida J M; Cameron, David A; Lawless, Sean M; Williams, Rebecca M; Zipfel, Warren R; Olson, Eric C

    2012-07-07

    The secreted ligand Reelin is believed to regulate the translocation of prospective layer 6 (L6) neocortical neurons into the preplate, a loose layer of pioneer neurons that overlies the ventricular zone. Recent studies have also suggested that Reelin controls neuronal orientation and polarized dendritic growth during this period of early cortical development. To explicitly characterize and quantify how Reelin controls this critical aspect of neurite initiation and growth we used a new ex utero explant model of early cortical development to selectively label a subset of L6 cortical neurons for complete 3-D reconstruction. The total neurite arbor sizes of neurons in Reelin-deficient (reeler mutant) and Dab1-deficient (Reelin-non-responsive scrambler mutant) cortices were quantified and unexpectedly were not different than control arbor lengths (p = 0.51). For each mutant, however, arbor organization was markedly different: mutant neurons manifested more primary processes (neurites emitted directly from the soma) than wild type, and these neurites were longer and displayed less branching. Reeler and scrambler mutant neurites extended tangentially rather than radially, and the Golgi apparatus that normally invests the apical neurite was compact in both reeler and scrambler mutants. Mutant cortices also exhibited a neurite "exclusion zone" which was relatively devoid of L6 neuron neurites and extended at least 15 μm beneath the pial surface, an area corresponding to the marginal zone (MZ) in the wild type explants. The presence of an exclusion zone was also indicated in the orientation of mutant primary neurite and neuronal somata, which failed to adopt angles within ~20˚ of the radial line to the pial surface. Injection of recombinant Reelin to reeler, but not scrambler, mutant cortices fully rescued soma orientation, Golgi organization, and dendritic projection defects within four hrs. These findings indicate Reelin promotes directional dendritic growth into

  11. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3-mediated down-regulation of E-cadherin.

    Zhou, Zhen; Zhang, Hong-Sheng; Liu, Yang; Zhang, Zhong-Guo; Du, Guang-Yuan; Li, Hu; Yu, Xiao-Ying; Huang, Ying-Hui

    2018-02-01

    Epigenetic modifications such as histone modifications and cytosine hydroxymethylation are linked to tumorigenesis. Loss of 5-hydroxymethylcytosine (5 hmC) by ten-eleven translocation 1 (TET1) down-regulation facilitates tumor initiation and development. However, the mechanisms by which loss of TET1 knockdown promotes malignancy development remains unclear. Here, we report that TET1 knockdown induced epithelial-mesenchymal transition (EMT) and increased cancer cell growth, migration, and invasion in DLD1 cells. Loss of TET1 increased EZH2 expression and reduced UTX-1 expression, thus increasing histone H3K27 tri-methylation causing repression of the target gene E-cadherin. Ectopic expression of the H3K27 demethylase UTX-1 or EZH2 depletion both impeded EZH2 binding caused a loss of H3K27 methylation at epithelial gene E-cadherin promoter, thereby suppressing EMT and tumor invasion in shTET1 cells. Conversely, UTX-1 depletion and ectopic expression of EZH2 enhanced EMT and tumor metastasis in DLD1 cells. These findings provide insight into the regulation of TET1 and E-cadherin and identify EZH2 as a critical mediator of E-cadherin repression and tumor progression. © 2017 Wiley Periodicals, Inc.

  12. MACC1 facilitates chemoresistance and cancer stem cell‑like properties of colon cancer cells through the PI3K/AKT signaling pathway.

    Wang, Jiankai; Wang, Wenjuan; Cai, Hongyi; Du, Binbin; Zhang, Lijuan; Ma, Wen; Hu, Yongguo; Feng, Shifang; Miao, Guoying

    2017-12-01

    With regards to colon cancer, resistance to 5‑fluorouracil (5‑FU)‑based chemotherapy and cancer stem cells (CSCs) are considered important factors underlying therapy failure. Metastasis‑associated colon cancer 1 (MACC1) has been associated with poor prognosis and the promotion of metastasis within several types of cancer. However, the biological behavior of MACC1 in chemoresistance and CSC‑like properties remains unclear. In the present study, various methods including gene knockdown, gene overexpression, western blotting, quantitative polymerase chain reaction and MTT assay, have been adopted. According to the results of the present study, MACC1 was depleted in two colon cancer cell lines resistant to 5‑FU; subsequently, CSC‑like properties and 5‑FU sensitivity were investigated. Within 5‑FU‑resistant cells, cell death was facilitated by MACC1 knockdown. Furthermore, sphere formation and the expression levels of pluripotent markers, including cluster of differentiation (CD) 44, CD133 and Nanog were reduced due to MACC1 depletion. Additionally, it was indicated that the phosphoinositide 3‑kinase/protein kinase B signaling pathway may be associated with 5‑FU resistance and CSC‑like properties via MACC1.

  13. High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells.

    Hakim, Farzana; Kaitsuka, Taku; Raeed, Jamiruddin Mohd; Wei, Fan-Yan; Shiraki, Nobuaki; Akagi, Tadayuki; Yokota, Takashi; Kume, Shoen; Tomizawa, Kazuhito

    2014-04-04

    Pluripotent stem cells have potential applications in regenerative medicine for diabetes. Differentiation of stem cells into insulin-producing cells has been achieved using various protocols. However, both the efficiency of the method and potency of differentiated cells are insufficient. Oxygen tension, the partial pressure of oxygen, has been shown to regulate the embryonic development of several organs, including pancreatic β-cells. In this study, we tried to establish an effective method for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells by culturing under high oxygen (O2) conditions. Treatment with a high O2 condition in the early stage of differentiation increased insulin-positive cells at the terminus of differentiation. We found that a high O2 condition repressed Notch-dependent gene Hes1 expression and increased Ngn3 expression at the stage of pancreatic progenitors. This effect was caused by inhibition of hypoxia-inducible factor-1α protein level. Moreover, a high O2 condition activated Wnt signaling. Optimal stage-specific treatment with a high O2 condition resulted in a significant increase in insulin production in both mouse embryonic stem cells and human iPSCs and yielded populations containing up to 10% C-peptide-positive cells in human iPSCs. These results suggest that culturing in a high O2 condition at a specific stage is useful for the efficient generation of insulin-producing cells.

  14. Fluorescent reporter signals, EGFP and DsRed, encoded in HIV-1 facilitate the detection of productively infected cells and cell-associated viral replication levels

    Kazutaka eTerahara

    2012-01-01

    Full Text Available Flow cytometric analysis is a reliable and convenient method for investigating molecules at the single cell level. Previously, recombinant human immunodeficiency virus type 1 (HIV-1 strains were constructed that express a fluorescent reporter, either enhanced green fluorescent protein or DsRed, which allow the monitoring of HIV-1-infected cells by flow cytometry. The present study further investigated the potential of these recombinant viruses in terms of whether the HIV-1 fluorescent reporters would be helpful in evaluating viral replication based on fluorescence intensity. When primary CD4+ T cells were infected with recombinant viruses, the fluorescent reporter intensity measured by flow cytometry was associated with the level of CD4 downmodulation and Gag p24 expression in infected cells. Interestingly, some HIV-1-infected cells, in which CD4 was only moderately downmodulated, were reporter-positive but Gag p24-negative. Furthermore, when the activation status of primary CD4+ T cells was modulated by T cell receptor-mediated stimulation, we confirmed the preferential viral production upon strong stimulation and showed that the intensity of the fluorescent reporter within a proportion of HIV-1-infected cells was correlated with the viral replication level. These findings indicate that a fluorescent reporter encoded within HIV-1 is useful for the sensitive detection of productively-infected cells at different stages of infection and for evaluating cell-associated viral replication at the single cell level.

  15. CD54+ rabbit adipose-derived stem cells overexpressing HIF-1α facilitate vascularized fat flap regeneration

    Liang, Zhi-Jie; Huang, Min-Hong; Peng, Qi-Liu; Zou, Dong-Hua; Gu, Rong-He; Xu, Fang-Tian; Gao, Hui; Chen, Zhen-Dong; Chi, Guang-Yi; Wei, Zhong-Heng; Chen, Li; Li, Hong-Mian

    2017-01-01

    Fat flap transplantation is frequently performed in patients suffering from soft tissue defects resulting from disease or trauma. This study explored the feasibility of constructing vascularized fat flaps using rabbit adipose-derived stem cells (rASCs) and collagen scaffolds in a rabbit model. We evaluated rASCs proliferation, paracrine function, adipogenesis, vascularization, and CD54 expression, with or without HIF-1α transfection in vitro and in vivo. We observed that adipogenic differentiation potential was greater in rASCs with high CD54 expression (CD54+rASCs) than in those with low expression (CD54–rASCs), both in vitro and in vivo. HIF-1α overexpression not only augmented this effect, but also enhanced cell proliferation and paracrine function in vitro. We also demonstrated that HIF-1α-transfected CD54+rASCs showed enhanced paracrine function and adipogenic capacity, and that paracrine function increases expression of angiogenesis-related markers. Thus, CD54+rASCs overexpressing HIF-1α enhanced large volume vascularized fat flap regeneration in rabbits, suggesting CD54 may be an ideal candidate marker for ASCs adipogenic differentiation. PMID:28423354

  16. Astrocyte-to-neuron communication through integrin-engaged Thy-1/CBP/Csk/Src complex triggers neurite retraction via the RhoA/ROCK pathway.

    Maldonado, H; Calderon, C; Burgos-Bravo, F; Kobler, O; Zuschratter, W; Ramirez, O; Härtel, S; Schneider, P; Quest, A F G; Herrera-Molina, R; Leyton, L

    2017-02-01

    Two key proteins for cellular communication between astrocytes and neurons are αvβ3 integrin and the receptor Thy-1. Binding of these molecules in the same (cis) or on adjacent (trans) cellular membranes induces Thy-1 clustering, triggering actin cytoskeleton remodeling. Molecular events that could explain how the Thy-1-αvβ3 integrin interaction signals have only been studied separately in different cell types, and the detailed transcellular communication and signal transduction pathways involved in neuronal cytoskeleton remodeling remain unresolved. Using biochemical and genetic approaches, single-molecule tracking, and high-resolution nanoscopy, we provide evidence that upon binding to αvβ3 integrin, Thy-1 mobility decreased while Thy-1 nanocluster size increased. This occurred concomitantly with inactivation and exclusion of the non-receptor tyrosine kinase Src from the Thy-1/C-terminal Src kinase (Csk)-binding protein (CBP)/Csk complex. The Src inactivation decreased the p190Rho GTPase activating protein phosphorylation, promoting RhoA activation, cofilin, and myosin light chain II phosphorylation and, consequently, neurite shortening. Finally, silencing the adaptor CBP demonstrated that this protein was a key transducer in the Thy-1 signaling cascade. In conclusion, these data support the hypothesis that the Thy-1-CBP-Csk-Src-RhoA-ROCK axis transmitted signals from astrocytic integrin-engaged Thy-1 (trans) to the neuronal actin cytoskeleton. Importantly, the β3 integrin in neurons (cis) was not found to be crucial for neurite shortening. This is the first study to detail the signaling pathway triggered by αvβ3, the endogenous Thy-1 ligand, highlighting the role of membrane-bound integrins as trans acting ligands in astrocyte-neuron communication. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. An Efficient Solution-Processed Intermediate Layer for Facilitating Fabrication of Organic Multi-Junction Solar Cells

    Ning Li; Baran, Derya; Forberich, Karen

    2013-01-01

    ):poly(styrenesulfonate) (PEDOT:PSS) is demonstrated for series-connected multi-junction organic solar cells (OSCs). Drying at 80 °C in air is sufficient for this solution-processed IML to obtain excellent functionality and reliability, which allow the use of most of high performance donor materials in the tandem structure....... An open circuit voltage (Voc) of 0.56 V is obtained for single-junction OSCs based on a low band-gap polymer, while multi-junction OSCs based on the same absorber material deliver promising fill factor values along with fully additive Voc as the number of junctions increase. Optical and electrical...... simulations, which are reliable and promising guidelines for the design and investigation of multi-junction OSCs, are discussed. The outcome of optical and electrical simulations is in excellent agreement with the experimental data, indicating the outstanding efficiency and functionality of this solution...

  18. Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A.

    He, Qin; Yang, Shuangyan; Gu, Xiuge; Li, Mengying; Wang, Chunling; Wei, Fulan

    2018-04-19

    Periodontal ligament stem cells (PDLSCs) are mesenchymal stem cells derived from dental tissues with multidirectional differentiation potential and excellent self-renewing ability. Recently, long noncoding RNAs (lncRNAs) have been shown to play important roles in MSC osteogenic differentiation. In this study, we found that taurine upregulated gene 1 (TUG1), an evolutionarily conserved and widely present lncRNA was significantly upregulated in osteogenically induced PDLSCs compared to their undifferentiated counterparts. Further investigation demonstrated that the expression of TUG1 was positively correlated with the osteogenic differentiation of PDLSCs following the induction, as evidenced by the increase in cellular alkaline phosphatase (ALP) level, formation of calcium nodules, and the upregulation of several osteogenic-related gene markers such as ALP, osteocalcin (OCN), and runt-related transcription factor 2 (Runx2). Conversely, TUG1 knockdown was demonstrated to inhibit the potential of PDLSCs for osteogenic differentiation. Using bioinformatics analysis, we identified lin-28 homolog A (Lin28A) as a potential target of TUG1 during osteogenic differentiation of PDLSCs. Lin28A was found to be significantly downregulated in TUG1-repressed PDLSCs and contained multiple binding sites for lncRNA TUG1. Moreover, suppression of Lin28A was shown to be able to inhibit osteogenic differentiation and decreased the expression of several osteogenic genes. Taken together, these results could help researchers better understand the mechanism that governs the osteogenic differentiation of PDLSCs, and also serve as a stepping stone for the development of novel therapeutic strategies that can be used to regenerate dental tissues.

  19. Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism

    Waight, Jeremy D.; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I.

    2011-01-01

    Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy. PMID:22110722

  20. Neurite Outgrowth and Neuroprotective Effects of Quercetin from Caesalpinia mimosoides Lamk. on Cultured P19-Derived Neurons

    Napat Tangsaengvit

    2013-01-01

    Full Text Available Quercetin has been isolated for the first time from ethyl acetate extract of Caesalpinia mimosoides Lamk. C. mimosoides Lamk. (Fabaceae or Cha rueat (Thai name is an indigenous plant found in mixed deciduous forest in northern and north-eastern parts of Thailand. Thai rural people consume its young shoots and leaves as a fresh vegetable, as well as it is used for medicinal purposes.The antioxidant capacity in terms of radical scavenging activity of quercetin was determined as IC50 of 3.18 ± 0.07 µg/mL, which was higher than that of Trolox and ascorbic acid (12.54 ± 0.89 and 10.52 ± 0.48 µg/mL, resp.. The suppressive effect of quercetin on both purified and cellular acetylcholinesterase (AChE enzymes was investigated as IC50 56.84 ± 2.64 and 36.60 ± 2.78 µg/mL, respectively. In order to further investigate the protective ability of quercetin on neuronal cells, P19-derived neurons were used as a neuronal model in this study. As a result, quercetin at a very low dose of 1 nM enhanced survival and induced neurite outgrowth of P19-derived neurons. Furthermore, this flavonoid also possessed significant protection against oxidative stress induced by serum deprivation. Altogether, these findings suggest that quercetin is a multifunctional compound and promising valuable drugs candidate for the treatment of neurodegenerative disease.

  1. Inhibition of oxidative stress-elicited AKT activation facilitates PPARγ agonist-mediated inhibition of stem cell character and tumor growth of liver cancer cells.

    Lanlan Liu

    Full Text Available Emerging evidence suggests that tumor-initiating cells (TICs are the most malignant cell subpopulation in tumors because of their resistance to chemotherapy or radiation treatment. Targeting TICs may be a key innovation for cancer treatment. In this study, we found that PPARγ agonists inhibited the cancer stem cell-like phenotype and attenuated tumor growth of human hepatocellular carcinoma (HCC cells. Reactive oxygen species (ROS initiated by NOX2 upregulation were partially responsible for the inhibitory effects mediated by PPARγ agonists. However, PPARγ agonist-mediated ROS production significantly activated AKT, which in turn promoted TIC survival by limiting ROS generation. Inhibition of AKT, by either pharmacological inhibitors or AKT siRNA, significantly enhanced PPARγ agonist-mediated inhibition of cell proliferation and stem cell-like properties in HCC cells. Importantly, in nude mice inoculated with HCC Huh7 cells, we demonstrated a synergistic inhibitory effect of the PPARγ agonist rosiglitazone and the AKT inhibitor triciribine on tumor growth. In conclusion, we observed a negative feedback loop between oxidative stress and AKT hyperactivation in PPARγ agonist-mediated suppressive effects on HCCs. Combinatory application of an AKT inhibitor and a PPARγ agonist may provide a new strategy for inhibition of stem cell-like properties in HCCs and treatment of liver cancer.

  2. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development.

    Fischer, Simon; Marquart, Kim F; Pieper, Lisa A; Fieder, Juergen; Gamer, Martin; Gorr, Ingo; Schulz, Patrick; Bradl, Harald

    2017-07-01

    In recent years, coherent with growing biologics portfolios also the number of complex and thus difficult-to-express (DTE) therapeutic proteins has increased considerably. DTE proteins challenge bioprocess development and can include various therapeutic protein formats such as monoclonal antibodies (mAbs), multi-specific affinity scaffolds (e.g., bispecific antibodies), cytokines, or fusion proteins. Hence, the availability of robust and versatile Chinese hamster ovary (CHO) host cell factories is fundamental for high-yielding bioprocesses. MicroRNAs (miRNAs) have emerged as potent cell engineering tools to improve process performance of CHO manufacturing cell lines. However, there has not been any report demonstrating the impact of beneficial miRNAs on industrial cell line development (CLD) yet. To address this question, we established novel CHO host cells constitutively expressing a pro-productive miRNA: miR-557. Novel host cells were tested in two independent CLD campaigns using two different mAb candidates including a normal as well as a DTE antibody. Presence of miR-557 significantly enhanced each process step during CLD in a product independent manner. Stable expression of miR-557 increased the probability to identify high-producing cell clones. Furthermore, production cell lines derived from miR-557 expressing host cells exhibited significantly increased final product yields in fed-batch cultivation processes without compromising product quality. Strikingly, cells co-expressing miR-557 and a DTE antibody achieved a twofold increase in product titer compared to clones co-expressing a negative control miRNA. Thus, host cell engineering using miRNAs represents a promising tool to overcome limitations in industrial CLD especially with regard to DTE proteins. Biotechnol. Bioeng. 2017;114: 1495-1510. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Identification of NCAM-binding peptides promoting neurite outgrowth via a heterotrimeric G-protein-coupled pathway

    Hansen, Raino Kristian; Christensen, Claus; Korshunova, Irina

    2007-01-01

    the fibroblast growth factor receptor, the Src-related non-receptor tyrosine kinase Fyn, and heterotrimeric G-proteins. Interestingly, neurite outgrowth stimulated by ENFIN2 and ENFIN11 was independent of signaling through fibroblast growth factor receptor and Fyn, but could be inhibited with pertussis toxin...

  4. Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes.

    Becraft, Eric D; Dodsworth, Jeremy A; Murugapiran, Senthil K; Ohlsson, J Ingemar; Briggs, Brandon R; Kanbar, Jad; De Vlaminck, Iwijn; Quake, Stephen R; Dong, Hailiang; Hedlund, Brian P; Swingley, Wesley D

    2016-02-15

    The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.

    Geula, Shay; Moshitch-Moshkovitz, Sharon; Dominissini, Dan; Mansour, Abed AlFatah; Kol, Nitzan; Salmon-Divon, Mali; Hershkovitz, Vera; Peer, Eyal; Mor, Nofar; Manor, Yair S; Ben-Haim, Moshe Shay; Eyal, Eran; Yunger, Sharon; Pinto, Yishay; Jaitin, Diego Adhemar; Viukov, Sergey; Rais, Yoach; Krupalnik, Vladislav; Chomsky, Elad; Zerbib, Mirie; Maza, Itay; Rechavi, Yoav; Massarwa, Rada; Hanna, Suhair; Amit, Ido; Levanon, Erez Y; Amariglio, Ninette; Stern-Ginossar, Noam; Novershtern, Noa; Rechavi, Gideon; Hanna, Jacob H

    2015-02-27

    Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N(6)-methyladenosine (m(6)A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout preimplantation epiblasts and naïve embryonic stem cells are depleted for m(6)A in mRNAs, yet are viable. However, they fail to adequately terminate their naïve state and, subsequently, undergo aberrant and restricted lineage priming at the postimplantation stage, which leads to early embryonic lethality. m(6)A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency-promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner. Copyright © 2015, American Association for the Advancement of Science.

  6. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells

    Maji, Mithun; Mazumder, Saumyabrata; Bhattacharya, Souparno; Choudhury, Somsubhra Thakur; Sabur, Abdus; Shadab, Md.; Bhattacharya, Pradyot; Ali, Nahid

    2016-06-01

    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+ cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine.

  7. Long Noncoding RNA HOTAIR Modulates MiR-206-mediated Bcl-w Signaling to Facilitate Cell Proliferation in Breast Cancer.

    Ding, Wei; Ren, Jin; Ren, Hui; Wang, Dan

    2017-12-08

    LncRNA HOX transcript antisense RNA (HOTAIR) is involved in lots of cancers. The pro-survival protein Bcl-w is frequently found in cancer development. However, the effect of HOTAIR on Bcl-w in breast cancer is not well documented. In this study, we first evaluated the correlation between HOTAIR level and Bcl-w expression in clinical breast cancer tissues. We observed that the expression levels of Bcl-w were much higher in the breast cancer samples than that in their paired noncancerous tissues. Moreover, the levels of HOTAIR were positively associated with those of Bcl-w in clinical breast cancer samples. As expected, we observed that HOTAIR was able to up-regulate the expression of Bcl-w in breast cancer cells. Mechanistically, we found that miR-206 was capable of inhibiting the expression of Bcl-w by directly binding to the 3'UTR of Bcl-w mRNA. Interestingly, HOTAIR could increase the expression of Bcl-w through sequestering miR-206 at post-transcriptional level. Functionally, our data showed that HOTAIR-induced Bcl-w by miR-206 facilitated the proliferation of breast cancer cells. Thus, we conclude that HOTAIR up-regulates Bcl-w to enhance cell proliferation through sequestering miR-206 in breast cancer. Our finding provides new insights into the mechanism of breast cancer mediated by HOTAIR.

  8. Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding.

    Lampinen, Björn; Szczepankiewicz, Filip; Mårtensson, Johan; van Westen, Danielle; Sundgren, Pia C; Nilsson, Markus

    2017-02-15

    In diffusion MRI (dMRI), microscopic diffusion anisotropy can be obscured by orientation dispersion. Separation of these properties is of high importance, since it could allow dMRI to non-invasively probe elongated structures such as neurites (axons and dendrites). However, conventional dMRI, based on single diffusion encoding (SDE), entangles microscopic anisotropy and orientation dispersion with intra-voxel variance in isotropic diffusivity. SDE-based methods for estimating microscopic anisotropy, such as the neurite orientation dispersion and density imaging (NODDI) method, must thus rely on model assumptions to disentangle these features. An alternative approach is to directly quantify microscopic anisotropy by the use of variable shape of the b-tensor. Along those lines, we here present the 'constrained diffusional variance decomposition' (CODIVIDE) method, which jointly analyzes data acquired with diffusion encoding applied in a single direction at a time (linear tensor encoding, LTE) and in all directions (spherical tensor encoding, STE). We then contrast the two approaches by comparing neurite density estimated using NODDI with microscopic anisotropy estimated using CODIVIDE. Data were acquired in healthy volunteers and in glioma patients. NODDI and CODIVIDE differed the most in gray matter and in gliomas, where NODDI detected a neurite fraction higher than expected from the level of microscopic diffusion anisotropy found with CODIVIDE. The discrepancies could be explained by the NODDI tortuosity assumption, which enforces a connection between the neurite density and the mean diffusivity of tissue. Our results suggest that this assumption is invalid, which leads to a NODDI neurite density that is inconsistent between LTE and STE data. Using simulations, we demonstrate that the NODDI assumptions result in parameter bias that precludes the use of NODDI to map neurite density. With CODIVIDE, we found high levels of microscopic anisotropy in white matter

  9. Accurate Dna Assembly And Direct Genome Integration With Optimized Uracil Excision Cloning To Facilitate Engineering Of Escherichia Coli As A Cell Factory

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Nørholm, Morten

    2015-01-01

    Plants produce a vast diversity of valuable compounds with medical properties, but these are often difficult to purify from the natural source or produce by organic synthesis. An alternative is to transfer the biosynthetic pathways to an efficient production host like the bacterium Escherichia co......-excision-based cloning and combining it with a genome-engineering approach to allow direct integration of whole metabolic pathways into the genome of E. coli, to facilitate the advanced engineering of cell factories........ Cloning and heterologous gene expression are major bottlenecks in the metabolic engineering field. We are working on standardizing DNA vector design processes to promote automation and collaborations in early phase metabolic engineering projects. Here, we focus on optimizing the already established uracil...

  10. Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB.

    Fumiaki Imamura

    2009-08-01

    Full Text Available Projection neurons of mammalian olfactory bulb (OB, mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites extend horizontally in the external plexiform layer and make reciprocal dendrodendritic synapses with granule cells, which moderate mitral/tufted cell activity. The molecular mechanisms regulating dendritic development of mitral/tufted cells is one of the unsolved important problems in the olfactory system. Here, we focused on TrkB receptors to test the hypothesis that neurotrophin-mediate mechanisms contributed to dendritic differentiation of OB mitral/tufted cells.With immunohistochemical analysis, we found that the TrkB neurotrophin receptor is expressed by both apical and lateral dendrites of mitral/tufted cells and that expression is evident during the early postnatal days when these dendrites exhibit their most robust growth and differentiation. To examine the effect of TrkB activation on mitral/tufted cell dendritic development, we cultured OB neurons. When BDNF or NT4 were introduced into the cultures, there was a significant increase in the number of primary neurites and branching points among the mitral/tufted cells. Moreover, BDNF facilitated filopodial extension along the neurites of mitral/tufted cells.In this report, we show for the first time that TrkB activation stimulates the dendritic branching of mitral/tufted cells in developing OB. This suggests that arborization of the apical dendrite in a glomerulus is under the tight regulation of TrkB activation.

  11. The functionalized amino acid (S-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth

    Sarah M Wilson

    2014-07-01

    Full Text Available Activity-dependent neurite outgrowth is a highly complex, regulated process with important implications for neuronal circuit remodeling in development as well as in seizure-induced sprouting in epilepsy. Recent work has linked outgrowth to collapsin response mediator protein 2 (CRMP2, an intracellular phosphoprotein originally identified as axon guidance and growth cone collapse protein. The neurite outgrowth promoting function of CRMP2 is regulated by its phosphorylation state. In this study, depolarization (potassium chloride-driven activity increased the level of active CRMP2 by decreasing its phosphorylation by GSK3β via a reduction in priming by Cdk5. To determine the contribution of CRMP2 in activity-driven neurite outgrowth, we screened a limited set of compounds for their ability to reduce neurite outgrowth but not modify voltage-gated sodium channel (VGSC biophysical properties. This led to the identification of (S-lacosamide ((S-LCM, a stereoisomer of the clinically used antiepileptic drug (R-LCM (Vimpat®, as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Whereas (S-LCM was ineffective in targeting VGSCs, the presumptive pharmacological targets of (R-LCM, (S-LCM was more efficient than (R-LCM in subverting neurite outgrowth. Biomolecular interaction analyses revealed that (S-LCM bound to wildtype CRMP2 with low micromolar affinity, similar to (R-LCM. Through the use of this novel tool, the activity-dependent increase in neurite outgrowth observed following depolarization was characterized to be reliant on CRMP2 function. Knockdown of CRMP2 by siRNA in cortical neurons resulted in reduced CRMP2-dependent neurite outgrowth; incubation with (S-LCM phenocopied this effect. Other CRMP2-mediated processes were unaffected. (S-LCM subverted neurite outgrowth not by affecting the canonical CRMP2-tubulin association but rather by impairing the ability of CRMP2 to promote tubulin polymerization, events that are

  12. LAB/NTAL Facilitates Fungal/PAMP-induced IL-12 and IFN-γ Production by Repressing β-Catenin Activation in Dendritic Cells

    Orr, Selinda J.; Burg, Ashley R.; Chan, Tim; Quigley, Laura; Jones, Gareth W.; Ford, Jill W.; Hodge, Deborah; Razzook, Catherine; Sarhan, Joseph; Jones, Yava L.; Whittaker, Gillian C.; Boelte, Kimberly C.; Lyakh, Lyudmila; Cardone, Marco; O'Connor, Geraldine M.; Tan, Cuiyan; Li, Hongchuan; Anderson, Stephen K.; Jones, Simon A.; Zhang, Weiguo; Taylor, Philip R.; Trinchieri, Giorgio; McVicar, Daniel W.

    2013-01-01

    Fungal pathogens elicit cytokine responses downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled or hemiITAM-containing receptors and TLRs. The Linker for Activation of B cells/Non-T cell Activating Linker (LAB/NTAL) encoded by Lat2, is a known regulator of ITAM-coupled receptors and TLR-associated cytokine responses. Here we demonstrate that LAB is involved in anti-fungal immunity. We show that Lat2 −/− mice are more susceptible to C. albicans infection than wild type (WT) mice. Dendritic cells (DCs) express LAB and we show that it is basally phosphorylated by the growth factor M-CSF or following engagement of Dectin-2, but not Dectin-1. Our data revealed a unique mechanism whereby LAB controls basal and fungal/pathogen-associated molecular patterns (PAMP)-induced nuclear β-catenin levels. This in turn is important for controlling fungal/PAMP-induced cytokine production in DCs. C. albicans- and LPS-induced IL-12 and IL-23 production was blunted in Lat2−/− DCs. Accordingly, Lat2−/− DCs directed reduced Th1 polarization in vitro and Lat2 −/− mice displayed reduced Natural Killer (NK) and T cell-mediated IFN-γ production in vivo/ex vivo. Thus our data define a novel link between LAB and β-catenin nuclear accumulation in DCs that facilitates IFN-γ responses during anti-fungal immunity. In addition, these findings are likely to be relevant to other infectious diseases that require IL-12 family cytokines and an IFN-γ response for pathogen clearance. PMID:23675302

  13. APP with Kunitz type protease inhibitor domain (KPI) correlates with neuritic plaque density but not with cortical synaptophysin immunoreactivity in Alzheimer's disease and non-demented aged subjects: a multifactorial analysis.

    Zhan, S S; Sandbrink, R; Beyreuther, K; Schmitt, H P

    1995-01-01

    The formation of beta A4 amyloid protein in neuritic plaques in Alzheimer's disease (AD) and advanced age is a complex process that involves a number of both cellular and molecular mechanisms, the interrelations of which are not yet completely understood. We have examined quantitatively, in AD and aged controls an extended spectrum of amyloid plaque-related cellular and molecular factors and the cortical synaptophysin immunoreactivity (synaptic density) in order to check for interrelations between them by multifactorial analysis. In 3 cases of senile dementia of the Alzheimer type (SDAT) aged 72, 80 and 82 years, and 9 controls aged 43-88 (mean age 65) years, the cortical synaptophysin immunoreactivity was assessed, together with the numbers of neurons, astrocytes and microglial cells, senile plaques, of tangle-bearing neurons, and the amount of beta A4 amyloid precursor protein (APP) with and without the Kunitz type serine protease inhibitor (KPI) domain. The main results were: APP including the KPI domain (KPI-APP) correlated with the number of neuritic plaques, regardless of whether they occurred in SDAT or non-demented controls. There was no significant difference in the amount of KPI-APP between SDAT and controls. Conversely, APP695 (without KPI) was significantly reduced in SDAT. KPI-APP did not correlate with the synaptophysin immunoreactivity (RGVA), while APP695 showed a significant correlation with the latter in all evaluations. It also correlated with the neuron counts, which was not true for KPI-APP. These results support previous findings indicating that KPI-APP is an important local factor for amyloid deposition in the neuritic plaques, both in AD and in non-demented aged people. On the contrary, KPI-APP does not seem to be significantly involved in the mechanisms of synaptic change outside of the plaques.

  14. Fully human monoclonal antibodies from antibody secreting cells after vaccination with Pneumovax®23 are serotype specific and facilitate opsonophagocytosis.

    Smith, Kenneth; Muther, Jennifer J; Duke, Angie L; McKee, Emily; Zheng, Nai-Ying; Wilson, Patrick C; James, Judith A

    2013-05-01

    B lymphocyte memory generates antibody-secreting cells (ASCs) that represent a source of protective antibodies that may be exploited for therapeutics. Here we vaccinated four donors with Pneumovax®23 and produced human monoclonal antibodies (hmAbs) from ASCs. We have cloned 137 hmAbs and the specificities of these antibodies encompass 19 of the 23 serotypes in the vaccine, as well as cell wall polysaccharide (CWPS). Although the majority of the antibodies are serotype specific, 12% cross-react with two serotypes. The Pneumovax®23 ASC antibody sequences are highly mutated and clonal, indicating an anamnestic response, even though this was a primary vaccination. Hmabs from 64% of the clonal families facilitate opsonophagocytosis. Although 9% of the total antibodies bind to CWPS impurity in the vaccine, none of these clonal families showed opsonophagocytic activity. Overall, these studies have allowed us to address unanswered questions in the field of human immune responses to polysaccharide vaccines, including the cross-reactivity of individual antibodies between serotypes and the percentage of antibodies that are protective after vaccination with Pneumovax®23. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Lead facilitates foci formation in a Balb/c-3T3 two-step cell transformation model: role of Ape1 function.

    Hernández-Franco, Pablo; Silva, Martín; Franco, Rodrigo; Valverde, Mahara; Rojas, Emilio

    2018-04-01

    Several possible mechanisms have been examined to gain an understanding on the carcinogenic properties of lead, which include among others, mitogenesis, alteration of gene expression, oxidative damage, and inhibition of DNA repair. The aim of the present study was to explore if low concentrations of lead, relevant for human exposure, interfere with Ape1 function, a base excision repair enzyme, and its role in cell transformation in Balb/c-3T3. Lead acetate 5 and 30 μM induced APE1 mRNA and upregulation of protein expression. This increase in mRNA expression is consistent throughout the chronic exposure. Additionally, we also found an impaired function of Ape1 through molecular beacon-based assay. To evaluate the impact of lead on foci formation, a Balb/c-3T3 two-step transformation model was used. Balb/c-3T3 cells were pretreated 1 week with low concentrations of lead before induction of transformation with n-methyl-n-nitrosoguanidine (MNNG) (0.5 μg/mL) and 12-O-tetradecanoylphorbol-13-acetate (TPA) (0.1 μg/mL) (a classical two-step protocol). Morphological cell transformation increased in response to lead pretreatment that was paralleled with an increase in Ape1 mRNA and protein overexpression and an impairment of Ape1 activity and correlating with foci number. In addition, we found that lead pretreatment and MNNG (transformation initiator) increased DNA damage, determined by comet assay. Our data suggest that low lead concentrations (5, 30 μM) could play a facilitating role in cellular transformation, probably through the impaired function of housekeeping genes such as Ape1, leading to DNA damage accumulation and chromosomal instability, one of the most important hallmarks of cancer induced by chronic exposures.

  16. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells enhances the recruitment of CD11b{sup +} myeloid cells to the lungs and facilitates B16-F10 melanoma colonization

    Souza, Lucas E.B., E-mail: lucasebsouza@usp.br [Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Almeida, Danilo C., E-mail: gudaalmeida@gmail.com [Department of Medicine – Nephrology, Laboratory of Clinical and Experimental Immunology, Federal University of São Paulo, São Paulo, SP (Brazil); Yaochite, Juliana N.U., E-mail: ueda.juliana@gmail.com [Department of Biochemistry and Immunology, Basic and Applied Immunology Program, School of Medicine of Ribeirão Preto, University of São Paulo (Brazil); Covas, Dimas T., E-mail: dimas@fmrp.usp.br [Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Fontes, Aparecida M., E-mail: aparecidamfontes@usp.br [Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2016-07-15

    The discovery that the regenerative properties of bone marrow multipotent mesenchymal stromal cells (BM-MSCs) could collaterally favor neoplastic progression has led to a great interest in the function of these cells in tumors. However, the effect of BM-MSCs on colonization, a rate-limiting step of the metastatic cascade, is unknown. In this study, we investigated the effect of BM-MSCs on metastatic outgrowth of B16-F10 melanoma cells. In in vitro experiments, direct co-culture assays demonstrated that BM-MSCs stimulated the proliferation of B16-F10 cells in a dose-dependent manner. For in vivo experiments, luciferase-expressing B16-F10 cells were injected through tail vein and mice were subsequently treated with four systemic injections of BM-MSCs. In vivo bioluminescent imaging during 16 days demonstrated that BM-MSCs enhanced the colonization of lungs by B16-F10 cells, which correlated with a 2-fold increase in the number of metastatic foci. Flow cytometry analysis of lungs demonstrated that although mice harboring B16-F10 metastases displayed more endothelial cells, CD4 T and CD8 T lymphocytes in the lungs in comparison to metastases-free mice, BM-MSCs did not alter the number of these cells. Interestingly, BM-MSCs inoculation resulted in a 2-fold increase in the number of CD11b{sup +} myeloid cells in the lungs of melanoma-bearing animals, a cell population previously described to organize “premetastatic niches” in experimental models. These findings indicate that BM-MSCs provide support to B16-F10 cells to overcome the constraints that limit metastatic outgrowth and that these effects might involve the interplay between BM-MSCs, CD11b{sup +} myeloid cells and tumor cells. - Highlights: • BM-MSCs enhanced B16-F10 proliferation in a dose-dependent manner in vitro. • BM-MSCs facilitated lung colonization by B16-F10 melanoma cells. • BM-MSCs administration did not alter the number of endothelial cells and T lymphocytes in the lungs. • BM-MSCs enhanced

  17. Tax and Semaphorin 4D Released from Lymphocytes Infected with Human Lymphotropic Virus Type 1 and Their Effect on Neurite Growth.

    Quintremil, Sebastián; Alberti, Carolina; Rivera, Matías; Medina, Fernando; Puente, Javier; Cartier, Luis; Ramírez, Eugenio; Tanaka, Yuetsu; Valenzuela, M Antonieta

    2016-01-01

    Human lymphotropic virus type 1 (HTLV-1) is a retrovirus causing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a neurodegenerative central nervous system (CNS) axonopathy. This virus mainly infects CD4(+) T lymphocytes without evidence of neuronal infection. Viral Tax, secreted from infected lymphocytes infiltrated in the CNS, is proposed to alter intracellular pathways related to axonal cytoskeleton dynamics, producing neurological damage. Previous reports showed a higher proteolytic release of soluble Semaphorin 4D (sSEMA-4D) from CD4(+) T cells infected with HTLV-1. Soluble SEMA-4D binds to its receptor Plexin-B1, activating axonal growth collapse pathways in the CNS. In the current study, an increase was found in both SEMA-4D in CD4(+) T cells and sSEMA-4D released to the culture medium of peripheral blood mononuclear cells (PBMCs) from HAM/TSP patients compared to asymptomatic carriers and healthy donors. After a 16-h culture, infected PBMCs showed significantly higher levels of CRMP-2 phosphorylated at Ser(522). The effect was blocked either with anti-Tax or anti-SEMA-4D antibodies. The interaction of Tax and sSEMA-4D was found in secreted medium of PBMCs in patients, which might be associated with a leading role of Tax with the SEMA-4D-Plexin-B1 signaling pathway. In infected PBMCs, the migratory response after transwell assay showed that sSEMA-4D responding cells were CD4(+)Tax(+) T cells with a high CRMP-2 pSer(522) content. In the present study, the participation of Tax-sSEMA-4D in the reduction in neurite growth in PC12 cells produced by MT2 (HTLV-1-infected cell line) culture medium was observed. These results lead to the participation of plexins in the reported effects of infected lymphocytes on neuronal cells.

  18. Visualization of spiral ganglion neurites within the scala tympani with a cochlear implant in situ.

    Chikar, Jennifer A; Batts, Shelley A; Pfingst, Bryan E; Raphael, Yehoash

    2009-05-15

    Current cochlear histology methods do not allow in situ processing of cochlear implants. The metal components of the implant preclude standard embedding and mid-modiolar sectioning, and whole mounts do not have the spatial resolution needed to view the implant within the scala tympani. One focus of recent auditory research is the regeneration of structures within the cochlea, particularly the ganglion cells and their processes, and there are multiple potential benefits to cochlear implant users from this work. To facilitate experimental investigations of auditory nerve regeneration performed in conjunction with cochlear implantation, it is critical to visualize the cochlear tissue and the implant together to determine if the nerve has made contact with the implant. This paper presents a novel histological technique that enables simultaneous visualization of the in situ cochlear implant and neurofilament-labeled nerve processes within the scala tympani, and the spatial relationship between them.

  19. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3

    Phan, Chia-Wei; David, Pamela; Naidu, Murali; Wong, Kah-Hui; Sabaratnam, Vikineswary

    2013-01-01

    Background Mushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity. Methods The stimulatory effect of mushrooms on neurite outgrowth was assessed in differentiating mouse neuroblastoma (...

  20. Human T-Lymphotropic Virus Type 1-Induced Overexpression of Activated Leukocyte Cell Adhesion Molecule (ALCAM) Facilitates Trafficking of Infected Lymphocytes through the Blood-Brain Barrier.

    Curis, Céline; Percher, Florent; Jeannin, Patricia; Montange, Thomas; Chevalier, Sébastien A; Seilhean, Danielle; Cartier, Luis; Couraud, Pierre-Olivier; Gout, Olivier; Gessain, Antoine; Ceccaldi, Pierre-Emmanuel; Afonso, Philippe V

    2016-08-15

    . Here, we show that the viral transactivator Tax increases activated leukocyte cell adhesion molecule (ALCAM/CD166) expression. This molecule facilitates the migration of lymphocytes across the BBB endothelium. Targeting this molecule could be of interest in preventing or reducing the development of HAM/TSP. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. miR126-5p down-regulation facilitates axon degeneration and NMJ disruption via a non-cell-autonomous mechanism in ALS.

    Maimon, Roy; Ionescu, Ariel; Bonnie, Avichai; Sweetat, Sahar; Wald-Altman, Shane; Inbar, Shani; Gradus, Tal; Trotti, Davide; Weil, Miguel; Behar, Oded; Perlson, Eran

    2018-05-17

    Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in Amyotrophic Lateral Sclerosis (ALS) pathology. Although the disease's etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR-126-5p in pre-symptomatic ALS male mice models, and an increase in its targets: axon destabilizing type-3 Semaphorins and their co-receptor Neuropilins. Utilizing compartmentalized in vitro co-cultures, we demonstrated that myocytes expressing diverse ALS-causing mutations promote axon degeneration and NMJ dysfunction, which were inhibited by applying Neuropilin1 (NRP1) blocking antibody. Finally, overexpressing miR126-5p is sufficient to transiently rescue axon degeneration and NMJ disruption both in vitro and in vivo Thus, we demonstrate a novel mechanism underlying ALS pathology, in which alterations in miR126-5p facilitate a non-cell-autonomous mechanism of motor neuron degeneration in ALS. SIGNIFICANCE STATEMENT In spite of some progress, currently no effective treatment is available for ALS. We suggest a novel regulatory role for miR126-5p in ALS and demonstrate for the first time a mechanism by which alterations in miR126-5p contribute to axon degeneration and NMJ disruption observed in ALS. We show that miR126-5p is altered in ALS models and that it can modulate Sema3 and NRP protein expression. Furthermore, NRP1 elevations in motor neurons and muscle secretion of Sema3A contribute to axon degeneration and NMJ disruption in ALS. Finally, overexpressing miR126-5p is sufficient to transiently rescue NMJ disruption and axon degeneration both in vitro and in vivo. Copyright © 2018 Maimon et al.

  2. Portal Vein Embolization with Contralateral Application of Stem Cells Facilitates Increase of Future Liver Remnant Volume in Patients with Liver Metastases

    Ludvík, Jaroslav; Duras, Petr; Třeška, Vladislav; Matoušková, Táňa; Brůha, Jan; Fichtl, Jakub; Lysák, Daniel; Ferda, Jiří; Baxa, Jan

    2017-01-01

    ObjectivesThis study aimed to evaluate the progress of future liver remnant volume (FLRV) in patients with liver metastases after portal vein embolization (PVE) with the application of hematopoietic stem cells (HSCs) and compare it with a patients control group after PVE only.MethodsTwenty patients (group 1) underwent PVE with contralateral HSC application. Subsequently, CT volumetry with the determination of FLRV was performed at weekly intervals, in total three weeks. A sample of twenty patients (group 2) who underwent PVE without HSC application was used as a control group.ResultsThe mean of FLRV increased by 173.2 mL during three weeks after the PVE/HSC procedure, whereas by 98.9 mL after PVE only (p = 0.015). Furthermore, the mean daily growth of FLRV by 7.6 mL in group 1 was significantly higher in comparison with 4.1 mL in group 2 (p = 0.007).ConclusionsPVE with the application of HSC significantly facilitates growth of FLRV in comparison with PVE only. This method could be one of the new suitable approaches to increase the resectability of liver tumours.

  3. Portal Vein Embolization with Contralateral Application of Stem Cells Facilitates Increase of Future Liver Remnant Volume in Patients with Liver Metastases

    Ludvík, Jaroslav, E-mail: ludvikj@fnplzen.cz; Duras, Petr [Charles University, Department of Imaging Methods, University Hospital and Faculty of Medicine in Pilsen (Czech Republic); Třeška, Vladislav [Charles University, Department of Surgery, University Hospital and Faculty of Medicine in Pilsen (Czech Republic); Matoušková, Táňa [Charles University, Department of Imaging Methods, University Hospital and Faculty of Medicine in Pilsen (Czech Republic); Brůha, Jan; Fichtl, Jakub [Charles University, Department of Surgery, University Hospital and Faculty of Medicine in Pilsen (Czech Republic); Lysák, Daniel [Charles University, Department of Haemato-Oncology, University Hospital and Faculty of Medicine in Pilsen (Czech Republic); Ferda, Jiří; Baxa, Jan [Charles University, Department of Imaging Methods, University Hospital and Faculty of Medicine in Pilsen (Czech Republic)

    2017-05-15

    ObjectivesThis study aimed to evaluate the progress of future liver remnant volume (FLRV) in patients with liver metastases after portal vein embolization (PVE) with the application of hematopoietic stem cells (HSCs) and compare it with a patients control group after PVE only.MethodsTwenty patients (group 1) underwent PVE with contralateral HSC application. Subsequently, CT volumetry with the determination of FLRV was performed at weekly intervals, in total three weeks. A sample of twenty patients (group 2) who underwent PVE without HSC application was used as a control group.ResultsThe mean of FLRV increased by 173.2 mL during three weeks after the PVE/HSC procedure, whereas by 98.9 mL after PVE only (p = 0.015). Furthermore, the mean daily growth of FLRV by 7.6 mL in group 1 was significantly higher in comparison with 4.1 mL in group 2 (p = 0.007).ConclusionsPVE with the application of HSC significantly facilitates growth of FLRV in comparison with PVE only. This method could be one of the new suitable approaches to increase the resectability of liver tumours.

  4. NOGO-A induction and localization during chick brain development indicate a role disparate from neurite outgrowth inhibition

    Liwnicz Boleslaw H

    2007-04-01

    Full Text Available Abstract Background Nogo-A, a myelin-associated protein, inhibits neurite outgrowth and abates regeneration in the adult vertebrate central nervous system (CNS and may play a role in maintaining neural pathways once established. However, the presence of Nogo-A during early CNS development is counterintuitive and hints at an additional role for Nogo-A beyond neurite inhibition. Results We isolated chicken NOGO-A and determined its sequence. A multiple alignment of the amino acid sequence across divergent species, identified five previously undescribed, Nogo-A specific conserved regions that may be relevant for development. NOGO gene transcripts (NOGO-A, NOGO-B and NOGO-C were differentially expressed in the CNS during development and a second NOGO-A splice variant was identified. We further localized NOGO-A expression during key phases of CNS development by in situ hybridization. CNS-associated NOGO-A was induced coincident with neural plate formation and up-regulated by FGF in the transformation of non-neural ectoderm into neural precursors. NOGO-A expression was diffuse in the neuroectoderm during the early proliferative phase of development, and migration, but localized to large projection neurons of the optic tectum and tectal-associated nuclei during architectural differentiation, lamination and network establishment. Conclusion These data suggest Nogo-A plays a functional role in the determination of neural identity and/or differentiation and also appears to play a later role in the networking of large projection neurons during neurite formation and synaptogenesis. These data indicate that Nogo-A is a multifunctional protein with additional roles during CNS development that are disparate from its later role of neurite outgrowth inhibition in the adult CNS.

  5. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  6. [Inhibitory proteins of neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance].

    Vargas, Javier; Uribe-Escamilla, Rebeca; Alfaro-Rodríguez, Alfonso

    2013-01-01

    After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.

  7. Static compression down-regulates N-cadherin expression and facilitates loss of cell phenotype of nucleus pulposus cells in a disc perfusion culture.

    Zhou, Haibo; Shi, Jianmin; Zhang, Chao; Li, Pei

    2018-02-28

    Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis. © 2018 The Author(s).

  8. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease

    Kamagata, Koji; Suzuki, Michimasa; Hori, Masaaki; Kumamaru, Kanako K.; Aoki, Shigeki; Hatano, Taku; Okuzumi, Ayami; Motoi, Yumiko; Hattori, Nobutaka; Abe, Osamu; Shimoji, Keigo; Kamiya, Kouhei

    2016-01-01

    We used neurite orientation dispersion and density imaging (NODDI) to quantify changes in the substantia nigra pars compacta (SNpc) and striatum in Parkinson disease (PD). Diffusion-weighted magnetic resonance images were acquired from 58 PD patients and 36 age- and sex-matched controls. The intracellular volume fraction (Vic), orientation dispersion index (OD), and isotropic volume fraction (Viso) of the basal ganglia were compared between groups. Multivariate logistic regression analysis determined which diffusion parameters were independent predictors of PD. Receiver operating characteristic (ROC) analysis compared the diagnostic accuracies of the evaluated indices. Pearson coefficient analysis correlated each diffusional parameter with disease severity. Vic in the contralateral SNpc and putamen were significantly lower in PD patients than in healthy controls (P < 0.00058). Vic and OD in the SNpc and putamen showed significant negative correlations (P < 0.05) with disease severity. Multivariate logistic analysis revealed that Vic (P = 0.0000046) and mean diffusivity (P = 0.019) in the contralateral SNpc were the independent predictors of PD. In the ROC analysis, Vic in the contralateral SNpc showed the best diagnostic performance (mean cutoff, 0.62; sensitivity, 0.88; specificity, 0.83). NODDI is likely to be useful for diagnosing PD and assessing its progression. (orig.)

  9. Ubiquitination of MBNL1 Is Required for Its Cytoplasmic Localization and Function in Promoting Neurite Outgrowth

    Pei-Ying Wang

    2018-02-01

    Full Text Available The Muscleblind-like protein family (MBNL plays an important role in regulating the transition between differentiation and pluripotency and in the pathogenesis of myotonic dystrophy type 1 (DM1, a CTG expansion disorder. How different MBNL isoforms contribute to the differentiation and are affected in DM1 has not been investigated. Here, we show that the MBNL1 cytoplasmic, but not nuclear, isoform promotes neurite morphogenesis and reverses the morphological defects caused by expanded CUG RNA. Cytoplasmic MBNL1 is polyubiquitinated by lysine 63 (K63. Reduced cytoplasmic MBNL1 in the DM1 mouse brain is consistent with the reduced extent of K63 ubiquitination. Expanded CUG RNA induced the deubiqutination of cytoplasmic MBNL1, which resulted in nuclear translocation and morphological impairment that could be ameliorated by inhibiting K63-linked polyubiquitin chain degradation. Our results suggest that K63-linked ubiquitination of MBNL1 is required for its cytoplasmic localization and that deubiquitination of cytoplasmic MBNL1 is pathogenic in the DM1 brain.

  10. FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells.

    Shun Kitaoka

    Full Text Available Caenorhabditis elegans (C. elegans is an attractive animal model for biological and biomedical research because it permits relatively easy genetic dissection of cellular pathways, including insulin/IGF-like signaling (IIS, that are conserved in mammalian cells. To explore C. elegans as a model system to study the regulation of the facilitative glucose transporter (GLUT, we have characterized the GLUT gene homologues in C. elegans: fgt-1, R09B5.11, C35A11.4, F53H8.3, F48E3.2, F13B12.2, Y61A9LA.1, K08F9.1 and Y37A1A.3. The exogenous expression of these gene products in Xenopus oocytes showed transport activity to unmetabolized glucose analogue 2-deoxy-D-glucose only in FGT-1. The FGT-1-mediated transport activity was inhibited by the specific GLUT inhibitor phloretin and exhibited a Michaelis constant (Km of 2.8 mM. Mannose, galactose, and fructose were able to inhibit FGT-1-mediated 2-deoxy-D-glucose uptake (P < 0.01, indicating that FGT-1 is also able to transport these hexose sugars. A GFP fusion protein of FGT-1 was observed only on the basolateral membrane of digestive tract epithelia in C. elegans, but not in other tissues. FGT-1::eGFP expression was observed from early embryonic stages. The knockdown or mutation of fgt-1 resulted in increased fat staining in both wild-type and daf-2 (mammalian insulin receptor homologue mutant animals. Other common phenotypes of IIS mutant animals, including dauer formation and brood size reduction, were not affected by fgt-1 knockdown in wild-type or daf-2 mutants. Our results indicated that in C. elegans, FGT-1 is mainly a mammalian GLUT2-like intestinal glucose transporter and is involved in lipid metabolism.

  11. Zinc Promotes Adipose-Derived Mesenchymal Stem Cell Proliferation and Differentiation towards a Neuronal Fate.

    Moon, Mi-Young; Kim, Hyun Jung; Choi, Bo Young; Sohn, Min; Chung, Tae Nyoung; Suh, Sang Won

    2018-01-01

    Zinc is an essential element required for cell division, migration, and proliferation. Under zinc-deficient conditions, proliferation and differentiation of neural progenitors are significantly impaired. Adipose-derived mesenchymal stem cells (AD-MSCs) are multipotent stem cells that can differentiate into neurons. The aim of this study was to evaluate the effect of zinc on AD-MSC proliferation and differentiation. We initially examined the effect of zinc on stem cell proliferation at the undifferentiated stage. AD-MSCs showed high proliferation rates on day 6 in 30  μ M and 100  μ M of ZnCl 2 . Zinc chelation inhibited AD-MSC proliferation via downregulation of ERK1/2 activity. We then assessed whether zinc was involved in cell migration and neurite outgrowth during differentiation. After three days of neuronal differentiation, TUJ-1-positive cells were observed, implying that AD-MSCs had differentiated into early neuron or neuron-like cells. Neurite outgrowth was increased in the zinc-treated group, while the CaEDTA-treated group showed diminished, shrunken neurites. Furthermore, we showed that zinc promoted neurite outgrowth via the inactivation of RhoA and led to the induction of neuronal gene expression (MAP2 and nestin) in differentiated stem cells. Taken together, zinc promoted AD-MSC proliferation and affected neuronal differentiation, mainly by increasing neurite outgrowth.

  12. Zinc Promotes Adipose-Derived Mesenchymal Stem Cell Proliferation and Differentiation towards a Neuronal Fate

    Mi-Young Moon

    2018-01-01

    Full Text Available Zinc is an essential element required for cell division, migration, and proliferation. Under zinc-deficient conditions, proliferation and differentiation of neural progenitors are significantly impaired. Adipose-derived mesenchymal stem cells (AD-MSCs are multipotent stem cells that can differentiate into neurons. The aim of this study was to evaluate the effect of zinc on AD-MSC proliferation and differentiation. We initially examined the effect of zinc on stem cell proliferation at the undifferentiated stage. AD-MSCs showed high proliferation rates on day 6 in 30 μM and 100 μM of ZnCl2. Zinc chelation inhibited AD-MSC proliferation via downregulation of ERK1/2 activity. We then assessed whether zinc was involved in cell migration and neurite outgrowth during differentiation. After three days of neuronal differentiation, TUJ-1-positive cells were observed, implying that AD-MSCs had differentiated into early neuron or neuron-like cells. Neurite outgrowth was increased in the zinc-treated group, while the CaEDTA-treated group showed diminished, shrunken neurites. Furthermore, we showed that zinc promoted neurite outgrowth via the inactivation of RhoA and led to the induction of neuronal gene expression (MAP2 and nestin in differentiated stem cells. Taken together, zinc promoted AD-MSC proliferation and affected neuronal differentiation, mainly by increasing neurite outgrowth.

  13. 7, 8, 3′-Trihydroxyflavone Promotes Neurite Outgrowth and Protects Against Bupivacaine-Induced Neurotoxicity in Mouse Dorsal Root Ganglion Neurons

    Shi, Haohong; Luo, Xingjing

    2016-01-01

    Background 7, 8, 3′-trihydroxyflavone (THF) is a novel pro-neuronal small molecule that acts as a TrkB agonist. In this study, we examined the effect of THF on promoting neuronal growth and protecting anesthetics-induced neurotoxicity in dorsal root ganglion (DRG) neurons in vitro. Material/Methods Neonatal mouse DRG neurons were cultured in vitro and treated with various concentrations of THF. The effect of THF on neuronal growth was investigated by neurite outgrowth assay and Western blot. In addition, the protective effects of THF on bupivacaine-induced neurotoxicity were investigated by apoptosis TUNEL assay, neurite outgrowth assay, and Western blot, respectively. Results THF promoted neurite outgrowth of DRG neurons in dose-dependent manner, with an EC50 concentration of 67.4 nM. Western blot analysis showed THF activated TrkB signaling pathway by inducing TrkB phosphorylation. THF also rescued bupivacaine-induced neurotoxicity by reducing apoptosis and protecting neurite retraction in DRG neurons. Furthermore, the protection of THF in bupivacaine-injured neurotoxicity was directly associated with TrkB phosphorylation in a concentration-dependent manner in DRG neurons. Conclusions THF has pro-neuronal effect on DRG neurons by promoting neurite growth and protecting against bupivacaine-induced neurotoxicity, likely through TrkB activation. PMID:27371503

  14. Imidacloprid, a neonicotinoid insecticide, facilitates tyrosine hydroxylase transcription and phenylethanolamine N-methyltransferase mRNA expression to enhance catecholamine synthesis and its nicotine-evoked elevation in PC12D cells.

    Kawahata, Ichiro; Yamakuni, Tohru

    2018-02-01

    Imidacloprid is a neonicotinoid insecticide acting as an agonist of nicotinic acetylcholine receptors (nAChRs) in the target insects. However, questions about the safety to mammals, including human have emerged. Overactivation of mammalian peripheral catecholaminergic systems leads to onset of tachycardia, hypertension, vomiting, etc., which have been observed in acutely imidacloprid-poisoned patients as well. Physiological activation of the nAChRs is known to drive catecholamine biosynthesis and secretion in mammalian adrenal chromaffin cells. Yet, the impacts of imidacloprid on the catecholaminergic function of the chromaffin cells remain to be evaluated. In this study using PC12D cells, a catecholaminergic cell line derived from the medulla chromaffin-cell tumors of rat adrenal gland, we examined whether imidacloprid itself could impact the catecholamine-synthesizing ability. Imidacloprid alone did facilitate tyrosine hydroxylase (TH) transcription via activation of α3β4 nAChR and the α7 subunit-comprising receptor. The insecticide showed the TH transcription-facilitating ability at the concentrations of 3 and 30 μM, at which acetylcholine is known to produce physiological responses, including catecholamine secretion through the nAChRs in adrenal chromaffin cells. The insecticide-facilitated TH transcription was also dependent on PKA- and RhoA-mediated signaling pathways. The insecticide coincidentally raised levels of TH and phenylethanolamine N-methyltransferase (PNMT) mRNA, and as a consequence, increased catecholamine production, although the efficacy of the neonicotinoid was lesser than that of nicotine, indicating its partial agonist-like action. Intriguingly, in cultured rat adrenal chromaffin cells, imidacloprid did increase levels of TH and PNMT protein. When the chromaffin cells were treated with nicotine in the presence of the insecticide, nicotine-elevated adrenaline production was enhanced due to facilitation of nicotine-increased TH and PNMT

  15. Visual explorer facilitator's guide

    Palus, Charles J

    2010-01-01

    Grounded in research and practice, the Visual Explorer™ Facilitator's Guide provides a method for supporting collaborative, creative conversations about complex issues through the power of images. The guide is available as a component in the Visual Explorer Facilitator's Letter-sized Set, Visual Explorer Facilitator's Post card-sized Set, Visual Explorer Playing Card-sized Set, and is also available as a stand-alone title for purchase to assist multiple tool users in an organization.

  16. Learning facilitating leadership

    Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2016-01-01

    This paper explains how engineering students at a Danish university acquired the necessary skills to become emergent facilitators of organisational development. The implications of this approach are discussed and related to relevant viewpoints and findings in the literature. The methodology deplo....... By connecting the literature, the authors’ and engineering students’ reflections on facilitator skills, this paper adds value to existing academic and practical discussions on learning facilitating leadership....

  17. Neto2 Assembles with Kainate Receptors in DRG Neurons during Development and Modulates Neurite Outgrowth in Adult Sensory Neurons.

    Vernon, Claire G; Swanson, Geoffrey T

    2017-03-22

    Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG-dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2 -/- neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG-dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and

  18. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein regulates neurite development via PI3K-AKT and ERK signaling pathways.

    Zhou, C; Li, C; Li, D; Wang, Y; Shao, W; You, Y; Peng, J; Zhang, X; Lu, L; Shen, X

    2013-12-19

    The elongation of neuron is highly dependent on membrane trafficking. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein 1 (BIG1) functions in the membrane trafficking between the Golgi apparatus and the plasma membrane. BFA, an uncompetitive inhibitor of BIG1 can inhibit neurite outgrowth and polarity development. In this study, we aimed to define the possible role of BIG1 in neurite development and to further investigate the potential mechanism. By immunostaining, we found that BIG1 was extensively colocalized with synaptophysin, a marker for synaptic vesicles in soma and partly in neurites. The amount of both protein and mRNA of BIG1 were up-regulated during rat brain development. BIG1 depletion significantly decreased the neurite length and inhibited the phosphorylation of phosphatidylinositide 3-kinase (PI3K) and protein kinase B (AKT). Inhibition of BIG1 guanine nucleotide-exchange factor (GEF) activity by BFA or overexpression of the dominant-negative BIG1 reduced PI3K and AKT phosphorylation, indicating regulatory effects of BIG1 on PI3K-AKT signaling pathway is dependent on its GEF activity. BIG1 siRNA or BFA treatment also significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation. Overexpression of wild-type BIG1 significantly increased ERK phosphorylation, but the dominant-negative BIG1 had no effect on ERK phosphorylation, indicating the involvement of BIG1 in ERK signaling regulation may not be dependent on its GEF activity. Our result identified a novel function of BIG1 in neurite development. The newly recognized function integrates the function of BIG1 in membrane trafficking with the activation of PI3K-AKT and ERK signaling pathways which are critical in neurite development. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Containers, facilitators, innovators?

    Makkonen, Teemu; Merisalo, Maria; Inkinen, Tommi

    2018-01-01

    : are they containers, facilitators or innovators? This is investigated here through empirical material derived from 27 interviews with top departmental management in three Finnish cities (Helsinki, Espoo and Vantaa). The results show that local city governments (LCGs) consider cities as facilitators of innovation...

  20. Training facilitators and supervisors

    Kjær, Louise Binow; O Connor, Maja; Krogh, Kristian

    At the Master’s program in Medicine at Aarhus University, Denmark, we have developed a faculty development program for facilitators and supervisors in 4 progressing student modules in communication, cooperation, and leadership. 1) A course for module 1 and 3 facilitators inspired by the apprentic...

  1. Anterior ethmoid anatomy facilitates dacryocystorhinostomy.

    Blaylock, W K; Moore, C A; Linberg, J V

    1990-12-01

    The ethmoid air cell labyrinth lies adjacent to the medial orbital wall, extending even beyond the sutures of the ethmoid bone. Its anatomic relationship to the lacrimal sac fossa is important in lacrimal surgery. We evaluated computed tomographic scans of 190 orbits with normal ethmoid anatomy to define the anatomic relationship of anterior ethmoid air cells to the lacrimal sac fossa. In 93% of the orbits, the cells extended anterior to the posterior lacrimal crest, with 40% entering the frontal process of the maxilla. This anatomic relationship may be used to facilitate the osteotomy during dacryocystorhinostomy. During a 10-year period (310 cases), one of us routinely entered the anterior ethmoid air cells to initiate the osteotomy during dacryocystorhinostomy. This technique has helped to avoid lacerations of the nasal mucosa.

  2. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer's disease.

    Colgan, N

    2015-10-23

    Increased hyperphosphorylated tau and the formation of intracellular neurofibrillary tangles are associated with the loss of neurons and cognitive decline in Alzheimer\\'s disease, and related neurodegenerative conditions. We applied two diffusion models, diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI), to in vivo diffusion magnetic resonance images (dMRI) of a mouse model of human tauopathy (rTg4510) at 8.5months of age. In grey matter regions with the highest degree of tau burden, microstructural indices provided by both NODDI and DTI discriminated the rTg4510 (TG) animals from wild type (WT) controls; however only the neurite density index (NDI) (the volume fraction that comprises axons or dendrites) from the NODDI model correlated with the histological measurements of the levels of hyperphosphorylated tau protein. Reductions in diffusion directionality were observed when implementing both models in the white matter region of the corpus callosum, with lower fractional anisotropy (DTI) and higher orientation dispersion (NODDI) observed in the TG animals. In comparison to DTI, histological measures of tau pathology were more closely correlated with NODDI parameters in this region. This in vivo dMRI study demonstrates that NODDI identifies potential tissue sources contributing to DTI indices and NODDI may provide greater specificity to pathology in Alzheimer\\'s disease.

  3. Mathematical Relationships between Neuron Morphology and Neurite Growth Dynamics in Drosophila melanogaster Larva Class IV Sensory Neurons

    Ganguly, Sujoy; Liang, Xin; Grace, Michael; Lee, Daniel; Howard, Jonathon

    The morphology of neurons is diverse and reflects the diversity of neuronal functions, yet the principles that govern neuronal morphogenesis are unclear. In an effort to better understand neuronal morphogenesis we will be focusing on the development of the dendrites of class IV sensory neuron in Drosophila melanogaster. In particular we attempt to determine how the the total length, and the number of branches of dendrites are mathematically related to the dynamics of neurite growth and branching. By imaging class IV neurons during early embryogenesis we are able to measure the change in neurite length l (t) as a function of time v (t) = dl / dt . We found that the distribution of v (t) is well characterized by a hyperbolic secant distribution, and that the addition of new branches per unit time is well described by a Poisson process. Combining these measurements with the assumption that branching occurs with equal probability anywhere along the dendrite we were able to construct a mathematical model that provides reasonable agreement with the observed number of branches, and total length of the dendrites of the class IV sensory neuron.

  4. Sonic hedgehog promotes neurite outgrowth of cortical neurons under oxidative stress: Involving of mitochondria and energy metabolism.

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao; Chen, Yanxia

    2017-01-01

    Oxidative stress has been demonstrated to be involved in the etiology of several neurobiological disorders. Sonic hedgehog (Shh), a secreted glycoprotein factor, has been implicated in promoting several aspects of brain remodeling process. Mitochondria may play an important role in controlling fundamental processes in neuroplasticity. However, little evidence is available about the effect and the potential mechanism of Shh on neurite outgrowth in primary cortical neurons under oxidative stress. Here, we revealed that Shh treatment significantly increased the viability of cortical neurons in a dose-dependent manner, which was damaged by hydrogen peroxide (H 2 O 2 ). Shh alleviated the apoptosis rate of H 2 O 2 -induced neurons. Shh also increased neuritogenesis injuried by H 2 O 2 in primary cortical neurons. Moreover, Shh reduced the generation of reactive oxygen species (ROS), increased the activities of SOD and and decreased the productions of MDA. In addition, Shh protected mitochondrial functions, elevated the cellular ATP levels and amelioratesd the impairment of mitochondrial complex II activities of cortical neurons induced by H 2 O 2 . In conclusion, all these results suggest that Shh acts as a prosurvival factor playing an essential role to neurite outgrowth of cortical neuron under H 2 O 2 -induced oxidative stress, possibly through counteracting ROS release and preventing mitochondrial dysfunction and ATP as well as mitochondrial complex II activities against oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells.

    Bauer, Johann; Bussen, Markus; Wise, Petra; Wehland, Markus; Schneider, Sabine; Grimm, Daniela

    2016-07-01

    More than one hundred reports were published about the characterization of cells from malignant and healthy tissues, as well as of endothelial cells and stem cells exposed to microgravity conditions. We retrieved publications about microgravity related studies on each type of cells, extracted the proteins mentioned therein and analyzed them aiming to identify biological processes affected by microgravity culture conditions. The analysis revealed 66 different biological processes, 19 of them were always detected when papers about the four types of cells were analyzed. Since a response to the removal of gravity is common to the different cell types, some of the 19 biological processes could play a role in cellular adaption to microgravity. Applying computer programs, to extract and analyze proteins and genes mentioned in publications becomes essential for scientists interested to get an overview of the rapidly growing fields of gravitational biology and space medicine.

  6. VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells.

    Guillaume Golovkine

    2014-03-01

    Full Text Available Infection of the vascular system by Pseudomonas aeruginosa (Pa occurs during bacterial dissemination in the body or in blood-borne infections. Type 3 secretion system (T3SS toxins from Pa induce a massive retraction when injected into endothelial cells. Here, we addressed the role of type 2 secretion system (T2SS effectors in this process. Mutants with an inactive T2SS were much less effective than wild-type strains at inducing cell retraction. Furthermore, secretomes from wild-types were sufficient to trigger cell-cell junction opening when applied to cells, while T2SS-inactivated mutants had minimal activity. Intoxication was associated with decreased levels of vascular endothelial (VE-cadherin, a homophilic adhesive protein located at endothelial cell-cell junctions. During the process, the protein was cleaved in the middle of its extracellular domain (positions 335 and 349. VE-cadherin attrition was T3SS-independent but T2SS-dependent. Interestingly, the epithelial (E-cadherin was unaffected by T2SS effectors, indicating that this mechanism is specific to endothelial cells. We showed that one of the T2SS effectors, the protease LasB, directly affected VE-cadherin proteolysis, hence promoting cell-cell junction disruption. Furthermore, mouse infection with Pa to induce acute pneumonia lead to significant decreases in lung VE-cadherin levels, whereas the decrease was minimal with T2SS-inactivated or LasB-deleted mutant strains. We conclude that the T2SS plays a pivotal role during Pa infection of the vascular system by breaching the endothelial barrier, and propose a model in which the T2SS and the T3SS cooperate to intoxicate endothelial cells.

  7. Pyrolysed 3D-Carbon Scaffolds Induce Spontaneous Differentiation of Human Neural Stem Cells and Facilitate Real-Time Dopamine Detection

    Amato, Letizia; Heiskanen, Arto; Caviglia, Claudia

    2014-01-01

    Structurally patterned pyrolysed three-dimensional carbon scaffolds (p3Dcarbon) are fabricated and applied for differentiation of human neural stem cells (hNSCs) developed for cell replacement therapy and sensing of released dopamine. In the absence of differentiation factors (DF) the pyrolysed c...

  8. Memory CD4(+)CCR5(+) T cells are abundantly present in the gut of newborn infants to facilitate mother-to-child transmission of HIV-1

    Bunders, Madeleine J.; van der Loos, Chris M.; Klarenbeek, Paul L.; van Hamme, John L.; Boer, Kees; Wilde, Jim C. H.; de Vries, Niek; van Lier, Rene A. W.; Kootstra, Neeltje; Pals, Steven T.; Kuijpers, Taco W.

    2012-01-01

    Despite potential clinical importance, target cells for mother-to-child transmission of HIV-1 have not yet been identified. Cord blood-derived CD4(+) T cells are largely naive and do not express CCR5, the mandatory coreceptor for transmitted HIV-1 R5 strains in infants. In the present study, we

  9. Treatment with 5-Aza-2'-Deoxycytidine Induces Expression of NY-ESO-1 and Facilitates Cytotoxic T Lymphocyte-Mediated Tumor Cell Killing.

    Agnes S Klar

    Full Text Available NY-ESO-1 belongs to the cancer/testis antigen (CTA family and represents an attractive target for cancer immunotherapy. Its expression is induced in a variety of solid tumors via DNA demethylation of the promoter of CpG islands. However, NY-ESO-1 expression is usually very low or absent in some tumors such as breast cancer or multiple myeloma. Therefore, we established an optimized in vitro treatment protocol for up-regulation of NY-ESO-1 expression by tumor cells using the hypomethylating agent 5-aza-2'-deoxycytidine (DAC.We demonstrated de novo induction of NY-ESO-1 in MCF7 breast cancer cells and significantly increased expression in U266 multiple myeloma cells. This effect was time- and dose-dependent with the highest expression of NY-ESO-1 mRNA achieved by the incubation of 10 μM DAC for 72 hours. NY-ESO-1 activation was also confirmed at the protein level as shown by Western blot, flow cytometry, and immunofluorescence staining. The detection and quantification of single NY-ESO-1 peptides presented at the tumor cell surface in the context of HLA-A*0201 molecules revealed an increase of 100% and 50% for MCF7 and U266 cells, respectively. Moreover, the enhanced expression of NY-ESO-1 derived peptides at the cell surface was accompanied by an increased specific lysis of MCF7 and U266 cells by HLA-A*0201/NY-ESO-1(157-165 peptide specific chimeric antigen receptor (CAR CD8+ T cells. In addition, the killing activity of CAR T cells correlated with the secretion of higher IFN-gamma levels.These results indicate that NY-ESO-1 directed immunotherapy with specific CAR T cells might benefit from concomitant DAC treatment.

  10. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells.

    Jovanovic, Ivan P; Pejnovic, Nada N; Radosavljevic, Gordana D; Pantic, Jelena M; Milovanovic, Marija Z; Arsenijevic, Nebojsa N; Lukic, Miodrag L

    2014-04-01

    The role of IL-33/ST2 pathway in antitumor immunity is unclear. Using 4T1 breast cancer model we demonstrate time-dependent increase of endogenous IL-33 at both the mRNA and protein levels in primary tumors and metastatic lungs during cancer progression. Administration of IL-33 accelerated tumor growth and development of lung and liver metastases, which was associated with increased intratumoral accumulation of CD11b(+) Gr-1(+) TGF-β1(+) myeloid-derived suppressor cells (MDSCs) that expressed IL-13α1R, IL-13-producing Lin(-) Sca-1(+) ST2(+) innate lymphoid cells (ILCs) and CD4(+) Foxp3(+) ST2(+) IL-10(+) Tregs compared to untreated mice. Higher incidence of monocytic vs. granulocytic MDSCs and plasmocytoid vs. conventional dendritic cells (DCs) was present in mammary tumors of IL-33-treated mice. Intratumoral NKp46(+) NKG2D(+) and NKp46(+) FasL(+) cells were markedly reduced after IL-33 treatment, while phosphate-buffered saline-treated ST2-deficient mice had increased frequencies of these tumoricidal natural killer (NK) cells compared to untreated wild-type mice. IL-33 promoted intratumoral cell proliferation and neovascularization, which was attenuated in the absence of ST2. Tumor-bearing mice given IL-33 had increased percentages of splenic MDSCs, Lin(-) Sca-1(+) ILCs, IL-10-expressing CD11c(+) DCs and alternatively activated M2 macrophages and higher circulating levels of IL-10 and IL-13. A significantly reduced NK cell, but not CD8(+) T-cell cytotoxicity in IL-33-treated mice was observed and the mammary tumor progression was not affected when CD8(+) T cells were in vivo depleted. We show a previously unrecognized role for IL-33 in promoting breast cancer progression through increased intratumoral accumulation of immunosuppressive cells and by diminishing innate antitumor immunity. Therefore, IL-33 may be considered as an important mediator in the regulation of breast cancer progression. © 2013 UICC.

  11. Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division.

    Varlet, Alice Anaïs; Fuchs, Margit; Luthold, Carole; Lambert, Herman; Landry, Jacques; Lavoie, Josée N

    2017-07-01

    The small heat shock protein HSPB8 and its co-chaperone BAG3 are proposed to regulate cytoskeletal proteostasis in response to mechanical signaling in muscle cells. Here, we show that in dividing cells, the HSPB8-BAG3 complex is instrumental to the accurate disassembly of the actin-based contractile ring during cytokinesis, a process required to allow abscission of daughter cells. Silencing of HSPB8 markedly decreased the mitotic levels of BAG3 in HeLa cells, supporting its crucial role in BAG3 mitotic functions. Cells depleted of HSPB8 were delayed in cytokinesis, remained connected via a disorganized intercellular bridge, and exhibited increased incidence of nuclear abnormalities that result from failed cytokinesis (i.e., bi- and multi-nucleation). Such phenotypes were associated with abnormal accumulation of F-actin at the intercellular bridge of daughter cells at telophase. Remarkably, the actin sequestering drug latrunculin A, like the inhibitor of branched actin polymerization CK666, normalized F-actin during cytokinesis and restored proper cell division in HSPB8-depleted cells, implicating deregulated actin dynamics as a cause of abscission failure. Moreover, this HSPB8-dependent phenotype could be corrected by rapamycin, an autophagy-promoting drug, whereas it was mimicked by drugs impairing lysosomal function. Together, the results further support a role for the HSPB8-BAG3 chaperone complex in quality control of actin-based structure dynamics that are put under high tension, notably during cell cytokinesis. They expand a so-far under-appreciated connection between selective autophagy and cellular morphodynamics that guide cell division.

  12. Atorvastatin enhances neurite outgrowth in cortical neurons in vitro via up-regulating the Akt/mTOR and Akt/GSK-3β signaling pathways

    Jin, Ying; Sui, Hai-juan; Dong, Yan; Ding, Qi; Qu, Wen-hui; Yu, Sheng-xue; Jin, Ying-xin

    2012-01-01

    Aim: To investigate whether atorvastatin can promote formation of neurites in cultured cortical neurons and the signaling mechanisms responsible for this effect. Methods: Cultured rat cerebral cortical neurons were incubated with atorvastatin (0.05–10 μmol/L) for various lengths of time. For pharmacological experiments, inhibitors were added 30 min prior to addition of atorvastatin. Control cultures received a similar amount of DMSO. Following the treatment period, phase-contrast digital images were taken. Digital images of neurons were analyzed for total neurite branch length (TNBL), neurite number, terminal branch number, and soma area by SPOT Advanced Imaging software. After incubation with atorvastatin for 48 h, the levels of phosphorylated 3-phosphoinoside-dependent protein kinase-1 (PDK1), phospho-Akt, phosphorylated mammalian target of rapamycin (mTOR), phosphorylated 4E-binding protein 1 (4E-BP1), p70S6 kinase (p70S6K), and glycogen synthase kinase-3β (GSK-3β) in the cortical neurons were evaluated using Western blotting analyses. Results: Atorvastatin (0.05–10 μmol/L) resulted in dose-dependent increase in neurite number and length in these neurons. Pretreatment of the cortical neurons with phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 (30 μmol/L) and wortmannin (5 μmol/L), Akt inhibitor tricribine (1 μmol/L) or mTOR inhibitor rapamycin (100 nmol/L) blocked the atorvastatin-induced increase in neurite outgrowth, suggesting that atorvastatin promoted neurite outgrowth via activating the PI3K/Akt/mTOR signaling pathway. Atorvastatin (10 μmol/L) significantly increased the levels of phosphorylated PDK1, Akt and mTOR in the cortical neurons, which were prevented by LY294002 (30 μmol/L). Moreover, atorvastatin (10 μmol/L) stimulated the phosphorylation of 4E-BP1 and p70S6K, the substrates of mTOR, in the cortical neurons. In addition, atorvastatin (10 μmol/L) significantly increased the phosphorylated GSK-3β level in the cortical

  13. YAP1 Regulates OCT4 Activity and SOX2 Expression to Facilitate Self-Renewal and Vascular Mimicry of Stem-Like Cells.

    Bora-Singhal, Namrata; Nguyen, Jonathan; Schaal, Courtney; Perumal, Deepak; Singh, Sandeep; Coppola, Domenico; Chellappan, Srikumar

    2015-06-01

    Non-small cell lung cancer (NSCLC) is highly correlated with smoking and has very low survival rates. Multiple studies have shown that stem-like cells contribute to the genesis and progression of NSCLC. Our results show that the transcriptional coactivator yes-associated protein 1 (YAP1), which is the oncogenic component of the Hippo signaling pathway, is elevated in the stem-like cells from NSCLC and contributes to their self-renewal and ability to form angiogenic tubules. Inhibition of YAP1 by a small molecule or depletion of YAP1 by siRNAs suppressed self-renewal and vascular mimicry of stem-like cells. These effects of YAP1 were mediated through the embryonic stem cell transcription factor, Sox2. YAP1 could transcriptionally induce Sox2 through a physical interaction with Oct4; Sox2 induction occurred independent of TEAD2 transcription factor, which is the predominant mediator of YAP1 functions. The binding of Oct4 to YAP1 could be detected in cell lines as well as tumor tissues; the interaction was elevated in NSCLC samples compared to normal tissue as seen by proximity ligation assays. YAP1 bound to Oct4 through the WW domain, and a peptide corresponding to this region could disrupt the interaction. Delivery of the WW domain peptide to stem-like cells disrupted the interaction and abrogated Sox2 expression, self-renewal, and vascular mimicry. Depleting YAP1 reduced the expression of multiple epithelial-mesenchymal transition genes and prevented the growth and metastasis of tumor xenografts in mice; overexpression of Sox2 in YAP1 null cells rescued these functions. These results demonstrate a novel regulation of stem-like functions by YAP1, through the modulation of Sox2 expression. © 2015 AlphaMed Press.

  14. An automated approach to improve efficacy in detecting residual malignant cancer cell for facilitating prognostic assessment of leukemia: an initial study

    Qiu, Yuchen; Lu, Xianglan; Tan, Maxine; Li, Shibo; Liu, Hong; Zheng, Bin

    2015-03-01

    The purpose of this study is to investigate the feasibility of applying automatic interphase FISH cells analysis method for detecting the residual malignancy of post chemotherapy leukemia patients. In the experiment, two clinical specimens with translocation between chromosome No. 9 and 22 or No. 11 and 14 were selected from the patients underwent leukemia diagnosis and treatment. The entire slide of each specimen was first digitalized by a commercial fluorescent microscope using a 40× objective lens. Then, the scanned images were processed by a computer-aided detecting (CAD) scheme to identify the analyzable FISH cells, which is accomplished by applying a series of features including the region size, Brenner gradient and maximum intensity. For each identified cell, the scheme detected and counted the number of the FISH signal dots inside the nucleus, using the adaptive threshold of the region size and distance of the labeled FISH dots. The results showed that the new CAD scheme detected 8093 and 6675 suspicious regions of interest (ROI) in two specimens, among which 4546 and 3807 ROI contain analyzable interphase FISH cell. In these analyzable ROIs, CAD selected 334 and 405 residual malignant cancer cells, which is substantially more than those visually detected in a cytogenetic laboratory of our medical center (334 vs. 122, 405 vs. 160). This investigation indicates that an automatic interphase FISH cell scanning and CAD method has the potential to improve the accuracy and efficiency of the prognostic assessment for leukemia and other genetic related cancer patients in the future.

  15. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection

    Bartholdy, Christina; Stryhn, Anette; Christensen, Jan Pravsgaard

    2004-01-01

    Induction of a monospecific antiviral CD8+ T cell response may pose a risk to the host due to the narrow T cell response induced. At the individual level, this may result in selection of CD8+ T cell escape variants, particularly during chronic viral infection. Second, prior immunization toward a ...... with escape variants. These findings underscore that a monospecific vaccine may induce efficient protective immunity given the right set of circumstances....... of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral...... variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after...

  16. β-Hydroxybutyrate Facilitates Fatty Acids Synthesis Mediated by Sterol Regulatory Element-Binding Protein1 in Bovine Mammary Epithelial Cells

    Min Zhang

    2015-11-01

    Full Text Available Background/Aims: In dairy cows, β-hydroxybutyrate (BHBA is utilized as precursors of de novo synthesized fatty acids in mammary gland. Ketotic cows are characterized by excessive negative energy balance (NEB, which can further increase the blood BHBA concentration. Sterol regulatory element-binding protein1 (SREBP1 and cell death-inducing DNA fragmentation factor-alpha-like effector α (Cidea play crucial roles in lipid synthesis. Therefore, we hypothesized that BHBA could stimulate SREBP1/Cidea pathway to increase milk fat synthesis in bovine mammary epithelial cells. Methods: Bovine mammary epithelial cells were treated with different concentrations of BHBA and transfected with adenovirus to silence SREBP1 expression. The effects of BHBA on the lipid synthesis in bovine mammary epithelial cells were investigated. Results: The results showed that BHBA could significantly increase the expression of SREBP1, fatty acid synthase (FAS, acetyl-CoA carboxylase α (ACC-α, Cidea and diacylglycerol transferase-1 (DGAT-1, as well as the triglycerides (TG content in bovine mammary epithelial cells. BHBA treatment also increased the transfer of mature SREBP1 to nucleus compared with control group. However, SREBP1 silencing could significantly down-regulate the overexpression of FAS, ACC-α, Cidea and DGAT-1, as well as TG content induced by BHBA. Conclusion: The present data indicate that BHBA can significantly increase TG secretion mediated by SREBP1 in bovine mammary epithelial cells.

  17. Interaction with CCNH/CDK7 facilitates CtBP2 promoting esophageal squamous cell carcinoma (ESCC) metastasis via upregulating epithelial-mesenchymal transition (EMT) progression.

    Zhang, Jianguo; Zhu, Junya; Yang, Lei; Guan, Chengqi; Ni, Runzhou; Wang, Yuchan; Ji, Lili; Tian, Ye

    2015-09-01

    CtBP2, as a transcriptional corepressor of epithelial-specific genes, has been reported to promote tumor due to upregulating epithelial-mesenchymal transition (EMT) in cancer cells. CtBP2 was also demonstrated to contribute to the proliferation of esophageal squamous cell carcinoma (ESCC) cells through a negative transcriptional regulation of p16(INK4A). In this study, for the first time, we reported that CtBP2 expression, along with CCNH/CDK7, was higher in ESCC tissues with lymph node metastases than in those without lymph node metastases. Moreover, both CtBP2 and CCNH/CDK7 were positively correlated with E-cadherin, tumor grade, and tumor metastasis. However, the concrete mechanism of CtBP2's role in enhancing ESCC migration remains incompletely understood. We confirmed that CCNH/CDK7 could directly interact with CtBP2 in ESCC cells in vivo and in vitro. Furthermore, our data demonstrate for the first time that CtBP2 enhanced the migration of ESCC cells in a CCNH/CDK7-dependent manner. Our results indicated that CCNH/CDK7-CtBP2 axis may augment ESCC cell migration, and targeting the interaction of both may provide a novel therapeutic target of ESCC.

  18. Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner.

    Drela, Katarzyna; Sarnowska, Anna; Siedlecka, Patrycja; Szablowska-Gadomska, Ilona; Wielgos, Miroslaw; Jurga, Marcin; Lukomska, Barbara; Domanska-Janik, Krystyna

    2014-07-01

    As we approach the era of mesenchymal stem cell (MSC) application in the medical clinic, the standarization of their culture conditions are of the particular importance. We re-evaluated the influences of oxygens concentration on proliferation, stemness and differentiation of human umbilical cord Wharton Jelly-derived MSCs (WJ-MSCs). Primary cultures growing in 21% oxygen were either transferred into 5% O2 or continued to grow under standard 21% oxygen conditions. Cell expansion was estimated by WST1/enzyme-linked immunosorbent assay or cell counting. After 2 or 4 weeks of culture, cell phenotypes were evaluated using microscopic, immunocytochemical, fluorescence-activated cell-sorting and molecular methods. Genes and proteins typical of mesenchymal cells, committed neural cells or more primitive stem/progenitors (Oct4A, Nanog, Rex1, Sox2) and hypoxia inducible factor (HIF)-1α-3α were evaluated. Lowering O2 concentration from 21% to the physiologically relevant 5% level substantially affected cell characteristics, with induction of stemness-related-transcription-factor and stimulation of cell proliferative capacity, with increased colony-forming unit fibroblasts (CFU-F) centers exerting OCT4A, NANOG and HIF-1α and HIF-2α immunoreactivity. Moreover, the spontaneous and time-dependent ability of WJ-MSCs to differentiate into neural lineage under 21% O2 culture was blocked in the reduced oxygen condition. Importantly, treatment with trichostatin A (TSA, a histone deacetylase inhibitor) suppressed HIF-1α and HIF-2α expression, in addition to blockading the cellular effects of reduced oxygen concentration. A physiologically relevant microenvironment of 5% O2 rejuvenates WJ-MSC culture toward less-differentiated, more primitive and faster-growing phenotypes with involvement of HIF-1α and HIF-2α-mediated and TSA-sensitive chromatin modification mechanisms. These observations add to the understanding of MSC responses to defined culture conditions, which is the most

  19. Coal export facilitation

    Eeles, L.

    1998-01-01

    There is a wide range of trade barriers, particularly tariffs, in current and potential coal market. Commonwealth departments in Australia play a crucial role in supporting government industry policies. This article summarises some of more recent activities of the Department of Primary Industries and Energy (DPIE) in facilitating the export of Australian Coals. Coal export facilitation activities are designed to assist the Australian coal industry by directing Commonwealth Government resources towards issues which would be inappropriate or difficult for the industry to address itself

  20. Neutrophil-induced transmigration of tumour cells treated with tumour-conditioned medium is facilitated by granulocyte-macrophage colony-stimulating factor.

    Wu, Q D

    2012-02-03

    OBJECTIVE: To investigate the effect of different cytokines that are present in tumour-conditioned medium on human neutrophil (PMN)-induced tumour cell transmigration. DESIGN: Laboratory study. SETTING: University hospital, Ireland. MATERIAL: Isolated human PMN and cultured human breast tumour cell line, MDA-MB-231. Interventions: Human PMN treated with either tumour-conditioned medium or different media neutralised with monoclonal antibodies (MoAb), a