WorldWideScience

Sample records for cells expressing indoleamine

  1. The expression and prognostic relevance of indoleamine 2,3-dioxygenase in tongue squamous cell carcinoma.

    Science.gov (United States)

    Seppälä, Miia; Halme, Elina; Tiilikainen, Lauri; Luukkainen, Annika; Laranne, Jussi; Rautiainen, Markus; Huhtala, Heini; Paavonen, Timo; Toppila-Salmi, Sanna

    2016-07-01

    Conclusion IDO might be useful for predicting progression of primary tumor stage T2 and T3 in tongue squamous cell carcinoma (TSCC), but does not seem like a specific biomarker for diagnosing TSCC and predicting patient survival. Objectives Indoleamine 2,3-dioxygenase (IDO) is expressed in many cells and it catabolises the essential amino acid tryptophan to kynurenine. IDO acts as an immune modulator through suppression of T-cell immunity and other pathways. In cancer cells, IDO has been proposed to promote tumor progression by enabling malignant cells to escape from the immune system. The aim of this study was to evaluate the association and prognostic relevance of IDO expression in TSCC. Method One hundred and eight retrospective tongue and lymph node specimens were stained immunohistochemically with monoclonal antibody anti-indoleamine 2,3-dioxygenase. The relative abundance of IDO positive epithelial cells, IDO staining intensity, and inflammation were assessed semi-quantitatively with light microscopy. Results IDO was expressed stronger in tongue hyperplasia than in TSCC. However, IDO expression associated with poor survival in the sub-groups with primary tumor stage T2-T4 and in the sub-group with strong inflammation in tumors' invasive front. PMID:26982018

  2. INDOLEAMINE 2,3-DIOXYGENASE INDUCES EXPRESSION OF A NOVEL TRYPTOPHAN TRANSPORTER IN MOUSE AND HUMAN TUMOR CELLS1

    OpenAIRE

    Silk, Jonathan D.; Lakhal, Samira; Laynes, Robert; Vallius, Laura; Karydis, Ioannis; Marcea, Cornelius; Boyd, C. A. Richard; Cerundolo, Vincenzo

    2011-01-01

    Indoleamine 2,3 dioxygenase (IDO) is the rate-limiting enzyme in the kynurenine pathway, catabolizing tryptophan to kynurenine. Tryptophan depletion by IDO expressing tumors is a common mechanism of immune evasion inducing regulatory T cells and inhibiting effector T cells. As mammalian cells cannot synthesize tryptophan, it remains unclear how IDO positive tumor cells overcome the detrimental effects of local tryptophan depletion.

  3. (-)-Epigallocatechin gallate inhibits the expression of indoleamine 2,3-dioxygenase in human colorectal cancer cells.

    Science.gov (United States)

    Ogawa, Kengo; Hara, Takeshi; Shimizu, Masahito; Nagano, Junji; Ohno, Tomohiko; Hoshi, Masato; Ito, Hiroyasu; Tsurumi, Hisashi; Saito, Kuniaki; Seishima, Mitsuru; Moriwaki, Hisataka

    2012-09-01

    Immune escape, the ability of tumor cells to avoid tumor-specific immune responses, occurs during the development and progression of several types of human malignancies, including colorectal cancer (CRC). Indoleamine 2,3-dioxygenase (IDO), the tryptophan catabolic enzyme, plays a significant role in regulating the immune response and provides tumor cells with a potent tool to evade the immune system. In the present study, we examined the effects of (-)-epigallocatechin gallate (EGCG), the major catechin in green tea, on the inhibition of IDO expression induced by interferon (IFN)-γ in human CRC cells. We found that IFN-γ increased the expression levels of IDO protein and mRNA in HT29 and SW837 CRC cell lines. Treatment of SW837 cells with EGCG significantly decreased IFN-γ-induced expression of IDO protein and mRNA in a dose-dependent manner. Enzymatic activity of IDO, determined by the concentration of L-kynurenine in the culture medium, was also significantly inhibited by EGCG treatment. Phosphorylation of signal transducer and activator of transcription 1 (STAT1) induced by IFN-γ was also significantly inhibited by EGCG. Reporter assays indicated that EGCG inhibited the transcriptional activities of IDO promoters, IFN-stimulated response element and IFN-γ activation sequence, activated by STAT1 phosphorylation. These findings suggest that EGCG may exert antitumor effects on CRC, at least in part, by inhibiting the expression and function of IDO through the suppression of STAT1 activation. EGCG may, thus, serve as a potential agent for antitumor immunotherapy and be useful in the chemoprevention and/or treatment of CRC. PMID:23741252

  4. Indoleamine 2,3-Dioxygenase-Expressing Aortic Plasmacytoid Dendritic Cells Protect against Atherosclerosis by Induction of Regulatory T Cells.

    Science.gov (United States)

    Yun, Tae Jin; Lee, Jun Seong; Machmach, Kawthar; Shim, Dahee; Choi, Junhee; Wi, Young Jin; Jang, Hyung Seok; Jung, In-Hyuk; Kim, Kyeongdae; Yoon, Won Kee; Miah, Mohammad Alam; Li, Bin; Chang, Jinsam; Bego, Mariana G; Pham, Tram N Q; Loschko, Jakob; Fritz, Jörg Hermann; Krug, Anne B; Lee, Seung-Pyo; Keler, Tibor; Guimond, Jean V; Haddad, Elie; Cohen, Eric A; Sirois, Martin G; El-Hamamsy, Ismail; Colonna, Marco; Oh, Goo Taeg; Choi, Jae-Hoon; Cheong, Cheolho

    2016-05-10

    Plasmacytoid dendritic cells (pDCs) are unique bone-marrow-derived cells that produce large amounts of type I interferon in response to microbial stimulation. Furthermore, pDCs also promote T cell tolerance in sterile-inflammation conditions. However, the immunomodulatory role of aortic pDCs in atherosclerosis has been poorly understood. Here, we identified functional mouse and human pDCs in the aortic intima and showed that selective, inducible pDC depletion in mice exacerbates atherosclerosis. Aortic pDCs expressed CCR9 and indoleamine 2,3-dioxygenase 1 (IDO-1), an enzyme involved in driving the generation of regulatory T cells (Tregs). As a consequence, loss of pDCs resulted in decreased numbers of Tregs and reduced IL-10 levels in the aorta. Moreover, antigen presentation by pDCs expanded antigen-specific Tregs in the atherosclerotic aorta. Notably, Tregs ablation affected pDC homeostasis in diseased aorta. Accordingly, pDCs in human atherosclerotic aortas colocalized with Tregs. Collectively, we identified a mechanism of atheroprotection mediated by tolerogenic aortic pDCs. PMID:27166946

  5. Indoleamine 2,3-dioxygenase (IDO) is frequently expressed in stromal cells of Hodgkin lymphoma and is associated with adverse clinical features: a retrospective cohort study

    International Nuclear Information System (INIS)

    Regulation of tumor microenvironment is closely involved in the prognosis of Hodgkin lymphoma (HL). Indoleamine 2,3-dioxygenase (IDO) is an enzyme acting as immune modulator through suppression of T-cell immunity. This study aims to investigate role of IDO in the microenvironment of HL. A total of 121 cases of HL were enrolled to do immunohistochemistry for IDO, CD163, CD68, CD4, CD8, and FoxP3. Positivity was evaluated from area fractions or numbers of positive cells using automated image analyzer. Correlations between IDO expression and various cellular infiltrates and clinicopathologic parameters were examined and survival analyses were performed. IDO was expressed in histiocytes, dendritic cells and some endothelial cells with variable degrees, but not in tumor cells. IDO positive cells were more frequently found in mixed cellularity type than other histologic types, and in cases with EBV+, high Ann Arbor stages, B symptoms, and high IPS (all p < 0.05). High IDO expression was associated with inferior survival (p < 0.001) and reflects an independent prognostic factor in nodular sclerosis HL. This is the first study suggesting that IDO is the principle immunomodulator and is involved to adverse clinical outcomes of HL

  6. Vascular endothelial growth factor-A enhances indoleamine 2,3-dioxygenase expression by dendritic cells and subsequently impacts lymphocyte proliferation

    Directory of Open Access Journals (Sweden)

    Luciana Cavalheiro Marti

    2014-02-01

    Full Text Available Dendritic cells (DCs are antigen (Ag-presenting cells that activate and stimulate effective immune responses by T cells, but can also act as negative regulators of these responses and thus play important roles in immune regulation. Pro-angiogenic vascular endothelial growth factor (VEGF has been shown to cause defective DC differentiation and maturation. Previous studies have demonstrated that the addition of VEGF to DC cultures renders these cells weak stimulators of Ag-specific T cells due to the inhibitory effects mediated by VEGF receptor 1 (VEGFR1 and/or VEGFR2 signalling. As the enzyme indoleamine 2,3-dioxygenase (IDO is recognised as an important negative regulator of immune responses, this study aimed to investigate whether VEGF affects the expression of IDO by DCs and whether VEGF-matured DCs acquire a suppressor phenotype. Our results are the first to demonstrate that VEGF increases the expression and activity of IDO in DCs, which has a suppressive effect on Ag-specific and mitogen-stimulated lymphocyte proliferation. These mechanisms have broad implications for the study of immunological responses and tolerance under conditions as diverse as cancer, graft rejection and autoimmunity.

  7. Tryptophan recycling is responsible for the interferon-gamma resistance of Chlamydia psittaci GPIC in indoleamine dioxygenase-expressing host cells.

    Science.gov (United States)

    Wood, Heidi; Roshick, Christine; McClarty, Grant

    2004-05-01

    Comparative genomics indicates that vast differences in Chlamydia sp. host range and disease characteristics can be traced back to subtle variations in gene content within a region of the chromosome termed the plasticity zone. Genes required for tryptophan biosynthesis are located in the plasticity zone; however, the complement of genes encoded varies depending on the chlamydial species examined. Of the sequenced chlamydia genomes, Chlamydia psittaci GPIC contains the most complete tryptophan biosynthesis operon, encoding trpRDCFBA. Immediately downstream of the trp operon are genes encoding kynureninase and ribose phosphate pyrophosphokinase. Here, we show that, in GPIC, these genes are transcribed as a single transcript, the expression of which is regulated by tryptophan. Complementation analyses, using various mutant Escherichia coli isolates, indicate that the tryptophan biosynthesis, kynureninase and ribose phosphate pyrophosphokinase gene products are functional. Furthermore, growth of C. psittaci GPIC in HeLa cells, cultured in tryptophan-free medium, could be rescued by the addition of anthranilate, kynurenine or indole. In total, our results indicate that this complement of genes enables GPIC to recycle tryptophan and thus accounts for the interferon-gamma resistant phenotype displayed in indoleamine-2,3-dioxygenase-expressing host cells. PMID:15101993

  8. Indoleamine 2,3-Dioxygenase: Expressing Cells in Inflammatory Bowel Disease—A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Janette Furuzawa-Carballeda

    2013-01-01

    Full Text Available Aim. To characterise and enumerate IDO+ cells, Tregs, and T cell subsets in patients with ulcerative colitis (UC and Crohn’s disease (CD with regard to their clinical activity. Methods. Ten active UC (aUC, 10 inactive UC (iUC, 6 aCD, and 8 iCD patients and 10 healthy individuals were included in the study. Circulating Foxp3-, IDO-, IL-17A-, IL-4-, IFN-γ-, and IL-10-expressing CD4+ T cells were quantitated by flow cytometry. Interleukin-17-expressing cells, CD25+/Foxp3+ Tregs, and CD123+/IDO+ plasmacytoid dendritic cells were evaluated in intestinal biopsies from 10 aUC, 6 aCD, and 10 noninflamed tissues. Results. All CD4+ T subsets were increased in aIBD patients compared with healthy donors. Meanwhile, frequency of CD8α+/CD16+/IDO+, CD8α+/CD56+/IDO+, CD8α+/CD80+/IDO+, CD8α+/CD123+/IDO+ large granular nonlymphoid cells, and CCR6+/CD123+/IDO+ plasmacytoid dendritic cells was higher in aIBD patients versus healthy donors or iIBD patients. Tissue IL-17A+ cells were present in higher amounts in aIBD versus noninflamed controls. IDO- and Foxp3-expressing cells were increased in aUC versus aCD patients and noninflamed tissues. Conclusions. The findings represent an original work in Mexican Mestizo patients with IBD. It shows that Tregs and IDO-expressing cells are increased with regard to disease activity. These cells could significantly shape inflammatory bowel disease pathophysiology, severity, and tolerance loss.

  9. Natural CD4+ T-cell responses against indoleamine 2,3-dioxygenase

    DEFF Research Database (Denmark)

    Munir, Shamaila; Larsen, Stine Kiaer; Iversen, Trine Zeeberg; Donia, Marco; Klausen, Tobias Wirenfeldt; Svane, Inge Marie; Straten, Per Thor; Andersen, Mads Hald

    2012-01-01

    The enzyme indoleamine 2,3-dioxygenase (IDO) contributes to immune tolerance in a variety of settings. In cancer IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it endorses the establishment of peripheral immune tolerance to tum...

  10. LPS-induced NF-{kappa}B expression in THP-1Blue cells correlates with neopterin production and activity of indoleamine 2,3-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Schroecksnadel, Sebastian [Division of Biological Chemistry, Innsbruck Medical University, Innsbruck (Austria); Jenny, Marcel [Division of Biological Chemistry, Innsbruck Medical University, Innsbruck (Austria); Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck (Austria); Kurz, Katharina [Department of Internal Medicine, Innsbruck Medical University, Innsbruck (Austria); Klein, Angela [Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck (Austria); Ledochowski, Maximilian [Department of Internal Medicine, Innsbruck Medical University, Innsbruck (Austria); Uberall, Florian [Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck (Austria); Fuchs, Dietmar, E-mail: dietmar.fuchs@i-med.ac.at [Division of Biological Chemistry, Innsbruck Medical University, Innsbruck (Austria)

    2010-09-03

    Research highlights: {yields} LPS induces NF-{kappa}B, neopterin formation and tryptophan degradation in THP-1 cells. {yields} Close dose- and time-dependent correlations exist between these biochemical events. {yields} Data provides some evidence for a parallel induction of them upon TLR stimulation. {yields} Results can be of considerable relevance also in vivo. -- Abstract: Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-{gamma} (IFN-{gamma}). In parallel, IFN-{gamma} induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-{kappa}B (NF-{kappa}B) is induced by ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-{kappa}B expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-{kappa}B activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-{kappa}B inducible reporter system. In cells stimulated with LPS, a significant induction of NF-{kappa}B was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-{kappa}B activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-{kappa}B, neopterin

  11. Induction of indoleamine 2,3-dioxygenase (IDO) enzymatic activity contributes to interferon-gamma induced apoptosis and death receptor 5 expression in human non-small cell lung cancer cells.

    Science.gov (United States)

    Chung, Ting Wen; Tan, Kok-Tong; Chan, Hong-Lin; Lai, Ming-Derg; Yen, Meng-Chi; Li, Yi-Ron; Lin, Sheng Hao; Lin, Chi-Chen

    2014-01-01

    Interferon-gamma (IFN-γ) has been used to treat various malignant tumors. However, the molecular mechanisms underlying the direct anti-proliferative activity of IFN-γ are poorly understood. In the present study, we examined the in vitro antitumor activity of IFN-γ on two human non-small-cell lung carcinoma (NSCLC) cell lines, H322M and H226. Our findings indicated that IFN-γ treatment caused a time-dependent reduction in cell viability and induced apoptosis through a FADD-mediated caspase-8/tBid/mitochondria-dependent pathway in both cell lines. Notably, we also postulated that IFN-γ increased indoleamine 2,3-dioxygenase (IDO) expression and enzymatic activity in H322M and H226 cells. In addition, inhibition of IDO activity by the IDO inhibitor 1-MT or tryptophan significantly reduced IFN-γ-induced apoptosis and death receptor 5 (DR5) expression, which suggests that IDO enzymatic activity plays an important role in the anti-NSCLC cancer effect of IFN-γ. These results provide new mechanistic insights into interferon-γ antitumor activity and further support IFN-γ as a potential therapeutic adjuvant for the treatment of NCSLC. PMID:25292102

  12. Indoleamine 2,3 Dioxygenase (IDO Expression and Activity in Relapsing-Remitting Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Roberta Mancuso

    Full Text Available Interferon gamma (IFN-γ production induces the transcription of indoleamine 2,3 dioxygenase (IDO resulting in the reduction of T-cell activation and proliferation through the depletion of tryptophan and the elicitation of Treg lymphocytes. IDO was shown to be involved in the pathogenesis of autoimmune diseases; we investigated whether changes in IDO gene expression and activity could be indicative of onset of relapse in multiple sclerosis (MS patients.IDO and interferon-γ (IFN-γ gene expression, serum IDO activity (Kynurenine/Tryptophan ratio and serum neopterin concentration--a protein released by macrophages upon IFN-γ stimulation--were measured in 51 individuals: 36 relapsing remitting (RR-MS patients (21 in acute phase--AMS, 15 in stable phase--SMS and 15 healthy controls (HC. PBMCs samples in AMS patients were collected before (BT-AMS and during glucocorticoids-based therapy (DT-AMS.IDO expression was increased and IFN-γ was decreased (p<0.001 in BT-AMS compared to SMS patients. Glucocorticoids-induced disease remission resulted in a significant reduction of IDO and IFN-γ gene expression, IDO catalytic activity (p<0.001. Serum neopterin concentration followed the same trend as IDO expression and activity.Measurement of IDO gene expression and activity in blood could be a useful marker to monitor the clinical course of RR-MS. Therapeutic interventions modulating IDO activity may be beneficial in MS.

  13. Indoleamine 2,3-dioxygenase expression in patients with allergic rhinitis: a case-control study

    OpenAIRE

    Luukkainen Annika; Karjalainen Jussi; Honkanen Teemu; Lehtonen Mikko; Paavonen Timo; Toppila-Salmi Sanna

    2011-01-01

    Abstract Background Indoleamine 2,3-dioxygenase (IDO) is a tryptophan catalyzing enzyme. It has been suggested that it has a role in lower airway allergic inflammations, but its role in allergic rhinitis has not been investigated. Objective Our aim was to evaluate the expression of IDO in the nasal mucosa of allergic rhinitis patients allergic to birch pollen during peak exposure to birch pollen allergen and compare it to non-atopic patients. Methods IDO expression was immunohistochemically e...

  14. Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Køllgaard, Tania; Andersen, Rikke Sick; van den Berg, Joost Huibert; Svane, Inge Marie; Straten, Per thor; Andersen, Mads Hald

    2011-01-01

    Several lines of data have suggested a possible link between the indoleamine 2,3-dioxygenase (IDO)-like protein IDO2 and cancer. First, IDO2 expression has been described in human tumors, including renal, gastric, colon, and pancreatic tumors. Second, the apparent selective inhibition of IDO2 by ...

  15. Indoleamine 2,3 dioxygenase and regulation of T cell immunity

    International Nuclear Information System (INIS)

    Regulation of adaptive immune responses is critically important to allow the adaptive immune system to eradicate infections while causing minimal collateral damage to infected tissues, as well as preventing autoimmune disease mediated by self-reactive lymphocytes. Tumors and pathogens that cause persistent infections can subvert immunoregulatory processes to protect themselves from destruction by T cells, to the detriment of patients. A growing body of evidence supports the hypothesis that specialized subsets of dendritic cells expressing indoleamine 2,3 dioxygenase (IDO), which catalyzes oxidative catabolism of tryptophan, play critical roles in regulation of T cell-mediated immune responses. IDO-dependent T cell suppression by dendritic cells suggests that biochemical changes due to tryptophan catabolism have profound effects on T cell proliferation, differentiation, effector functions, and viability. This has critical implications for immunotherapeutic manipulations designed for patients with cancer and chronic infectious diseases. In this review, I focus on dendritic cells that can express IDO, and which acquire potent T cell regulatory functions as a consequence

  16. Relationship of Abortion and the Expression of Indoleamine 2,3- dioxygenase (IDO) in Villus and Syncytiotrophoblasts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To study the relationship of abortion and the expression of indoleamine 2,3- dioxygenase (IDO) in villus and syncytiotrophoblast in vitro.Methods RT-PCR was applied to analyze the mRNA transcription of IDO in villus of normal pregnancy and inevitable abortion and JAR cells as well. Immunohistochemistry was applied to analyze the expression of IDO protein in villus. Western blot was applied to determinate the expression of IDO protein on cultured syncytiotrophoblast. Highperformance liquid chromatography was applied to determinate whether there was kynurenine in cell culture medium of syncytiotrophoblast.Results The expression of IDO mRNA and protein in villus of inevitable abortion was lower than that of normal pregnancy; IDO mRNA did not express in JAR cells. IDO protein expressed on cultured syncytiotrophoblast, and there was kynurenine in cell culture medium of syncytiotrophoblast.Conclusion Appropriate expression of IDO in villus is necessary for maintenance of normal pregnancy and an active IDO protein expresses in syncytiotrophoblast.

  17. Natural CD4+ T-cell responses against indoleamine 2,3-dioxygenase.

    Directory of Open Access Journals (Sweden)

    Shamaila Munir

    Full Text Available BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO contributes to immune tolerance in a variety of settings. In cancer IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it endorses the establishment of peripheral immune tolerance to tumor antigens. Recently, we described cytotoxic CD8(+ T-cell reactivity towards IDO-derived peptides. METHODS AND FINDINGS: In the present study, we show that CD4(+ helper T cells additionally spontaneously recognize IDO. Hence, we scrutinized the vicinity of the previously described HLA-A*0201-restricted IDO-epitope for CD4(+ T-cell epitopes. We demonstrated the presence of naturally occurring IDO-specific CD4(+ T cells in cancer patients and to a lesser extent in healthy donors by cytokine release ELISPOT. IDO-reactive CD4(+ T cells released IFN-γ, TNF-α, as well as IL-17. We confirm HLA class II-restriction by the addition of HLA class II specific blocking antibodies. In addition, we detected a trend between class I- and class II-restricted IDO responses and detected an association between IDO-specific CD4(+ T cells and CD8(+ CMV-responses. Finally, we could detect IL-10 releasing IDO-reactive CD4(+ T cells. CONCLUSION: IDO is spontaneously recognized by HLA class II-restricted, CD4(+ T cells in cancer patients and in healthy individuals. IDO-specific T cells may participate in immune-regulatory networks where the activation of pro-inflammatory IDO-specific CD4(+ responses may well overcome or delay the immune suppressive actions of the IDO-protein, which are otherwise a consequence of the early expression of IDO in maturing antigen presenting cells. In contrast, IDO-specific regulatory T cells may enhance IDO-mediated immune suppression.

  18. Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Hadrup, Sine Reker; Svane, Inge Marie; Hjortso, Mads Christian; Straten, Per Thor; Andersen, Mads Hald

    2011-01-01

    Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme that is implicated in suppressing T-cell immunity in normal and pathologic settings. Here, we describe that spontaneous cytotoxic T-cell reactivity against IDO exists not only in patients with cancer but also in healthy persons. We...... caused an increase in the production of the proinflammatory cytokines IL-6 and tumor necrosis factor-alpha while decreasing the IL-10 production. Finally, the addition of IDO-inducing agents (ie, the TLR9 ligand cytosine-phosphate- guanosine, soluble cytotoxic T lymphocyte-associated antigen 4, or...

  19. Eosinophil Granulocytes Account for Indoleamine 2,3-Dioxygenase-Mediated Immune Escape in Human Non Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Simonetta Astigiano

    2005-04-01

    Full Text Available Indoleamine 2,3-dioxygenase (IDO, a catabolizing enzyme of tryptophan, is supposed to play a role in tumor immune escape. Its expression in solid tumors has not yet been well elucidated: IDO can be expressed by the tumor cells themselves, or by ill-defined infiltrating cells, possibly depending on tumor type. We have investigated IDO expression in 25 cases of non small cell lung cancer (NSCLC. Using histochemistry and immunohistochemistry, we found that IDO was expressed not by tumor cells, but by normal cells infiltrating the peritumoral stroma. These cells were neither macrophages nor dendritic cells, and were identified as eosinophil granulocytes. The amount of IDO-positive eosinophils varied in different cases, ranging from a few cells to more than 50 per field at x200 magnification. IDO protein in NSCLC was enzymatically active. Therefore, at least in NSCLC cases displaying a large amount of these cells in the inflammatory infiltrate, IDO-positive eosinophils could exert an effective immunosuppressive action. On analyzing the 17 patients with adequate follow-up, a significant relationship was found between the amount of IDO-positive infiltrate and overall survival. This finding suggests that the degree of IDO-positive infiltrate could be a prognostic marker in NSCLC.

  20. Indoleamine 2,3-dioxygenase expression in patients with allergic rhinitis: a case-control study

    Directory of Open Access Journals (Sweden)

    Luukkainen Annika

    2011-12-01

    Full Text Available Abstract Background Indoleamine 2,3-dioxygenase (IDO is a tryptophan catalyzing enzyme. It has been suggested that it has a role in lower airway allergic inflammations, but its role in allergic rhinitis has not been investigated. Objective Our aim was to evaluate the expression of IDO in the nasal mucosa of allergic rhinitis patients allergic to birch pollen during peak exposure to birch pollen allergen and compare it to non-atopic patients. Methods IDO expression was immunohistochemically evaluated from nasal specimens obtained in- and off-season from otherwise healthy non-smoking volunteers both allergic to birch pollen (having mild or moderate allergic rhinoconjunctivitis and non-allergic controls. Results: The IDO expression levels were low in healthy controls and remained low also in patients allergic to birch pollen. There were no differences in the expression of IDO in- and off-season in either healthy or allergic subjects. Conclusions There is a controversy in the role of IDO in upper and lower airways during allergic airway disease. It seems that IDO is associated to allergic inflammations of the lower airways, but does not have a local role in the nasal cavity at least in mild or moderate forms of allergic rhinitis.

  1. Parallel induction of tetrahydrobiopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human cells and cell lines by interferon-gamma.

    Science.gov (United States)

    Werner, E R; Werner-Felmayer, G; Fuchs, D; Hausen, A; Reibnegger, G; Wachter, H

    1989-01-01

    In all of eight tested human cells and cell lines with inducible indoleamine 2,3-dioxygenase (EC 1.13.11.17) tetrahydrobiopterin biosynthesis was activated by interferon-gamma. This was demonstrated by GTP cyclohydrolase I (EC 3.5.4.16) activities and intracellular neopterin and biopterin concentrations. Pteridine synthesis was influenced by extracellular tryptophan. In T 24-cell extracts, submillimolar concentrations of tetrahydrobiopterin stimulated the indoleamine 2,3-dioxygenase reaction. PMID:2511835

  2. CD103 marks a subset of human CD34+-derived langerin+ dendritic cells that induce T-regulatory cells via indoleamine 2,3-dioxygenase-1.

    Science.gov (United States)

    Očadlíková, Darina; Trabanelli, Sara; Salvestrini, Valentina; Ciciarello, Marilena; Evangelisti, Cecilia; Lecciso, Mariangela; Sabattini, Elena; Righi, Simona; Piccioli, Milena; Pileri, Stefano A; Lemoli, Roberto M; Curti, Antonio

    2015-04-01

    Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive molecule expressed in some subsets of normal and neoplastic cells. Mature human dendritic cells (DCs) have been shown to express IDO1, but little is known about its expression and function during DC differentiation from bone marrow hematopoietic stem/progenitor cells (HSPCs). Here, we show that during in vitro differentiation along the myeloid DC lineage, CD34(+) HSPCs acquire IDO1 expression, which acts in a tolerogenic manner by inducing a population of fully functional CD4(+)CD25(+) FOXP3(+) T-regulatory cells. Phenotypically, CD1a(+)CD14(-) HPSC-derived DCs expressed IDO1, langerin, CD11b, and CD1c. Cell-sorting experiments demonstrated that IDO1 expression is found in a subset of CD1a(+)CD14(-)langerin(+) cells, expressing CD103, which is capable of inducing T-regulatory cells in an IDO1-dependent manner. In conclusion, DC differentiation from CD34(+) HSPCs results in the expression of a functionally active IDO1 protein in CD1a(+)langerin(+), CD103-expressing DCs. These data point toward IDO1 expression as part of a tolerogenic signature during DC development. PMID:25584868

  3. Expression Pattern and Clinicopathological Relevance of the Indoleamine 2,3-Dioxygenase 1/Tryptophan 2,3-Dioxygenase Protein in Colorectal Cancer.

    Science.gov (United States)

    Chen, I-Chien; Lee, Kuen-Haur; Hsu, Ying-Hua; Wang, Wei-Ran; Chen, Chuan-Mu; Cheng, Ya-Wen

    2016-01-01

    Aims. Cancer cells use the indoleamine 2,3-dioxygenase 1 (IDO1) pathway to suppress the host's immune response in order to facilitate survival, growth, invasion, and metastasis of malignant cells. Higher IDO1 expression was shown to be involved in colorectal cancer (CRC) progression and to be correlated with impaired clinical outcome. However, the potential correlation between the expression of IDO1 in a CRC population with a low mutation rate of the APC gene remains unknown. Material and Methods. Tissues and blood samples were collected from 192 CRC patients. The expressions of IDO1, tryptophan 2,3-dioxygenase (TDO2), and beta-catenin proteins were analyzed by immunohistochemistry. Microsatellite instability (MSI) was determined by PCR amplification of microsatellite loci. Results. The results showed that high IDO1 or TDO2 protein expression was associated with characteristics of more aggressive phenotypes of CRC. For the first time, they also revealed a positive correlation between the abnormal expression of beta-catenin and IDO1 or TDO2 proteins in a CRC population with a low mutation rate of APC. Conclusion. We concluded that an IDO1-regulated molecular pathway led to abnormal expression of beta-catenin in the nucleus/cytoplasm of CRC patients with low mutation rate of APC, making IDO1 an interesting target for immunotherapy in CRC. PMID:27578919

  4. Tryptamine and dimethyltryptamine inhibit indoleamine 2,3 dioxygenase and increase the tumor-reactive effect of peripheral blood mononuclear cells.

    Science.gov (United States)

    Tourino, Melissa Cavalheiro; de Oliveira, Edson Mendes; Bellé, Luziane Potrich; Knebel, Franciele Hinterholz; Albuquerque, Renata Chaves; Dörr, Felipe Augusto; Okada, Sabrina Sayori; Migliorini, Silene; Soares, Irene Silva; Campa, Ana

    2013-07-01

    Indoleamine 2,3-dioxygenase (IDO) is an interferon-γ (IFN-γ)-induced tryptophan-degrading enzyme, producing kynurenine (KYN) that participates in the mechanism of tumor immune tolerance. Thus, IDO inhibition has been considered a strategy for anticancer therapy. The aim of this study was to identify whether the metabolites originated from the competitive routes of tryptophan metabolism, such as the serotonergic or N, N-dimethyltryptamine (DMT) pathways, have inhibitory effects on recombinant human IDO (rhIDO) activity. Serotonin and melatonin had no effect; on the other hand, tryptamine (TRY) and DMT modulated the activity of rhIDO as classical non-competitive inhibitors, with Ki values of 156 and 506 μM, respectively. This inhibitory effect was also observed on constitutively expressed or IFN-γ-induced IDO in the A172 human glioma cell line. TRY and DMT increased the cytotoxic activity of peripheral blood mononuclear cells (PBMCs) in co-culture assays. We conclude that the IDO inhibition by TRY and DMT contributed to a more effective tumor-reactive response by the PBMCs. PMID:23754498

  5. Induction of indoleamine 2, 3-dioxygenase in human dendritic cells by a cholera toxin B subunit-proinsulin vaccine.

    Directory of Open Access Journals (Sweden)

    Jacques C Mbongue

    Full Text Available Dendritic cells (DC interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS. Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1. Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention

  6. Influence of interferon-gamma and extracellular tryptophan on indoleamine 2,3-dioxygenase activity in T24 cells as determined by a non-radiometric assay.

    Science.gov (United States)

    Werner, E R; Werner-Felmayer, G; Fuchs, D; Hausen, A; Reibnegger, G; Wachter, H

    1988-01-01

    The indoleamine 2,3-dioxygenase (EC 1.13.11.17) activity in human T24 cells has been investigated in cell extracts by using a non-radioactive assay. It is enhanced in a dose-dependent manner up to 25-fold by interferon-gamma. The maximum reaction velocity is increased rather than the Km, which remains at 4 mumol/l. Induction of activity starts 3 h after stimulation and reaches a plateau at 21-48 h. Decreased stimulation was observed in the presence of high L-tryptophan concentrations. PMID:3146975

  7. Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Køllgaard, Tania; Andersen, Rikke Sick;

    2011-01-01

    in mouse models of cancer in a nontoxic fashion. Here, we describe the immunogenicity of IDO2 by showing the presence of spontaneous cytotoxic T-cell reactivity against IDO2 in peripheral blood of both healthy donors and cancer patients. Furthermore, we show that these IDO2-specific T cells are...... cytotoxic effector cells that recognize and kill tumor cells. Our data suggest that IDO2 might be a useful target for anticancer immunotherapeutic strategies....

  8. Indoleamine-2,3-dioxygenase elevated in tumor-initiating cells is suppressed by mitocans

    Czech Academy of Sciences Publication Activity Database

    Stapelberg, M.; Zobalová, Renata; Nguyen, M.N.; Walker, T.; Stantic, M.; Goodwin, J.; Pasdar, E.A.; Thai, T.; Prokopová, Kateřina; Yan, B.; Hall, S.; de Pennington, N.; Thomas, S.R.; Grant, G.; Štursa, Jan; Bajziková, Martina; Meedeniya, A.C.B.; Truksa, Jaroslav; Ralph, S. J.; Ansorge, O.; Dong, L.-F.; Neužil, Jiří

    2014-01-01

    Roč. 67, FEB (2014), s. 41-50. ISSN 0891-5849 R&D Projects: GA ČR(CZ) GAP301/10/1937; GA ČR GAP305/12/1708 Institutional support: RVO:86652036 ; RVO:61388963 Keywords : IDO * Tumor-initiating cells * Mitocans * Mitochondrially targeted vitamin E succinate Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.736, year: 2014

  9. Indoleamine 2,3-dioxygenase vaccination

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Svane, Inge Marie

    2015-01-01

    Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme. Remarkably, we discovered IDO-specific T cells that can influence adaptive immune reactions in patients with cancer. Further, a recent phase I clinical trial demonstrated long-lasting disease stabilization without toxicity in patien...... with non-small-cell lung cancer (NSCLC) who were vaccinated with an IDO-derived HLA-A2-restricted epitope....

  10. Indoleamine 2, 3-dioxygenase: potential in cancer immunotherapy

    International Nuclear Information System (INIS)

    Indoleamine 2, 3-dioxygenase (IDO) is a potent immunosuppressive enzyme that has a significant role in different types of cancers. There is evidence that shows its involvement in a number of infectious diseases and auto-immune disorders. In vitro and in vivo studies indicate that 1-methyl tryptophan, being a competitive inhibitor, has shown to actively control the conditions in which IDO is over-expressed. Dendritic cells are the natural site of secretion of IDO in the host immune system. However, the expression takes place only in the presence of tolerogenic signals that lead to suppression of T-cell mediated immunogenic responses. Different therapies are being designed by employing the role of IDO in conditions such as stress, depression, cancer, pregnancy, and organ transplant, which reflect the promising role of this new target in cancer immunotherapy. (author)

  11. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Berge-Hansen, Linda; Junker, Niels;

    2009-01-01

    BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune toleran...... the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro...

  12. Interaction of indoleamine 2, 3-dioxygenase and CD4 + CD25 + Foxp3 + regulatory T cell in asthmatic mice%IDO与Treg在支气管哮喘小鼠中的相互作用及其意义

    Institute of Scientific and Technical Information of China (English)

    周丽蓉; 张劼; 罗永艾

    2013-01-01

    Objective To explore the interaction and the role of indoleamine 2,3-dioxygenase (IDO) and CD4 + CD25 + Foxp3 + regulatory T cell (Treg) in a mice model of allergic bronchial asthma.Methods BALB/c mice were sensitized and challenged by ovalbumin (OVA).Penh were measured to evaluate the airway responsiveness by noninvasive lung functional instrument.Bronchoalveolar lavage cytology was analyzed.IFN-γ,IL-4 and IL-10 in BALF were detected by enzyme-linked immunosorbent assay (ELISA).The mRNA expression of IDO and Foxp3 was measured by real-time fluorescence-based quantitative PCR.The protein expression of IDO was detected by immunohistochemistry.The percentage of Treg in CD4 + cells was assessed by flow cytometry.Results The airway responsiveness,the total cell number,the eosinophils and IL-4 in BALF of the asthmatic group significantly increased as compared with the control group (P < 0.01).The levels of IFN-γand IL-10 in BALF,the mRNA expression of IDO and Foxp3,the protein expression of IDO,and the percentage of Treg in CD4 + cells in the asthmatic group were significantly lower than those in the control group (P <0.01).The mRNA expression of IDO and Foxp3 was positively correlated with each other (r =0.819,0.807,P <0.05).The protein expression of IDO was positively correlated with the percentage of Treg in CD4 +cells (r =0.783,0.765,P < 0.05).Conclusions IDO and Treg reciprocally regulate each other,which surmounts immune tolerance and induces asthma.Therefore,IDO and Treg may play important roles in asthma.%目的 探讨吲哚胺2,3双加氧酶(indoleamine 2,3-dioxygense,IDO)与CD4+ CD25+ Foxp3+调节性T细胞(Treg)之间的相关性及在支气管哮喘发病机制中的作用.方法 BALB/c小鼠用随机数字表法分成对照组和哮喘组,每组8只.哮喘组以鸡卵清蛋白(ovalbumin,OVA)致敏,激发小鼠建立哮喘模型,无创肺功能仪检测气道反应性,支气管肺泡灌洗液(BALF)进行细胞学分析,ELISA检测BALF

  13. Gene Expression of Indoleamine 2,3 Dioxygenase 1, Insulin-Growth Factor 1 and Red/IK Cytokine in Alopecia Areata

    OpenAIRE

    Simona Corina ȘENILĂ; Ovidiu BĂLĂCESCU; Loredana BĂLĂCESCU; Elisabeta CANDREA; Ungureanu, Loredana; Sorina DĂNESCU; Cosgarea, Rodica

    2014-01-01

    Alopecia areata (AA) is a chronic, T-cell mediated autoimmune disease directed against the hair follicle, which partially evolves due to a loss of the immune privilege of the anagen hair follicle. The immune privilege is maintained by several factors, including a downregulation of MHC class I and II, local immunosupressants and expression of Fas ligand. The purpose of the study was to evaluate several factors involved in the collapse and restoration of the immune privilege. We investigated ID...

  14. Gene Expression of Indoleamine 2,3 Dioxygenase 1, Insulin-Growth Factor 1 and Red/IK Cytokine in Alopecia Areata

    Directory of Open Access Journals (Sweden)

    Simona Corina ȘENILĂ

    2014-09-01

    Full Text Available Alopecia areata (AA is a chronic, T-cell mediated autoimmune disease directed against the hair follicle, which partially evolves due to a loss of the immune privilege of the anagen hair follicle. The immune privilege is maintained by several factors, including a downregulation of MHC class I and II, local immunosupressants and expression of Fas ligand. The purpose of the study was to evaluate several factors involved in the collapse and restoration of the immune privilege. We investigated IDO1, IGF1 and red/IK gene expression in lesional and perilesionalscalp biopsies from alopecia areata patients. Seven paired punch-biopsies were taken from the active edge of alopecic plaque and from the perilesional scalp. Expression of IDO1, IGF1 and red/IK genes was performed by qRT-PCR. In lesional tissue, IGF1, IDO1 and red/IK genes showed an increase in the mRNA levels as compared with the perilesional scalp. By comparing the pairs of data for the investigated genes, IDO1was statistically upregulated in the lesional area. No significant differences were observed between the gene expression in mild or severe AA, from the lesional or perilesional areas. IDO1 mRNA expression was higher in patients with a relapse duration of less than 6 months as compared to patients with a relapse duration of more than 6 months; levels of IGF1 and red/IK mRNA are increased in lesionals compared to perilesional scalp area.

  15. INDOLEAMINE 2,3-DIOXYGENASE (IDO AND IMMUNE TOLERANCE

    Directory of Open Access Journals (Sweden)

    Coma-del-Corral MJ

    2013-09-01

    Full Text Available SUMMARY: Indoleamine 2,3-dioxygenase (IDO is an intracellular and extrahepatic enzyme predominantly found in many cells, especially macrophages. Tryptophan degradation generates kynurenine, and this pathway of tryptophan metabolism is an effective mechanism for modulating the immune response. The IDO facilitates immune tolerance and is one of the main actors involved in the inhibition of cell proliferation, including activated T cells. IDO induces production of reactive oxygen species (ROS and nitric oxide (NO radicals. Several pathways involved in the regulation of immune response are regulated by redox mechanisms. Reactive oxygen and nitrogen species (ROS-RNS and other redox active molecules play key roles in immunity.

  16. Prognostic role of indoleamine 2,3-dioxygenase in endometrial carcinoma

    NARCIS (Netherlands)

    de Jong, Renske A; Kema, Ido P; Boerma, Annemarie; Boezen, Hendrika; van der Want, Johannes J L; Gooden, Marloes J M; Hollema, Harmen; Nijman, Hans W

    2012-01-01

    Objective. Indoleamine-2,3-dioxygenase (IDO) suppresses the function of T-lymphocytes and is an important immune escape mechanism for cancer. Therefore, it is to be expected that IDO influences prognosis of cancer patients. This study aimed to investigate the prognostic role of IDO expression in a l

  17. IFN-γ and indoleamine 2,3-dioxygenase signaling between donor dendritic cells and T cells regulates graft versus host and graft versus leukemia activity

    OpenAIRE

    Lu, Ying; Giver, Cynthia R.; Sharma, Akshay; Li, Jian Ming; Darlak, Katarzyna A.; Owens, Lauren M.; Roback, John D.; Galipeau, Jacques; Waller, Edmund K.

    2012-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) can eradicate chemorefractory leukemia through the graft-versus-leukemia (GVL) activity of donor T cells. However, the clinical success of allo-HSCT is limited by the graft-versus-host disease (GVHD) activity of donor T cells. We have reported previously that donor bone marrow precursors of plasmacytoid dendritic cells (pre-pDCs) can activate donor T cells toward T-helper 1 immune polarization in murine allogeneic HSCT. To optimize the...

  18. Immunological and Nonimmunological Effects of Indoleamine 2,3-Dioxygenase on Breast Tumor Growth and Spontaneous Metastasis Formation

    Directory of Open Access Journals (Sweden)

    Vera Levina

    2012-01-01

    Full Text Available The role of the tryptophan-catabolizing enzyme, indoleamine 2,3-dioxygenase (IDO1, in tumor escape and metastasis formation was analyzed using two pairs of Ido1+ and Ido1− murine breast cancer cell lines. Ido1 expression in 4T1 cells was knocked down by shRNA, and Ido1 expression in NT-5 cells was upregulated by stable transfection. Growth of Ido1− tumors and spontaneous metastasis formation were inhibited in immunocompetent mice. A higher level of cytotoxic T lymphocytes was generated by spleen cells from mice bearing Ido1− tumors than Ido1+ tumors. Tumor and metastatic growth was enhanced in immunodeficient mice, confirming an intensified immune response in the absence of Ido1 expression. However, Ido1+ tumors grow faster than Ido1− tumors in immunodeficient SCID/beige mice (lacking T, B, and NK cells suggesting that some Ido1-controlled nonimmunological mechanisms may be involved in tumor cell growth regulation. In vitro experiments demonstrated that downregulation of Ido1 in tumor cells was associated with decreased cell proliferation, increased apoptosis, and changed expression of cell cycle regulatory genes, whereas upregulation of Ido1 in the cells had the opposite effects. Taken together, our findings indicate that Ido1 expression could exert immunological and nonimmunological effects in murine breast tumor cells.

  19. IDO expressing fibroblasts promote the expansion of antigen specific regulatory T cells.

    Science.gov (United States)

    Curran, Terry-Ann; Jalili, Reza Baradar; Farrokhi, Ali; Ghahary, Aziz

    2014-01-01

    Regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs) can be induced and expanded by dendritic cells (DCs) in the presence of the enzyme indoleamine 2,3-dioxygenase (IDO). Here we report that a possible alternative to DCs are IDO expressing dermal fibroblasts (DFs), which are easier to isolate and sustain in culture compared to DCs. When mouse splenocytes were co-cultured with IDO expressing DFs, a significant increase in frequency and the number of Tregs was found compared to those of control group (13.16%±1.8 vs. 5.53%±1.2, pa subset of Tregs which can be used to generate antigen-specific immune tolerance. PMID:23891282

  20. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase.

    Directory of Open Access Journals (Sweden)

    Rikke Baek Sørensen

    Full Text Available BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. METHODS AND FINDINGS: The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T lymphocytes (CTL from the peripheral blood of cancer patients were cloned and expanded. The functional capacity of the established CTL clones was examined by chrome release assays. The study unveiled spontaneous cytotoxic T-cell reactivity against IDO in peripheral blood as well as in the tumor microenvironment of different cancer patients. We demonstrate that these IDO reactive T cells are indeed peptide specific, cytotoxic effector cells. Hence, IDO reactive T cells are able to recognize and kill tumor cells including directly isolated AML blasts as well as IDO-expressing dendritic cells, i.e. one of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general.

  1. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase

    OpenAIRE

    Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M.; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M.; Fuchs, Dietmar; Stuppner, Hermann

    2013-01-01

    Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells i...

  2. Virus Infections Incite Pain Hypersensitivity by Inducing Indoleamine 2,3 Dioxygenase.

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2016-05-01

    Full Text Available Increased pain sensitivity is a comorbidity associated with many clinical diseases, though the underlying causes are poorly understood. Recently, chronic pain hypersensitivity in rodents treated to induce chronic inflammation in peripheral tissues was linked to enhanced tryptophan catabolism in brain mediated by indoleamine 2,3 dioxygenase (IDO. Here we show that acute influenza A virus (IAV and chronic murine leukemia retrovirus (MuLV infections, which stimulate robust IDO expression in lungs and lymphoid tissues, induced acute or chronic pain hypersensitivity, respectively. In contrast, virus-induced pain hypersensitivity did not manifest in mice lacking intact IDO1 genes. Spleen IDO activity increased markedly as MuLV infections progressed, while IDO1 expression was not elevated significantly in brain or spinal cord (CNS tissues. Moreover, kynurenine (Kyn, a tryptophan catabolite made by cells expressing IDO, incited pain hypersensitivity in uninfected IDO1-deficient mice and Kyn potentiated pain hypersensitivity due to MuLV infection. MuLV infection stimulated selective IDO expression by a discreet population of spleen cells expressing both B cell (CD19 and dendritic cell (CD11c markers (CD19+ DCs. CD19+ DCs were more susceptible to MuLV infection than B cells or conventional (CD19neg DCs, proliferated faster than B cells from early stages of MuLV infection and exhibited mature antigen presenting cell (APC phenotypes, unlike conventional (CD19neg DCs. Moreover, interactions with CD4 T cells were necessary to sustain functional IDO expression by CD19+ DCs in vitro and in vivo. Splenocytes from MuLV-infected IDO1-sufficient mice induced pain hypersensitivity in uninfected IDO1-deficient recipient mice, while selective in vivo depletion of DCs alleviated pain hypersensitivity in MuLV-infected IDO1-sufficient mice and led to rapid reduction in splenomegaly, a hallmark of MuLV immune pathogenesis. These findings reveal critical roles for CD19

  3. Virus Infections Incite Pain Hypersensitivity by Inducing Indoleamine 2,3 Dioxygenase.

    Science.gov (United States)

    Huang, Lei; Ou, Rong; Rabelo de Souza, Guilherme; Cunha, Thiago M; Lemos, Henrique; Mohamed, Eslam; Li, Lingqian; Pacholczyk, Gabriela; Randall, Janice; Munn, David H; Mellor, Andrew L

    2016-05-01

    Increased pain sensitivity is a comorbidity associated with many clinical diseases, though the underlying causes are poorly understood. Recently, chronic pain hypersensitivity in rodents treated to induce chronic inflammation in peripheral tissues was linked to enhanced tryptophan catabolism in brain mediated by indoleamine 2,3 dioxygenase (IDO). Here we show that acute influenza A virus (IAV) and chronic murine leukemia retrovirus (MuLV) infections, which stimulate robust IDO expression in lungs and lymphoid tissues, induced acute or chronic pain hypersensitivity, respectively. In contrast, virus-induced pain hypersensitivity did not manifest in mice lacking intact IDO1 genes. Spleen IDO activity increased markedly as MuLV infections progressed, while IDO1 expression was not elevated significantly in brain or spinal cord (CNS) tissues. Moreover, kynurenine (Kyn), a tryptophan catabolite made by cells expressing IDO, incited pain hypersensitivity in uninfected IDO1-deficient mice and Kyn potentiated pain hypersensitivity due to MuLV infection. MuLV infection stimulated selective IDO expression by a discreet population of spleen cells expressing both B cell (CD19) and dendritic cell (CD11c) markers (CD19+ DCs). CD19+ DCs were more susceptible to MuLV infection than B cells or conventional (CD19neg) DCs, proliferated faster than B cells from early stages of MuLV infection and exhibited mature antigen presenting cell (APC) phenotypes, unlike conventional (CD19neg) DCs. Moreover, interactions with CD4 T cells were necessary to sustain functional IDO expression by CD19+ DCs in vitro and in vivo. Splenocytes from MuLV-infected IDO1-sufficient mice induced pain hypersensitivity in uninfected IDO1-deficient recipient mice, while selective in vivo depletion of DCs alleviated pain hypersensitivity in MuLV-infected IDO1-sufficient mice and led to rapid reduction in splenomegaly, a hallmark of MuLV immune pathogenesis. These findings reveal critical roles for CD19+ DCs

  4. Indoleamine 2,3-dioxygenase 1 (IDO1 activity correlates with immune system abnormalities in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Bonanno Giuseppina

    2012-12-01

    Full Text Available Abstract Background Multiple myeloma (MM is a plasma cell malignancy with a multifaceted immune dysfunction. Indoleamine 2,3-dioxygenase 1 (IDO1 degrades tryptophan into kynurenine (KYN, which inhibits effector T cells and promote regulatory T-cell (Treg differentiation. It is presently unknown whether MM cells express IDO1 and whether IDO1 activity correlates with immune system impairment. Methods We investigated IDO1 expression in 25 consecutive patients with symptomatic MM and in 7 patients with either monoclonal gammopathy of unknown significance (MGUS; n=3 or smoldering MM (SMM; n=4. IDO1-driven tryptophan breakdown was correlated with the release of hepatocyte growth factor (HGF and with the frequency of Treg cells and NY-ESO-1-specific CD8+ T cells. Results KYN was increased in 75% of patients with symptomatic MM and correlated with the expansion of CD4+CD25+FoxP3+ Treg cells and the contraction of NY-ESO-1-specific CD8+ T cells. In vitro, primary MM cells promoted the differentiation of allogeneic CD4+ T cells into bona fide CD4+CD25hiFoxP3hi Treg cells and suppressed IFN-γ/IL-2 secretion, while preserving IL-4 and IL-10 production. Both Treg expansion and inhibition of Th1 differentiation by MM cells were reverted, at least in part, by d,l-1-methyl-tryptophan, a chemical inhibitor of IDO. Notably, HGF levels were higher within the BM microenvironment of patients with IDO+ myeloma disease compared with patients having IDO- MM. Mechanistically, the antagonism of MET receptor for HGF with SU11274, a MET inhibitor, prevented HGF-induced AKT phosphorylation in MM cells and translated into reduced IDO protein levels and functional activity. Conclusions These data suggest that IDO1 expression may contribute to immune suppression in patients with MM and possibly other HGF-producing cancers.

  5. 吲哚胺2,3-双加氧酶基因转染对肝癌细胞凋亡的影响及相关机制研究%Effects of Hepatocellular Carcinoma Cells'Apoptosis and the Related Mechanisms after Indoleamine 2,3-Dioxygenase Gene Transfection

    Institute of Scientific and Technical Information of China (English)

    卜晓倩; 张瑞; 申慧琴; 罗静; 刘燕; 张路英; 刘春亮; 王琦

    2011-01-01

    目的:通过细胞培养和在体实验探讨吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase,IDO)基因转染后对肝癌细胞凋亡的影响及相关细胞免疫机制的研究.方法:提取健康人外周血中的T细胞利用细胞培养和基因转染技术将T细胞和肝癌细胞混合培养.实验分为6组:根据是否加入D-1-MT分为未干预组和干预组,每组根据培养细胞的不同又分为T细胞与HepG2细胞组、T细胞与pcDNA3.1-HepG2细胞组、T细胞与pcDNA3.1-IDO-HepG2细胞组.于混合培养2天后应用流式细胞术、MTT法检测各组中HepG2细胞的凋亡情况和T细胞抗HepG2细胞的细胞毒活性.在混合培养5天后应用流式细胞术检测调节性T细胞(Regulatory T cell,Treg)的比例.并建立人肝癌细胞小鼠模型,用流式细胞仪检测荷瘤小鼠外周血中Treg细胞的比例.结果:1.混合培养2天后,转染IDO基因的肝癌细胞其凋亡率和T细胞抗HepG2细胞的细胞毒活性均明显降低,分别为(1.65±0.14)%和(35.00±2.20)%(p<0.05);加入1-MT干预后,以上指标均明显高于干预前,且干预前后比较有明显的统计学意义(P<0.05).2.混合培养5天后,IDO-HepG2细胞组Treg细胞的比例明显升高(10.53±1.05)%,与其余两个未干预组比较有统计学意义(p<0.05);加1-MT干预后,Treg细胞比例均明显降低(p<0.05).3.转染IDO的荷瘤小鼠模型中外周血Treg细胞比例明显升高(15.33±1.18)%,与其余两组比较有统计学意义(p<0.05).结论:1.IDO可能通过增加调节性T细胞的比例来抑制肝癌细胞(HepG2细胞)的凋亡和T细胞的免疫毒性功能.1-MT可抑制IDO的这种作用.2.在体实验证实IDO的过量表达可提高外周血Treg细胞的比例.%Objective : To explore after indoleamine-2 ,3-dioxygenase ( IDO) gene transfection the influence of the hepatocellular carcinoma cells' apoptosis and the related cellular immune mechanisms by cell culture and in vivo. Methods: By cell culture and gene transfection

  6. IDO-Expressing Fibroblasts Protect Islet Beta Cells From Immunological Attack and Reverse Hyperglycemia in Non-Obese Diabetic Mice.

    Science.gov (United States)

    Zhang, Yun; Jalili, Reza B; Kilani, Ruhangiz T; Elizei, Sanam Salimi; Farrokhi, Ali; Khosravi-Maharlooei, Mohsen; Warnock, Garth L; Ao, Ziliang; Marzban, Lucy; Ghahary, Aziz

    2016-09-01

    Indoleamine 2,3-dioxygenase (IDO) induces immunological tolerance in physiological and pathological conditions. Therefore, we used dermal fibroblasts with stable IDO expression as a cell therapy to: (i) Investigate the factors determining the efficacy of this cell therapy for autoimmune diabetes in non-obese diabetic (NOD) mice; (ii) Scrutinize the potential immunological mechanisms. Newly diabetic NOD mice were randomly injected with either 10 × 10(6) (10M) or 15 × 10(6) (15M) IDO-expressing dermal fibroblasts. Blood glucose levels (BGLs), body weight, plasma kynurenine levels, insulitis severity, islet beta cell function, autoreactive CD8(+) T cells, Th17 cells and regulatory T cells (Tregs) were then investigated in these mice. IL-1β and cleaved caspase-3 levels were assessed in islets co-cultured with IDO-expressing fibroblasts. BGLs in 83% mice treated with 15M IDO-expressing fibroblasts recovered to normal up to 120 days. However, only 17% mice treated with 10M IDO-expressing cells were reversed to normoglycemia. A 15M IDO-expressing fibroblasts significantly reduced infiltrated immune cells in islets and recovered the functionality of remaining islet beta cells in NOD mice. Additionally, they successfully inhibited autoreactive CD8(+) T cells and Th17 cells as well as increased Tregs in different organs of NOD mice. Islet beta cells co-cultured with IDO-expressing fibroblasts had reduced IL-1β levels and cell apoptosis. Both cell number and IDO enzymatic activity contributes to the efficiency of IDO cell therapy. Optimized IDO-expressing fibroblasts successfully reverse the progression of diabetes in NOD mice through induction of Tregs as well as inhibition of beta cell specific autoreactive CD8(+) T cells and Th17 cells. J. Cell. Physiol. 231: 1964-1973, 2016. © 2016 Wiley Periodicals, Inc. PMID:26743772

  7. The Targeting of Indoleamine 2,3 Dioxygenase -Mediated Immune Escape in Cancer

    DEFF Research Database (Denmark)

    Iversen, Trine Zeeberg; Andersen, Mads Hald; Svane, Inge Marie

    2015-01-01

    /interleukin-2 (IFN-α/IL-2) immunotherapy. The overall aim was to assess changes in frequency and absolute counts of different immune cell subsets before and after treatment and correlate to clinical benefit. Furthermore, the thesis covers a finalized, clinical phase 1 study in patients with NSCLC testing a...... peptide vaccination with a HLA-A2-restricted epitope derived from indoleamine 2,3 dioxygenase (IDO). The overall aim in this trial was to evaluate safety and tolerability of IDO as an anticancer vaccine target in patients with NSCLC and to assess whether immunity correlated to clinical response....

  8. Induction of indoleamine 2,3-dioxygenase: a mechanism of the antitumor activity of interferon γ

    International Nuclear Information System (INIS)

    The antiproliferative effects of interferon α (IFN-α) and interferon γ (IFN-γ) were found to be cell-dependent. Among the human cell lines examined, IFN-γ had a greater antiproliferative effect against cell lines that exhibited induction of indoleamine 2,3-dioxygenase, such as the KB oral carcinoma or WiDr colon adenocarcinoma, than against those that lacked the enzyme activity, such as the SW480 colon adenocarcinoma of NCI-H128 small-cell lung carcinoma. Induction of this dioxygenase showed a clear temporal relationship with increased metabolism of L-tryptophan and the depletion of this amino acid in the culture medium. While 70-80% of L-tryptophan remained in the medium of IFN-α- or vehicle-treated cells, virtually all of this amino acid was depleted in the medium of the IFN-γ-treated group following 2-3 days of culture. Supplementing the growth medium with additional L-tryptophan reversed the antiproliferative effect of IFN-γ against KB cells in a dose- and time-dependent manner. The antiproliferative effects of IFN-α and IFN-γ on SW480 and NCI-H128 cells, which are independent of the dioxygenase activity, and the inability of added L-tryptophan to reverse the effects of IFN-γ in WiDr cells suggest multiple mechanisms of action of the IFNs. The data show that the antiproliferative effect of IFN-γ through induction of indoleamine 2,3-dioxygenase, with a consequent L-tryptophan deprivation, is an effective means of regulating cell growth

  9. Molecular evolution of bacterial indoleamine 2,3-dioxygenase.

    Science.gov (United States)

    Yuasa, Hajime J; Ushigoe, Akiko; Ball, Helen J

    2011-10-01

    Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in L-Trp catabolism via the kynurenine pathway. In mammals, TDO is mainly expressed in the liver and primarily supplies nicotinamide adenine dinucleotide (NAD(+)). TDO is widely distributed from mammals to bacteria. Active IDO enzymes have been reported only in vertebrates and fungi. In mammals, IDO activity plays a significant role in the immune system while in fungal species, IDO is constitutively expressed and supplies NAD(+), like mammalian TDO. A search of genomic databases reveals that some bacterial species also have a putative IDO gene. A phylogenetic analysis clustered bacterial IDOs into two groups, group I or group II bacterial IDOs. The catalytic efficiencies of group I bacterial IDOs were very low and they are suspected not to contribute significantly to L-Trp metabolism. The bacterial species bearing the group I bacterial IDO are scattered across a few phyla and no phylogenetically close relationship is observed between them. This suggests that the group I bacterial IDOs might be acquired by horizontal gene transmission that occurred in each lineage independently. In contrast, group II bacterial IDOs showed rather high catalytic efficiency. Particularly, the enzymatic characteristics (K(m), V(max) and inhibitor selectivity) of the Gemmatimonas aurantiaca IDO are comparable to those of mammalian IDO1, although comparison of the IDO sequences does not suggest a close evolutionary relationship. In several bacteria, TDO and the kynureninase gene (kynU) are clustered on their chromosome suggesting that these genes could be transcribed in an operon. Interestingly, G. aurantiaca has no TDO, and the IDO is clustered with kynU on its chromosome. Although the G. aurantiaca also has NadA and NadB to synthesize a quinolinic acid (a precursor of NAD(+)) via the aspartate pathway, the high activity of the G. aurantiaca IDO flanking

  10. Expression of the kynurenine pathway enzymes in the pancreatic islet cells. Activation by cytokines and glucolipotoxicity.

    Science.gov (United States)

    Liu, J J; Raynal, S; Bailbé, D; Gausseres, B; Carbonne, C; Autier, V; Movassat, J; Kergoat, M; Portha, B

    2015-05-01

    The tryptophan/kynurenine pathway (TKP) is the main route of tryptophan degradation and generates several neuroactive and immunomodulatory metabolites. Experimental and clinical data have clearly established that besides fat, muscle and liver, pancreatic islet tissue itself is a site of inflammation during obesity and type 2 diabetes. Therefore it is conceivable that pancreatic islet exposure to increased levels of cytokines may induce upregulation of islet kynurenine metabolism in a way resembling that seen in the brain in many neurodegenerative disorders. Using normal rat islets and the INS-1 β-cell line, we have demonstrated for the first time that: 1/only some TKP genes are constitutively expressed, both in β-cells as well as non β-cells; 2/ the regulatory enzyme indoleamine 2,3-dioxygenase (IDO1) is not constitutively expressed; 3/ IDO1 and kynurenine 3-monoxygenase (KMO) expression are potently activated by proinflammatory cytokines (IFN-γ, IL-1β) and glucolipotoxicity respectively, rather in β-cells than in non β-cells; 4/ Islet kynurenine/kynurenic acid production ratio is enhanced following IFN-γ and glucolipotoxicity; 5/ acute exposure to KYN potentiates glucose-induced insulin secretion by normal islets; and 6/ oxidative stress or glucocorticoid modulates TKP genes only marginally. Pancreatic islets may represent a new target tissue for inflammation and glucolipotoxicity to activate the TKP. Since inflammation is now recognized as a crucial mechanism in the development of the metabolic syndrome and more specifically at the islet level, it is needed to evaluate the potential induction of the TKP in the endocrine pancreas during obesity and/or diabetes and its relationship to the islet cell functional alterations. PMID:25675848

  11. 1,2,3-Triazoles as inhibitors of indoleamine 2,3-dioxygenase 2 (IDO2).

    Science.gov (United States)

    Röhrig, Ute F; Majjigapu, Somi Reddy; Caldelari, Daniela; Dilek, Nahzli; Reichenbach, Patrick; Ascencao, Kelly; Irving, Melita; Coukos, George; Vogel, Pierre; Zoete, Vincent; Michielin, Olivier

    2016-09-01

    Indoleamine 2,3-dioxygenase 2 (IDO2) is a potential therapeutic target for the treatment of diseases that involve immune escape such as cancer. In contrast to IDO1, only a very limited number of inhibitors have been described for IDO2 due to inherent difficulties in expressing and purifying a functionally active, soluble form of the enzyme. Starting from our previously discovered highly efficient 4-aryl-1,2,3-triazole IDO1 inhibitor scaffold, we used computational structure-based methods to design inhibitors of IDO2 which we then tested in cellular assays. Our approach yielded low molecular weight inhibitors of IDO2, the most active displaying an IC50 value of 51μM for mIDO2, and twofold selectivity over hIDO1. These compounds could be useful as molecular probes to investigate the biological role of IDO2, and could inspire the design of new IDO2 inhibitors. PMID:27469130

  12. Increased activity of indoleamine 2,3-dioxygenase in serum from acutely infected dengue patients linked to gamma interferon antiviral function

    Science.gov (United States)

    Becerra, Aniuska; Warke, Rajas V.; Xhaja, Kris; Evans, Barbara; Evans, James; Martin, Katherine; de Bosch, Norma; Rothman, Alan L.; Bosch, Irene

    2009-01-01

    The depletion of l-tryptophan (L-Trp) has been associated with the inhibition of growth of micro-organisms and also has profound effects on T cell proliferation and immune tolerance. The enzyme indoleamine 2,3-dioxygenase (IDO) catalyses the rate-limiting step in the catabolic pathway of L-Trp. Gene expression analysis has shown upregulation of genes involved in L-Trp catabolism in in vitro models of dengue virus (DENV) infection. To understand the role of IDO during DENV infection, we measured IDO activity in sera from control and DENV-infected patients. We found increased IDO activity, lower levels of L-Trp and higher levels of l-kynurenine in sera from DENV-infected patients during the febrile days of the disease compared with patients with other febrile illnesses and healthy donors. Furthermore, we confirmed upregulation of IDO mRNA expression in response to DENV infection in vitro, using a dendritic cell (DC) model of DENV infection. We found that the antiviral effect of gamma interferon (IFN-γ) in DENV-infected DCs in vitro was partially dependent on IDO activity. Our results demonstrate that IDO plays an important role in the antiviral effect of IFN-γ against DENV infection in vitro and suggest that it has a role in the immune response to DENV infections in vivo. PMID:19264674

  13. Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases IDOs from monotremes and marsupials.

    Science.gov (United States)

    Yuasa, Hajime J; Ball, Helen J; Ho, Yuen Fern; Austin, Christopher J D; Whittington, Camilla M; Belov, Katherine; Maghzal, Ghassan J; Jermiin, Lars S; Hunt, Nicholas H

    2009-06-01

    Indoleamine 2,3-dioxygenase (IDO1) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in tryptophan catabolism via the kynurenine pathway. TDO is widely distributed in both eukaryotes and bacteria. In contrast, IDO has been found only in mammals and yeast. In 2007, a third enzyme, indoleamine 2,3-dioxygenase-2 (IDO2), was discovered. IDO2 is found not only in mammals but also in lower vertebrates. Interestingly, the K(m) value of IDO2 for L-Trp was 500-1000 fold higher than that of IDO1. In this study, we isolated both IDO1 and IDO2 cDNA from a monotreme, the platypus (Ornithorhynchus anatinus), and a marsupial, the gray short-tailed opossum (Monodelphis domestica). We characterized the recombinant proteins and those of other known IDO1/IDO2 in intact cells and a cell-free system. It was found that methylene blue may not be suitable reductant for IDO2, hence resulting in an underestimation of recombinant IDO2 activity. In intact cells, the K(m) value of IDO2 for L-Trp was estimated to be much higher than that of IDO1 and this high K(m) value appears to have been conserved during the evolution of IDO2. The protein encoded by the ancestor gene of IDO1 and IDO2 is likely to have had properties more similar to present day IDO2 than to IDO1. PMID:19416693

  14. Early carcinogenesis involves the establishment of immune privilege via intrinsic and extrinsic regulation of Indoleamine 2,3-dioxygenase-1: Translational implications in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Alisha eHoltzhausen

    2014-10-01

    Full Text Available Although prolonged genetic pressure has been conjectured to be necessary for the eventual development of tumor immune evasion mechanisms, recent work is demonstrating that early genetic mutations are capable of moonlighting as both intrinsic and extrinsic modulators of the tumor immune microenvironment. The indoleamine 2,3-dioxygenase-1 (IDO immunoregulatory enzyme is emerging as a key player in tumor-mediated immune tolerance. While loss of the tumor suppressor, BIN-1, and the over-expression of cyclooxygenase-2 (COX-2 have been implicated in intrinsic regulation of IDO, recent findings have demonstrated the loss of TβRIII and the upregulation of Wnt5a by developing cancers to play a role in the extrinsic control of IDO activity by local dendritic cell populations residing within tumor and tumor-draining lymph node tissues. Together, these genetic changes are capable of modulating paracrine signaling pathways in the early stages of carcinogenesis to establish a site of immune privilege by promoting the differentiation and activation of local regulatory T cells. Additional investigation of these immune evasion pathways promises to provide opportunities for the development of novel strategies to synergistically enhance the efficacy of the evolving class of T cell-targeted ‘checkpoint’ inhibitors.

  15. Expression of the Kynurenine Pathway in Human Peripheral Blood Mononuclear Cells: Implications for Inflammatory and Neurodegenerative Disease.

    Science.gov (United States)

    Jones, Simon P; Franco, Nunzio F; Varney, Bianca; Sundaram, Gayathri; Brown, David A; de Bie, Josien; Lim, Chai K; Guillemin, Gilles J; Brew, Bruce J

    2015-01-01

    The kynurenine pathway is a fundamental mechanism of immunosuppression and peripheral tolerance. It is increasingly recognized as playing a major role in the pathogenesis of a wide variety of inflammatory, neurodegenerative and malignant disorders. However, the temporal dynamics of kynurenine pathway activation and metabolite production in human immune cells is currently unknown. Here we report the novel use of flow cytometry, combined with ultra high-performance liquid chromatography and gas chromatography-mass spectrometry, to sensitively quantify the intracellular expression of three key kynurenine pathway enzymes and the main kynurenine pathway metabolites in a time-course study. This is the first study to show that up-regulation of indoleamine 2,3-dioxygenase (IDO-1), kynurenine 3-monoxygenase (KMO) and quinolinate phosphoribosyltransferase (QPRT) is lacking in lymphocytes treated with interferon gamma. In contrast, peripheral monocytes showed a significant elevation of kynurenine pathway enzymes and metabolites when treated with interferon gamma. Expression of IDO-1, KMO and QPRT correlated significantly with activation of the kynurenine pathway (kynurenine:tryptophan ratio), quinolinic acid concentration and production of the monocyte derived, pro-inflammatory immune response marker: neopterin. Our results also describe an original and sensitive methodological approach to quantify kynurenine pathway enzyme expression in cells. This has revealed further insights into the potential role of these enzymes in disease processes. PMID:26114426

  16. Interaction of Carthamus tinctorius lignan arctigenin with the binding site of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase ☆

    OpenAIRE

    Temml, Veronika; Kuehnl, Susanne; Schuster, Daniela; Schwaiger, Stefan; Stuppner, Hermann; Fuchs, Dietmar

    2013-01-01

    Mediterranean Carthamus tinctorius (Safflower) is used for treatment of inflammatory conditions and neuropsychiatric disorders. Recently C. tinctorius lignans arctigenin and trachelogenin but not matairesinol were described to interfere with the activity of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) in peripheral blood mononuclear cells in vitro. We examined a potential direct influence of compounds on IDO enzyme activity applying computational calculations based on 3D geom...

  17. 吲哚胺2,3双加氧酶与乙肝病毒不同感染状态T淋巴细胞亚群及病毒载量的相关性研究%Investigation of the correlation between indoleamine 2,3-dioxygenase and T cell subsets,viral load in different hepatitis B virus infection status

    Institute of Scientific and Technical Information of China (English)

    曾道炳; 卢实春; 李军峰; 胡冬; 周育森

    2012-01-01

    目的 探讨乙肝病毒(HBV)不同感染状态下,吲哚胺2,3双加氧酶(indoleamine 2,3-dioxygenase,IDO)表达水平及其与T淋巴细胞亚群及病毒载量的相关性.方法 检测受检者外周静脉血IDO mRNA、IDO蛋白、IDO活性,T淋巴细胞亚群及病毒载量(对照组除外);进行各组间均数比较及相关性分析.结果 IDO mRNA、IDO蛋白及IDO活性从高到低依次为急性乙型肝炎组(acute hepatitis B,AHB)、肝硬化组(HBV-related liver cirrhosis,LC)、慢性乙型肝炎组(chronic hepatitis B,CHB)、肝癌组(HBV-related hepatocellular carcinoma,HCC)、对照组.HCC组及对照组均明显低于其他3组(P<0.01),其余各组间两两比较,差异有统计学意义(P<0.05).CD3+、CD4+T淋巴细胞在AHB组最高,对照组次之,LC组最低;AHB组、对照组及CHB组均明显高于LC组(P< 0.05);AHB组、对照组明显高于HCC组(P<0.05).CD8+T淋巴细胞在对照组最高,AHB组次之,LC组最低;但仅AHB组、对照组明显高于LC组(P<0.05).AHB组CD4+/CD8+明显高于其他组(P<0.01).CHB及LC组病毒载量最高,均明显高于HCC及AHB组(P<0.05).CD3+、CD4+、CD8+T淋巴细胞与病毒载量、IDO蛋白及IDO活性均呈负相关,CD8+T淋巴细胞与IDO mRNA呈负相关(r=-0.287,P=0.039);CD4+/CD8+与IDO蛋白及IDO活性均呈正相关(r=0.470,P=0.000;r=0.285,P=0.040),病毒载量与IDO mRNA、IDO蛋白及IDO活性均呈正相关(r=0.530,P=0.001;r=0.416,P=0.002;r=0.649,P=0.000).结论 HBV感染者IDO表达明显增强,与病毒载量呈正相关,与T淋巴细胞呈负相关,其早期升高有利于病毒清除,但持续升高会导致HBV特异性T淋巴细胞功能抑制,使HBV慢性化.%Objective To investigate the expression levels of indoleamine 2,3-dioxygenase(IDO) and the correlation between IDO level, T cell subsets and viral load in hepatitis B related liver disease subjects. Methods Peripheral blood samples were collected, and the the expression level of IDO Mrna and IDO protein in PBMC

  18. Emerging concepts on inhibitors of indoleamine 2,3-dioxygenase in rheumatic diseases.

    Science.gov (United States)

    Filippini, P; Del Papa, N; Sambataro, D; Del Bufalo, A; Locatelli, F; Rutella, S

    2012-01-01

    The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) finely regulates both innate and adaptive immune responses through the degradation of the essential amino acid tryptophan into kynurenine and other downstream metabolites, which suppress effector T-cell function and promote the differentiation of regulatory T cells. A novel role for IDO1 as a signaling molecule and a modifier of innate inflammatory responses is now emerging. In particular, IDO1 can either support or antagonize inflammation in a context- and tissuedependent manner. Studies in experimental arthritis have unravelled a previously unappreciated role for IDO in controlling B-cell activation and autoantibody production. IDO dysregulation has been documented in patients with systemic lupus erythematosus, systemic sclerosis and Sjogren's syndrome, as well as in severe sepsis and chronic kidney disease. This article summarizes the contribution of IDO to the pathophysiology of inflammatory/autoimmune disorders, and discusses whether strategies to restore metabolic equilibrium in the kynurenine pathway might be pursued in diseases states such as rheumatoid arthritis and systemic sclerosis. PMID:22963664

  19. Chemokine receptor expression by mast cells.

    Science.gov (United States)

    Juremalm, Mikael; Nilsson, Gunnar

    2005-01-01

    There is a growing interest in the role of chemokines and their receptors in the determination of mast cell tissue localization and how chemokines regulate mast cell function. At least nine chemokine receptors (CXCR1, CXCR2, CXCR3, CXCR4, CX3CR1, CCR1, CCR3, CCR4 and CCR5) have been described to be expressed by human mast cells of different origins. Seven chemokines (CXCL1, CXCL5, CXCL8, CXCL14, CX3CL1, CCL5 and CCL11) have been shown to act on some of these receptors and to induce mast cell migration. Mast cells have a unique expression pattern of CCR3, CXCR1 and CXCR2. These receptors are mainly expressed intracellularly on cytoplasmic membranes. Upon an allergic activation, CCR3 expression is increased on the cell surface and the cell becomes vulnerable for CCL11 treatment. Chemokines do not induce mast cell degranulation but CXCL14 causes secretion of de novo synthesized CXCL8. Because of the expression of CCR3, CCR5 and CXCR4 on mast cell progenitors, these cells are susceptible to HIV infection and mast cells might therefore be a persistent HIV reservoir in AIDS. In this review, we summarize the knowledge about chemokine receptor expression and function on mast cells. PMID:16107768

  20. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase.

    Science.gov (United States)

    Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M; Fuchs, Dietmar; Stuppner, Hermann

    2013-10-15

    Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells in vitro methanol and ethylacetate seed extracts were prepared from cold pressed seed cakes of C. tinctorius and three lignan derivatives, trachelogenin, arctigenin and matairesinol were isolated. The influence on tryptophan breakdown was investigated in peripheral blood mononuclear cells (PBMCs). Effects were compared to neopterin production in the same cellular assay. Both seed extracts suppressed tryptophan breakdown in stimulated PBMC. The three structurally closely related isolates exerted differing suppressive activity on PBMC: arctigenin (IC50 26.5μM) and trachelogenin (IC50 of 57.4μM) showed higher activity than matairesinol (IC50 >200μM) to inhibit tryptophan breakdown. Effects on neopterin production were similar albeit generally less strong. Data show an immunosuppressive property of compounds which slows down IDO activity. The in vitro results support the view that some of the anti-inflammatory, anticancer and antidepressant properties of C. tinctorius lignans might relate to their suppressive influence on tryptophan breakdown. PMID:23867649

  1. The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Jacques C. Mbongue

    2015-09-01

    Full Text Available Indoleamine 2, 3-dioxygenase (IDO is the first and rate limiting catabolic enzyme in the degradation pathway of the essential amino acid tryptophan. By cleaving the aromatic indole ring of tryptophan, IDO initiates the production of a variety of tryptophan degradation products called “kynurenines” that are known to exert important immuno-regulatory functions. Because tryptophan must be supplied in the diet, regulation of tryptophan catabolism may exert profound effects by activating or inhibiting metabolism and immune responses. Important for survival, the regulation of IDO biosynthesis and its activity in cells of the immune system can critically alter their responses to immunological insults, such as infection, autoimmunity and cancer. In this review, we assess how IDO-mediated catabolism of tryptophan can modulate the immune system to arrest inflammation, suppress immunity to cancer and inhibit allergy, autoimmunity and the rejection of transplanted tissues. Finally, we examine how vaccines may enhance immune suppression of autoimmunity through the upregulation of IDO biosynthesis in human dendritic cells.

  2. Human Neuroepithelial Cells Express NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Cappell B

    2003-11-01

    Full Text Available Abstract L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1 cerebral endothelial barrier and 2 cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR expression via immunohistochemistry and murine neuroepithelial cell line (V1 were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.

  3. Gene expressions changes in bronchial epithelial cells

    DEFF Research Database (Denmark)

    Remy, S.; Verstraelen, S.; Van Den Heuvel, R.;

    2014-01-01

    cells were exposed during 6, 10, and 24 h to 4 respiratory sensitizers and 6 non-respiratory sensitizers (3 skin sensitizers and 3 respiratory irritants) at a concentration inducing 20% cell viability loss after 24 h. Changes in gene expression were evaluated using Agilent Whole Human Genome 4 x 44 K...... differentially expressed compared to vehicle control for each chemical. The results show that the NRF2-mediated oxidative stress response is activated in the cell line after stimulation with all of the chemicals that were selected in our study, and that - at the level of gene expression - this pathway shows no...

  4. Foxp3 expression in human cancer cells

    Directory of Open Access Journals (Sweden)

    Gourgoulianis Konstantinos I

    2008-04-01

    Full Text Available Abstract Objective Transcription factor forkhead box protein 3 (Foxp3 specifically characterizes the thymically derived naturally occurring regulatory T cells (Tregs. Limited evidence indicates that it is also expressed, albeit to a lesser extent, in tissues other than thymus and spleen, while, very recently, it was shown that Foxp3 is expressed by pancreatic carcinoma. This study was scheduled to investigate whether expression of Foxp3 transcripts and mature protein occurs constitutively in various tumor types. Materials and methods Twenty five tumor cell lines of different tissue origins (lung cancer, colon cancer, breast cancer, melanoma, erythroid leukemia, acute T-cell leukemia were studied. Detection of Foxp3 mRNA was performed using both conventional RT-PCR and quantitative real-time PCR while protein expression was assessed by immunocytochemistry and flow cytometry, using different antibody clones. Results Foxp3 mRNA as well as Foxp3 protein was detected in all tumor cell lines, albeit in variable levels, not related to the tissue of origin. This expression correlated with the expression levels of IL-10 and TGFb1. Conclusion We offer evidence that Foxp3 expression, characterizes tumor cells of various tissue origins. The biological significance of these findings warrants further investigation in the context of tumor immune escape, and especially under the light of current anti-cancer efforts interfering with Foxp3 expression.

  5. Interaction of Carthamus tinctorius lignan arctigenin with the binding site of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase.

    Science.gov (United States)

    Temml, Veronika; Kuehnl, Susanne; Schuster, Daniela; Schwaiger, Stefan; Stuppner, Hermann; Fuchs, Dietmar

    2013-01-01

    Mediterranean Carthamus tinctorius (Safflower) is used for treatment of inflammatory conditions and neuropsychiatric disorders. Recently C. tinctorius lignans arctigenin and trachelogenin but not matairesinol were described to interfere with the activity of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) in peripheral blood mononuclear cells in vitro. We examined a potential direct influence of compounds on IDO enzyme activity applying computational calculations based on 3D geometry of the compounds. The interaction pattern analysis and force field-based minimization was performed within LigandScout 3.03, the docking simulation with MOE 2011.10 using the X-ray crystal structure of IDO. Results confirm the possibility of an intense interaction of arctigenin and trachelogenin with the binding site of the enzyme, while matairesinol had no such effect. PMID:24251110

  6. Foxp3 expression in human cancer cells

    OpenAIRE

    Gourgoulianis Konstantinos I; Barda Angeliki K; Kerenidi Theodora; Loules Gedeon; Kalala Fani; Zamanakou Maria; Speletas Matthaios; Karanikas Vaios; Germenis Anastasios E

    2008-01-01

    Abstract Objective Transcription factor forkhead box protein 3 (Foxp3) specifically characterizes the thymically derived naturally occurring regulatory T cells (Tregs). Limited evidence indicates that it is also expressed, albeit to a lesser extent, in tissues other than thymus and spleen, while, very recently, it was shown that Foxp3 is expressed by pancreatic carcinoma. This study was scheduled to investigate whether expression of Foxp3 transcripts and mature protein occurs constitutively i...

  7. Indoleamines and calcium channels influence morphogenesis in in vitro cultures of Mimosa pudica L.

    OpenAIRE

    Ramakrishna, Akula; Giridhar, Parvatam; Ravishankar, G.A.

    2009-01-01

    The present article reports the interplay of indoleamine neurohormones viz. serotonin, melatonin and calcium channels on shoot organogenesis in Mimosa pudica L. In vitro grown nodal segments were cultured on MS medium with B5 vitamins containing Serotonin (SER) and Melatonin (MEL) at 100 µM and indoleamine inhibitors viz. serotonin to melatonin conversion inhibitor p-chlorophenylalanine (p-CPA) at 40 µM, serotonin reuptake inhibitor (Prozac) 20 µM. In another set of experiment, calcium at 5 m...

  8. Fundamentals of Expression in Mammalian Cells.

    Science.gov (United States)

    Dyson, Michael R

    2016-01-01

    Expression of proteins in mammalian cells is a key technology important for many functional studies on human and higher eukaryotic genes. Studies include the mapping of protein interactions, solving protein structure by crystallization and X-ray diffraction or solution phase NMR and the generation of antibodies to enable a range of studies to be performed including protein detection in vivo. In addition the production of therapeutic proteins and antibodies, now a multi billion dollar industry, has driven major advances in cell line engineering for the production of grams per liter of active proteins and antibodies. Here the key factors that need to be considered for successful expression in HEK293 and CHO cells are reviewed including host cells, expression vector design, transient transfection methods, stable cell line generation and cultivation conditions. PMID:27165328

  9. 1-MT Enhances Potency of Tumor Cell Lysate-pulsed Dendritic Cells against Pancreatic Adenocarcinoma by Downregulating the Percentage of Tregs

    Institute of Scientific and Technical Information of China (English)

    李元栋; 徐钧; 邹浩军; 王春友

    2010-01-01

    This study examined whether 1-methyl-tryptophan [1-MT,an indoleamine 2,3-dioxygenase(IDO) inhibitor] could reduce CD4+CD25+ regulatory T cells(Tregs) proliferation and improve the anti-tumor efficacy of dendritic cells(DCs) pulsed with tumor cell lysate in the mice bearing pancreatic adenocarcinoma.The models of pancreatic adenocarcinoma were established in C57BL/6 mice by subcutaneous injection of Pan02 cells.Eight mice which were subcutaneously injected with PBS served as control.The expression of IDO was...

  10. CNPase Expression in Olfactory Ensheathing Cells

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2011-01-01

    Full Text Available A large body of work supports the proposal that transplantation of olfactory ensheathing cells (OECs into nerve or spinal cord injuries can promote axonal regeneration and remyelination. Yet, some investigators have questioned whether the transplanted OECs associate with axons and form peripheral myelin, or if they recruit endogenous Schwann cells that form myelin. Olfactory bulbs from transgenic mice expressing the enhanced green fluorescent protein (eGFP under the control of the 2-3-cyclic nucleotide 3-phosphodiesterase (CNPase promoter were studied. CNPase is expressed in myelin-forming cells throughout their lineage. We examined CNPase expression in both in situ in the olfactory bulb and in vitro to determine if OECs express CNPase commensurate with their myelination potential. eGFP was observed in the outer nerve layer of the olfactory bulb. Dissociated OECs maintained in culture had both intense eGFP expression and CNPase immunostaining. Transplantation of OECs into transected peripheral nerve longitudinally associated with the regenerated axons. These data indicate that OECs in the outer nerve layer of the olfactory bulb of CNPase transgenic mice express CNPase. Thus, while OECs do not normally form myelin on olfactory nerve axons, their expression of CNPase is commensurate with their potential to form myelin when transplanted into injured peripheral nerve.

  11. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase

    Directory of Open Access Journals (Sweden)

    Christmas DM

    2011-07-01

    Full Text Available David M Christmas, JP Potokar, Simon JC DaviesAcademic Unit of Psychiatry, School of Social and Community Medicine, University of Bristol, Bristol, UK A presentation relating to this manuscript was made by Dr David Christmas at the 9th International Meeting on Clinical Pharmacology in Psychiatry (9th IMCPP in Copenhagen, Denmark in September 2010Abstract: This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan depletion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively described with a focus on the evidence linking metabolite alterations to depression. The use of immune-activated groups at high risk of depression have been used to explore these hypotheses; we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an immune activating cytokine. Findings from this work have led to novel strategies for the future development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating the cytokines which activate it, or addressing other targets in the kynurenine pathway.Keywords: depression, inflammation, indoleamine 2,3-dioxygenase, kynurenine, serotonin, tryptophan

  12. An expression profile analysis of ES cell-derived definitive endodermal cells and Pdx1-expressing cells

    Directory of Open Access Journals (Sweden)

    Kume Kazuhiko

    2011-03-01

    Full Text Available Abstract Background We developed an efficient in vitro method to differentiate mouse ES cells into the definitive endoderm (DE and then Pdx1-expressing pancreatic lineages using mesodermal-derived supporting cells, M15. Using this method, resulting ES cell-derived DE and Pdx1-expressing cells were isolated by cell sorting, and their gene expression profiles were investigated with DNA microarray. Genes that were specifically expressed in DE and/or in Pdx1-expressing cells were extracted and their expression patterns in normal embryonic development were studied. Results Genes whose expression increased in DE and Pdx1 positive cells compared to the undifferentiated ES cells were chosen and in situ hybridizations were performed. Out of 54 genes examined, 27 were expressed in the DE of E8.5 mouse embryos and 15 genes were expressed in distinct domains in the pancreatic buds of E14.5 embryos. Among those genes expressed were Foxq1, CpM, Foxp4, Pcdh1, and Zmiz1, which were previously reported in other endodermal tissues. Genes, such as Parm1, Tmem184a, Hipk2 and Sox4 were reported to be expressed during early pancreatic development. Nptx2, C2cd4b, Tcf7l2 and Kiss1r were reported to be associated with beta cell or pancreatic functions in the adult. Akr1c19, Aebp2, Pbxip1 and Creb3l1, were novel and have not been described as being expressed either in DE or the pancreas. Conclusions We identified 27 genes, including 4 novel genes expressed in DE and pancreatic progenitor cells during normal development using an ES cell in vitro differentiation system. These results showed that DE cells and Pdx1/GFP-expressing cells obtained from our M15 based differentiation method mimic cells during the normal developmental processes. Additionally, ES cells are an excellent model for studies of early developmental processes.

  13. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito;

    2005-01-01

    It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies that...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved in...

  14. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore.......05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...... studies of vitamin D's effect on TCC cells in vitro are necessary before the efficacy of treatment with vitamin D analogues in TCC can be evaluated in patients....

  15. Tissue factor expression by endothelial cells in sickle cell anemia.

    OpenAIRE

    Solovey, A; Gui, L; Key, N. S.; Hebbel, R.P.

    1998-01-01

    The role of the vascular endothelium in activation of the coagulation system, a fundamental homeostatic mechanism of mammalian biology, is uncertain because there is little evidence indicating that endothelial cells in vivo express tissue factor (TF), the system's triggering mechanism. As a surrogate for vessel wall endothelium, we examined circulating endothelial cells (CEC) from normals and patients with sickle cell anemia, a disease associated with activation of coagulation. We find that s...

  16. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2014-09-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  17. Antigen expression on recurrent meningioma cells

    International Nuclear Information System (INIS)

    Meningiomas are intracranial brain tumours that frequently recur. Recurrence rates up to 20% in 20 years for benign meningiomas, up to 80% for atypical meningiomas and up to 100% for malignant meningiomas, have been reported. The most important prognostic factors for meningioma recurrence are meningioma grade, meningioma invasiveness and radicality of neurosurgical resection. The aim of our study was to evaluate the differences in antigenic expression on the surface of meningioma cells between recurrent and non-recurrent meningiomas. 19 recurrent meningiomas and 35 non-recurrent meningiomas were compared regarding the expression of MIB-1 antigen, progesterone receptors, cathepsin B and cathepsin L, using immunohistochemistry. MIB-1 antigen expression was higher in the recurrent meningioma group (p=0.001). No difference in progesterone receptor status between recurrent and non-recurrent meningiomas was confirmed. Immunohistochemical intensity scores for cathepsin B (p= 0.007) and cathepsin L (p<0.001) were both higher in the recurrent than in the non-recurrent meningioma group. MIB-1 antigen expression is higher in recurrent compared to non-recurrent meningiomas. There is no difference in expression of progesterone receptors between recurrent and non-recurrent meningiomas. Cathepsins B and L are expressed more in recurrent meningiomas

  18. Expression of bacterial luciferase in eukaryotic cells

    International Nuclear Information System (INIS)

    Expression of Bacterial luciferase enzyme (lux) in mammalian cells would be a powerful bioreporter protein system for in vivo imaging because eukaryotic luciferases need expensive substrates. However, only a few efforts have been made to express bacterial luciferase enzyme in mammalian cells. As the result of this, we attempted to construct bicistronic vector including two bacterial luciferase genes (LuxA and LuxB) for assessing the potential to be visualized in vitro or in vivo by optical imaging system after transfection to mammalian cells. We designed and synthesized luxA and luxB genes from Photorhabdus Luminescens. To co-express both luxA and luxB genes from a single promoter, we cloned as a bicistronic transcript fused with an internal ribosomal entry site (IRES). This bicistronic transcript was transfected by Superfect to HEK 293T cell line. We also transfected lux A and lux B vector to HEK 293T cells separately. To evaluate gene expression, n-decanal and FMNH2 were supplemented to transfected HEK 293T cell lines which were measured by In Vivo Imaging System. The luxA gene was cloned into the MCS(A) of pIRESGFP via the 5' SalI and 3' EcoRI restriction sites to generate pIRESluxA. The luxB gene was cleaved via a 5' NcoI and 3' NotI site from luxB and cloned into the MCS(B) of pIRESluxA to generate pIRESluxAB. LuxA and B genes was cleaved by 5' EcoRI and 3' SpeI and cloned into the pcDNA3.1 mammalian expression vector to create pcDNALuxA and pcDNALuxB. We constructed bicistronic vector system which is composed of bacterial luciferase genes (lux A and B) on the single reading frame. These results hold a promise of an available development of an autonomous light generating lux reporter system in mammalian cells

  19. Aberrant expression of metallothioneins in clear cell renal cell carcinomas

    Directory of Open Access Journals (Sweden)

    Rymar V. I.

    2015-12-01

    Full Text Available Aim. To find candidate tumor suppressor genes among metallothioneins for clear cell renal cell carcinoma. Methods. Analysis of the microarray data, quantitative PCR. Results. We found three genes encoding metallothioneines that showed reduced expression in different types of renal tumors, using protocol of the cross-platform meta-analysis of microarray data with normalization on several reference genes. Decreased expression of the MT1G, MT1F, and MT1H genes in clear cell renal cell carcinoma was confirmed by qPCR. Conclusions. The MT1G, MT1F and MT1H genes as well as may be considered as the candidate tumor suppressor genes for ccRCC.

  20. Intact indoleamine 2,3-dioxygenase activity in human chronic granulomatous disease

    OpenAIRE

    Jürgens, Birgit; Fuchs, Dietmar; Reichenbach, Janine; Heitger, Andreas

    2010-01-01

    Chronic granulomatous disease (CGD) is characterized by a disability to produce reactive oxygen intermediates (ROI) caused by a defect of phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. A hyperinflammatory response to immune activation has been reported to contribute to the pathology of CGD. The tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) is considered critical for regulating immune responses and suppression of inflammation. IDO is generally believe...

  1. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  2. Gene expression profiles in irradiated cancer cells

    International Nuclear Information System (INIS)

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses

  3. Direct cell lysis for single-cell gene expression profiling

    Directory of Open Access Journals (Sweden)

    DavidSvec

    2013-11-01

    Full Text Available The interest to analyze single and few cell samples is rapidly increasing. Numerous extraction protocols to purify nucleic acids are available, but most of them compromise severely on yield to remove contaminants and are therefore not suitable for the analysis of samples containing small numbers of transcripts only. Here, we evaluate 17 direct cell lysis protocols for transcript yield and compatibility with downstream reverse transcription quantitative real-time PCR. Four endogenously expressed genes are assayed together with RNA and DNA spikes in the samples. We found bovine serum albumin (BSA to be the best lysis agent, resulting in efficient cell lysis, high RNA stability and enhanced reverse transcription efficiency. Furthermore, we found direct cell lysis with BSA superior to standard column based extraction methods, when analyzing from 1 up to 512 mammalian cells. In conclusion, direct cell lysis protocols based on BSA can be applied with most cell collection methods and are compatible with most analytical workflows to analyze single cells as well as samples composed of small numbers of cells.

  4. The prognostic significance of indoleamine-2,3-dioxygenase and the receptors for transforming growth factor β and interferon γ in metastatic lymph nodes in malignant melanoma.

    Science.gov (United States)

    Pelak, Maciej J; Śnietura, Mirosław; Lange, Dariusz; Nikiel, Barbara; Pecka, Katarzyna M

    2015-12-01

    We analyzed the prognostic significance of indoleamine-2,3-dioxygenase (IDO) and type 1 receptors for transforming growth factor beta (TGF-βR1) and interferon gamma (IFN-γR1) in resected nodal metastases of 48 malignant melanoma patients. In 32 cases the corresponding skin tumors were available. We used immunohistochemical (IHC) staining which was assessed by pathologists and by a computer-aided algorithm that yielded quantitative results, both absolute and relative. We correlated the results with the patient outcome. We identified absolute computer-assessed IDO levels as positively correlated with increased risk of death in a multivariate model (HR = 1.02; 95% CI: 1.002-1.04; p = 0.03). In univariate analysis, patients with IDO levels below the median had a better overall survival time (30.3 vs. 17.5 months; p = 0.03). TGF-βR1 and IFN-γR1 expression was modestly correlated (R = 0.34; p lt; 0.05) and TGF-βR1 expression was lower in lymph nodes than in matched primary skin tumors (Z = 2.87; p = 0.004). The pathologists' and computer-aided IHC assessment demonstrated high correlation levels (R = 0.61, R = 0.74 and R = 0.88 for IDO, TGF-βR1 and IFN-γR1, respectively). Indoleamine-2,3-dioxygenase is prognostic for the patient outcome in melanoma with nodal involvement and should be investigated prospectively for its predictive significance. IHC assessment by computer-aided methods is recommended as its gives IHC more objectivity and reproducibility. ecting mismatch repair deficiency. Association of CDX2 and PMS2 in the present study is necessary to conduct further genetic and pathological studies focusing on these two markers together. PMID:27003769

  5. T cells stimulate catabolic gene expression by the stromal cells from giant cell tumor of bone

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Robert W. [Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L8 (Canada); Juravinski Cancer Centre, 699 Concession St., Hamilton, ON, Canada L8V 5C2 (Canada); Ghert, Michelle [Juravinski Cancer Centre, 699 Concession St., Hamilton, ON, Canada L8V 5C2 (Canada); Department of Surgery, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L8 (Canada); Singh, Gurmit, E-mail: gurmit.singh@jcc.hhsc.ca [Department of Pathology and Molecular Medicine, McMaster University, 1280 Main St. W., Hamilton, ON, Canada L8S 4L8 (Canada); Juravinski Cancer Centre, 699 Concession St., Hamilton, ON, Canada L8V 5C2 (Canada)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Two T cell lines stimulate PTHrP, RANKL, MMP13 gene expression in GCT cell cultures. Black-Right-Pointing-Pointer CD40 expressed by stromal cells; CD40L detected in whole tumor but not cultures. Black-Right-Pointing-Pointer Effect of CD40L treatment on GCT cells increased PTHrP and MMP13 gene expression. Black-Right-Pointing-Pointer PTHrP treatment increased MMP13 expression, while inhibition decreased expression. Black-Right-Pointing-Pointer T cells may stimulate GCT stromal cells and promote the osteolysis of the tumor. -- Abstract: The factors that promote the localized bone resorption by giant cell tumor of bone (GCT) are not fully understood. We investigated whether T cells could contribute to bone resorption by stimulating expression of genes for parathyroid hormone-related protein (PTHrP), matrix metalloproteinase (MMP)-13, and the receptor activator of nuclear-factor {kappa}B ligand (RANKL). Two cell lines, Jurkat clone E6-1 and D1.1, were co-cultured with isolated GCT stromal cells. Real-time PCR analyses demonstrated a significant increase of all three genes following 48 h incubation, and PTHrP and MMP-13 gene expression was also increased at 24 h. Further, we examined the expression of CD40 ligand (CD40L), a protein expressed by activated T cells, and its receptor, CD40, in GCT. Immunohistochemistry results revealed expression of the CD40 receptor in both the stromal cells and giant cells of the tumor. RNA collected from whole GCT tissues showed expression of CD40LG, which was absent in cultured stromal cells, and suggests that CD40L is expressed within GCT. Stimulation of GCT stromal cells with CD40L significantly increased expression of the PTHrP and MMP-13 genes. Moreover, we show that inhibition of PTHrP with neutralizing antibodies significantly decreased MMP13 expression by the stromal cells compared to IgG-matched controls, whereas stimulation with PTHrP (1-34) increased MMP-13 gene expression. These

  6. Long-lasting Disease Stabilization in the Absence of Toxicity in Metastatic Lung Cancer Patients Vaccinated with an Epitope Derived from Indoleamine 2,3 Dioxygenase

    DEFF Research Database (Denmark)

    Iversen, Trine Zeeberg; Engell-Noerregaard, Lotte; Ellebaek, Eva;

    2014-01-01

    PURPOSE: To investigate targeting of indoleamine 2,3 dioxygenase (IDO) enzyme using a synthetic peptide vaccine administered to patients with metastatic non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN: In a clinical phase I study, we treated 15 HLA-A2-positive patients with stage III...... endpoints. RESULTS: No severe toxicity was observed. One patient developed a partial response (PR) after one year of vaccine treatment, whereas long-lasting stable disease (SD) ≥ 8.5 months was demonstrated in another six patients. The median overall survival (OS) was 25.9 months. Patients demonstrated...... long-term analyses of two clinical responding patients, the ratio of Kyn/Trp remained stable. CONCLUSIONS: The vaccine was well tolerated with no severe toxicity occurring. A median OS of 25.9 months was demonstrated and long-lasting PR+SD was seen in 47% of the patients....

  7. Gene expression profile of renal cell carcinoma clear cell type

    Directory of Open Access Journals (Sweden)

    Marcos F. Dall’Oglio

    2010-08-01

    Full Text Available PURPOSE: The determination of prognosis in patients with renal cell carcinoma (RCC is based, classically, on stage and histopathological aspects. The metastatic disease develops in one third of patients after surgery, even in localized tumors. There are few options for treating those patients, and even the new target designed drugs have shown low rates of success in controlling disease progression. Few studies used high throughput genomic analysis in renal cell carcinoma for determination of prognosis. This study is focused on the identification of gene expression signatures in tissues of low-risk, high-risk and metastatic RCC clear cell type (RCC-CCT. MATERIALS AND METHODS: We analyzed the expression of approximately 55,000 distinct transcripts using the Whole Genome microarray platform hybridized with RNA extracted from 19 patients submitted to surgery to treat RCC-CCT with different clinical outcomes. They were divided into three groups (1 low risk, characterized by pT1, Fuhrman grade 1 or 2, no microvascular invasion RCC; (2 high risk, pT2-3, Fuhrman grade 3 or 4 with, necrosis and microvascular invasion present and (3 metastatic RCC-CCT. Normal renal tissue was used as control. RESULTS: After comparison of differentially expressed genes among low-risk, high-risk and metastatic groups, we identified a group of common genes characterizing metastatic disease. Among them Interleukin-8 and Heat shock protein 70 were over-expressed in metastasis and validated by real-time polymerase chain reaction. CONCLUSION: These findings can be used as a starting point to generate molecular markers of RCC-CCT as well as a target for the development of innovative therapies.

  8. Tetracycline regulator expression alters the transcriptional program of mammalian cells

    OpenAIRE

    Hackl, Hubert; Rommer, Anna; Konrad, Torsten A; Nassimbeni, Christine; Wieser, Rotraud

    2010-01-01

    Tetracycline regulated ectopic gene expression is a widely used tool to study gene function. However, the tetracycline regulator (tetR) itself has been reported to cause certain phenotypic changes in mammalian cells. We, therefore, asked whether human myeloid U937 cells expressing the tetR in an autoregulated manner would exhibit alterations in gene expression upon removal of tetracycline.

  9. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    Directory of Open Access Journals (Sweden)

    Lundeberg Joakim

    2006-04-01

    Full Text Available Abstract Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox. These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin.

  10. Modulation of ganglioside expression in human melanoma cell lines

    International Nuclear Information System (INIS)

    Cell surface gangliosides in human melanoma cell lines were modulated by pretreatment and adaptation to 6-thioguanine and 5-bromo-deoxyuridine. Chemo- and radiation sensitivities were compared in original cell lines and modulated cells by the human tumor colony-forming assay. Modulated cells showed decreased expression of cell surface GM2 and GD2 gangliosides. This reduction was correlated with increased resistance to bleomycin, vincristine, cisplatin and radiation treatment. These results suggest that cell surface GM2 and GD2 ganglioside expression in human melanoma cells is intimately associated with several cellular biological properties, such as drug or radiation sensitivity and cellular differentiation. (author)

  11. Expression of parafibromin in major renal cell tumors

    OpenAIRE

    Cui, C.; Lal, P; Master, S.; Ma, Y.; Baradet, T.; Bing, Z.

    2012-01-01

    Parafibromin, encoded by HRPT2 gene, is a recently identified tumor suppressor. Complete and partial loss of its expression have been observed in hyperparathyroidism-jaw tumor (HPT-JT), parathyroid carcinoma, breast carcinoma, lung carcinoma, gastric and colorectal carcinoma. However, little has been known about its expression in renal tumors. In order to study the expression of parafibromin in a series of the 4 major renal cell tumors - clear cell renal cell carcinoma (ccRCC), papillary ren...

  12. Localization of the human indoleamine 2,3-dioxygenase (IDO) gene to the pericentromeric region of human chromosome 8

    Energy Technology Data Exchange (ETDEWEB)

    Burkin, D.J.; Jones, C. (Eleanor Roosevelt Institute for Cancer Research, Denver, CO (United States)); Kimbro, K.S.; Taylor, M.W. (Indiana Univ., Bloomington, IN (United States)); Barr, B.L.; Gupta, S.L. (Hipple Cancer Research Center, Dayton, OH (United States))

    1993-07-01

    Indoleamine 2,3-dioxygenase (IDO) is the first enzyme in the catabolic pathway for tryptophan. This extrahepatic enzyme differs from the hepatic enzyme, tryptophan 2,3-dioxygenase (TDO), in molecular as well as enzymatic characteristics, although both enzymes catalyze the same reaction: cleavage of tryptophan into N-formylkynurenine. The induction of IDO by IFN-[gamma] plays a role in the antigrowth effect of IFN-[gamma] in cell cultures and in the inhibition of intracellular pathogens, e.g., Toxoplasma gondii and Chlamydia psittaci. Tryptophan is also the precursor for the synthesis of serotonin, and reduced levels of tryptophan and serotonin found in AIDS patients have been correlated with the presence of IFN-[gamma] and consequent elevation of IDO activity. The IDO enzyme has been purified and characterized, and its cDNA and genomic DNA clones have been isolated and analyzed. DNA from hybrid cells containing fragments of human chromosome 8 was used to determine the regional localization of the IDO gene on chromosome 8. The hybrids R30-5B and R30-2A contain 8p11 [yields] qter and 8q13 [yields] qter, respectively. Hybrid 229-3A contains the 8pter [yields] q11. The hybrid R30-2A was negative for the IDO gene, whereas R30-5B and 229-3A were positive as analyzed by PCR and verified by Southern blotting. Only the region close to the centromere is shared by R30-5B and 229-3A hybrids. The results indicate that the IDO gene is located on chromosome 8p11 [yields] q11.

  13. Renalase's expression and distribution in renal tissue and cells.

    Directory of Open Access Journals (Sweden)

    Feng Wang

    Full Text Available To study renalase's expression and distribution in renal tissues and cells, renalase coded DNA vaccine was constructed, and anti-renalase monoclonal antibodies were produced using DNA immunization and hybridoma technique, followed by further investigation with immunological testing and western blotting to detect the expression and distribution of renalase among the renal tissue and cells. Anti-renalase monoclonal antibodies were successfully prepared by using DNA immunization technique. Further studies with anti-renalase monoclonal antibody showed that renalase expressed in glomeruli, tubule, mesangial cells, podocytes, renal tubule epithelial cells and its cells supernatant. Renalase is wildly expressed in kidney, including glomeruli, tubule, mesangial cells, podocytes and tubule epithelial cells, and may be secreted by tubule epithelial cells primarily.

  14. Hemoglobin is Expressed in Alveolar Epithelial Type II Cells

    OpenAIRE

    Bhaskaran, Manoj; Chen, Haifeng; Chen, Zhongmong; Liu, Lin

    2005-01-01

    Hemoglobin is the main oxygen carrying heme protein in erythrocytes. In an effort to study the differential gene expression of alveolar epithelial type I and type II cells using DNA microarray technique, we found that the mRNAs of hemoglobin α- and β-chains were expressed in type II cells, but not in type I cells. The microarray data were confirmed by RT-PCR. The mRNA expression of both chains decreased when type II cells trans-differentiated into type I-like cells. Immunocyto/histochemistry ...

  15. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy. PMID:10811469

  16. The Role of Indoleamine 2,3-Dioxygenase in a Mouse Model of Neuroinflammation-Induced Depression

    NARCIS (Netherlands)

    Dobos, Nikoletta; de Vries, Erik F. J.; Kema, Ido P.; Patas, Konstantinos; Prins, Marloes; Nijholt, Ingrid M.; Dierckx, Rudi A.; Korf, Jakob; den Boer, Johan A.; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Borsello, Tiziana

    2012-01-01

    Indoleamine 2,3-dioxygenase (IDO), an enzyme which is activated by pro-inflammatory cytokines, has been suggested as a potential link between neuroinflammatory processes in neurodegenerative diseases (like Alzheimer's disease) and depression. The present study aimed to determine whether neuroinflamm

  17. Advantages and Applications of CAR-Expressing Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Wolfgang eGlienke

    2015-02-01

    Full Text Available In contrast to donor T cells, natural killer (NK cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD. In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/ on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy.

  18. Robust Inference of Cell-to-Cell Expression Variations from Single- and K-Cell Profiling.

    Science.gov (United States)

    Narayanan, Manikandan; Martins, Andrew J; Tsang, John S

    2016-07-01

    Quantifying heterogeneity in gene expression among single cells can reveal information inaccessible to cell-population averaged measurements. However, the expression level of many genes in single cells fall below the detection limit of even the most sensitive technologies currently available. One proposed approach to overcome this challenge is to measure random pools of k cells (e.g., 10) to increase sensitivity, followed by computational "deconvolution" of cellular heterogeneity parameters (CHPs), such as the biological variance of single-cell expression levels. Existing approaches infer CHPs using either single-cell or k-cell data alone, and typically within a single population of cells. However, integrating both single- and k-cell data may reap additional benefits, and quantifying differences in CHPs across cell populations or conditions could reveal novel biological information. Here we present a Bayesian approach that can utilize single-cell, k-cell, or both simultaneously to infer CHPs within a single condition or their differences across two conditions. Using simulated as well as experimentally generated single- and k-cell data, we found situations where each data type would offer advantages, but using both together can improve precision and better reconcile CHP information contained in single- and k-cell data. We illustrate the utility of our approach by applying it to jointly generated single- and k-cell data to reveal CHP differences in several key inflammatory genes between resting and inflammatory cytokine-activated human macrophages, delineating differences in the distribution of 'ON' versus 'OFF' cells and in continuous variation of expression level among cells. Our approach thus offers a practical and robust framework to assess and compare cellular heterogeneity within and across biological conditions using modern multiplexed technologies. PMID:27438699

  19. Chemokine receptor expression by inflammatory T cells in EAE

    Directory of Open Access Journals (Sweden)

    Jyothi Thyagabhavan Mony

    2014-07-01

    Full Text Available Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS. The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS. The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4+ T cells that produce the cytokine IL-17 (Th17 cells. Th17 cells and interferon-gamma (IFNγ-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE. We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4+ T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 7.7% of CD4+ T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8+ T cells. CD8+ T cells expressed CXCR3, which was also expressed by CD4+ T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6+ and CXCR3+ CD4+ T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8+ T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4+ T cells expressed CCR6 within infiltrates. CD4-negative CCR6+ cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4+ and CD8+ T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  20. Geometry of the Gene Expression Space of Individual Cells.

    Directory of Open Access Journals (Sweden)

    Yael Korem

    2015-07-01

    Full Text Available There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a

  1. Differential expression and function of CD27 in chronic lymphocytic leukemia cells expressing ZAP-70.

    Science.gov (United States)

    Lafarge, Sandrine T; Hou, Sen; Pauls, Samantha D; Johnston, James B; Gibson, Spencer B; Marshall, Aaron J

    2015-07-01

    Chronic lymphocytic leukemia is a malignancy driven by abberant B cell signaling and survival. Leukemic B cells accumulate in the peripheral blood and the lymphoid organs where contact with stromal cells and T cells provide critical survival signals. Clinical severity of CLL is associated with several prognostic markers including expression of the kinase ZAP-70. ZAP-70 expression enhances signaling via the B cell antigen receptor and is associated with increased cell adhesion and migration capacity. Here we report that ZAP-70-positive CLL patients display significantly higher expression of the TNF superfamily receptor and memory marker CD27 than do ZAP-70 negative patients. CD27 expression by CLL was acutely elevated upon BCR cross-linking, or upon ectopic expression of ZAP-70. CD27 expression correlated with functional capacity to adhere to stromal cells and antibody blockade of CD27 impaired CLL binding to stroma. These results provide the first evidence for differential expression of CD27 among CLL prognostic groups, suggest a role for ZAP-70 dependent signaling in CD27 induction and implicate CD27 in cell-cell interactions with the lymphoid tissue microenvironment. PMID:26002513

  2. Calreticulin: Roles in Cell-Surface Protein Expression

    Directory of Open Access Journals (Sweden)

    Yue Jiang

    2014-09-01

    Full Text Available In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins.

  3. Cell population-specific expression analysis of human cerebellum

    Directory of Open Access Journals (Sweden)

    Kuhn Alexandre

    2012-11-01

    Full Text Available Abstract Background Interpreting gene expression profiles obtained from heterogeneous samples can be difficult because bulk gene expression measures are not resolved to individual cell populations. We have recently devised Population-Specific Expression Analysis (PSEA, a statistical method that identifies individual cell types expressing genes of interest and achieves quantitative estimates of cell type-specific expression levels. This procedure makes use of marker gene expression and circumvents the need for additional experimental information like tissue composition. Results To systematically assess the performance of statistical deconvolution, we applied PSEA to gene expression profiles from cerebellum tissue samples and compared with parallel, experimental separation methods. Owing to the particular histological organization of the cerebellum, we could obtain cellular expression data from in situ hybridization and laser-capture microdissection experiments and successfully validated computational predictions made with PSEA. Upon statistical deconvolution of whole tissue samples, we identified a set of transcripts showing age-related expression changes in the astrocyte population. Conclusions PSEA can predict cell-type specific expression levels from tissues homogenates on a genome-wide scale. It thus represents a computational alternative to experimental separation methods and allowed us to identify age-related expression changes in the astrocytes of the cerebellum. These molecular changes might underlie important physiological modifications previously observed in the aging brain.

  4. Intraclonal protein expression heterogeneity in recombinant CHO cells.

    Directory of Open Access Journals (Sweden)

    Warren Pilbrough

    Full Text Available Therapeutic glycoproteins have played a major role in the commercial success of biotechnology in the post-genomic era. But isolating recombinant mammalian cell lines for large-scale production remains costly and time-consuming, due to substantial variation and unpredictable stability of expression amongst transfected cells, requiring extensive clone screening to identify suitable high producers. Streamlining this process is of considerable interest to industry yet the underlying phenomena are still not well understood. Here we examine an antibody-expressing Chinese hamster ovary (CHO clone at single-cell resolution using flow cytometry and vectors, which couple light and heavy chain transcription to fluorescent markers. Expression variation has traditionally been attributed to genetic heterogeneity arising from random genomic integration of vector DNA. It follows that single cell cloning should yield a homogeneous cell population. We show, in fact, that expression in a clone can be surprisingly heterogeneous (standard deviation 50 to 70% of the mean, approaching the level of variation in mixed transfectant pools, and each antibody chain varies in tandem. Phenotypic variation is fully developed within just 18 days of cloning, yet is not entirely explained by measurement noise, cell size, or the cell cycle. By monitoring the dynamic response of subpopulations and subclones, we show that cells also undergo slow stochastic fluctuations in expression (half-life 2 to 11 generations. Non-genetic diversity may therefore play a greater role in clonal variation than previously thought. This also has unexpected implications for expression stability. Stochastic gene expression noise and selection bias lead to perturbations from steady state at the time of cloning. The resulting transient response as clones reestablish their expression distribution is not ordinarily accounted for but can contribute to declines in median expression over timescales of up to 50

  5. Human thymic epithelial cells express functional HLA-DP molecules

    DEFF Research Database (Denmark)

    Jørgensen, A; Röpke, C; Nielsen, M;

    1996-01-01

    HLA-DP molecules function as restriction elements in the presentation of foreign antigens to T cells by antigen presenting cells and certain HLA-DP molecules confer susceptibility to autoimmune disease. Because HLA molecules play an essential role in thymic selection and elimination of autoreactive...... T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression...... of HLA-DQ but lower than that of HLA-DR. Upon IFN-gamma treatment, HLA-DP expression was strongly upregulated. Since HLA-DQ and DR expression was upregulated in parallel, the hierarchy between MHC class II isotypes remained unchanged following interferon treatment. TEC elicited significant...

  6. TRPM5-expressing microvillous cells in the main olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Liman Emily R

    2008-11-01

    Full Text Available Abstract Background The main olfactory epithelium (MOE in the nasal cavity detects a variety of air borne molecules that provide information regarding the presence of food, predators and other relevant social and environmental factors. Within the epithelium are ciliated sensory neurons, supporting cells, basal cells and microvillous cells, each of which is distinct in morphology and function. Arguably, the least understood, are the microvillous cells, a population of cells that are small in number and whose function is not known. We previously found that in a mouse strain in which the TRPM5 promoter drives expression of the green fluorescent protein (GFP, a population of ciliated olfactory sensory neurons (OSNs, as well as a population of cells displaying microvilli-like structures is labeled. Here we examined the morphology and immunocytochemical properties of these microvillous-like cells using immunocytochemical methods. Results We show that the GFP-positive microvillous cells were morphologically diversified and scattered throughout the entire MOE. These cells immunoreacted to an antibody against TRPM5, confirming the expression of this ion channel in these cells. In addition, they showed a Ca2+-activated non-selective cation current in electrophysiological recordings. They did not immunoreact to antibodies that label cell markers and elements of the transduction pathways from olfactory sensory neurons and solitary chemosensory cells of the nasal cavity. Further, the TRPM5-expressing cells did not display axon-like processes and were not labeled with a neuronal marker nor did trigeminal peptidergic nerve fibers innervate these cells. Conclusion We provide morphological and immunocytochemical characterization of the TRPM5-expressing microvillous cells in the main olfactory epithelium. Our data demonstrate that these cells are non-neuronal and in terms of chemosensory transduction do not resemble the TRPM5-expressing olfactory sensory neurons

  7. Endogenous Expression of Matriptase in Neural Progenitor Cells Promotes Cell Migration and Neuron Differentiation*

    OpenAIRE

    Fang, Jung-Da; Chou, Hsiao-Chin; Tung, Hsiu-Hui; Huang, Pao-Yi; Lee, Sheau-Ling

    2010-01-01

    Recent studies show that type II transmembrane serine proteases play important roles in diverse cellular activities and pathological processes. Their expression and functions in the central nervous system, however, are largely unexplored. In this study, we show that the expression of one such member, matriptase (MTP), was cell type-restricted and primarily expressed in neural progenitor (NP) cells and neurons. Blocking MTP expression or MTP activity prevented NP cell traverse of reconstituted...

  8. Cyclin Dl expression in B-cell non Hodgkin lymphoma.

    Science.gov (United States)

    Aref, Salah; Mossad, Y; El-Khodary, T; Awad, M; El-Shahat, E

    2006-10-01

    Disorders of the cell cycle regulatory machinery play a key role in the pathogenesis of cancer. Over-expression of cyclin D1 protein has been reported in several solid tumors and certain lymphoid malignancies, but little is known about the effect of its expression on clinical behavior and outcome in B-cell Non-Hodgkin lymphoma (NHL). In this study, we investigated the expression of cyclin Dl in group of patients with NHL and correlated the results with the clinical and laboratory data. The degree of expression of cyclin Dl protein was evaluated by flow cytometry in a group of NHL patients (n = 46) and in normal control group (n = 10). Cyclin Dl over expression was detected in 10 out of 46 (21.7%) patients; they were 5/5-mantle cell lymphoma (MCL) (100%) and 5/28 large B-cell lymphoma (17.8%). All other NHL subtypes showed normal cyclin D1 expression. The clinical signs (hepatomegaly, splenomegaly and B-symptoms, clinical staging) and laboratory data (hemoglobin, white cell count (WBCs), platelet count, and bone marrow infiltration) were not significantly different between NHL subgroup with cyclin Dl over expression and that with normal cyclin Dl expression. Serum lactic dehydrogenase (LDH) levels and lymphadenopathy were significantly higher in NHL group with cyclin D1 over expression as compared to those without. Also, cyclin D1 over expression is associated with poor outcome of NHL patients. Cyclin Dl over expression was evident among all cases of MCL and few cases of large B-cell lymphoma. Cyclin Dl over expression might be used as adjuvant tool for diagnosis of MCL; has role in NHL biology and is bad prognostic index in NHL. PMID:17607588

  9. HCMV Infection Depress NGF Expression in Human Glioma Cells

    Institute of Scientific and Technical Information of China (English)

    Hai-tao WANG; Bin WANG; Zhi-jun LIU; Zhi-qiang BAI; Ling LI; Dong-meng QIAN; Zhi-yong YAN; Xu-xia SONG

    2009-01-01

    Human cytomegalovirus (HCMV) is the most common cause of congenital infection, resulting in birth defects such as microcephaly. In this study, RT-PCR and Western Blotting were performed to quantify the regulation of endogenic nerve growth factor expression in neuroglia cells by HCMV infection. The results showed that basal, endogenous NGF expression in U251 was unchanged during early HCMV infection. NGF expression is strongly down-regulated during the latent phase of infection. These results suggest that HCMV can depress the NGF expression in U251 cells.

  10. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  11. Hair cell damage recruited Lgr5-expressing cells are hair cell progenitors in neonatal mouse utricle

    Directory of Open Access Journals (Sweden)

    Jinchao Lin

    2015-04-01

    Full Text Available Damage-activated stem/progenitor cells play important roles in regenerating lost cells and in tissue repair. Previous studies reported that the mouse utricle has limited hair cell regeneration ability after hair cell ablation. However, the potential progenitor cell population regenerating new hair cells remains undiscovered. In this study, we first found that Lgr5, a Wnt target gene that is not usually expressed in the neonatal mouse utricle, can be activated by 24 hour neomycin treatment in a sub-population of supporting cells in the striolar region of the neonatal mouse utricle. Lineage tracing demonstrated that these Lgr5-positive supporting cells could regenerate new hair cells in explant culture. We isolated the damage-activated Lgr5-positive cells with flow cytometry and found that these Lgr5-positive supporting cells could regenerate hair cells in vitro, and self-renew to form spheres, which maintained the capacity to differentiate into hair cells over seven generations of passages. Our results suggest that damage-activated Lgr5-positive supporting cells act as hair cell progenitors in the neonatal mouse utricle, which may help to uncover a potential route to regenerate hair cell in mammals.

  12. Programmed cell death 1 ligand 1 expression in osteosarcoma

    OpenAIRE

    Shen, Jacson K.; Cote, Gregory M.; Choy, Edwin; Yang, Pei; Harmon, David; Schwab, Joseph; Nielsen, G. Petur; Chebib, Ivan; Ferrone, Soldano; Wang, Xinhui; Wang, Yangyang; Mankin, Henry; Francis J. Hornicek; Duan, Zhenfeng

    2014-01-01

    Programmed cell death 1 ligand 1 (PD-L1, B7H1) is a cell-surface protein that suppresses the cytotoxic CD8+ T cell-mediated immune response. PD-L1 expression and its clinical relevance in sarcomas are not well understood. Therefore, we sought to measure RNA expression levels for PD-L1 in 38 clinically annotated osteosarcoma tumor samples, and aimed to determine if PD-L1 expression correlates with clinical features and tumor-infiltrating T-lymphocytes (TILs). Quantitative real-time RT-PCR for ...

  13. Resonance Raman study on indoleamine 2,3-dioxygenase: Control of reactivity by substrate-binding

    International Nuclear Information System (INIS)

    Highlights: • Indoleamine 2,3-dioygenase has been studied by resonance Raman spectroscopy. • Trp-binding to the enzyme induces high frequency shift of the Fe–His stretching mode. • Increased imidazolate character of histidine promotes the O–O bond cleavage step. • A fine-tuning of the reactivity of the O–O bond cleavage reaction is identified. • The results are consistent with the sequential oxygen-atom-transfer mechanism. - Abstract: Resonance Raman spectra of ligand-bound complexes including the 4-phenylimidazole complex and of free and L-Trp-bound forms of indoleamine 2, 3-dioxygenase in the ferric state were examined. Effects on the vinyl and propionate substituent groups of the heme were detected in a ligand-dependent fashion. The effects of phenyl group of 4-phenylimidazole on the vinyl and propionate Raman bands were evident when compared with the case of imidazole ligand. Substrate binding to the ferrous protein caused an upshift of the iron–histidine stretching mode by 3 cm−1, indicating an increase in negativity of the imidazole ring, which favors the O–O bond cleavage. The substrate binding event is likely to be communicated from the heme distal side to the iron–histidine bond through heme substituent groups and the hydrogen-bond network which includes water molecules, as identified in an X-ray structure of a 4-phenylimidazole complex. The results provide evidence for fine-tuning of the reactivity of O–O bond cleavage by the oxygenated heme upon binding of L-Trp

  14. Resonance Raman study on indoleamine 2,3-dioxygenase: Control of reactivity by substrate-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Sachiko; Hara, Masayuki [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Sugimoto, Hiroshi; Shiro, Yoshitsugu [Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Koto 1-1-1, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Ogura, Takashi, E-mail: ogura@sci.u-hyogo.ac.jp [Graduate School of Life Science and Picobiology Institute, University of Hyogo, Koto 3-2-1, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)

    2013-06-20

    Highlights: • Indoleamine 2,3-dioygenase has been studied by resonance Raman spectroscopy. • Trp-binding to the enzyme induces high frequency shift of the Fe–His stretching mode. • Increased imidazolate character of histidine promotes the O–O bond cleavage step. • A fine-tuning of the reactivity of the O–O bond cleavage reaction is identified. • The results are consistent with the sequential oxygen-atom-transfer mechanism. - Abstract: Resonance Raman spectra of ligand-bound complexes including the 4-phenylimidazole complex and of free and L-Trp-bound forms of indoleamine 2, 3-dioxygenase in the ferric state were examined. Effects on the vinyl and propionate substituent groups of the heme were detected in a ligand-dependent fashion. The effects of phenyl group of 4-phenylimidazole on the vinyl and propionate Raman bands were evident when compared with the case of imidazole ligand. Substrate binding to the ferrous protein caused an upshift of the iron–histidine stretching mode by 3 cm{sup −1}, indicating an increase in negativity of the imidazole ring, which favors the O–O bond cleavage. The substrate binding event is likely to be communicated from the heme distal side to the iron–histidine bond through heme substituent groups and the hydrogen-bond network which includes water molecules, as identified in an X-ray structure of a 4-phenylimidazole complex. The results provide evidence for fine-tuning of the reactivity of O–O bond cleavage by the oxygenated heme upon binding of L-Trp.

  15. Expression of CD44 in Cultured Human Trabecular Meshwork Cells

    Institute of Scientific and Technical Information of China (English)

    Zhongguo Li; Hong Zhang

    2004-01-01

    Purpose:To determine whether cultured human trabecular meshwork cells express CD44 and to discuss their possible relationship with primary open angle glaucoma.Methods:Human trabecular meshwork cells were cultured in DMEM/F12 media. Total RNAs from the cells were extracted with Trizol reagent. Messenger RNA expression of CD44 in human trabecular meshwork cells was examined by using reverse transcriptasepolymerase chain reaction ( RT-PCR ) analysis. Expression of CD44 was confirmed by Western-blotting and immunofiuorescent microscopy. Effect of CD44-specific antisense oligonucleotide on adhesion of trabecular meshwork cells to hyaluronate was determined by MTT assay.Results:A single RT-PCR product whose size was 471bp was obtained.A band about 80kD was stained by Western-blot. Immunofiuorescent examination of expression of CD44 on the cell surface was positive and reactions were mainly localized in cell membranes.Adhesion of trabecular meshwork cells to hyaluronate was inhibited by CD44-specific antisense oligonucleotide.Conclusions: Cultured human trabecular meshwork cells express CD44. CD44 may play a role in pathogenesis of primary open angle glaucoma. Eye Science 2004;20:52-56.

  16. Estrogen regulation of TRPM8 expression in breast cancer cells

    International Nuclear Information System (INIS)

    The calcium-permeable cation channel TRPM8 (melastatin-related transient receptor potential member 8) is over-expressed in several cancers. The present study aimed at investigating the expression, function and potential regulation of TRPM8 channels by ER alpha (estrogen receptor alpha) in breast cancer. RT-PCR, Western blot, immuno-histochemical, and siRNA techniques were used to investigate TRPM8 expression, its regulation by estrogen receptors, and its expression in breast tissue. To investigate the channel activity in MCF-7 cells, we used the whole cell patch clamp and the calcium imaging techniques. TRPM8 channels are expressed at both mRNA and protein levels in the breast cancer cell line MCF-7. Bath application of the potent TRPM8 agonist Icilin (20 μM) induced a strong outwardly rectifying current at depolarizing potentials, which is associated with an elevation of cytosolic calcium concentration, consistent with established TRPM8 channel properties. RT-PCR experiments revealed a decrease in TRPM8 mRNA expression following steroid deprivation for 48 and 72 hours. In steroid deprived medium, addition of 17-beta-estradiol (E2, 10 nM) increased both TRPM8 mRNA expression and the number of cells which respond to Icilin, but failed to affect the Ca2+ entry amplitude. Moreover, silencing ERα mRNA expression with small interfering RNA reduced the expression of TRPM8. Immuno-histochemical examination of the expression of TRPM8 channels in human breast tissues revealed an over-expression of TRPM8 in breast adenocarcinomas, which is correlated with estrogen receptor positive (ER+) status of the tumours. Taken together, these results show that TRPM8 channels are expressed and functional in breast cancer and that their expression is regulated by ER alpha

  17. Estrogen regulation of TRPM8 expression in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Sevestre Henri

    2010-05-01

    Full Text Available Abstract Background The calcium-permeable cation channel TRPM8 (melastatin-related transient receptor potential member 8 is over-expressed in several cancers. The present study aimed at investigating the expression, function and potential regulation of TRPM8 channels by ER alpha (estrogen receptor alpha in breast cancer. Methods RT-PCR, Western blot, immuno-histochemical, and siRNA techniques were used to investigate TRPM8 expression, its regulation by estrogen receptors, and its expression in breast tissue. To investigate the channel activity in MCF-7 cells, we used the whole cell patch clamp and the calcium imaging techniques. Results TRPM8 channels are expressed at both mRNA and protein levels in the breast cancer cell line MCF-7. Bath application of the potent TRPM8 agonist Icilin (20 μM induced a strong outwardly rectifying current at depolarizing potentials, which is associated with an elevation of cytosolic calcium concentration, consistent with established TRPM8 channel properties. RT-PCR experiments revealed a decrease in TRPM8 mRNA expression following steroid deprivation for 48 and 72 hours. In steroid deprived medium, addition of 17-beta-estradiol (E2, 10 nM increased both TRPM8 mRNA expression and the number of cells which respond to Icilin, but failed to affect the Ca2+ entry amplitude. Moreover, silencing ERα mRNA expression with small interfering RNA reduced the expression of TRPM8. Immuno-histochemical examination of the expression of TRPM8 channels in human breast tissues revealed an over-expression of TRPM8 in breast adenocarcinomas, which is correlated with estrogen receptor positive (ER+ status of the tumours. Conclusion Taken together, these results show that TRPM8 channels are expressed and functional in breast cancer and that their expression is regulated by ER alpha.

  18. Adrenomedullin Expression by Gastric Epithelial Cells in Response to Infection

    OpenAIRE

    Robert P. Allaker; Kapas, Supriya

    2003-01-01

    Many surface epithelial cells express adrenomedullin, a multifunctional peptide found in a wide number of body and cell systems. Recently, we and others have proposed that adrenomedullin has an important novel role in host defense. This peptide has many properties in common with other cationic antimicrobial peptides, including the human β-defensins. Upon exposure of human gastric epithelial cells to viable cells of invasive or noninvasive strains of Helicobacter pylori, Escherichia coli, Salm...

  19. Expression of Bcl-2 in cells with different telomerase activities

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Both telomerase and Bcl-2 are important genes in controlling apoptosis. The activation of telomerase and the abnormal regulation of Bcl-2 are also closely related to carcinogenesis. However, little is known about the linkage between telomerase and Bcl-2. The effect of activated telomerase on the expression of Bcl-2 has been investigated. It is demonstrated that in tumor and transformed cells with higher telomerase activity, Bcl-2 expression is significantly lower than that in telomerase negative or less telomerose activity cells. Further study showed that in the telomerase gene-transformed 2BS-fibroblasts, Bcl-2 expression is inhibited significantly while the exogenous telomerase catalytic subunit gene is re-expressed in fibroblasts. Results indicated that there might be a certain linkage between the expression of telomerase and Bcl-2, and overexpression of exogenous telomerase gene might down regulate the expression of Bcl-2.

  20. Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment

    OpenAIRE

    Skene, Nathan G.; Grant, Seth G.N.

    2016-01-01

    The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment ...

  1. Identification of vulnerable cell types in major brain disorders using single cell transcriptomes and expression weighted cell type enrichment

    OpenAIRE

    Skene, Nathan G.; Grant, Seth G.N.

    2016-01-01

    The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment ...

  2. Automatic Control of Gene Expression in Mammalian Cells.

    Science.gov (United States)

    Fracassi, Chiara; Postiglione, Lorena; Fiore, Gianfranco; di Bernardo, Diego

    2016-04-15

    Automatic control of gene expression in living cells is paramount importance to characterize both endogenous gene regulatory networks and synthetic circuits. In addition, such a technology can be used to maintain the expression of synthetic circuit components in an optimal range in order to ensure reliable performance. Here we present a microfluidics-based method to automatically control gene expression from the tetracycline-inducible promoter in mammalian cells in real time. Our approach is based on the negative-feedback control engineering paradigm. We validated our method in a monoclonal population of cells constitutively expressing a fluorescent reporter protein (d2EYFP) downstream of a minimal CMV promoter with seven tet-responsive operator motifs (CMV-TET). These cells also constitutively express the tetracycline transactivator protein (tTA). In cells grown in standard growth medium, tTA is able to bind the CMV-TET promoter, causing d2EYFP to be maximally expressed. Upon addition of tetracycline to the culture medium, tTA detaches from the CMV-TET promoter, thus preventing d2EYFP expression. We tested two different model-independent control algorithms (relay and proportional-integral (PI)) to force a monoclonal population of cells to express an intermediate level of d2EYFP equal to 50% of its maximum expression level for up to 3500 min. The control input is either tetracycline-rich or standard growth medium. We demonstrated that both the relay and PI controllers can regulate gene expression at the desired level, despite oscillations (dampened in the case of the PI controller) around the chosen set point. PMID:26414746

  3. Hamster thecal cells express muscle characteristics

    International Nuclear Information System (INIS)

    Contraction of the follicular wall about the time of ovulation appears to be a coordinated event; however, the cells that mediate it remain poorly studied. We examined the theca externa cells in the wall of hamster follicles for the presence of a functional actomyosin system, both in developing follicles and in culture. We used a monoclonal antibody (HHF35) that recognizes the alpha and gamma isoelectric variants of actin normally found in muscle, but not the beta variant associated with non-muscle sources, to evaluate large preovulatory follicles for actin content and composition. Antibody staining of sectioned ovaries showed intense circumferential reactivity in the outermost wall of developing follicles. Immunoblots from two-dimensional gels of theca externa lysates demonstrated the presence of the two muscle-specific isozymes of actin. Immunofluorescence of cultured follicular cells pulse-labeled with [3H] thymidine (for autoradiographic detection of DNA replication) revealed the presence, in many dividing cells, of actin filaments aligned primarily along the longitudinal axis of the cells. In cultures exposed to the calcium ionophore A23187 (10(-4) M) for varying periods (5 min to 1 h), contraction of many individual muscle-actin-positive cells was observed. Immunofluorescence of these cells, fixed immediately after ionophore-induced contraction, revealed compaction of the actin filaments. Our findings demonstrate that the cells of the theca externa contain muscle actins from an early stage and that these cells are capable of contraction even while proliferating in subconfluent cultures. They suggest that follicular growth may include a naturally occurring developmental sequence in which a contractile cell type proliferates in the differentiated state

  4. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  5. Expression of aquaporin-1 in SMMC-7221 liver carcinoma cells promotes cell migration

    Institute of Scientific and Technical Information of China (English)

    LI Yongming; FENG Xuechao; YANG Hong; MA Tonghui

    2006-01-01

    Migration of tumor cells is a crucial step in tumor invasion and metastasis. Here we provide evidence that aquaporin expression is involved in tumor cell migration. RT-PCR, immunofluorescence and Western blot analysis demonstrated the AQP1 protein expression on the plasma membrane of SMMC-7221 human hepatoma cells. SMMC-7221 cell clones with high (SMMC-7221hPf) and low (SMMC-7221/Pf) water permeability were identified by functional assays with corresponding high and low AQP1 expression. Cell migration rate was remarkably higher in SMMC-7221hPf cells than SMMC-7221/Pf cells, assessed by Boyden chamber and wound healing assays, whereas cell growth and adhesion were not different. Adenovirus-mediated AQP1 expression in SMMC-7221/Pf cells increased their water permeability and migration rate. These results provide the first evidence that aquaporin-mediated membrane water permeability enhances tumor cell migration and may be associated with tumor invasion and metastasis.

  6. Cytokine Expression in Homozygous Sickle Cell Anaemia

    Directory of Open Access Journals (Sweden)

    Nnodim Johnkennedy

    2015-01-01

    Full Text Available Background: Sickle cell anaemia is an inherited disease in which the red blood cells become rigid and sticky, and change from being disc-shaped to being crescent-shaped. The change in shape is due to the presence of an abnormal form of haemoglobin. This results in severe pain and damage to some organs. Aim and Objective: The study was carried out to determine the levels of cytokine in sickle cell anemia. Material and Methods: Thirty confirmed sickle cell patients in steady state (HbSS-SS and thirty persons with normal haemoglobin (HbAA as well as sixteen sickle cell disease in crises (HbSS-cr between the ages of 15 to 30 years were selected in this study. Cytokines including interleukin 1 beta (IL- 1β, interleukin 2 (IL- 2, interleukin (IL-6, tumour necrosis factor alpha (TNF-α, and interferon gamma (IFN- λ were measured by commercially available ELISA kits. Results: The results obtained showed that the levels of TNF-α and IL-6 in sickle cell anaemia patients in crisis were significantly elevated when compared with sickle cell in steady state (P<0.05. Similarly, the levels of IL-1β, IL-6, and IFN- λ were significantly increased in sickle cell anaemia stable state when compared to HbAA subjects (P<0.05. Conclusion: This may probably implies that cytokine imbalance is implicated in the pathogenesis of sickle cell crisis. Also, cytokines could be used as an inflammatory marker as well as related marker in disease severity and hence therapeutic intervention.

  7. Recombinant cells that highly express chromosomally-integrated heterologous gene

    Science.gov (United States)

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  8. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  9. Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development

    OpenAIRE

    Cole, Jennifer E.; Astola, Nagore; Cribbs, Adam P.; Goddard, Michael E.; Park, Inhye; Green, Patricia; Davies, Alun H.; Richard O Williams; Feldmann, Marc; Monaco, Claudia

    2015-01-01

    Inflammation is an important component of the pathogenesis of cardiovascular disease, the world’s biggest killer. No antiinflammatory treatments have yet been developed to treat cardiovascular disease. Indoleamine 2,3-dioxygenase (IDO) is a critical enzyme in the metabolism of tryptophan that has been shown to be immune-regulatory in many diseases. ApoE−/− mice deficient in IDO (ApoE−/−Indo−/−) developed larger atherosclerotic lesions and an unfavorable lesion phenotype that may predispose to...

  10. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Carlos M. Carballosa

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  11. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  12. CellCODE: a robust latent variable approach to differential expression analysis for heterogeneous cell populations

    OpenAIRE

    Chikina, Maria; Zaslavsky, Elena; Sealfon, Stuart C.

    2015-01-01

    Motivation: Identifying alterations in gene expression associated with different clinical states is important for the study of human biology. However, clinical samples used in gene expression studies are often derived from heterogeneous mixtures with variable cell-type composition, complicating statistical analysis. Considerable effort has been devoted to modeling sample heterogeneity, and presently, there are many methods that can estimate cell proportions or pure cell-type expression from m...

  13. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  14. Human retinal pigment epithelial cells inhibit proliferation and IL2R expression of activated T cells

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Jørgensen, Annette; Nielsen, Mette;

    2002-01-01

    The purpose of this study was to characterize the effects of human retinal pigment epithelial (RPE) cells on activated T cells. Activated T cells were cocultured with adult and foetal human RPE cells whereafter apoptosis and proliferation were determined by flow cytometry and (3)H...... addition to use of TCR negative T cell lines. The expression of IL2R-alpha -beta and -gamma chains of activated T cells was analysed by flow cytometry after incubation of T cells alone or with RPE cells. Human RPE cells were found to inhibit the proliferation of activated T cells by a cell contact......-dependent mechanism. The RPE cells inhibitory abilities were not affected by blocking of any of the tested surface molecules. The inhibition of the T cells' proliferation correlates with a decreased expression of IL2R-beta and -gamma chains. The T cells regain their ability to proliferate and increase their IL2R...

  15. Tff3 is Expressed in Neurons and Microglial Cells

    Directory of Open Access Journals (Sweden)

    Ting Fu

    2014-11-01

    Full Text Available Background/Aims: The trefoil factor family (TFF peptide TFF3 is typically secreted by mucous epithelia, but is also expressed in the immune system and the brain. It was the aim of this study to determine the cerebral cell types which express Tff3. Methods: Primary cultures from rat embryonic or neonatal cerebral cortex and hippocampus, respectively, were studied by means of RT-PCR and immunofluorescence. Moreover, Tff3 expression was localized by immunocytochemistry in sections of adult rat cerebellum. Results: Tff3 transcripts were detectable in neural cultures of both the cortex and the hippocampus as well as in glial cell-enriched cultures. Tff3 peptide co-localized with Map2 indicating an expression in neurons in vitro. The neuronal expression was confirmed by immunofluorescence studies of adult rat cerebellum. Furthermore, Tff3 peptide showed also a clear co-localization with Iba-1 in vitro typical of activated microglial cells. Conclusion: The neuronal expression of Tff3 is in line with a function of a typical neuropeptide influencing, e.g., fear, memory, depression and motoric skills. The expression in activated microglial cells, which is demonstrated here for the first time, points towards a possible function for Tff3 in immune reactions in the CNS. This opens a plethora of additional possible functions for Tff3 including synaptic plasticity and cognition as well as during neuroinflammatory diseases and psychiatric disorders.

  16. Dental enamel cells express functional SOCE channels

    OpenAIRE

    Nurbaeva, Meerim K.; Miriam Eckstein; Concepcion, Axel R.; Smith, Charles E.; Sonal Srikanth; Paine, Michael L.; Yousang Gwack; HUBBARD, MICHAEL J.; Stefan Feske; LACRUZ, Rodrigo S.

    2015-01-01

    Dental enamel formation requires large quantities of Ca2+ yet the mechanisms mediating Ca2+ dynamics in enamel cells are unclear. Store-operated Ca2+ entry (SOCE) channels are important Ca2+ influx mechanisms in many cells. SOCE involves release of Ca2+ from intracellular pools followed by Ca2+ entry. The best-characterized SOCE channels are the Ca2+ release-activated Ca2+ (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization...

  17. The expression of ADAMTS13 in human microvascular endothelial cells.

    Science.gov (United States)

    Wang, Anyou; Duan, Qiaohong; Wu, Jingsheng; Liu, Xin; Sun, Zimin

    2016-06-01

    ADAMTS13, as a specific von Willebrand factor (VWF)-cleaving protease, prevents microvascular thrombosis of VWF/platelet thrombi. It has been reported that human vascular endothelial cells could also synthesize and secrete ADAMTS13, and these reports were focused in human umbilical vascular endothelial cells. Considering the particularity of its huge quantity and structure of human microvascular endothelial cells (HMECs) in the body, whether ADAMTS13 is expressed in HMECs also needs to be confirmed. To investigate whether ADAMTS13 is expressed in HMECs. Real-time PCR (RT-PCR) amplification detected ADAMTS13 mRNA in HMEC-1 cell line. The expression and distribution of ADAMTS13 protein and VWF were detected by fluorescence immunoassay and western blot. We observed the expression and distribution of ADAMTS13 in HMECs. We confirmed the expression of ADAMTS13 mRNA in HMEC-1, and found that there were some partly common distributions of ADAMTS13 protein and VWF. This study provides the evidence that HMECs also express ADAMTS13. HMECs might also be a primary source for human plasma ADAMTS13. The overlap region for the distribution of ADAMTS13 and VWF suggests that ADAMTS13 might have a potential regulation role for VWF inside cells. PMID:26366828

  18. Suppression of MHC gene expression in cancer cells

    OpenAIRE

    Bernards, R.A.

    1987-01-01

    The class I antigens of the major histocompatibility complex play a crucial part in the recognition of foreign antigens by cytotoxic T lymphocytes. Some cancer cells exhibit a reduced expression of these antigens and this may help these cells to escape immune surveillance.

  19. Estrogen induces Vav1 expression in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Ming-juan Du

    Full Text Available Vav1, a guanine nucleotide exchange factor (GEF for Rho family GTPases, is a hematopoietic protein involved in a variety of cellular events. In recent years, aberrant expression of Vav1 has been reported in non-hematopoietic cancers including human breast cancer. It remains to be answered how Vav1 is expressed and what Vav1 does in its non-resident tissues. In this study, we aimed to explore the mechanism for Vav1 expression in breast cancer cells in correlation with estrogen-ER pathway. We not only verified the ectopic expression of Vav1 in human breast cancer cell lines, but also observed that Vav1 expression was induced by 17β-estradiol (E2, a typical estrogen receptor (ER ligand, in ER-positive cell lines. On the other hand, Tamoxifen, a selective estrogen receptor modulator (SERM, and ICI 182,780, an ER antagonist, suppressed the expression of Vav1. The estrogen receptor modulating Vav1 expression was identified to be α form, not β. Furthermore, treatment of E2 increased the transcription of vav1 gene by enhancing the promoter activity, though there was no recognizable estrogen response element (ERE. Nevertheless, two regions at the vav1 gene promoter were defined to be responsible for E2-induced activation of vav1 promoter. Chromatin immunoprecipitation (ChIP and co-immunoprecipitation (Co-IP analyses suggested that ERα might access to the vav1 promoter via interacting with transcription factors, c-Myb and ELF-1. Consequently, the enhanced expression of Vav1 led to the elevation of Cyclin D1 and the progression of cell cycle. The present study implies that estrogen-ER modulates the transcription and expression of Vav1, which may contribute to the proliferation of cancerous cells.

  20. Protein Expression Profiling in the Spectrum of Renal Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Vladimir A Valera, Elsa Li-Ning-T, Beatriz A Walter, David D. Roberts, W M Linehan, Maria J Merino

    2010-01-01

    Full Text Available In this study, we aimed to evaluate the protein expression profile of a spectrum of renal cell carcinomas (RCC to find potential biomarkers for disease onset and progression and therefore, prospective therapeutic targets. A 2D-gel based proteomic analysis was used to outline differences in protein levels among different subtypes of renal cell carcinomas, including clear cell carcinomas, papillary lesions, chromophobe tumors and renal oncocytomas. Spot pattern was compared to the corresponding normal kidney from the same patients and distinctive, differentially expressed proteins were characterized by mass spectrometry. Twenty-one protein spots were found differentially expressed between clear cell RCC and normal tissue and 38 spots were found expressed in chromophobe tumors. Eleven proteins were identified, with most differentially expressed -by fold change- between clear cell tumors and the corresponding normal tissue. Two of the identified proteins, Triosephosphate isomerase 1 (TPI-1 and Heat Shock protein 27 (Hsp27, were further validated in a separate set of tumors by immunohistochemistry and expression levels were correlated with clinicopathologic features of the patients. Hsp27 was highly expressed in 82% of the tumors used for validation, and all cases showed strong immunoreactivity for TPI-1. In both Hsp27 and TPI-1, protein expression positively correlated with histologic features of the disease. Our results suggest that the subjacent cytogenetic abnormalities seen in different histological types of RCC are followed by specific changes in protein expression. From these changes, Hsp27 and TPI-1 emerged as potential candidates for the differentiation and prognosis in RCC.

  1. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Chetty, Chandramu [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Dontula, Ranadheer [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States); Ganji, Purnachandra Nagaraju [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Gujrati, Meena [Department of Pathology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL-61605 (United States); Lakka, Sajani S., E-mail: slakka@uic.edu [Section of Hematology/Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, 840 South Wood Street, Suite 820-E, Chicago, IL-60612 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the

  2. Adipose tissue-derived stromal cells express neuronal phenotypes

    Institute of Scientific and Technical Information of China (English)

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  3. Cardiomyocyte expression and cell-specific processing of procholecystokinin

    DEFF Research Database (Denmark)

    Gøtze, Jens P.; Johnsen, Anders H.; Kistorp, Caroline;

    2015-01-01

    Heart muscle cells produce peptide hormones such as natriuretic peptides. Developing hearts also express the gene for the classic intestinal hormone cholecystokinin (CCK) in amounts similar to those in the intestine and brain. However, cardiac expression of peptides other than natriuretic peptides...... has only been suggested using transcriptional measures or methods, with the post-translational phase of gene expression unaddressed. In this study, we examined the cardiac expression of the CCK gene in adult mammals and its expression at the protein level. Using quantitative PCR, a library of sequence......-specific pro-CCK assays, peptide purification, and mass spectrometry, we demonstrate that the mammalian heart expresses pro-CCK in amounts comparable to natriuretic prohormones and processes it to a unique, triple-sulfated, and N-terminally truncated product distinct from intestinal and cerebral CCK peptides...

  4. High epitope expression levels increase competition between T cells.

    Directory of Open Access Journals (Sweden)

    Almut Scherer

    2006-08-01

    Full Text Available Both theoretical predictions and experimental findings suggest that T cell populations can compete with each other. There is some debate on whether T cells compete for aspecific stimuli, such as access to the surface on antigen-presenting cells (APCs or for specific stimuli, such as their cognate epitope ligand. We have developed an individual-based computer simulation model to study T cell competition. Our model shows that the expression level of foreign epitopes per APC determines whether T cell competition is mainly for specific or aspecific stimuli. Under low epitope expression, competition is mainly for the specific epitope stimuli, and, hence, different epitope-specific T cell populations coexist readily. However, if epitope expression levels are high, aspecific competition becomes more important. Such between-specificity competition can lead to competitive exclusion between different epitope-specific T cell populations. Our model allows us to delineate the circumstances that facilitate coexistence of T cells of different epitope specificity. Understanding mechanisms of T cell coexistence has important practical implications for immune therapies that require a broad immune response.

  5. Changes of TIZ expression in epithelial ovarian cancer cells

    Institute of Scientific and Technical Information of China (English)

    Huan-Yu Zheng; Hong-Yu Zheng; Yun-Tao Zhou; En-Ling Liu; Jie Li; Yan-Mei Zhang

    2015-01-01

    Objective:To study the change ofTIZ expression in epithelial ovarian cancer cells.Methods:HO8910 cells were transinfected with siRNA to inhibit the expression ofTIZ. pcDNA3.1-TIZ vectors were combined to increase theTIZ expression level.The cell viability, colony forming efficiency and cycle distribution ofHO8910,HO8910/NC,HO8910/pcDNA3.1-NC,HO8910/TIZ-573 andHO8910/pcDNA3.1-TIZ were compared, and the invasion rate, migration rate and adhesion rate between5 groups of cells were compared.Results:Compared with those ofHO8910,HO8910/NC andHO8910/pcDNA3.1-NC, the cell viability, colony forming efficiency and cell cycle distribution ofHO8910/TIZ-573 were increased, while the indexes ofHO8910/pcDNA3.1-NC were decreased with statistical significant difference(P0.05). Conclusions:The expression ofTIZ can inhibit the proliferation of epithelial ovarian cancer cells.

  6. A Novel Protein Is Lower Expressed in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ruili Guan

    2014-04-01

    Full Text Available Engrailed-2 (EN2 has been identified as a candidate oncogene in breast cancer and prostate cancer. It is usually recognized as a mainly nuclear staining in the cells. However, recent studies showed a cytoplasmic staining occurred in prostate cancer, bladder cancer and clear cell renal cell carcinoma. The inconsistency makes us confused. To clarify the localization and expression of EN2 in renal cell carcinoma, anti-EN2 antibody (ab28731 and anti-EN2 antibody (MAB2600 were used for immunohistochemistry (IHC respectively. Interestingly, we found that EN2 detected by ab28731 was mainly presented in cytoplasm while EN2 detected by MAB2600 was mainly presented in nucleus. To further investigate the different patterns observed above, lysates from full-length EN2 over expression in HEK293T cells were used to identify which antibody the EN2 molecule bound by western blot. Results showed ab28731 did not react with the lysates. For this reason, the novel specific protein detected by ab28731 was not the EN2 molecule and was named nonEN2. Then using the renal carcinoma tissue microarray and renal tissues, we found that the protein expression levels of nonEN2 in kidney tumor tissues was significantly lower than that in kidney normal tissues (p < 0.05, so was in renal cell lines. Taken together, nonEN2 is lower expressed and may play an important role in renal cell carcinoma.

  7. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard; Skov, Søren

    2009-01-01

    We show that inhibition of HDAC activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC inhibitor-mediated Hsp70 surface expression was confined to the apoptotic Annexin V...... activity selectively induces surface expression of Hsp70 on hematopoietic cancer cells and that this may increase immunorecognition of these cells.......-positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis such as etoposide and camptothecin also led to a robust induction of Hsp70 surface expression. Hsp70 expression was, however, not caused by induction of apoptosis per se, as activated CD4 T cells remained Hsp70...

  8. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  9. Pax4 Expression does not Transduce Pancreatic Alpha Cells to Beta Cells

    Directory of Open Access Journals (Sweden)

    Ling Chen

    2015-07-01

    Full Text Available Background/Aims: The lack of available beta cells greatly limits the use of beta cell transplantation as a therapy for diabetes. Thus, generation of beta cells from other sources is substantially required. Pax4 has been shown to induce reprograming of alpha cells into beta cells during embryogenesis. Nevertheless, whether expression of Pax4 in adult alpha cells could trigger this alpha-to-beta cell reprogramming is unknown. Methods: Here we generated an adeno-associated virus carrying Pax4 and GFP under a CMV promoter (AAV-Pax4. We used AAV-Pax4 to transduce a mouse alpha cell line in vitro, and to transduce primary alpha cells in diabetic mice. Reprogramming was examined by double immunostaining and by changes in beta cell number. The effects on blood glucose were evaluated by fasting blood glucose and glucose response. Results: In vitro, Pax4 overexpression neither induced insulin expression, nor suppressed glucagon expression in alpha cells. In vivo, Pax4 overexpression failed to increase beta cell number, and did not alter hyperglycemia and glucose response in diabetic mice. Conclusion: Pax4 expression is not sufficient to transduce pancreatic alpha cells into beta cells. Overexpression of Pax4 in alpha cells may not increase functional beta cell number in diabetic patients.

  10. Induction and Selection of Sox17-Expressing Endoderm Cells Generated from Murine Embryonic Stem Cells

    OpenAIRE

    Schroeder, I.; Sulzbacher, S.; T. Nolden; Fuchs, J.; Czarnota, J.; Meisterfeld, R.; Himmelbauer, H.; Wobus, A

    2014-01-01

    Embryonic stem (ES) cells offer a valuable source for generating insulin-producing cells. However, current differentiation protocols often result in heterogeneous cell populations of various developmental stages. Here we show the activin A-induced differentiation of mouse ES cells carrying a homologous dsRed-IRES-puromycin knock-in within the Sox17 locus into the endoderm lineage. Sox17-expressing cells were selected by fluorescence-assisted cell sorting (FACS) and characterized at the transc...

  11. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  12. Dynamic distribution and stem cell characteristics of Sox1-expressing cells in the cerebellar cortex

    Institute of Scientific and Technical Information of China (English)

    Joelle Alcock; Virginie Sottile

    2009-01-01

    Bergmann glia cells are a discrete radial glia population surrounding Purkinje cells in the cerebellar cortex. Al-though Bergmann glia are essential for the development and correct arborization of Purkinje cells, little is known about the regulation of this cell population after the developmental phase. In an effort to characterize this population at the molecular level, we have analyzed marker expression and established that adult Bergmann glia express Soxl, Sox2 and Sox9, a feature otherwise associated with neural stem cells (NSCs). In the present study, we have further analyzed the developmental pattern of Soxl-expressing cells in the developing cerebellum. We report that before be-coming restricted to the Purkinje cell layer, Soxl-positive cells are present throughout the immature tissue, and that these cells show characteristics of Bergmann glia progenitors. Our study shows that these progenitors express Soxl, Sox2 and Sox9, a signature maintained throughout cerebellar maturation into adulthood. When isolated in culture, the Soxl-expressing cerebellar population exhibited neurosphere-forming ability, NSC-marker characteristics, and demonstrated multipotency at the clonal level. Our results show that the Bergmann glia population expresses Soxl during cerebellar development, and that these cells can be isolated and show stem cell characteristics in vitro, sug-gesting that they could hold a broader potential than previously thought.

  13. Regulation of cell-to-cell variability in divergent gene expression

    Science.gov (United States)

    Yan, Chao; Wu, Shuyang; Pocetti, Christopher; Bai, Lu

    2016-03-01

    Cell-to-cell variability (noise) is an important feature of gene expression that impacts cell fitness and development. The regulatory mechanism of this variability is not fully understood. Here we investigate the effect on gene expression noise in divergent gene pairs (DGPs). We generated reporters driven by divergent promoters, rearranged their gene order, and probed their expressions using time-lapse fluorescence microscopy and single-molecule fluorescence in situ hybridization (smFISH). We show that two genes in a co-regulated DGP have higher expression covariance compared with the separate, tandem and convergent configurations, and this higher covariance is caused by more synchronized firing of the divergent transcriptions. For differentially regulated DGPs, the regulatory signal of one gene can stochastically `leak' to the other, causing increased gene expression noise. We propose that the DGPs' function in limiting or promoting gene expression noise may enhance or compromise cell fitness, providing an explanation for the conservation pattern of DGPs.

  14. Connexin expression and gap-junctional intercellular communication in ES cells and iPS cells

    Directory of Open Access Journals (Sweden)

    Masahito eOyamada

    2013-07-01

    Full Text Available Pluripotent stem cells, i.e., embryonic stem (ES and induced pluripotent stem (iPS cells, can indefinitely proliferate without commitment and differentiate into all cell lineages. ES cells are derived from the inner cell mass of the preimplantation blastocyst, whereas iPS cells are generated from somatic cells by overexpression of a few transcription factors. Many studies have demonstrated that mouse and human iPS cells are highly similar but not identical to their respective ES cell counterparts. The potential to generate basically any differentiated cell types from these cells offers the possibility to establish new models of mammalian development and to create new sources of cells for regenerative medicine. ES cells and iPS cells also provide useful models to study connexin expression and gap-junctional intercellular communication (GJIC during cell differentiation and reprogramming. In 1996, we reported connexin expression and GJIC in mouse ES cells. Because a substantial number of papers on these subjects have been published since our report, this Mini Review summarizes currently available data on connexin expression and GJIC in ES cells and iPS cells during undifferentiated state, differentiation, and reprogramming.

  15. Human Neural Cells Transiently Express Reelin during Olfactory Placode Development

    Science.gov (United States)

    Antal, M. Cristina; Samama, Brigitte; Ghandour, M. Said; Boehm, Nelly

    2015-01-01

    Reelin, an extracellular glycoprotein is essential for migration and correct positioning of neurons during development. Since the olfactory system is known as a source of various migrating neuronal cells, we studied Reelin expression in the two chemosensory olfactory systems, main and accessory, during early developmental stages of human foetuses/embryos from Carnegie Stage (CS) 15 to gestational week (GW) 14. From CS 15 to CS 18, but not at later stages, a transient expression of Reelin was detected first in the presumptive olfactory and then in the presumptive vomeronasal epithelium. During the same period, Reelin-positive cells detach from the olfactory/vomeronasal epithelium and migrate through the mesenchyme beneath the telencephalon. Dab 1, an adaptor protein of the Reelin pathway, was simultaneously expressed in the migratory mass from CS16 to CS17 and, at later stages, in the presumptive olfactory ensheathing cells. Possible involvements of Reelin and Dab 1 in the peripheral migrating stream are discussed. PMID:26270645

  16. Protein expression analyses at the single cell level.

    Science.gov (United States)

    Ohno, Masae; Karagiannis, Peter; Taniguchi, Yuichi

    2014-01-01

    The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level. PMID:25197931

  17. Protein Expression Analyses at the Single Cell Level

    Directory of Open Access Journals (Sweden)

    Masae Ohno

    2014-09-01

    Full Text Available The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level.

  18. Epidermal growth factor receptor expression in canine transitional cell carcinoma

    OpenAIRE

    HANAZONO, Kiwamu; Fukumoto, Shinya; KAWAMURA, Yoshio; ENDO, Yoshifumi; Kadosawa, Tsuyoshi; IWANO, Hidetomo; UCHIDE, Tsuyoshi

    2014-01-01

    Transitional cell carcinoma (TCC), a urinary bladder tumor with high mortality, is encountered commonly in dogs. Whereas overexpression of epidermal growth factor receptor (EGFR) is associated with development of human urinary bladder cancer, information on EGFR expression in canine TCC is lacking. In this study, EGFR protein and mRNA expression in canine normal bladder (n=5), polypoid cystitis (n=5) and TCC (n=25) were examined by immunohistochemistry and real-time polymerase chain reaction....

  19. Cloning and expression of human colon mast cell carboxypeptidase

    Institute of Scientific and Technical Information of China (English)

    Zhang-Quan Chen; Shao-Heng He

    2004-01-01

    AIM: To clone and express the human colon mast cell METHODS: Total RNA was extracted from colon tissue, and the cDNA encoding human colon mast cell carboxypeptidase was amplified by reverse-transcription PCR (RT-PCR). The product cDNA was subcloned into the prokaryotic expression vector pMAL-c2x and eukaryotic expression vector pPIC9K to conrtruct prokaryotic expression vector pMAL/human MC-CP (hMC-CP) and eukaryotic pPIC9K/hMC-CP. The recombinant fusion protein expressed in E.coli was induced with IPTG and purified by amylose affinity chromatography. After digestion with factor Xa, recombinant hMC-CP was purified by heparin agarose chromatography. The recombinant hMC-CP expressed in Pichia pastoris (P.pastoris) was induced with methanol and analyzed by SDS-PAGE, Western blot, N-terminal amino acid RESULTS: The cDNA encoding the human colon mast cell carboxypeptidase was cloned, which had five nucleotide variations compared with skin MC-CP cDNA. The recombinant hMC-CP protein expressed in E.coli was purified with amylose affinity chromatography and heparin agarose chromatogphy.SDS-PAGE and Western blot analysis showed that the recombinant protein expressed by E. coli had a molecular weight of 36 kDa and reacted to the anti-native hMC-CP monoclonal antibody (CA5). The N-terminal amino acid sequence confirmed further the product was hMC-CP. E. coli generated hMC-CP showed a very low level of enzymatic activity, but P. pastoris produced hMC-CP had a relatively high enzymatic activity towards a synthetic substrate hippuryl-L-phenylalanine.carboxypeptidase can be successfully cloned and expressed in E.coli and P. pastoris, which will contribute greatly to the fonctional study on hMC-CP.

  20. A Novel Protein Is Lower Expressed in Renal Cell Carcinoma

    OpenAIRE

    Ruili Guan; Yongde Xu; Hongen Lei; Zhezhu Gao; Zhongcheng Xin; Yinglu Guo

    2014-01-01

    Engrailed-2 (EN2) has been identified as a candidate oncogene in breast cancer and prostate cancer. It is usually recognized as a mainly nuclear staining in the cells. However, recent studies showed a cytoplasmic staining occurred in prostate cancer, bladder cancer and clear cell renal cell carcinoma. The inconsistency makes us confused. To clarify the localization and expression of EN2 in renal cell carcinoma, anti-EN2 antibody (ab28731) and anti-EN2 antibody (MAB2600) were used for immunohi...

  1. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Sherman, Andrew; Chen, Ginny I; Pasculescu, Adrian; Poliakov, Alexei; Hsiung, Marilyn; Larsen, Brett; Wilkinson, David G; Linding, Rune; Pawson, Tony

    2009-01-01

    Cells have self-organizing properties that control their behavior in complex tissues. Contact between cells expressing either B-type Eph receptors or their transmembrane ephrin ligands initiates bidirectional signals that regulate cell positioning. However, simultaneously investigating how...... information is processed in two interacting cell types remains a challenge. We implemented a proteomic strategy to systematically determine cell-specific signaling networks underlying EphB2- and ephrin-B1-controlled cell sorting. Quantitative mass spectrometric analysis of mixed populations of EphB2- and...... revealed that signaling between mixed EphB2- and ephrin-B1-expressing cells is asymmetric and that the distinct cell types use different tyrosine kinases and targets to process signals induced by cell-cell contact. We provide systems- and cell-specific network models of contact-initiated signaling between...

  2. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    International Nuclear Information System (INIS)

    Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH) receptor (LHR) expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE) carcinoma cells. The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours). Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are potential therapeutic targets, may reflect a positive

  3. Effects of various phytochemicals on indoleamine 2,3-dioxygenase 1 activity: galanal is a novel, competitive inhibitor of the enzyme.

    Directory of Open Access Journals (Sweden)

    Rie Yamamoto

    Full Text Available Indoleamine 2,3-dioxygenase (IDO 1, that catalyzes the first and rate-limiting step in the degradation of L-tryptophan, has an important immunomodulatory function. The activity of IDO1 increases in various inflammatory diseases, including tumors, autoimmune diseases, and different kinds of inflammation. We evaluated the suppressive effect of plant extracts or phytochemicals on IDO1 induction and activity; sixteen kinds of plants extracts and fourteen kinds of phytochemicals were examined. As a result, the methanol extracts of Myoga flower buds, which are traditional Japanese foods, and labdane-type diterpene galanal derived from Myoga flowers significantly suppressed IDO1 activity. The Lineweaver-Burk plot analysis indicated that galanal is a competitive inhibitor. Galanal attenuated L-kynurenine formation with an IC₅₀ value of 7.7 µM in the assay system using recombinant human IDO1, and an IC₅₀ value of 45 nM in the cell-based assay. Further, mechanistic analysis revealed that galanal interfered with the transcriptional function of the nuclear factor-κB and the interferon-γ signaling pathway. These effects of galanal are important for immune response. Because the inhibitory effect of galanal on IDO1 activity was stronger than that of 1-methyl tryptophan, a tryptophan analog, galanal may have great potential as the novel drug for various immune-related diseases.

  4. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  5. Immunglobulin Expression and Its Biological Significance in Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Duosha Hu; Hui Zheng; Haidan Liu; Ming Li; Wei Ren; Wei Liao; Zhi Duan; Lili Li; Ya Cao

    2008-01-01

    It is generally believed that the expression of a gene iS restricted "within the right place and at the right time".This principle has long been considered applicable as well to the expression of immunoglobulin(Ig)lymphocytes of B cell lineage.However,increasing evidence has shown Ig "paradoxically" expressed in malignant tumors of epitheliaI origin.We reviewed the recent progress in the study of cancer-derived Ig,and also discussed its mechanisms and possible functions,trying to arouse interest and attention to those working in the field of immunology and oncology.

  6. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

    Science.gov (United States)

    Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J

    2014-03-01

    Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states. PMID:24299736

  7. Analysis of expression profiles of MAGE-A antigens in oral squamous cell carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Reichert Torsten E

    2009-04-01

    Full Text Available Abstract Background The immunological response to solid tumours is insufficient. Therefore, tumour specific antigens have been explored to facilitate the activation of the immune system. The cancer/testis antigen class of MAGE-A antigens is a possible target for vaccination. Their differential expression profiles also modulate the course of the cancer disease and its response to antineoplastic drugs. Methods The expression profiles of MAGE-A2, -A3, -A4, -A6 and -A10 in five own oral squamous cell carcinoma cell lines were characterised by rt-PCR, qrt-PCR and immunocytochemistry with a global MAGE-A antibody (57B and compared with those of an adult keratinocyte cell line (NHEK. Results All tumour cell lines expressed MAGE-A antigens. The antigens were expressed in groups with different preferences. The predominant antigens expressed were MAGE-A2, -A3 and -A6. MAGE-A10 was not expressed in the cell lines tested. The MAGE-A gene products detected in the adult keratinocyte cell line NHEK were used as a reference. Conclusion MAGE-A antigens are expressed in oral squamous cell carcinomas. The expression profiles measured facilitate distinct examinations in forthcoming studies on responses to antineoplastic drugs or radiation therapy. MAGE-A antigens are still an interesting aim for immunotherapy.

  8. Polyclonal T-cells express CD1a in Langerhans cell histiocytosis (LCH lesions.

    Directory of Open Access Journals (Sweden)

    Jennifer A West

    Full Text Available Langerhans cell histiocytosis (LCH is a complex and poorly understood disorder that has characteristics of both inflammatory and neoplastic disease. By using eight-colour flow cytometry, we have identified a previously unreported population of CD1a(+/CD3(+ T-cells in LCH lesions. The expression of CD1a is regarded as a hallmark of this disease; however, it has always been presumed that it was only expressed by pathogenic Langerhans cells (LCs. We have now detected CD1a expression by a range of T-cell subsets within all of the LCH lesions that were examined, establishing that CD1a expression in these lesions is no longer restricted to pathogenic LCs. The presence of CD1a(+ T-cells in all of the LCH lesions that we have studied to date warrants further investigation into their biological function to determine whether these cells are important in the pathogenesis of LCH.

  9. Single-cell PCR profiling of gene expression in hematopoiesis.

    Science.gov (United States)

    Teles, José; Enver, Tariq; Pina, Cristina

    2014-01-01

    Single-cell analysis of gene expression offers the possibility of exploring cellular and molecular heterogeneity in stem and developmental cell systems, including cancer, to infer routes of cellular specification and their respective gene regulatory modules. PCR-based technologies, although limited to the analysis of a predefined set of genes, afford a cost-effective balance of throughput and biological information and have become a method of choice in stem cell laboratories. Here we describe an experimental and analytical protocol based on the Fluidigm microfluidics platform for the simultaneous expression analysis of 48 or 96 genes in multiples of 48 or 96 cells. We detail wet laboratory procedures and describe clustering, principal component analysis, correlation, and classification tools for the inference of cellular pathways and gene networks. PMID:25062620

  10. PD-L1 expression in nonclear-cell renal cell carcinoma

    OpenAIRE

    Choueiri, T. K.; Fay, A. P.; Gray, K. P.; Callea, M; Ho, T H; Albiges, L; Bellmunt, J.; Song, J.(Pusan National University, Pusan, South Korea); Carvo, I.; Lampron, M.; Stanton, M. L.; Hodi, F. S.; McDermott, D F; Atkins, M B; Freeman, G J

    2014-01-01

    Programmed death ligand-1 (PD-L1) expression in nonclear-cell RCC (non-ccRCC) and its association with clinical outcomes are unknown. In this study, we report that PD-L1 expression occurs in patients with non-ccRCC depending on histology subtype and tumour cell membrane versus immune cell scoring. In addition, we showed that patients with PD-L1-positive tumours appear to have worse clinical outcomes in non-ccRCC .

  11. Expression changes of cell-cell adhesion-related genes in colorectal tumors

    OpenAIRE

    Bujko, Mateusz; KOBER, PAULINA; Mikula, Michal; Ligaj, Marcin; Ostrowski, Jerzy; Siedlecki, Janusz Aleksander

    2015-01-01

    Epithelial tissues achieve a highly organized structure due to cell-cell junction complexes. Carcinogenesis is accompanied by changes in cell interactions and tissue morphology, which appear in the early stages of benign tumors and progress along with invasive potential. The aim of the present study was to analyze the changes in expression levels of genes encoding intercellular junction proteins that have been previously identified to be differentially expressed in colorectal tumors compared ...

  12. Simvastatin Modulates Mesenchymal Stromal Cell Proliferation and Gene Expression

    OpenAIRE

    Zanette, Dalila Lucíola; Lorenzi, Julio Cesar Cetrulo; Panepucci, Rodrigo Alexandre; Palma, Patricia Vianna Bonini; dos Santos, Daiane Fernanda; Prata, Karen Lima; Silva, Wilson Araújo

    2015-01-01

    Statins are widely used hypocholesterolemic drugs that block the mevalonate pathway, responsible for the biosysnthesis of cholesterol. However, statins also have pleiotropic effects that interfere with several signaling pathways. Mesenchymal stromal cells (MSC) are a heterogeneous mixture of cells that can be isolated from a variety of tissues and are identified by the expression of a panel of surface markers and by their ability to differentiate in vitro into osteocytes, adipocytes and chond...

  13. Intraclonal Protein Expression Heterogeneity in Recombinant CHO Cells

    OpenAIRE

    Pilbrough, Warren; Munro, Trent P.; Gray, Peter

    2009-01-01

    Therapeutic glycoproteins have played a major role in the commercial success of biotechnology in the post-genomic era. But isolating recombinant mammalian cell lines for large-scale production remains costly and time-consuming, due to substantial variation and unpredictable stability of expression amongst transfected cells, requiring extensive clone screening to identify suitable high producers. Streamlining this process is of considerable interest to industry yet the underlying phenomena are...

  14. Glucocorticoids Enhance CD163 Expression in Placental Hofbauer Cells

    OpenAIRE

    Tang, Zhonghua; Niven-Fairchild, Tracy; Tadesse, Serkalem; Errol R Norwitz; Buhimschi, Catalin S; Buhimschi, Irina A.; Guller, Seth

    2012-01-01

    Periplacental levels of glucocorticoid (GC) peak at parturition, and synthetic GC is administered to women at risk for preterm delivery. However, little is known concerning cell-type-specific effects of GC in placenta. Hofbauer cells (HBCs) are fetal macrophages that are located adjacent to fetal capillaries in placenta. The goal of the current study was to determine whether GC treatment altered HBC gene expression and function. Western blotting and flow cytometry revealed CD163 and folate re...

  15. Improved expression systems for regulated expression in Salmonella infecting eukaryotic cells.

    Science.gov (United States)

    Medina, Carlos; Camacho, Eva María; Flores, Amando; Mesa-Pereira, Beatriz; Santero, Eduardo

    2011-01-01

    In this work we describe a series of improvements to the Salmonella-based salicylate-inducible cascade expression system comprised of a plasmid-borne expression module, where target gene expression is driven by the P(m) promoter governed by the XylS2 regulator, and a genome-integrated regulatory module controlled by the nahR/P(sal) system. We have constructed a set of high and low-copy number plasmids bearing modified versions of the expression module with a more versatile multiple cloning site and different combinations of the following elements: (i) the nasF transcriptional attenuator, which reduces basal expression levels, (ii) a strong ribosome binding site, and (iii) the Type III Secretion System (TTSS) signal peptide from the effector protein SspH2 to deliver proteins directly to the eukaryotic cytosol following bacterial infection of animal cells. We show that different expression module versions can be used to direct a broad range of protein production levels. Furthermore, we demonstrate that the efficient reduction of basal expression by the nasF attenuator allows the cloning of genes encoding highly cytotoxic proteins such as colicin E3 even in the absence of its immunity protein. Additionally, we show that the Salmonella TTSS is able to translocate most of the protein produced by this regulatory cascade to the cytoplasm of infected HeLa cells. Our results indicate that these vectors represent useful tools for the regulated overproduction of heterologous proteins in bacterial culture or in animal cells, for the cloning and expression of genes encoding toxic proteins and for pathogenesis studies. PMID:21829692

  16. Improved expression systems for regulated expression in Salmonella infecting eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Carlos Medina

    Full Text Available In this work we describe a series of improvements to the Salmonella-based salicylate-inducible cascade expression system comprised of a plasmid-borne expression module, where target gene expression is driven by the P(m promoter governed by the XylS2 regulator, and a genome-integrated regulatory module controlled by the nahR/P(sal system. We have constructed a set of high and low-copy number plasmids bearing modified versions of the expression module with a more versatile multiple cloning site and different combinations of the following elements: (i the nasF transcriptional attenuator, which reduces basal expression levels, (ii a strong ribosome binding site, and (iii the Type III Secretion System (TTSS signal peptide from the effector protein SspH2 to deliver proteins directly to the eukaryotic cytosol following bacterial infection of animal cells. We show that different expression module versions can be used to direct a broad range of protein production levels. Furthermore, we demonstrate that the efficient reduction of basal expression by the nasF attenuator allows the cloning of genes encoding highly cytotoxic proteins such as colicin E3 even in the absence of its immunity protein. Additionally, we show that the Salmonella TTSS is able to translocate most of the protein produced by this regulatory cascade to the cytoplasm of infected HeLa cells. Our results indicate that these vectors represent useful tools for the regulated overproduction of heterologous proteins in bacterial culture or in animal cells, for the cloning and expression of genes encoding toxic proteins and for pathogenesis studies.

  17. Measuring microRNA expression in mouse hematopoietic stem cells.

    Science.gov (United States)

    Hu, Wenhuo; Park, Christopher Y

    2014-01-01

    MicroRNAs (miRNAs) are important regulators of diverse biologic processes. In the hematopoietic system, miRNAs have been shown to regulate lineage fate decisions, mature immune effector cell function, apoptosis, and cell cycling, and a more limited number of miRNAs has been shown to regulate hematopoietic stem cell (HSC) self-renewal. Many of these miRNAs were initially identified as candidate regulators of HSC function by comparing miRNA expression in hematopoietic stem and progenitors cells (HSPCs) to their mature progeny. While the measurement of miRNA expression in rare cell populations such as HSCs poses practical challenges due to the low amount of RNA present, a number of techniques have been developed to measure miRNAs in small numbers of cells. Here, we describe our protocol for measuring miRNAs in purified mouse HSCs using a highly sensitive real-time quantitative PCR strategy that utilizes microfluidic array cards containing pre-spotted TaqMan probes that allows the detection of mature miRNAs in small reaction volumes. We also describe a simple data analysis method to evaluate miRNA expression profiling data using an open-source software package (HTqPCR) using mouse HSC miRNA profiling data generated in our lab. PMID:25062625

  18. PRL-3 expression in nasal sinus squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Zi-Hui Chen; Min-Ying Li

    2016-01-01

    Objective:To investigate the relationship between liver regeneration phosphatase-3 (PRL-3) with differentiation extent of nasal sinus squamous cell carcinoma, and molecular biological effects on the pathogenesis of nasal sinus squamous cell carcinoma to comprehend its relevance, so as to make early diagnosis of patients, and to give guidance to the prognosis. Methods:Immunohistochemistry was used to detect PRL-3 in 30 cases of different degrees of sinus nasal squamous cell carcinoma. 20 cases of normal nasal cavity of mucosa tissues were set as control. Results:The PRL-3 in all levels of sinonasal squamous cell carcinoma tissues, there was a significant difference compared with the normal nasal mucosa (P<0.05), squamous cell carcinoma and its expression increased with the grade with enhanced trend. Conclusions:PRL-3 expression increased significantly in sinonasal squamous cell carcinoma than in nasal polyp tissue, showed that it may be associated with squamous cell carcinoma of nasal sinus squamous cell carcinoma, may be the early event.

  19. Immune Killing Activity of Lymphocytes on Hela Cells Expressing Interleukin-12 In Vitro

    Institute of Scientific and Technical Information of China (English)

    Huiyan WANG; Suhua CHEN

    2008-01-01

    The killing effects of lymphocytes on Hela cells expressing intedeukin-12 (IL-12) in vitro were explored. By using gene transfection technique, full length IL-12 gene was transfected into Hela cells. The expression of IL-12 in Hela cells was detected quantitatively by ELISA; Changes in killing effects of lymphocytes on Hela cells expressing IL-12 were observed by MTT. It was found that Hela cells could express IL-12 between 24h and 72h after transfection. Killing activity of lymphocytes on Hela cells expressing IL-12 was significantly enhanced. It was concluded by cell transfection technique, Hela cells could express IL-12 and were more easily killed by lymphocytes.

  20. Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines

    International Nuclear Information System (INIS)

    Objective: To research the expression of caspase-3 gene in the apoptotic and the control HL-60 cells and in the different human tumor cell lines. Methods: Caspase-3 mRNA in the control and γ-radiation-induced apoptotic HL-60 cells, and in the 6 types of human tumor cell lines, was analysed by Northern blot. Results: The caspase-3 gene transcript was more highly expressed in leukemia cells HL-60, CEM, K562 and neuroblastoma SH-SY5Y than in cervical adenocarcinoma HeLa and breast carcinoma MCF7, and more highly in the radiation-induced apoptotic HL-60 than in the control HL-60 cells. Conclusion: The high level of expression of caspase-3 may aid the efforts to understand the tumor cell sensitivity to radiation, apoptosis and its inherent ability to survive

  1. LIF Upregulates Expression of NK-1R in NHBE Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Ping Hu

    2006-01-01

    Full Text Available Leukemia inhibitory factor (LIF, a cytokine at the interface between neurobiology and immunology, is mainly mediated through JAK/STAT pathway and MAPK/ERK pathway. Evidence suggested LIF is related to the higher expression of neurokinin-1 receptor (NK-1R in asthma. In this study, the immunohistochemistry stain showed the expressions of NK-1R, LIF, p-STAT3, and p-ERK1/2 in the lung tissues of allergic rats were increased compared with the controls, and the main positive cell type was airway epithelial cell. Normal human bronchial epithelial cells were treated with LIF in the presence or absence of AG490 (JAK2 inhibitor, PD98059 (MEK inhibitor, and the siRNA against STAT3. Western blot and RT-PCR indicated that LIF induced the expression of NK-1R, which was inhibited by the inhibitors mentioned above. No significant interaction was found between JAK/STAT pathway and MAPK/ERK pathway. In summary, bronchial epithelial cell changes in asthma are induced by LIF which promotes the expression of NK-1R, and JAK/STAT pathway and MAPK/ERK pathway may participate in this process.

  2. Expression of Bacterial β-Galactosidase in Animal Cells

    OpenAIRE

    An, Gynheung; Hidaka, Katsuhiko; Siminovitch, Louis

    1982-01-01

    A recombinant plasmid containing the gene for bacterial β-galactosidase, situated close to the simian virus 40 early promoter, has been constructed. Transfection of CHO, L, and COS-1 cells with this plasmid led to the expression and appearance of the enzyme. Using this system, we have developed a series of promoter cloning vehicles capable of accepting promoter signals for animal genes.

  3. A versatile expression vector system for mammalian cell factories

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kildegaard, Helene Faustrup; Hansen, Bjarne Gram; Andersen, Mikael Rørdam; Mortensen, Uffe Hasbro

    The development of the field of mammalian cell factories requests fast and high-throughput methods which means high need for simpler and more efficient cloning techniques. This project applies the ligation-free USERTM (uracil-specific excision reagent) cloning technique to construct mammalian...... expression vectors with maximum flexibility....

  4. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors

    DEFF Research Database (Denmark)

    Isa, Adiba; Nehlin, Jan; Sabir, Hardee Jawad;

    2010-01-01

    HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C...... at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either...... undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC) using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced...

  5. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    International Nuclear Information System (INIS)

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-κB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1β, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-κB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  6. PROFILES OF GENE EXPRESSION ASSOCIATED WITH TETRACYCLINE OVER EXPRESSION OF HSP70 IN MCF-7 BREAST CANCER CELLS

    Science.gov (United States)

    Profiles of gene expression associated with tetracycline over expression of HSP70 in MCF-7 breast cancer cells. Heat shock proteins (HSPs) protect cells from damage through their function as molecular chaperones. Some cancers reveal high levels of HSP70 expression in asso...

  7. Human dental pulp stem cells express many pluripotency regulators and differentiate into neuronal cells

    Institute of Scientific and Technical Information of China (English)

    Behnam Ebrahimi; Mohammad Mehdi Yaghoobi; Ali Mohammadi Kamal-abadi; Maryam Raoof

    2011-01-01

    Stem cells were isolated from human dental pulp using an optimized method, in which pulp pieces were digested by enzymes and immobilized to enhance cell outgrowth. Stem cell marker expression was detected by reverse transcription-PCR (RT-PCR), and differentiation markers were detected by real-time quantitative RT-PCR and immunocytochemistry. Results showed that dental pulp stem cells actively expressed nanog, oct4, nucleostemin slain-1, jmjd1a, jmjd2c, and cyclin D1. When stem cells were induced to differentiate into neurons, nucleostemin, nanog, and cyclin D1 expres-sion significantly decreased, whereas expression of neuronal markers, such as microtubule asso-ciated protein-2 and neurofilament-heavy, significantly increased. These results suggested that stem cells exited a pluripotent state and entered a neuronal differentiation pathway. In addition, results demonstrated that human dental pulp serves as a reservoir of stem cells that express defined stem cell markers; these cells were easily isolated and were induced to differentiate towards a desired cell lineage.

  8. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M; Poulsen, H S

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... lung cancer cell lines express the EGF receptor....... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression of...

  9. Construction of eukaryotic expression vector NONO expression product and its intracellular localization in cells

    Directory of Open Access Journals (Sweden)

    Cui-ling WU

    2011-04-01

    Full Text Available Objective To construct an eukaryotic expression vector NONO(containing nucleotide octamer-binding protein without POU domain of mouse,and detect its expression and intracellular localization in NIH3T3 cells,so as to obtain a tool to assist the study of intracellular biological functions of NONO.Methods The total RNA was extracted from the liver of BALB/c mice,the corresponding coding sequences of mouse NONO(GenBank accession No.53237024 were amplified by RT-PCR and then cloned into hemagglutinin(HA-tagged vector of pcDNA3-HA to form a new recombinant plasmid named pcDNA3-NONO-HA.The recombinant plasmid was verified by polymerase chain reaction(PCR and double digestion by restricted endonuclease,followed by sequencing.The recombinant plasmid was then transfected into NIH3T3 cells with the liposome transfection reagent Polyfect as a medium.Twenty-four hours later,immunofluorescence was performed.After detection of fusion protein NONO-HA by specific antibody of HA tag and the Alexa Fluor 488 coupled secondary antibody,the expression and localization of the fusion protein were observed by fluorescence microscopy.Results The results of identification by PCR,digestion with restriction endonuclease and sequencing indicated that the recombinant plasmid pcDNA3-NONO-HA was correctly constructed.After transfection of the recombinant plasmid,the fusion protein was found to highly express in NIH3T3 cells and distribute mainly in the cytoplasm.Conclusion The eukaryotic expression vector for HA-NONO fusion protein is successfully constructed and effectively expressed in mammalian cells.The constructed vector may serve as an assistant tool in the study of intracellular biological functions of NONO.

  10. Sequential Notch signalling at the boundary of fringe expressing and non-expressing cells.

    Directory of Open Access Journals (Sweden)

    Tobias Troost

    Full Text Available Wing development in Drosophila requires the activation of Wingless (Wg in a small stripe along the boundary of Fringe (Fng expressing and non-expressing cells (FB, which coincides with the dorso-ventral (D/V boundary of the wing imaginal disc. The expression of Wg is induced by interactions between dorsal and ventral cells mediated by the Notch signalling pathway. It appears that mutual signalling from dorsal to ventral and ventral to dorsal cells by the Notch ligands Serrate (Ser and Delta (Dl respectively establishes a symmetric domain of Wg that straddles the D/V boundary. The directional signalling of these ligands requires the modification of Notch in dorsal cells by the glycosyltransferase Fng and is based on the restricted expression of the ligands with Ser expression to the dorsal and that of Dl to the ventral side of the wing anlage. In order to further investigate the mechanism of Notch signalling at the FB, we analysed the function of Fng, Ser and Dl during wing development at an ectopic FB and at the D/V boundary. We find that Notch signalling is initiated in an asymmetric fashion on only one side of the FB. During this initial asymmetric phase, only one ligand is required, with Ser initiating Notch-signalling at the D/V and Dl at the ectopic FB. Furthermore, our analysis suggests that Fng has also a positive effect on Ser signalling. Because of these additional properties, differential expression of the ligands, which has been a prerequisite to restrict Notch activation to the FB in the current model, is not required to restrict Notch signalling to the FB.

  11. Expression of Connexin43 in Rat Epithelial Cells and Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To explore the role of connexin43 (Cx43) in gap junctional intercellular communication (GJIC) and propagated sensation along meridians, the expression of Cx43 in the rat epithelial cells and fibroblasts was studied both in vitro and in vivo. With the in vitro study, the rat epithelial cells and fibroblasts were cultured together, and the localization of Cx43 was detected by immunohistochemistry and indirect immunofluorescent cytochemistry and under confocal microscopy . And the expression of Cx43 on the surface of the cells was examined by flow cytometry. With the in vivo examination, 20 SD rats were randomized into control group (n = 10) and electrical acupuncture group (EAgroup, n=10). EA ( 0.5-1.5 V, 4-16 Hz , 30 min) was applied to"Zusanli"acupoint for 30 min at rat's hind paw, the localization of Cx43 was immunohistochemically detected.The immunohistochemical staining and indirect immunfluorescent cytochemistry showed that Cx43was localized on the surface of the cells and in the cytoplasm. The relative expression level of Cx43on the cellular membrane surfaces of the rat epithelial cells and fibroblasts, as determined by FACS, were 13.91 % and 29.53 % respectively. Our studied suggested that Cx43 might be involved in GJIC and propagated sensation along meridians.

  12. Isolation of genes predominantly expressed in guard cells and epidermal cells of Nicotiana glauca.

    Science.gov (United States)

    Smart, L B; Cameron, K D; Bennett, A B

    2000-04-01

    Guard cells are specialized and metabolically active cells which arise during the differentiation of the epidermis. Using Nicotiana glauca epidermal peels as a source of purified guard cells, we have constructed a cDNA library from guard cell RNA. In order to isolate genes that are predominantly expressed in guard cells, we performed a differential screen of this library, comparing the hybridization of a radiolabeled cDNA probe synthesized from guard cell RNA to that from a mesophyll cell cDNA probe. Sixteen clones were isolated based on their greater level of hybridization with the guard cell probe. Of these, eight had high homology to lipid transfer protein (LTP), two were similar to glycine-rich protein (GRP), and one displayed high homology to proline-rich proteins from Arabidopsis thaliana (AtPRP2, AtPRP4) and from potato guard cells (GPP). Northern analysis confirmed that one or more NgLTP genes, NgGRP1, and NgGPP1 are all differentially expressed, with highest levels in guard cells, and low or undetectable levels in mesophyll cells and in roots. In addition, all are induced to some degree in drought-stressed guard cells. NgLTP and NgGRP1 expression was localized by in situ hybridization to the guard cells and pavement cells in the epidermis. NgGRP1 expression was also detected in cells of the vasculature. Genomic Southern analysis indicated that LTP is encoded by a family of highly similar genes in N. glauca. This work has identified members of a subset of epidermis- and guard cell-predominant genes, whose protein products are likely to contribute to the unique properties acquired by guard cells and pavement cells during differentiation. PMID:10890533

  13. Human vascular smooth muscle cells express a urate transporter.

    Science.gov (United States)

    Price, Karen L; Sautin, Yuri Y; Long, David A; Zhang, Li; Miyazaki, Hiroki; Mu, Wei; Endou, Hitoshi; Johnson, Richard J

    2006-07-01

    An elevated serum uric acid is associated with the development of hypertension and renal disease. Renal regulation of urate excretion is largely controlled by URAT1 (SLC22A12), a member of the organic anion transporter superfamily. This study reports the specific expression of URAT1 on human aortic vascular smooth muscle cells, as assessed by reverse transcription-PCR and Western blot analysis. Expression of URAT1 was localized to the cell membrane. Evidence that the URAT1 transporter was functional was provided by the finding that uptake of 14C-urate was significantly inhibited in the presence of probenecid, an organic anion transporter inhibitor. It is proposed that URAT1 may provide a mechanism by which uric acid enters the human vascular smooth muscle cell, a finding that may be relevant to the role of uric acid in cardiovascular disease. PMID:16775029

  14. Expression of TIA-1 and TIA-2 in T cell malignancies and T cell lymphocytosis.

    Science.gov (United States)

    Matutes, E; Coelho, E; Aguado, M J; Morilla, R; Crawford, A; Owusu-Ankomah, K; Catovsky, D

    1996-01-01

    OBJECTIVE: To investigate the reactivity with TIA-1 and TIA-2, two monoclonal antibodies that recognise, respectively, granular structures in T lymphocytes and the T cell receptor chain in cells from a variety of T cell disorders. METHODS: Cytoplasmic staining with TIA-1 and TIA-2 was carried out by the immunoalkaline phosphatase anti-alkaline phosphatase technique in 67 cases with a T cell disorder: 31 large granular lymphocyte (LGL) leukaemia, nine T-prolymphocytic leukaemia (T-PLL), five Sezary syndrome, four peripheral T cell lymphoma (PTCL), 13 T cell lymphocytosis, and five T-acute lymphoblastic leukaemia (T-ALL). All had over 75% abnormal T cells which were CD2+, CD3+, CD5+, CD7+, and negative with B cell markers. RESULTS: TIA-1 was positive in 77% cases of LGL leukaemia and half of the PTCL and T-ALL, whereas it was negative in all Sezary syndrome and most T-PLL (8/9) and reactive T-lymphocytosis (10/13). In LGL leukaemia, TIA-1 was positive irrespective of the membrane phenotype, whether CD8+, CD4- or CD4+, CD8-, and was more often positive in cases where cells were CD16+, CD56+, or CD57+. TIA-2 was positive in 60% of cases encompassing all diagnostic types of T cell disorder. There was no correlation between TIA-2 expression and that of other T cell markers, activation antigens, and natural killer markers. CONCLUSIONS: The pattern of TIA-1 expression in T cell malignancies may help in the differential diagnosis among LGL leukaemia (high expression), T cell lymphocytosis and other T cell diseases (low expression). As TIA-2 is expressed in over 95% mature T lymphocytes and thymic cells, its assessment may be useful to demonstrate aberrant phenotypes which can be exploited for detecting minimal residual disease. Images PMID:8655683

  15. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  16. [The expression and significance of hnRNPD in esophageal squamous cell carcinoma cells].

    Science.gov (United States)

    Geng, Yangyang; Zhang, Lulu; Xu, Miaomiao; Sheng, Wenjiong; Dong, Aijing; Cao, Jinming; Cao, Jianping

    2015-12-01

    Objective To investigate the expression of heterogeneous nuclear ribonucleoprotein D (hnRNPD) in esophageal squamous cell carcinoma (ESCC) tissues and the relationship between hnRNPD expression and the clinicopathological features of ESCC, and to study the effect of down-regulated hnRNPD on the proliferation of ESCC cells and explore its potential mechanism. Methods The expression of hnRNPD protein in ESCC tissues and the normal paracancerous tissues were detected by immunohistochemistry. The siRNA-hnRNPD was transfected into ESCC cells and the silence effect was verified by Western blotting. MTT assay and clone formation assay were used to evaluate the proliferation of ESCC cells after down-regulation of hnRNPD genes. Cell apoptosis was examined by annexin V-phycoerythrin/7-aminoactinomycin D (annexin V-PE/7-AAD) staining and flow cytometry. Results The expression of hnRNPD protein in ESCC tissues was significantly higher than that of the normal paracancerous tissues, and the expression was closely related with neoplasm staging. Down-regulation of hnRNPD inhibited the proliferation and clonality of ESCC cells. Compared with the control group, siRNA targeting hnRNPD significantly promoted cell apoptosis. Conclusion Down-regulation of hnRNPD inhibits the proliferation of ESCC cells by promoting cell apoptosis. PMID:26648300

  17. 'Fluorescent Cell Chip' for immunotoxicity testing: Development of the c-fos expression reporter cell lines

    International Nuclear Information System (INIS)

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals

  18. Expression of Hyaluronidase by Tumor Cells Induces Angiogenesis in vivo

    Science.gov (United States)

    Liu, Dacai; Pearlman, Eric; Diaconu, Eugenia; Guo, Kun; Mori, Hiroshi; Haqqi, Tariq; Markowitz, Sanford; Willson, James; Sy, Man-Sun

    1996-07-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the ``molecular saboteurs'' to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs.

  19. Expression of Aquaporin-6 in Rat Retinal Ganglion Cells.

    Science.gov (United States)

    Jang, Sun Young; Lee, Eung Suk; Ohn, Young-Hoon; Park, Tae Kwann

    2016-08-01

    Several aquaporins (AQPs) have been identified to be present in the eyes, and it has been suggested that they are involved in the movement of water and small solutes. AQP6, which has low water permeability and transports mainly anions, was recently discovered in the eyes. In the present study, we investigate the localization of AQP6 in the rat retina and show that AQP6 is selectively localized to the ganglion cell layer and the outer plexiform layer. Along with the gradual decrease in retinal ganglion cells after a crushing injury of optic nerve, immunofluorescence signals of AQP6 gradually decreased. Confocal microscope images confirmed AQP6 expression in retinal ganglion cells and Müller cells in vitro. Therefore, AQP6 might participate in water and anion transport in these cells. PMID:26526333

  20. Mouse chronic social stress increases blood and brain kynurenine pathway activity and fear behaviour: Both effects are reversed by inhibition of indoleamine 2,3-dioxygenase.

    Science.gov (United States)

    Fuertig, René; Azzinnari, Damiano; Bergamini, Giorgio; Cathomas, Flurin; Sigrist, Hannes; Seifritz, Erich; Vavassori, Stefano; Luippold, Andreas; Hengerer, Bastian; Ceci, Angelo; Pryce, Christopher R

    2016-05-01

    Psychosocial stress is a major risk factor for mood and anxiety disorders, in which excessive reactivity to aversive events/stimuli is a major psychopathology. In terms of pathophysiology, immune-inflammation is an important candidate, including high blood and brain levels of metabolites belonging to the kynurenine pathway. Animal models are needed to study causality between psychosocial stress, immune-inflammation and hyper-reactivity to aversive stimuli. The present mouse study investigated effects of psychosocial stress as chronic social defeat (CSD) versus control-handling (CON) on: Pavlovian tone-shock fear conditioning, activation of the kynurenine pathway, and efficacy of a specific inhibitor (IDOInh) of the tryptophan-kynurenine catabolising enzyme indoleamine 2,3-dioxygenase (IDO1), in reversing CSD effects on the kynurenine pathway and fear. CSD led to excessive fear learning and memory, whilst repeated oral escitalopram (antidepressant and anxiolytic) reversed excessive fear memory, indicating predictive validity of the model. CSD led to higher blood levels of TNF-α, IFN-γ, kynurenine (KYN), 3-hydroxykynurenine (3-HK) and kynurenic acid, and higher KYN and 3-HK in amygdala and hippocampus. CSD was without effect on IDO1 gene or protein expression in spleen, ileum and liver, whilst increasing liver TDO2 gene expression. Nonetheless, oral IDOInh reduced blood and brain levels of KYN and 3-HK in CSD mice to CON levels, and we therefore infer that CSD increases IDO1 activity by increasing its post-translational activation. Furthermore, repeated oral IDOInh reversed excessive fear memory in CSD mice to CON levels. IDOInh reversal of CSD-induced hyper-activity in the kynurenine pathway and fear system contributes significantly to the evidence for a causal pathway between psychosocial stress, immune-inflammation and the excessive fearfulness that is a major psychopathology in stress-related neuropsychiatric disorders. PMID:26724575

  1. Expression of myc family oncoproteins in small-cell lung-cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Vindeløv, L L; Spang-Thomsen, M

    1993-01-01

    A number of genes have altered activity in small-cell lung cancer (SCLC), but especially genes of the myc family (c-myc, L-myc and N-myc) are expressed at high levels in SCLC. Most studies have explored expression at the mRNA level, whereas studies of myc family oncoprotein expression are sparse....... WE examined the expression of myc proto-oncogenes at the mRNA and protein level in 23 cell lines or xenografts. In the cell lines, the doubling time and the cell-cycle distribution, as determined by flow-cytometric DNA analysis, were examined to establish whether the level of myc...... general, the level of expression of c-myc and N-myc was similar at the mRNA and the protein level. Expression of c-myc was positively correlated with the proliferative index (sum of S and G2+M phases) of cell lines, but not with the population doubling time. In general, L-myc-expressing cell lines had a...

  2. Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells

    Directory of Open Access Journals (Sweden)

    Kylie A. Huckleberry

    2015-08-01

    Full Text Available Thousands of neurons are born each day in the dentate gyrus (DG, but many of these cells die before reaching maturity. Both death and survival of adult-born neurons are regulated by neuronal activity in DG. The immediate-early gene (IEG zif268 is an important mediator of these effects, as its expression is induced by neural activity and knockout of zif268 impairs survival of adult-born neurons (Veyrac et al., 2013. Despite the apparent importance of zif268 for adult neurogenesis, its behavior-induced expression has not been fully characterized in adult-born neurons. Here we characterize behavior-evoked expression of zif268 in mature and newborn dentate granule cells (DGCs. In the general granule cell population, zif268 expression peaked 1 hour after novel environment exposure and returned to baseline by 8 hours post-exposure. However, in the doublecortin-positive (DCX+ immature neurons, zif268 expression was suppressed relative to home cage for at least 8 hours post-exposure. We next determined that exposure to water maze training, an enriched environment, or a novel environment caused approximately equal suppression of zif268 expression in DCX+ cells and approximately equal activation of zif268 in the general DGC population and in 6-week-old adult-born neurons. Finally, we asked whether zif268 suppression varied as a function of age within the DCX+ population, which ranges in age from 0 to approximately 4 weeks. Novel environment exposure had no significant effect on zif268 expression in 2- or 4-week-old BrdU-labeled neurons, but it significantly suppressed zif268 expression in 3-week-old neurons. In summary, behavioral experience transiently activated expression of zif268 in mature DGCs but caused a more long-lasting suppression of zif268 expression in immature, adult-born DGCs. We hypothesize that zif268 suppression inhibits memory-related synaptic plasticity in immature DGCs or mediates learning-induced apoptosis of immature adult

  3. Boswellic acid inhibits expression of acid sphingomyelinase in intestinal cells

    Directory of Open Access Journals (Sweden)

    Duan Rui-Dong

    2009-12-01

    Full Text Available Abstract Background Boswellic acid is a type of triterpenoids with antiinflammatory and antiproliferative properties. Sphingomyelin metabolism generates multiple lipid signals affecting cell proliferation, inflammation, and apoptosis. Upregulation of acid sphingomyelinase (SMase has been found in several inflammation-related diseases such as inflammatory bowel diseases, atherosclerosis, and diabetes. Methods The present study is to examine the effect of 3-acetyl-11-keto-β-boswellic acids (AKBA, a potent boswellic acid, on acid SMase activity and expression in intestinal cells. Both transformed Caco-2 cells and non-transformed Int407 cells were incubated with AKBA. After incubation, the change of acid SMase activity was assayed biochemically, the enzyme protein was examined by Western blot, and acid SMase mRNA was quantified by qPCR. Results We found that AKBA decreased acid SMase activity in both intestinal cell lines in dose and time dependent manners without affecting the secretion of the enzyme to the cell culture medium. The effect of AKBA was more effective in the fetal bovine serum-free culture medium. Among different types of boswellic acid, AKBA was the most potent one. The inhibitory effect on acid SMase activity occurred only in the intact cells but not in cell-free extract in the test tubes. At low concentration, AKBA only decreased the acid SMase activity but not the quantity of the enzyme protein. However, at high concentration, AKBA decreased both the mass of acid SMase protein and the mRNA levels of acid SMase in the cells, as demonstrated by Western blot and qPCR, respectively. Under the concentrations decreasing acid SMase activity, AKBA significantly inhibited cell proliferation. Conclusion We identified a novel inhibitory effect of boswellic acids on acid SMase expression, which may have implications in human diseases and health.

  4. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gehrau, Ricardo C.; D' Astolfo, Diego S.; Andreoli, Veronica [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Bocco, Jose L., E-mail: jbocco@fcq.unc.edu.ar [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Koritschoner, Nicolas P. [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-02-10

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC{sub 50}). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p < 0.0001) in KLF6 mRNA levels were observed depending on the cellular p53 status upon cell damage. KLF6 expression was significantly increased in 63% of p53-deficient cells (122/195). Conversely, KLF6 mRNA level decreased nearly 4 fold in more than 70% of p53+/+ cells. In addition, klf6 gene promoter activity was down-regulated by DNA damaging agents in cells expressing the functional p53 protein whereas it was moderately increased in the absence of functional p53. Consistent results were obtained for the endogenous KLF6 protein level. Results indicate that human klf6 gene expression is responsive to external cell damage mediated by IC{sub 50} concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable

  5. Resveratrol Represses Pokemon Expression in Human Glioma Cells.

    Science.gov (United States)

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Overstreet, Anne-Marie; Zhan, Yiping; Shan, Dapeng; Li, Hui; Li, Hui; Wang, Yongjun; Zhang, Mengmeng; Yu, Chunjiang; Xu, Zhi-Qing David

    2016-03-01

    POK erythroid myeloid ontogenic factor (Pokemon), an important proto-oncoprotein, is a transcriptional repressor that regulates the expression of many genes and plays an important role in tumorigenesis. Resveratrol (RSV), a natural polyphenolic compound, has many beneficial biological effects on health. In this study, we investigated the role of Pokemon in RSV-induced biological effects and the effect of RSV on the expression of Pokemon in glioma cells. We found that overexpression of Pokemon decreased RSV-induced cell apoptosis, senescence, and anti-proliferative effects. Moreover, we showed that RSV could efficiently decrease the activity of the Pokemon promoter and the expression of Pokemon. Meanwhile, RSV also inhibited Sp1 DNA binding activity to the Pokemon promoter; whereas, it did not influence the expression and nuclear translocation of Sp1. In addition, we found that RSV could increase the recruitment of HDAC1, but decreased p300 to the Pokemon promoter. Taken together, all these results extended our understanding on the anti-cancer mechanism of RSV in glioma cells. PMID:25875864

  6. Cell-free protein expression based on extracts from CHO cells.

    Science.gov (United States)

    Brödel, Andreas K; Sonnabend, Andrei; Kubick, Stefan

    2014-01-01

    Protein expression systems are widely used in biotechnology and medicine for the efficient and economic production of therapeutic proteins. Today, cultivated Chinese hamster ovary (CHO) cells are the market dominating mammalian cell-line for the production of complex therapeutic proteins. Despite this outstanding potential of CHO cells, no high-yield cell-free system based on translationally active lysates from these cells has been reported so far. To date, CHO cell extracts have only been used as a foundational research tool for understanding mRNA translation (Lodish et al., 1974; McDowell et al., 1972). In the present study, we address this fact by establishing a novel cell-free protein expression system based on extracts from cultured CHO cells. Lysate preparation, adaptation of in vitro reaction conditions and the construction of particular expression vectors are considered for high-yield protein production. A specific in vitro expression vector, which includes an internal ribosome entry site (IRES) from the intergenic region (IGR) of the Cricket paralysis virus (CrPV), has been constructed in order to obtain optimal performance. The IGR IRES is supposed to bind directly to the eukaryotic 40S ribosomal subunit thereby bypassing the process of translation initiation, which is often a major bottleneck in cell-free systems. The combination of expression vector and optimized CHO cell extracts enables the production of approximately 50 µg/mL active firefly luciferase within 4 h. The batch-type cell-free coupled transcription-translation system has the potential to perform post-translational modifications, as shown by the glycosylation of erythropoietin. Accordingly, the system contains translocationally active endogenous microsomes, enabling the co-translational incorporation of membrane proteins into biological membranes. Hence, the presented in vitro translation system is a powerful tool for the fast and convenient optimization of expression constructs, the

  7. Characterization of cell subpopulations expressing progenitor cell markers in porcine cardiac valves.

    Directory of Open Access Journals (Sweden)

    Huan Wang

    Full Text Available Valvular interstitial cells (VICs are the main population of cells found in cardiac valves. These resident fibroblastic cells play important roles in maintaining proper valve function, and their dysregulation has been linked to disease progression in humans. Despite the critical functions of VICs, their cellular composition is still not well defined for humans and other mammals. Given the limited availability of healthy human valves and the similarity in valve structure and function between humans and pigs, we characterized porcine VICs (pVICs based on expression of cell surface proteins and sorted a specific subpopulation of pVICs to study its functions. We found that small percentages of pVICs express the progenitor cell markers ABCG2 (~5%, NG2 (~5% or SSEA-4 (~7%, whereas another subpopulation (~5% expresses OB-CDH, a type of cadherin expressed by myofibroblasts or osteo-progenitors. pVICs isolated from either aortic or pulmonary valves express most of these protein markers at similar levels. Interestingly, OB-CDH, NG2 and SSEA-4 all label distinct valvular subpopulations relative to each other; however, NG2 and ABCG2 are co-expressed in the same cells. ABCG2(+ cells were further characterized and found to deposit more calcified matrix than ABCG2(- cells upon osteogenic induction, suggesting that they may be involved in the development of osteogenic VICs during valve pathology. Cell profiling based on flow cytometry and functional studies with sorted primary cells provide not only new and quantitative information about the cellular composition of porcine cardiac valves, but also contribute to our understanding of how a subpopulation of valvular cells (ABCG2(+ cells may participate in tissue repair and disease progression.

  8. Single-cell transcriptome analysis reveals coordinated ectopic gene expression patterns in medullary thymic epithelial cells

    Science.gov (United States)

    Brennecke, Philip; Reyes, Alejandro; Pinto, Sheena; Rattay, Kristin; Nguyen, Michelle; Küchler, Rita; Huber, Wolfgang; Kyewski, Bruno; Steinmetz, Lars M.

    2015-01-01

    Expression of tissue-restricted self-antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for self-tolerance induction and prevents autoimmunity, with each TRA being expressed in only a few mTECs. How this process is regulated in single mTECs and coordinated at the population level, such that the varied single-cell patterns add up to faithfully represent TRAs, is poorly understood. Here we used single-cell RNA-sequencing and provide evidence for numerous recurring TRA co-expression patterns, each present in only a subset of mTECs. Co-expressed genes clustered in the genome and showed enhanced chromatin accessibility. Our findings characterize TRA expression in mTECs as a coordinated process, which might involve local re-modeling of chromatin and thus ensures a comprehensive representation of the immunological self. PMID:26237553

  9. Adjuvant indoleamine 2,3-dioxygenase enzyme inhibition for comprehensive management of epilepsy and comorbid depression.

    Science.gov (United States)

    Singh, Tanveer; Goel, Rajesh Kumar

    2016-08-01

    Epilepsy is one of the major neurological disorders frequently associated with psychiatric disorders such as depression. Alteration of tryptophan metabolism towards kynurenine pathway may be one of the plausible reasons for association of depression in epilepsy. Hence, this study was envisaged to evaluate the dose dependent inhibition of indoleamine 2,3-dioxygenase (IDO) enzyme (responsible for shifting tryptophan metabolism) employing minocycline with valproic acid for comprehensive management of epilepsy and comorbid depression. Kindling was induced in male swiss albino mice by administration of pentylenetetrazole subconvulsive dose (35mg/kg, i.p.) at an interval of 48±2h. Kindled animals were treated with saline, valproate (300mg/kg/day i.p.), valproate in combination with different doses of minocycline (10mg/kg; 20mg/kg; 40mg/kg)/day i.p. and minocycline per se (40mg/kg/day i.p.) for 15 days. Except naïve, all the groups were challenged with pentylenetetrazole (35mg/kg i.p.) on day 5, 10, and 15 to evaluate the seizure severity score. Depression was evaluated in all experimental groups using tail suspension and forced swim test on days 1, 5, 10 and 15, 2h after pentylenetetrazole challenge. Results suggested that saline treated kindled animals were significantly associated with depression. Chronic valproate treatment significantly reduced seizure severity score but unable to ameliorate the associated depression. Minocycline supplementation with valproic acid dose dependently ameliorated depression associated with epilepsy. Neurochemical and biochemical findings also supported the behavioural findings of the study. Thus, our results suggested that supplementation of IDO enzyme inhibitors with valproic acid could be explored further for comprehensive management of epilepsy and associated depression. PMID:27189423

  10. CD117 expression on blast cells in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Goryainova N.V.

    2015-09-01

    Full Text Available The aim of the present work was to analyze the frequency of CD117 (c-KIT antigen expression on the blast cells in acute myeloid leukemia (AML, evaluation of the presence of the relationship between the expression of the c-KIT and leukemia according to the FAB classification and definition of co-expression of the antigen CD117, antigens CD33 and CD34. The data of 47 patients with AML were diagnosed. M0 AML variant was established in 3 (6% patients, M1 – in 2 (4%, M2 – in 9 (20%, M4 – in 22 (47% and M5 – in 11 (23%. For immunophenotypic stu¬dies monoclonal antibodies (mAb that detect antigens of anti-CD34, anti-CD33 and anti-CD117 (Becton Dickinson, USA were used. The presence of the antigen CD117 was detected in 39 people, accounting for 83% of all surveyed. Antigen c-KIT was present in 48.117.0% cells on average: in all 3 cases – AML M0, in2 cases of AML M1, in 6 cases – AML M2, 20 of 22 cases – AML M4 and in 8 of 11 AML M5 cases. Average levels of CD117 in investigated leukemia cases statistically differed significantly (p=0.0067. Among 39 CD117- positive patients in 25 (53% co-expression of CD117+/CD34+ was revealed. Expression of CD117+/CD34- was observed in 14 cases (30%, CD117-/CD34+ – in 4 cases (8,5%, CD117-/CD34- – in 4 cases (8.5%. CD34 had of 64% of cells of myeloid origin. A high positive cor¬relation between expression of CD117 and CD34 (r=+0,5169 was determined, being statistically significant (p0,0067.

  11. Gene Expression Profiling Predicts Survival in Conventional Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: Conventional renal cell carcinoma (cRCC accounts for most of the deaths due to kidney cancer. Tumor stage, grade, and patient performance status are used currently to predict survival after surgery. Our goal was to identify gene expression features, using comprehensive gene expression profiling, that correlate with survival. METHODS AND FINDINGS: Gene expression profiles were determined in 177 primary cRCCs using DNA microarrays. Unsupervised hierarchical clustering analysis segregated cRCC into five gene expression subgroups. Expression subgroup was correlated with survival in long-term follow-up and was independent of grade, stage, and performance status. The tumors were then divided evenly into training and test sets that were balanced for grade, stage, performance status, and length of follow-up. A semisupervised learning algorithm (supervised principal components analysis was applied to identify transcripts whose expression was associated with survival in the training set, and the performance of this gene expression-based survival predictor was assessed using the test set. With this method, we identified 259 genes that accurately predicted disease-specific survival among patients in the independent validation group (p < 0.001. In multivariate analysis, the gene expression predictor was a strong predictor of survival independent of tumor stage, grade, and performance status (p < 0.001. CONCLUSIONS: cRCC displays molecular heterogeneity and can be separated into gene expression subgroups that correlate with survival after surgery. We have identified a set of 259 genes that predict survival after surgery independent of clinical prognostic factors.

  12. Discrimination of meniscal cell phenotypes using gene expression profiles

    Directory of Open Access Journals (Sweden)

    M Son

    2012-03-01

    Full Text Available The lack of quantitative and objective metrics to assess cartilage and meniscus cell phenotypes contributes to the challenges in fibrocartilage tissue engineering. Although functional assessment of the final resulting tissue is essential, initial characterization of cell sources and quantitative description of their progression towards the natural, desired cell phenotype would provide an effective tool in optimizing cell-based tissue engineering strategies. The purpose of this study was to identify quantifiable characteristics of meniscal cells and thereby find phenotypical markers that could effectively categorize cells based on their tissue of origin (cartilage, inner, middle, and outer meniscus. The combination of gene expression ratios collagen VI/collagen II, ADAMTS-5/collagen II, and collagen I/collagen II was the most effective indicator of variation among different tissue regions. We additionally demonstrate a possible application of these quantifiable metrics in evaluating the use of serially passaged chondrocytes as a possible cell source in fibrocartilage engineering. Comparing the ratios of the passaged chondrocytes and the native meniscal cells may provide direction to optimize towards the desired cell phenotype. We have thus shown that measurable markers defining the characteristics of the native meniscus can establish a standard by which different tissue engineering strategies can be objectively assessed. Such metrics could additionally be useful in exploring the different stages of meniscal degradation in osteoarthritis and provide some insight in the disease progression.

  13. Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells.

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Park

    Full Text Available The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can provide a simple and genetically tractable system to study the chemosensory functions of enteroendocrine cells in vivo. To establish Drosophila enteroendocrine cells as a model for studying gut chemosensation, we used the GAL4/UAS system to examine the expression of all 68 Gustatory receptors (Grs in the intestine. We find that 12 Gr-GAL4 drivers label subsets of enteroendocrine cells in the midgut, and examine colocalization of these drivers with the regulatory peptides neuropeptide F (NPF, locustatachykinin (LTK, and diuretic hormone 31 (DH31. RT-PCR analysis provides additional evidence for the presence of Gr transcripts in the gut. Our results suggest that the Drosophila Grs have chemosensory roles in the intestine to regulate physiological functions such as food uptake, nutrient absorption, or sugar homeostasis.

  14. Multiple melanocortin receptors are expressed in bone cells

    Science.gov (United States)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  15. ADAM17 deletion in thymic epithelial cells alters aire expression without affecting T cell developmental progression.

    Directory of Open Access Journals (Sweden)

    David M Gravano

    Full Text Available BACKGROUND: Cellular interactions between thymocytes and thymic stromal cells are critical for normal T cell development. Thymic epithelial cells (TECs are important stromal niche cells that provide essential growth factors, cytokines, and present self-antigens to developing thymocytes. The identification of genes that mediate cellular crosstalk in the thymus is ongoing. One candidate gene, Adam17, encodes a metalloprotease that functions by cleaving the ectodomain of several transmembrane proteins and regulates various developmental processes. In conventional Adam17 knockout mice, a non-cell autonomous role for ADAM17 in adult T cell development was reported, which strongly suggested that expression of ADAM17 in TECs was required for normal T cell development. However, knockdown of Adam17 results in multisystem developmental defects and perinatal lethality, which has made study of the role of Adam17 in specific cell types difficult. Here, we examined T cell and thymic epithelial cell development using a conditional knockout approach. METHODOLOGY/PRINCIPAL FINDINGS: We generated an Adam17 conditional knockout mouse in which floxed Adam17 is deleted specifically in TECs by Cre recombinase under the control of the Foxn1 promoter. Normal T cell lineage choice and development through the canonical αβ T cell stages was observed. Interestingly, Adam17 deficiency in TECs resulted in reduced expression of the transcription factor Aire. However, no alterations in the patterns of TEC phenotypic marker expression and thymus morphology were noted. CONCLUSIONS/SIGNIFICANCE: In contrast to expectation, our data clearly shows that absence of Adam17 in TECs is dispensable for normal T cell development. Differentiation of TECs is also unaffected by loss of Adam17 based on phenotypic markers. Surprisingly, we have uncovered a novel genetic link between Adam17and Aire expression in vivo. The cell type in which ADAM17 mediates its non-cell autonomous impact and

  16. Exogenous Expression of N-Cadherin in Breast Cancer Cells Induces Cell Migration, Invasion, and Metastasis

    OpenAIRE

    Hazan, Rachel B.; Phillips, Greg R.; Qiao, Rui Fang; Norton, Larry; Aaronson, Stuart A.

    2000-01-01

    E- and N-cadherin are calcium-dependent cell adhesion molecules that mediate cell–cell adhesion and also modulate cell migration and tumor invasiveness. The loss of E-cadherin–mediated adhesion has been shown to play an important role in the transition of epithelial tumors from a benign to an invasive state. However, recent evidence indicates that another member of the cadherin family, N-cadherin, is expressed in highly invasive tumor cell lines that lacked E-cadherin expression. These findin...

  17. Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells

    OpenAIRE

    Li Zou; Fahad K. Kidwai; Ross A. Kopher; Jason Motl; Cory A. Kellum; Jennifer J. Westendorf; Dan S. Kaufman

    2015-01-01

    Summary We generated a RUNX2-yellow fluorescent protein (YFP) reporter system to study osteogenic development from human embryonic stem cells (hESCs). Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow me...

  18. Gene expression profiling of circulating tumor cells and peripheral blood mononuclear cells from breast cancer patients

    Czech Academy of Sciences Publication Activity Database

    Hensler, M.; Vancurova, I.; Becht, E.; Palata, O.; Strnad, P.; Tesarova, P.; Cabinakova, M.; Švec, David; Kubista, Mikael; Bartunkova, J.; Spisek, R.; Sojka, L.

    2016-01-01

    Roč. 5, č. 4 (2016), e1102827. ISSN 2162-402X Institutional support: RVO:86652036 Keywords : Breast cancer * gene expression profiling * circulating tumor cells Subject RIV: FD - Oncology ; Hematology

  19. Effects of space flight exposure on cell growth, tumorigenicity and gene expression in cancer cells

    Science.gov (United States)

    Yang, Cheng; Li, Yuehui; Zhang, Zhijie; Luo, Chen; Tong, Yongqing; Zhou, Guohua; Xie, Pingli; Hu, Jinyue; Li, Guancheng

    2008-12-01

    It is well recognized that harsh outer space environment, consisting of microgravity and radiation, poses significant health risks for human cells. To investigate potential effects of the space environment exposure on cancer cells we examined the biological changes in Caski cells carried by the "Shen Zhou IV" spaceship. After exposure for 7 days in spaceflight, 1440 survival subclonal cell lines were established and 4 cell lines were screened. 44F10 and 17E3 were selected because of their increased cell proliferation and tumorigenesis, while 48A9 and 31F2 had slower cytological events. Experiments with cell proliferation assay, flow cytometry, soft agar assay, tumorigenesis assay and DNA microarray analysis have shown that selected cell lines presented multiple biological changes in cell morphology, cell growth, tumorigenicity and gene expression. These results suggest that space environment exposure can make significant biological impact on cancer cells and provide an entry point to find the immunological target of tumorigenesis.

  20. Transglutaminase 2 Expression and Its Prognostic Significance in Clear Cell Renal Cell Carcinoma

    OpenAIRE

    Park, Min Jee; Baek, Hae Woon; Rhee, Ye-Young; Lee, Cheol; Park, Jeong Whan; Kim, Hwal Woong; Moon, Kyung Chul

    2015-01-01

    Background: A few recent studies have demonstrated a possible role of transglutaminase 2 (TG2) in tumorigenesis or progression of renal cell carcinoma (RCC). The aim of this study was to examine TG2 expression and its clinicopathologic significance in a large number of human clear cell RCCs (CCRCCs). Methods: We analyzed 638 CCRCC patients who underwent partial or radical nephrectomy between 1995 and 2005. The expression of TG2 was determined by immunohistochemistry and categorized into four ...

  1. Identifying cell types from spatially referenced single-cell expression datasets.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Pettit

    2014-09-01

    Full Text Available Complex tissues, such as the brain, are composed of multiple different cell types, each of which have distinct and important roles, for example in neural function. Moreover, it has recently been appreciated that the cells that make up these sub-cell types themselves harbour significant cell-to-cell heterogeneity, in particular at the level of gene expression. The ability to study this heterogeneity has been revolutionised by advances in experimental technology, such as Wholemount in Situ Hybridizations (WiSH and single-cell RNA-sequencing. Consequently, it is now possible to study gene expression levels in thousands of cells from the same tissue type. After generating such data one of the key goals is to cluster the cells into groups that correspond to both known and putatively novel cell types. Whilst many clustering algorithms exist, they are typically unable to incorporate information about the spatial dependence between cells within the tissue under study. When such information exists it provides important insights that should be directly included in the clustering scheme. To this end we have developed a clustering method that uses a Hidden Markov Random Field (HMRF model to exploit both quantitative measures of expression and spatial information. To accurately reflect the underlying biology, we extend current HMRF approaches by allowing the degree of spatial coherency to differ between clusters. We demonstrate the utility of our method using simulated data before applying it to cluster single cell gene expression data generated by applying WiSH to study expression patterns in the brain of the marine annelid Platynereis dumereilii. Our approach allows known cell types to be identified as well as revealing new, previously unexplored cell types within the brain of this important model system.

  2. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E;

    1992-01-01

    embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  3. Malignant T cells express lymphotoxin alpha and drive endothelial activation in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Lauenborg, Britt; Christensen, Louise; Ralfkiaer, Ulrik;

    2015-01-01

    internal organs and blood. Yet, little is known about the mechanism of the CTCL dissemination. Here, we show that CTCL cells express LTα in situ and that LTα expression is driven by aberrantly activated JAK3/STAT5 pathway. Importantly, via TNF receptor 2, LTα functions as an autocrine factor by stimulating...

  4. Triggering Receptor Expressed on Myeloid Cells in Cutaneous Melanoma.

    Science.gov (United States)

    Nguyen, Austin Huy; Koenck, Carleigh; Quirk, Shannon K; Lim, Victoria M; Mitkov, Mario V; Trowbridge, Ryan M; Hunter, William J; Agrawal, Devendra K

    2015-10-01

    The tumor microenvironment plays an important role in the progression of melanoma, the prototypical immunologic cutaneous malignancy. The triggering receptor expressed on myeloid cells (TREM) family of innate immune receptors modulates inflammatory and innate immune signaling. It has been investigated in various neoplastic diseases, but not in melanoma. This study examines the expression of TREM-1 (a proinflammatory amplifier) and TREM-2 (an anti-inflammatory modulator and phagocytic promoter) in human cutaneous melanoma and surrounding tissue. Indirect immunofluorescence staining was performed on skin biopsies from 10 melanoma patients and staining intensity was semiquantitatively scored. Expression of TREM-1 and TREM-2 was higher in keratinocytes than melanoma tissue (TREM-1: p < 0.01; TREM-2: p < 0.01). Whereas TREM-2 was the dominant isoform expressed in normal keratinocytes, TREM-1 expression predominated in melanoma tissue (TREM-1 to TREM-2 ratio: keratinocytes = 0.78; melanoma = 2.08; p < 0.01). The increased TREM ratio in melanoma tissue could give rise to a proinflammatory and protumor state of the microenvironment. This evidence may be suggestive of a TREM-1/TREM-2 paradigm in which relative levels dictate inflammatory and immune states, rather than absolute expression of one or the other. Further investigation regarding this paradigm is warranted and could carry prognostic or therapeutic value in treatment for melanoma. PMID:26184544

  5. ELK3 Expression Correlates With Cell Migration, Invasion, and Membrane Type 1-Matrix Metalloproteinase Expression in MDA-MB-231 Breast Cancer Cells.

    Science.gov (United States)

    Heo, Sun-Hee; Lee, Je-Yong; Yang, Kyung-Min; Park, Kyung-Soon

    2015-01-01

    ELK3 is a member of the Ets family of transcription factors. Its expression is associated with angiogenesis, vasculogenesis, and chondrogenesis. ELK3 inhibits endothelial migration and tube formation through the regulation of MT1-MMP transcription. This study assessed the function of ELK3 in breast cancer (BC) cells by comparing its expression between basal and luminal cells in silico and in vitro. In silico analysis showed that ELK3 expression was higher in the more aggressive basal BC cells than in luminal BC cells. Similarly, in vitro analysis showed that ELK3 mRNA and protein expression was higher in basal BC cells than in normal cells and luminal BC cells. To investigate whether ELK3 regulates basal cell migration or invasion, knockdown was achieved by siRNA in the basal BC cell line MDA-MB-231. Inhibition of ELK3 expression decreased cell migration and invasion and downregulated MT1-MMP, the expression of which is positively correlated with tumor cell invasion. In silico analysis revealed that ELK3 expression was associated with that of MT1-MMP in several BC cell lines (0.98 Pearson correlation coefficient). Though MT1-MMP expression was upregulated upon ELK3 nuclear translocation, ELK3 did not directly bind to the 1.3-kb promoter region of the MT1-MMP gene. These results suggest that ELK3 plays a positive role in the metastasis of BC cells by indirectly regulating MT1-MMP expression. PMID:26637400

  6. Mechanistic Contribution of Ubiquitous 15-Lipoxygenase-1 Expression Loss in Cancer Cells to Terminal Cell Differentiation Evasion

    OpenAIRE

    Moussalli, Micheline J.; Wu, Yuanqing; Zuo, Xiangsheng; Yang, Xiu L.; Wistuba, Ignacio Ivan; Raso, Maria G.; Morris, Jeffrey S.; Bowser, Jessica L.; Minna, John D.; Lotan, Reuben; SHUREIQI, IMAD

    2011-01-01

    Loss of terminal cell differentiation promotes tumorigenesis. 15-LOX-1 contributes to terminal cell differentiation in normal cells. The mechanistic significance of 15-LOX-1 expression loss in human cancers to terminal cell differentiation suppression is unknown. In a screen of 128 cancer cell lines representing more than 20 types of human cancer, we found that 15-LOX-1 mRNA expression levels were markedly lower than levels in terminally differentiated cells. Relative expression levels of 15-...

  7. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  8. Cambogin is preferentially cytotoxic to cells expressing PDGFR.

    Directory of Open Access Journals (Sweden)

    Ze Tian

    Full Text Available Platelet-derived growth factor receptors (PDGFRs have been implicated in a wide array of human malignancies, including medulloblastoma (MB, the most common brain tumor of childhood. Although significant progress in MB biology and therapeutics has been achieved during the past decades, MB remains a horrible challenge to the physicians and researchers. Therefore, novel inhibitors targeting PDGFR signaling pathway may offer great promise for the treatment of MB. In the present study, we investigated the cytotoxicity and mechanisms of cambogin in Daoy MB cells. Our results show that cambogin triggers significant S phase cell cycle arrest and apoptosis via down regulation of cyclin A and E, and activation of caspases. More importantly, further mechanistic studies demonstrated that cambogin inhibits PDGFR signaling in Daoy and genetically defined mouse embryo fibroblast (MEF cell lines. These results suggest that cambogin is preferentially cytotoxic to cells expressing PDGFR. Our findings may provide a novel approach by targeting PDGFR signaling against MB.

  9. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    International Nuclear Information System (INIS)

    Highlights: • As2O3 inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As2O3 than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As2O3 than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As2O3 is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As2O3) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As2O3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As2O3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As2O3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As2O3 than HPV 16-positive CaSki and SiHa cells. After As2O3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As2O3 is a potential anticancer drug for cervical cancer

  10. Gene expression profiles identify inflammatory signatures in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Anna Torri

    Full Text Available Dendritic cells (DCs constitute a heterogeneous group of antigen-presenting leukocytes important in activation of both innate and adaptive immunity. We studied the gene expression patterns of DCs incubated with reagents inducing their activation or inhibition. Total RNA was isolated from DCs and gene expression profiling was performed with oligonucleotide microarrays. Using a supervised learning algorithm based on Random Forest, we generated a molecular signature of inflammation from a training set of 77 samples. We then validated this molecular signature in a testing set of 38 samples. Supervised analysis identified a set of 44 genes that distinguished very accurately between inflammatory and non inflammatory samples. The diagnostic performance of the signature genes was assessed against an independent set of samples, by qRT-PCR. Our findings suggest that the gene expression signature of DCs can provide a molecular classification for use in the selection of anti-inflammatory or adjuvant molecules with specific effects on DC activity.

  11. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, C.M.; Moffat, L.F.; Howard, B.H.

    1982-09-01

    The authors constructed a series of recombinant genomes which directed expression of the enzyme chloramphenicol acetyltransferase (CAT) in mammalian cells. The prototype recombinant in this series, pSV2-cat, consisted of the beta-lactamase gene and origin of replication from pBR322 coupled to a simian virus 40 (SV40) early transcription region into which CAT coding sequences were inserted. Readily measured levels of CAT accumulated within 48 h after the introduction of pSV2-cat DNA into African green monkey kidney CV-1 cells. Because endogenous CAT activity is not present in CV-1 or other mammalian cells, and because rapid, sensitive assays for CAT activity are available, these recombinants provided a uniquely convenient system for monitoring the expression of foreign DNAs in tissue culture cells. To demonstrate the usefulness of this system, we constructed derivatives of pSV2-cat from which part or all of the SV 40 promoter region was removed. Deletion of one copy of the 72-base-pair repeat sequence in the SV40 promoter caused no significant decrease in CAT synthesis in monkey kidney CV-1 cells; however, an additional deletion of 50 base pairs from the second copy of the repeats reduced CAT synthesis to 11% of its level in the wild type. They also constructed a recombinant, pSVO-cat, in which the entire SV40 promoter region was removed and a unique HindIII site was substituted for the insertion of other promoter sequences.

  12. cDNA expression cloning in mammalian cells.

    Science.gov (United States)

    Hoffman, B J

    2001-05-01

    This unit contains protocols for expression cloning in mammalian cells. Either calcium phosphate- or liposome-mediated transfection of mammalian cells, or virus infection and liposome-mediated transfection are used to screen pools derived from a cDNA library. cDNA pools are prepared for cloning from library-transformed E. coli grown in liquid culture medium or on antibiotic-containing selection plates. Results of screening assays for expression can be detected using autoradiography of dishes of cultured cells to identify clones, direct visualization of radiolabeled cells on emulsion-coated and developed chamber slides, detection and quantification of gene activity by a functional (transport) assay with scintillation counting, or detection using a filter-based assay for binding of radioligand to membranes or whole cells. The most critical step of any cDNA cloning project is the establishment of the screening protocol. Therefore, the bioassay for the gene product must be established prior to executing any of these protocols, including construction of the cDNA library. PMID:18428491

  13. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  14. Impact of methoxyacetic acid on mouse Leydig cell gene expression

    Directory of Open Access Journals (Sweden)

    Waxman David J

    2010-06-01

    Full Text Available Abstract Background Methoxyacetic acid (MAA is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Methods Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. Results A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. Conclusions These findings

  15. Classification of dendritic cell phenotypes from gene expression data

    Directory of Open Access Journals (Sweden)

    Zolezzi Francesca

    2011-08-01

    Full Text Available Abstract Background The selection of relevant genes for sample classification is a common task in many gene expression studies. Although a number of tools have been developed to identify optimal gene expression signatures, they often generate gene lists that are too long to be exploited clinically. Consequently, researchers in the field try to identify the smallest set of genes that provide good sample classification. We investigated the genome-wide expression of the inflammatory phenotype in dendritic cells. Dendritic cells are a complex group of cells that play a critical role in vertebrate immunity. Therefore, the prediction of the inflammatory phenotype in these cells may help with the selection of immune-modulating compounds. Results A data mining protocol was applied to microarray data for murine cell lines treated with various inflammatory stimuli. The learning and validation data sets consisted of 155 and 49 samples, respectively. The data mining protocol reduced the number of probe sets from 5,802 to 10, then from 10 to 6 and finally from 6 to 3. The performances of a set of supervised classification models were compared. The best accuracy, when using the six following genes --Il12b, Cd40, Socs3, Irgm1, Plin2 and Lgals3bp-- was obtained by Tree Augmented Naïve Bayes and Nearest Neighbour (91.8%. Using the smallest set of three genes --Il12b, Cd40 and Socs3-- the performance remained satisfactory and the best accuracy was with Support Vector Machine (95.9%. These data mining models, using data for the genes Il12b, Cd40 and Socs3, were validated with a human data set consisting of 27 samples. Support Vector Machines (71.4% and Nearest Neighbour (92.6% gave the worst performances, but the remaining models correctly classified all the 27 samples. Conclusions The genes selected by the data mining protocol proposed were shown to be informative for discriminating between inflammatory and steady-state phenotypes in dendritic cells. The

  16. Construction of Eukaryotic Expression Plasmid of Human PRX3 and Its Expression in HEK-293FT Cells

    Institute of Scientific and Technical Information of China (English)

    冯艳; 刘钊; 曹慧青; 孟宪敏; 瞿智玲; 熊密; 邓仲端

    2004-01-01

    To construct the eukaryotic expression plasmid of human PRX3 and measure its expression in the HEK-293FT cells, the full-length coding region of human PRX3 was cloned by PCR and inserted into the eukaryotic expression vector pcDNA4-Xpress (A). HEK-293FT cells were transiently transfected with the recombinant plasmid. Western blot and immuofluorescence were used to detect the expression of the fusion protein. In the experiment, restriction analysis identified the construction of the recombinant plasmid and the inserted sequence was identical with that published on GenBank. Western blot and immunofluorescence confirmed the expression of the recombinant protein in transfected HEK-293FT cells. It was concluded that the eukaryotic expression plasmid of human PRX3 was constructed successfully and the recombinant could be expressed efficiently in HEK-293FT cells, which provides a sound basis for the further study on human PRX3.

  17. Trichostatin A Regulates hGCN5 Expression and Cell Cycle on Daudi Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Hongli; CHEN Yan; CUI Guohui; WU Gang; WANG Tao; HU Jianli

    2006-01-01

    The expression of human general control of amino acid synthesis protein 5 (hGCN5) in human Burkitt's lymphoma Daudi cells in vitro, effects of Trichostatin A (TSA) on cell proliferation and apoptosis and the molecular mechanism of TSA inhibiting proliferation of Daudi cells were investigated. The effects of TSA on the growth of Daudi cells were studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. The effect of TSA on the cell cycle of Daudi cells was assayed by a propidium iodide method. Immunochemistry and Western blot were used to detect the expression of hGCN5. The proliferation of Daudi cells was decreased in TSA-treated group with a 24 h IC50 value of 415.3979 μg/L. TSA induced apoptosis of Daudi cells in a time- and dose-dependent manner. Treatment with TSA (200 and 400 μg/L) for 24 h, the apoptosis rates of Daudi cells were (14.74±2.04) % and (17.63±1.25) %, respectively. The cell cycle was arrested in G0/G1 phase (50, 100 μtg/L) and in G2/M phase (200 μg/L) by treatment with TSA for 24 h.The expression of hGCN5 protein in Daudi cells was increased in 24 h TSA-treated group by immunochemistry and Western blot (P<0.05). It was suggested that TSA as HDACIs could increase the expression of hGCN5 in Daudi cells, and might play an important role in regulating the proliferation and apoptosis of B-NHL cell line Daudi cells.

  18. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo.

    OpenAIRE

    D. Liu; Pearlman, E.; Diaconu, E.; Guo, K.; Mori, H.; Haqqi, T; Markowitz, S; Willson, J; Sy, M S

    1996-01-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorect...

  19. NOD2 gene expression in Paneth cells and monocytes.

    OpenAIRE

    Lala, S. G.

    2006-01-01

    Introduction: Mutations in the NOD2 gene are associated with the development of Crohn's disease, an inflammatory disorder of the gastrointestinal tract. The NOD2 protein induces cellular activation in response to the bacterial antigen muramyl dipeptide (MDP). The NOD2 gene is mainly expressed by circulating blood monocytes although NOD2-associated Crohn's disease involves mainly the terminal ileum. Paneth cells, which are most numerous in the terminal ileum, are specialised intestinal epithel...

  20. Developmental expression of BK channels in chick cochlear hair cells

    Directory of Open Access Journals (Sweden)

    Tong Mingjie

    2009-12-01

    Full Text Available Abstract Background Cochlear hair cells are high-frequency sensory receptors. At the onset of hearing, hair cells acquire fast, calcium-activated potassium (BK currents, turning immature spiking cells into functional receptors. In non-mammalian vertebrates, the number and kinetics of BK channels are varied systematically along the frequency-axis of the cochlea giving rise to an intrinsic electrical tuning mechanism. The processes that control the appearance and heterogeneity of hair cell BK currents remain unclear. Results Quantitative PCR results showed a non-monotonic increase in BK α subunit expression throughout embryonic development of the chick auditory organ (i.e. basilar papilla. Expression peaked near embryonic day (E 19 with six times the transcript level of E11 sensory epithelia. The steady increase in gene expression from E11 to E19 could not explain the sudden acquisition of currents at E18-19, implicating post-transcriptional mechanisms. Protein expression also preceded function but progressed in a sequence from diffuse cytoplasmic staining at early ages to punctate membrane-bound clusters at E18. Electrophysiology data confirmed a continued refinement of BK trafficking from E18 to E20, indicating a translocation of BK clusters from supranuclear to subnuclear domains over this critical developmental age. Conclusions Gene products encoding BK α subunits are detected up to 8 days before the acquisition of anti-BK clusters and functional BK currents. Therefore, post-transcriptional mechanisms seem to play a key role in the delayed emergence of calcium-sensitive currents. We suggest that regulation of translation and trafficking of functional α subunits, near voltage-gated calcium channels, leads to functional BK currents at the onset of hearing.

  1. Interfacial Polymerization for Colorimetric Labeling of Protein Expression in Cells

    Science.gov (United States)

    Lilly, Jacob L.; Sheldon, Phillip R.; Hoversten, Liv J.; Romero, Gabriela; Balasubramaniam, Vivek; Berron, Brad J.

    2014-01-01

    Determining the location of rare proteins in cells typically requires the use of on-sample amplification. Antibody based recognition and enzymatic amplification is used to produce large amounts of visible label at the site of protein expression, but these techniques suffer from the presence of nonspecific reactivity in the biological sample and from poor spatial control over the label. Polymerization based amplification is a recently developed alternative means of creating an on-sample amplification for fluorescence applications, while not suffering from endogenous labels or loss of signal localization. This manuscript builds upon polymerization based amplification by developing a stable, archivable, and colorimetric mode of amplification termed Polymer Dye Labeling. The basic concept involves an interfacial polymer grown at the site of protein expression and subsequent staining of this polymer with an appropriate dye. The dyes Evans Blue and eosin were initially investigated for colorimetric response in a microarray setting, where both specifically stained polymer films on glass. The process was translated to the staining of protein expression in human dermal fibroblast cells, and Polymer Dye Labeling was specific to regions consistent with desired protein expression. The labeling is stable for over 200 days in ambient conditions and is also compatible with modern mounting medium. PMID:25536421

  2. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  3. Regulation of histone gene expression during the cell cycle.

    Science.gov (United States)

    Meshi, T; Taoka, K I; Iwabuchi, M

    2000-08-01

    The steady-state level of histone mRNAs fluctuates coordinately with chromosomal DNA synthesis during the cell cycle. Such an S phase-specific expression pattern results from transcriptional activation of histone genes coupled with the onset of replication and from transcriptional repression of the genes as well as specific destabilization of histone mRNAs around the end of the S phase. Proliferation-coupled and S phase-specific expression of histone genes is primarily achieved by the activities of the proximal promoter regions, where several conserved cis-acting elements have been identified. Among them, three kinds of Oct-containing composite elements (OCEs) play a pivotal role in S phase-specific transcriptional activation. Other ones, such as Nona, solo-Oct, and CCGTC motifs, appear to modulate the functions of OCEs to enhance or repress the transcriptional level, possibly depending on the state of the cells. Here, we review the growing evidence concerning the regulatory mechanisms by which plant histone genes are expressed S phase-specifically in proliferating cells. PMID:11089867

  4. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    Science.gov (United States)

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity. PMID:27262873

  5. Expression of cell cycle regulating factor mRNA in small cell lung cancer xenografts

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1998-01-01

    CDK6 when in vitro and in vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether...

  6. Synthesis of the Reported Pyranonaphthoquinone Structure of the Indoleamine-2,3-dioxygenase Inhibitor Annulin B by Regioselective Diels-Alder Reaction.

    Science.gov (United States)

    Inman, Martyn; Carvalho, Catarina; Lewis, William; Moody, Christopher J

    2016-09-01

    Annulin B, isolated from the marine hydroid isolated from Garveia annulata, is a potent inhibitor of the tryptophan catabolizing enzyme indoleamine-2,3-dioxygenase (IDO). A synthesis of the reported pyranonaphthoquinone structure is described, in which the key step is a regioselective Diels-Alder reaction between a pyranobenzoquinone dienophile and a silyl ketene acetal diene. PMID:27513176

  7. Gene therapy with adenovirus-delivered indoleamine 2,3-dioxygenase improves renal function and morphology following allogeneic kidney transplantation in rat

    NARCIS (Netherlands)

    Vavrincova-Yaghi, Diana; Deelman, Leo E.; van Goor, Harry; Seelen, Marc; Kema, Ido P.; Smit-van Oosten, Annemieke; de Zeeuw, Dick; Henning, Robert H.; Sandovici, Maria

    2011-01-01

    BACKGROUND: Indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the tryptophan catabolism, has recently emerged as an important immunosuppressive enzyme involved in the regulation of both physiologic (maternal tolerance), as well as pathologic (neoplasia, autoimmune diseases, asthma) proc

  8. Short-chain ceramides depress integrin cell surface expression and function in colorectal cancer cells.

    Science.gov (United States)

    Morad, Samy A F; Bridges, Lance C; Almeida Larrea, Alex D; Mayen, Anthony L; MacDougall, Matthew R; Davis, Traci S; Kester, Mark; Cabot, Myles C

    2016-07-01

    Colorectal cancer (CRC) is highly metastatic, significantly so to liver, a characteristic that embodies one of the most challenging aspects of treatment. The integrin family of cell-cell and cell-matrix adhesion receptors plays a central role in migration and invasion, functions that underlie metastatic potential. In the present work we sought to determine the impact of ceramide, which plays a key modulatory role in cancer suppression, on integrin cell surface expression and function in CRC cells in order to reveal possible ceramide-centric effects on tumor cell motility. Human CRC cells LoVo, HT-29, and HCT-116 were employed, which represent lines established from primary and metastatic sites. A cell-permeable, short-chain analog, C6-ceramide, was used as ceramide mimic. Exposure of cells to C6-ceramide (24 h) promoted a dose-dependent (2.5-10 µM) decrease in the expression of cell surface β1 and β4 integrin subunits in all cell lines; at 10 µM C6-ceramide, the decreases ranged from 30 to 50% of the control. Expression of cell surface αVβ6 integrin, which is associated with advanced invasion in CRC, was also suppressed by C6-ceramide. Decreases in integrin expression translated to diminished cellular adhesion, 50% of the control at 5 µM C6-ceramide, and markedly reduced cellular migration, approximately 30-40% of the control in all cell lines. Physicochemical examination revealed potent efficacy of nano-formulated C6-ceramide, but inferior activity of dihydro-C6-ceramide and L-C6-ceramide, compared to the unsaturated counterpart and the natural d-enantiomer, respectively. These studies demonstrate novel actions of ceramides that may have application in suppression of tumor metastasis, in addition to their known tumor suppressor effects. PMID:27045476

  9. Mutational study of sapovirus expression in insect cells

    Directory of Open Access Journals (Sweden)

    Natori Katsuro

    2005-02-01

    Full Text Available Abstract Human sapovirus (SaV, an agent of human gastroenteritis, cannot be grown in cell culture, but expression of the recombinant capsid protein (rVP1 in a baculovirus expression system results in the formation of virus-like particles (VLPs. In this study we compared the time-course expression of two different SaV rVP1 constructs. One construct had the native sequence (Wt construct, whereas the other had two nucleotide point mutations in which one mutation caused an amino acid substitution and one was silent (MEG-1076 construct. While both constructs formed VLPs morphologically similar to native SaV, Northern blot analysis indicated that the MEG-1076 rVP1 mRNA had increased steady-state levels. Furthermore, Western blot analysis and an antigen enzyme-linked immunosorbent assay showed that the MEG-1076 construct had increased expression levels of rVP1 and yields of VLPs. Interestingly, the position of the mutated residue was strictly conserved residue among other human SaV strains, suggesting an important role for rVP1 expression.

  10. Simvastatin modulates mesenchymal stromal cell proliferation and gene expression.

    Science.gov (United States)

    Zanette, Dalila Lucíola; Lorenzi, Julio Cesar Cetrulo; Panepucci, Rodrigo Alexandre; Palma, Patricia Vianna Bonini; Dos Santos, Daiane Fernanda; Prata, Karen Lima; Silva, Wilson Araújo

    2015-01-01

    Statins are widely used hypocholesterolemic drugs that block the mevalonate pathway, responsible for the biosysnthesis of cholesterol. However, statins also have pleiotropic effects that interfere with several signaling pathways. Mesenchymal stromal cells (MSC) are a heterogeneous mixture of cells that can be isolated from a variety of tissues and are identified by the expression of a panel of surface markers and by their ability to differentiate in vitro into osteocytes, adipocytes and chondrocytes. MSC were isolated from amniotic membranes and bone marrows and characterized based on ISCT (International Society for Cell Therapy) minimal criteria. Simvastatin-treated cells and controls were directly assayed by CFSE (Carboxyfluorescein diacetate succinimidyl ester) staining to assess their cell proliferation and their RNA was used for microarray analyses and quantitative PCR (qPCR). These MSC were also evaluated for their ability to inhibit PBMC (peripheral blood mononuclear cells) proliferation. We show here that simvastatin negatively modulates MSC proliferation in a dose-dependent way and regulates the expression of proliferation-related genes. Importantly, we observed that simvastatin increased the percentage of a subset of smaller MSC, which also were actively proliferating. The association of MSC decreased size with increased pluripotency and the accumulating evidence that statins may prevent cellular senescence led us to hypothesize that simvastatin induces a smaller subpopulation that may have increased ability to maintain the entire pool of MSC and also to protect them from cellular senescence induced by long-term cultures/passages in vitro. These results may be important to better understand the pleiotropic effects of statins and its effects on the biology of cells with regenerative potential. PMID:25874574

  11. Simvastatin modulates mesenchymal stromal cell proliferation and gene expression.

    Directory of Open Access Journals (Sweden)

    Dalila Lucíola Zanette

    Full Text Available Statins are widely used hypocholesterolemic drugs that block the mevalonate pathway, responsible for the biosysnthesis of cholesterol. However, statins also have pleiotropic effects that interfere with several signaling pathways. Mesenchymal stromal cells (MSC are a heterogeneous mixture of cells that can be isolated from a variety of tissues and are identified by the expression of a panel of surface markers and by their ability to differentiate in vitro into osteocytes, adipocytes and chondrocytes. MSC were isolated from amniotic membranes and bone marrows and characterized based on ISCT (International Society for Cell Therapy minimal criteria. Simvastatin-treated cells and controls were directly assayed by CFSE (Carboxyfluorescein diacetate succinimidyl ester staining to assess their cell proliferation and their RNA was used for microarray analyses and quantitative PCR (qPCR. These MSC were also evaluated for their ability to inhibit PBMC (peripheral blood mononuclear cells proliferation. We show here that simvastatin negatively modulates MSC proliferation in a dose-dependent way and regulates the expression of proliferation-related genes. Importantly, we observed that simvastatin increased the percentage of a subset of smaller MSC, which also were actively proliferating. The association of MSC decreased size with increased pluripotency and the accumulating evidence that statins may prevent cellular senescence led us to hypothesize that simvastatin induces a smaller subpopulation that may have increased ability to maintain the entire pool of MSC and also to protect them from cellular senescence induced by long-term cultures/passages in vitro. These results may be important to better understand the pleiotropic effects of statins and its effects on the biology of cells with regenerative potential.

  12. Expression of T cell factor-4 in non-small-cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    LI Chun-yan; WANG Yan; CUI Ze-shi; WANG En-hua

    2005-01-01

    Background T cell factor- 4 (TCF- 4) plays an important role in development and carcinogenesis. Recently, the role of TCF- 4 has been described in colon cancer and other cancers. However, whether TCF- 4 plays a similar role in lung cancer is unknown. To answer this question, we studied the expression of TCF- 4 protein and mRNA in non-small-cell lung cancer (NSCLC) and the relation of TCF- 4 expression pattern to histological type and cell differentiation. Methods Tissue samples from sixty cases of pathologically diagnosed NSCLC and eight normal tissue samples were obtained between September 2001 and March 2003. Immunohistochemistry was used to investigate the distribution of TCF- 4 protein. The staining patterns of the tumors were divided into 4 categories: nuclear staining alone or nuclear staining greater than cytoplasmic staining; cytoplasmic staining or cytoplasmic staining greater than nuclear staining; equal nuclear and cytoplasmic staining; no nuclear staining or cytoplasmic staining. The integrated optical density (OD) values of all sections were analyzed by UIC MetaMorph image analysis software. The expression of TCF- 4 mRNA was detected by one-step reverse transcription-polymerase chain reaction (RT-PCR). The integrated density values of the PCR products were analyzed semi-quantitatively.Results Immunohistochemistry showed that there was no expression of TCF- 4 in normal tissue. However, TCF- 4 was expressed in 86.7% (52/60) of NSCLC samples, mainly in the nuclei of tumor cells. Furthermore, there was a significant difference in TCF- 4 localization patterns between squamous cell carcinomas and adenocarcinomas (P<0.05). The integrated OD values of TCF- 4 expression was significantly higher in tumors with moderate-poor cell differentiation than in well differentiated tumors (51.63±6.67 vs 46.13±12.31, P<0.01). There was no TCF- 4 mRNA expression in normal tissue. However, 63.9% (23/36) of carcinoma samples expressed TCF- 4 mRNA. TCF- 4 mRNA expression was

  13. Orai1 Expression Is Closely Related with Favorable Prognostic Factors in Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Lkhagvadorj, Sayamaa; Kim, Ji-Hee; Oh, Sung-Soo; Lee, Mi-Ra; Jung, Jae Hung; Chung, Hyun Chul; Cha, Seung-Kuy; Eom, Minseob

    2016-06-01

    Store-operated calcium (Ca(2+)) entry (SOCE) is the principal Ca(2+) entry route in non-excitable cells, including cancer cells. We previously demonstrated that Orai1 and STIM1, the molecular components of SOCE, are involved in tumorigenesis of clear cell renal cell carcinoma (CCRCC). However, a clinical relevance of Orai1 and STIM1 expression in CCRCC has been ill-defined. Here, we investigated the expression of Orai1 and STIM1 in CCRCC, and compared their expression with clinico-pathological parameters of CCRCC and the patients' outcome. Immunohistochemical staining for Orai1 and STIM1 was performed on 126 formalin fixed paraffin embedded tissue of CCRCC and western blot analysis for Orai1 was performed on the available fresh tissue. The results were compared with generally well-established clinicopathologic prognostic factors in CCRCC and patient survival. Membrane protein Orai1 is expressed in the nuclei in CCRCC, whereas STIM1 shows the cytosolic expression pattern in immunohistochemical staining. Orai1 expression level is inversely correlated with CCRCC tumor grade, whereas STIM1 expression level is not associated with tumor grade. The higher Orai1 expression is significantly associated with lower Fuhrman nuclear grade, pathologic T stage, and TNM stage and with favorable prognosis. The expression level of STIM1 is not correlated with CCRCC grade and clinical outcomes. Orai1 expression in CCRCC is associated with tumor progression and with favorable prognostic factors. These results suggest that Orai1 is an attractive prognostic marker and therapeutic target for CCRCC. PMID:27247496

  14. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma

    Science.gov (United States)

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers—CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin—by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  15. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma.

    Science.gov (United States)

    Skoda, Jan; Hermanova, Marketa; Loja, Tomas; Nemec, Pavel; Neradil, Jakub; Karasek, Petr; Veselska, Renata

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers-CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin-by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile. PMID:27414409

  16. Expression of stem cell markers in the human fetal kidney.

    Directory of Open Access Journals (Sweden)

    Sally Metsuyanim

    Full Text Available In the human fetal kidney (HFK self-renewing stem cells residing in the metanephric mesenchyme (MM/blastema are induced to form all cell types of the nephron till 34(th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2 are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24 in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (50% of HFK cells and predominantly co-express EpCAM(bright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM(+EpCAM(- and to a lesser extent in NCAM(+EpCAM(+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM(+EpCAM(+FZD7(+, MM stem cells (NCAM(+EpCAM(-FZD7(+ or both (NCAM(+FZD7(+. These results and concepts provide a framework for developing cell selection strategies for human renal cell-based therapies.

  17. Gene Expression Music Algorithm-Based Characterization of the Ewing Sarcoma Stem Cell Signature

    OpenAIRE

    Staege, Martin Sebastian

    2016-01-01

    Gene Expression Music Algorithm (GEMusicA) is a method for the transformation of DNA microarray data into melodies that can be used for the characterization of differentially expressed genes. Using this method we compared gene expression profiles from endothelial cells (EC), hematopoietic stem cells, neuronal stem cells, embryonic stem cells (ESC), and mesenchymal stem cells (MSC) and defined a set of genes that can discriminate between the different stem cell types. We analyzed the behavior ...

  18. Regulation of. beta. -cell glucose transporter gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ling; Alam, Tausif; Johnson, J.H.; Unger, R.H. (Univ. of Texas Southwestern Medical Center, Dallas (USA) Department of Veterans Affairs Medical Center, Dallas, TX (USA)); Hughes, S.; Newgard, C.B. (Univ. of Texas Southwestern Medical Center, Dallas (USA))

    1990-06-01

    It has been postulated that a glucose transporter of {beta} cells (GLUT-2) may be important in glucose-stimulated insulin secretion. To determine whether this transporter is constitutively expressed or regulated, the authors subjected conscious unrestrained Wistar rats to perturbations in glucose homeostasis and quantitated {beta}-cell GLUT-2 mRNA by in situ hybridization. After 3 hr of hypoglycemia, GLUT-2 and proinsulin mRNA signal densities were reduced by 25% of the level in control rats. After 4 days, GLUT-2 and proinsulin mRNA densities were reduced by 85% and 65%, respectively. After 12 days of hypoglycemia, the K{sub m} for 3-O-methyl-D-glucose transport in isolated rat islets, normally 18-20 mM, was 2.5 mM. This provides functional evidence of a profound reduction of high K{sub m} glucose transporter in {beta} cells. In contrast, GLUT-2 was only slightly reduced by hypoglycemia in liver. To determine the effect of prolonged hyperglycemia, they also infused animals with 50% (wt/vol) glucose for 5 days. Hyperglycemic clamping increased GLUT-2 mRNA by 46% whereas proinsulin mRNA doubled. They conclude that GLUT-2 expression in {beta} cells, but not liver, is subject to regulation by certain perturbations in blood glucose homeostasis.

  19. Regulation of β-cell glucose transporter gene expression

    International Nuclear Information System (INIS)

    It has been postulated that a glucose transporter of β cells (GLUT-2) may be important in glucose-stimulated insulin secretion. To determine whether this transporter is constitutively expressed or regulated, the authors subjected conscious unrestrained Wistar rats to perturbations in glucose homeostasis and quantitated β-cell GLUT-2 mRNA by in situ hybridization. After 3 hr of hypoglycemia, GLUT-2 and proinsulin mRNA signal densities were reduced by 25% of the level in control rats. After 4 days, GLUT-2 and proinsulin mRNA densities were reduced by 85% and 65%, respectively. After 12 days of hypoglycemia, the Km for 3-O-methyl-D-glucose transport in isolated rat islets, normally 18-20 mM, was 2.5 mM. This provides functional evidence of a profound reduction of high Km glucose transporter in β cells. In contrast, GLUT-2 was only slightly reduced by hypoglycemia in liver. To determine the effect of prolonged hyperglycemia, they also infused animals with 50% (wt/vol) glucose for 5 days. Hyperglycemic clamping increased GLUT-2 mRNA by 46% whereas proinsulin mRNA doubled. They conclude that GLUT-2 expression in β cells, but not liver, is subject to regulation by certain perturbations in blood glucose homeostasis

  20. Restoration of p53 Expression in Human Cancer Cell Lines Upregulates the Expression of Notch1: Implications for Cancer Cell Fate Determination after Genotoxic Stress

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-05-01

    Full Text Available Following genotoxic stress, transcriptional activation of target genes by p53 tumor suppressor is critical in cell fate determination. Here we report that the restoration of p53 function in human cancer cell lines that are deficient in p53 function upregulated the expression of Notch1. Interestingly, the expression of wild-type p53 in human prostate and breast cancer cell lines correlated well with increased expression of Notch1. Furthermore, knockdown of p53 expression in cancer cells that express wild-type p53 resulted in reduced expression of Notch1. Importantly, genotoxic stress to cancer cells that resulted in activation of p53 also upregulated the expression of Notch1. Moreover, p53mediated induction of Notch1 expression was associated with stimulation of the activity of Notch-responsive reporters. Notably, p53 differentially regulated the expression of Notch family members: expression of Notch2 and Notch4 was not induced by p53. Significantly, treatment of cells with gamma secretase inhibitor, an inhibitor of Notch signaling, increased susceptibility to apoptosis in response to genotoxic stress. Together, our observations suggest that p53mediated upregulation of Notch1 expression in human cancer cell lines contributes to cell fate determination after genotoxic stress.

  1. A Progenitor Cell Expressing Transcription Factor RORγt Generates All Human Innate Lymphoid Cell Subsets.

    Science.gov (United States)

    Scoville, Steven D; Mundy-Bosse, Bethany L; Zhang, Michael H; Chen, Li; Zhang, Xiaoli; Keller, Karen A; Hughes, Tiffany; Chen, Luxi; Cheng, Stephanie; Bergin, Stephen M; Mao, Hsiaoyin C; McClory, Susan; Yu, Jianhua; Carson, William E; Caligiuri, Michael A; Freud, Aharon G

    2016-05-17

    The current model of murine innate lymphoid cell (ILC) development holds that mouse ILCs are derived downstream of the common lymphoid progenitor through lineage-restricted progenitors. However, corresponding lineage-restricted progenitors in humans have yet to be discovered. Here we identified a progenitor population in human secondary lymphoid tissues (SLTs) that expressed the transcription factor RORγt and was unique in its ability to generate all known ILC subsets, including natural killer (NK) cells, but not other leukocyte populations. In contrast to murine fate-mapping data, which indicate that only ILC3s express Rorγt, these human progenitor cells as well as human peripheral blood NK cells and all mature ILC populations expressed RORγt. Thus, all human ILCs can be generated through an RORγt(+) developmental pathway from a common progenitor in SLTs. These findings help establish the developmental signals and pathways involved in human ILC development. PMID:27178467

  2. Retinoic acid promotes the development of Arg1-expressing dendritic cells for the regulation of T-cell differentiation

    OpenAIRE

    Chang, Jinsam; Thangamani, Shankar; Kim, Myung H.; Ulrich, Benjamin; Morris, Sidney M.; Chang H Kim

    2013-01-01

    Arginase I (Arg1), an enzyme expressed by many cell types including myeloid cells, can regulate immune responses. Expression of Arg1 in myeloid cells is regulated by a number of cytokines and tissue factors that influence cell development and activation. Retinoic acid, produced from vitamin A, regulates the homing and differentiation of lymphocytes and plays important roles in the regulation of immunity and immune tolerance. We report here that optimal expression of Arg1 in dendritic cells re...

  3. Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment.

    Science.gov (United States)

    Skene, Nathan G; Grant, Seth G N

    2016-01-01

    The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE) method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer's disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer's and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesized that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer's disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models. PMID:26858593

  4. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    Directory of Open Access Journals (Sweden)

    Alberto Miranda

    Full Text Available Cellular prion protein (PRNP is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs. Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB differentiation in mouse Prnp-null (KO and WT embryonic stem cell (ESC lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5 in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel and SPRN (Shadoo, whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  5. Immunohistochemical Examination for the Distribution of Podoplanin-Expressing Cells in Developing Mouse Molar Tooth Germs

    OpenAIRE

    Imaizumi, Yuri; Amano, Ikuko; Tsuruga, Eichi; Kojima, Hiroshi; Sawa, Yoshihiko

    2010-01-01

    We recently reported the expression of podoplanin in the apical bud of adult mouse incisal tooth. This study was aimed to investigate the distribution of podoplanin-expressing cells in mouse tooth germs at several developing stages. At the bud stage podoplanin was expressed in oral mucous epithelia and in a tooth bud. At the cap stage podoplanin was expressed on inner and outer enamel epithelia but not in mesenchymal cells expressing the neural crest stem cell marker nestin. At the early bell...

  6. Impaired cell surface expression of HLA-B antigens on mesenchymal stem cells and muscle cell progenitors.

    Directory of Open Access Journals (Sweden)

    Adiba Isa

    Full Text Available HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC using relevant human anti-B and anti-Cw sera. IFNgamma stimulation for 48-72 h was required to induce full HLA-B protein expression. Quantitative real-time RT-PCR showed that IFNgamma induced a 9-42 fold increase of all six HLA-A,-B,-C gene transcripts. Interestingly, prior to stimulation, gene transcripts for all but two alleles were present in similar amounts suggesting that post-transcriptional mechanisms regulate the constitutive expression of HLA-A,-B, and -C. Locus-restricted expression of HLA-A, -B and -C challenges our current understanding of the function of these molecules as regulators of CD8(+ T-cell and NK-cell function and should lead to further inquiries into their expression on other cell types.

  7. Prion propagation in cells expressing PrP glycosylation mutants.

    Science.gov (United States)

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection. PMID:21248032

  8. Aquaporin-1 Expressed in Cultured Human Trabecular Meshwork Cells

    Institute of Scientific and Technical Information of China (English)

    Mingkai Lin; Jian Ge; Yehong Zhuo; Yuqing Lan; Keming Yu; Jianliang Zheng

    2002-01-01

    Objective:To determine if aquaporin-1 could be detected in cultures of human trabecularshwork cells. Methods: Using primers specific for aquaporin-1, reverse transcription combined withpolymerase chain reaction (RT-PCR) yielded a product and its size with total RNAprepared from the human trabecular meshwork cells. SDS-PAGE and immunoblottingwere also used in this study to detect the specific water channel.Results: The presence of this product and its size (298 base pairs) are consistent withthat of an aquaporin-1 message in these cells. A band of 28 kD in agreement with themolecular size of aquaporin-1 was showed in a film by immunoblotting.Conclusion: The presence of aquaporin-1 in human trabecular meshwork cells, thepredominant cell-type of the primary outflow region of the human eye, suggests that waterchannels may be involved in the movement of aqueous fluid out of the eye. In addition,the existence of aquaporin-1 on cultures of human trabecular meshwork cells provides anin vitro model to study the endogenous expression of aquaporin-1 and its possible role inthe regulation of aqueous outflow.

  9. A systematic approach for testing expression of human full-length proteins in cell-free expression systems

    OpenAIRE

    LaBaer Joshua; Ebert Lars; Scheuermann Tina; Wermke Nadja; Guilleaume Birgit; Langlais Claudia; Korn Bernhard

    2007-01-01

    Abstract Background The growing field of proteomics and systems biology is resulting in an ever increasing demand for purified recombinant proteins for structural and functional studies. Here, we show a systematic approach to successfully express a full-length protein of interest by using cell-free and cell-based expression systems. Results In a pre-screen, we evaluated the expression of 960 human full-length open reading frames in Escherichia coli (in vivo and in vitro). After analysing the ...

  10. Consolidated pretreatment and hydrolysis of plant biomass expressing cell wall degrading enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Raab, R. Michael; Zhang, Dongcheng; Bougri, Oleg

    2016-02-02

    Methods for consolidated pretreatment and hydrolysis of genetically engineered plants expressing cell wall degrading enzymes are provided. Expression cassettes and vectors for making transgenic plants are described. Plants engineered to express one or more cell wall degrading enzymes using expression cassettes and vectors of the invention are also provided.

  11. SREBP inhibits VEGF expression in human smooth muscle cells

    International Nuclear Information System (INIS)

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs

  12. IL-2 and IL-15 regulate CD154 expression on activated CD4 T cells

    DEFF Research Database (Denmark)

    Skov, S; Bonyhadi, M; Odum, Niels; Ledbetter, J A

    2000-01-01

    The cellular and humoral immune system is critically dependent upon CD40-CD154 (CD40 ligand) interactions between CD40 expressed on B cells, macrophages, and dendritic cells, and CD154 expressed primarily on CD4 T cells. Previous studies have shown that CD154 is transiently expressed on CD4 T cel...

  13. Sustained Arc expression in adult-generated granule cells.

    Science.gov (United States)

    Meconi, Alicia; Lui, Erika; Marrone, Diano F

    2015-08-31

    The dentate gyrus (DG) plays a critical role in memory formation and maintenance. Fitting this specialized role, the DG has many unique characteristics. In addition to being one of the few places in which new neurons are continually added in adulthood, the region also shows a unique long-term sustained transcriptional response of the immediate-early gene Arc to sensory input. Although we know that adult-generated granule cells are reliably recruited into behaviorally-driven neuronal network, it remains unknown whether they display robust late-phase sustained transcription in response to activity like their developmentally-generated counterparts. Since this late-phase of transcription is required for enduring plasticity, knowing if sustained transcription appears as soon as these cells are incorporated provides information on their potential for plasticity. To address this question, adult F344 rats were injected with BrdU (50mg/kg/day for 5 days) and 4 weeks later explored a novel environment. Arc expression in both BrdU- and BrdU+ neurons was determined 0.5h, 1h, 2h, 6h, 8h, 12h, or 24h following this behavior. Recently-generated granule cells showed a robust sustained Arc expression following a discrete behavioral experience. These data provide information on a potential mechanism to sculpt the representations of events occurring within hours of each other to create uncorrelated representations of episodes despite a highly excitable population of neurons. PMID:26219984

  14. RASSF1A expression inhibits cell growth and enhances cell chemosensitivity to mitomycin in BEL-7402 hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Hong-geng; XUE Wan-jiang; QIAN Hai-xin; ZHOU Xiao-jun; QIN Lei; LAN Jing

    2009-01-01

    Background The antitumor role of Ras association domain family 1A (RASSFIA) gene and its potential molecular mechanisms are not well understood. The objective of this study was to observe the antitumor ability of RASSFIA in hepatoceliular carcinoma, and study the mechanisms of cell apoptosis induced by RASSFIA.Methods After stably transfecting a RASSF1A (wild-type or mutant) expression vector into the BEL-7402 hepatocellular carcinoma cell line, RT-PCR and Westem blotting was used to detect the RASSF1A expression levels in recombinant cells. The effects of wild-type RASSF1A on cell growth were observed in vitro by analyzing cell proliferation rate, cell colony formation, and in vivo by analyzing tumorigenesis in nude mice. In addition, the effect of RASSF1A gene expression on the chemosensitivity of human hepatocellular carcinoma cells to antitumor drugs was examined by inhibition of cell proliferation and the percentage of apoptotic cells.Results Wild-type RASSF1A, not the mutant, suppressed cell growth in vitro and in vivo. Re-expression of wild-type RASSF1A could enhance the inhibition of cell proliferation and the percentage of apoptotic cells following cell treatment with mitomycin, but had no significant effect when combined with adriamycin, etoposide, 5-fluorouracil and cisplatJn treatment.Conclusion Wild-type RASSF1A inhibits cell growth and enhances cell chemosensitivity to mitomycin in hepatocellular carcinoma, suggesting that RASSF1A may serve as a new target for gene therapy in hepatocellular carcinoma patients.

  15. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle

    frequently express Hsp70 on their cell surface, whereas the corresponding normal tissues do not. In addition, several clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 cell surface expression on cancer...... cells. We have found that inhibition of histone deacetylase (HDAC) activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC-inhibitor mediated Hsp70 cell surface expression was confined to...... transport and cell surface binding of Hsp70 after HDAC-inhibitor treatment remains elusive. Our data suggest that inhibition of HDAC activity selectively induces cell surface expression of Hsp70 on hematopoietic cancer cells, and this may increase the immunorecognition of these cells. It could be envisaged...

  16. Novel method for isolation of murine clara cell secretory protein-expressing cells with traces of stemness.

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Wang

    Full Text Available Clara cells are non-ciliated, secretory bronchiolar epithelial cells that serve to detoxify harmful inhaled substances. Clara cells also function as stem/progenitor cells for repair in the bronchioles. Clara cell secretory protein (CCSP is specifically expressed in pulmonary Clara cells and is widely used as a Clara cell marker. In addition CCSP promoter is commonly used to direct gene expression into the lung in transgenic models. The discovery of CCSP immunoreactivity in plasma membranes of airway lining cells prompted us to explore the possibility of enriching Clara cells by flow cytometry. We established a novel and simple method for the isolation of CCSP-expressing cell Clara cells using a combination of mechanical and enzymatic dissociation followed by flow cytometry sorting technology. We showed that ∼25% of dissociated cells from whole lung expressed CCSP. In the resulting preparation, up to 98% of cells expressed CCSP. Notably, we found that several common stem cell markers including CD44, CD133, Sca-1 and Sox2 were expressed in CCSP(+ cells. Moreover, CCSP(+ cells were able to form spheroid colonies in vitro with 0.97‰ efficiency. Parallel studies in vivo confirmed that a small population of CCSP(-expressing cells in mouse airways also demonstrates stem cell-like properties such as label retention and harboring rare bronchioalveolar stem cells (BASCs in terminal bronchioles (TBs. We conclude that CCSP(+ cells exhibit a number of stem cell-like features including stem cell marker expression, bronchosphere colony formation and self-renewal ability. Clara cell isolation by flow cytometry sorting is a useful method for investigating the function of primary Clara cells in stem cell research and mouse models.

  17. Efflux protein expression in human stem cell-derived retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kati Juuti-Uusitalo

    Full Text Available Retinal pigment epithelial (RPE cells in the back of the eye nourish photoreceptor cells and form a selective barrier that influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP, the protein expression and localization of MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated human embryonic stem cells (hESC and RPE derived from the hESC (hESC-RPE. Our findings revealed that the gene expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5 and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE-derived diseases, drug testing and targeted drug therapy.

  18. Expression of biological markers in oral squamous cell carcinomas

    Directory of Open Access Journals (Sweden)

    Humberto Thomazi Gassen

    2012-01-01

    Full Text Available Squamous cell carcinomas are the most commonly diagnosed oral malignancy, accounting for about 90% of all malignant oral lesions. Detection of the condition at early stages is rare; as a result, the clinical and histological characteristics and prognosis of this tumor have not been extensively investigated. The objective of this study was to evaluate clinical and microscopic features of squamous cell carcinomas using immunohistochemical analysis and assessing biological markers of angiogenesis and tumor vascular activity (anti-CD31, anti-CD34, Factor VIII, cell proliferation (Ki-67, and loss of cell suppression (p53. Tolonium chloride 1% was used to determine the optimal biopsy site. Six patients seen at the Stomatology Service of a university hospital in Canoas, southern Brazil, with a suspected diagnosis of squamous cell carcinoma were analyzed. All patients were male, with a mean age of 56.6 years, and four had a white skin color. Lesions were detected in the tongue (4 and tonsillar pillar (2. All diagnoses were confi rmed by microscopy (hematoxylin-eosin staining. Immunohistochemical analysis revealed p53 expression in 5 of the cases, Ki-67 in 6, and anti-CD34 in 1; anti-CD31 and Factor VIII were not detected in any patient. Our fi ndings suggest an important contribution of tumor markers in the diagnosis and prognosis of these malignancies, as well as in treatment planning.

  19. Germ Cell Nuclear Factor (GCNF) Represses Oct4 Expression and Globally Modulates Gene Expression in Human Embryonic Stem (hES) Cells*

    Science.gov (United States)

    Wang, Hongran; Wang, Xiaohong; Xu, Xueping; Kyba, Michael; Cooney, Austin J.

    2016-01-01

    Oct4 is considered a key transcription factor for pluripotent stem cell self-renewal. It binds to specific regions within target genes to regulate their expression and is downregulated upon induction of differentiation of pluripotent stem cells; however, the mechanisms that regulate the levels of human Oct4 expression remain poorly understood. Here we show that expression of human Oct4 is directly repressed by germ cell nuclear factor (GCNF), an orphan nuclear receptor, in hES cells. Knockdown of GCNF by siRNA resulted in maintenance of Oct4 expression during RA-induced hES cell differentiation. While overexpression of GCNF promoted repression of Oct4 expression in both undifferentiated and differentiated hES cells. The level of Oct4 repression was dependent on the level of GCNF expression in a dose-dependent manner. mRNA microarray analysis demonstrated that overexpression of GCNF globally regulates gene expression in undifferentiated and differentiated hES cells. Within the group of altered genes, GCNF down-regulated 36% of the genes, and up-regulated 64% in undifferentiated hES cells. In addition, GCNF also showed a regulatory gene pattern that is different from RA treatment during hES cell differentiation. These findings increase our understanding of the mechanisms that maintain hES cell pluripotency and regulate gene expression during the differentiation process. PMID:26769970

  20. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Bron Dominique

    2008-04-01

    Full Text Available Abstract Background Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Methods BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin. By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3. Results Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin. Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin. Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3, NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate

  1. Novel insights of the gastric gland organization revealed by chief cell specific expression of moesin

    OpenAIRE

    Zhu, Lixin; Hatakeyama, Jason; Zhang, Bing; Makdisi, Joy; Ender, Cody; Forte, John G.

    2008-01-01

    ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an inc...

  2. Type 5 phosphodiesterase expression is a critical determinant of the endothelial cell angiogenic phenotype

    OpenAIRE

    Zhu, Bing; Zhang, Li; Alexeyev, Mikhail; Alvarez, Diego F.; Strada, Samuel J.; Stevens, Troy

    2008-01-01

    Type 5 phosphodiesterase (PDE5) inhibitors increase endothelial cell cGMP and promote angiogenesis. However, not all endothelial cell phenotypes express PDE5. Indeed, whereas conduit endothelial cells express PDE5, microvascular endothelial cells do not express this enzyme, and they are rapidly angiogenic. These findings bring into question whether PDE5 activity is a critical determinant of the endothelial cell angiogenic potential. To address this question, human full-length PDE5A1 was stabl...

  3. Runx-CBFβ complexes control Foxp3 expression in regulatory T cells

    OpenAIRE

    Rudra, Dipayan; Egawa, Takeshi; Chong, Mark M.W.; Treuting, Piper; Dan R. Littman; Rudensky, Alexander Y.

    2009-01-01

    Foxp3 plays an indispensable role in establishing stable transcriptional and functional programs of regulatory T (Treg) cells. Loss of Foxp3 expression in mature Treg cells results in a failure of suppressor function, yet the molecular mechanisms ensuring steady heritable Foxp3 expression in the Treg cell lineage remain unknown. Using Treg cell-specific gene targeting we found that Runx-CBFβ complexes were required for maintenance of Foxp3 mRNA and protein expression in Treg cells. Consequent...

  4. HIPSTR and thousands of lncRNAs are heterogeneously expressed in human embryos, primordial germ cells and stable cell lines

    Science.gov (United States)

    Yunusov, Dinar; Anderson, Leticia; DaSilva, Lucas Ferreira; Wysocka, Joanna; Ezashi, Toshihiko; Roberts, R. Michael; Verjovski-Almeida, Sergio

    2016-01-01

    Eukaryotic genomes are transcribed into numerous regulatory long non-coding RNAs (lncRNAs). Compared to mRNAs, lncRNAs display higher developmental stage-, tissue-, and cell-subtype-specificity of expression, and are generally less abundant in a population of cells. Despite the progress in single-cell-focused research, the origins of low population-level expression of lncRNAs in homogeneous populations of cells are poorly understood. Here, we identify HIPSTR (Heterogeneously expressed from the Intronic Plus Strand of the TFAP2A-locus RNA), a novel lncRNA gene in the developmentally regulated TFAP2A locus. HIPSTR has evolutionarily conserved expression patterns, its promoter is most active in undifferentiated cells, and depletion of HIPSTR in HEK293 and in pluripotent H1BP cells predominantly affects the genes involved in early organismal development and cell differentiation. Most importantly, we find that HIPSTR is specifically induced and heterogeneously expressed in the 8-cell-stage human embryos during the major wave of embryonic genome activation. We systematically explore the phenomenon of cell-to-cell variation of gene expression and link it to low population-level expression of lncRNAs, showing that, similar to HIPSTR, the expression of thousands of lncRNAs is more highly heterogeneous than the expression of mRNAs in the individual, otherwise indistinguishable cells of totipotent human embryos, primordial germ cells, and stable cell lines. PMID:27605307

  5. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin

  6. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    International Nuclear Information System (INIS)

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers

  7. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Aires, M.B. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Santos, J.R.A. [Departamento de Enfermagem, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Souza, K.S.; Farias, P.S. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Santos, A.C.V. [Departamento de Enfermagem, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Fioretto, E.T. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Maria, D.A. [Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP (Brazil)

    2015-07-10

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers.

  8. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    Directory of Open Access Journals (Sweden)

    M.B. Aires

    2015-08-01

    Full Text Available The function of the visceral yolk sac (VYS is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g with induced diabetes (alloxan, 37 mg/kg on the 8th gestational day (gd 8. At gd 15, rats from control (n=5 and diabetic (n=5 groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05, CCR2 (P<0.001, and OCT3/4 (P<0.01, and significantly increased expression of CD90 (P<0.05, CD117 (P<0.01, and CD14 (P<0.05 were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers.

  9. Glioblastoma formation from cell population depleted of Prominin1-expressing cells.

    Directory of Open Access Journals (Sweden)

    Kenji Nishide

    Full Text Available Prominin1 (Prom1, also known as CD133 in human has been widely used as a marker for cancer stem cells (CSCs, which self-renew and are tumorigenic, in malignant tumors including glioblastoma multiforme (GBM. However, there is other evidence showing that Prom1-negative cancer cells also form tumors in vivo. Thus it remains controversial whether Prom1 is a bona fide marker for CSCs. To verify if Prom1-expressing cells are essential for tumorigenesis, we established a mouse line, whose Prom1-expressing cells can be eliminated conditionally by a Cre-inducible DTA gene on the Prom1 locus together with a tamoxifen-inducible CreER(TM, and generated glioma-initiating cells (GICs-LD by overexpressing both the SV40 Large T antigen and an oncogenic H-Ras(L61 in neural stem cells of the mouse line. We show here that the tamoxifen-treated GICs-LD (GICs-DTA form tumor-spheres in culture and transplantable GBM in vivo. Thus, our studies demonstrate that Prom1-expressing cells are dispensable for gliomagenesis in this mouse model.

  10. High expression of FER tyrosine kinase predicts poor prognosis in clear cell renal cell carcinoma

    OpenAIRE

    Wei, Can; WU, SONG; Li, Xianxin; Wang, Yadong; Ren, Rui; LAI, YONGQING; YE, JIONGXIAN

    2012-01-01

    FER tyrosine kinase (FER) has been demonstrated to play a critical role in tumorigenesis and metastasis; however, its potential value as a novel prognostic marker for clear cell renal cell carcinoma (ccRCC) remains unclear. In 48 paired samples of ccRCCs and normal adjacent tissues (ADTs), real-time PCR was used to evaluate the expression of FER mRNA. The expression of FER protein was assessed in 87 ADTs and 206 samples of ccRCC using immunohistochemical methods. Statistical analysis was used...

  11. Growth hormone increases vascular cell adhesion molecule 1 expression

    DEFF Research Database (Denmark)

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf;

    2004-01-01

    We investigated the impact of GH administration on endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and E-selectin, in vivo and in vitro. Soluble VCAM-1, E-selectin, and C-reactive protein concentrations were measured before and after treatment in 25 healthy subjects and...... 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline...... levels of VCAM-1, but not E-selectin, were significantly lower in GHD patients than in healthy subjects (362 +/- 15 microg/liter vs. 516 +/- 21 microg/liter, P < 0.001) and increased in GHD patients during GH treatment, compared with placebo [net difference between groups 151.8 microg/liter (95...

  12. Effect of Interaction between Chromatin Loops on Cell-to-Cell Variability in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Tuoqi Liu

    2016-05-01

    Full Text Available According to recent experimental evidence, the interaction between chromatin loops, which can be characterized by three factors-connection pattern, distance between regulatory elements, and communication form, play an important role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effect that addresses the question of how changes in these factors affect variability at the expression level in a systematic rather than case-by-case fashion. Here we make such an effort, based on a mechanic model that maps three fundamental patterns for two interacting DNA loops into a 4-state model of stochastic transcription. We first show that in contrast to side-by-side loops, nested loops enhance mRNA expression and reduce expression noise whereas alternating loops have just opposite effects. Then, we compare effects of facilitated tracking and direct looping on gene expression. We find that the former performs better than the latter in controlling mean expression and in tuning expression noise, but this control or tuning is distance-dependent, remarkable for moderate loop lengths, and there is a limit loop length such that the difference in effect between two communication forms almost disappears. Our analysis and results justify the facilitated chromatin-looping hypothesis.

  13. Comparison of two expression systems using COS7 cells and yeast cells for expression of heart/muscle-type carnitine palmitoyltransferase 1.

    Science.gov (United States)

    Hada, Takuya; Kato, Yumiko; Obana, Eriko; Yamamoto, Atsushi; Yamazaki, Naoshi; Hashimoto, Mitsuru; Yamamoto, Takenori; Shinohara, Yasuo

    2012-03-01

    Carnitine palmitoyltransferase 1 (CPT1), catalyzing the transfer of the acyl group from acyl-CoA to carnitine to form acylcarnitine, is located at the outer mitochondrial membrane. Because it is easily inactivated by solubilization, expression systems using living cells are essential for its functional characterization. COS7 cells or yeast cells are often utilized for this purpose; however, the advantages/disadvantages of the use of these cells or the question as to how the CPT1 enzyme expressed by these cells differs are still uncertain. In this study, we characterized the heart/muscle-type isozyme of rat CPT1 (CPT1b) expressed by these two cellular expression systems. The mitochondrial fraction prepared from yeast cells expressing CPT1b showed 25% higher CPT1 activity than that obtained from COS7 cells. However, the expression level of CPT1b in the former was 3.8 times lower than that in the latter; and thus, under the present experimental conditions, the specific activity of CPT1b expressed in yeast cells was estimated to be approximately five times higher than that expressed in COS7 cells. Possible reasons for this difference are discussed. PMID:22266133

  14. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying Ying; Zhu, Jin Yong; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2014-12-15

    Highlights: • Cd stimulated ZFL cell proliferation with decreasing apoptotic cell numbers. • Cd down regulated p53 and RAD51. • Cd up regulated immediate early cancer genes of GADD45 and growth factors. • Cd promoted tumorigenic effects in ZFL cells. - Abstract: Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd{sup 2+} stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion.

  15. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells

    International Nuclear Information System (INIS)

    Highlights: • Cd stimulated ZFL cell proliferation with decreasing apoptotic cell numbers. • Cd down regulated p53 and RAD51. • Cd up regulated immediate early cancer genes of GADD45 and growth factors. • Cd promoted tumorigenic effects in ZFL cells. - Abstract: Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd2+ stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion

  16. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongtao [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China); Gao, Peng [Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 (United States); Zheng, Jie, E-mail: jiezheng54@126.com [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China)

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  17. Gene transfer and expression of enhanced green fluorescent protein in variant HT-29c cells

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Lars Boenicke; Bradley D. Howard; Ilka Vogel; Hoiger Kalthoff

    2003-01-01

    AIM: To study the expression of enhanced green fluorescent protein (EGFP) gene in retrovirally transduced variant HT29 cells.METHODS: The retroviral vector prkat EGFP/neo was constructed and transfected into the 293T cell using a standard calcium phosphate precipitation method. HT-29c cells (selected from HT-29 cells) were transduced by a retroviral vector encoding the GEFP gene. The fluorescence intensity of colorectal carcinoma HT-29c cells after transduced with the EGFP bearing retrovirus was visualized using fluorescence microscope and fluorescence activated cell sorter (FACS) analysis. Multiple biological behaviors of transduced cells such as the proliferating potential and the expression of various antigens were comparatively analyzed between untransduced and transduced cells in vitro. EGFP expression of the fresh tumor tissue was assessed in vivo.RESULTS: After transduced, HT-29c cells displayed a stable and long-term EGFP expression under the nonselective conditionsin vitro. After cells were successively cultured to passage 50 in vitro, EGFP expression was still at a high level. Their biological behaviors, such as expression of tumor antigens, proliferation rate and aggregation capability were not different compared to untransduced parental cells in vitro. In subcutaneous tumors, EGFP was stable and highly expressed.CONCLUSION: An EGFP expressing retroviral vector was used to transduce HT-29c cells. The transduced cells show a stable and long-term EGFP expression in vitro and in vivo.These cells with EGFP are a valuable tool forin vivo research of tumor metastatic spread.

  18. [Indoleamine 2,3-Dioxygenase Activity during Fulvestrant Therapy for Aromatase Inhibitor-Resistant Metastatic Breast Cancer].

    Science.gov (United States)

    Sakurai, Kenichi; Fujisaki, Shigeru; Suzuki, Shuhei; Adachi, Keita; Nagashima, Saki; Masuo, Yuki; Tomita, Ryouichi; Gonda, Kenji; Enomoto, Katsuhisa; Amano, Sadao; Matsuo, Sadanori; Umeda, Nao

    2015-10-01

    We evaluated the clinical significance of indoleamine 2,3-dioxygenase (IDO) during fulvestrant therapy for aromatase inhibitor (AI)-resistant metastatic breast cancer. IDO activity can be measured by the tryptophan (Trp)/kynurenine (Kyn) ratio. Trp and Kyn were measured with high performance liquid chromatography (HPLC). Patients with AI resistant metastatic breast cancer had a 28.6% response rate to fulvestrant therapy, and the clinical benefit rate was 76.2%. AI-resistant metastatic breast cancer patients with distant metastases had a lower serum Trp/Kyn level than patients who had local recurrences. During fulvestrant therapy, IDO activity significantly decreased in the fulvestrant responder group compared to that in the fulvestrant non-responder group. During fulvestrant therapy, the IDO activity correlated with the number of metastatic lesions. These results suggest that measuring the Trp/Kyn ratio is useful for evaluating immunological metastatic status during endocrine therapy. PMID:26489554

  19. IL-17A is not expressed by CD207+ cells in Langerhans Cell Histiocytosis lesions

    OpenAIRE

    Allen, Carl E.; McClain, Kenneth L.

    2009-01-01

    Interleukin-17 (IL-17A) is a pro-inflammatory cytokine that has recently been implicated in pathogenesis of Langerhans Cell Histiocytosis (LCH), a potentially fatal disease characterized by lesions including CD207+ (langerin +) histiocytes. However, in this study we were unable to identify IL-17A gene expression in Langerhans cell lesions, and plasma levels of IL-17A did not correlate with disease activity. Therefore, this study does not support a central role for IL-17A in LCH pathogenesis.

  20. Rabies virus-like particles expressed in HEK293 cells.

    Science.gov (United States)

    Fontana, Diego; Kratje, Ricardo; Etcheverrigaray, Marina; Prieto, Claudio

    2014-05-19

    Rabies is an infectious viral disease with a mortality rate close to 100%. Currently, there is a need to generate cheaper and more immunogenic vaccines for the effective prevention of rabies, mostly in developing countries. Virus-like particles have been widely used in viral vaccine production due to their high immunogenicity and safety during the production process. Rabies virus glycoprotein is the major antigen to trigger a protective immune response and the only protein capable of generating virus neutralizing antibodies. In this study we describe the development of a recombinant stable cell line for the production of rabies virus-like particles (RV-VLPs) expressing the rabies virus glycoprotein by lentivirus-based transduction of HEK293 cells. Protein expression was analyzed by flow cytometry, fluorescence microscopy, western blot and ELISA. Particles were purified from culture supernatant and their size and morphology were studied. Furthermore, mice were immunized with RV-VLPs, formulated with adjuvant, and these particles were able to produce a specific antibody response, demonstrating that these virus-like particles present a promising rabies vaccine candidate. PMID:24631077

  1. HBx induced AFP receptor expressed to activate PI3K/AKT signal to promote expression of Src in liver cells and hepatoma cells

    International Nuclear Information System (INIS)

    Hepatitis B virus (HBV)-X protein(HBx) is a transactivator of host several cellular genes including alpha-fetoprotein(AFP) and AFP receptor(AFPR) which contributes to HBV-associated tumor development. The expression of AFP/AFPR are correlated with hepatocellular carcinoma(HCC)-initial cells. But the role of AFP and AFPR in promoting occurrence of HBV-related HCC were still unclear. A total of 71 clinical patients’ liver specimens, normal human liver cells L-02 and HCC cell lines, PLC/PRF/5 were selected for analyzing the effects of HBx on expression of AFP, AFPR and Src. The expression of goal proteins were detected by Immunohistochemical stained and Western blotting; HBx-expressed vectors were constructed and transfected into L-02 cells, laser confocal microscopy was applied to observe expression and location of AFP, AFPR and Src in the normal liver cells and HCC cells, soft agar colony formation assay was used to observe colonies formed of the cells. We confirmed HBx gives preference to promote the expression of AFP and AFPR; HBx priors to up-regulate the expression of AFPR and AFP in L-02 cells and in normal liver specimens; AFPR signal been able to stimulate Src expression. The results also indicated that phosphatidylinositol 3-kinase(PI3K) inhibitors Ly294002 and GDC0941 effectively suppress AFPR mediated up-regulation expression of Src in AFPR positive HCC lines. HBx priors to drive the expression of AFP and AFPR to promote expression of Src in normal liver cells and hepatoma cells; AFP and AFPR maybe play pivotal role in HBV-related hepatocarcinogenesis; Targeting AFPR is an available therapeutic strategy of HCC. The online version of this article (doi:10.1186/s12885-015-1384-9) contains supplementary material, which is available to authorized users

  2. Enhanced cell-free protein expression by fusion with immunoglobulin Cκ domain

    OpenAIRE

    Palmer, Elizabeth; Liu, Hong; Khan, Farid; Taussig, Michael J; He, Mingyue

    2006-01-01

    While cell-free systems are increasingly used for protein expression in structural and functional studies, several proteins are difficult to express or expressed only at low levels in cell-free lysates. Here, we report that fusion of the human immunoglobulin κ light chain constant domain (Cκ) at the C terminus of four representative proteins dramatically improved their production in the Escherichia coli S30 system, suggesting that enhancement of cell-free protein expression by Cκ fusion will ...

  3. Expression of Podoplanin in the Mouse Tooth Germ and Apical Bud Cells

    OpenAIRE

    Sawa, Yoshihiko; Iwasawa, Kana; Ishikawa, Hiroyuki

    2008-01-01

    This study was designed to investigate the distribution of cells expressing podoplanin in the mouse tooth bud. Podoplanin expression was detected in enamel epithelia of the cervical loop at cell-cell contacts strongly, and weakly on the loosely aggregated stellate reticulum in the center and the neighboring stratum intermedium. Odontoblasts exhibited intense podoplanin expression at the junction with predentin while no expression was detected in the enamel organ containing ameloblasts. These ...

  4. Changes in cell adhesion molecule expression on T cells associated with systemic virus infection

    DEFF Research Database (Denmark)

    Andersson, E C; Christensen, Jan Pravsgaard; Marker, O;

    1994-01-01

    -4, LFA-1, and ICAM-1, are up-regulated on CD8+ cells, whereas the lymph node homing receptor MEL-14 is down-regulated during the infection; only marginal changes were observed for CD4+ cells. Basically similar but less marked results were obtained in mice infected with Pichinde virus. Further......, it was found that up-regulation of VLA-4 expression on splenic T cells correlated with influx of inflammatory cells into the cerebrospinal fluid of intracerebrally infected animals, and that the number of CD8+VLA-4hi cells increased from lymph nodes and spleen to blood and cerebrospinal fluid. These...... results support the hypothesis that up-regulation of VLA-4 is important for effector T cell homing to sites of inflammation....

  5. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced ανβ3 and ανβ5 integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  6. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse;

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19) by a...... membrane. Differential gene expression in the RPE cells of complement factor genes was identified using gene arrays, and selected gene transcripts were validated by q-RT-PCR. Protein expression was determined by ELISA and immunoblotting. Co-culture with activated T cells increased RPE mRNA and/or protein...... expression of complement components C3, factors B, H, H-like 1, CD46, CD55, CD59, and clusterin, in a dose-dependent manner. Soluble factors derived from activated T cells are capable of increasing expression of complement components in RPE cells. This is important for the further understanding of...

  7. CD11b expression as a marker to distinguish between recently activated effector CD8(+) T cells and memory cells

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; Ørding Andreasen, Susanne; Christensen, Jan Pravsgaard;

    2001-01-01

    subset. Polyclonal virus-specific effector and memory CD8(+) T cells from lymphocytic choriomeningitis- and vesicular stomatitis virus-infected mice were visualized through staining for intracellular IFN-gamma or binding of MHC-peptide tetramers, and Mac-1 expression was evaluated. Naive T cells and most......CD8(+) T cells in different activation states have been difficult to identify phenotypically. In this study we have investigated whether Mac-1 (CD11b) expression can be used as a criterion to distinguish between recently activated effector cells and memory cells belonging to the CD8(+) T cell...... virus-specific memory CD8(+) T cells express little or no Mac-1 independent of the virus model employed. In contrast, the majority of CD8(+) T cells present during acute infection express a significant level of Mac-1 and, similarly, Mac-1 expression is found on secondary effectors generated in response...

  8. The Expression of p53 and Cox-2 in Basal Cell Carcinoma, Squamous Cell Carcinoma and Actinic Keratosis Cases

    Directory of Open Access Journals (Sweden)

    Ülker KARAGECE YALÇIN

    2012-05-01

    Full Text Available Objective: The aim of this study was to investigate p53 and COX-2 expressions in basal cell carcinoma, squamous cell carcinoma and actinic keratoses, and to determine a possible relationship.Material and Method: 50 basal cell carcinoma, 45 squamous cell carcinoma and 45 actinic keratosis cases were evaluated. The type of tumor in basal cell carcinoma and tumor differentiation in squamous cell carcinoma were noted and the paraffin block that best represented the tumor was chosen. Immunostaining by p53 and COX-2 was performed on sections of the paraffin blocks.Results: p53 expression was observed in 98% of basal cell carcinoma, 88.9% of squamous cell carcinoma and all actinic keratosis cases. p53 expression was also noted in non-dysplastic appearing epithelium in actinic keratosis cases. COX-2 expression was seen in 90, 100 and 88.9% of the basal cell carcinoma, squamous cell carcinoma and actinic keratosis groups, respectively. Skin appendages, inflammatory cells and vascular structures were also stained by COX-2 besides tumor tissue. COX-2 expression increased by the p53 expression increase in basal cell carcinoma and squamous cell carcinoma. p53 and COX-2 expressions were not related in terms of tumor type in the BCC and were not related in terms of differentiation in SCC.Conclusion: The existence of p53 expression in actinic keratosis cases has supported the idea that p53 plays a role in the early steps of carcinogenesis in skin cancers. The fact that the expression of COX-2 increases in line with the increase of p53 expression in basal cell carcinoma and squamous cell carcinoma cases indicates that COX-2 expression may be affected by p53

  9. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    Science.gov (United States)

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  10. Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis.

    Science.gov (United States)

    Lim, Jung-Yeon; Im, Keon-Il; Lee, Eun-Sol; Kim, Nayoun; Nam, Young-Sun; Jeon, Young-Woo; Cho, Seok-Goo

    2016-01-01

    Mesenchymal stem cells (MSCs) possess immunomodulatory properties and have potential, however, there have been conflicting reports regarding their effects in rheumatoid arthritis (RA), which causes inflammation and destruction of the joints. Through a comparative analysis of regulatory T (Treg) and IL-10-producing type 1 regulatory T (Tr1) cells, we hypothesized that Tr1 cells enhance the immunoregulatory functions of MSCs, and that a combinatorial approach to cell therapy may exert synergistic immunomodulatory effects in an experimental animal model of rheumatoid arthritis (RA). A combination of MSCs and Tr1 cells prevented the development of destructive arthritis compared to single cell therapy. These therapeutic effects were associated with an increase in type II collagen (CII)-specific CD4+CD25+Foxp3+ Treg cells and inhibition of CII-specific CD4+IL-17+ T cells. We observed that Tr1 cells produce high levels of IL-10-dependent interferon (IFN)-β, which induces toll-like receptor (TLR) 3 expression in MSCs. Moreover, induction of indoleamine 2,3-dioxygenase (IDO) by TLR3 involved an autocrine IFN-β that was dependent on STAT1 signaling. Furthermore, we observed that production of IFN-β and IL-10 in Tr1 cells synergistically induces IDO in MSCs through the STAT1 pathway. These findings suggest co-administration of MSCs and Tr1 cells to be a novel therapeutic modality for clinical autoimmune diseases. PMID:27246365

  11. Beta-Adrenergic Receptor Expression in Muscle Cells

    Science.gov (United States)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  12. Lentivirus Vector Gene Expression during ES Cell-Derived Hematopoietic Development In Vitro

    OpenAIRE

    Hamaguchi, Isao; Woods, Niels-Bjarne; Panagopoulos, Ioannis; Andersson, Elisabet; Mikkola, Hanna; Fahlman, Cecilia; Zufferey, Romain; Carlsson, Leif; Trono, Didier; Karlsson, Stefan

    2000-01-01

    The murine embryonal stem (ES) cell virus (MESV) can express transgenes from the long terminal repeat (LTR) promoter/enhancer in undifferentiated ES cells, but expression is turned off upon differentiation to embryoid bodies (EBs) and hematopoietic cells in vitro. We examined whether a human immunodeficiency virus type 1-based lentivirus vector pseudotyped with the vesicular stomatitis virus G protein (VSV-G) could transduce ES cells efficiently and express the green fluorescent protein (GFP)...

  13. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  14. Intracerebral transplants of primary muscle cells: a potential 'platform' for transgene expression in the brain

    Science.gov (United States)

    Jiao, S.; Schultz, E.; Wolff, J. A.

    1992-01-01

    After the transplantation of rat primary muscle cells into the caudate or cortex of recipient rats, the muscle cells were able to persist for at least 6 months. Muscle cells transfected with expression plasmids prior to transplantation were able to express reporter genes in the brains for at least 2 months. These results suggest that muscle cells might be a useful 'platform' for transgene expression in the brain.

  15. TCR repertoire and Foxp3 expression define functionally distinct subsets of CD4+ Treg cells1

    OpenAIRE

    Kuczma, Michal; Pawlikowska, Iwona; Kopij, Magdalena; Podolsky, Robert; Rempala, Grzegorz A.; Kraj, Piotr

    2009-01-01

    Despite extensive research efforts to characterize peripheral regulatory T cells (Treg) expressing transcription factor Foxp3, their subset complexity, phenotypic characteristics, TCR repertoire and antigen specificities remain ambiguous. Here, we identify and define two subsets of peripheral Treg cells differing in Foxp3 expression level and TCR repertoires. Treg cells expressing a high level of Foxp3 and TCRs not utilized by naive CD4+ T cells present a stable suppressor phenotype and domin...

  16. Gene Cloning of Murine α-Fetoprotein Gene and Construction of Its Eukaryotic Expression Vector and Expression in CHO Cells

    Institute of Scientific and Technical Information of China (English)

    易继林; 田耕

    2003-01-01

    To clone the murine α-fetoprotein (AFP) gene, construct the eukaryotic expression vector of AFP and express in CHO cells, total RNA were extracted from Hepa 1-6 cells, and then the murine α-fetoprotein gene was amplified by RT-PCR and cloned into the eukaryotic expression vector pcDNA3.1. The recombinant of vector was identified by restriction enzyme analysis and sequencing. A fter transient transfection of CHO cells with the vector, Western blotting was used to detect the expression of AFP. It is concluded that the 1.8kb murine α-fetoprotein gene was successfully cloned and its eukaryotic expression vector was successfully constructed.

  17. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    OpenAIRE

    Shengxiu Li; Guoqiang Sun; Kiyohito Murai; Peng Ye; Yanhong Shi

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analo...

  18. Effect of Dexamethasone on Expression of Glucocorticoid Receptor in Human Monocyte Cell Line THP-1

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of dexamethasone with differentconcentrations and different stimulating periods on the expression of glucocorticoid receptors (GRα, GRβ) protein was investigated in human monocyte cell line THP-1. The cultured human monocyte line THP-1 cells were stimulated by dexamethasone with different concentrations and different periods. The expression of GRα and GRβ protein was detected by Western blotting. The results showed that the expression of GRα and GRβ was detected in the THP-1 cells. The quantity of GRα expression was reduced by dexamethasone under the same concentration with the prolongation of the stimulating periods. The quantity of GRβ expression was increased by dexamethasone treatment in a time- and dose-dependent manner. It was concluded that dexamethasone stimulation time-dependently reduced the GRα expression in THP-1 cells. Dexamethasone stimulation time- and dose-dependently increased the GRβ expression in THP1 cells. The expression of GRα and GRβ was regulated by glucocorticoid.

  19. Expression of Telomerase Activity in Gastric Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To study the relationship between telomerase activity and biological behavior in human gastric cells and appraise the clinical significance of detecting telomerase activity. Methods The telomerase activity in 47 gastric cancer tissue samples,their matched nomal tissues,7 gastric ulcer and 2 gastric cancer cell lines was detected using a PCR-based non-radioisotopic telomeric repeat amplification protocol(TRAP) assay. Results None of the 47 samples from normal gastric tissues expressed telomerase activity.The 41 of 47 cases of gastric cancer presented telomerase activity with an 87.2% positive rate (P<0.001). 2/2 gastric cancer cell lines and 0/7 gastric ulcer line were also positive for telmerase activity.The activity of telomerase was associated with the pathological differentiation of gastric cancer. Conclusion Telomerase activity may be related to the biological behavior of gastric cancer and can help in assessing the malignant poten-tial of gastric cancer.Telomerase activity will be a good diagnostic marker for the detection of gastric cancer.

  20. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard;

    small HSPs). Hsp70 belongs to the HSP70 family and is expressed at low levels in normal non-stressed cells. Its expression is however induced by different cellular stresses, such as heat shock and oxidative stress. The function of Hsp70 depends on its cellular location: Intracellular it has...... normal ER/Golgi transport did not affect Hsp70 surface expression. Intracellular Calcium and the transcription factor Sp1, that has previously been shown to be important for the intracellular stress mediated by HDAC-inhibitors, were not involved in Hsp70 surface expression. We also found that HDAC...... cytoprotective and anti-apoptotic functions, whereas it exerts immunostimulatory functions extracellularly. Secreted Hsp70 is for example involved in cross-presentation of cancer-derived antigenic peptides, a function which is currently explored in immunotherapeutic approaches against cancer. Additionally...

  1. Neural Stem Cells Injected into the Sound-Damaged Cochlea Migrate Throughout the Cochlea and Express Markers of Hair Cells, Supporting Cells, and Spiral Ganglion Cells

    OpenAIRE

    Parker, Mark A.; Corliss, Deborah A.; Gray, Brianna; Anderson, Julia K.; Bobbin, Richard P.; Snyder, Evan Y.; Cotanche, Douglas A.

    2007-01-01

    Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, ...

  2. CD44 expression positively correlates with Foxp3 expression and suppressive function of CD4+ Treg cells

    Directory of Open Access Journals (Sweden)

    König Rolf

    2009-10-01

    Full Text Available Abstract Background CD4+CD25+ regulatory T (Treg cells develop in the thymus and can suppress T cell proliferation, modulated by Foxp3 and cytokines; however, the relevance of CD44 in Treg cell development is less clear. To address this issue, we analyzed Foxp3 expression in CD44+ Treg cells by using multiple parameters, measured the levels of the immunoregulatory cytokine interleukin (IL-10 in various thymocyte subsets, and determined the suppressor activity in different splenic Treg cell populations. Results Within mouse thymocytes, we detected Treg cells with two novel phenotypes, namely the CD4+CD8-CD25+CD44+ and CD4+CD8-CD25+CD44- staining features. Additional multi-parameter analyses at the single-cell and molecular levels suggested to us that CD44 expression positively correlated with Foxp3 expression in thymocytes, the production of IL-10, and Treg activity in splenic CD4+CD25+ T cells. This suppressive effect of Treg cells on T cell proliferation could be blocked by using anti-IL-10 neutralizing antibodies. In addition, CD4+CD25+CD44+ Treg cells expressed higher levels of IL-10 and were more potent in suppressing effector T cell proliferation than were CD4+CD25+CD44- cells. Conclusion This study indicates the presence of two novel phenotypes of Treg cells in the thymus, the functional relevance of CD44 in defining Treg cell subsets, and the role of both IL-10 and Foxp3 in modulating the function of Treg cells. Reviewers This article was reviewed by Dr. M. Lenardo, Dr. L. Klein & G. Wirnsberger (nominated by Dr. JC Zungia-Pfluker, and Dr. E.M. Shevach.

  3. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    Science.gov (United States)

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  4. Cell surface modulation of gene expression in brain cells by down regulation of glucocorticoid receptors

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, J.F.; de Vellis, J.

    1981-02-01

    The concentration of glycerol-3-phosphate dehydrogenase (GPDH; sn-glycerol-3-phosphate:NAD/sup +/ 2-oxidoreductase, EC 1.1.1.8) had previously been determined to be regulated by glucocorticoids in rat brain cells in vivo and in cell culture. We now demonstrate that concanavalin A (Con A) can inhibit the induction of GPDH in a dose-dependent manner in C6 rat glioma cells and in primary cultures of rat brain oligodendrocytes. The inhibition specifically prevents the appearance of new molecules of GPDH, although Con A does not significantly inhibit protein synthesis in these cells, nor does it affect the activity of another solube enzyme, lactate dehydrogenase. The ability to block enzyme induction is not limited to Con A, because other lectins also inhibit induction. The molecular mechanism by which Con A inhibits GPDH induction appears to be by the down regulation of the cytoplasmic glucocorticoid receptors, because exposure to Con A results in the loss of more than 90% of the receptor activity. Con A does not inhibit the receptor assay and no direct interaction between the receptor and Con A could be demonstrated. This down regulation is not tumor cell specific and appears to be a general phenomenon, because it occurs in normal oligodendrocytes and even in normal astrocytes (a cell type in which the gene for GPDH is not expressed). The down regulation of glucocorticoid receptors in normal brain cells suggests two important corollaries. First, it demonstrates the existence of a rate-limiting step controlling the glucocorticoid-dependent gene expression in brain cells and possibly represents a regulatory site common to all glucocorticoid target cells. Second, it suggests that the response to glucocorticoids of oligodendrocytes and astrocytes can be regulated in vivo by cell surface contact with endogenous lectins, neighboring cells, or both.

  5. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level

    DEFF Research Database (Denmark)

    Norrman, Karin; Strömbeck, Anna; Semb, Henrik; Ståhlberg, Anders

    2013-01-01

    of anterior definitive endoderm (DE). Here, we differentiated human embryonic stem cells towards DE using three different activin A based treatments. Differentiation efficiencies were evaluated by gene expression profiling over time at cell population level. A panel of key markers was used to study...... were useful to monitor the temporal expression of genes involved in primitive streak formation and endoderm formation, while single-cell analysis allowed us to study cell culture heterogeneity and fingerprint individual cells. In addition, single-cell analysis revealed distinct gene expression patterns...

  6. Construction of antisense Bmi-1 expression plasmid and its inhibitory effect on K562 cells proliferation

    Institute of Scientific and Technical Information of China (English)

    MENG Xiu-xiang; LIU Wei-hong; LIU Dan-dan; ZHAO Xin-yu; SU Ben-li

    2005-01-01

    Background Bmi-1 gene determines the proliferative capacity of normal and leukemia stem cells. Expression of Bmi-1 has been found in all types of myeloid leukemia cells in both humans and mice. This study aimed at assessing the effect of antisense Bmi-1 expression on K562 cells proliferation and p16 protein (p16) expression.Results K562 cells transfected with antisense Bmi-1 plasmid grew significantly slower than that of controls (the parental K562 and cells transfected with empty plasmid). The colony forming ability of antisense Bmi-1 plasmid transfected cells decreased significantly (P<0.01) compared with controls. The p16 expression of cells transfected with antisense Bmi-1 was upgraded more apparently than that of controls.Conclusion The antisense Bmi-1 gene can inhibit the growth of K562 cell and upgrade expression of p16 in K562 cells.

  7. Forced expression of the Oct-4 gene influences differentiation of embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By transfecting an Oct-4 expression plasmid into embryonic stem cells (ES cells), the ES-O cell line was constructed, which sustained the expression of Oct-4 gene when induced by retinoic acid. Forced expression of Oct-4 gene could not sustain the stem property of ES-O cells without the differentiation inhibiting factor LIF, but if LIF exists,forced expression of Oct-4 gene could enhance the ability to sustain the undifferentiation state and inhibit cell differentiation induced by retinoic acid. It was indicated that Oct-4 must cooperate with LIF to sustain the undifferentiation state of ES cells. During the cell differentiation, ES-O cells tend to differentiate into neural cells, suggesting that forced expression of Oct-4 gene may be in relation with the differentiation of neuroderm.

  8. Ectopic expression of Flt3 kinase inhibits proliferation and promotes cell death in different human cancer cell lines.

    Science.gov (United States)

    Oveland, Eystein; Wergeland, Line; Hovland, Randi; Lorens, James B; Gjertsen, Bjørn Tore; Fladmark, Kari E

    2012-08-01

    Stable ectopic expression of Flt3 receptor tyrosine kinase is usually performed in interleukin 3 (IL-3)-dependent murine cell lines like Ba/F3, resulting in loss of IL-3 dependence. Such high-level Flt3 expression has to date not been reported in human acute myeloid leukemia (AML) cell lines, despite the fact that oncogenic Flt3 aberrancies are frequent in AML patients. We show here that ectopic Flt3 expression in different human cancer cell lines might reduce proliferation and induce apoptotic cell death, involving Bax/Bcl2 modulation. Selective depletion of Flt3-expressing cells occurred in human AML cell lines transduced with retroviral Flt3 constructs, shown here using the HL-60 leukemic cell line. Flt3 expression was investigated in two cellular model systems, the SAOS-2 osteosarcoma cell line and the human embryonic kidney HEK293 cell line, and proliferation was reduced in both systems. HEK293 cells underwent apoptosis upon ectopic Flt3 expression and cell death could be rescued by overexpression of Bcl-2. Furthermore, we observed that the Flt3-induced inhibition of proliferation in HL-60 cells appeared to be Bax-dependent. Our results thus suggest that excessive Flt3 expression has growth-suppressive properties in several human cancer cell lines. PMID:22422053

  9. Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Zou

    2015-02-01

    Full Text Available We generated a RUNX2-yellow fluorescent protein (YFP reporter system to study osteogenic development from human embryonic stem cells (hESCs. Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP+ cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development.

  10. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Science.gov (United States)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  11. Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Rikke B. Holmgaard

    2015-10-01

    Full Text Available Indoleamine 2,3-dioxygenase (IDO has been described as a major mechanism of immunosuppression in tumors, though the mechanisms of this are poorly understood. Here, we find that expression of IDO by tumor cells results in aggressive tumor growth and resistance to T-cell-targeting immunotherapies. We demonstrate that IDO orchestrates local and systemic immunosuppressive effects through recruitment and activation of myeloid-derived suppressor cells (MDSCs, through a mechanism dependent on regulatory T cells (Tregs. Supporting these findings, we find that IDO expression in human melanoma tumors is strongly associated with MDSC infiltration. Treatment with a selective IDO inhibitor in vivo reversed tumor-associated immunosuppression by decreasing numbers of tumor-infiltrating MDSCs and Tregs and abolishing their suppressive function. These findings establish an important link between IDO and multiple immunosuppressive mechanisms active in the tumor microenvironment, providing a strong rationale for therapeutic targeting of IDO as one of the central regulators of immune suppression.

  12. Controlled expression of enhanced green fluorescent protein and hepatitis B virus precore protein in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel tetracycline regulation expression system was used to regulate the expression of enhanced green fluorescent protein (EGFP) and hepatitis B virus precore protein in the mammalian cell lines with lipofectAMINE. Flow cytometry assays showed that application of the system resulted in about 18-fold induction of EGFP expression in CHO cell lines and 5-fold induction in SSMC-7721 cells and about 2-fold in the HEK293 cells. Furthermore, the effective use of this system for the controlled expression of HBV precore protein gene in hepatocellular carcinoma cells was tested.

  13. Gene expression in epithelial cells in response to pneumovirus infection

    Directory of Open Access Journals (Sweden)

    Rosenberg Helene F

    2001-05-01

    Full Text Available Abstract Respiratory syncytial virus (RSV and pneumonia virus of mice (PVM are viruses of the family Paramyxoviridae, subfamily pneumovirus, which cause clinically important respiratory infections in humans and rodents, respectively. The respiratory epithelial target cells respond to viral infection with specific alterations in gene expression, including production of chemoattractant cytokines, adhesion molecules, elements that are related to the apoptosis response, and others that remain incompletely understood. Here we review our current understanding of these mucosal responses and discuss several genomic approaches, including differential display reverse transcription-polymerase chain reaction (PCR and gene array strategies, that will permit us to unravel the nature of these responses in a more complete and systematic manner.

  14. [Cell oncogene expression in normal, metaplastic, dysplastic epithelium and squamous cell carcinoma of the uterine cervix].

    Science.gov (United States)

    Petrov, S V; Mazurenko, N N; Sukhova, N M; Moroz, I P; Katsenel'son, V M; Raĭkhlin, N T; Kiselev, F L

    1994-01-01

    Immunohistochemical analysis of the protein expression c-myc, ets 1, ets 2, TPR-met, c-fos, c-jun, c-ras-pan, p53, yes, src in 79 samples of normal, metaplastic squamous epithelium, intraepithelial and invasive squamous cell carcinoma of uterine cervix was performed using polyclonal rabbit antibodies to the synthetic peptides homologous active areas of corresponding oncoproteins. Higher content of myc, fos, ets2, p53, ras is noted in metaplasia, dysplasia and in tumours as compared to the normal tissues. Protein myc is revealed in the cytoplasm at a grave dysplasia and in the nucleus in the intraepithelial carcinoma: this may serve as a criterion at a differential diagnosis of these conditions. Expression of the oncoproteins fos, ets2, p53, src in the metaplastic squamous cell carcinoma was higher than in the true squamous cell (ectocervical) carcinoma. When compared to the advanced carcinomas, increase of ets2, p53, and at some degree that of myc, the increase is noted in the latter. Invasive carcinoma with a high level of oncoproteins showed a tendency to the synchronization of myc and ras expression. Poor prognosis was associated with a low level (before treatment) of the expression of the majority of the oncoproteins studied. PMID:7848100

  15. Effects of resistin-like molecule β over-expression on gastric cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Li-Duan Zheng; Chun-Lei Yang; Teng Qi; Meng Qi; Ling Tong; Qiang-Song Tong

    2012-01-01

    AIM:To investigate the effects of resistin-like molecule β (RELMβ) over-expression on the invasion,metastasis and angiogenesis of gastric cancer cells.METHODS:Human RELMβ encoding expression vector was constructed and transfected into the RELMβ lowly-expressed gastric cancer cell lines SGC-7901 and MKN-45.Gene expression was measured by Western blotting,reverse transcription polymerase chain reaction (PCR) and real-time quantitative PCR.Cell proliferation was measured by 2-(4,5-dimethyltriazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetry,colony formation and 5-ethynyl-20-deoxyuridine incorporation assays.The in vitro migration,invasion and metastasis of cancer cells were measured by cell adhesion assay,scratch assay and matrigel invasion assay.The angiogenic capabilities of cancer cells were measured by tube formation of endothelial cells.RESULTS:Transfection of RELMβ vector into SGC-7901 and MKN-45 cells resulted in over-expression of RELMβ,which did not influence the cellular proliferation.However,over-expression of RELMβ suppressed the in vitro adhesion,invasion and metastasis of cancer cells,accompanied by decreased expression of matrix metalloproteinase-2 (MMP-2) and MMP-9.Moreover,transfection of RELMβ attenuated the expression of vascular endothelial growth factor and in vitro angiogenic capabilities of cancer cells.CONCLUSION:Over-expression of RELMβ abolishes the invasion,metastasis and angiogenesis of gastric cancer cells in vitro,suggesting its potentials as a novel therapeutic target for gastric cancer.

  16. Expression of cell cycle related genes in HL60 cells undergoing apoptosis by X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee [College of Medicine, Keimyung Univ., Taegu (Korea, Republic of); Park, In Kyu [College of Medicine, Kyungpook National Univ., Taegu (Korea, Republic of)

    1998-12-01

    To evaluate changes in expression of cell cycle related genes during apoptosis induced in HL60 cells by X-irradiation to understand molecular biologic aspects in mechanism of radiation therapy. HL-60 cell line (promyelocytic leukemia cell line was grown in culture media and irradiated with 8 Gy by linear accelerator (6 MV X-ray). At various times after irradiation, ranging from 3 to 48 hours were analyzed apoptotic DNA fragmentation assay for apoptosis and by western blot analysis and semi-quantitative RT-PCR for expression of cell cycle related genes (cyclin A, cyclin B, cyclin C, cyclin D1, cyclin E, cdc2, CDK2, CDK4, p16{sup INK4a}, p21{sup WAF1}, p27K{sup IP1}, E2F, PCNA and Rb). X-irradiation (8 Gy) induced apoptosis in HL-60 cell line. Cycline A protein increased after reaching its peak 48 h after radiation delivery and cyclin E, E2F, CDK2 and RB protein increased then decreased after radiation. Radiation induced up-regulation of the expression of E2F is due to mostly increase of phosphorylated retinoblastoma proteins (ppRb). Cyclin D1, PCNA, CDC1, CDK4 and p16{sup INK4a} protein underwent no significant change at any times after irradiation. There was not detected p21{sup WAF1} and p27{sup KIP1} protein. Cyclin A, B, C, mRNA decreased immediately after radiation and then increased at 12 h after radiation. Cyclin D1 mRNA increased immediately and then decreased with the lapse of time. CDK2 mRNA decreased at 3 h and increased at 6 h after radiation. CDK4 mRNA rapidly increased at 6 to 12 h after radiation. There was no change of expression of p16{sup INK4a} and not detected in expressin of p21{sup WAF1} and p27{sup KIP1} mRNA. We suggest that entry into S phaso may contribute to apoptosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of pRb protein are related with radiation induced apoptosis of HL60 cells and tosis of HL60 cells induced by irradiation. Increase of ppRb and decrease of pRb protein are related with radiation induced

  17. Drugs that kill cancer stem-like cells

    Czech Academy of Sciences Publication Activity Database

    Zobalová, Renata; Stantic, M.; Stapelberg, M.; Prokopová, Kateřina; Dong, L.F.; Truksa, Jaroslav; Neužil, Jiří

    1. Rijeka: InTech, 2011 - (Shostak, S.), s. 1-442 ISBN 978-953-307-225-8 Institutional research plan: CEZ:AV0Z50520701 Keywords : Cancer stem cells * 2,3-dioxygenase * MitoVES * inhibitors of indoleamine Subject RIV: CE - Biochemistry

  18. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  19. The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells

    International Nuclear Information System (INIS)

    Nucleolin is an ubiquitous nucleolar phosphoprotein involved in fundamental aspects of transcription regulation, cell proliferation and growth. It has also been described as a shuttling molecule between nucleus, cytosol and the cell surface. Several studies have demonstrated that surface nucleolin serves as a receptor for various extracellular ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. Previously, we reported that nucleolin in the extranuclear cell compartment is a glycoprotein containing N- and O-glycans. In the present study, we show that glycosylation is an essential requirement for surface nucleolin expression, since it is prevented when cells are cultured in the presence of tunicamycin, an inhibitor of N-glycosylation. Accordingly, surface but not nuclear nucleolin is radioactively labeled upon metabolic labeling of cells with [3H]glucosamine. Besides its well-demonstrated role in the internalization of specific ligands, here we show that ligand binding to surface nucleolin could also induce Ca2+ entry into cells. Indeed, by flow cytometry, microscopy and patch-clamp experiments, we show that the HB-19 pseudopeptide, which binds specifically surface nucleolin, triggers rapid and intense membrane Ca2+ fluxes in various types of cells. The use of several drugs then indicated that Store-Operated Ca2+ Entry (SOCE)-like channels are involved in the generation of these fluxes. Taken together, our findings suggest that binding of an extracellular ligand to surface nucleolin could be involved in the activation of signaling pathways by promoting Ca2+ entry into cells

  20. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells.

    Science.gov (United States)

    Chen, Ying Ying; Zhu, Jin Yong; Chan, King Ming

    2014-12-01

    Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd(2+) stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion. PMID:25456234

  1. Induction of pancreatic β cell gene expression in mesenchymal stem cells.

    Science.gov (United States)

    Mehrfarjam, Zahra; Esmaeili, Fariba; Shabani, Leila; Ebrahimie, Esmaeil

    2016-05-01

    Transdifferentiattion potential of mesenchymal stem cells (MSCs) into insulin-producing cells (IPCs) has been suggested recently. In our recent works, we demonstrated the high performance of mouse neonate pancreas extract (MPE) in the production of functional IPCs from carcinoma stem cells. In this study, MPE was used to generate IPCs from MSCs without any genetic manipulation. To this end, bone marrow MSCs were isolated and characterized. In order to differentiate, MSCs were induced by selection of nestin-expressing cells and treatment with 100 μg/mL MPE. Morphological features of the differenti-ated cells were confirmed by dithizone staining. Immunoreactivity to insulin receptor beta, proinsulin, insulin, and C-peptide was observed by immunoflourescence. We also quantified glucose-dependent insulin production and secretion by ELISA. Real-time PCR indicated the expressions of β cell-related genes, PDX-1, INS1, INS2, EP300, and CREB1, in IPC cells. Possible pathways governed by CREB1, EP300, and PDX-1 transcription factors in differentiation of MSCs to IPCs were determined based on Gene Set Enrichment (GSE) approach at P = 0.05. Pathway discovery highlighted the negative regulatory effects of MIR124-2, HDAC5 protein, REST, and NR0B2 transcription factors on expression of CREB1, EP300, and PDX-1 and inhabitation of IPC differentiations. In contrast, a crosstalk between FOXA2 and TCF7L2 transcription factors, DNA-PK complex, KAT2B protein positively interacting with PDX-1, CREB1, EP300 resulted in the induction of IPC and following insulin production. In conclusion, we report an efficient, simple, and easy method for production of functional IPCs from MSCs by MPE treatment. PMID:26634639

  2. Esophageal Squamous Cell Carcinoma Cells Modulate Chemokine Expression and Hyaluronan Synthesis in Fibroblasts.

    Science.gov (United States)

    Kretschmer, Inga; Freudenberger, Till; Twarock, Sören; Yamaguchi, Yu; Grandoch, Maria; Fischer, Jens W

    2016-02-19

    The aim of this study was to characterize the interaction of KYSE-410, an esophageal squamous cell carcinoma cell line, and fibroblasts with respect to the extracellular matrix component hyaluronan (HA) and chemokine expression. KYSE-410 cells induced the mRNA expression of HA synthase 2 (Has2) in normal skin fibroblasts (SF) only in direct co-cultures. Parallel to Has2 mRNA, Has2 antisense RNA (Has2os2) was up-regulated in co-cultures. Knockdown of LEF1, a downstream target of Wnt signaling, abrogated Has2 and Has2os2 induction. After knockdown of Has2 in SF, significantly less α-smooth muscle actin expression was detected in co-cultures. Moreover, it was investigated whether the phenotype of KYSE-410 was affected in co-culture with SF and whether Has2 knockdown in SF had an impact on KYSE-410 cells in co-culture. However, no effects on epithelial-mesenchymal transition markers, proliferation, and migration were detected. In addition to Has2 mRNA, the chemokine CCL5 was up-regulated and CCL11 was down-regulated in SF in co-culture. Furthermore, co-cultures of KYSE-410 cells and cancer-associated fibroblasts (CAF) were investigated. Similar to SF, Has2 and Ccl5 were up-regulated and Ccl11 was down-regulated in CAF in co-culture. Importantly and in contrast to SF, inhibiting HA synthesis by 4-methylumbelliferone abrogated the effect of co-culture on Ccl5 in CAF. Moreover, HA was found to promote adhesion of CD4(+) but not CD8(+) cells to xenogaft tumor tissues. In conclusion, direct co-culture of esophageal squamous cell carcinoma and fibroblasts induced stromal HA synthesis via Wnt/LEF1 and altered the chemokine profile of stromal fibroblasts, which in turn may affect the tumor immune response. PMID:26699196

  3. Overexpressed Ly-6A.2 mediates cell-cell adhesion by binding a ligand expressed on lymphoid cells.

    OpenAIRE

    Bamezai, A; Rock, K L

    1995-01-01

    The Ly-6 locus encodes several cell surface proteins whose functions are unknown. Although it is hypothesized that these proteins may be receptors, there is no direct evidence that they bind a ligand. Herein we present evidence that Ly-6A.2, a Ly-6 protein expressed on T lymphocytes, binds a ligand expressed on normal thymocytes and splenic B and T cells. We find that transgenic thymocytes that overexpress Ly-6A.2 spontaneously aggregate in culture. This homotypic adhesion requires the overex...

  4. Merkel Cell Carcinoma: Correlation of KIT Expression with Survival and Evaluation of KIT Gene Mutational Status

    OpenAIRE

    Andea, Aleodor A.; Patel, Raj; Ponnazhagan, Selvarangan; Kumar, Sanjay; DeVilliers, Patricia; Jhala, Darshana; Eltoum, Isam E.; Siegal, Gene P.

    2010-01-01

    Merkel cell carcinoma is one of the most aggressive primary cutaneous malignancies. Since some Merkel cell carcinomas express the receptor tyrosine kinase KIT, we aimed to evaluate the correlation of KIT expression with outcome and the presence of activating mutations in the KIT gene in Merkel cell carcinoma.

  5. Flow cytometric assay detecting cytotoxicity against human endogenous retrovirus antigens expressed on cultured multiple sclerosis cells

    DEFF Research Database (Denmark)

    Møller-Larsen, A; Brudek, T; Petersen, T; Petersen, E L; Aagaard, M; Hansen, Dorte; Christensen, T

    2013-01-01

    expressing increased amounts of human endogenous retrovirus antigens. MS patients also have increased antibody levels to these antigens. The target cells are spontaneously growing peripheral blood mononuclear cells (PBMCs) of B cell lineage, expressing human endogenous retrovirus HERV epitopes on their...

  6. Ezh2 Expression in Astrocytes Induces Their Dedifferentiation Toward Neural Stem Cells

    NARCIS (Netherlands)

    Sher, Falak; Boddeke, Erik; Copray, Sjef

    2011-01-01

    Recently, we have demonstrated the expression of the polycomb group protein Ezh2 in embryonic and adult neural stem cells. Although Ezh2 remained highly expressed when neural stem cells differentiate into oligodendrocyte precursor cells, it is downregulated during the differentiation into neurons or

  7. High expression of hTERT and stemness genes in BORIS/CTCFL positive cells isolated from embryonic cancer cells.

    Directory of Open Access Journals (Sweden)

    Loredana Alberti

    Full Text Available BORIS/CTCFL is a member of cancer testis antigen family normally expressed in germ cells. In tumors, it is aberrantly expressed although its functions are not completely well-defined. To better understand the functions of BORIS in cancer, we selected the embryonic cancer cells as a model. Using a molecular beacon, which specifically targets BORIS mRNA, we demonstrated that BORIS positive cells are a small subpopulation of tumor cells (3-5% of total. The BORIS-positive cells isolated using BORIS-molecular beacon, expressed higher telomerase hTERT, stem cell (NANOG, OCT4, SOX2 and cancer stem cell marker genes (CD44 and ALDH1 compared to the BORIS-negative tumor cells. In order to define the functional role of BORIS, stable BORIS-depleted embryonic cancer cells were generated. BORIS silencing strongly down-regulated the expression of hTERT, stem cell and cancer stem cell marker genes. Moreover, the BORIS knockdown increased cellular senescence in embryonic cancer cells, revealing a putative role of BORIS in the senescence biological program. Our data indicate an association of BORIS expressing cells subpopulation with the expression of stemness genes, highlighting the critical role played by BORIS in embryonic neoplastic disease.

  8. Single-cell differences in matrix gene expression do not predict matrix deposition

    OpenAIRE

    Cote, Allison J.; McLeod, Claire M.; Farrell, Megan J.; McClanahan, Patrick D.; Dunagin, Margaret C.; Raj, Arjun; Mauck, Robert L.

    2016-01-01

    Mesenchymal stem cells (MSCs) display substantial cell-to-cell heterogeneity, complicating their use in regenerative medicine. However, conventional bulk assays mask this variability. Here we show that both chondrocytes and chondrogenically induced MSCs exhibit substantial mRNA expression heterogeneity. Single-molecule RNA FISH to measure mRNA expression of differentiation markers in single cells reveals that sister cell pairs have high levels of mRNA variability, suggesting that marker expre...

  9. Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    International Nuclear Information System (INIS)

    The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 μM, 250 μM and 1000 μM). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1). This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis

  10. Tracking neuronal marker expression inside living differentiating cells using molecular beacons

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba; Della Vedova, Paolo; Hansen, Ole;

    2013-01-01

    Monitoring gene expression is an important tool for elucidating mechanisms of cellular function. In order to monitor gene expression during nerve cell development, molecular beacon (MB) probes targeting markers representing different stages of neuronal differentiation were designed and synthesized...

  11. Signaling pathways in PACAP regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, Birgitte; Georg, Birgitte; Fahrenkrug, Jan

    2009-01-01

    Ganglia expressing the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) innervate vasoactive intestinal peptide (VIP) containing neurons suggesting a role of PACAP in regulating VIP expression. Human NB-1 neuroblastoma cells were applied to study PACAP regulated VIP gene...

  12. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Directory of Open Access Journals (Sweden)

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  13. Construction and identification of eukaryotic eukaryotic expression plasmid pcdna3.1-bace and its transient expression in cells

    Institute of Scientific and Technical Information of China (English)

    Huilin Gong; Guanjun Zhang; Weijiang Dong

    2006-01-01

    Objective: To generate eukaryotic expression vector of pcDNA3.1-BACE and obtain its transient expression in COS-7 cells and high expression in the neuroblastoma SK-N-SH cells. Methods: A 1503 bp cDNA fragment was amplified from the total RNA of human neuroblastoma by RT-PCR method and cloned into plasmid pcDNA3.1. The vector was identified by digestion with restriction enzymes BamHI and XhoI and sequenced by Sanger-dideoxy-mediated chain termination. The expression of BACE gene was detected by immunocytochemistry method. Results: The results showed that the cDNAfragment included 1503 bp total coding region. The recombinant eukaryotic cell expression vector of pcDNA3.1-BACE was constructed successfully,and the sequence of insert was identical to the published sequence. The COS-7 cells and the neuroblastoma SK-N-SH cells transfected with the pcDNA3.1-BACE plasmid expressed high level of BACE protein in cytoplasm. Conclusion: The recombinant plasmid pcDNA3.1-BACE can provide very useful tool for researching the reason of Alzheimer's disease and lays the important foundation for preventing the AD laterly.

  14. Light induces Fos expression via extracellular signal-regulated kinases 1/2 in melanopsin-expressing PC12 cells

    DEFF Research Database (Denmark)

    Moldrup, Marie-Louise Bülow; Georg, Birgitte; Falktoft, Birgitte;

    2010-01-01

    The photopigment melanopsin is expressed in a subtype of mammalian ganglion cells in the retina that project to the circadian clock in the hypothalamic suprachiasmatic nucleus to mediate non-visual light information. Melanopsin renders these retinal ganglion cells intrinsically photosensitive and...... involves a Galpha(q/11) coupled phospholipase C activation. However, the signaling proteins mediating melanopsin-induced Fos expression are unresolved. In this study, we examined the phototransduction leading to Fos expression in melanopsin-transfected PC12 cells. A pivotal role of the extracellular signal......-regulated protein kinase 1/2 (ERK1/2) was found as pharmacological blockage of this kinase suppressed the light-induced Fos expression. Illumination increased the inositol phosphate turnover and induced phosphorylation of ERK1/2 and p38 but not the c-Jun N-terminal kinase. The Galpha(q/11) protein inhibitor YM...

  15. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    International Nuclear Information System (INIS)

    Highlights: → Adipocyte dedifferentiation is evident in a significant decrease in typical genes. → Cell proliferation is strongly related to adipocyte dedifferentiation. → Dedifferentiated adipocytes express several lineage-specific genes. → Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  16. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Hiromasa [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Oki, Yoshinao [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Bono, Hidemasa [Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kano, Koichiro, E-mail: kkano@brs.nihon-u.ac.jp [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan)

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  17. Molecular mechanisms involved in casein gene expression and secretion in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Mouse mammary epithelial cells (MMEC) secrete a group of milk-specific proteins including various caseins and whey proteins. Dissociated mammary epithelial cells maintain expression of most of their differentiated functions only if cells are plated on a suitable substratum. Casein production and section, cell morphology, and production of α-lactalbumin have been used as markers to assess the degree of differentiation of mammary cells in culture. The general consensus is that cells express their differentiated properties at high levels and for longer periods of time on such substrata. In this paper, the authors demonstrate that modulation of the expression of caseins by floating collagen gels is manifested at several regulatory points

  18. Expression of Podoplanin in Different Grades of Oral Squamous Cell Carcinoma

    OpenAIRE

    PRASAD, B.; Kashyap, B; Babu, GS; Kumar, GR; Manyam, R

    2015-01-01

    Background: The expression of podoplanin is up-regulated in a number of different human cancers, including squamous cell carcinoma of the oral cavity and its relationship with tumor invasion raises the possibility that podoplanin expression could be used as a biomarker for diagnosis and prognosis. Aim: The aim of the present study is to evaluate the expression of podoplanin in different grades of squamous cell carcinoma (SCC) and to correlate the expression of podoplanin with relevant clinica...

  19. Studies of globin gene expression in differentiating erythroid cells

    International Nuclear Information System (INIS)

    The author has addressed questions concerning globin gene expression and the loss of protein synthesis in the terminal stages of erythroid development. (1) The hypothesis that the rate of cell division affects the relative synthesis of γ and β globin in erythroid cells was investigated. The effect of hydroxyurea, aminopterin, or low culture temperature on the in vitro growth of erythroid progenitor cells and on the relative synthesis of γ and β globin was measured. No consistent change in γ globin synthesis was detected. (2) The hypothesis that the ratio of γ and β globin synthesis decreases during erythroid maturation because of differential mRNA stability was investigated. The half-lives of γ and β globin mRNAs and γ and β globin protein synthesis were measured in cultured reticulocytes. γ and β globin mRNAs were assayed by solution hybridization and by in vitro translation. Globin synthesis was determined by 3H-leucine incorporation into the γ and β globin chains. γ and β globin mRNAs decay with similar half-lives in cultured reticulocytes. Therefore, the change in the ratio of γ and β globin synthesis during erythroid maturation cannot be explained by differences in mRNA stability and is likely to result from asynchronous transcription of the genes. These data suggest that protein synthesis in maturing reticulocytes is not limited by the quantity of mRNA but by the availability of translation factors. (3) The hypothesis was tested that the initiation factor GEF becomes limiting for protein synthesis during reticulocyte maturation

  20. Stem Cell Implants for Cancer Therapy: TRAIL-Expressing Mesenchymal Stem Cells Target Cancer Cells In Situ

    OpenAIRE

    Reagan, Michaela Ruth; Seib, F. Philipp; McMillin, Douglas William; Elizabeth K. Sage; Mitsiades, Constantine S; Janes, Sam M.; Ghobrial, Irene; Kaplan, David L.

    2012-01-01

    Purpose Tumor-specific delivery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), an apoptosis-inducing peptide, at effective doses remains challenging. Herein we demonstrate the utility of a scaffold-based delivery system for sustained therapeutic cell release that capitalizes on the tumor-homing properties of mesenchymal stem cells (MSCs) and their ability to express genetically-introduced therapeutic genes. Methods: Implants were formed from porous, biocompatible silk sca...

  1. Expression of hepatitis C virus envelope protein 2 induces apoptosis in cultured mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Zhu; Jing Liu; You-Hua Xie; Yu-Ying Kong; Ye Ye; Chun-Lin Wang; Guang-Di Li; Yuan Wang

    2004-01-01

    AIM: To explore the role of hepatitis C virus (HCV) envelope protein 2 (E2) in the induction of apoptosis.METHODS: A carboxyterminal truncated E2 (E2-661) was transiently expressed in several cultured mammalian cell lines or stably expressed in Chinese hamster ovary (CHO)cell line. Cell proliferation was assessed by 3H thymidine uptake. Apoptosis was examined by Hoechst 33258staining, flow cytometry and DNA fragmentation analysis.RESULTS: Reduced proliferation was readily observed in the E2-661 expressing cells. These cells manifested the typical features of apoptosis, including cell shrinkage,chromatin condensation and hypodiploid genomic DNA content. Similar apoptotic cell death was observed in an E2-661 stably expressing cell line.CONCLUSION: HCV E2 can induce apoptosis in cultured mammalian cells.

  2. Neuroblastoma and pre-B lymphoma cells share expression of key transcription factors but display tissue restricted target gene expression

    International Nuclear Information System (INIS)

    Transcription factors are frequently involved in the process of cellular transformation, and many malignancies are characterized by a distinct genetic event affecting a specific transcription factor. This probably reflects a tissue specific ability of transcription factors to contribute to the generation of cancer but very little is known about the precise mechanisms that governs these restricted effects. To investigate this selectivity in target gene activation we compared the overall gene expression patterns by micro-array analysis and expression of target genes for the transcription factor EBF in lymphoma and neuroblastoma cells by RT-PCR. The presence of transcription factors in the different model cell lines was further investigated by EMSA analysis. In pre-B cells mb-1 and CD19 are regulate by EBF-1 in collaboration with Pax-5 and E-proteins. We here show that neuroblastoma cells express these three, for B cell development crucial transcription factors, but nevertheless fail to express detectable levels of their known target genes. Expression of mb-1 could, however, be induced in neuroblastoma cells after disruption of the chromatin structure by treatment with 5-azacytidine and Trichostatin A. These data suggest that transcription factors are able to selectively activate target genes in different tissues and that chromatin structure plays a key role in the regulation of this activity

  3. Novel insights of the gastric gland organization revealed by chief cell specific expression of moesin

    Science.gov (United States)

    Zhu, Lixin; Hatakeyama, Jason; Zhang, Bing; Makdisi, Joy; Ender, Cody; Forte, John G.

    2009-01-01

    ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an increased gradient of expression from the neck to the base of the glands. In addition, the staining pattern of moesin revealed a branched morphology for the gastric lumen. This pattern of short branches extending from the glandular lumen was confirmed by using antibody against zonula occludens-1 (ZO-1) to stain tight junctions. With a mucous neck cell probe (lectin GSII, from Griffonia simplicifolia) and a chief cell marker (pepsinogen C), immunohistochemistry revealed that the mucous neck cells at the top of the glands do not express moesin, but, progressing toward the base, mucous cells showing decreased GSII staining had low or moderate level of moesin expression. The level of moesin expression continued to increase toward the base of the glands and reached a plateau in the base where chief cells and parietal cells abound. The level of pepsinogen expression also increased toward the base. Pepsinogen C was located on cytoplasmic granules and/or more generally distributed in chief cells, whereas moesin was exclusively expressed on the apical membrane. This is a clear demonstration of distinctive cellular expression of two ERM family members in the same tissue. The results provide the first evidence that moesin is involved in the cell biology of chief cells. Novel insights on gastric gland morphology revealed by the moesin and ZO-1 staining provide the basis for a model of cell maturation and migration within the gland. PMID:19074636

  4. Novel insights of the gastric gland organization revealed by chief cell specific expression of moesin.

    Science.gov (United States)

    Zhu, Lixin; Hatakeyama, Jason; Zhang, Bing; Makdisi, Joy; Ender, Cody; Forte, John G

    2009-02-01

    ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an increased gradient of expression from the neck to the base of the glands. In addition, the staining pattern of moesin revealed a branched morphology for the gastric lumen. This pattern of short branches extending from the glandular lumen was confirmed by using antibody against zonula occludens-1 (ZO-1) to stain tight junctions. With a mucous neck cell probe (lectin GSII, from Griffonia simplicifolia) and a chief cell marker (pepsinogen C), immunohistochemistry revealed that the mucous neck cells at the top of the glands do not express moesin, but, progressing toward the base, mucous cells showing decreased GSII staining had low or moderate level of moesin expression. The level of moesin expression continued to increase toward the base of the glands and reached a plateau in the base where chief cells and parietal cells abound. The level of pepsinogen expression also increased toward the base. Pepsinogen C was located on cytoplasmic granules and/or more generally distributed in chief cells, whereas moesin was exclusively expressed on the apical membrane. This is a clear demonstration of distinctive cellular expression of two ERM family members in the same tissue. The results provide the first evidence that moesin is involved in the cell biology of chief cells. Novel insights on gastric gland morphology revealed by the moesin and ZO-1 staining provide the basis for a model of cell maturation and migration within the gland. PMID:19074636

  5. Expression of a human placental alkaline phosphatase gene in transfected cells: Use as a reporter for studies of gene expression

    International Nuclear Information System (INIS)

    The human placental alkaline phosphatase gene has been cloned and reintroduced into mammalian cells. When a plasmid carrying the gene under control of the simian virus 40 early promoter (pSV2Apap) is transfected into a variety of different cell types, placental alkaline phosphatase activity can readily be detected by using whole cell suspensions or cell lysates. Alkaline phosphatase activity can also be visualized directly in individual transfected cells by histochemical staining. The gene is appropriate for use as a reporter in studies of gene regulation since its expression is dependent on the presence of exogenous transcription control elements. The overall assay to detect the expression of the gene is quantitative, very rapid, and inexpensive. Cotransfections of cells with pSV2Apap and a related plasmid carrying the bacterial chloramphenicol acetyltransferase gene (pSV2Acat) indicate that transcription of these two genes is detected with roughly the same sensitivity

  6. Helicobacter pylori infection induced alteration of gene expression in human gastric cells

    OpenAIRE

    Chiou, C.; Chan, C.; Sheu, D; Chen, K; Li, Y; Chan, E

    2001-01-01

    BACKGROUND—Helicobacter pylori, a human pathogen responsible for many digestive disorders, induces complex changes in patterns of gene expression in infected tissues. cDNA expression arrays provide a useful tool for studying these complex phenomena.
AIM—To identify genes that showed altered expression after H pylori infection of human gastric cells compared with uninfected controls.
METHODS—The gastric adenocarcinoma cell line AGS was cocultivated with H pylori. Growth of infected cells was d...

  7. Terpinolene, a component of herbal sage, downregulates AKT1 expression in K562 cells

    OpenAIRE

    Okumura, Naoko; Yoshida, Hitomi; Nishimura, Yuri; Kitagishi, Yasuko; Matsuda, Satoru

    2011-01-01

    Protein kinase AKT mediates cell proliferation and survival signals, and also contributes to cancer progression. Increased expression and/or activation of AKT is involved in a variety of human cancers. In cells treated with sage or rosemary extract, mRNA and protein expression levels of AKT1 were reduced compared with those of the control cells 48 h after the herbal treatments. We found that terpinolene, a common component of sage and rosemary, markedly reduced the protein expression of AKT1 ...

  8. Construction and characteristics of a transformed lepidopteran cell clone expressing baculovirus p35

    Institute of Scientific and Technical Information of China (English)

    ZHENG Guiling; LI Changyou; LI Guoxun; WANG Ping; Robert R. Granados

    2005-01-01

    A transformed cell line was constructed from Mythimna separata cells Ms7311 by lipofection method. TMs7311 cells were generated using a double selection technique involving a selection in the antibiotic Zeocin, followed by a second round of selection by exhibiting cell characterization. A cell clone expressing p35 was obtained with high level of AcMNPV and recombinant proteins. Compared with wild type Ms7311 cells, the cell clone showed increased resistance to Actinamycin D-induced apoptosis and a profound resistance to nutrient development (PBS). When the cell clone was infected with recombinant baculoviruses expressing secreted alkaline phosphatase (SEAP) and β-galactosi- dase, expression of the recombinant proteins from TMs7311 cells exceeded that from parental Ms7311 cells. Production of budded virus and occlusion body was significantly higher than that from parental cells Ms7311.

  9. Virus-activated T cells regulate expression of adhesion molecules on endothelial cells in sites of infection

    DEFF Research Database (Denmark)

    Marker, O; Scheynius, A; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    1995-01-01

    inflammatory cells were strongly positive for LFA-1, VLA-4, Pgp-1 and ICAM-1. Expression of ICAM-1 and VCAM-1 was upregulated on the endothelial cells in immunocompetent mice, but not in T-cell deficient nude mice. Analysis of mice deficient in either CD4+ or CD8+ T cells, revealed that not only was the...

  10. Changes of PIG3 Expression and Cell Cycle of AHH-1 Cells Induced by Fast Neutrons

    Institute of Scientific and Technical Information of China (English)

    SUI; Li; MA; Nan-ru; KONG; Fu-quan; WANG; Xiao; ZHANG; Xiao-ling; CHEN; Hong-tao

    2013-01-01

    Biological dosimeter has unique advantages for the detection of human body damage induced by nuclear radiation.PIG3 is DNA damage inducible gene located downstream of the p53(tumor suppressor gene),which appears at the early stage after radiation and is associated with cell apoptosis.PIG3expression can be measured by modern molecular biological technology and is suitable for quick doses

  11. Production of Antibodies against Multipass Membrane Proteins Expressed in Human Tumor Cells Using Dendritic Cell Immunization

    OpenAIRE

    Takahiko Tamura; Joe Chiba

    2009-01-01

    Antibody mediated therapeutic strategies against human malignant tumors have been widely authorized and clinically applied to cancer patients. In order to develop methods to generate antibodies reactive to the extracellular domains of multipass plasma membrane proteins specifically expressed in malignant tumors, we examined the use of dendritic cells (DCs) for immunization. DCs were transduced with genes encoding the human six transmembrane epithelial antigen of prostate 1 (STEAP1), STEAP4, a...

  12. Upregulation of HYAL1 expression in breast cancer promoted tumor cell proliferation, migration, invasion and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Jin-Xiang Tan

    Full Text Available Hyaluronic acid (HA is a component of the Extra-cellular matrix (ECM, it is closely correlated with tumor cell growth, proliferation, metastasis and angiogenesis, etc. Hyaluronidase (HAase is a HA-degrading endoglycosidase, levels of HAase are elevated in many cancers. Hyaluronidase-1 (HYAL1 is the major tumor-derived HAase. We previously demonstrated that HYAL1 were overexpression in human breast cancer. Breast cancer cells with higher HAase expression, exhibited significantly higher invasion ability through matrigel than those cells with lower HAase expression, and knockdown of HYAL1 expression in breast cancer cells resulted in decreased cell growth, adhesion, invasion and angiogenesis. Here, to further elucidate the function of HYAL1 in breast cancer, we investigated the consequences of forcing HYAL1 expression in breast cancer cells by transfection of expression plasmid. Compared with control, HYAL1 up-regulated cells showed increased the HAase activity, and reduced the expression of HA in vitro. Meantime, upregulation of HYAL1 promoted the cell growth, migration, invasion and angiogenesis in vitro. Moreover, in nude mice model, forcing HYAL1 expression induced breast cancer cell xenograft tumor growth and angiogenesis. Interestingly, the HA expression was upregulated by forcing HYAL1 expression in vivo. These findings suggested that HYAL1-HA system is correlated with the malignant behavior of breast cancer.

  13. Expression of PTPeta in human hepatocellular carcinoma tissue and SMMC7721 cells and its significance

    OpenAIRE

    Xu, Xiao-Bing; Zhang, Xiao-Hua; Yang, Miao-Fang; Min-li LI; Zhu, Ren-Min

    2012-01-01

    Objective To investigate the expression of protein tyrosine phosphatase eta (PTPeta) in hepatocellular carcinoma tissue and SMMC-7721 cells, and observe the effects of SMMC7721 cell density on PTPeta expression. Methods  Immunohistochemistry method was used to detect the protein expression of PTPeta in hepatocellular carcinoma tissues and SMMC-7721 cells. RT-PCR was employed to detect the mRNA expression of PTPeta in different growth density of SMMC-7721 cells (1×103, 5×103, 1×104, 5×104/cm2)...

  14. Expression of nucleostemin in prostate cancer and its effect on the proliferation of PC-3 cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Nucleostemin is essential for the proliferation and survival of stem and cancer cells,but it is unknown whether this newly identified molecule is involved in prostate cancer pathogenesis.Methods Total RNA and protein were extracted from prostate cancer tissues and PC-3,LNCap and DU145 cell lines.The nucleostemin mRNA and protein expression were measured by RT-PCR and Western blot.Immunohistochemistry was also used to detect the nucleostemin protein expression in prostate cancer tissues and PC-3 cells.A nucleostemin specific,short hairpin RNA,expression plasmid was used to transfect PC-3 cells.The changes of nucleostemin gene were detected and the proliferative capacity of the cells was determined.Results Nucleostemin was highly expressed in prostate cancer tissues and cell lines.Nucleostemin expression level in the silencer group PC-3 cells remarkably reduced.The proliferation rate of silencer group PC-3 cells decreased and the percentage of G1 stage cells increased.The neoplasm forming capacity in nude mice of the silencer group PC-3 cells decreased significantly.Conclusions Nucleostemin is highly expressed in prostate cancer tissues and cell lines.The proliferative capacity of PC-3 cells is remarkably reduced after silencing nucleostemin gene expression.

  15. β-catenin expression pattern in primary oral squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    CAI Zhi-gang; SHI Xiao-jian; GAO Yan; WEI Ming-jie; WANG Cun-yu; YU Guang-yan

    2008-01-01

    Background β-catenin, a 92 kDa protein that binds to the cytoplasmic tail of E-cadherin, has an essential role in intercellular adhesion and signal transduction. Aberrant expression of β-catenin has been associated with progression and metastasis of various human cancers. The aim of this study was to elucidate the expression pattem of β-catenin in primary oral squamous cell carcinoma and examine the correlation between β-catenin expression and tumor differentiation, histological grade and lymph node status as well as its clinical significances.Methods Seventy-six patients with oral squamous cell carcinoma and sixteen metastatic lymph nodes were studied.The β-catenin expression was determined by immunohistochemical staining. The correlation with clinical, histological data was analyzed statistically.Results Normal oral epithelium showed strong β-catenin expression at the cell membrane, but no cytoplasmic or nuclear expression. Different degrees of reduced expression of β-catenin at the cell membrane were found in 54 cases with squamous cell carcinoma (71%). Cytoplasmic β-catenin expression was found in 17 tumors (22.4%). Three caseswere found with nuclear β-catenin expression. In sixteen lymph nodes with metastatic squamous cell carcinoma,negative β-catenin expression at the cell membrane was seen in 13 tumors (81.2%) and weak expression in 3 tumors (18.8%). Statistical analysis showed that there was an inverse correlation between β-catenin expression and lymph node status and histological grade of tumors.Conclusions Reduced β-catenin expression at the cell membrane is clearly associated with lymph node metastasis. A reduced expression of β-catenin may constitute a hallmark of aggressive biological behavior of squamous cell carcinoma.

  16. Expression Compilation of Several Putative Cancer Stem Cell Markers by Primary Ovarian Carcinoma

    OpenAIRE

    Di Jiabo; Yigit Refika; G. Figdor Carl; Duiveman-de Boer Tjitske; Massuger Leon; Torensma Ruurd

    2010-01-01

    Cancer stem cells (CSCs) or tumor initiating cells are rare cells that are able to establish a tumor or metastasis. Identification of those CSCs is, however, cumbersome even in established cell lines. Several cancer stem cell markers were reported to be expressed by ovarian cancer. Those cancer stem cells are gifted with lower vulnerability to irradiation and cytostatic drugs explaining the high incidence of recurrence after treatment. A variety of different cancer stem cell markers were desc...

  17. Decreased expression of mucin 18 is associated with unfavorable postoperative prognosis in patients with clear cell renal cell carcinoma

    OpenAIRE

    Bai, Qi; Liu, Li; Long, Qilai; Xia, Yu; Wang, Jiajun; Xu, Jiejie; Guo, Jianming

    2015-01-01

    Background: MUC18 is correlated with tumor progression and metastasis in types of malignancy. But the role of MUC18 in clear cell renal cell carcinoma remains unclear. In this study, we aimed to investigate the expression of MUC18 and its correlation with clinical outcomes in clear cell renal cell carcinoma. Patients and Methods: Immunohistochemical staining was performed in samples from 288 patients with clear cell renal cell carcinoma. We used Kaplan-Meier method and Cox proportional hazard...

  18. The Expression of p53 and Cox-2 in Basal Cell Carcinoma, Squamous Cell Carcinoma and Actinic Keratosis Cases

    OpenAIRE

    Ülker KARAGECE YALÇIN; Selda SEÇKİN

    2012-01-01

    Objective: The aim of this study was to investigate p53 and COX-2 expressions in basal cell carcinoma, squamous cell carcinoma and actinic keratoses, and to determine a possible relationship.Material and Method: 50 basal cell carcinoma, 45 squamous cell carcinoma and 45 actinic keratosis cases were evaluated. The type of tumor in basal cell carcinoma and tumor differentiation in squamous cell carcinoma were noted and the paraffin block that best represented the tumor was chosen. Immunostainin...

  19. Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo

    Directory of Open Access Journals (Sweden)

    Anastassiou Dimitris

    2011-12-01

    Full Text Available Abstract Background The biological mechanisms underlying cancer cell motility and invasiveness remain unclear, although it has been hypothesized that they involve some type of epithelial-mesenchymal transition (EMT. Methods We used xenograft models of human cancer cells in immunocompromised mice, profiling the harvested tumors separately with species-specific probes and computationally analyzing the results. Results Here we show that human cancer cells express in vivo a precise multi-cancer invasion-associated gene expression signature that prominently includes many EMT markers, among them the transcription factor Slug, fibronectin, and α-SMA. We found that human, but not mouse, cells express the signature and Slug is the only upregulated EMT-inducing transcription factor. The signature is also present in samples from many publicly available cancer gene expression datasets, suggesting that it is produced by the cancer cells themselves in multiple cancer types, including nonepithelial cancers such as neuroblastoma. Furthermore, we found that the presence of the signature in human xenografted cells was associated with a downregulation of adipocyte markers in the mouse tissue adjacent to the invasive tumor, suggesting that the signature is triggered by contextual microenvironmental interactions when the cancer cells encounter adipocytes, as previously reported. Conclusions The known, precise and consistent gene composition of this cancer mesenchymal transition signature, particularly when combined with simultaneous analysis of the adjacent microenvironment, provides unique opportunities for shedding light on the underlying mechanisms of cancer invasiveness as well as identifying potential diagnostic markers and targets for metastasis-inhibiting therapeutics.

  20. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    Science.gov (United States)

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the

  1. Malignant cutaneous T-cell lymphoma cells express IL-17 utilizing the Jak3/Stat3 signaling pathway

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn; Ralfkiaer, Ulrik; Clasen-Linde, Erik;

    2011-01-01

    expression is primarily observed in atypical lymphocytes with characteristic neoplastic cell morphology. In accordance, malignant T-cell lines from CTCL patients produce IL-17 and the synthesis is selectively increased by IL-2 receptor ß chain cytokines. Small-molecule inhibitors or small interfering RNA...... against Jak3 and signal transducer and activator of transcription 3 (Stat3) reduce the production of IL-17, showing that the Jak3/Stat3 pathway promotes the expression of the cytokine. In summary, our findings indicate that the malignant T cells in CTCL lesions express IL-17 and that this expression is...... promoted by the Jak3/Stat3 pathway....

  2. Lineage-restricted expression of homeobox-containing genes in human hematopoietic cell lines

    International Nuclear Information System (INIS)

    The authors investigated the role of homeobox-containing genes in human hematopoiesis because homeobox genes (i) control cell fate in the Drosophila embryo, (ii) are expressed in specific patterns in human embryos, and (iii) appear to function as transcription factors that control cell phenotype in other mammalian organs. Using four homeobox probes from the HOX2 locus and a previously undescribed homeobox cDNA (PL1), they screened mRNAs from 18 human leukemic cell lines representing erythroid, myeloid, and T- and B-cell lineages. Complex patterns of lineage-restricted expression are observed. No single homeobox gene is expressed in all types of hematopoietic cells, but each cell type exhibits homeobox gene expression. They have demonstrated (i) lineage-restricted expression of five homeobox genes in erythroid and monocytic cell lines; (ii) expression of additional homeobox genes in other cell lineages (HL-60 and lymphoid cells); (iii) expression of one homeobox gene in normal marrow cells; and (iv) modulation of expression during differentiation. These data suggest that these genes play a role in human hematopoietic development and lineage commitment

  3. Differential expression of miR-21 in UVB irradiated HaCaT cells and A431 cells

    International Nuclear Information System (INIS)

    Objective: To study the expression level of miR-21 in UVB irradiated HaCaT cells and A431 cells. Methods: Real-time qPCR was used to examine the expression level of miR-21 in HaCaT cells and A431 cells after 50 J/m2 UVB radiation. The possible target genes were predicted by PicTar and performed function categories with Gostat analysis. Results: Compared with the HaCaT cells, miR-21 the expression level in A431 cells increased over 4 times. At 2 h and 4 h after UVB irradiation, the expression level of miR-21 in HaCaT cells were up regulated, and it lowered 2 times at 8 h compared with the control.There was no further change in the expression level of miR-21 after 12 h. While miR-21 expression levels in A431 cells were not changed significantly. The results of target prediction and Gostat analysis suggested that PIK3R1, BCL2 and E2F3 were involved in the cell differentiation and cell process. Conclusion: miR-21 possibly involved in the pathogenesis of epidermal squamous cell carcinoma and the mechanism of UVB-induced injury. (authors)

  4. Intraepithelial p63-dependent expression of distinct components of cell adhesion complexes in normal esophageal mucosa and squamous cell carcinoma.

    Science.gov (United States)

    Thépot, Amélie; Hautefeuille, Agnès; Cros, Marie-Pierre; Abedi-Ardekani, Behnoush; Pétré, Aurélia; Damour, Odile; Krutovskikh, Vladimir; Hainaut, Pierre

    2010-11-01

    TP63 gene is a member of TP53 tumor suppressor gene family that encodes several protein isoforms involved in the process of epithelial stratification and in epithelial-mesenchyme interactions. TP63 is amplified in a significant proportion of squamous cell carcinoma of the esophagus (ESCC), resulting in the hyper-expression of DeltaNp63 as the major p63 isoform. To better understand the contribution of this high expression to tumorigenesis, we have analyzed the impact of intraepithelial p63 expression on the expression of cell adhesion complexes in normal esophagus and in ESCC cell lines. Cells expressing p63 showed an adhesion pattern characterized by lack of tight junctions and presence of adherens junctions. Cell differentiation was accompanied by a decrease in p63 and by a shift to adhesion patterns involving tight junctions. Silencing of p63 mRNA in ESCC cell lines resulted in a similar shift, characterized by increased expression of component of tight junctions, decreased cell-to-cell communication and downregulation of cell proliferation. These results indicate that DeltaNp63 may contribute to esophageal squamous carcinogenesis by maintaining cell adhesion patterns compatible with cell proliferation. PMID:20127860

  5. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing.

    Directory of Open Access Journals (Sweden)

    Ilseyar Akhmetzyanova

    2015-10-01

    Full Text Available Cytotoxic CD8+ T Lymphocytes (CTL efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.

  6. Comparison of gene expression profiles in chromate transformed BEAS-2B cells.

    Directory of Open Access Journals (Sweden)

    Hong Sun

    Full Text Available BACKGROUND: Hexavalent chromium [Cr(VI] is a potent human carcinogen. Occupational exposure has been associated with increased risk of respiratory cancer. Multiple mechanisms have been shown to contribute to Cr(VI induced carcinogenesis, including DNA damage, genomic instability, and epigenetic modulation, however, the molecular mechanism and downstream genes mediating chromium's carcinogenicity remain to be elucidated. METHODS/RESULTS: We established chromate transformed cell lines by chronic exposure of normal human bronchial epithelial BEAS-2B cells to low doses of Cr(VI followed by anchorage-independent growth. These transformed cell lines not only exhibited consistent morphological changes but also acquired altered and distinct gene expression patterns compared with normal BEAS-2B cells and control cell lines (untreated that arose spontaneously in soft agar. Interestingly, the gene expression profiles of six Cr(VI transformed cell lines were remarkably similar to each other yet differed significantly from that of either control cell lines or normal BEAS-2B cells. A total of 409 differentially expressed genes were identified in Cr(VI transformed cells compared to control cells. Genes related to cell-to-cell junction were upregulated in all Cr(VI transformed cells, while genes associated with the interaction between cells and their extracellular matrices were down-regulated. Additionally, expression of genes involved in cell proliferation and apoptosis were also changed. CONCLUSION: This study is the first to report gene expression profiling of Cr(VI transformed cells. The gene expression changes across individual chromate exposed clones were remarkably similar to each other but differed significantly from the gene expression found in anchorage-independent clones that arose spontaneously. Our analysis identified many novel gene expression changes that may contribute to chromate induced cell transformation, and collectively this type of

  7. Cell Cycle-dependent Expression of Thyroid Hormone Receptor-β Is a Mechanism for Variable Hormone SensitivityD⃞

    OpenAIRE

    Maruvada, Padma; Dmitrieva, Natalia I.; East-Palmer, Joyce; Yen, Paul M.

    2004-01-01

    Thyroid hormone receptors (TRs) are ligand-regulatable transcription factors. Currently, little is known about the expression of TRs or other nuclear hormone receptors during the cell cycle. We thus developed a stable expression system to express green fluorescent protein-TRβ in HeLa cells under tetracycline regulation, and studied TR expression during the cell cycle by laser scanning cytometry. Only ∼9-15% of the nonsynchronized cell population expressed TR because the majority of cells were...

  8. Environmental alkylphenols modulate cytokine expression in plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Chih-Hsing Hung

    Full Text Available BACKGROUND: Alkylphenols, such as nonylphenol (NP and 4-octylphenol (4-OP, have the potential to disturb immune system due to their weak estrogen-like activity, an effect with potential serious public health impact due to the worldwide distribution of these substances. Plasmacytoid dendritic cells (PDCs can secrete large amounts of type I IFNs and are critical in immune regulation. However, there has been limited study about the influence of alkylphenols on the function of pDCs. OBJECTIVE: The aim of this study was to examine the effect of alkylphenols on pDC functions in vitro and in vivo and then further explored the involved signaling pathways and epigenetic changes. METHODS: Circulating pDCs from human peripheral blood mononuclear cells were treated with alkylphenols with or without CpG stimulation. Alkylphenol-associated cytokine responses, signaling events, histone modifications and viral activity were further examined. In NP-exposed mice, the effect of NP on splenic pDC function and allergic lung inflammation were also assessed. RESULTS: The results showed that NP increased the expression of TNF-α, but suppressed IL-10 production in the range of physiological doses, concomitant with activation of the MKK3/6-p38 signaling pathway and enhanced levels of acetylated histone 3 as well as histone 4 at the TNFA gene locus. Further, in CpG-stimulated pDCs, NP suppressed type I IFNs production, associated with down-regulation of IRF-7 and MKK1/2-ERK-Elk-1 pathways and led to the impaired anti-enterovirus 71 activity in vitro. Additionally, splenic pDCs from NP-exposed mice showed similar cytokine changes upon CpG stimulation under conditions relevant to route and level of exposure in humans. NP treatment also enhanced allergic lung inflammation in vivo. CONCLUSION: Alkylphenols may influence pDCs' functions via their abilities to induce expression of a pro-inflammatory cytokine, TNF-α, and to suppress regulatory cytokines, including IL-10, IFN

  9. Clinical Implications of Phosphorylated STAT3 Expression in de novo Diffuse Large B-cell Lymphoma

    DEFF Research Database (Denmark)

    Ok, Chi Y; Chen, Jiayu; Xu-Monette, Ziju;

    2014-01-01

    phosphorylated STAT3 (pSTAT3) on prognosis are limited. EXPERIMENTAL DESIGN: We evaluated expression of pSTAT3 in de novo DLBCL using immunohistochemistry, gene expression profiling (GEP), and gene set enrichment analysis (GSEA). Results were analyzed in correlation with cell-of-origin (COO), critical lymphoma......PURPOSE: Activated signal transducer and activator of transcription 3 (STAT3) regulates tumor growth, invasion, cell proliferation, angiogenesis, immune response, and survival. Data regarding expression of phosphorylated (activated) STAT3 in diffuse large B-cell lymphoma (DLBCL) and the impact of...... biomarkers, and genetic translocations. RESULTS: pSTAT3 expression was observed in 16% of DLBCL and was associated with advanced stage, multiple extranodal sites of involvement, activated B-cell-like (ABC) subtype, MYC expression, and MYC/BCL2 expression. Expression of pSTAT3 predicted inferior overall...

  10. Screening of differentially expressed genes related to differentiation and proliferation by gene expression profiling of different grade astrocytoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Yi Zeng; Zhong Yang; Yangyun Han; Chao You

    2008-01-01

    BACKGROUND: The detection of differential gene expression in brain is possible by cDNA microarray technology, and the screening of differentially expressed genes might provide a biological basis for gene-targeted therapy for tumors. OBJECTIVE: To detect the differential expression of genes among astrocytoma SHG-44 (WHO grade IV), CHG-5 (WHO grade II), and ATRA-treated SHG-44 cell lines by cDNA microarray. DESIGN: Laboratory experiments in vitro.SETTING: Department of Neurobiology, the Third Military Medical University. MATERIALS: The experiment was performed at the Department of Neurobiology in the Third Military Medical University of the Chinese PLA from January to October 2007. The SHG-44 cell line (WHO grade Ⅳ) was established by Prof. Ziwei Du, and the CHG-5 cell line (WHO grade II) was set up by Prof. Xiuwu Bian from the Third Military Medical University of the Chinese PLA. The cDNA microarray containing 9182 known genes was prepared and provided by Dr. Yang Zhong at the City University of Hong Kong. MAIN OUTCOME MEASURES: The identification of genes that were similarly regulated (overlapping) during tumor progression and differentiation, by comparison of gene expression profiles between CHG-5 and SHG-44 cells, and between SHG-44 cells with or without treatment with ATRA. RESULTS: Thirty-one overlapping genes were found to have similar regulatory effects on astrocytomas; among them, twenty genes were up-regulated and eleven were down-regulated in both comparisons between CHG-5 and SHG-44 cells, and between SHG-44 cells with or without treatment with ATRA. The four reported genes, SERPINF1, MAPK11, HIF1A and SOD2, were up-regulated in this study.CONCLUSION: The differentially expressed genes in different grade astrocytoma cell lines were revealed primarily by cDNA microarray; among them, five identified overlapping genes, SERPINF1, MAPK11, DCTN2, HIF1A and SOD2, were related to the malignant progression of astrocytoma cells.

  11. Construction and expression of a Rev-dependent TNF-R1 expressing HIV-infected-cell injurious vectors

    Institute of Scientific and Technical Information of China (English)

    SHI Wei-min; Dean Baylis; Damian Purcell; Paul U Cameron

    2005-01-01

    Background Rev is necessary for exporting unspliced and incompletely spliced intron containing HIV mRNAs and for HIV replication. The aim of this study is to develop a kind of selective suicide construct that can specifically and directly induce HIV infected cells into apoptosis based on the high affinity of Rev and Rev response element (RRE). Methods Molecular-cloning technique was used to synthesis Rev dependent TNF-R1 expression construct pDM128-TNF-R1 (pT128) that contains RRE and TNFR1 gene. Restriction digestion, Polymerase Chain Reaction (PCR) and DNA sequencing were processed and the exactness and correctness of the inserted TNF-R1 gene in pT128 were confirmed repeatedly. The expression of pT128 co-transfected with different combination of other plasmids by calcium phosphate-DNA co-precipitation in Helas and by gene gun transfection in keratinocytes was further tested by flow-cytometry and cell counted under microscope. Results The new plasmid specifically expressed TNF-R1 in Helas when co-transfected with pRev but did not when without pRev. Indirect expression of TNF-R1 from pT128 was slower than the direct expression of that from Hu p60 TNFR1 in pDC302 (pT60), but all those pT60 or pT128 transfected cells showed apoptosis at last while TNF-R1 was sufficiently expressed. Other kinds of Rev expression construct such as pAD8 and a chimeric HIV vaccine also can switched on the selective expression of pT128. Not only Rev-dependent expression in Helas, pT128 also normally expressed its TNF-R1 in keratinocytes. Co-transfected with pRev or pAD8 that expressed Rev, pT128 expressed TNF-R1 and induced apoptosis of green fluorescent keratinocytes in skin explant. The number of green fluorescent keratinocytes co-transfected by pT128 plus pRev or pAD8 was gradually outnumbered by that co-transfected by pT128 only. The difference was more significant after culturing for 72 hours. Conclusions Rev dependent pT128 is able to selectively induce apoptosis of HIV-infected or

  12. Increasing RpoS expression causes cell death in Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.

  13. RNA interference by expression of short hairpin RNAs suppresses bcl-xL gene expression in nasopharyngeal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Fang LIU; Cheng-wei HE; Yue-fei ZHANG; Ke-yuan ZHOU

    2005-01-01

    Aim: To evaluate a new plasmid mediated RNA interference (RNAi) system and investigate whether knock-down of bcl-xL by short hairpin RNA (shRNA) can induce apoptosis of human nasopharyngeal carcinoma (NPC) cell line CNE-2Z in vitro. Methods: The plasmid containing mU6 promoter was subcloned to yield the pmU6 plasmid, recombinant plasmid expressing shRNA targeting bcl-xL gene was designed and constructed, and were co-transfected cells with green fluorescence protein expressing plasmid. Flow cytometry was used to evaluate transfection efficiency, and RT-PCR and Western blot were applied to analyze bcl-xL mRNA and protein levels, respectively. Results: The shRNA expressed by the recombi nant plasmid efficiently suppressed bcl-xL gene expression and induced apoptosis .of NPC cells in vitro. Conclusion: The recombinant plasmid can sufficiently mediate RNAi in CNE-2Z cells, and knock-down of the bcl-xL expression by shRNA significantly induced apoptosis in CNE-2Z cells. The results suggest this new system, mediated RNAi can be used as a tool for the study of gene function and gene therapy.

  14. Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours

    DEFF Research Database (Denmark)

    Hoei-Hansen, C E; Almstrup, K; Nielsen, J E;

    2005-01-01

    AIMS: NANOG is a key regulator of embryonic stem cell (ESC) self-renewal and pluripotency. Our recent genome-wide gene expression profiling study of the precursor of testicular germ cell tumours, carcinoma in situ testis (CIS), showed close similarity between ESC and CIS, including high NANOG...... expression. In the present study we analysed the protein expression of NANOG during normal development of human testis and in a large series of neoplastic/dysgenetic specimens. METHODS AND RESULTS: We detected abundant expression of NANOG in CIS and in CIS-derived testicular tumours with marked differences...... earlier than for OCT-4. We detected no expression at the protein level in normal testis. CONCLUSIONS: NANOG is a new marker for testicular CIS and germ cell tumours and the high level of NANOG along with OCT-4 are determinants of the stem cell-like pluripotency of the preinvasive CIS cell. Timing of NANOG...

  15. The expression of P63 protein in some keratinocyte original tissues and cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To examine the expression patterns of p63 in tissues of particular keratinocyte original hyperproliferate diseases and variety cell types for determining if P63 is the marker of proliferative potential keratinocytes.Methods:P63 protein Was detected and analyzed by immunoreacdvity method and Western blot in biopsy specimens of keratinocyte original disorders including squamous cell carcinomas SCC,basal cell carcinomas BCC,Bowen's disease and other tissues or cells,such as psoriasis vulgaris,normal skin tissues,primary cultured keratinocytes,immortal HaCaT cells,and epidermoid carcinoma cells A431.Results:P63 protein was expressed in the nuclei of basal and suprabasal layer of the epidermis,germinative cells of sebaceous glands in normal epidermal.P63 was strongly and diffusely detected in the majority of tumor cells in BCC and poorly-differentiated SCC.In Bowen's disease,p63expresses are remarkable in all cell layers.In the psoriasis plaque epidermal,p63 expressed mainly in basal cells and part of spinous cells.P63 expressed more strongly in primary cultured keratinocytes than in A431 cells or HaCaT cells.Conclusion:P63 is a nuclei marker of undifferentiated keratinocytes with the proliferative potential and may disrupt the terminal differentiation.The overexpression of p63 reflects immaturity of the tumor cells.The immunohistochemical staining of p63 may be useful for investigating the origin and differentiation of tumor cells.

  16. Intercellular Cell Adhesion Molecule-1, Vascular Cell Adhesion Molecule-1, and Regulated on Activation Normal T Cell Expressed and Secreted Are Expressed by Human Breast Carcinoma Cells and Support Eosinophil Adhesion and Activation

    OpenAIRE

    Ali, Shahina; Kaur, Jaswinder; Patel, Kamala D.

    2000-01-01

    Eosinophils are usually associated with parasitic and allergic diseases; however, eosinophilia is also observed in several types of human tumors, including breast carcinomas. In this study we examined several human breast carcinoma cell lines for adhesion molecule expression and the ability to bind and activate eosinophils. MDA-MB-435S and MDA-MB-468 cells constitutively expressed both intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and this expressio...

  17. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion

    OpenAIRE

    Coffelt, Seth B.; Chen, Yung-Yi; Muthana, Munitta; Welford, Abigail F.; Tal, Andrea O.; Scholz, Alexander; Plate, Karl H; Reiss, Yvonne; Murdoch, Craig; De Palma, Michele; Lewis, Claire E.

    2011-01-01

    Angiopoietin 2 (ANGPT2) is a proangiogenic cytokine whose expression is often upregulated by endothelial cells in tumors. Expression of its receptor, TIE2, defines a highly proangiogenic subpopulation of myeloid cells in circulation and tumors called TIE2-expressing monocytes/macrophages (TEMs). Genetic depletion of TEMs markedly reduces tumor angiogenesis in various tumor models, emphasizing their essential role in driving tumor progression. Previously, we demonstrated that ANGPT2 augments t...

  18. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    DEFF Research Database (Denmark)

    Jakobsen, Jannik E; Li, Juan; Moldt, Brian;

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based do......We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon...

  19. Melanoma Cell Expression of CD200 Inhibits Tumor Formation and Lung Metastasis via Inhibition of Myeloid Cell Functions

    OpenAIRE

    Talebian, Fatemeh; Liu, Jin-Qing; Liu, Zhenzhen; Khattabi, Mazin; He, Yukai; Ganju, Ramesh; Bai, Xue-feng

    2012-01-01

    CD200 is a cell surface glycoprotein that functions through engaging CD200 receptor on cells of the myeloid lineage and inhibits their functions. Expression of CD200 has been implicated in a variety of human cancer cells including melanoma cells and has been thought to play a protumor role. To investigate the role of cancer cell expression of CD200 in tumor formation and metastasis, we generated CD200-positive and CD200-negative B16 melanoma cells. Subcutaneous injection of CD200-positive B16...

  20. Quantum dots-based multiplexed immunohistochemistry of protein expression in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    C Shi

    2008-06-01

    Full Text Available Semiconductor quantum dots (QDs are bright fluorescent nanoparticles that have been successfully used for the detection of biomarker expression in cells. The objective of the present study is to use this technology in a multiplexing manner to determine at a single cell level the expression of a cell-specific bio-marker, prostate-specific antigen (PSA expressed by human prostate cancer LNCaP and ARCaP cell lines. Here we compared the sensitivity of immunohistochemistry (IHC and QD-based detection of AR and PSA expression in these cell lines. Further, we conducted multiplexing QD-based detection of PSA and androgen receptor (AR expression in LNCaP cells subjecting to androgen (R1881 stimulation. The involvement of AR in PSA regulation in LNCaP cells, at a single cell level, was confirmed by the co-incubation of LNCaP cells in the presence of both R1881 and its receptor antagonist, bicalutamide (Casodex. We showed here the superior quality of QDs, in comparison to IHC, for the detection of AR and PSA in cultured LNCaP and ARCaP cells. Multiplexing QDs technique can be used to detect simultaneously AR and PSA expression induced by R1881 which promoted AR translocation from its cytosolic to the nuclear compartment.We observed AR antagonist, bicalutamide, inhibited AR nuclear translocation and PSA, but not AR expression in LNCaP cells.

  1. Enhancing Protein Expression in HEK-293 Cells by Lowering Culture Temperature

    OpenAIRE

    Lin, Chi-Yen; Huang, Zhen; Wen, Wei; Wu, Andrew; Wang, Congzhou; Niu, Li

    2015-01-01

    Animal cells and cell lines, such as HEK-293 cells, are commonly cultured at 37°C. These cells are often used to express recombinant proteins. Having a higher expression level or a higher protein yield is generally desirable. As we demonstrate in this study, dropping culture temperature to 33°C, but not lower, 24 hours after transient transfection in HEK-293S cells will give rise to ~1.5-fold higher expression of green fluorescent protein (GFP) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropio...

  2. Dynamic expression of T-bet and GATA3 by regulatory T cells maintains immune tolerance

    OpenAIRE

    Yu, Fang; Sharma, Suveena; Edwards, Julie; Feigenbaum, Lionel; Zhu, Jinfang

    2014-01-01

    Regulatory T (Treg) cells can express the transcription factors T-bet and GATA3 but the function of this expression and whether such cells represent stable subsets is still unknown. By using multiple reporter tools, we show that the expression of T-bet and GATA3 in Treg cells is dynamically influenced by the cytokine environment. Treg cell-specific deletion of either Tbx21 or Gata3 genes singly did not result in loss of Treg cell functions; however, mice with combined deficiency of both genes...

  3. DAPT mediates atoh1 expression to induce hair cell-like cells

    Science.gov (United States)

    Ren, Hongmiao; Guo, Weiwei; Liu, Wei; Gao, Weiqiang; Xie, Dinghua; Yin, Tuanfang; Yang, Shiming; Ren, Jihao

    2016-01-01

    Hearing loss is currently an incurable degenerative disease characterized by a paucity of hair cells (HCs), which cannot be spontaneously replaced in mammals. Recent technological advancements in gene therapy and local drug delivery have shed new light for hearing loss. Atoh1, also known as Math1, Hath1, and Cath1, is a proneural basic helix-loop-helix (bHLH) transcription factor that is essential for HC differentiation. At various stages in development, Atoh1 activity is sufficient to drive HC differentiation in the cochlea. Thus, Atoh1 related gene therapy is the most promising option for HC induction. DAPT, an inhibitor of Notch signaling, enhances the expression of Atoh1 indirectly, which in turn promotes the induction of a HC fate. Here, we show that DAPT cooperates with Atoh1 to synergistically promote HC fate in ependymal cells in vitro and promote hair cell regeneration in the cultured basilar membrane (BM) which mimics the microenvironment in vivo. Taken together, our findings demonstrated that DAPT is sufficient to induce HC-like cells via enhancing of the expression of Atoh1 to inhibit the progression of HC apoptosis and to induce new HC formation.

  4. PD-L1 expression in renal cell carcinoma clear cell type is related to unfavorable prognosis

    OpenAIRE

    Katia R. M. Leite; Reis, Sabrina T.; Junior, José Pontes; Zerati, Marcelo; Gomes, Daniel de Oliveira; Luiz H. Camara-Lopes; Srougi, Miguel

    2015-01-01

    Background PD-L1 is a glycoprotein from the family of T-cell co-stimulatory molecules that are constitutively expressed by macrophages. Aberrant expression of PD-L1 is observed in human cancers associated with inhibition of the tumor-directed T-cell immune response. There are few reports in the literature evaluating PD-L1 expression in association to prognosis specifically in renal cell cancer clear cell type (RCC-CC). Methods Immunohistochemistry using a PD-L1 polyclonal antibody was perform...

  5. Poly(Dimethylsiloxane) (PDMS) Affects Gene Expression in PC12 Cells Differentiating into Neuronal-Like Cells

    DEFF Research Database (Denmark)

    Lopacinska, Joanna M.; Emnéus, Jenny; Dufva, Martin

    2013-01-01

    accumulated research. In contrast, the experience base is limited for materials used in microfludics chip fabrication. Methods: The effect of different materials (PS, PMMA and perforated PMMA with a piece of PDMS underneath) on the growth and differentiation of PC12 (adrenal phaeochromocytoma) cells into...... contrast, 41 genes showed different expression for PC12 cells differentiating on PMMA as compared to on PS. In contrast, 677 genes showed different expression on PMMA with PDMS underneath as compared with PC12 cells on PS. The differentially expressed genes are involved in neuronal cell development and...

  6. Expression of TMPRSS4 in non-small cell lung cancer and its modulation by hypoxia

    OpenAIRE

    NGUYEN, TRI-HUNG; WEBER, WILLIAM; HAVARI, EVIS; CONNORS, TIMOTHY; BAGLEY, REBECCA G.; McLAREN, RAJASHREE; Nambiar, Prashant R; Madden, Stephen L.; Teicher, Beverly A.; Roberts, Bruce; Kaplan, Johanne; SHANKARA, SRINIVAS

    2012-01-01

    Overexpression of TMPRSS4, a cell surface-associated transmembrane serine protease, has been reported in pancreatic, colorectal and thyroid cancers, and has been implicated in tumor cell migration and metastasis. Few reports have investigated both TMPRSS4 gene expression levels and the protein products. In this study, quantitative RT-PCR and protein staining were used to assess TMPRSS4 expression in primary non-small cell lung carcinoma (NSCLC) tissues and in lung tumor cell lines. At the tra...

  7. Glioma Cell Proliferation Controlled by ERK Activity-Dependent Surface Expression of PDGFRA

    OpenAIRE

    Dongfeng Chen; Duo Zuo; Cheng Luan; Min Liu; Manli Na; Liang Ran; Yingyu Sun; Annette Persson; Elisabet Englund; Leif G Salford; Erik Renström; Xiaolong Fan; Enming Zhang

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. G...

  8. Chromophore maturation and fluorescence fluctuation spectroscopy of fluorescent proteins in a cell-free expression system

    OpenAIRE

    Macdonald, Patrick J.; Chen, Yan; Mueller, Joachim D.

    2011-01-01

    Cell-free synthesis, a method for the rapid expression of proteins, is increasingly used to study interactions of complex biological systems. GFP and its variants have become indispensable for fluorescence studies in live cells and are equally attractive as reporters for cell-free systems. This work investigates the use of fluorescence fluctuation spectroscopy (FFS) as a tool for quantitative analysis of protein interactions in cell-free expression systems. We also explore chromophore maturat...

  9. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Chien-Chih [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); Liu, Ren-Shyan [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); NRPGM, Molecular and Genetic Imaging Core, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, National PET/Cyclotron Center, Taipei (China); National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei (China); Yang, An-Hang [Taipei Veterans General Hospital, Department of Pathology and Laboratory Medicine, Taipei (China); National Yang-Ming University, Department of Pathology, School of Medicine, Taipei (China); Liu, Ching-Sheng [National Yang-Ming University Medical School, Department of Nuclear Medicine, School of Medicine, Taipei (China); Chi, Chin-Wen [National Yang-Ming University, Institute of Pharmacology, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China); Tseng, Ling-Ming [National Yang Ming University, Institute of Clinical Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Tsai, Yi-Fan [Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Ho, Jennifer H. [Taipei Medical University, Graduate Institute of Clinical Medicine, Taipei (China); Taipei Medical University-Wan Fang Medical Center, Department of Ophthalmology, Taipei (China); Taipei Medical University-Wan Fang Medical Center, Center for Stem Cell Research, Taipei (China); Lee, Chen-Hsen [NRPGM, Molecular and Genetic Imaging Core, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Surgery, Taipei (China); Lee, Oscar K. [Taipei Veterans General Hospital, Department of Orthopedics, Taipei (China); National Yang-Ming University, Stem Cell Research Center, Taipei (China); Taipei Veterans General Hospital, Department of Medical Research and Education, Taipei (China)

    2013-01-15

    {sup 131}I therapy is regularly used following surgery as a part of thyroid cancer management. Despite an overall relatively good prognosis, recurrent or metastatic thyroid cancer is not rare. CD133-expressing cells have been shown to mark thyroid cancer stem cells that possess the characteristics of stem cells and have the ability to initiate tumours. However, no studies have addressed the influence of CD133-expressing cells on radioiodide therapy of the thyroid cancer. The aim of this study was to investigate whether CD133{sup +} cells contribute to the radioresistance of thyroid cancer and thus potentiate future recurrence and metastasis. Thyroid cancer cell lines were analysed for CD133 expression, radiosensitivity and gene expression. The anaplastic thyroid cancer cell line ARO showed a higher percentage of CD133{sup +} cells and higher radioresistance. After {gamma}-irradiation of the cells, the CD133{sup +} population was enriched due to the higher apoptotic rate of CD133{sup -} cells. In vivo {sup 131}I treatment of ARO tumour resulted in an elevated expression of CD133, Oct4, Nanog, Lin28 and Glut1 genes. After isolation, CD133{sup +} cells exhibited higher radioresistance and higher expression of Oct4, Nanog, Sox2, Lin28 and Glut1 in the cell line or primarily cultured papillary thyroid cancer cells, and lower expression of various thyroid-specific genes, namely NIS, Tg, TPO, TSHR, TTF1 and Pax8. This study demonstrates the existence of CD133-expressing thyroid cancer cells which show a higher radioresistance and are in an undifferentiated status. These cells possess a greater potential to survive radiotherapy and may contribute to the recurrence of thyroid cancer. A future therapeutic approach for radioresistant thyroid cancer may focus on the selective eradication of CD133{sup +} cells. (orig.)

  10. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy

    International Nuclear Information System (INIS)

    131I therapy is regularly used following surgery as a part of thyroid cancer management. Despite an overall relatively good prognosis, recurrent or metastatic thyroid cancer is not rare. CD133-expressing cells have been shown to mark thyroid cancer stem cells that possess the characteristics of stem cells and have the ability to initiate tumours. However, no studies have addressed the influence of CD133-expressing cells on radioiodide therapy of the thyroid cancer. The aim of this study was to investigate whether CD133+ cells contribute to the radioresistance of thyroid cancer and thus potentiate future recurrence and metastasis. Thyroid cancer cell lines were analysed for CD133 expression, radiosensitivity and gene expression. The anaplastic thyroid cancer cell line ARO showed a higher percentage of CD133+ cells and higher radioresistance. After γ-irradiation of the cells, the CD133+ population was enriched due to the higher apoptotic rate of CD133- cells. In vivo 131I treatment of ARO tumour resulted in an elevated expression of CD133, Oct4, Nanog, Lin28 and Glut1 genes. After isolation, CD133+ cells exhibited higher radioresistance and higher expression of Oct4, Nanog, Sox2, Lin28 and Glut1 in the cell line or primarily cultured papillary thyroid cancer cells, and lower expression of various thyroid-specific genes, namely NIS, Tg, TPO, TSHR, TTF1 and Pax8. This study demonstrates the existence of CD133-expressing thyroid cancer cells which show a higher radioresistance and are in an undifferentiated status. These cells possess a greater potential to survive radiotherapy and may contribute to the recurrence of thyroid cancer. A future therapeutic approach for radioresistant thyroid cancer may focus on the selective eradication of CD133+ cells. (orig.)

  11. Human herpesvirus 6 infects cervical epithelial cells and transactivates human papillomavirus gene expression.

    OpenAIRE

    Chen, M.; Popescu, N; Woodworth, C; Berneman, Z; M. Corbellino; Lusso, P.; Ablashi, D V; Dipaolo, J. A.

    1994-01-01

    To examine whether human herpesvirus 6 (HHV-6) is capable of infecting human cervical epithelial cells and altering expression of human papillomavirus (HPV) genes, HPV-immortalized or -transformed carcinoma cell lines were infected with HHV-6 variant A. No cytopathic effect was observed in infected cervical cells. However, immunofluorescence indicated that infected cells expressed early-late proteins of HHV-6 by day 3 postinfection. HHV-6 DNA was also detected by Southern blot hybridization a...

  12. Cancer cell sensitivity to bortezomib is associated with survivin expression and p53 status but not cancer cell types

    Directory of Open Access Journals (Sweden)

    Chanan-Khan Asher A

    2010-01-01

    Full Text Available Abstract Background Survivin is known playing a role in drug resistance. However, its role in bortezomib-mediated inhibition of growth and induction of apoptosis is unclear. There are conflicting reports for the effect of bortezomib on survivin expression, which lacks of a plausible explanation. Methods: In this study, we tested cancer cells with both p53 wild type and mutant/null background for the relationship of bortezomib resistance with survivin expression and p53 status using MTT assay, flow cytometry, DNA fragmentation, caspase activation, western blots and RNAi technology. Results We found that cancer cells with wild type p53 show a low level expression of survivin and are sensitive to treatment with bortezomib, while cancer cells with a mutant or null p53 show a high level expression of survivin and are resistant to bortezomib-mediated apoptosis induction. However, silencing of survivin expression utilizing survivin mRNA-specific siRNA/shRNA in p53 mutant or null cells sensitized cancer cells to bortezomib mediated apoptosis induction, suggesting a role for survivin in bortezomib resistance. We further noted that modulation of survivin expression by bortezomib is dependent on p53 status but independent of cancer cell types. In cancer cells with mutated p53 or p53 null, bortezomib appears to induce survivin expression, while in cancer cells with wild type p53, bortezomib downregulates or shows no significant effect on survivin expression, which is dependent on the drug concentration, cell line and exposure time. Conclusions Our findings, for the first time, unify the current inconsistent findings for bortezomib treatment and survivin expression, and linked the effect of bortezomib on survivin expression, apoptosis induction and bortezomib resistance in the relationship with p53 status, which is independent of cancer cell types. Further mechanistic studies along with this line may impact the optimal clinical application of bortezomib in

  13. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    Science.gov (United States)

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721

  14. Development of early PCLP1-expressing haematopoietic cells within the avian dorsal aorta.

    Science.gov (United States)

    Suonpää, P; Kohonen, P; Koskela, K; Koskiniemi, H; Salminen-Mankonen, H; Lassila, O

    2005-09-01

    The first haematopoietic stem cells (HSC) develop in the dorsal aorta as haematopoietic intra-aortic clusters (HIAC). To evaluate the initial steps of definitive haematopoiesis, we have studied the emergence and the expression profile of podocalyxin-like protein 1 (PCLP1)-expressing cells in early chick embryos. Here we demonstrate that at embryonic day 2 (E2), the PCLP1+ cells are present in the splanchnic mesoderm and in the ventral lining of the paired dorsal aorta. Following aortic fusion at E3, the PCLP1-expressing cells are exclusively found in the aortic floor and as the development proceeds, both the haematopoietic clusters and the aortic endothelial cells express PCLP1. In parallel with the early PCLP1 expression, bone morphogenetic protein 4 (BMP4) expression was detected in the splanchnopleura and thereafter in the densely packed mesenchymal cells beneath the HIAC. The microarray analyses of early E3 PCLP1+ cells revealed elevated expression of genes known to be involved in the stem cell function. These data suggest that splanchnopleura-derived PCLP1-expressing cells give rise to the earliest definitive haematopoietic progenitors. PMID:16179008

  15. Regulation of human renin expression in chorion cell primary cultures

    International Nuclear Information System (INIS)

    The human renin gene is expressed in the kidney, placenta, and several other sites. The release of renin or its precursor, prorenin, can be affected by several regulatory agents. In this study, primary cultures of human placental cells were used to examine the regulation of prorenin release and renin mRNA levels and of the transfected human renin promoter linked to chloramphenicol acetyltransferase reporter sequences. Treatment of the cultures with a calcium ionophore alone, calcium ionophore plus forskolin (that activates adenylate cyclase), or forskolin plus a phorbol ester increased prorenin release and renin mRNA levels 1.3 endash to 6 endash fold, but several classes of steroids did not affect prorenin secretion or renin RNA levels. These results suggest that (i) the first 584 base pairs of the renin gene 5'endash flanking DNA do not contain functional glucocorticoid or estrogen response elements, (ii) placental prorenin release and renin mRNA are regulated by calcium ion and by the combinations of cAMP with either C kinase or calcium ion, and (iii) the first 100 base pairs of the human renin 5'endash flanking DNA direct accurate initiation of transcription and can be regulated by cAMP. Thus, some control of renin release in the placenta (and by inference in other tissues) occurs via transcriptional influences on its promoter

  16. Co-regulation of pituitary tumor cell adhesion and prolactin gene expression by glucocorticoid.

    Science.gov (United States)

    Spangler, P R; Delidow, B C

    1998-01-01

    Rat 235-1 pituitary tumor cells are lactotrophs producing high levels of prolactin (PRL). Dexamethasone (Dex, 100 nM) inhibits PRL gene expression in 235-1 cells by 50%, while simultaneously decreasing cell replication and cell-cell aggregation. To determine the time course of Dex action, we used a quantitative assay for cell-cell interaction, based on the number of single cells present before and after re-aggregation of dispersed cells. 235-1 cells were cultured in growth medium or medium plus 100 nM Dex for 1-4 days before assay. Control cells had 90% re-aggregation on all days of assay. Aggregation of Dex-treated cells decreased to 55% by day 4. Dex treatment also reduced cell numbers by 40%, but this decrease did not contribute to reduced aggregation. To determine the mechanism of Dex-inhibited cell-cell adhesion, we examined the expression of cadherins and catenins. Cadherin-related mRNAs (P- and N-cadherin probes) were detectable in 235-1 cells, but their levels were unchanged by Dex. A pancadherin antibody was unable to detect classical cadherins in these cells. Both alpha- and beta-catenins were detected by Western blotting and their levels were decreased by Dex. Unlike control aggregates, aggregates of Dex-treated cells were able to inhibit expression of PRL mRNA when added to monolayers of 235-1 cells. These data suggest that Dex influences cadherin function by inhibiting catenin expression and that this has the functional consequence of altering 235-1 cell-cell interactions. Overall the data show that Dex affects important aspects of lactotroph function other than PRL gene expression. These changes may include physical alterations in pituitary cell contacts that further support a change in functional state. PMID:9397162

  17. Transcriptional expression profile of cultured human embryonic stem cells in vitro and in vivo.

    Science.gov (United States)

    Keil, Marlen; Siegert, Antje; Eckert, Klaus; Gerlach, Jörg; Haider, Wolfram; Fichtner, Iduna

    2012-03-01

    The aims of this study were to analyze the spontaneous differentiation of human embryonic stem cells in vitro and in vivo and to investigate the influence of in vitro partial differentiation on in vivo teratoma formation in immunodeficient mice. Standardized methods are needed for long-term cultivation of undifferentiated stem cells and the multilineage cells that spontaneously differentiate from them. Accordingly, SA002 human embryonic stem cells were cultured on irradiated mouse embryonic fibroblasts cells, on irradiated human foreskin fibroblasts, or were cultured feeder-free using matrigel. Expression of marker protein transcripts was analyzed in undifferentiated and differentiated stem cells using real-time PCR, and both types of stem cells were transplanted subcutaneously into immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice to test for teratoma formation. Teratoma histology and expression profiles were subsequently characterized. Cells cultured using different conditions and morphologically undifferentiated cells had comparable marker expression profiles, showing high expression levels of markers for pluripotency and low-to-moderate expression levels of germ layer markers. Cells showing spontaneous differentiation that were cultured in feeder-free conditions in the absence of basic fibroblast growth factor demonstrated slight upregulation of sex determining region Y-box 17, connexin 32, and albumin expression at early time points, as well as expression of octamer-binding transcription factor 4, proteoglycan epitopes on podocalyxin (Trafalgar), and alkaline phosphatase. At later time points, expression of hepatocyte nuclear factor-3-beta, and hepatocyte nuclear factor-4-alpha and alpha fetoprotein was upregulated, whereas beta-3-tubulin, chemokine receptor, nestin, sex-determining region Y-box 17, and connexin 32 were downregulated. Expression of pluripotency markers remained high, and hematopoetic markers were not expressed. SA002 cells that showed

  18. Nocodazole treatment decreases expression of pluripotency markers Nanog and Oct4 in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Ade Kallas

    Full Text Available Nocodazole is a known destabiliser of microtubule dynamics and arrests cell-cycle at the G2/M phase. In the context of the human embryonic stem cell (hESC it is important to understand how this arrest influences the pluripotency of cells. Here we report for the first time the changes in the expression of transcription markers Nanog and Oct4 as well as SSEA-3 and SSEA-4 in human embryonic cells after their treatment with nocodazole. Multivariate permeabilised-cell flow cytometry was applied for characterising the expression of Nanog and Oct4 during different cell cycle phases. Among untreated hESC we detected Nanog-expressing cells, which also expressed Oct4, SSEA-3 and SSEA-4. We also found another population expressing SSEA-4, but without Nanog, Oct4 and SSEA-3 expression. Nocodazole treatment resulted in a decrease of cell population positive for all four markers Nanog, Oct4, SSEA-3, SSEA-4. Nocodazole-mediated cell-cycle arrest was accompanied by higher rate of apoptosis and upregulation of p53. Twenty-four hours after the release from nocodazole block, the cell cycle of hESC normalised, but no increase in the expression of transcription markers Nanog and Oct4 was detected. In addition, the presence of ROCK-2 inhibitor Y-27632 in the medium had no effect on increasing the expression of pluripotency markers Nanog and Oct4 or decreasing apoptosis or the level of p53. The expression of SSEA-3 and SSEA-4 increased in Nanog-positive cells after wash-out of nocodazole in the presence and in the absence of Y-27632. Our data show that in hESC nocodazole reversible blocks cell cycle, which is accompanied by irreversible loss of expression of pluripotency markers Nanog and Oct4.

  19. Generation of functional CD8+ T Cells by human dendritic cells expressing glypican-3 epitopes

    Directory of Open Access Journals (Sweden)

    Farzaneh Farzin

    2010-05-01

    Full Text Available Abstract Background Glypican 3 (GPC-3 is an oncofoetal protein that is expressed in most hepatocellular carcinomas (HCC. Since it is a potential target for T cell immunotherapy, we investigated the generation of functional, GPC-3 specific T cells from peripheral blood mononuclear cells (PBMC. Methods Dendritic cells (DC were derived from adherent PBMC cultured at 37°C for 7 days in X-Vivo, 1% autologous plasma, and 800 u/ml GM-CSF plus 500 u/ml IL-4. Immature DC were transfected with 20 μg of in vitro synthesised GPC-3 mRNA by electroporation using the Easy-ject plus system (Equibio, UK (300 V, 150 μF and 4 ms pulse time, or pulsed with peptide, and subsequently matured with lipopolysaccharide (LPS. Six predicted GPC-3 peptide epitopes were synthesized using standard f-moc technology and tested for their binding affinity to HLA-A2.1 molecules using the cell line T2. Results DC transfected with GPC-3 mRNA but not control DC demonstrated strong intracellular staining for GPC-3 and in vitro generated interferon-gamma expressing T cells from autologous PBMC harvested from normal subjects. One peptide, GPC-3522-530 FLAELAYDL, fulfilled our criteria as a naturally processed, HLA-A2-restricted cytotoxic T lymphocyte (CTL epitope: i it showed high affinity binding to HLA-A2, in T2 cell binding assay; ii it was generated by the MHC class I processing pathway in DC transfected with GPC-3 mRNA, and iii HLA-A2 positive DC loaded with the peptide stimulated proliferation in autologous T cells and generated CTL that lysed HLA-A2 and GPC-3 positive target cells. Conclusions These findings demonstrate that electroporation of GPC-3 mRNA is an efficient method to load human monocyte-derived DC with antigen because in vitro they generated GPC-3-reactive T cells that were functional, as shown by interferon-gamma production. Furthermore, this study identified a novel naturally processed, HLA-A2-restricted CTL epitope, GPC-3522-530 FLAELAYDL, which can be used to

  20. Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Wei Xiong; Yang Jiao; Weiwei Huang; Mingxing Ma; Min Yu; Qinghua Cui; Deyong Tan

    2012-01-01

    Human cervical cancer HeLa cells have functional mitochondria.Recent studies have suggested that mitochondrial metabolism plays an essential role in tumor cell proliferation.Nevertheless,how cells coordinate mitochondrial dynamics and cell cycle progression remains to be clarified.To investigate the relationship between mitochondrial function and cell cycle regulation,the mitochondrial gene expression profile and cellular ATP levels were determined by cell cycle progress analysis in the present study.HeLa cells were synchronized in the G0/G1 phase by serum starvation,and re-entered cell cycle by restoring serum culture,time course experiment was performed to analyze the expression of mitochondrial transcription regulators and mitochondrial genes,mitochondrial membrane potential (MMP),cellular ATP levels,and cell cycle progression.The results showed that when arrested G0/G1 cells were stimulated in serum-containing medium,the amount of DNA and the expression levels of both mRNA and proteins in mitochondria started to increase at 2 h time point,whereas the MMP and ATP level elevated at 4 h.Furthermore,the cyclin D1 expression began to increase at 4 h after serum triggered cell cycle.ATP synthesis inhibitor-oligomycintreatment suppressed the cyclin D1 and cyclin B1 expression levels and blocked cell cycle progression.Taken together,our results suggested that increased mitochondrial gene expression levels,oxidative phosphorylation activation,and cellular ATP content increase are important events for triggering cell cycle.Finally,we demonstrated that mitochondrial gene expression levels and cellular ATP content are tightly regulated and might play a central role in regulating cell proliferation.

  1. Lineage relationship of prostate cancer cell types based on gene expression

    Directory of Open Access Journals (Sweden)

    Ware Carol B

    2011-05-01

    Full Text Available Abstract Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology and pattern 4 (aglandular sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype and LuCaP 49 (neuroendocrine/small cell carcinoma grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.

  2. Regulation of ADAM12 cell-surface expression by protein kinase C epsilon

    DEFF Research Database (Denmark)

    Sundberg, Christina; Thodeti, Charles Kumar; Kveiborg, Marie;

    2004-01-01

    constitutively active protein. However, little is known about the regulation of ADAM12 cell-surface translocation. Here, we used human RD rhabdomyosarcoma cells, which express ADAM12 at the cell surface, in a temporal pattern. We report that protein kinase C (PKC) epsilon induces ADAM12 translocation to the cell......The ADAM (a disintegrin and metalloprotease) family consists of multidomain cell-surface proteins that have a major impact on cell behavior. These transmembrane-anchored proteins are synthesized as proforms that have (from the N terminus): a prodomain; a metalloprotease-, disintegrin......-immunoprecipitated from membrane-enriched fractions of PMA-treated cells, 3) RD cells transfected with EGFP-tagged, myristoylated PKCepsilon expressed more ADAM12 at the cell surface than did non-transfected cells, and 4) RD cells transfected with a kinase-inactive PKCepsilon mutant did not exhibit ADAM12 cell...

  3. Vibrio cholerae expresses cell surface antigens during intestinal infection which are not expressed during in vitro culture.

    OpenAIRE

    Jonson, G.; Svennerholm, A M; Holmgren, J

    1989-01-01

    Vibrio cholerae O1 bacteria harvested directly from ligated or nonligated intestines of rabbits with experimental cholera expressed at least 7 to 8 novel, in vivo-specific cell envelope (env) proteins that were not found on vibrios after in vitro culture in various ordinary liquid media. At the same time, several of the env proteins ordinarily expressed in vitro had disappeared or become much reduced. The infection-induced novel env protein were immunogenic. In immunoblot analyses, antisera r...

  4. [Stable expression of recombinant human podoplanin in Chinese hamster ovary (CHO) cells].

    Science.gov (United States)

    Qu, Le; Zhao, Xingpeng; Fu, Jianxin; Xia, Lijun; Dai, Lan; Ruan, Changgeng; Zhao, Yiming

    2016-01-01

    Objective To construct podoplanin (PDPN) eukaryotic expression plasmid PDPN-pEGFP-N1, establish Chinese hamster ovary (CHO) cell line stably expressing recombinant human PDPN and investigate its biological activity. Methods PDPN cDNA was cloned from HEK293 cells by reverse transcription PCR and recombinant DNA technology and inserted into plasmid pEGFP-N1 labeled by enhanced green fluorescent protein (EGFP). The recombinant vector was identified by PCR, restriction enzyme digestion and DNA sequencing, and then transfected into CHO cells. Recombinant PDPN-EGFP was observed by fluorescent microscopy and CHO cell line with the high expression of PDPN-EGFP was selected by flow cytometry. Recombinant PDPN was detected by Western blotting and the biological activity of the cell line was determined by platelet aggregation assay. Results DNA sequencing and restriction enzyme digestion proved that the gene of PDPN was inserted successfully into pEGFP-N1 plasmid. After stable transfection of the recombinant plasmid into CHO cells, CHO with EGFP could be seen under a fluorescent microscope. The CHO cell line with the high expression of recombinant PDPN-EGFP was obtained after sorting by flow cytometry. Western blotting showed that the recombinant PDPN was expressed on the cell surface. The over-expressing PDPN-EGFP CHO cells were able to induce human platelet aggregation. Conclusion The CHO cell line with the stable and high expression of recombinant PDPN-EGFP has been constructed successfully, and it could induce platelet aggregation. PMID:26728373

  5. Age and vitamin E-induced changes in Gene Expression Profiles of T cells

    Science.gov (United States)

    T cell is vulnerable to age associated changes and vitamin E has been shown to improve T cell functions in the old. We studied the gene expression profile of T cells to better understand the underlying mechanisms of age and vitamin E-induced changes in T cell function. Young and old C57BL mice were ...

  6. Differential expression of neural cell adhesion molecule and cadherins in pancreatic islets, glucagonomas, and insulinomas

    DEFF Research Database (Denmark)

    Møller, C J; Christgau, S; Williamson, M R; Madsen, O D; Niu, Z P; Bock, E; Baekkeskov, S

    1992-01-01

    a process where cell adhesion molecules are involved. In this study we have analyzed the expression of neural cell adhesion molecule (NCAM) and cadherin molecules in neonatal, young, and adult rat islet cells as well as in glucagonomas and insulinomas derived from a pluripotent rat islet cell tumor...

  7. CIRCADIAN CLOCK AND CELL CYCLE GENE EXPRESSION: IN MOUSE MAMMARY EPITHELIAL CELLS AND IN THE DEVELOPING MOUSE MAMMARY GLAND

    OpenAIRE

    Metz, Richard P.; Qu, Xiaoyu; Laffin, Brian; Earnest, David; Porter, Weston W.

    2006-01-01

    Mouse mammary epithelial cells (HC-11) and mammary tissues were analyzed for developmental changes in circadian clock, cellular proliferation and differentiation marker genes. Expression of the clock genes, Per1 and Bmal1, were elevated in differentiated HC-11 cells whereas Per2 mRNA levels were higher in undifferentiated cells. This differentiation-dependent profile of clock gene expression was consistent with that observed in mouse mammary glands as Per1 and Bmal1 mRNA levels were elevated ...

  8. Cell-Specific Expression of Connexins and Evidence of Restricted Gap Junctional Coupling between Glial Cells and between Neurons

    OpenAIRE

    Rash, John E.; Yasumura, Thomas; Dudek, F. Edward; NAGY, JAMES I.

    2001-01-01

    The transmembrane connexin proteins of gap junctions link extracellularly to form channels for cell-to-cell exchange of ions and small molecules. Two primary hypotheses of gap junction coupling in the CNS are the following: (1) generalized coupling occurs between neurons and glia, with some connexins expressed in both neurons and glia, and (2) intercellular junctional coupling is restricted to specific coupling partners, with different connexins expressed in each cell type. There is consensus...

  9. Expression of Hyaluronan and the Hyaluronan-Binding Proteoglycans Neurocan, Aggrecan and Versican by Neural Stem Cells and Neural Cells Derived from Embryonic Stem Cells

    OpenAIRE

    Abaskharoun, Mary; Bellemare, Marie; Lau, Elizabeth; Margolis, Richard U

    2010-01-01

    We have examined the expression and localization patterns of hyaluronan and hyaluronan-binding chondroitin sulfate proteoglycans in neural stem cells and differentiated neural cells derived from mouse embryonic stem cells. Expression of proteoglycans and hyaluronan was weak in the SSEA1-positive embryonic stem cells but increased noticeably after retinoic acid induction to nestin-positive neural stem cells. After subsequent plating, the hyaluronan-binding chondroitin sulfate proteoglycans agg...

  10. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    International Nuclear Information System (INIS)

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ERα signaling. However, many ERα-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ERα signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ERα-negative cells. We previously noticed that both ERα-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ERα-negative cell lines even exceeded its over-expression level in ERα-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ERα-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene

  11. Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating Klotho Gene Expression.

    Science.gov (United States)

    Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad

    2015-01-01

    Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057

  12. Variability of gene expression profiles in human blood and lymphoblastoid cell lines

    Directory of Open Access Journals (Sweden)

    Taylor Jennifer M

    2010-02-01

    Full Text Available Abstract Background Readily accessible samples such as peripheral blood or cell lines are increasingly being used in large cohorts to characterise gene expression differences between a patient group and healthy controls. However, cell and RNA isolation procedures and the variety of cell types that make up whole blood can affect gene expression measurements. We therefore systematically investigated global gene expression profiles in peripheral blood from six individuals collected during two visits by comparing five of the following cell and RNA isolation methods: whole blood (PAXgene, peripheral blood mononuclear cells (PBMCs, lymphoblastoid cell lines (LCLs, CD19 and CD20 specific B-cell subsets. Results Gene expression measurements were clearly discriminated by isolation method although the reproducibility was high for all methods (range ρ = 0.90-1.00. The PAXgene samples showed a decrease in the number of expressed genes (P -16 with higher variability (P -16 compared to the other methods. Differentially expressed probes between PAXgene and PBMCs were correlated with the number of monocytes, lymphocytes, neutrophils or erythrocytes. The correlations (ρ = 0.83; ρ = 0.79 of the expression levels of detected probes between LCLs and B-cell subsets were much lower compared to the two B-cell isolation methods (ρ = 0.98. Gene ontology analysis of detected genes showed that genes involved in inflammatory responses are enriched in B-cells CD19 and CD20 whereas genes involved in alcohol metabolic process and the cell cycle were enriched in LCLs. Conclusion Gene expression profiles in blood-based samples are strongly dependent on the predominant constituent cell type(s and RNA isolation method. It is crucial to understand the differences and variability of gene expression measurements between cell and RNA isolation procedures, and their relevance to disease processes, before application in large clinical studies.

  13. Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide

    International Nuclear Information System (INIS)

    Recently it has been reported that, toll-like receptors (TLRs) are expressed on a series of tumor cells, such as colon cancer, breast cancer, prostate cancer, melanoma and lung cancer. Although some cancer cells like melanoma cells are known to respond to lipopolysaccharide (LPS) via TLR4, not all cancer cells are positive for TLR4. There is little information on the expression and function of TLR4 in neuroblastoma cells. In this study, we investigated the expression of TLR4 in human neuroblastoma NB-1 cell line. Expression and localization of TLR4 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometric analysis, respectively. Activation of nuclear factor (NF)-κB by LPS was detected by degradation of IκB-α and NF-κB luciferase assay. Activation and expression of mitogen-activated protein (MAP) kinase and interferon regulatory factor (IRF)-3 was detected by immunoblot analysis. Human NB-1 neuroblastoma cells expressed intracellular form of TLR4, but not the cell surface form. Further, NB-1 cells express CD14, MD2 and MyD88, which are required for LPS response. However, LPS did not significantly induce NF-κB activation in NB-1 cells although it slightly degraded IκB-α. NB-1 cells expressed no IRF-3, which plays a pivotal role on the MyD88-independent pathway of LPS signaling. Collectively, NB-1 cells are capable to avoid their response to LPS. Although human NB-1 neuroblastoma cells possessed all the molecules required for LPS response, they did not respond to LPS. It might be responsible for intracellular expression of TLR4 or lack of IRF-3

  14. Differential expression of nanog1 and nanogp8 in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Tatsuya; Sato, Ai; Ohata, Hirokazu; Sakai, Hiroaki [Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Nakagama, Hitoshi, E-mail: hnakagam@ncc.go.jp [Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Okamoto, Koji, E-mail: kojokamo@ncc.go.jo [Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Nanog is expressed in a majority of colon cancer cell lines examined. Black-Right-Pointing-Pointer Both nanog1 and nanogp8 are expressed in colon cancer cells with varying ratios. Black-Right-Pointing-Pointer Nanog mediates cell proliferation of colon cancer cells. Black-Right-Pointing-Pointer Nanog predominantly localizes in cytoplasm of colon cancer cells. -- Abstract: Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement during cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.

  15. Differential expression of nanog1 and nanogp8 in colon cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Nanog is expressed in a majority of colon cancer cell lines examined. ► Both nanog1 and nanogp8 are expressed in colon cancer cells with varying ratios. ► Nanog mediates cell proliferation of colon cancer cells. ► Nanog predominantly localizes in cytoplasm of colon cancer cells. -- Abstract: Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement during cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.

  16. Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Mori Isamu

    2006-12-01

    Full Text Available Abstract Background Recently it has been reported that, toll-like receptors (TLRs are expressed on a series of tumor cells, such as colon cancer, breast cancer, prostate cancer, melanoma and lung cancer. Although some cancer cells like melanoma cells are known to respond to lipopolysaccharide (LPS via TLR4, not all cancer cells are positive for TLR4. There is little information on the expression and function of TLR4 in neuroblastoma cells. In this study, we investigated the expression of TLR4 in human neuroblastoma NB-1 cell line. Methods Expression and localization of TLR4 were detected by reverse transcription-polymerase chain reaction (RT-PCR and flow cytometric analysis, respectively. Activation of nuclear factor (NF-κB by LPS was detected by degradation of IκB-α and NF-κB luciferase assay. Activation and expression of mitogen-activated protein (MAP kinase and interferon regulatory factor (IRF-3 was detected by immunoblot analysis. Results Human NB-1 neuroblastoma cells expressed intracellular form of TLR4, but not the cell surface form. Further, NB-1 cells express CD14, MD2 and MyD88, which are required for LPS response. However, LPS did not significantly induce NF-κB activation in NB-1 cells although it slightly degraded IκB-α. NB-1 cells expressed no IRF-3, which plays a pivotal role on the MyD88-independent pathway of LPS signaling. Collectively, NB-1 cells are capable to avoid their response to LPS. Conclusion Although human NB-1 neuroblastoma cells possessed all the molecules required for LPS response, they did not respond to LPS. It might be responsible for intracellular expression of TLR4 or lack of IRF-3.

  17. Expression of G-protein inwardly rectifying potassium channels (GIRKs) in lung cancer cell lines

    International Nuclear Information System (INIS)

    Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1) in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR) and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU) assay. GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC) cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM) daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM) decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM) also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2) was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4) mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4) mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein expression was not seen in any non-SCLC cells

  18. RASSF1C modulates the expression of a stem cell renewal gene, PIWIL1

    Directory of Open Access Journals (Sweden)

    Reeves Mark E

    2012-05-01

    Full Text Available Abstract Background RASSF1A and RASSF1C are two major isoforms encoded by the Ras association domain family 1 (RASSF1 gene through alternative promoter selection and mRNA splicing. RASSF1A is a well established tumor suppressor gene. Unlike RASSF1A, RASSF1C appears to have growth promoting actions in lung cancer. In this article, we report on the identification of novel RASSF1C target genes in non small cell lung cancer (NSCLC. Methods Over-expression and siRNA techniques were used to alter RASSF1C expression in human lung cancer cells, and Affymetrix-microarray study was conducted using NCI-H1299 cells over-expressing RASSF1C to identify RASSF1C target genes. Results The microarray study intriguingly shows that RASSF1C modulates the expression of a number of genes that are involved in cancer development, cell growth and proliferation, cell death, and cell cycle. We have validated the expression of some target genes using qRT-PCR. We demonstrate that RASSF1C over-expression increases, and silencing of RASSF1C decreases, the expression of PIWIL1 gene in NSCLC cells using qRT-PCR, immunostaining, and Western blot analysis. We also show that RASSF1C over-expression induces phosphorylation of ERK1/2 in lung cancer cells, and inhibition of the MEK-ERK1/2 pathway suppresses the expression of PIWIL1 gene expression, suggesting that RASSF1C may exert its activities on some target genes such as PIWIL1 through the activation of the MEK-ERK1/2 pathway. Also, PIWIL1 expression is elevated in lung cancer cell lines compared to normal lung epithelial cells. Conclusions Taken together, our findings provide significant data to propose a model for investigating the role of RASSF1C/PIWIL1 proteins in initiation and progression of lung cancer.

  19. High Expression of the RECK Gene in Breast Cancer Cells is Related to Low Invasive Capacity

    Institute of Scientific and Technical Information of China (English)

    Tao Sun; Daqing Jiang; Jinming Li; Dongyun Han; Zhiguo Song

    2006-01-01

    OBJECTIVE To investigate the expression of the RECK gene in human breast (cancer) cell lines, and to determine the relationship between RECK gene expression and the invasive capacity of the breast cancer cell lines.METHODS The invasive capacity of breast (cancer) cell lines including HBL-100, MCF-7 and MDA-MB-435S were determined by the Transwell method. The protein expression levels of RECK, MMP-2 and MMP- 9 genes in these three cell lines were measured by immunocytochemical methods. The expressions of the RECK gene and protein level were measured by RT-PCR and Western blots in the cell lines respectively.RESULTS The order of the invasive capacity of the breast (cancer) cell lines was MDA-MB-435S, being the highest, and HBL-100, being the lowest. The invasive capacity difference between any two groups among the three groups was significant (P<0.01). The protein expression level of the RECK gene in the HBL-100 cell line was highest, and no expression was detected in MDA-MB-435S cells. Moreover, the expression of the RECK gene was negatively correlated with the expression of the MMP-2 and MMP-9 genes. The mRNA level of the RECK gene in HBL-100 cells was the highest, but no expression was found in the MDA-MB-435S cells (P<0.001).CONCLUSION There was a significant negative correlation between the expression level of the RECK gene and invasive capacity in vitro, and the RECK gene expression showed an inverse proportion to that of the MMP-2, MMP-9 genes.

  20. Identification of Functional Human Splenic Memory B Cells by Expression of CD148 and CD27

    OpenAIRE

    Tangye, Stuart G.; Liu, Yong-Jun; Aversa, Gregorio; Phillips, Joseph H.; Vries, Jan E. de

    1998-01-01

    Memory B cells isolated from human tonsils are characterized by an activated cell surface phenotype, localization to mucosal epithelium, expression of somatically mutated immunoglobulin (Ig) variable (V) region genes, and a preferential differentiation into plasma cells in vitro. In spleens of both humans and rodents, a subset of memory B cells is believed to reside in the marginal zone of the white pulp. Similar to tonsil-derived memory B cells, splenic marginal zone B cells can be distingui...

  1. Comprehensive qPCR profiling of gene expression in single neuronal cells

    OpenAIRE

    Citri, Ami; Pang, Zhiping P.; Sudhof, Thomas C.; Wernig, Marius; Malenka, Robert C.

    2011-01-01

    A major challenge in neuronal stem cell biology lies in characterization of lineage-specific reprogrammed human neuronal cells, a process that necessitates the use of an assay sensitive to the single-cell level. Single-cell gene profiling can provide definitive evidence regarding the conversion of one cell type into another at a high level of resolution. The protocol we describe employs Fluidigm Biomark dynamic arrays for high-throughput expression profiling from single neuronal cells, assayi...

  2. Expression Profile of microRNAs Regulating Proliferation and Differentiation in Mouse Adult Cardiac Stem Cells

    OpenAIRE

    Brás-Rosário, Luis; Matsuda, Alex; Pinheiro, Ana Isabel; Gardner, Rui; Lopes, Telma; Amaral, Andreia; Gama-Carvalho, Margarida

    2013-01-01

    The identification of cardiac cells with stem cell properties changed the paradigm of the heart as a post mitotic organ. These cells proliferate and differentiate into cardiomyocytes, endothelial and vascular smooth muscle cells, providing for cardiac cell homeostasis and regeneration. microRNAs are master switches controlling proliferation and differentiation, in particular regulating stem cell biology and cardiac development. Modulation of microRNAs -regulated gene expression networks holds...

  3. Cardosins improve neuronal regeneration after cell disruption: a comparative expression study

    OpenAIRE

    Duarte, Ana; Duarte, Emília; Correia, António; Pires, Euclides; Barros, Marlene

    2008-01-01

    Abstract The establishment of primary cell cultures is invaluable for studying cell and molecular biological questions. Although primary cell cultures more closely resemble and function like in the native environment, during the culture establishment the cells undergo several changes including the damage sustained during their removal from original tissue. The resultant cells have to rebalance the expression of their processing molecules to ascertain matrix signalling that ensure cell adapta...

  4. Changes in expression of VE-cadherin and MMPs in endothelial cells: Implications for angiogenesis

    OpenAIRE

    Kiran Manikantan S; Viji Raveendran I; Kumar Sameer VB; Prabhakaran Athira A; Sudhakaran Perumana R

    2011-01-01

    Abstract The mechanism of cell-cell contact dependent regulation of pericellular proteolysis in angiogenesis was examined by studying the expression of MMPs using isolated HUVECs in culture. Zymography, Immunoblot and RT-PCR analysis showed that the production and secretion of matrixmetalloproteinase-2 and matrixmetalloproteinase-9 by HUVECs in culture were high when they remain as individual cells and significantly decreased during later stages of culture when cells developed cell-cell conta...

  5. Expression of members of immunoglobulin gene family in somatic cell hybrids between human B and T cells

    Energy Technology Data Exchange (ETDEWEB)

    Kozbor, D.; Burioni, R.; Ar-Rushdi, A.; Zmijewski, C.; Croce, C.M.

    1987-07-01

    Somatic cell hybrids were obtained between human T and B cells and tested for the expression of differentiated traits of both cell lineages. The T-cell parent SUP-T1 is CD3/sup -/, CD4/sup +/, CD1/sup +/, CD8/sup +/, is weakly positive for HLA class I determinants, and has an inversion of chromosome 14 due to a site-specific recombination event between an immunoglobulin heavy-chain variable gene and the joining segment of the T-cell receptor ..cap alpha.. chain. The B-cell parent, the 6-thioguanine- and ouabain-resistant mutant GM1500, is a lymphoblastoid cell line that secretes IgG2, K chains, and expresses B1, B532, and HLA class I and II antigens. All hybrids expressed characteristics of B cells (Ig/sup +/, B1/sup +/, B532/sup +/, EBNA/sup +/, HLA antigens), whereas only CD4 among the T-cell markers was expressed. The level of T-cell receptor ..beta..-chain transcript was greatly reduced and no RNA of the chimeric T-cell receptor ..cap alpha..-chain joining segment-immunoglobulin heavy-chain variable region was detected. Southern blot analysis indicated that absence of T-cell differentiation markers in the hybrids was not due to chromosomal loss. Rather, some B-cell-specific factor present in the hybrids may account for the suppression.

  6. Cell cycle and anti-estrogen effects synergize to regulate cell proliferation and ER target gene expression.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    Full Text Available Antiestrogens are designed to antagonize hormone induced proliferation and ERalpha target gene expression in mammary tumor cells. Commonly used drugs such as OH-Tamoxifen and ICI 182780 (Fulvestrant block cell cycle progression in G0/G1. Inversely, the effect of cell cycle stage on ER regulated gene expression has not been tested directly. We show that in ERalpha-positive breast cancer cells (MCF-7 the estrogen receptor gene and downstream target genes are cell cycle regulated with expression levels varying as much as three-fold between phases of the cell cycle. Steroid free culture conditions commonly used to assess the effect of hormones or antiestrogens on gene expression also block MCF-7 cells in G1-phase when several ERalpha target genes are overexpressed. Thus, cell cycle effects have to be taken into account when analyzing the impact of hormonal treatments on gene transcription. We found that antiestrogens repress transcription of several ERalpha target genes specifically in S phase. This observation corroborates the more rapid and strong impact of antiestrogen treatments on cell proliferation in thymidine, hydroxyurea or aphidicolin arrested cells and correlates with an increase of apoptosis compared to similar treatments in lovastatin or nocodazol treated cells. Hence, cell cycle effects synergize with the action of antiestrogens. An interesting therapeutic perspective could be to enhance the action of anti-estrogens by associating hormone-therapy with specific cell cycle drugs.

  7. Cell-surface serglycin promotes adhesion of myeloma cells to collagen type I and affects the expression of matrix metalloproteinases.

    Science.gov (United States)

    Skliris, Antonis; Labropoulou, Vassiliki T; Papachristou, Dionysios J; Aletras, Alexios; Karamanos, Nikos K; Theocharis, Achilleas D

    2013-05-01

    Serglycin (SG) is mainly expressed by hematopoetic cells as an intracellular proteoglycan. Multiple myeloma cells constitutively secrete SG, which is also localized on the cell surface in some cell lines. In this study, SG isolated from myeloma cells was found to interact with collagen type I (Col I), which is a major bone matrix component. Notably, myeloma cells positive for cell-surface SG (csSG) adhered significantly to Col I, compared to cells lacking csSG. Removal of csSG by treatment of the cells with chondroitinase ABC or blocking of csSG by an SG-specific polyclonal antibody significantly reduced the adhesion of myeloma cells to Col I. Significant up-regulation of expression of the matrix metalloproteinases MMP-2 and MMP-9 at both the mRNA and protein levels was observed when culturing csSG-positive myeloma cells on Col I-coated dishes or in the presence of soluble Col I. MMP-9 and MMP-2 were also expressed in increased amounts by myeloma cells in the bone marrow of patients with multiple myeloma. Our data indicate that csSG of myeloma cells affects key functional properties, such as adhesion to Col I and the expression of MMPs, and imply that csSG may serve as a potential prognostic factor and/or target for pharmacological interventions in multiple myeloma. PMID:23387827

  8. Expression of members of immunoglobulin gene family in somatic cell hybrids between human B and T cells

    International Nuclear Information System (INIS)

    Somatic cell hybrids were obtained between human T and B cells and tested for the expression of differentiated traits of both cell lineages. The T-cell parent SUP-T1 is CD3-, CD4+, CD1+, CD8+, is weakly positive for HLA class I determinants, and has an inversion of chromosome 14 due to a site-specific recombination event between an immunoglobulin heavy-chain variable gene and the joining segment of the T-cell receptor α chain. The B-cell parent, the 6-thioguanine- and ouabain-resistant mutant GM1500, is a lymphoblastoid cell line that secretes IgG2, K chains, and expresses B1, B532, and HLA class I and II antigens. All hybrids expressed characteristics of B cells (Ig+, B1+, B532+, EBNA+, HLA antigens), whereas only CD4 among the T-cell markers was expressed. The level of T-cell receptor β-chain transcript was greatly reduced and no RNA of the chimeric T-cell receptor α-chain joining segment-immunoglobulin heavy-chain variable region was detected. Southern blot analysis indicated that absence of T-cell differentiation markers in the hybrids was not due to chromosomal loss. Rather, some B-cell-specific factor present in the hybrids may account for the suppression

  9. Effect of allyl alcohol on hepatic transporter expression: Zonal patterns of expression and role of Kupffer cell function

    International Nuclear Information System (INIS)

    During APAP toxicity, activation of Kupffer cells is critical for protection from hepatotoxicity and up-regulation of multidrug resistance-associated protein 4 (Mrp4) in centrilobular hepatocytes. The present study was performed to determine the expression profile of uptake and efflux transporters in mouse liver following treatment with allyl alcohol (AlOH), a periportal hepatotoxicant. This study also investigated the role of Kupffer cells in AlOH hepatotoxicity, and whether changes in transport protein expression by AlOH are dependent on the presence of Kupffer cells. C57BL/6J mice received 0.1 ml clodronate liposomes to deplete Kupffer cells or empty liposomes 48 h prior to dosing with 60 mg/kg AlOH, i.p. Hepatotoxicity was assessed by plasma ALT and histopathology. Hepatic transporter mRNA and protein expression were determined by branched DNA signal amplification assay and Western blotting, respectively. Depletion of Kupffer cells by liposomal clodronate treatment resulted in heightened susceptibility to AlOH toxicity. Exposure to AlOH increased mRNA levels of several Mrp genes, while decreasing organic anion transporting polypeptides (Oatps) mRNA expression. Protein analysis mirrored many of these mRNA changes. The presence of Kupffer cells was not required for the observed changes in uptake and efflux transporters induced by AlOH. Immunofluorescent analysis revealed enhanced Mrp4 staining exclusively in centrilobular hepatocytes of AlOH treated mice. These findings demonstrate that Kupffer cells are protective from AlOH toxicity and that induction of Mrp4 occurs in liver regions away from areas of AlOH damage independent of Kupffer cell function. These results suggest that Kupffer cell mediators do not play a role in mediating centrilobular Mrp4 induction in response to periportal damage by AlOH

  10. Effect of allyl alcohol on hepatic transporter expression: Zonal patterns of expression and role of Kupffer cell function

    Science.gov (United States)

    Campion, Sarah N.; Tatis-Rios, Cristina; Augustine, Lisa M.; Goedken, Michael J.; van Rooijen, Nico; Cherrington, Nathan J.; Manautou, José E.

    2015-01-01

    During APAP toxicity, activation of Kupffer cells is critical for protection from hepatotoxicity and up-regulation of multidrug resistance-associated protein 4 (Mrp4) in centrilobular hepatocytes. The present study was performed to determine the expression profile of uptake and efflux transporters in mouse liver following treatment with allyl alcohol (AlOH), a periportal hepatotoxicant. This study also investigated the role of Kupffer cells in AlOH hepatotoxicity, and whether changes in transport protein expression by AlOH are dependent on the presence of Kupffer cells. C57BL/6J mice received 0.1 ml clodronate liposomes to deplete Kupffer cells or empty liposomes 48 h prior to dosing with 60 mg/kg AlOH, i.p. Hepatotoxicity was assessed by plasma ALT and histopathology. Hepatic transporter mRNA and protein expression were determined by branched DNA signal amplification assay and Western blotting, respectively. Depletion of Kupffer cells by liposomal clodronate treatment resulted in heightened susceptibility to AlOH toxicity. Exposure to AlOH increased mRNA levels of several Mrp genes, while decreasing organic anion transporting polypeptides (Oatps) mRNA expression. Protein analysis mirrored many of these mRNA changes. The presence of Kupffer cells was not required for the observed changes in uptake and efflux transporters induced by AlOH. Immunofluorescent analysis revealed enhanced Mrp4 staining exclusively in centrilobular hepatocytes of AlOH treated mice. These findings demonstrate that Kupffer cells are protective from AlOH toxicity and that induction of Mrp4 occurs in liver regions away from areas of AlOH damage independent of Kupffer cell function. These results suggest that Kupffer cell mediators do not play a role in mediating centrilobular Mrp4 induction in response to periportal damage by AlOH. PMID:19371622

  11. A quantitative inverse relationship between connexin32 expression and cell proliferation in a rat hepatoma cell line

    International Nuclear Information System (INIS)

    Gap junctions comprised of connexin proteins are involved in direct intercellular communication and the regulation of cell behaviour and homeostasis. Reduced connexin expression and loss of gap junction function is a characteristic of many cancer cells and of the effect of many non-genotoxic carcinogens that induce cell proliferation. Moreover, when certain cancer cell lines are transfected with specific connexin genes, cells can regain control over proliferation. We have employed RNA interference and dexamethasone to modulate connexin32 expression in MH1C1 cells to a range of concentrations. This allowed the determination of the quantitative relationship between connexin32 protein expression and cell proliferation. The magnitude of cell proliferation, measured by bromodeoxyuridine incorporation, was inversely proportional to the level of connexin32 expression. Q-PCR indicated a lack of change of expression of a range of cell cycle-related genes at 24 h. The inverse relationship between Cx32 expression and proliferation was continuous, and a threshold level of reduction of connexin32 was not observable for an influence on proliferation

  12. Ectopic expression of telomerase enhances osteopontin and osteocalcin expression during osteogenic differentiation of human mesenchymal stem cells from elder donors

    Directory of Open Access Journals (Sweden)

    Machado CB

    2009-01-01

    Full Text Available Age related bone loss is one of the most prevalent diseases in the elder population. The osteoblasts are the effectors cells of bone formation and regeneration. With the aging the osteoblasts become senescent reducing their ability to produce bone. Cellular replicative senescence is triggered by telomers shortening. Telomerase elongate the telomers length and maintain the cell proliferative capacity. Here, we demonstrated that the expression of human telomerase reverse transcriptase mediated by an adenovirus vector increases the levels of osteopontin and osteocalcin mRNA during the in vitro osteogenic differentiation of elderly human mesenchymal stem cells. Bone marrow human mesenchymal stem cells were obtained from old donors (>65 years and induced to differentiate into osteoblasts for 14 days. The levels of mRNA of human telomerase reverse transcriptase, osteopontin and osteocalcin during the differentiation were assessed by semi-quantitative PCR before and during the differentiation on days 7 and 14. Infected cells showed 1.5 fold increase in telomerase expression. Also telomerized cells exhibit 1.5 fold increase in osteopontin and 0.5 fold increase in osteocalcin expression compared to primary osteoblasts isolated from the same donors. The transformed cells were not able to form tumours in NUDE mice.

  13. Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, M; Angelo, K;

    2002-01-01

    and oocytes. To address this problem, we have constructed a plasmid vector, pXOOM, that can function as a template for expression in both oocytes and mammalian cells. By including all the necessary RNA stability elements for oocyte expression in a standard mammalian expression vector, we have obtained...

  14. Increased T cell expression of CD154 (CD40-ligand) in multiple sclerosis

    DEFF Research Database (Denmark)

    Jensen, J; Krakauer, M; Sellebjerg, F

    2001-01-01

    with secondary progressive MS (SPMS) had constitutive CD154 expression on CD4 and CD8 T cells in blood. Constitutive CD154 expression was not observed in patients with relapsing-remitting MS (RRMS) or clinically isolated syndromes (CIS) suggestive of demyelinating disease. After ex vivo activation CD154 was...... with constitutive, systemic CD154 expression....

  15. Different Effects of BORIS/CTCFL on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells.

    Directory of Open Access Journals (Sweden)

    Loredana Alberti

    Full Text Available Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites or CTCFL (CTCF-like is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1 and cancer stem cell markers (ABCG2, CD44 and ALDH1 genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7. Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.

  16. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells

    DEFF Research Database (Denmark)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe;

    2009-01-01

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-spec...... cell mass and curing diabetes in animals that have been chemically depleted of beta cells....

  17. Expression of mesenchymal stem cell marker CD90 on dermal sheath cells of the anagen hair follicle in canine species

    OpenAIRE

    Gargiulo, A.M.; Pedini, V.; C. Dall’Aglio; Ceccarelli, P.; L. Pascucci; F Mercati

    2009-01-01

    The dermal sheath (DS) of the hair follicle is comprised by fibroblast-like cells and extends along the follicular epithelium, from the bulb up to the infundibulum. From this structure, cells with stem characteristics were isolated: they have a mesenchymal origin and express CD90 protein, a typical marker of mesenchymal stem cells. It is not yet really clear in which region of hair follicle these cells are located but some experimental evidence suggests that dermal stem cells are localized pr...

  18. Thymus cell antigen 1 (Thy1, CD90) is expressed by lymphatic vessels and mediates cell adhesion to lymphatic endothelium

    OpenAIRE

    Jurisic, Giorgia; Iolyeva, Maria; Proulx, Steven T; Halin, Cornelia; Detmar, Michael

    2010-01-01

    The lymphatic vascular system plays an important role in inflammation and cancer progression, although the molecular mechanisms involved are poorly understood. As determined by comparative transcriptional profiling studies of ex vivo isolated mouse intestinal lymphatic endothelial cells versus blood vascular endothelial cells, thymus cell antigen 1 (Thy1, CD90) was expressed at much higher levels in lymphatic endothelial cells than in blood vascular endothelial cells. These findings were conf...

  19. Expression of chicken CTCF gene in COS-1 cells and partial purification of CTCF protein.

    Science.gov (United States)

    Kotova, E S; Sorokina, I V; Akopov, S B; Nikolaev, L G; Sverdlov, E D

    2013-08-01

    The chicken gene for transcription factor CTCF was expressed in COS-1 mammalian cells. The CTCF protein containing polyhistidine tag was partially purified using metallo-affinity and ion-exchange chromatography. The expressed protein localized in the cell nucleus and was shown to be functionally active in the electrophoretic mobility shift assay and specifically interacted with anti-CTCF antibodies. PMID:24228875

  20. Cell density related gene expression: SV40 large T antigen levels in immortalized astrocyte lines

    Directory of Open Access Journals (Sweden)

    Jacobberger James W

    2002-04-01

    Full Text Available Abstract Background Gene expression is affected by population density. Cell density is a potent negative regulator of cell cycle time during exponential growth. Here, we asked whether SV40 large T antigen (Tag levels, driven by two different promoters, changed in a predictable and regular manner during exponential growth in clonal astrocyte cell lines, immortalized and dependent on Tag. Results Expression and cell cycle phase fractions were measured and correlated using flow cytometry. T antigen levels did not change or increased during exponential growth as a function of the G1 fraction and increasing cell density when Tag was transcribed from the Moloney Murine Leukemia virus (MoMuLV long terminal repeat (LTR. When an Rb-binding mutant T antigen transcribed from the LTR was tested, levels decreased. When transcribed from the herpes thymidine kinase promoter, Tag levels decreased. The directions of change and the rates of change in Tag expression were unrelated to the average T antigen levels (i.e., the expression potential. Conclusions These data show that Tag expression potential in these lines varies depending on the vector and clonal variation, but that the observed level depends on cell density and cell cycle transit time. The hypothetical terms, expression at zero cell density and expression at minimum G1 phase fraction, were introduced to simplify measures of expression potential.

  1. RNA interference inhibits expression of vascular endothelial growth factor (VEGF) in human retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    CAI Chun-mei; SUN Bao-chen; LIU Xu-yang; WANG Jin-jin; LI Jun-fa; HAN Song; WANG Ning-li; LU Qing-jun

    2005-01-01

    @@ Choroidal neovascularization (CNV), a major cause of vision loss, is the result of the increased vascular endothelial growth factor (VEGF) expression in human retinal pigment epithelial (RPE) cells. It is important to inhibit the expression of VEGF protein in RPE cells.

  2. Regional differences in expression of specific markers for human embryonic stem cells

    DEFF Research Database (Denmark)

    Laursen, Steen B; Møllgård, Kjeld; Olesen, Christian;

    2007-01-01

    Characterization of human embryonic stem cell (hESC) lines derived from the inner cell masses of blastocysts generally includes expression analysis of markers such as OCT4, NANOG, SSEA3, SSEA4, TRA-1-60 and TRA-1-81. Expression is usually detected by immunocytochemical staining of entire colonies...

  3. PD-L1 Expression Is Increased in a Subset of Basal Type Breast Cancer Cells

    OpenAIRE

    Soliman, Hatem; Khalil, Farah; Antonia, Scott

    2014-01-01

    Background Tumor cells express programmed death ligand 1 (PD-L1) and is a key immune evasion mechanism. PD-L1 expression in multiple breast cancer cell lines was evaluated to identify intrinsic differences that affect their potential for immune evasion. Methods PD-L1 expression was analyzed in six breast cancer cell lines: AU565&MCF7 (luminal), BT20&HCC1143 (basal A), MDA231&HCC38 (basal B). Surface and intracellular PD-L1 expression +/− interferon γ for 48 hours was measured by flow cytometr...

  4. Lineage-specific expression of bestrophin-2 and bestrophin-4 in human intestinal epithelial cells

    DEFF Research Database (Denmark)

    Ito, Go; Okamoto, Ryuichi; Murano, Tatsuro;

    2013-01-01

    Intestinal epithelial cells (IECs) regulate the absorption and secretion of anions, such as HCO3(-) or Cl(-). Bestrophin genes represent a newly identified group of calcium-activated Cl(-) channels (CaCCs). Studies have suggested that, among the four human bestrophin-family genes, bestrophin-2...... (BEST2) and bestrophin-4 (BEST4) might be expressed within the intestinal tissue. Consistently, a study showed that BEST2 is expressed by human colonic goblet cells. However, their precise expression pattern along the gastrointestinal tract, or the lineage specificity of the cells expressing these genes...

  5. Deficient SOCS3 and SHP-1 Expression in Psoriatic T Cells

    DEFF Research Database (Denmark)

    Eriksen, Karsten W; Woetmann, Anders; Skov, Lone;

    2010-01-01

    , we show that psoriatic T cells display deficient expression of the suppressor of cytokine signaling (SOCS)3 in response to IFN-alpha and a low baseline expression of the SH2-domain-containing protein-tyrosine phosphatase (SHP)-1 when compared with skin T cells from nonpsoriatic donors. Moreover, IFN......-alpha-stimulated psoriatic T cells show enhanced activation of JAKs (JAK1 and TYK2) and signal transducers and activators of transcription. Increased expression of SOCS3 proteins resulting from proteasomal blockade partially inhibits IFN-alpha response. Similarly, forced expression of SOCS3 and SHP-1 inhibits IFN...

  6. Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li Qianqian

    2010-10-01

    Full Text Available Abstract Background Spontaneous immortalisation of cultured mammary epithelial cells (MECs is an extremely rare event, and the molecular mechanism behind spontaneous immortalisation of MECs is unclear. Here, we report the establishment of a spontaneously immortalised bovine mammary epithelial cell line (BME65Cs and the changes in gene expression associated with BME65Cs cells. Results BME65Cs cells maintain the general characteristics of normal mammary epithelial cells in morphology, karyotype and immunohistochemistry, and are accompanied by the activation of endogenous bTERT (bovine Telomerase Reverse Transcriptase and stabilisation of the telomere. Currently, BME65Cs cells have been passed for more than 220 generations, and these cells exhibit non-malignant transformation. The expression of multiple genes was investigated in BME65Cs cells, senescent BMECs (bovine MECs cells, early passage BMECs cells and MCF-7 cells (a human breast cancer cell line. In comparison with early passage BMECs cells, the expression of senescence-relevant apoptosis-related gene were significantly changed in BME65Cs cells. P16INK4a was downregulated, p53 was low expressed and Bax/Bcl-2 ratio was reversed. Moreover, a slight upregulation of the oncogene c-Myc, along with an undetectable level of breast tumor-related gene Bag-1 and TRPS-1, was observed in BME65Cs cells while these genes are all highly expressed in MCF-7. In addition, DNMT1 is upregulated in BME65Cs. These results suggest that the inhibition of both senescence and mitochondrial apoptosis signalling pathways contribute to the immortality of BME65Cs cells. The expression of p53 and p16INK4a in BME65Cs was altered in the pattern of down-regulation but not "loss", suggesting that this spontaneous immortalization is possibly initiated by other mechanism rather than gene mutation of p53 or p16INK4a. Conclusions Spontaneously immortalised BME65Cs cells maintain many characteristics of normal BMEC cells and

  7. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    Science.gov (United States)

    Chen, Dongfeng; Zuo, Duo; Luan, Cheng; Liu, Min; Na, Manli; Ran, Liang; Sun, Yingyu; Persson, Annette; Englund, Elisabet; Salford, Leif G; Renström, Erik; Fan, Xiaolong; Zhang, Enming

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation. These findings

  8. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    Directory of Open Access Journals (Sweden)

    Dongfeng Chen

    Full Text Available Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation

  9. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    International Nuclear Information System (INIS)

    Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells. Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr701-phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR. SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr701-phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation. These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ

  10. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory.

    Science.gov (United States)

    Heisler, Jillian M; O'Connor, Jason C

    2015-11-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057

  11. Expression of neurotrophins and their receptors in human CD34+ bone marrow cells.

    Science.gov (United States)

    Paczkowska, E; Piecyk, K; Luczkowska, K; Kotowski, M; Roginska, D; Pius-Sadowska, E; Oronowicz, K; Ostrowski, M; Machalinski, B

    2016-02-01

    Bone marrow (BM) CD34+ cells have the ability to secrete growth factors, cytokines, and chemotactic factors. We sought to better characterize this population and to investigate whether human BM CD34+ cells express neurotrophins (NTs) and their relevant receptors. We also compared their expression levels with BM nucleated cells (NCs). BM CD34+ cells were evaluated with respect to the expression levels of neurotrophins using qRT-PCR, immunofluorescent staining, and Western blotting. Next, the expression of specific (TrkA, TrkB, TrkC) and non-specific (p75NTR) neurotrophin receptors was detected by qRT-PCR and immunofluorescent staining in BM CD34+ cells. Using qRT- PCR, we show that even in the absence of inducing factors, CD34+ cells spontaneously express neurotrophins such as NGF, BDNF, NT-3, and NT-4. In addition, the NT expression levels in BM CD34+ cells are considerably higher than in NCs. Furthermore, we confirmed intracellular NT expression in BM CD34+ cells at the protein level using immunofluorescent staining and Western blotting. Using qRT-PCR, we found that immunomagnetically separated BM CD34+ cells spontaneously express high-affinity neurotrophin receptors (TrkA, TrkB, and TrkC) and the low-affinity receptor p75NTR at higher levels than NCs. Immunomagnetic CD34+ cell separation enables for the rapid and gentle sorting of stem/progenitor cells (SPCs) to prepare specific cell types for use in research and clinical applications. Our study suggests that BM CD34+ cells have the potential to support trophic factors for neural tissue and could contribute towards the protection and regeneration of neural cells. PMID:27010904

  12. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Rubina, Kseniya A., E-mail: rkseniya@mail.ru; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation); Poliakov, Alexei A. [Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA (United Kingdom); Treshalina, Helena M. [Federal State Budgetary Scietific Institution «N.N. Blokhin Russian Cancer Research Center» (FSBSI “N.N.Blokhin RCRC”), Kashirskoe Shosse 24, Moscow 115478 (Russian Federation); Tkachuk, Vsevolod A. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation)

    2015-07-21

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  13. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    International Nuclear Information System (INIS)

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells

  14. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakisaka, Yukihiko [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tohoku Fukushi University, Sendai 989-3201 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  15. Expression of Fas and Fas-L in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Govedarović Vitomir

    2006-01-01

    Full Text Available Introduction: The previous investigations revealed that Fas-L expression on tumor cells can be one of the reasons of tumor growth, or tumor regression, with or without activation of the immune response. Objective: The objective of our study was to investigate the expression of Fas and Fas-L in situ in normal human renal tissue as well as in different types of renal cell carcinoma (RCC according to tumor grading. Method: Expression of Fas and Fas-L was examined in 25 RCCs classified according to nuclear grades: G1-G3 and to cell type: 17 clear cells, 3 chromophilics (2 eosinophilics, 1 basophilic, 2 chromophobes and 3 spindle cells. Ten normal human kidneys were analyzed, too. Indirect immunoperoxidase technique was applied. Spread and intensity of staining of Fas and Fas-L molecules expression were scored semiquantitatively. Results: Distribution of Fas expression in these RCC was typically diffuse. However, Fas-L was almost completely absent in clear cell RCC. In 3 clear cell RCC, some tumor stromal cells exhibited strong expression of Fas-L. On the contrary, chromophilic, chromophobe and spindle cell RCCs grading from G2- G3, manifested variable combinations of Fas and Fas-L expression. Conclusion: The most of clear cell type low grade RCCs manifested intensive and extensive expression of Fas and completely absence of Fas-L. However, RCCs of high grade malignancy belonging to the clear cell, eosinophilic, chromophobe or spindle cell types can have various combinations of Fas and Fas-L expression. It may probably lead to development of different mechanisms of avoidance of immune response to RCC.

  16. Construction of Porcine CCK pDNA and Its Expression in COS-7 Cells

    Institute of Scientific and Technical Information of China (English)

    BAI Jigang; L(U) Yi; BAI Qiaoling

    2007-01-01

    CCK correlates with the generation and progression of pancreatic cancer. The research aims to construct eukaryotic expression plasmid pIRES2-EGFP/CCK (CCK pDNA