WorldWideScience

Sample records for cells cytotoxicity considerations

  1. Synchrotron infrared spectromicroscopy as a novel bioanalytical microprobe for individual living cells: Cytotoxicity considerations

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Bjornstad, Kathleen A.; McNamara, Morgan P.; Martin, Michael C.; McKinney, Wayne R.; Blakely, Eleanor A.

    2001-12-12

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging analytical tool capable of monitoring the biochemistry within an individual living mammalian cell in real time. This unique technique provides infrared (IR)spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Mid-IR photons are too low in energy (0.05-0.5 eV) to either break bonds or to cause ionization, and the synchrotron IR beam has been shown to produce minimal sample heating. However, an important question remains, ''Does the intense synchrotron beam induce any cytotoxic effects in living cells?'' In this work, we present the results from a series of standard biological assays to evaluate any short-and/or long-term effects on cells exposed to the synchrotron radiation-based infrared (SR-IR) beam. Cell viability was tested using alcian blue dye-exclusion and colony formation assays. Cell-cycle progression was tested with bromodeoxyuridine (BrdU) uptake during DNA synthesis. Cell metabolism was tested using an 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. All control, 5-, 10-, and 20-minute SR-IR exposure tests (267 total and over 1000 controls) show no evidence of cytotoxic effects. Concurrent infrared spectra obtained with each experiment confirm no detectable chemistry changes between control and exposed cells.

  2. Mycoplasma pneumoniae induces cytotoxic activity in guinea pig bronchoalveolar cells

    International Nuclear Information System (INIS)

    Precultured guinea pig alveolar macrophages (AM) and freshly harvested alveolar cells (FHAC) activated by interaction with Mycoplasma pneumoniae were cytotoxic for xenogeneic 75selenomethionine-labeled tumor target cells. Phagocytosis of whole opsonized or nonopsonized M. pneumoniae cells was more effective in eliciting cytotoxicity than uptake of sonicated microorganisms. The addition of living mycoplasma cells to the assay system enhanced the cytotoxic effect considerably. Target cells were significantly more susceptible to the cytotoxic action of phagocytes if they were coated with mycoplasma antigen or cocultured together with M. pneumoniae. The activation of the phagocytes could be inhibited by 2-deoxy-D-glucose but not by antimicrobial substances suppressing mycoplasma protein synthesis. It was accompanied by 51Cr release without detectable signs of cell damage. The supernatants of activated cells were cytotoxic for approximately 24 h. Inhibition, release, and cytotoxic activity indicate the necessity of an intact metabolism of the effector cells and suggest a secretion of cytotoxic substances

  3. Cell Death Mechanisms Induced by Cytotoxic Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    Ch(a)vez-Gal(a)n L; Arenas-Del Angel MC; Zenteno E; Ch(a)vez R; Lascurain R

    2009-01-01

    One of the functions of the immune system is to recognize and destroy abnormal or infected cells to maintain homeostasis. This is accomplished by cytotoxic lymphocytes. Cytotoxicity is a highly organized multifactor process. Here, we reviewed the apoptosis pathways induced by the two main cytotoxic lymphocyte subsets, natural killer (NK) cells and CD8+T cells. In base to recent experimental evidence, we reviewed NK receptors involved in recognition of target-cell, as well as lytic molecules such as perforin, granzymes-A and -B, and granulysin. In addition, we reviewed the Fas-FasL intercellular linkage mediated pathway, and briefly the cross-linking of tumor necrosis factor (TNF) and TNF receptor pathway. We discussed three models of possible molecular interaction between lyric molecules from effector cytotoxic cells and target-cell membrane to induction of apoptosis.

  4. Synchrotron-based FTIR spectromicroscopy: Cytotoxicity and heating considerations

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-12-13

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  5. Synchrotron-based FTIR spectromicroscopy Cytotoxicity and heating considerations

    CERN Document Server

    Holman, H Y N; McKinney, W R

    2002-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). These studies have established an important foundation for SR-FTIR spectromicroscopy in biological and biomedical research.

  6. Cytotoxic effects of curcumin in osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Moran JM

    2014-11-01

    Full Text Available JM Moran, FJ Rodriguez-Velasco, R Roncero-Martin, V Vera, JD Pedrera-Zamorano Metabolic Bone Diseases Research Group, University of Extremadura, Cáceres, SpainWe read with interest the results of the study from Chang et al1 in the International Journal of Nanomedicine. This article shows that curcumin (diferuloymethane, a phenolic compound extracted from the natural plant Curcuma longa L., exerts higher cytotoxicity in osteosarcoma MG-63 cells than in healthy human osteoblasts. Based on the dosages provided by the authors it is hypothesized that with the appropriate drug carriers, curcumin could be delivered to bone tumors and selectively kill osteosarcoma cells without harming healthy osteoblasts. This hypothesis is based in the data provided that claims the dose needed to exert a significant cytotoxicity on osteosarcoma cells was much lower than that needed to exert the same effect on healthy human osteoblasts. The topic of this study is of importance for both cancer and metabolic bone disease fields, we appreciate the methodology of the study, nevertheless we believe that the hypothesis formulated by the authors and their conclusion deserves further comment.View original paper by Chang and colleagues.

  7. Cytotoxicity effects of amiodarone on cultured cells.

    Science.gov (United States)

    Golli-Bennour, Emna El; Bouslimi, Amel; Zouaoui, Olfa; Nouira, Safa; Achour, Abdellatif; Bacha, Hassen

    2012-07-01

    Amiodarone is a potent anti-arrhythmic drug used for the treatment of cardiac arrhythmias. Although, the effects of amiodarone are well characterized on post-ischemic heart and cardiomyocytes, its toxicity on extra-cardiac tissues is still poorly understood. To this aim, we have monitored the cytotoxicity effects of this drug on three cultured cell lines including hepatocytes (HepG2), epithelial cells (EAhy 926) and renal cells (Vero). We have investigated the effects of amiodarone on (i) cell viabilities, (ii) heat shock protein expressions (Hsp 70) as a parameter of protective and adaptive response and (iii) oxidative damage.Our results clearly showed that amiodarone inhibits cell proliferation, induces an over-expression of Hsp 70 and generates significant amount of reactive oxygen species as measured by lipid peroxidation occurrence. However, toxicity of amiodarone was significantly higher in renal and epithelial cells than in hepatocytes. Vitamin E supplement restores the major part of cell mortalities induced by amiodarone showing that oxidative damage is the predominant toxic effect of the drug.Except its toxicity for the cardiac system, our findings demonstrated that amiodarone can target other tissues. Therefore, kidneys present a high sensibility to this drug which may limit its use with subjects suffering from renal disorders.

  8. Rhinovirus infection induces cytotoxicity and delays wound healing in bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Constantopoulos Andreas G

    2005-10-01

    Full Text Available Abstract Background Human rhinoviruses (RV, the most common triggers of acute asthma exacerbations, are considered not cytotoxic to the bronchial epithelium. Recent observations, however, have questioned this knowledge. The aim of this study was to evaluate the ability of RV to induce epithelial cytotoxicity and affect epithelial repair in-vitro. Methods Monolayers of BEAS-2B bronchial epithelial cells, seeded at different densities were exposed to RV serotypes 1b, 5, 7, 9, 14, 16. Cytotoxicity was assessed chromatometrically. Epithelial monolayers were mechanically wounded, exposed or not to RV and the repopulation of the damaged area was assessed by image analysis. Finally epithelial cell proliferation was assessed by quantitation of proliferating cell nuclear antigen (PCNA by flow cytometry. Results RV1b, RV5, RV7, RV14 and RV16 were able to induce considerable epithelial cytotoxicity, more pronounced in less dense cultures, in a cell-density and dose-dependent manner. RV9 was not cytotoxic. Furthermore, RV infection diminished the self-repair capacity of bronchial epithelial cells and reduced cell proliferation. Conclusion RV-induced epithelial cytotoxicity may become considerable in already compromised epithelium, such as in the case of asthma. The RV-induced impairment on epithelial proliferation and self-repair capacity may contribute to the development of airway remodeling.

  9. Helper cell-independent cytotoxic clones in man

    OpenAIRE

    1982-01-01

    We report here a class of helper cell-independent cytotoxic T cell (HITc) clones in man that can proliferate in response to antigenic stimulation as well as mediate cytotoxicity. HITc appear to be rare among clones derived from primary in vitro allosensitized culture, but constitute the majority of clones derived from cells sensitized to autologous Epstein-Barr virus-transformed lymphoblastoid cell lines. The implications of the derivation and function of HITc clones are discussed.

  10. Serglycin determines secretory granule repertoire and regulates natural killer cell and cytotoxic T lymphocyte cytotoxicity.

    Science.gov (United States)

    Sutton, Vivien R; Brennan, Amelia J; Ellis, Sarah; Danne, Jill; Thia, Kevin; Jenkins, Misty R; Voskoboinik, Ilia; Pejler, Gunnar; Johnstone, Ricky W; Andrews, Daniel M; Trapani, Joseph A

    2016-03-01

    The anionic proteoglycan serglycin is a major constituent of secretory granules in cytotoxic T lymphocyte (CTL)/natural killer (NK) cells, and is proposed to promote the safe storage of the mostly cationic granule toxins, granzymes and perforin. Despite the extensive defects of mast cell function reported in serglycin gene-disrupted mice, no comprehensive study of physiologically relevant CTL/NK cell populations has been reported. We show that the cytotoxicity of serglycin-deficient CTL and NK cells is severely compromised but can be partly compensated in both cell types when they become activated. Reduced intracellular granzyme B levels were noted, particularly in CD27(+) CD11b(+) mature NK cells, whereas serglycin(-/-) TCR-transgenic (OTI) CD8 T cells also had reduced perforin stores. Culture supernatants from serglycin(-/-) OTI T cells and interleukin-2-activated NK contained increased granzyme B, linking reduced storage with heightened export. By contrast, granzyme A was not significantly reduced in cells lacking serglycin, indicating differentially regulated trafficking and/or storage for the two granzymes. A quantitative analysis of different granule classes by transmission electronmicroscopy showed a selective loss of dense-core granules in serglycin(-/-) CD8(+) CTLs, although other granule types were maintained quantitatively. The findings of the present study show that serglycin plays a critical role in the maturation of dense-core cytotoxic granules in cytotoxic lymphocytes and the trafficking and storage of perforin and granzyme B, whereas granzyme A is unaffected. The skewed retention of cytotoxic effector molecules markedly reduces CTL/NK cell cytotoxicity, although this is partly compensated for as a result of activating the cells by physiological means. PMID:26756195

  11. Serglycin determines secretory granule repertoire and regulates natural killer cell and cytotoxic T lymphocyte cytotoxicity.

    Science.gov (United States)

    Sutton, Vivien R; Brennan, Amelia J; Ellis, Sarah; Danne, Jill; Thia, Kevin; Jenkins, Misty R; Voskoboinik, Ilia; Pejler, Gunnar; Johnstone, Ricky W; Andrews, Daniel M; Trapani, Joseph A

    2016-03-01

    The anionic proteoglycan serglycin is a major constituent of secretory granules in cytotoxic T lymphocyte (CTL)/natural killer (NK) cells, and is proposed to promote the safe storage of the mostly cationic granule toxins, granzymes and perforin. Despite the extensive defects of mast cell function reported in serglycin gene-disrupted mice, no comprehensive study of physiologically relevant CTL/NK cell populations has been reported. We show that the cytotoxicity of serglycin-deficient CTL and NK cells is severely compromised but can be partly compensated in both cell types when they become activated. Reduced intracellular granzyme B levels were noted, particularly in CD27(+) CD11b(+) mature NK cells, whereas serglycin(-/-) TCR-transgenic (OTI) CD8 T cells also had reduced perforin stores. Culture supernatants from serglycin(-/-) OTI T cells and interleukin-2-activated NK contained increased granzyme B, linking reduced storage with heightened export. By contrast, granzyme A was not significantly reduced in cells lacking serglycin, indicating differentially regulated trafficking and/or storage for the two granzymes. A quantitative analysis of different granule classes by transmission electronmicroscopy showed a selective loss of dense-core granules in serglycin(-/-) CD8(+) CTLs, although other granule types were maintained quantitatively. The findings of the present study show that serglycin plays a critical role in the maturation of dense-core cytotoxic granules in cytotoxic lymphocytes and the trafficking and storage of perforin and granzyme B, whereas granzyme A is unaffected. The skewed retention of cytotoxic effector molecules markedly reduces CTL/NK cell cytotoxicity, although this is partly compensated for as a result of activating the cells by physiological means.

  12. Establishing guidelines for CAR-T cells: challenges and considerations.

    Science.gov (United States)

    Wang, Wei; Qin, Di-Yuan; Zhang, Bing-Lan; Wei, Wei; Wang, Yong-Sheng; Wei, Yu-Quan

    2016-04-01

    T cells, genetically modified by chimeric antigen receptors (CAR-T), are endowed with specificity to a desired antigen and are cytotoxic to cells expressing the targeted antigen. CAR-T-based cancer immunotherapy is a promising therapy for curing hematological malignancy, such as acute lymphoid leukemia, and is promising for extending their efficacy to defeat solid tumors. To date, dozens of different CAR-T cells have been evaluated in clinical trials to treat tumors; this necessitates the establishment of guidelines for the production and application of CAR-T cells. However, it is challenging to standardize CAR-T cancer therapy because it involves a combination of gene therapy and cell therapy. In this review, we compare the existing guidelines for CAR-T cells and discuss the challenges and considerations for establishing guidance for CAR-T-based cancer immunotherapy. PMID:26965523

  13. Establishing guidelines for CAR-T cells: challenges and considerations.

    Science.gov (United States)

    Wang, Wei; Qin, Di-Yuan; Zhang, Bing-Lan; Wei, Wei; Wang, Yong-Sheng; Wei, Yu-Quan

    2016-04-01

    T cells, genetically modified by chimeric antigen receptors (CAR-T), are endowed with specificity to a desired antigen and are cytotoxic to cells expressing the targeted antigen. CAR-T-based cancer immunotherapy is a promising therapy for curing hematological malignancy, such as acute lymphoid leukemia, and is promising for extending their efficacy to defeat solid tumors. To date, dozens of different CAR-T cells have been evaluated in clinical trials to treat tumors; this necessitates the establishment of guidelines for the production and application of CAR-T cells. However, it is challenging to standardize CAR-T cancer therapy because it involves a combination of gene therapy and cell therapy. In this review, we compare the existing guidelines for CAR-T cells and discuss the challenges and considerations for establishing guidance for CAR-T-based cancer immunotherapy.

  14. Current considerations about Merkel cells.

    Science.gov (United States)

    Lucarz, Annie; Brand, Gerard

    2007-05-01

    Since the discovery of Merkel cells by Friedrich S. Merkel in 1875, knowledge of their structure has increased with the progression of new technologies such as electron and laser microscopy, and immunohistochemical techniques. For most vertebrates, Merkel cells are located in the basal layer of the epidermis and characterized by dense-core granules that contain a variety of neuropeptides, plasma membrane spines and cytoskeletal filaments consisting of cytokeratins and desmosomes. The presence of the two latter structures would suggest that Merkel cells originate from the epidermis rather than from the neural crest, even though such a hypothesis is not unanimously accepted. The function of the Merkel cell is also very controversial. For a long time, it has been accepted that Merkel cells with associated nerve terminals act as mechanoreceptors although the transduction mechanism has not yet been elucidated. Merkel cells that do not make contact with nerve terminals have an endocrine function. The present review aims to shed new and comparative light on this field with an attempt to investigate the stimuli that Merkel cells are able to perceive.

  15. Uremic Toxins Enhance Statin-Induced Cytotoxicity in Differentiated Human Rhabdomyosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Hitoshi Uchiyama

    2014-09-01

    Full Text Available The risk of myopathy and rhabdomyolysis is considerably increased in statin users with end-stage renal failure (ESRF. Uremic toxins, which accumulate in patients with ESRF, exert cytotoxic effects that are mediated by various mechanisms. Therefore, accumulation of uremic toxins might increase statin-induced cytotoxicity. The purpose of this study was to determine the effect of four uremic toxins—hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, indole-3-acetic acid, and 3-indoxyl sulfate—on statin-induced myopathy. Differentiated rhabdomyosarcoma cells were pre-treated with the uremic toxins for seven days, and then the cells were treated with pravastatin or simvastatin. Cell viability and apoptosis were assessed by viability assays and flow cytometry. Pre-treatment with uremic toxins increased statin- but not cisplatin-induced cytotoxicity (p < 0.05 vs. untreated. In addition, the pre-treatment increased statin-induced apoptosis, which is one of the cytotoxic factors (p < 0.05 vs. untreated. However, mevalonate, farnesol, and geranylgeraniol reversed the effects of uremic toxins and lowered statin-induced cytotoxicity (p < 0.05 vs. untreated. These results demonstrate that uremic toxins enhance statin-induced apoptosis and cytotoxicity. The mechanism underlying this effect might be associated with small G-protein geranylgeranylation. In conclusion, the increased severity of statin-induced rhabdomyolysis in patients with ESRF is likely due to the accumulation of uremic toxins.

  16. Interleukin-2 activation of cytotoxic cells in postmastectomy seroma.

    Science.gov (United States)

    Gercel-Taylor, C; Hoffman, J P; Taylor, D D; Owens, K J; Eisenberg, B L

    1996-02-15

    Lymphocytes were isolated from breast seroma fluids and used to study the mechanism of activation of cytotoxic lymphocytes and possible role of immunological potentiation following surgery in breast cancer patients. Single or serial samples were obtained from patients who had undergone mastectomy or lumpectomy with axillary node dissection. Lymphocytes were activated with rIL-2 (interleukin-2) and their cytotoxic activity was studied against Daudi and K562 cells and against a breast tumor line (SKBr-3). All of the patients (21/21) responded to IL-2 stimulation by significant activation of cytotoxic activity. The unstimulated cytotoxic activity of these cells against NK targets was low with less than 10% specific release in cytotoxicity assays. In simultaneous experiments, autologous seroma fluid was included during activation of lymphocytes to study possible regulatory molecules that may be present. In 17/21 patients, the presence of their seroma fluid, during the activation period, enhanced or did not effect the cytotoxic potential of their lymphocytes; inhibition was observed when seroma fluids from 4/21 patients were included. Analysis of the cytotoxic population derived from combined IL-2 and seroma treatments indicates the presence of cells with increased expression of CD56, and CD2, as well as in some cases CD16 expression. Cytotoxic lymphocytes derived from IL-2 and seroma treatments appeared to be more effective killers. Modulation of CD2 expression with seroma alone appeared to result in the generation of this highly cytotoxic population. This study demonstrates the role of CD2 expression in the effectiveness of LAK cell killing and also potential benefit of an immunotherapeutic approach to the postoperative treatment of carcinoma of the breast.

  17. Cytotoxic effect of Plantago spp. on cancer cell lines.

    Science.gov (United States)

    Gálvez, Marina; Martín-Cordero, Carmen; López-Lázaro, Miguel; Cortés, Felipe; Ayuso, María Jesús

    2003-10-01

    Methanolic extracts from seven Plantago species used in traditional medicine for the treatment of cancer, were evaluated for cytotoxic activity against three human cancer cell lines recommended by the National Cancer Institute (NCI, USA). The results showed that Plantago species exhibited cytotoxic activity, showing a certain degree of selectivity against the tested cells in culture. Since the flavonoids are able to strongly inhibit the proliferation of human cancer cell lines, we have identified luteolin-7-O-beta-glucoside as major flavonoid present in most of the Plantago species. Also, we have evaluated this compound and its aglycon, luteolin, for their cytotoxic and DNA topoisomerase I poisons activities. These results could justify the traditional use of the Plantago species and topoisomerase-mediated DNA damage might be a possible mechanism by which flavonoids of Plantago exert their cytotoxicity potential. PMID:12963131

  18. Phytochemicals and Cytotoxicity of Launaea procumbens on Human Cancer Cell Lines

    Science.gov (United States)

    Rawat, Preeti; Saroj, Lokesh M.; Kumar, Anil; Singh, Tryambak D.; Tewari, SK.; Pal, Mahesh

    2016-01-01

    Background: The plant Launaea procumbens belongs to the family Asteraceae and traditionally used in the treatment rheumatism, kidney, liver dysfunctions and eye diseases. In the present study Phytochemical analysis and fractions of methanolic extract of L. procumbens leaves were tested in vitro for their cytotoxicity. Objectives: Phytochemical analysis and cytotoxic activity of methanolic extract and fractions of Launaea procumbens against four cancer cell lines K562, HeLa, MIA-Pa-Ca-2 and MCF-2 by SRB assay. Materials and Methods: Powdered leaves of Launaea procumbens were extracted sequentially with hexane, ethyl acetate, butanol and water by cold extraction. Phytochemical analysis and cytotoxicity assay were carried out for these fractions using SRB assay against four human cancer cell lines, namely leukemia (K562), cervix (HeLa), pancreatic (MIA-Pa-Ca-2) and breast (MCF-7). Results: Ethyl acetate extract exerts potent cytotoxicity against human leukemia (K562), cervix (HeLa) and breast (MCF-7) cell lines IC50 value of 25.30±0.50, 19.80±0.10 and 36.90±4.90 μg/ml respectively. Moderately cytotoxic effect found in hexane extract IC50 value of 41±8 and 48.20±0.50 μg/ml against leukemia (K562), and breast (MCF-7) cancer cell line respectively. The Chemical composition analyzed by GC-MS showed considerable differences in solvent fractions of Launaea procumbens. Conclusion: This study revealed the cytotoxic potential of ethyl acetate and hexane fractions of L. procumbens leaves on different cancer cell lines. SUMMARY Ethyl acetate and Hexane fractions of Launaea procumbens plant exhibit cytotoxicity. Among the different fractions Ethyl acetate showed relatively higher cytotoxicity.Ethyl acetate found more cytotoxic against leukemia (K 562), cervix (HeLa) and breast (MCF-7) cancer cell lines. Moderete cytotoxicity found in hexane fraction against leukemia (K 562) and breast (MCF-7) cancer cell line.GC-MS results showed L. procumbens is a rich source of 1-H

  19. Cytotoxicity Effects of Amoora rohituka and chittagonga on Breast and Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Leo L. Chan

    2011-01-01

    Full Text Available Chemotherapeutic agents for cancer are highly toxic to healthy tissues and hence alternative medicine avenues are widely researched. Majority of the recent studies on alternative medicine suggested that Amoora rohituka possesses considerable antitumor and antibacterial properties. In this work, rohituka and chittagonga, fractionated with petroleum ether, dichloromethane, and ethanol, were explored for their anticancer potential against two breast cancer (MCF-7 and HTB-126 and three pancreatic cancer (Panc-1, Mia-Paca2, and Capan1. The human foreskin fibroblast, Hs68, was also included. Cytotoxicity of each extract was analyzed using the MTT assay and label-free photonic crystal biosensor assay. A concentration series of each extract was performed on the six cell lines. For MCF-7 cancer cells, the chittagonga (Pet-Ether and CH2Cl2 and rohituka (Pet-Ether extracts induced cytotoxicity; the chittagonga (EtoAC and rohituka (MeOH extracts did not induce cytotoxicity. For HTB126, Panc-1, Mia-Paca2, and Capan-1 cancer cells, only the chittagonga CH2Cl2 extract showed a significant cytotoxic effect. The extracts were not cytotoxic to normal fibroblast Hs68 cells, which may be correlated to the specificity of Amoora extracts in targeting cancerous cells. Based on these results, further examination of the potential anticancer properties Amoora species and the identification of the active ingredients of these extracts is warranted.

  20. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    1995-01-01

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  1. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  2. Insights on cytotoxic cells of the colonial ascidian Botryllus schlosseri

    Directory of Open Access Journals (Sweden)

    N Franchi

    2015-03-01

    Full Text Available Morula cells (MCs represent the most abundant circulating hemocyte of the compound ascidian Botryllus schlosseri. They are cytotoxic cells involved in the rejection reaction between contacting, genetically incompatible colonies. Upon the recognition of foreign substances, they degranulate and release their content, which contribute to the cell death along the contact borders. A major role in MC-related cytotoxicity is exerted by the enzyme phenoloxidase (PO that converts polyphenol substrata to quinones which, then, polymerize to form melanins. During this reaction, reactive oxygen species are formed which are the cause of MC-related cytotoxicity. Here, we carried out new analyses to investigate further the nature of MC content and its role in cytotoxicity. Results confirm that PO is located inside MC vacuoles together with arylsulfatase, iron and polyphenols/quinones, the latter probably representing ready-to-use cytotoxic molecules, deriving from the oxidation of DOPA-containing proteins. In addition, small DOPA-containing peptides, called tunichromes, are also present inside MCs. MC degranulation and PO-mediated cytotoxicity are prevented by secretion inhibitors and by H89 and calphostin C. The observation that PO activity is always detectable in MCs in the absence of protease treatment, and its inhibition by sulfites and sulfates, suggest a non-classical pathway of PO modulation in botryllid ascidians.

  3. Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines.

    OpenAIRE

    Liebmann, J. E.; Cook, J. A.; Lipschultz, C.; Teague, D.; Fisher, J; Mitchell, J B

    1993-01-01

    The cytotoxicity of paclitaxel against eight human tumour cell lines has been studied with in vitro clonogenic assays. The fraction of surviving cells fell sharply after exposure for 24 h to paclitaxel concentrations ranging from 2 to 20 nM; the paclitaxel IC50 was found to range between 2.5 and 7.5 nM. Increasing the paclitaxel concentration above 50 nM, however, resulted in no additional cytotoxicity after a 24 h drug exposure. Cells incubated in very high concentrations of paclitaxel (10,0...

  4. Cytotoxic Effects of Hydroxylated Fullerenes in Three Types of Liver Cells

    Directory of Open Access Journals (Sweden)

    Yoshiaki Ikarashi

    2013-07-01

    Full Text Available Fullerenes C60 have attracted considerable attention in the biomedical field due to their interesting properties. Although there has been a concern that C60 could be metabolized to hydroxylated fullerenes (C60(OHx in vivo, there is little information on the effect of hydroxylated C60 on liver cells. In the present study, we evaluated the cytotoxic effects of fullerene C60 and various hydroxylated C60 derivatives, C60(OH2, C60(OH6–12, C60(OH12 and C60(OH36, with three different types of liver cells, dRLh-84, HepG2 and primary cultured rat hepatocytes. C60, C60(OH2 and C60(OH36 exhibited little or no cytotoxicity in all of the cell types, while C60(OH6–12 and C60(OH12 induced cytotoxic effects in dRLh-84 cells, accompanied by the appearance of numerous vacuoles around the nucleus. Moreover, mitochondrial activity in liver cells was significantly inhibited by C60(OH6–12 and C60(OH12. These results indicate that the number of hydroxyl groups on C60(OHx contribute to the difference of their cytotoxic potential and mitochondrial damage in liver cells.

  5. Evaluation of cytotoxicity of Moringa oleifera Lam. callus and leaf extracts on Hela cells

    Directory of Open Access Journals (Sweden)

    Abbas Jafarain

    2014-01-01

    Full Text Available Background: There are considerable attempts worldwide on herbal and traditional compounds to validate their use as anti-cancer drugs. Plants from Moringaceae family including Moringa oleifera possess several activities such as antitumor effect on tumor cell lines. In this study we sought to determine if callus and leaf extracts of M. oleifera possess any cytotoxicity. Materials and Methods: Ethanol-water (70-30 extracts of callus and leaf of M. oleifera were prepared by maceration method. The amount of phenolic compounds of the extracts was determined by Folin Ciocalteu method. The cytotoxicity of the extracts against Hela tumor cells was carried out using MTT assay. Briefly, cells were seeded in microplates and different concentrations of the extract were added. Cells were incubated for 48 h and their viability was evaluated by addition of tetrazolium salt solution. After 3 h medium was aspirated, dimethyl sulfoxide was added and absorbance was determined at 540 nm with an ELISA plate reader. Cytotoxicity was considered when more than 50% reduction on cell survival was observed. Results: Callus and leaf extracts of M. oleifera significantly decreased the viability of Hela cells in a concentration-dependent manner. However, leaf extract of M. oleifera were more potent than that of callus extract. Conclusion: As the content of phenolic compounds of leaf extract was higher than that of callus extract, it can be concluded that phenolic compounds are involved in the cytotoxicity of M. oleifera.

  6. Natural killer cell cytotoxicity assay with time-resolved fluorimetry

    Institute of Scientific and Technical Information of China (English)

    李建中; 章竹君; 金伯泉; 田方

    1996-01-01

    A new time-resolved fluorimetric method for the measurement of natural killer (NK) cell cytotoxicity has been developed by labelling the target cell K562 with a new synthesized fluorescence marker KLUK. The method has advantages of higher sensitivity, time-saving, good reproducibility and has no radioactivity problems. A satisfactory result is obtained by comparing it with 51Cr release method. It demonstrates that the new marker provides an alternative to currently used radioactive markers for the assessment of in vitro cellular cytotoxicity.

  7. Dendrimer-curcumin conjugate: a water soluble and effective cytotoxic agent against breast cancer cell lines.

    Science.gov (United States)

    Debnath, Shawon; Saloum, Darin; Dolai, Sukanta; Sun, Chong; Averick, Saadyah; Raja, Krishnaswami; Fata, Jimmie E

    2013-12-01

    Curcumin, which is derived from the plant Curcuma longa, has received considerable attention as a possible anti-cancer agent. In cell culture, curcumin is capable of inducing apoptosis in cancer cells at concentrations that do not affect normal cells. One draw-back holding curcumin back from being an effective anti-cancer agent in humans is that it is almost completely insoluble in water and therefore has poor absorption and subsequently poor bioavailability. Here we have generated a number of curcumin derivatives (tetrahydro-curcumin, curcumin mono-carboxylic acid, curcumin mono-galactose, curcumin mono-alkyne and dendrimer-curcumin conjugate) to test whether any of them display both cytotoxicity and water solubility. Of those tested only dendrimer-curcumin conjugate exhibited both water solubility and cytotoxicity against SKBr3 and BT549 breast cancer cells. When compared to curcumin dissolved in DMSO, dendrimer-curcumin conjugate dissolved in water was significantly more effective in inducing cytotoxicity, as measured by the MTT assay and effectively induced cellular apoptosis measured by caspase-3 activation. Since dendrimer-curcumin conjugate is water soluble and capable of inducing potent cytotoxic effects on breast cancer cell lines, it may prove to be an effective anti-cancer therapy to be used in humans. PMID:23387971

  8. Evaluation of Cytotoxicity of Sagebrush Plain Extract on Human Breast Cancer MCF7 Cells

    Directory of Open Access Journals (Sweden)

    B Gordanian

    2013-07-01

    Full Text Available Abstract Background & aim: Several studies have reported anti-cancer properties of sagebrush plain. The aim of this study was to evaluate the cytotoxicity of the methanol extract of sagebrush plain on human breast cancer MCF7 cells. Methods: In the present experimental study, the toxic effects of methanol extracts of flowers, leaves, stems and roots of sagebrush plain from of Khorassan and Esfahan province were tested on human breast cancer cells MCF-7 and normal cells HEK293 . Plant samples were extracted by methanol and their toxic effects on normal and breast cancer cells at concentrations of 5.62, 125, 250 and 500 µg/ml was determined by MTT. Both breast cancer cells MCF-7 and normal HEK293 cells were cultured in RPMI-1640 medium and DMEM containing 10% fetal calf serums were cultured. Data were analyzed by one-way ANOVA. Results: The methanol extract of sagebrush showed toxicity on MCF7 cells. The extract of Khorasan showed higher toxicity than Esfahan province. IC50 of sagebrush plant for all parts of the plant were obtained more than 500 µg/ml, but the IC50 of sagebrush plant of Khorasan region in leaf and flower were 205 ± 1.3 and 213 ± 5.3µg respectively. The leaves and flowers in both cases had the highest cytotoxicity. Plant extracts in both regions did not show significant cytotoxicity on normal HEK293 cells. Conclusion: The extract of the sagebrush plain region of Khorasan region showed greater cytotoxicity than Esfahan. It seems that different environmental conditionshas considerable cytotoxicity. Keywords: Sagebrush Plain, MTT, Breast Cancer

  9. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    Science.gov (United States)

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  10. Microchip screening platform for single cell assessment of NK cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karolin eGuldevall

    2016-04-01

    Full Text Available Here we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK cells within larger populations. Human primary NK cells were distributed across a silicon-glass microchip containing 32 400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75% were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3 target cells within the 12 hours long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g. in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy.

  11. Nanomaterial cytotoxicity is composition, size, and cell type dependent

    Directory of Open Access Journals (Sweden)

    Sohaebuddin Syed K

    2010-08-01

    Full Text Available Abstract Background Despite intensive research efforts, reports of cellular responses to nanomaterials are often inconsistent and even contradictory. Additionally, relationships between the responding cell type and nanomaterial properties are not well understood. Using three model cell lines representing different physiological compartments and nanomaterials of different compositions and sizes, we have systematically investigated the influence of nanomaterial properties on the degrees and pathways of cytotoxicity. In this study, we selected nanomaterials of different compositions (TiO2 and SiO2 nanoparticles, and multi-wall carbon nanotubes [MWCNTs] with differing size (MWCNTs of different diameters 50 nm; but same length 0.5-2 μm to analyze the effects of composition and size on toxicity to 3T3 fibroblasts, RAW 264.7 macrophages, and telomerase-immortalized (hT bronchiolar epithelial cells. Results Following characterization of nanomaterial properties in PBS and serum containing solutions, cells were exposed to nanomaterials of differing compositions and sizes, with cytotoxicity monitored through reduction in mitochondrial activity. In addition to cytotoxicity, the cellular response to nanomaterials was characterized by quantifying generation of reactive oxygen species, lysosomal membrane destabilization and mitochondrial permeability. The effect of these responses on cellular fate - apoptosis or necrosis - was then analyzed. Nanomaterial toxicity was variable based on exposed cell type and dependent on nanomaterial composition and size. In addition, nanomaterial exposure led to cell type dependent intracellular responses resulting in unique breakdown of cellular functions for each nanomaterial: cell combination. Conclusions Nanomaterials induce cell specific responses resulting in variable toxicity and subsequent cell fate based on the type of exposed cell. Our results indicate that the composition and size of nanomaterials as well as the

  12. Evaluation of cell cytotoxic effect on herbal extracts mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Gwon, Hui Jeong; Choi, Bo Ram; Lim, Youn Mook; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-12-15

    Herbal extracts (HE) such as Houttuynia cordata Thunb., Eucommia ulimoides, Plantago asiatica var., Morus alba L., and Ulmus davidiana var., are known to suppress an atopic dermatitis like skin lesions. In this study, to evaluate the cell cytotoxicity effect on L929, HaCaT and HMC-1 cell by the HE, the herbs were extracted with distilled water (at 75 .deg. C) and then the HE mixtures were freeze-dried for 5 days and sterilized with {gamma}-rays. The cytotoxicity was measured by Cell Counting Kit-8 (CCK-8) assay. The result showed that the HE mixtures did not significantly affect cell viability and had no toxicity on the cells. These findings indicate that the HE mixtures can be used as a potential therapeutic agent.

  13. Mycobacterium bovis Bacillus Calmette-Guérin-Induced Macrophage Cytotoxicity against Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2010-01-01

    Full Text Available Many details of the molecular and cellular mechanisms involved in Mycobacterium bovis bacillus Calmette-Guérin (BCG immunotherapy of bladder cancer have been discovered in the past decades. However, information on a potential role for macrophage cytotoxicity as an effector mechanism is limited. Macrophages play pivotal roles in the host innate immunity and serve as a first line of defense in mycobacterial infection. In addition to their function as professional antigen-presenting cells, the tumoricidal activity of macrophages has also been studied with considerable interest. Studies have shown that activated macrophages are potent in killing malignant cells of various tissue origins. This review summarizes the current understanding of the BCG-induced macrophage cytotoxicity toward bladder cancer cells with an intention to inspire investigation on this important but underdeveloped research field.

  14. Cambogin is preferentially cytotoxic to cells expressing PDGFR.

    Directory of Open Access Journals (Sweden)

    Ze Tian

    Full Text Available Platelet-derived growth factor receptors (PDGFRs have been implicated in a wide array of human malignancies, including medulloblastoma (MB, the most common brain tumor of childhood. Although significant progress in MB biology and therapeutics has been achieved during the past decades, MB remains a horrible challenge to the physicians and researchers. Therefore, novel inhibitors targeting PDGFR signaling pathway may offer great promise for the treatment of MB. In the present study, we investigated the cytotoxicity and mechanisms of cambogin in Daoy MB cells. Our results show that cambogin triggers significant S phase cell cycle arrest and apoptosis via down regulation of cyclin A and E, and activation of caspases. More importantly, further mechanistic studies demonstrated that cambogin inhibits PDGFR signaling in Daoy and genetically defined mouse embryo fibroblast (MEF cell lines. These results suggest that cambogin is preferentially cytotoxic to cells expressing PDGFR. Our findings may provide a novel approach by targeting PDGFR signaling against MB.

  15. Cytotoxicity and Effects on Cell Viability of Nickel Nanowires

    KAUST Repository

    Rodriguez, Jose E.

    2013-05-01

    Recently, magnetic nanoparticles are finding an increased use in biomedical applications and research. Nanobeads are widely used for cell separation, biosensing and cancer therapy, among others. Due to their properties, nanowires (NWs) are gaining ground for similar applications and, as with all biomaterials, their cytotoxicity is an important factor to be considered before conducting biological studies with them. In this work, the cytotoxic effects of nickel NWs (Ni NWs) were investigated in terms of cell viability and damage to the cellular membrane. Ni NWs with an average diameter of 30-34 nm were prepared by electrodeposition in nanoporous alumina templates. The templates were obtained by a two-step anodization process with oxalic acid on an aluminum substrate. Characterization of NWs was done using X-Ray diffraction (XRD) and energy dispersive X-Ray analysis (EDAX), whereas their morphology was observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cell viability studies were carried out on human colorectal carcinoma cells HCT 116 by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) cell proliferation colorimetric assay, whereas the lactate dehydrogenase (LDH) homogenous membrane fluorimetric assay was used to measure the degree of cell membrane rupture. The density of cell seeding was calculated to obtain a specific cell number and confluency before treatment with NWs. Optical readings of the cell-reduced MTT products were measured at 570 nm, whereas fluorescent LDH membrane leakage was recorded with an excitation wavelength of 525 nm and an emission wavelength of 580 - 640 nm. The effects of NW length, cell exposure time, as well as NW:cell ratio, were evaluated through both cytotoxic assays. The results show that cell viability due to Ni NWs is affected depending on both exposure time and NW number. On the other hand, membrane rupture and leakage was only significant at later exposure times. Both

  16. Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells

    OpenAIRE

    Flahaut, Emmanuel; Durrieu, Marie-Christine; Remy-Zolghadri, Murielle; Bareille, Reine; Baquey, Charles

    2006-01-01

    The cytotoxicity of different samples of carbon nanotubes synthesised by catalytic chemical vapour deposition was investigated towards human umbilical vein endothelial cells, using two cytotoxicity standard assays (neutral red assay for the cell viability and MTT assay—tetrazolinium salt—for the cell metabolic activity). No cytotoxicity was found for any sample.

  17. Cytotoxic and natural killer cell stimulatory constituents of Phyllanthus songboiensis

    Science.gov (United States)

    Ren, Yulin; Yuan, Chunhua; Deng, Youcai; Kanagasabai, Ragu; Ninh, Tran Ngoc; Tu, Vuong Tan; Chai, Hee-Byung; Soejarto, Djaja D.; Fuchs, James R.; Yalowich, Jack C.; Yu, Jianhua; Kinghorn, A. Douglas

    2014-01-01

    A dichapetalin-type triterpenoid and a dibenzylbutyrolactone-type lignan, together with five known lignans, a known aromatic diterpenoid, and a known acylated phytosterol, were isolated from the aerial parts of Phyllanthus songboiensis, collected in Vietnam. Their structures were determined by interpretation of the spectroscopic data, and the inhibitory activity toward the HT-29 human colon cancer cells of all isolates was evaluated by a cytotoxicity assay. The known arylnaphthalene lignan, (+)-acutissimalignan A, was highly cytotoxic toward HT-29 cells, with an IC50 value of 19 nM, but this compound was inactive as a DNA topoisomerase IIα (topo IIα) poison. The known phytosterol, (−)-β-sitosterol-3-O-β-D-(6-O-palmitoyl)glucopyranoside, was found to stimulate natural killer (NK) cells at a concentration of 10 μM in the presence of interleukin 12 (IL-12). PMID:25596805

  18. Cytotoxicity and glutathione depletion studies using CHOK cells

    International Nuclear Information System (INIS)

    Radiosensitization characteristics of newly synthesized isoindole-4, 7-diones have been established in the authors' laboratories. Cytotoxicity studies of isoindole-4, 7-diones on chinese hamster ovary cell (CHOK) have been carried out. The effects that different concentrations of isoindole-4, 7-diones have on cell growth as a function of time after treatment on both systems (oxic and hypoxic) have been determined. Most of isoindole-4, 7-diones used in these studies show more cytotoxic effect under hypoxic conditions. Gluthathione depletion was also measured in both systems. Most of the quinones studied deplete the concentration of glutathione in the CHOK cells. The results will be compared with similar studies carried out with the well known radiosensitizers misonidazole. It is hoped that the isoindole-r, 7-diones are a new family of chemical radiosensitizers

  19. Cytotoxic evaluation of phenolic compounds from lichens against melanoma cells.

    Science.gov (United States)

    Brandão, Luiz Fabrício Gardini; Alcantara, Glaucia Braz; Matos, Maria de Fátima Cepa; Bogo, Danielle; Freitas, Deisy dos Santos; Oyama, Nathália Mitsuko; Honda, Neli Kika

    2013-01-01

    Atranorin, lichexanthone, and the (+)-usnic, diffractaic, divaricatic, perlatolic, psoromic, protocetraric, and norstictic acids isolated from the lichens Parmotrema dilatatum (VAIN.) HALE, Usnea subcavata MOTYKA, Usnea sp., Ramalina sp., Cladina confusa (SANT.) FOLMM. & AHTI, Dirinaria aspera HÄSÄNEN, and Parmotrema lichexanthonicum ELIASARO & ADLER were evaluated against UACC-62 and B16-F10 melanoma cells and 3T3 normal cells. Sulforhodamine B assay revealed significant cytotoxic activity in protocetraric, divaricatic, and perlatolic acids on UACC-62 cells (50% growth inhibitory concentration (GI(50)) 0.52, 2.7, and 3.3 µg/mL, respectively). Divaricatic and perlatolic acids proved the most active on B16-F10 cells (GI(50) 4.4, 18.0 µg/mL, respectively) and the most cytotoxic to 3T3 normal cells. Diffractaic, usnic, norstictic, and psoromic acids were cytotoxic to UACC-62 cells in the 24.7 to 36.6 µg/mL range, as were protocetraric and diffractaic acids to B16-F10 cells (GI(50) 24.0, 25.4 µg/mL, respectively). Protocetraric acid was highly selective (selectivity index (SI*) 93.3) against UACC-62 cells, followed by norstictic, perlatolic, psoromic, and divaricatic acids, while norstictic and divaricatic acids were more selective against B16-F10 cells. The high SI* value obtained for protocetraric acid on UACC-62 cells makes it a potential candidate for the study of melanomas in experimental models. Chemometric analysis was performed to evaluate the general behavior of the compounds against the cell lines tested. PMID:23207680

  20. Cytotoxicity, cellular uptake, and cellular biotransformations of oxaliplatin in human colon carcinoma cells.

    Science.gov (United States)

    Luo, F R; Wyrick, S D; Chaney, S G

    1998-01-01

    Biotransformation products of platinum anticancer drugs have been suggested to be responsible for drug efficacy and toxicity. This study was designed to determine whether the efficacy of the closely related 1,2-diaminocyclohexane-Pt (dach-Pt) compounds oxaliplatin and ormaplatin were determined primarily by the parent drugs or by one of their biotransformation products. Based on consideration of both in vitro cytotoxicity in human colon carcinoma cells (HT-29) and concentrations following oxaliplatin administration in vivo, our data suggest that the efficacy of oxaliplatin is primarily determined by the plasma levels of the parent drug, with the biotransformation products Pt(dach)Cl2, Pt(dach)(H2O)Cl, and Pt(dach)(H2O)2 making only minor contributions. The stable biotransformation products containing amino acids did not have any significant cytotoxicity. In contrast, our data suggest that the efficacy of ormaplatin is primarily determined by plasma levels of Pt(dach)Cl2. The cytotoxicity of oxaliplatin, Pt(dach)Cl2, and Pt(dach)(H2O)Cl was approximately proportional to their cellular uptake, whereas the cytotoxicity of ormaplatin, Pt(dach)(H2O)2, and Pt(dach)(Met) was less than predicted from their uptake. Treatment of HT-29 cells with equimolar external concentrations of Pt(dach)Cl2 and oxaliplatin resulted in the formation of twofold more Pt-DNA adducts following Pt(dach)Cl2 treatment than following oxaliplatin treatment. However, intracellular Pt(dach)Cl2 levels were 30-fold higher for Pt(dach)Cl2-treated cells than for oxaliplatin-treated cells. These data suggest that intracellular conversion of oxaliplatin to Pt(dach)Cl2 makes only a minor contribution to Pt-DNA adduct formation and the resultant cytotoxicity of oxaliplatin. PMID:10367941

  1. Selective cytotoxicity of benzyl isothiocyanate in the proliferating fibroblastoid cells.

    Science.gov (United States)

    Miyoshi, Noriyuki; Uchida, Koji; Osawa, Toshihiko; Nakamura, Yoshimasa

    2007-02-01

    In the present study, experiments using presynchronization culture cells demonstrated that benzyl ITC (BITC), previously isolated from a tropical papaya fruit extract, induced the cytotoxic effect preferentially in the proliferating human colon CCD-18Co cells to the quiescent ones. Quiescent CCD-18Co cells were virtually unaffected by BITC and marginal cytotoxicity was observed at 15 microM. We observed that BITC dramatically induced the p53 phosphorylation and stabilization only in the quiescent (G(0)/G(1) phase-arrested) cells, but not significantly in the proliferating human colon CCD-18Co cells when compared with quiescent ones. We also observed ataxia telangiectasia-mutated (ATM) phosphorylation in the quiescent cells. The BITC-induced p53 phosphorylation was counteracted by caffeine treatment, implying the involvement of an ATM/ataxia telangiectasia and Rad3-related kinase signaling pathway. Moreover, downregulation of p53 by a siRNA resulted in the enhancement of susceptibility to undergo apoptosis by BITC. We also showed here that depletion of p53 abrogated G(0)/G(1) arrest accompanied by the declined expression of p21(waf1/cip1) and p27(kip1) in CCD-18Co cells. In conclusion, we identified p53 as a potential negative regulator of the apoptosis induction by BITC in the normal colon CCD-18Co cells through the inhibition of cell-cycle progression at the G(0)/G(1) phase. PMID:17096346

  2. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  3. Hexavalent chromium is cytotoxic and genotoxic to American alligator cells.

    Science.gov (United States)

    Wise, Sandra S; Wise, Catherine; Xie, Hong; Guillette, Louis J; Zhu, Cairong; Wise, John Pierce; Wise, John Pierce

    2016-02-01

    Metals are a common pollutant in the aquatic ecosystem. With global climate change, these levels are anticipated to rise as lower pH levels allow sediment bound metals to be released. The American alligator (Alligator mississippiensis) is an apex predator in the aquatic ecosystem and is considered a keystone species; as such it serves as a suitable monitor for localized pollution. One metal of increasing concern is hexavalent chromium (Cr(VI)). It is present in the aquatic environment and is a known human carcinogen and reproductive toxicant. We measured the cytotoxicity and genotoxicity of Cr(VI) in American alligator cells derived from scute tissue. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to alligator cells in a concentration-dependent manner. These data suggest that alligators may be used as a model for assessing the effects of environmental Cr(VI) contamination as well as for other metals of concern. PMID:26730726

  4. Hexavalent chromium is cytotoxic and genotoxic to American alligator cells.

    Science.gov (United States)

    Wise, Sandra S; Wise, Catherine; Xie, Hong; Guillette, Louis J; Zhu, Cairong; Wise, John Pierce; Wise, John Pierce

    2016-02-01

    Metals are a common pollutant in the aquatic ecosystem. With global climate change, these levels are anticipated to rise as lower pH levels allow sediment bound metals to be released. The American alligator (Alligator mississippiensis) is an apex predator in the aquatic ecosystem and is considered a keystone species; as such it serves as a suitable monitor for localized pollution. One metal of increasing concern is hexavalent chromium (Cr(VI)). It is present in the aquatic environment and is a known human carcinogen and reproductive toxicant. We measured the cytotoxicity and genotoxicity of Cr(VI) in American alligator cells derived from scute tissue. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to alligator cells in a concentration-dependent manner. These data suggest that alligators may be used as a model for assessing the effects of environmental Cr(VI) contamination as well as for other metals of concern.

  5. Clonal Expansion and Cytotoxicity of TCRVβ Subfamily T Cells Induced by CML and K562 Cells

    Institute of Scientific and Technical Information of China (English)

    YupingZHang; YangqiuLi; ShaohuaChen; LijianYang; GengxinLuo; XueliZhang

    2004-01-01

    OBJECTIVE To investigate the anti-leukemia effect, the distribution and clonal expansion of TCRVβ subfamily T cells in T cells from cord blood and adult peripheral blood induced by CML cells and K562 cells in vitro. METHODS Peripheral blood T cells from one adult donor and 3 cases of cord blood were stimulated with CML cells and K562 cells and further amplified by a suspended T cell-bulk culture,in order to induce CML specific cytotoxic T lymphocytes. The induced T cells were further analyzed for the specific cytotoxicity in CML by LDH assay, the phenotype identification by indirect immunofiuorescence technique and the distribution and clonal expansion of TCRVβ subfamily by using reverse transcriptase-polymerase chain reaction (RT-PCR) and genescan analysis, respectively. RESULTS Oligoclonal and oligoclonal tendency T cells with higher specific cytotoxicity from cord blood and adult peripheral blood could be induced by stimulation with CML cells and K562 cells. CONCLUSIONS Specific cytotoxic T cells for an anti-CML effect could be induced by CML cells and K562 cells .The induced T cells which have the characteristic of specific cytotoxicity against CML cells may come from the clonal expansion of TCRVβ subfamily T cells.

  6. Emergence of cytotoxic resistance in cancer cell populations*

    Directory of Open Access Journals (Sweden)

    Lorenzi Tommaso

    2015-01-01

    Full Text Available We formulate an individual-based model and an integro-differential model of phenotypic evolution, under cytotoxic drugs, in a cancer cell population structured by the expression levels of survival-potential and proliferation-potential. We apply these models to a recently studied experimental system. Our results suggest that mechanisms based on fundamental laws of biology can reversibly push an actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and drug-tolerant cells.

  7. Synergistic cytotoxicity of gemcitabine, clofarabine and edelfosine in lymphoma cell lines.

    Science.gov (United States)

    Valdez, B C; Zander, A R; Song, G; Murray, D; Nieto, Y; Li, Y; Champlin, R E; Andersson, B S

    2014-01-01

    Treatments for lymphomas include gemcitabine (Gem) and clofarabine (Clo) which inhibit DNA synthesis. To improve their cytotoxicity, we studied their synergism with the alkyl phospholipid edelfosine (Ed). Exposure of the J45.01 and SUP-T1 (T-cell) and the OCI-LY10 (B-cell) lymphoma cell lines to IC10-IC20 levels of the drugs resulted in strong synergistic cytotoxicity for the 3-drug combination based on various assays of cell proliferation and apoptosis. Cell death correlated with increased phosphorylation of histone 2AX and KAP1, decreased mitochondrial transmembrane potential, increased production of reactive oxygen species and release of pro-apoptotic factors. Caspase 8-negative I9.2 cells were considerably more resistant to [Gem+Clo+Ed] than caspase 8-positive cells. In all three cell lines [Gem+Clo+Ed] decreased the level of phosphorylation of the pro-survival protein AKT and activated the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) stress signaling pathway, which in J45.01 cells resulted in the phosphorylation and heterodimerization of the transcription factors ATF2 and c-Jun. The observed rational mechanism-based efficacy of [Gem+Clo+Ed] based on the synergistic convergence of several pro-death and anti-apoptotic signaling pathways in three very different cell backgrounds provides a powerful foundation for undertaking clinical trials of this drug combination for the treatment of lymphomas. PMID:24413065

  8. Cytotoxicity of modified glass ionomer cement on odontoblast cells.

    Science.gov (United States)

    Chen, Song; Mestres, Gemma; Lan, Weihua; Xia, Wei; Engqvist, Håkan

    2016-07-01

    Recently a modified glass ionomer cement (GIC) with enhanced bioactivity due to the incorporation of wollastonite or mineral trioxide aggregate (MTA) has been reported. The aim of this study was to evaluate the cytotoxic effect of the modified GIC on odontoblast-like cells. The cytotoxicity of a conventional GIC, wollastonite modified GIC (W-mGIC), MTA modified GIC (M-mGIC) and MTA cement has been evaluated using cement extracts, a culture media modified by the cement. Ion concentration and pH of each material in the culture media were measured and correlated to the results of the cytotoxicity study. Among the four groups, conventional GIC showed the most cytotoxicity effect, followed by W-mGIC and M-mGIC. MTA showed the least toxic effect. GIC showed the lowest pH (6.36) while MTA showed the highest (8.62). In terms of ion concentration, MTA showed the largest Ca(2+) concentration (467.3 mg/L) while GIC showed the highest concentration of Si(4+) (19.9 mg/L), Al(3+) (7.2 mg/L) and Sr(2+) (100.3 mg/L). Concentration of F(-) was under the detection limit (0.02 mg/L) for all samples. However the concentrations of these ions are considered too low to be toxic. Our study showed that the cytotoxicity of conventional GIC can be moderated by incorporating calcium silicate based ceramics. The modified GIC might be promising as novel dental restorative cements. PMID:27221819

  9. The Protective Effect of Silybin against Lasalocid Cytotoxic Exposure on Chicken and Rat Cell Lines

    Directory of Open Access Journals (Sweden)

    Lidia Radko

    2013-01-01

    Full Text Available Lasalocid, an ionophore coccidiostat, extensive use implies a risk of toxicological impacts. Protective effects of silybin, a herbal compound of Silybum marianum, are reported elsewhere. The aim of this study was to compare effects of the combined use of lasalocid and silybin in chicken hepatoma cells (LMH and rat myoblasts (L6 cell lines cultures. The cytoprotective effect resulting from an interaction of both pharmaceuticals was measured with the help of MTT reduction and, coomassie brilliant blue binding (CBB and LDH release assays. Isobolography and the combination index (CI estimated the nature and scale of interaction. In all performed tests, the lowest lasalocid EC50-values were obtained for chicken hepatocytes. In the rat myoblasts cultures, the lowest lasalocid EC50-values were found with LDH test. Simultaneously, a lack of silybin cytotoxic effect was proven for the studied cell lines. An interaction between both substances led to a considerable decrease of lasalocid cytotoxicity. The isobolograms and combination index showed a significant antagonistic nature of silybin effect in the course of lasalocid cytotoxicity. It is concluded that the mechanism of cytoprotection results from complex reaction at biochemical and biophysical endpoints during chicken hepatocytes and rat myoblasts cell lines exposure to silybin and lasalocid co-action.

  10. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.

    Science.gov (United States)

    Mironi-Harpaz, Iris; Wang, Dennis Yingquan; Venkatraman, Subbu; Seliktar, Dror

    2012-05-01

    Cell-encapsulating hydrogels used in regenerative medicine are designed to undergo a rapid liquid-to-solid phase transition in the presence of cells and tissues so as to maximize crosslinking and minimize cell toxicity. Light-activated free-radical crosslinking (photopolymerization) is of particular interest in this regard because it can provide rapid reaction rates that result in uniform hydrogel properties with excellent temporal and spatial control features. Among the many initiator systems available for photopolymerization, only a few have been identified as suitable for cell-based hydrogel formation owing to their water solubility, crosslinking properties and non-toxic reaction conditions. In this study, three long-wave ultraviolet (UV) light-activtied photoinitiators (PIs) were comparatively tested in terms of cytotoxicity, crosslinking efficiency and crosslinking kinetics of cell-encapsulating hydrogels. The hydrogels were photopolymerized from poly(ethylene glycol) (PEG) diacrylate or PEG-fibrinogen precursors using Irgacure® PIs I2959, I184 and I651, as well as with a chemical initiator/accelerator (APS/TEMED). The study specifically evaluated the PI type, PI concentration and UV light intensity, and how these affected the mechanical properties of the hydrogel (i.e. maximum storage modulus), the crosslinking reaction times and the reaction's cytotoxicity to encapsulated cells. Only two initiators (I2959 and I184) were identified as being suitable for achieving both high cell viability and efficient crosslinking of the cell-encapsulating hydrogels during the photopolymerization reaction. Optimization of PI concentration or irradiation intensity was particularly important for achieving maximum mechanical properties; a sub-optimal choice of PI concentration or irradiation intensity resulted in a substantial reduction in hydrogel modulus. Cytocompatibility may be compromised by unnecessarily prolonging exposure to cytotoxic free radicals or inadvertently

  11. Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells.

    Science.gov (United States)

    Dumax-Vorzet, Audrey F; Tate, M; Walmsley, Richard; Elder, Rhod H; Povey, Andrew C

    2015-09-01

    Ambient air particulate matter (PM)-associated reactive oxygen species (ROS) have been linked to a variety of altered cellular outcomes. In this study, three different PM samples from diesel exhaust particles (DEPs), urban dust standard reference material SRM1649a and air collected in Manchester have been tested for their ability to oxidise DNA in a cell-free assay, to increase intracellular ROS levels and to induce CYP1A1 gene expression in mammalian cells. In addition, the cytotoxicity and genotoxicity of PM were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and alkaline comet assay, respectively. All PM samples catalysed the Fenton reaction in a cell-free assay, but only DEP resulted in the generation of ROS as measured by dichlorodihydrofluorescein diacetate oxidation in mammalian cells. However, there was no evidence that increased ROS was a consequence of polycyclic aromatic hydrocarbon metabolism via CYP1A1 induction as urban dust, the Manchester dust samples but not DEP-induced CYP1A1 expression. Urban dust was more cytotoxic in murine embryonic fibroblasts (MEFs) than the other PM samples and also induced expression of GADD45a in the GreenScreen Human Cell assay without S9 activation suggesting the presence of a direct-acting genotoxicant. Urban dust and DEP produced comparable levels of DNA damage, as assessed by the alkaline comet assay, in MEFs at higher levels than those induced by Manchester PM. In conclusion, results from the cytotoxic and genotoxic assays are not consistent with ROS production being the sole determinant of PM-induced toxicity. This suggests that the organic component can contribute significantly to this toxicity and that further work is required to better characterise the extent to which ROS and organic components contribute to PM-induced toxicity.

  12. Cytotoxicity and DNA crosslinks produced by mitomycin analogs in aerobic and hypoxic EMT6 cells.

    Science.gov (United States)

    Keyes, S R; Loomis, R; DiGiovanna, M P; Pritsos, C A; Rockwell, S; Sartorelli, A C

    1991-01-01

    Several mitomycin antibiotics were evaluated for their capacities to kill EMT6 tumor cells and to produce DNA crosslinks under conditions of oxygenation and hypoxia. The agents examined included mitomycin C, porfiromycin, and the 7-aminomethyl dithioacetal derivative of mitomycin C (BMY-43324), all of which caused greater kill of hypoxic cells than of their oxygenated counterparts; the N,N'-dimethylaminomethylene derivative of mitomycin C (BMY-25282), which was considerably more cytotoxic under oxygenated conditions than in hypoxia; and the N,N'-dimethylaminomethylene derivative of porfiromycin (BL-6783), which was equal in its toxicity to hypoxic and oxygenated cells. All of these agents produced DNA crosslinks in EMT6 cells, as measured by alkaline elution. The number of crosslinks required to produce a given amount of cell kill was similar, regardless of the mitomycin employed or the degree of oxygenation, suggesting that the crosslinking of DNA was a major lesion in the cytodestructive action of the mitomycins. PMID:1760250

  13. Preferentially Cytotoxic Constituents of Andrographis paniculata and their Preferential Cytotoxicity against Human Pancreatic Cancer Cell Lines.

    Science.gov (United States)

    Lee, Sullim; Morita, Hiroyuki; Tezuka, Yasuhiro

    2015-07-01

    In the course of our search for anticancer agents based on a novel anti-austerity strategy, we found that the 70% EtOH extract of the crude drug Andrographis Herba (aerial parts of Andrographis paniculata), used in Japanese Kampo medicines, killed PANC-1 human pancreatic cancer cells preferentially in nutrient-deprived medium (NDM). Phytochemical investigation of the 70% EtOH extract led to the isolation of 21 known compounds consisting of six labdane-type diterpenes (11, 15, 17-19, 21), six flavones (5, 7, 10, 12, 14, 20), three flavanones (2, 6, 16), two sterols (3, 8), a fatty acid (1), a phthalate (4), a triterpene (9), and a monoterpene (13). Among them, 14-deoxy-11,12-didehydroandrographolide (17) displayed the most potent preferential cytotoxicity against PANC-1 and PSN-1 cells with PC50 values of 10.0 μM and 9.27 μM, respectively. Microscopical observation, double staining with ethidium bromide (EB) and acridine orange (AO), and flow cytometry with propidium iodide/annexin V double staining indicated that 14-deoxy-11,12-didehydroandrographolide (17) triggered apoptosis-like cell death in NDM with an amino acids and/or serum-sensitive mode. PMID:26410998

  14. Cytotoxicity of yellow sand in lung epithelial cells

    Indian Academy of Sciences (India)

    Y H Kim; K S Kim; N J Kwak; K H Lee; S A Kweon; Y Lim

    2003-02-01

    The present study was carried out to observe the cytotoxicity of yellow sand in comparison with silica and titanium dioxide in a rat alveolar type II cell line (RLE-6TN). Yellow sand (China Loess) was obtained from the loess layer in the Gunsu Province of China. The mean particle diameter of yellow sand was about 0.003 ± 0.001 mm. Major elements of yellow sand were Si(27.7 ± 0.6%), Al(6.01 ± 0.17%), and Ca(5.83 ± 0.23%) in that order. Silica and yellow sand significantly decreased cell viability and increased [Ca2+]i. All three particles increased the generation of H2O2. TiO2 did not change Fenton activity, while silica induced a slight increase of Fenton activity. In contrast, yellow sand induced a significant increase of Fenton activity. Silica, yellow sand and TiO2 induced significant nitrite formations in RLE-6TN cells. Silica showed the highest increase in nitrite formation, while yellow sand induced the least formation of nitrite. Silica and yellow sand increased the release of TNF-. Based on these results, we suggest that yellow sand can induce cytotoxicity in RLE-6TN cells and reactive oxygen species, Fenton activity and reactive nitrogen species might be involved in this toxicity.

  15. Cytotoxic effects of catechols to glial and neuronal cells

    Directory of Open Access Journals (Sweden)

    Ramon Santos El-Bachá

    2015-04-01

    Full Text Available Catechols are compounds that autoxidises under physiological conditions leading to the formation of reactive oxygen species (ROS, semiquinones, and quinones. These molecules can be formed in organisms because of the metabolism of exogenous aromatic substances, such as benzene. However, there are several important endogenous catechols, which have physiological functions, such as catecholamines. Furthermore, several pharmacological agents are catechols, such as apomorphine, or can be metabolised to generate these compounds. In this presentation we will show that apomorphine can unspecifically bind to proteins during its autoxidation, a phenomenon that is inhibited by thiols. Brain endothelial cells and glial cells express xenobiotic-metabolising enzymes as components of the metabolic blood-brain barrier in an attempt to protect the central nervous system against drugs. Since UDP-glucuronosyltransferases (EC 2.4.1.17 are among these enzymes, we investigated the ability of brain microsomes to conjugate catechols with glucuronate. Despite the fact that 1-naphtol could be glucuronidated in the presence of brain cortex microsomes, the same was not observed for most of catechols that were tested. Therefore, this is not the main mechanism used to protect the brain against them. Indeed, catechols may inhibit other xenobiotic-metabolising enzymes. We showed that apomorphine inhibited the cytochrome P450-dependent dealkylation activity. The production of ROS and reactive quinones, as well as their effects on protein functions, seems to be involved in the cytotoxicity of catechols. Glial cells are more resistant than neuronal cells. Apomorphine was more toxic to rat neurons than to rat C6 glioma cells. 1,2-Dihydroxybenzene (catechol killed human GL-15 cells with an EC50 of 230 uM after 72 h, a effect that was significantly inhibited by superoxide dismutase (EC 1.15.1.1. Another mechanism that we found to be involved in catechol cytotoxicity is the inhibition

  16. A new class of pluripotent stem cell cytotoxic small molecules.

    Directory of Open Access Journals (Sweden)

    Mark Richards

    Full Text Available A major concern in Pluripotent Stem Cell (PSC-derived cell replacement therapy is the risk of teratoma formation from contaminating undifferentiated cells. Removal of undifferentiated cells from differentiated cultures is an essential step before PSC-based cell therapies can be safely deployed in a clinical setting. We report a group of novel small molecules that are cytotoxic to PSCs. Our data indicates that these molecules are specific and potent in their activity allowing rapid eradication of undifferentiated cells. Experiments utilizing mixed PSC and primary human neuronal and cardiomyocyte cultures demonstrate that up to a 6-fold enrichment for specialized cells can be obtained without adversely affecting cell viability and function. Several structural variants were synthesized to identify key functional groups and to improve specificity and efficacy. Comparative microarray analysis and ensuing RNA knockdown studies revealed involvement of the PERK/ATF4/DDIT3 ER stress pathway. Surprisingly, cell death following ER stress induction was associated with a concomitant decrease in endogenous ROS levels in PSCs. Undifferentiated cells treated with these molecules preceding transplantation fail to form teratomas in SCID mice. Furthermore, these molecules remain non-toxic and non-teratogenic to zebrafish embryos suggesting that they may be safely used in vivo.

  17. Cell-mediated immunity to Plasmodium falciparum infection: evidence against the involvement of cytotoxic lymphocytes

    DEFF Research Database (Denmark)

    Theander, T G; Andersen, B J; Pedersen, B K;

    1988-01-01

    by either SPag or PPD in the presence of immune serum. Studies on subpopulations of PBMC indicated that the inhibitory cells resided among the adherent cell fraction. Furthermore we tested PBMC for cytotoxic activity against P. falciparum-infected autologous or heterologous erythrocytes. Experiments were...... done both in the absence and the presence of immune serum. Neither fresh PBMC nor PBMC activated by SPag or PPD for 7 days prior to assay were cytotoxic, indicating that cytotoxic T cells, natural killer (NK) cells, and K cells did not possess cytotoxic activity directed against parasitized...

  18. Cytotoxic activity of allogeneic natural killer cells on U251 glioma cells in vitro.

    Science.gov (United States)

    Guo, Meng; Wu, Tingting; Wan, Lixin

    2016-07-01

    The present study aimed to observe the cytotoxic activity of allogeneic natural killer (NK) cells on U251 glioma cells and to investigate their mechanism of action to establish an effective treatment strategy for neuroglioma. Cell survival curves, colony formation assays and karyotype analysis were performed to investigate the characteristics of U251 glioma cells. The present study demonstrated that natural killer group 2, member D (NKG2D)‑major histocompatibility complex class I‑related chain A/B (MICA/B) interactions contributed to the cytotoxic effect of NK cells on K562 and U251 cells. In antibody‑blocking assays to inhibit NKG2D ligands, the cytotoxic activity was not completely attenuated, which suggested that other signaling pathways contribute to the cytotoxic activity of NK cells on tumor cells in addition to the NKG2D‑mediated activity. The present study identified that the expression levels of NKG2D ligands on the surface of target cells influenced the strength of the NK cell immune response. Furthermore, allogeneic NK cells were observed to kill glioma cells in vitro, and this anticancer activity is associated with the rate of NKG2D expression on the surface of glioma cells.

  19. Cytotoxic activity of allogeneic natural killer cells on U251 glioma cells in vitro.

    Science.gov (United States)

    Guo, Meng; Wu, Tingting; Wan, Lixin

    2016-07-01

    The present study aimed to observe the cytotoxic activity of allogeneic natural killer (NK) cells on U251 glioma cells and to investigate their mechanism of action to establish an effective treatment strategy for neuroglioma. Cell survival curves, colony formation assays and karyotype analysis were performed to investigate the characteristics of U251 glioma cells. The present study demonstrated that natural killer group 2, member D (NKG2D)‑major histocompatibility complex class I‑related chain A/B (MICA/B) interactions contributed to the cytotoxic effect of NK cells on K562 and U251 cells. In antibody‑blocking assays to inhibit NKG2D ligands, the cytotoxic activity was not completely attenuated, which suggested that other signaling pathways contribute to the cytotoxic activity of NK cells on tumor cells in addition to the NKG2D‑mediated activity. The present study identified that the expression levels of NKG2D ligands on the surface of target cells influenced the strength of the NK cell immune response. Furthermore, allogeneic NK cells were observed to kill glioma cells in vitro, and this anticancer activity is associated with the rate of NKG2D expression on the surface of glioma cells. PMID:27175912

  20. Measurement of cell mediated cytotoxicity by post-labeling surviving target cells

    International Nuclear Information System (INIS)

    The 51Cr release assay (CRA) is the commonly accepted technique for measurement of cell mediated cytotoxicity. This assay shows some disadvantages when mononucleated cells of human peripheral blood (MNC) are used as effector and target cells. The uptake of 51Cr by PHA stimulated lymphocytes is low compared to the spontaneous release. In an attempt to develop a cytotoxicity assay suitable for human lymphocytes we used 14C-TdR to label target cells surviving after contact with effector cells. Cytotoxic lymphocytes were generated by incubation of MNC with irradiated allogeneic MNC for 6 days. On day 6 the effector cells are irradiated and cocultured with PHA stimulated target cells. Twenty-four hours later 14C-TdR is added. After an additional 24 h the cultures are harvested and 14C-TdR taken up by target cells is measured. It is shown that the effector cells are still cytotoxic after irradiation. These cells do not take up 14C-TdR. Cell-free supernatants do not influence the uptake of 14C-TdR by target cells. The results obtained with this assay correlate very well those obtained by the CRA, if the spontaneous release does not exceed 30%. (author)

  1. Selective cytotoxicity of marine algae extracts to several human leukemic cell lines

    OpenAIRE

    Harada, Hideki; Kamei, Yuto

    1997-01-01

    Extracts from 8 species of marine algae which showed selective cytotoxicity in our previous screening program, were further examined for cytotoxic spectra to five human leukemic cell lines. The extract from a red alga, Amphiroa zonata exhibited strong cytotoxicity to all human leukemic cell lines tested and murine leukemic cells L1210 at the final concentrations from 15 to 375 µg ml−1. Then the cytotoxicity was not found in normal human fibroblast HDF and murine normal cells NIH-3T3. The acti...

  2. Sulfasalazine intensifies temozolomide cytotoxicity in human glioblastoma cells.

    Science.gov (United States)

    Ignarro, Raffaela Silvestre; Facchini, Gustavo; Vieira, André Schwambach; De Melo, Daniela Rodrigues; Lopes-Cendes, Iscia; Castilho, Roger Frigério; Rogerio, Fabio

    2016-07-01

    Temozolomide (TMZ) is an alkylating agent used to treat glioblastoma. This tumor type synthesizes the antioxidant glutathione through system X c (-) , which is inhibited by sulfasalazine (SAS). We exposed A172 and T98G human glioblastoma cells to a presumably clinically relevant concentration of TMZ (25 µM) and/or 0.5 mM SAS for 1, 3, or 5 days and assessed cell viability. For both cell lines, TMZ alone did not alter viability at any time point, while the coadministration of TMZ and SAS significantly reduced cell viability after 5 days. The drug combination exerted a synergistic effect on A172 cells after 3 and 5 days. Therefore, this particular lineage was subjected to complementary analyses on the genetic (transcriptome) and functional (glutathione and proliferating cell nuclear antigen (PCNA) protein) levels. Cellular pathways containing differentially expressed genes related to the cell cycle were modified by TMZ alone. On the other hand, SAS regulated pathways associated with glutathione metabolism and synthesis, irrespective of TMZ. Moreover, SAS, but not TMZ, depleted the total glutathione level. Compared with the vehicle-treated cells, the level of PCNA protein was lower in cells treated with TMZ alone or in combination with SAS. In conclusion, our data showed that the association of TMZ and SAS is cytotoxic to T98G and A172 cells, thus providing useful insights for improving TMZ clinical efficacy through testing this novel drug combination. Moreover, the present study not only reports original information on differential gene expression in glioblastoma cells exposed to TMZ and/or SAS but also describes an antiproliferative effect of TMZ, which has not yet been observed in A172 cells.

  3. Cytotoxic and apoptotic activities of extracts of Withania somnifera and Tinospora cordifolia in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    N Maliyakkal

    2013-07-01

    Full Text Available Summary. Withania somnifera (WS and Tinospora cordifolia (TC have been used in the traditional system of medicine in India (Ayurveda for the treatment of cancer. The current study investigated the cytotoxic and apoptotic effects of extracts of WS and TC on human breast cancer cells (MCF7 and MDA MB 231. MTT-based assays revealed dose-dependent cytotoxic effects of the ethanolic extracts of WS and TC in human breast cancer cells, while the aqueous extracts failed to induce significant cytotoxicity. Hoechst 33342 staining and DNA fragmentation assays revealed hallmark properties of apoptosis such as membrane blebbing, nuclear condensation, and DNA fragmentation. The ethanolic extracts of both WS and TC also increased the sub-G0 content, further confirming induction of apoptosis, while WS extracts additionally caused cell cycle arrest in the G2/M phase. Further, the current study also evaluated the cytotoxic effects of WS and TC extracts on human immortalized but, ‘non-cancerous’ cell line (HaCaT. Significantly, the extracts failed to show cytotoxicity or apoptosis in HaCaT cells at the concentration that was cytotoxic to breast cancer cells, indicating less cytotoxic effects of WS and TC against human ‘non-cancerous’ cells. Thus, our study reveals potential anti-cancer activities of the ethanolic and extracts of TC and WS against human breast cancer cells.Industrial relevance. The uses of WS and TC in traditional system of medicine for the management and treatment of cancer have drawn considerable attention. Varieties of pytochemicals and herbal formulations have been developed from plant sources, leading to the scientific interest in the discovery of anticancer agents from crude plant extracts. Medicinal plant extracts have played a significant role in the development of several clinically useful anti-cancer agents. Herbal formulations of the crude extracts could be useful for the treatment of breast cancer with less toxic effects against

  4. TCR down-regulation boosts T-cell-mediated cytotoxicity and protection against poxvirus infections

    DEFF Research Database (Denmark)

    Hansen, Ann K; Regner, Matthias; Bonefeld, Charlotte M;

    2011-01-01

    Cytotoxic T (Tc) cells play a key role in the defense against virus infections. Tc cells recognize infected cells via the T-cell receptor (TCR) and subsequently kill the target cells by one or more cytotoxic mechanisms. Induction of the cytotoxic mechanisms is finely tuned by the activation signals...... from the TCR. To determine whether TCR down-regulation affects the cytotoxicity of Tc cells, we studied TCR down-regulation-deficient CD3¿LLAA mice. We found that Tc cells from CD3¿LLAA mice have reduced cytotoxicity due to a specific deficiency in exocytosis of lytic granules. To determine whether....... Finally, we found that TCR signaling in CD3¿LLAA Tc cells caused highly increased tyrosine phosphorylation and activation of the c-Cbl ubiquitin ligase, and that the impaired exocytosis of lytic granules could be rescued by the knockdown of c-Cbl. Thus, our work demonstrates that TCR down-regulation...

  5. Propranolol sensitizes thyroid cancer cells to cytotoxic effect of vemurafenib.

    Science.gov (United States)

    Wei, Wei-Jun; Shen, Chen-Tian; Song, Hong-Jun; Qiu, Zhong-Ling; Luo, Quan-Yong

    2016-09-01

    Treatment options for advanced metastatic or progressive thyroid cancers are limited. Although targeted therapy specifically inhibiting intracellular kinase signaling pathways has markedly changed the therapeutic landscape, side-effects and resistance of single agent targeted therapy often leads to termination of the treatment. The objective of the present study was to identify the antitumor property of the non-selective β-adrenergic receptor antagonist propranolol for thyroid cancers. Human thyroid cancer cell lines 8505C, K1, BCPAP and BHP27 were used in the present study. Broad β-blocker propranolol and β2-specific antagonist ICI118551, but not β1-specific antagonist atenolol, inhibited the growth of 8505C and K1 cells. Propranolol treatment inhibited growth and induced apoptosis of 8505C cells in vitro and in vivo, which are closely associated with decreased expressions of cyclin D1 and anti-apoptotic Bcl-2. Expression of hexokinase 2 (HK2) and glucose transporter 1 (GLUT1) also decreased following propranolol intervention. 18F-FDG PET/CT imaging of the 8505C xenografts validated shrinkage of the tumors in the propranolol-treated group when compared to the phosphate‑buffered saline treated group. Finally, we found that propranolol can amplify the cytotoxicity of vemurafenib and sensitize thyroid cancer cells to cytotoxic effect of vemurafenib. Our present results suggest that propranolol has potential activity against thyroid cancers and investigation of the combination with targeted molecular therapy for progressive thyroid cancers could be beneficial. PMID:27432558

  6. Cytotoxic constituents of Abutilon indicum leaves against U87MG human glioblastoma cells.

    Science.gov (United States)

    Khan, Rukaiyya Sirajuddin; Senthi, Mahibalan; Rao, Poorna Chandra; Basha, Ameer; Alvala, Mallika; Tummuri, Dinesh; Masubuti, Hironori; Fujimoto, Yoshinori; Begum, Ahil Sajeli

    2015-01-01

    The study was aimed to identify cytotoxic leads from Abutilon indicum leaves for treating glioblastoma. The petroleum ether extract, methanol extract (AIM), chloroform and ethyl acetate sub-fractions (AIM-C and AIM-E, respectively) prepared from AIM were tested for cytotoxicity on U87MG human glioblastoma cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. These extracts exhibited considerable activity (IC50 values of 42.6-64.5 μg/mL). The most active AIM-C fraction was repeatedly chromatographed to yield four known compounds, methyl trans-p-coumarate (1), methyl caffeate (2), syringic acid (3) and pinellic acid (4). Cell viability assay of 1-4 against U87MG cells indicated 2 as most active (IC50 value of 8.2 μg/mL), whereas the other three compounds were much less active. Interestingly, compounds 1-4 were non-toxic towards normal human cells (HEK-293). The content of 2 in AIM-C was estimated as 3% by HPLC. Hence, presence of some more active substances besides methyl caffeate (2) in AIM-C is anticipated. PMID:25422029

  7. Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines

    Institute of Scientific and Technical Information of China (English)

    Soundararajan Vijayarathna; Sreenivasan Sasidharan

    2012-01-01

    To investigate the cytotoxic effect of Elaeis guineensis methanol extract on MCF-7 and Vero cell. Methods: In vitro cytotoxicity was evaluated in by MTT assay. Cell morphological changes were observed by using light microscope. Results: The MTT assay indicated that methanol extract of the plant exhibited significant cytotoxic effects on MCF-7. Morphological alteration of the cell lines after exposure with Elaeis guineensis extract were observed under phase contrast microscope in the dose dependent manner. Conclusions: The results suggest the probable use of the Elaeis guineensis methanol extract in preparing recipes for cancer-related ailments. Further studies on isolation of metabolites and their in vivo cytotoxicity are under investigation.

  8. Cytotoxic activity of marine algae against cancerous cells

    Directory of Open Access Journals (Sweden)

    Élica A. C. Guedes

    2013-08-01

    Full Text Available This paper presents an investigation on the cytotoxic activity in human tumor cell from dichloromethane, chloroform, methanol, ethanol, water extracts, and hexane and chloroform fractions from green, brown and red algae collected at Riacho Doce Beach, north coast of Alagoas, Brazil, against the cancer cells K562 (chronic myelocytic leukemia, HEp-2 (laryngeal epidermoid carcinoma and NCI-H292 (human lung mucoepidermoid carcinoma through the MTT colorimetric method. The dichloromethane extract and chloroform fraction of Hypnea musciformis showed the best cytotoxic activity against K562 (3.8±0.2 µg.mL-1 and 6.4±0.4 µg.mL-1, respectively. Dichloromethane extracts of Dictyota dichotoma (16.3±0.3 µg.mL-1 and the chloroform fraction of H. musciformis (6.0±0.03 µg.mL-1 and chloroform fraction of P. gymnospora (8.2±0.4 were more active against HEp-2 as well as ethanol extracts of P. gymnospora (15.9±2.8 µg.mL-1 and chloroform fraction of H. musciformis (15.0±1.3 µg.mL-1 against the cell NCI-H292. The constituents with higher anticancer action are present in the extracts of dichloromethane and chloroform and in the chloroform fraction of H. musciformis, Digenea simplex, P. gymnospora, and D.dichotoma. In the case of the seaweed S. vulgare, the anticancer constituents are present in the aqueous extract.

  9. IN VITRO CYTOTOXICITY OF MADHUCA INDICA AGAINST DIFFERENT HUMAN CANCER CELL LINES

    OpenAIRE

    Satish K. Verma et al.

    2012-01-01

    Cancer is a public health problem all over the world. Large number of plants and their isolated constituents has been shown to potential anticancer activity. Ethanolic whole plant extract of Madhuca indica showed in vitro cytotoxicity against different human cancer cell lines such as lung, neuroblastima, and colon. There was no growth of inhibition recorded against liver cancer cell line. Sulforhodamine B dye (SRB) assay was done for in vitro cytotoxicity test assay. The in vitro cytotoxicity...

  10. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage

    DEFF Research Database (Denmark)

    Ziolkowska, K.; Jedrych, E.; Kwapiszewski, R.;

    2010-01-01

    In this paper, hybrid (PDMS/glass) microfluidic cell culture system (MCCS) integrated with the concentration gradient generator (CGG) is presented. PDMS gas permeability enabled cells' respiration in the fabricated microdevices and excellent glass hydrophilicity allowed successful cells' seeding....... The human lung carcinoma cells (A549) were cultured in the microdevice for several days. The growth and proliferation of cells was monitored using an inverted fluorescence microscope. After the cells' confluence was achieved in the microchambers, the novel method of cells' passaging in the designed...... microdevice was developed and successfully tested. The MCCS microdevice is fully reusable, i.e. it can be used several times for various cell culture and cytotoxic experiments. The suitability of designed MCCS for cell-based cytotoxicity assay application was verified using 1,4-dioxane as a model toxic agent...

  11. Cytotoxicity of bovine and porcine collagen membranes in mononuclear cells.

    Science.gov (United States)

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Carneiro, Karine Fernandes; Souza, Maria Aparecida de; Magalhães, Denildo

    2012-01-01

    This study compared the cytotoxicity and the release of nitric oxide induced by collagen membranes in human mononuclear cells. Peripheral blood was collected from each patient and the separation of mononuclear cells was performed by Ficoll. Then, 2x10(5) cells were plated in 48-well culture plates under the membranes in triplicate. The polystyrene surface was used as negative control. Cell viability was assessed by measuring mitochondrial activity (MTT) at 4, 12 and 24 h, with dosage levels of nitrite by the Griess method for the same periods. Data had non-normal distribution and were analyzed by the Kruskal-Wallis test (p<0.05). Statistically significant differences (p<0.05) were observed between the membranes and the control in the experimental period, although there was a significant reduction in viability over time (p<0.01). At 4 and 12 h, the porcine membrane induced a higher release of nitrite compared with the control and bovine membrane, respectively (p<0.01), and this difference was maintained at 24 h (p<0.05). This in vitro study showed that the porcine collagen membrane induces an increased production of proinflammatory mediators by mononuclear cells in the first hours of contact, decreasing with time. PMID:22460313

  12. Developmental cell death programs license cytotoxic cells to eliminate histocompatible partners.

    Science.gov (United States)

    Corey, Daniel M; Rosental, Benyamin; Kowarsky, Mark; Sinha, Rahul; Ishizuka, Katherine J; Palmeri, Karla J; Quake, Stephen R; Voskoboynik, Ayelet; Weissman, Irving L

    2016-06-01

    In a primitive chordate model of natural chimerism, one chimeric partner is often eliminated in a process of allogeneic resorption. Here, we identify the cellular framework underlying loss of tolerance to one partner within a natural Botryllus schlosseri chimera. We show that the principal cell type mediating chimeric partner elimination is a cytotoxic morula cell (MC). Proinflammatory, developmental cell death programs render MCs cytotoxic and, in collaboration with activated phagocytes, eliminate chimeric partners during the "takeover" phase of blastogenic development. Among these genes, the proinflammatory cytokine IL-17 enhances cytotoxicity in allorecognition assays. Cellular transfer of FACS-purified MCs from allogeneic donors into recipients shows that the resorption response can be adoptively acquired. Transfer of 1 × 10(5) allogeneic MCs eliminated 33 of 78 (42%) recipient primary buds and 20 of 76 (20.5%) adult parental adult organisms (zooids) by 14 d whereas transfer of allogeneic cell populations lacking MCs had only minimal effects on recipient colonies. Furthermore, reactivity of transferred cells coincided with the onset of developmental-regulated cell death programs and disproportionately affected developing tissues within a chimera. Among chimeric partner "losers," severe developmental defects were observed in asexually propagating tissues, reflecting a pathologic switch in gene expression in developmental programs. These studies provide evidence that elimination of one partner in a chimera is an immune cell-based rejection that operates within histocompatible pairs and that maximal allogeneic responses involve the coordination of both phagocytic programs and the "arming" of cytotoxic cells. PMID:27217570

  13. Cytotoxicity screening of essential oils in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pollyanna Francielli de Oliveira

    2015-04-01

    Full Text Available Abstract This study evaluated the cytotoxicity activity of the essential oils of Tagetes erecta L., Asteraceae (TE-OE, Tetradenia riparia (Hochst. Codd, Lamiaceae (TR-OE, Bidens sulphurea (Cav. Sch. Bip., Asteraceae (BS-OE, and Foeniculum vulgare Mill., Apiaceae (FV-OE, traditionally used in folk medicine, against the tumor cell lines murine melanoma (B16F10, human colon carcinoma (HT29, human breast adenocarcinoma (MCF-7, human cervical adenocarcinoma (HeLa, human hepatocellular liver carcinoma (HepG2, and human glioblastoma (MO59J, U343, and U251. Normal hamster lung fibroblasts (V79 cells were included as control. The cells were treated with essential oil concentrations ranging from 3.12 to 400 µg/ml for 24 h. The cytotoxic activity was evaluated using the XTT assay; results were expressed as IC50, and the selectivity index was calculated. The results were compared with those achieved for classic chemotherapeutic agents. TE-OE was the most promising among the evaluated oils: it afforded the lowest IC50 values for B16F10 cells (7.47 ± 1.08 µg/ml and HT29 cells (6.93 ± 0.77 µg/ml, as well as selectivity indices of 2.61 and 2.81, respectively. The major BS-EO, FV-EO and TE-EO chemical constituents were identified by gas chromatography mass spectrometry as being (E-caryophyllene (10.5%, germacrene D (35.0% and 2,6-di-tert-butyl-4-methylphenol (43.0% (BS-EO; limonene (21.3% and (E-anethole (70.2% (FV-EO; limonene (10.4%, dihydrotagetone (11.8%, α-terpinolene (18.1% and (E-ocimenone (13.0% (TE-EO; and fenchone (6.1%, dronabinol (11.0%, aromadendrene oxide (14.7% and (E,E–farnesol (15.0% (TR-EO. 2,6-di-tert-butyl-4-methylphenol (43.0%, (E-anethole (70.2% and α-terpinolene (18.1%, respectively. These results suggest that TE-OE may be used to treat cancer without affecting normal cells.

  14. Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Køllgaard, Tania; Andersen, Rikke Sick;

    2011-01-01

    in mouse models of cancer in a nontoxic fashion. Here, we describe the immunogenicity of IDO2 by showing the presence of spontaneous cytotoxic T-cell reactivity against IDO2 in peripheral blood of both healthy donors and cancer patients. Furthermore, we show that these IDO2-specific T cells are cytotoxic...

  15. Cytotoxic effects of curcumin in human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Margrit Hollborn

    Full Text Available BACKGROUND: Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE cells in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM and delayed apoptosis (above 1 µM. The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. CONCLUSION: It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as

  16. Simultaneous measurement of NK cell cytotoxicity against two target cell lines labelled with fluorescent lanthanide chelates.

    Science.gov (United States)

    Lövgren, J; Blomberg, K

    1994-07-12

    We describe a cytotoxicity assay which permits the simultaneous measurement of natural killer cell activity against two different cell lines. The target cell lines are labelled either with a fluorescent europium chelate or with a fluorescent terbium chelate and cell death is quantified by measuring the chelate release. K-562, Molt4 and Daudi cell lines have been used as targets. The release of the two chelates from the target cells can be detected with the help of time resolved fluorometry. As the measurements are made after background fluorescence has decayed no additional steps are needed to correct for the background from the medium. The assay procedure used for measurement of cytotoxicity against two target cell lines is very similar to the widely used 51Cr release assay. PMID:8034979

  17. Concanavalin A-induced activation of lymphocytic choriomeningitis virus memory lymphocytes into specifically cytotoxic T cells

    DEFF Research Database (Denmark)

    Marker, O; Thomsen, Allan Randrup; Andersen, G T

    1977-01-01

    When spleen cells, which have been primed to Lymphocytic Choriomeningitis (LCM) virus during a primary infection several months previously, are stimulated in vitro with Con A. highly specific secondary cytotoxic effector cells are generated. The degree of cytotoxicity revealed by such Con A......-stimulated cells is higher than that of non-incubated spleen cells harvested nine days following the primary infection, and the effect is totally inhibited by anti-theta serum plus complement treatment of the effector cells immediately before the cytotoxic test....

  18. Mogoltacin enhances vincristine cytotoxicity in human transitional cell carcinoma (TCC) cell line.

    Science.gov (United States)

    Behnam Rassouli, F; Matin, M M; Iranshahi, M; Bahrami, A R; Neshati, V; Mollazadeh, S; Neshati, Z

    2009-03-01

    Bladder cancer is the second common cancer of the genitourinary system throughout the world and intravesical chemotherapy is usually used to reduce tumour recurrence and progression. Human transitional cell carcinoma (TCC) is an epithelial-like adherent cell line originally established from primary bladder carcinoma. Here we report the effect of mogoltacin, a sesquiterpene coumarin from Ferula badrakema on TCC cells. Mogoltacin was isolated from the fruits of F. badrakema, using silica gel column chromatography and preparative thin layer chromatography. Mogoltacin did not have any significant cytotoxicity effect on neoplastic TCC cells at 16, 32, 64, 128, 200 and 600 microg ml(-1) concentrations. In order to analyse its combination effect, TCC cells were cultured in the presence of various combining concentrations of mogoltacin and vincristine. Cells were then observed for morphological changes (by light microscopy) and cytotoxicity using MTT assay. The effect of mogoltacin on vincristine toxicity was studied after 24, 48 and 72 h of drug administration. The results of MTT assay showed that mogoltacin can significantly enhance the cytotoxicity of vincristine and confirmed the morphological observations. Results revealed that combination of 40 microg ml(-1) vincristine with 16 microg ml(-1) mogoltacin increased the cytotoxicity of vincristine after 48 h by 32.8%.

  19. Murine cellular cytotoxicity to syngeneic and xenogeneic herpes simplex virus-infected cells.

    Science.gov (United States)

    Kohl, S; Drath, D B; Loo, L S

    1982-12-01

    Cellular cytotoxicity of C57BL/6 adult mice peritoneal cells to xenogeneic (Chang liver) and syngeneic (BL/6-WT3) herpes simplex virus (HSV)-infected cells was analyzed in a 6-h 51Cr release assay. There was no difference in antibody-dependent cellular cytotoxicity to either target. There was no natural killer cytotoxicity to targets with cells from uninfected mice except at very high effector cell ratios. HSV-infected (2 X 10(4) PFU intraperitoneally 1 day previously) mice mediated significantly higher antibody-dependent cellular cytotoxicity and required less antibody (10(-5) versus 10(-2) dilution), fewer cells, and less time to kill than cells from uninfected mice. HSV-infected mice mediated natural killer cytotoxicity but preferentially killed syngeneic HSV-infected cells. Stimulation of cytotoxicity was not virus specific since influenza-infected mice mediated similar levels of cytotoxicity to HSV-infected targets. There was no difference in morphology (95% macrophage) or in the percentage of FcR-positive cells, but infected mice had more peritoneal cells and generated higher levels of superoxide in response to opsonized zymosan or phorbolmyristate acetate. These data demonstrate nonspecific virus-stimulated metabolic and effector cell function which may enhance clearance of virus in an infected host. PMID:6295943

  20. Rhinovirus infection induces cytotoxicity and delays wound healing in bronchial epithelial cells

    OpenAIRE

    Constantopoulos Andreas G; Skevaki Chrysanthi L; Gourgiotis Dimitrios; Psarras Stelios; Bossios Apostolos; Saxoni-Papageorgiou Photini; Papadopoulos Nikolaos G

    2005-01-01

    Abstract Background Human rhinoviruses (RV), the most common triggers of acute asthma exacerbations, are considered not cytotoxic to the bronchial epithelium. Recent observations, however, have questioned this knowledge. The aim of this study was to evaluate the ability of RV to induce epithelial cytotoxicity and affect epithelial repair in-vitro. Methods Monolayers of BEAS-2B bronchial epithelial cells, seeded at different densities were exposed to RV serotypes 1b, 5, 7, 9, 14, 16. Cytotoxic...

  1. Cytotoxicity against KB and NCI-H187 cell lines of modified flavonoids from Kaempferia parviflora.

    Science.gov (United States)

    Yenjai, Chavi; Wanich, Suchana

    2010-05-01

    Flavones 1-4 isolated from Kaempferia parviflora were used for structural modification. Sixteen flavonoid derivatives, including four new derivatives, were synthesized and evaluated for cytotoxicity against KB and NCI-H187 cell lines. Flavanones 2a-4a demonstrated higher cytotoxic activity than the parent compounds. Cytotoxicity against KB cell line of oxime 1c was about 7 times higher than the ellipticine standard. Interestingly, oximes 1c and 2c exhibited highly potent cytotoxicity against NCI-H187 cell line with IC(50) values of 0.014 and 0.23 microM, respectively. Oximes 4c and 5c showed strong cytotoxicity against NCI-H187 cell line with IC(50) values of 4.04 and 2.32 microM, respectively. PMID:20362442

  2. Enhanced cytotoxic T-cell function and inhibition of tumor progression by Mst1 deficiency.

    Science.gov (United States)

    Yasuda, Kaneki; Ueda, Yoshihiro; Ozawa, Madoka; Matsuda, Tadashi; Kinashi, Tatsuo

    2016-01-01

    Mammalian ste-20 like kinase Mst1 plays important roles during apoptosis, proliferation, cell polarity, and migration. Here, we report a novel role of Mst1 for cytotoxic T-cell responses and tumor suppression. The defect of Mst1 caused decreased levels of FoxO, and promoted cytotoxicity in vitro. Mst1(-/-) cytotoxic T cells also exhibited enhanced T-bet expression that was associated with elevated expression levels of IFNγ and granzyme B. Moreover, Mst1(-/-) cytotoxic T cells suppressed tumor growth in vivo. The data suggest that Mst1 inhibits cytotoxicity via T-bet suppression by FoxO1 and FoxO3a. Thus, Mst1 is a potential therapeutic target for tumor immunotherapy.

  3. Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Køllgaard, Tania; Andersen, Rikke Sick;

    2011-01-01

    in mouse models of cancer in a nontoxic fashion. Here, we describe the immunogenicity of IDO2 by showing the presence of spontaneous cytotoxic T-cell reactivity against IDO2 in peripheral blood of both healthy donors and cancer patients. Furthermore, we show that these IDO2-specific T cells are...... cytotoxic effector cells that recognize and kill tumor cells. Our data suggest that IDO2 might be a useful target for anticancer immunotherapeutic strategies....

  4. Garcinielliptone FC: antiparasitic activity without cytotoxicity to mammalian cells.

    Science.gov (United States)

    Silva, Ana P; Silva, Marcos P; Oliveira, Cristiano G; Monteiro, Daniela C; Pinto, Pedro L; Mendonça, Ronaldo Z; Costa Júnior, Joaquim S; Freitas, Rivelilson M; de Moraes, Josué

    2015-06-01

    Garcinielliptone FC (GFC) is a natural prenylated benzophenone found in the seeds of Platonia insignis Mart. (Clusiaceae), a native Brazilian plant. It has been chemically characterized and it is known that GFC has several biological activities such as antioxidant and vasorelaxant properties. In this study, we report the in vitro effect of GFC against the blood fluke Schistosoma mansoni, the parasite responsible for schistosomiasis mansoni. The anti-S. mansoni activity and cytotoxicity toward mammalian cells were determined for the compound. GFC⩾6.25 μM showed antischistosomal activity and confocal laser scanning microscopy analysis demonstrated several morphological alterations on the tegument of worms, and a correlation between viability and tegumental damage was observed. In addition, at sub-lethal concentrations of GFC (⩽3.125 μM), the number of S. mansoni eggs was reduced. More importantly, GFC exhibited no activity toward mammalian cells and, therefore, there is an appreciable selectivity of this compound against the helminths. In conclusion, these findings indicate the potential of GFC as an antiparasitic agent. PMID:25553916

  5. Murine cellular cytotoxicity to syngeneic and xenogeneic herpes simplex virus-infected cells.

    OpenAIRE

    Kohl, S; Drath, D B; Loo, L S

    1982-01-01

    Cellular cytotoxicity of C57BL/6 adult mice peritoneal cells to xenogeneic (Chang liver) and syngeneic (BL/6-WT3) herpes simplex virus (HSV)-infected cells was analyzed in a 6-h 51Cr release assay. There was no difference in antibody-dependent cellular cytotoxicity to either target. There was no natural killer cytotoxicity to targets with cells from uninfected mice except at very high effector cell ratios. HSV-infected (2 X 10(4) PFU intraperitoneally 1 day previously) mice mediated significa...

  6. Cytotoxic Activity and G1 Cell Cycle Arrest of a Dienynone from Echinacea pallida

    DEFF Research Database (Denmark)

    Chicca, Andrea; Adinolfi, Barbara; Pellati, Federica;

    2009-01-01

    In the present study, a further investigation of the cytotoxic activity of an acetylenic constituent of ECHINACEA PALLIDA roots, namely, pentadeca-(8 Z,13 Z)-dien-11-yn-2-one, was performed, revealing a concentration-dependent cytotoxicity on several human cancer cell lines, including leukemia...

  7. METHYLCELLULOSE CELL-CULTURE AS A NEW CYTOTOXICITY TEST SYSTEM FOR BIOMATERIALS

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; NIEUWENHUIS, P; DAMINK, LO; TENHOOPEN, H; FEIJEN, J

    1991-01-01

    The cytotoxicity of biomaterials can be tested in vitro using various culture systems. Liquid culture systems may detect cytotoxicity of a material either by culture of cells with extracts or with the material itself. In the latter instance, renewing the medium will remove possible released cytotoxi

  8. The cytotoxic and proapoptotic activities of hypnophilin are associated with calcium signaling in UACC-62 cells.

    Science.gov (United States)

    Pinto, Mauro C X; Cota, Betania B; Rodrigues, Michele A; Leite, Maria F; de Souza-Fagundes, Elaine M

    2013-11-01

    Hypnophilin (HNP) is a sesquiterpene that is isolated from Lentinus cf. strigosus and has cytotoxic activities. Here, we studied the calcium signaling and cytotoxic effects of HNP in UACC-62 cells, a human skin melanoma cell line. HNP was able to increase the intracellular calcium concentration in UACC-62 cells, which was blocked in cells stimulated in Ca(2+) -free media. HNP treatment with BAPTA-AM, an intracellular Ca(2+) chelator, caused an increase in calcium signals. HNP showed cytotoxicity against UACC-62 cells in which it induced DNA fragmentation and morphological alterations, including changes in the nuclear chromatin profile and increased cytoplasmatic vacuolization, but it had no effect on the plasma membrane integrity. These data suggest that cytotoxicity in UACC-62 cells, after treatment with HNP, is associated with Ca(2+) influx. Together, these findings suggest that HNP is a relevant tool for the further investigation of new anticancer approaches.

  9. Cytotoxic activity of interferon alpha induced dendritic cells as a biomarker of glioblastoma

    Science.gov (United States)

    Mishinov, S. V.; Stupak, V. V.; Tyrinova, T. V.; Leplina, O. Yu.; Ostanin, A. A.; Chernykh, E. R.

    2016-08-01

    Dendritic cells (DCs) are the most potent antigen presenting cells that can play direct role in anti-tumor immune response as killer cells. DC tumoricidal activity can be stimulated greatly by type I IFN (IFNα and IFNβ). In the present study, we examined cytostatic and cytotoxic activity of monocyte-derived IFNα-induced DCs generated from patients with brain glioma and evaluated the potential use of these parameters in diagnostics of high-grade gliomas. Herein, we demonstrated that patient DCs do not possess the ability to inhibit the growth of tumor HEp-2 cell line but low-grade and high-grade glioma patients do not differ significantly in DC cytostatic activity. However, glioma patient DCs are characterized by reduced cytotoxic activity against HEp-2 cells. The impairment of DC cytotoxic function is observed mainly in glioblastoma patients. The cytotoxic activity of DCs against HEp-2 cells below 9% is an informative marker for glioblastomas.

  10. Isolation and characterization of cytotoxic effector cells and antibody producing cells from human intestine.

    Science.gov (United States)

    MacDermott, R P

    1985-01-01

    We have examined the ability of intestinal and peripheral blood mononuclear cells isolated from patients with inflammatory bowel disease to mediate killing against cell line targets in spontaneous, antibody-dependent, lectin-induced, and interferon-induced cell-mediated cytotoxicity assays, as well as responsiveness in the allogeneic mixed leukocyte reaction, and effector capabilities in cell-mediated lympholysis. IMC were poor mediators of spontaneous or antibody-dependent cellular cytotoxicity with cell line cells as targets (in comparison to normal PBMC, but were capable of killing antibody coated chicken red blood cells. Although IMC were capable of responding to allogeneic cell surface antigens in the mixed leukocyte reaction, they did not exhibit effector function in cell-mediated lympholysis. Mitogenic lectins induced cell-mediated cytotoxicity by isolated intestinal mononuclear cells from controls and patients. HFIF induces cytotoxicity by control but not inflammatory bowel disease intestinal cells. Pokeweed mitogen was the lectin which induced the greatest amount of killing against human cell line targets. We therefore speculate that exogenous agents, or endogenous factors released during viral infection, could play a role in inducing cell mediated cytotoxic damage to the intestine in inflammatory bowel disease patients. In addition, the functional differences between IMC and PBMC indicate that intestinal MNC may have unique cell capabilities which must be better understood prior to the delineation of immunopathologic events in solid organ tissues. We have also examined the secretion of IgA, IgM, and IgG by isolated human IMC, human bone marrow MNC from rib specimens, and PBMC from patients with CD, UC, SLE, or Henoch-Schoenlein purpura (HSP). Control IMC exhibited high spontaneous secretion of IgA, while intestinal MNC from UC and CD patients exhibited only modest increases in IgA secretion. PBMC from patients with CD, UC, SLE, or HSP exhibited markedly

  11. T cytotoxic-1 CD8+ T cells are effector cells against pneumocystis in mice.

    Science.gov (United States)

    McAllister, Florencia; Mc Allister, Florencia; Steele, Chad; Zheng, Mingquan; Young, Erana; Shellito, Judd E; Marrero, Luis; Kolls, Jay K

    2004-01-15

    Host defenses are profoundly compromised in HIV-infected hosts due to progressive depletion of CD4+ T lymphocytes. A hallmark of HIV infection is Pneumocystis carinii (PC) pneumonia. Recently, CD8+ T cells, which are recruited to the lung in large numbers in response to PC infection, have been associated with some level of host defense as well as contributing to lung injury in BALB/c mice. In this study, we show that CD8+ T cells that have a T cytotoxic-1 response to PC in BALB/c mice, as determined by secretion of IFN-gamma, have in vitro killing activity against PC and effect clearance of the organism in adoptive transfer studies. Moreover, non-T cytotoxic-1 CD8+ T cells lacked in vitro effector activity and contributed to lung injury upon adoptive transfer. This dichotomous response in CD8+ T cell response may in part explain the clinical heterogeneity in the severity of PC pneumonia.

  12. Evaluation of the cytotoxicity of geosmin and 2-methylisoborneol using cultured human, monkey, and dog cells.

    Science.gov (United States)

    Mochida, Kyo

    2009-03-01

    The cytotoxicity of musty odor-emitting substances, geosmin (GM) and 2-methylisoborneol, at a concentration of 10 ng/L - 300 mg/L was investigated using cultured mammalian cells. These two compounds exhibited no cytotoxicity in either the colony-formation of human KB cells or WST-1 assays of human-, monkey-, and dog-derived cells. These results suggest that the maximum concentration (700 ng/L) of GM found in the water of Lake Shinji is not toxic.

  13. Therapeutic potential of highly cytotoxic natural killer cells for gastric cancer.

    Science.gov (United States)

    Mimura, Kousaku; Kamiya, Takahiro; Shiraishi, Kensuke; Kua, Ley-Fang; Shabbir, Asim; So, Jimmy; Yong, Wei-Peng; Suzuki, Yoshiyuki; Yoshimoto, Yuya; Nakano, Takashi; Fujii, Hideki; Campana, Dario; Kono, Koji

    2014-09-15

    To develop more effective therapies for patients with advanced gastric cancer, we examined the potential of ex vivo expanded natural killer (NK) cells. We assessed the expression of ligands for NK Group 2 Member D (NKG2D, an important NK activation molecule) in primary tumors from 102 patients with gastric cancer by immunohistochemistry and determined their prognostic value. We then examined the in vitro and in vivo cytotoxicity of NK cells from healthy donors and patients with gastric cancer. The cytotoxicity of resting and of interleukin (IL)-2-activated NK cells was compared to that of NK cells expanded for 7 days by coculture with the K562-mb15-4.1BBL cell line. As a result, the expression of NKG2D ligands in primary tumors was correlated with favorable presenting features and outcomes, suggesting that gastric cancer may be sensitive to NK cell cytotoxicity. Although resting NK cells showed minimal cytotoxicity against gastric cancer cells, K562-mb15-4.1BBL-expanded NK cells were highly cytotoxic and significantly more powerful than IL-2-activated NK cells. Cytotoxicity was correlated with NKG2D ligand expression and could be modulated by mitogen-activated protein kinase and AKT-PI3 kinase inhibitors. The cytotoxicity of expanded NK cells against HER2-positive gastric cancer cells could be increased by Herceptin and further augmented by Lapatinib. Finally, expanded NK cells exhibited strong antitumor activity in immunodeficient mice engrafted with a gastric cancer cell line. In conclusion, gastric cancer tumors express NKG2D ligands and are highly susceptible to killing by NK cells stimulated by K562-mb15-4.1BBL. These results provide a strong rationale for clinical testing of these NK cells in patients and suggest their use to augment the effects of antibody therapy. PMID:24615495

  14. Effects of Ginkgo biloba extract on cell proliferation and cytotoxicity in human hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jane CJ Chao; Chia Chou Chu

    2004-01-01

    AIM: To study the effect of Ginkgo biloba extract (EGb 761)containing 22-27% fiavonoids (ginkgo-flavone glycosides)and 5-7% terpenoids (ginkgolides and bilobalides) on cell proliferation and cytotoxicity in human hepatocellular carcinoma (HCC) cells.METHODS: Human HCC cell lines (HepG2 and Hep3B) were incubated with various concentrations (0-1 000 mg/L) of EGb 761 solution. After 24 h incubation, cell proliferation and cytotoxicity were determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and lactate dehydrogenase (LDH)release, respectively. After 48 h incubation, the expression of proliferating cell nuclear antigen (PCNA) and p53 protein was measured by Western blotting.RESULTS: The results showed that EGb 761 (50-1 000 mg/L)significantly suppressed cell proliferation and increased LDH release (P<0.05) in HepG2 and Hep3B cells compared with the control group. The cell proliferation of HepG2 and Hep3B cells treated with EGb 761 (1 000 mg/L) was 45% and 39% of the control group (P<0.05), respectively. LDH release of HepG2 cells without and with EGb 761 (1 000 mg/L) treatment was 6.7% and 37.7%, respectively, and that of Hep3B cells without and with EGb 761 (1 000 mg/L) treatment was 7.2% and 40.3%, respectively. The expression of PCNA and p53 protein in HepG2 cells treated with EGb 761 (1 000 mg/L)was 85% and 174% of the control group, respectively.CONCLUSION: Ginkgobilobaextract significantly can suppress proliferation and increase cytotoxicity in HepG2 and Hep3B cells. Additionally, Ginkgo biloba extract can decrease PCNA and increase p53 expression in HepG2 cells.

  15. Cell cycle analysis and cytotoxic potential of Ruta graveolens against human tumor cell lines.

    Science.gov (United States)

    Varamini, P; Soltani, M; Ghaderi, A

    2009-01-01

    There are reports on the presence of various compounds exerting different biological activities in Ruta graveolens, a plant of Rutaceae family. The aim of the present study was to evaluate in vitro cytotoxicity of the total extract of R. graveolens against tumor cell lines of different origin. Aerial parts of the plant was extracted with 70% ethanol by sonication method and cytotoxic activity was examined on RAJI, RAMOS, RPMI8866, U937, Jurkat, MDA-MB-453, MCF-7, LNCap-FGC-10, 5637, HeLa, SK-OV-3, A549, Mehr-80 and also peripheral blood mononuclear cells (PBMC) by the use of WST-1 assay. Results were expressed as IC(50) values. R. graveolens extract showed high cytotoxic activity against RAJI and RAMOS, two Burkitt's lymphoma cell lines, with an IC(50) equal to 24.3 microg/ml and 35.2 microg/ml respectively and LNCap-FGC-10, a prostate adenocarcinoma cell line with an IC(50) equal to 27.6 microg/ml as well as Mehr-80, a newly established Large Cell Lung Carcinoma (IC(50)=46.2 microg/ml). No significant anti-proliferative activity was observed on other cell lines including MCF-7, MDA-MB-453, SK-OV-3, HeLa, 5637, JURKAT and RPMI8866. Adverse cytotoxic effect of R. graveolens was investigated against PBMCs and a significantly lower effect of this extract (IC(50)=104 microg/ml) was seen on normal cells compared with RAJI and RAMOS, two haematopoietic cell lines.

  16. Induction of cytotoxic CD8+CD56+ T cells from human thymocytes by interleukin-15

    DEFF Research Database (Denmark)

    Thulesen, S; Nissen, Mogens Holst; Ødum, N;

    2001-01-01

    CD8(+) CD56(+) cells isolated from human peripheral blood lymphocytes have been shown recently to represent a population of cytotoxic active T cells. However, it is not known if these cells are intrathymically or extrathymically developed or how these cells are influenced by growth factors...... of thymocytes. The majority of the IL-15-grown CD8(+) CD56(+) cells were CD45R0(+), representing a memory phenotype, and showed high expression of the IL-15R-complex and high numbers of CD69(+) cells. Moreover, cytotoxic activity was confined to this cell population....

  17. Clarithromycin Synergistically Enhances Thalidomide Cytotoxicity in Myeloma Cells.

    Science.gov (United States)

    Qiu, Xu-Hua; Shao, Jing-Jing; Mei, Jian-Gang; Li, Han-Qing; Cao, Hong-Qin

    2016-01-01

    Clarithromycin (CAM) is a macrolide antibiotic that is widely used in the treatment of respiratory tract infections, sexually transmitted diseases and infections caused by the Helicobacter pylori and Mycobacterium avium complex. Recent studies showed that CAM was highly effective against multiple myeloma (MM) when used in combination with immunomodulatory drugs and dexamethasone. However, the related mechanism is still unknown. As 3 immunomodulatory agents are all effective in the respective regimen, we postulated that CAM might enhance the effect of immunomodulatory drugs. We evaluated the interaction effects of CAM and thalidomide on myeloma cells. Taking into consideration that thalidomide did not affect the proliferation of myeloma cells in vitro, we cocultured myeloma cells with peripheral blood monocytes and evaluated the effects of CAM and thalidomide on the cocultured cell model. Data showed that thalidomide and CAM synergistically inhibited the proliferation of the cells. On this same model, we also found that thalidomide and CAM synergistically decreased the secretion of tumor necrosis factor-α and interleukin-6. This might be caused by the effect of the 2 drugs on inhibiting the activation of ERK1/2 and AKT. These data suggest that the efficacy of CAM against MM was partly due to its synergistic action with the immunomodulatory agents.

  18. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Paula M. Kustiawan

    2014-07-01

    Conclusions: Propolis from T. incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines. Further study is required, including the isolation and characterization of the active antiproliferative agent(s.

  19. Electrochemical monitoring of phytochelatin accumulation in Nicotiana tabacum cells exposed to sub-cytotoxic and cytotoxic levels of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Fojta, Miroslav [Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic)]. E-mail: fojta@ibp.cz; Fojtova, Miloslava [Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Havran, Ludek [Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Pivonkova, Hana [Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Dorcak, Vlastimil [Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Sestakova, Ivana [J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, 182 23 Prague 8 (Czech Republic)

    2006-02-03

    Cadmium belongs to the most dangerous environmental pollutants among the toxic heavy metals seriously affecting vital functions in both animal and plant cells. It has been previously shown that cadmium ions at 50-100 {mu}M concentrations caused tobacco BY-2 (TBY-2) cells to enter apoptosis within several days of exposure. Phytochelatins (PCs), the 'plant metallothioneins', are cysteine-rich peptides involved in detoxification of heavy metals in plants. The PCs are synthesized in response to the heavy metal exposure. In this paper, we utilized electrochemical analysis to monitor accumulation of PCs in the TBY-2 cells exposed to cadmium ions. Measurements of a characteristic PC signal at mercury electrode in the presence of cobalt ions made it possible to detect changes in the cellular PC levels during the time of cultivation, starting from 30 min after exposure. Upon TBY-2 cultivation in the presence of cytotoxic cadmium concentrations, the PC levels remarkably increased during the pre-apoptotic phase and reached a limiting value at cultivation times coinciding with apoptosis trigger. The PC level observed for a sub-cytotoxic cadmium concentration (10 {mu}M) was about three-times lower than that observed for the 50 or 100 {mu}M cadmium ions after 5 days of exposure. We show that using a simple electrochemical analysis, synthesis of PCs in plant cells can be easily followed in parallel with other tests of the cellular response to the toxic heavy metal stress.

  20. CYTOTOXICITY AND MODE OF CELL DEATH INDUCED BY TRIPHENYLTIN (IV COMPOUNDS IN VITRO

    Directory of Open Access Journals (Sweden)

    Normah Awang

    2014-01-01

    Full Text Available A series of newly synthesized organotin (IV with N-alkyl-N-phenyldithiocarbamate ligands namely triphenyltin (IV ethylphenyldithiocarbamate (compound 1 and triphenyltin (IV butylphenyldithiocarbamate (compound 2 were assessed for their cytotoxic effect against HT-29 human colon adenocarcinoma cells and human CCD-18Co normal colon cells. The cytotoxicity of these organotins in both cells was assessed using 3-(4,5-dimethylthiazol-2-yl-2, 5-diphenyltetrazholium bromide (MTT assay upon 24 h treatment. Both compounds demonstrated potent cytotoxicity towards HT-29 cells with the IC50 of 0.18 µM for compound 1 and 0.20 µM for compound 2. Interestingly, compound 1 exhibited lower cytotoxicity towards CCD-18Co with IC50 of 1.55 µM whereas no IC50 was detected for compound 2 up to 2 µM treatment. The mode of cell death was determined based on the externalization of phosphatidylserine using flow cytometry. Cells treated with compound 1 and compound 2 were mainly viable and the apoptotic cell death was around 10% which suggests that both compounds induced growth arrest. In conclusion, this study demonstrated that both compounds were selective towards human colorectal cells by giving a strong cytotoxicity to cancer cells and low toxicity towards normal cells. Both compounds were suggested to induce growth arrest in HT-29 cells.

  1. Disulfiram/copper-disulfiram Damages Multiple Protein Degradation and Turnover Pathways and Cytotoxicity is Enhanced by Metformin in Oesophageal Squamous Cell Carcinoma Cell Lines.

    Science.gov (United States)

    Jivan, Rupal; Damelin, Leonard Howard; Birkhead, Monica; Rousseau, Amanda Louise; Veale, Robin Bruce; Mavri-Damelin, Demetra

    2015-10-01

    Disulfiram (DSF), used since the 1950s in the treatment of alcoholism, is reductively activated to diethyldithiocarbamate and both compounds are thiol-reactive and readily complex copper. More recently DSF and copper-DSF (Cu-DSF) have been found to exhibit potent anticancer activity. We have previously shown that the anti-diabetic drug metformin is anti-proliferative and induces an intracellular reducing environment in oesophageal squamous cell carcinoma (OSCC) cell lines. Based on these observations, we investigated the effects of Cu-DSF and DSF, with and without metformin, in this present study. We found that Cu-DSF and DSF caused considerable cytotoxicity across a panel of OSCC cells, and metformin significantly enhanced the effects of DSF. Elevated copper transport contributes to DSF and metformin-DSF-induced cytotoxicity since the cell-impermeable copper chelator, bathocuproinedisulfonic acid, partially reversed the cytotoxic effects of these drugs, and interestingly, metformin-treated OSCC cells contained higher intracellular copper levels. Furthermore, DSF may target cancer cells preferentially due to their high dependence on protein degradation/turnover pathways, and we found that metformin further enhances the role of DSF as a proteasome inhibitor. We hypothesized that the lysosome could be an additional, novel, target of DSF. Indeed, this acid-labile compound decreased lysosomal acidification, and DSF-metformin co-treatment interfered with the progression of autophagy in these cells. In summary, this is the first such report identifying the lysosome as a target of DSF and based on the considerable cytotoxic effects of DSF either alone or in the presence of metformin, in vitro, and we propose these as novel potential chemotherapeutic approaches for OSCC.

  2. Reduced LAK cytotoxicity of peripheral blood mononuclear cells in patients with bladder cancer

    DEFF Research Database (Denmark)

    Hermann, G G; Petersen, K R; Steven, K;

    1990-01-01

    were analyzed using monoclonal antibodies against T cells, natural killer (NK) -cells, monocytes, and activation markers. The cytotoxicities of US-PBMC, PS-PBMC, and LAK cells were all significantly lower in the cancer patients than in the controls (P less than 0.05). The percentages of PBMC positive......The cytotoxicity of unstimulated peripheral blood mononuclear cells (US-PBMC), phytohemagglutinin (PHA)-stimulated PBMC (PS-PBMC) and interleukin-2 (IL-2)-activated PBMC (LAK cells) was assessed in patients with noninvasive and invasive transitional-cell bladder cancer and compared with those...... determined in healthy controls. The differences in the cytotoxicities were correlated with specific changes in the subsets of peripheral blood mononuclear cells (PBMC). PBMC from 37 patients and 13 healthy controls were tested against the bladder cancer cell line T24 in 51Cr-release assays. The PBMC subsets...

  3. Modulating microtubule stability enhances the cytotoxic response of cancer cells to paclitaxel

    OpenAIRE

    Ahmed, Ahmed Ashour; Wang, Xiaoyan; Lu, Zhen; Goldsmith, Juliet,; Le, Xiao-Feng; Grandjean, Geoffrey; Bartholomeusz, Geoffrey; Broom, Bradley; Bast, Robert C.

    2011-01-01

    The extracellular matrix protein TGFBI enhances the cytotoxic response of cancer cells to paclitaxel by affecting integrin signals that stabilize microtubules. Extending the implications of this knowledge, we tested the more general hypothesis that cancer cell signals which increase microtubule stability before exposure to paclitaxel may increase its ability to stablize microtubules and thereby enhance its cytotoxicity. Toward this end, we performed an siRNA screen to evaluate how genetic dep...

  4. Endothelial cell cytotoxicity of cotton bracts tannin and aqueous cotton bracts extract

    International Nuclear Information System (INIS)

    Using an in vitro cytotoxicity assay based on the release of 51Cr from cultured porcine thoracic aortic and pulmonary arterial endothelial cells, we have demonstrated that cotton bracts tannin is a potent endothelial cell cytotoxin. It produces dose-dependent lethal injury to both types of endothelial cells with the aortic cells, being somewhat more sensitive to tannin-mediated injury than the pulmonary arterial cells. Cytotoxic injury to the cells was biphasic. During the first 3 hr of exposure to tannin, no lethal injury was detected. However, during this period, profound changes in morphology were observed suggesting sublethal injury to the cells preceded the ultimate toxic damage. Comparison of the cytotoxicity dose curves for aqueous bracts extracts with those for tannin demonstrated that tannin was major cytotoxin present in bracts

  5. Flow cytometric assay detecting cytotoxicity against human endogenous retrovirus antigens expressed on cultured multiple sclerosis cells

    DEFF Research Database (Denmark)

    Møller-Larsen, A; Brudek, T; Petersen, T;

    2013-01-01

    as control antibody. Without antibodies this system is suitable for analyses of natural killer cell activity. In optimization of the assay we have used effector lymphocytes from healthy donors. The most effective effector cells are CD56(+) cells. CD8(+) T cells also express CD107a in ADCC. Using the adapted......Damage of target cells by cytotoxicity, either mediated by specific lymphocytes or via antibody-dependent reactions, may play a decisive role in causing the central nervous system (CNS) lesions seen in multiple sclerosis (MS). Relevant epitopes, antibodies towards these epitopes and a reliable...... assay are all mandatory parts in detection and evaluation of the pertinence of such cytotoxicity reactions. We have adapted a flow cytometry assay detecting CD107a expression on the surface of cytotoxic effector cells to be applicable for analyses of the effect on target cells from MS patients...

  6. Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines

    Institute of Scientific and Technical Information of China (English)

    Soundararajan; Vijayarathna; Sreenivasan; Sasidharan

    2012-01-01

    Objective:To investigate the cytotoxic effect of Elaeis guineensis methanol extract on MCF-7and Vero cell.Methods:In vitro cytotoxicity was evaluated in by MTT assay.Cell morphological changes were observed by using light microscope.Results:The MTT assay indicated that methanol extract of the plant exhibited significant cytotoxic effects on MCF-7.Morphological alteration of the cell lines after exposure with lilaeis guineensis extract were observed under phase contrast microscope in the dose dependent manner.Conclusions:The results suggest the probable use of the Elaeis guineensis methanol extract in preparing recipes for cancer-related ailments.Further studies on isolation of metabolites and their in vivo cytotoxicity are under investigation.

  7. Synthesis of Chromonylthiazolidines and Their Cytotoxicity to Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Hoang Le Tuan Anh

    2015-01-01

    Full Text Available Nine new chromonylthiazolidine derivatives were successfully semi-synthesized from paeonol. All of the compounds, including starting materials, the intermediate compound and products, were evaluated for their cytotoxic effects toward eight human cancer cell lines. The synthesized chromonylthiazolidines displayed weak cytotoxic effects against the tested cancer cell lines, but selective cytotoxic effects were observed. Compounds 3a and 3b showed the most selective cytotoxic effects against human epidermoid carcinoma (IC50 44.1 ± 3.6 μg/mL and breast cancer (IC50 32.8 ± 1.4 μg/mL cell lines, respectively. The results suggest that chromoylthiazolidines are potential low-cost, and selective anticancer agents.

  8. Specific cytotoxic T-cell immune responses against autoantigens recognized by chronic lymphocytic leukaemia cells.

    Science.gov (United States)

    Zaleska, Joanna; Skorka, Katarzyna; Zajac, Malgorzata; Karczmarczyk, Agnieszka; Karp, Marta; Tomczak, Waldemar; Hus, Marek; Wlasiuk, Paulina; Giannopoulos, Krzysztof

    2016-08-01

    Mounting evidence suggests that autoreactivity and inflammatory processes are involved in the pathogenesis of chronic lymphocytic leukaemia (CLL). Cytoskeletal proteins, including non-muscle myosin heavy chain IIA (MYHIIA), vimentin (VIM) and cofilin-1 (CFL1), exposed on the surface of apoptotic cells have been identified as autoantigens that are recognized by the specific B-cell receptors of the CLL cells. In 212 CLL patients analysed with quantitative reverse transcriptase-polymerase chain reaction we found CFL1 overexpression and low expression of MYH9 in comparison with healthy volunteers. We detected specific cytotoxic immune responses for peptides derived from MYHIIA in 66·7%, VIM in 87·5% and CFL1 in 62·5% CLL patients in an Enzyme-Linked ImmunoSpot assay. Low frequencies of autoreactive peptide-specific T cells were detected against MYHIIA, VIM and CFL1 in CLL patients ex vivo; most of the detected cells had an effector-memory phenotype. Our findings support the existence of cytotoxic immune responses against three autoantigens that have been identified as targets of CLL clonotypic B-cell receptors. The presence of autoreactive CD8(+) T cells against MYHIIA, VIM and CFL1 in CLL patients indicates the involvement of antigen-specific autoreactive T cells in the pathogenesis of CLL.

  9. Relation between parthenolideinduced cytotoxicity and COX—2 expression in nasopharyngeal carcinoma cell

    Institute of Scientific and Technical Information of China (English)

    LinYL; OngCN

    2002-01-01

    To investigate the potential anti-tumor effects and its relative its relative mechanism of active component in chrysanthemum,on human nasopharyngeal carcinoma(NPC).Parthenolide(PN) was used as tested substance and exposed to NPC cell lines,CNE1 and CNE2.Cell toxicity indexes and cyclooxygenase-2(COX-2) expression were determined.Results showed that in CNE1 cells,with high level COX-2,there were significant cytotoxicities after PN-treated.However,there were not inducible effects on CNE2 cells with low level COX-2.It was indicated that PN could induce cytotoxicity in NPC cell,which correlated with its intracellular COX-2 expression.

  10. Synergistic cytotoxicity of gemcitabine, clofarabine and edelfosine in lymphoma cell lines

    OpenAIRE

    Valdez, B C; Zander, A R; Song, G.; Murray, D; Nieto, Y; Li, Y.; Champlin, R E; Andersson, B. S.

    2014-01-01

    Treatments for lymphomas include gemcitabine (Gem) and clofarabine (Clo) which inhibit DNA synthesis. To improve their cytotoxicity, we studied their synergism with the alkyl phospholipid edelfosine (Ed). Exposure of the J45.01 and SUP-T1 (T-cell) and the OCI-LY10 (B-cell) lymphoma cell lines to IC10–IC20 levels of the drugs resulted in strong synergistic cytotoxicity for the 3-drug combination based on various assays of cell proliferation and apoptosis. Cell death correlated with increased p...

  11. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes.

    Directory of Open Access Journals (Sweden)

    Richard Brad Jones

    2014-08-01

    Full Text Available Resting memory CD4+ T-cells harboring latent HIV proviruses represent a critical barrier to viral eradication. Histone deacetylase inhibitors (HDACis, such as suberanilohydroxamic acid (SAHA, romidepsin, and panobinostat have been shown to induce HIV expression in these resting cells. Recently, it has been demonstrated that the low levels of viral gene expression induced by a candidate HDACi may be insufficient to cause the death of infected cells by viral cytopathic effects, necessitating their elimination by immune effectors, such as cytotoxic T-lymphocytes (CTL. Here, we study the impact of three HDACis in clinical development on T-cell effector functions. We report two modes of HDACi-induced functional impairment: i the rapid suppression of cytokine production from viable T-cells induced by all three HDACis ii the selective death of activated T-cells occurring at later time-points following transient exposures to romidepsin or, to a lesser extent, panobinostat. As a net result of these factors, HDACis impaired CTL-mediated IFN-γ production, as well as the elimination of HIV-infected or peptide-pulsed target cells, both in liquid culture and in collagen matrices. Romidepsin exerted greater inhibition of antiviral function than SAHA or panobinostat over the dose ranges tested. These data suggest that treatment with HDACis to mobilize the latent reservoir could have unintended negative impacts on the effector functions of CTL. This could influence the effectiveness of HDACi-based eradication strategies, by impairing elimination of infected cells, and is a critical consideration for trials where therapeutic interruptions are being contemplated, given the importance of CTL in containing rebound viremia.

  12. Regulation of IL-2 induced proliferation and cytotoxicity in human natural killer cells by monoclonal antibodies

    International Nuclear Information System (INIS)

    Natural killer (NK) activity is mediated by a subpopulation of cells termed large granular lymphocytes (LGL), which exhibit cytotoxic activity against a variety of tumor targets. LGL express OKT8, OKT9, OKT10, OKT11, 3G8 (FcγR), OKM1, NKH1. The addition of recombinant IL-2 (rIL-2), increases cytotoxicity, induces IFN-γ production and leads to LGL proliferation. Since monoclonal antibodies (MoAb) represent highly specific probes to analyze possible surface molecules, they have studied the role of various MoAbs in the regulation of cytotoxicity, proliferation, and secretory function of purified LGL. LGL were isolated from nonadherent human peripheral blood leukocytes on discontinuous Percoll density gradients, followed by 290C E-rosette depletion of contaminating T cells. These preparations were ≥ 85% LGL and contained ≥ 5% OKT3+ cells. Using a limiting dilution assay, purified LGL were incubated with rIL-2 and the MoAbs (10 μg/ml) for 7 days. These cells were tested for cytotoxicity against K562 in a 51Cr- release assay, and for proliferation as determined by 3H-thymidine incorporation. Results indicate that the OKT9 antibody inhibited both the cytotoxicity and proliferation. MoAb against LGl markers (OKT11, OKT8, OKM1, 3G8, and NKH1) had no effect on cytotoxicity or proliferation. Unlike the T cell receptor complex (with OKT3), the surface molecules examined do not regulate LGL lysis or proliferation

  13. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Christian Michel

    Full Text Available Worldwide increases in fluvial fine sediment are a threat to aquatic animal health. Fluvial fine sediment is always a mixture of particles whose mineralogical composition differs depending on the sediment source and catchment area geology. Nonetheless, whether particle impact in aquatic organisms differs between mineral species remains to be investigated. This study applied an in vitro approach to evaluate cytotoxicity and uptake of four common fluvial mineral particles (quartz, feldspar, mica, and kaolin; concentrations: 10, 50, 250 mg L(-1 in the rainbow trout epithelial gill cell line RTgill-W1. Cells were exposed for 24, 48, 72, and 96 h. Cytotoxicity assays for cell membrane integrity (propidium iodide assay, oxidative stress (H2DCF-DA assay, and metabolic activity (MTT assay were applied. These assays were complemented with cell counts and transmission electron microscopy. Regardless of mineral species, particles ≤ 2 µm in diameter were taken up by the cells, suggesting that particles of all mineral species came into contact and interacted with the cells. Not all particles, however, caused strong cytotoxicity: Among all assays the tectosilicates quartz and feldspar caused sporadic maximum changes of 0.8-1.2-fold compared to controls. In contrast, cytotoxicity of the clay particles was distinctly stronger and even differed between the two particle types: mica induced concentration-dependent increases in free radicals, with consistent 1.6-1.8-fold-changes at the 250 mg L(-1 concentration, and a dilated endoplasmic reticulum. Kaolin caused concentration-dependent increases in cell membrane damage, with consistent 1.3-1.6-fold increases at the 250 mg L(-1 concentration. All effects occurred in the presence or absence of 10% fetal bovine serum. Cell numbers per se were marginally affected. Results indicate that (i. natural mineral particles can be cytotoxic to gill epithelial cells, (ii. their cytotoxic potential differs between mineral

  14. Differentiation of cytotoxicity using target cells labelled with europium and samarium by electroporation.

    Science.gov (United States)

    Bohlen, H; Manzke, O; Engert, A; Hertel, M; Hippler-Altenburg, R; Diehl, V; Tesch, H

    1994-07-12

    We report the simultaneous use of europium-DTPA (Eu-DTPA) and samarium-DTPA (Sm-DTPA) in cytotoxicity experiments to analyze simultaneously LAK and NK cell lysis and to differentiate between specific target lysis and bystander killing. The target cells were either labelled with Eu-DTPA or Sm-DTPA chelates by electroporation, which permits the use of target cell lines or primary leukemic B cells (B-CLL) that cannot be labelled by the conventional dextran-sulphate method. The release of europium and samarium reaches a maximum at comparable time intervals (2-3 h). Due to the shorter counting interval within the samarium window the labelling efficiency is about ten times less efficient compared to europium. Using europium as label for the LAK target Daudi and samarium as label for the NK sensitive cell line K562 the differentiation of LAK versus NK activity can be performed in a single culture assay. Also, the killing of B cells and bystander cells by cytotoxic T cells was analyzed in a system where T cells were redirected to B cells through CD3 x CD19 bispecific antibodies. In fact, no bystander killing was noted when bispecific antibodies were used to bridge cytotoxic T cells to the B cells. This approach provides a simple non-radioactive method for evaluating cytotoxicity against two different cells in a single culture well. PMID:8034986

  15. FADDdel-GFP Modified Mouse Insulinoma Cells Counteract the Cytotoxicity of Reactive T Cells

    Institute of Scientific and Technical Information of China (English)

    Ping Hu; Jiao Yin; Guanxin Shen; Guohua Wang; Xiaohua Zhu; Jing Yang; Huifen Zhu; Zihui Xu; Wenjun Liao; Xiao Liu; Fen Xu

    2004-01-01

    IDDM results from pancreatic beta cell destruction by islet-reactive T cells, a process that involves beta cell apoptosis. FasL-Fas pathway plays a major role in pancreatic beta cell death. Fas-associated death domain protein (FADD), the component of the tumor necrosis factor receptor type 1 (TNF-R1) and Fas signaling complexes, is involved in TNF-R1- and Fas-induced apoptosis. Inhibiting the function of FADD will lead to blocking downstream apoptosis signal, which protects pancreatic beta cells from destruction by FasL-Fas pathway. In this study we constructed eukaryotic expressing vector of fusional protein FADDdel-GFP named pFADDdeI-GFP. After pFADDdel-GFP was transfected into NIT, the expression of FADDdel-GFP in NIT was detected by fluorescence microscopy and the resistance of NIT transfected with pFADDdel-GFP to cytotoxicity mediated by special T cells was detected by FACS and MTT. The results showed that NIT modified by pFADDdel-GFP obviously resisted cytotoxicity mediated by special T cells. Therefore, it may be useful in the prevention or treatment of IDDM by intervening FasL-Fas pathway. Cellular & Molecular Immunology. 2004;1(5):383-386.

  16. FADDdel-GFP Modified Mouse Insulinoma Cells Counteract the Cytotoxicity of Reactive T Cells

    Institute of Scientific and Technical Information of China (English)

    PingHu; GuohuaWang; XiaohuaZhu; JingYang; HuifenZhu; ZihuiXu; WenjunLiao; XiaoLiu; FenXu; JiaoYin; GuanxinShen

    2004-01-01

    IDDM results from pancreatic beta cell destruction by islet-reactive T cells, a process that involves beta cell apoptosis. FasL-Fas pathway plays a major role in pancreatic beta cell death. Fas-associated death domain protein (FADD), the component of the tumor necrosis factor receptor type 1 (TNF-R1) and Fas signaling complexes, is involved in TNF-R1- and Fas-induced apoptosis. Inhibiting the function of FADD will lead toblocking downstream apoptosis signal, which protects pancreatic beta cells from destruction by FasL-Fas pathway. In this study we constructed eukaryotic expressing vector of fusional protein FADDdel-GFP named pFADDdel-GFP. After pFADDdel-GFP was transfected into NIT, the expression of FADDdel-GFP in NIT was detected by fluorescence microscopy and the resistance of NIT transfected with pFADDdel-GFP to cytotoxicity mediated by special T cells was detected by FACS and MTT. The results showed that NIT modified bypFADDdel-GFP obviously resisted cytotoxicity mediated by special T cells. The refore, it may be useful in theprevention or treatment of IDDM by intervening FasL-Fas pathway. Cellular & Molecular Immunology. 2004;1(5):383-386.

  17. Cytotoxic effect of Cousinia verbascifolia Bunge against OVCAR-3 and HT-29 cancer cells

    Directory of Open Access Journals (Sweden)

    Sajjadi Seyed Ebrahim

    2015-01-01

    Full Text Available Introduction: Little information is available about phytochemical and biological properties of Cousinia genus. In a primary study, seven Cousinia species including C. verbascifolia showed cytotoxic activity ranged between 18.4 ± 0.59 to 87.9 ± 0.58 μg/mL. To the best of our knowledge, no other biological studies have been conducted on this plant. Therefore, in this study the cytotoxic effect of Cousinia verbascifolia Bunge against OVCAR-3 and HT-29 cancer cells was evaluated. Methods: Filtration and in vacuo concentration of methanol extract resulted in a green gum which was subjected on reverse column chromatography. Semi polar fraction (41.3 g eluted with water: methanol (20:80, was then subjected on a silica gel column chromatography using hexane/acetone and resulted in 11 fractions. Finally, cytotoxic activities against ovarian and colon cancer cells were determined at a wavelength of 570 nm by Matrix metalloproteinase protein (MTT standard method. Results: None of the fractions showed highly cytotoxic activity. Based on NCI, fractions Fr. 1, Fr. 2, Fr. 4, Fr. 5, Fr. 6, Fr. 8 and Fr. 10 showed moderately cytotoxicity with IC50 values ranged between 119 to 190 μg/mL against OVCAR-3 cells. Fractions Fr. 1, Fr. 2, Fr. 6, Fr. 7 and Fr. 8 showed moderately cytotoxic activity ranged between 118 to 194 μg/mL against HT-29 cells. Fr. 10 and Fr. 11 showed no cytotoxic activity. Conclusion: Due to the inhibitory properties of extract and its fractions on cancer cells, identification of responsible compounds possessing cytotoxic effects for generating possible new approach in medicinal chemistry are recommended.

  18. Differential cytotoxic effects of gold nanoparticles in different mammalian cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Chueh, Pin Ju [Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan (China); Graduate Institute of Basic Medicine, China Medical University, Taichung 40402, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taichung 41354, Taiwan (China); Liang, Ruei-Yue; Lee, Yi-Hui; Zeng, Zih-Ming [Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan (China); Chuang, Show-Mei, E-mail: smchuang@dragon.nchu.edu.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2014-01-15

    Highlights: • AuNPs induce apoptosis in Vero cells. • AuNPs-induced attenuation of cell growth in NIH3T3 cells through autophagy. • Cell-cycle delay was associated with the resistance to AuNPs in MRC-5 cells. • Cell growth was continuously monitored using the measurement of cell impedance. -- Abstract: Gold nanoparticles (AuNPs) possess unique properties that have been exploited in several medical applications. However, a more comprehensive understanding of the environmental safety of AuNPs is imperative for use of these nanomaterials. Here, we describe the impacts of AuNPs in various mammalian cell models using an automatic and dye-free method for continuous monitoring of cell growth based on the measurement of cell impedance. Several well-established cytotoxicity assays were also used for comparison. AuNPs induced a concentration-dependent decrease in cell growth. This inhibitory effect was associated with apoptosis induction in Vero cells but not in MRC-5 or NIH3T3 cells. Interestingly, cDNA microarray analyses in MRC-5 cells supported the involvement of DNA damage and repair responses, cell-cycle regulation, and oxidative stress in AuNP-induced cytotoxicity and genotoxicity. Moreover, autophagy appeared to play a role in AuNPs-induced attenuation of cell growth in NIH3T3 cells. In this study, we present a comprehensive overview of AuNP-induced cytotoxicity in a variety of mammalian cell lines, comparing several cytotoxicity assays. Collectively, these assays offer convincing evidence of the cytotoxicity of AuNPs and support the value of a systematic approach for analyzing the toxicology of nanoparticles.

  19. Differential cytotoxic effects of gold nanoparticles in different mammalian cell lines

    International Nuclear Information System (INIS)

    Highlights: • AuNPs induce apoptosis in Vero cells. • AuNPs-induced attenuation of cell growth in NIH3T3 cells through autophagy. • Cell-cycle delay was associated with the resistance to AuNPs in MRC-5 cells. • Cell growth was continuously monitored using the measurement of cell impedance. -- Abstract: Gold nanoparticles (AuNPs) possess unique properties that have been exploited in several medical applications. However, a more comprehensive understanding of the environmental safety of AuNPs is imperative for use of these nanomaterials. Here, we describe the impacts of AuNPs in various mammalian cell models using an automatic and dye-free method for continuous monitoring of cell growth based on the measurement of cell impedance. Several well-established cytotoxicity assays were also used for comparison. AuNPs induced a concentration-dependent decrease in cell growth. This inhibitory effect was associated with apoptosis induction in Vero cells but not in MRC-5 or NIH3T3 cells. Interestingly, cDNA microarray analyses in MRC-5 cells supported the involvement of DNA damage and repair responses, cell-cycle regulation, and oxidative stress in AuNP-induced cytotoxicity and genotoxicity. Moreover, autophagy appeared to play a role in AuNPs-induced attenuation of cell growth in NIH3T3 cells. In this study, we present a comprehensive overview of AuNP-induced cytotoxicity in a variety of mammalian cell lines, comparing several cytotoxicity assays. Collectively, these assays offer convincing evidence of the cytotoxicity of AuNPs and support the value of a systematic approach for analyzing the toxicology of nanoparticles

  20. Cytotoxicity of Selected Medicinal and Nonmedicinal Plant Extracts to Microbial and Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Gary M. Booth

    2012-01-01

    Full Text Available This study investigated the cytotoxicity of 55 species of plants. Each plant was rated as medicinal, or nonmedicinal based on the existing literature. About 79% of the medicinal plants showed some cytotoxicity, while 75% of the nonmedicinal plants showed bioactivity. It appears that Asteraceae, Labiatae, Pinaceae, and Chenopodiaceae were particularly active against human cervical cancer cells. Based on the literature, only three of the 55 plants have been significantly investigated for cytotoxicity. It is clear that there is much toxicological work yet to be done with both medicinal and nonmedicinal plants.

  1. The cytotoxic effects a of ACA1 on human melanoma cell line

    Directory of Open Access Journals (Sweden)

    R. Yaraie

    2006-01-01

    Full Text Available Background and purpose: Different methods such as surgery, chemotherapy, radiotherapy, hormone therapy and immunotherapy are used for treatment of melanoma cancer. Unfortunately they don't always have desirable results and they may have unfavorable side effects. Researchers try to find new, more effective drugs with low side effects. In this study we evaluated the cytotoxic effect of ACA-1, a water extract of a traditional Iranian medicinal herbs on a melanoma cell line SKMEL-3.Materials and Methods: The SKMEL3 cell line was obtained from Pasture institute, Tehran, Iran and cultured in RPMI media supplemented with 10% FBS. Equal number of cells were added to a 96 well microplate and were incubated with various doses of ACA1 (5,2,1,0.2,0.1,0.05,0.02 and 0.01 mg/ml for 24, 48 and 72 hours in parallel. The cytotoxic effects of the drug was evaluated using MTT assay.Results: The Results showed that ACA1 has significant cytotoxic effects with dose and time dependent manner on SKMEL3. The optimum dose (5 mg/ml showed 47% cytotoxicity in 24 h, 65% cytotoxicity in 48 h and 71% cytotoxicity in 72 h. Conclusion: Based on the results of this research, ACA1 is a suitable candidate for chemotherapy of melanoma patients. Further studies are necessary in order to find effective drugs, their effects on other cell lines and approved in vivo models and clinical trials.

  2. Cytotoxic and pro-apoptotic activities of leaf extract of Croton bonplandianus Baill. against lung cancer cell line A549.

    Science.gov (United States)

    Bhavana, J; Kalaivani, M K; Sumathy, A

    2016-06-01

    The acetone extract (AcE) of the Croton bonplandianus Baill., an exotic weed of the Euphorbiaceae family was studied for cytotoxicity, apoptosis, cell cycle arrest in A549 cell line and antioxidant capacities using MTT assay, acridine orange/ethidium bromide (AO/EB staining), cell cycle analysis and DPPH radical scavenging assay respectively. Based on the cytotoxic activity, the extract was tested for the apoptotic effect using AO/EB and Hoechst 33258 staining. The apoptosis was characterized by chromatin condensation and DNA fragmentation. Further, to determine the stage of cell death, cell cycle analysis was performed by flow cytometry and AcE was found to arrest G2/M phase in a dose dependent manner. The number of cells in G2/M phase increases with concurrent accumulation of cells in sub G₀/G₁phase indicates the induction of apoptosis at G2M phase. The free radical scavenging activity of the AcE against DPPH was considerably significant. The cytotoxic, apoptotic and antioxidant effect of the AcE could be well correlated with the presence of potent free radical scavenging secondary metabolites such as phenols (43 ± 0.05 µg/mL), flavonoids (3.5 ± 0.07 µg/mL) and tannin (0.36 ± 0.1 µg/mL). Our study has shown that A549 cells were more sensitive to AcE with an IC₅₀ of 15.68 ± 0.006 µg/mL compared to the standard drug 2.20 ± 0.008 µg/mL (cisplatin). The results suggest that Croton bonplandianus could serve as a potential source of alternative therapeutic agent for treating cancer. Further research is required to isolate the active principle compound and determination of its anticancer property.

  3. Mechanisms for high methoxymorpholino doxorubicin cytotoxicity in doxorubicin-resistant tumor cell lines

    NARCIS (Netherlands)

    Bakker, M; Renes, J; Groenhuijzen, A; Visser, P; TimmerBosscha, H; Muller, M; Groen, HJM; Smit, EF; deVries, EGE

    1997-01-01

    Methoxymorpholino doxorubicin (MMRDX) is an anthracycline analogue that is able to overcome tumor cell resistance to classical anthracyclines. Mechanisms for increased MMRDX cytotoxicity were analyzed in a small cell lung carcinoma cell line (GLC(4)), its 300-fold doxorubicin-resistant and multidrug

  4. Stability of artemisinin in aqueous environments : Impact on its cytotoxic action to Ehrlich ascites tumour cells

    NARCIS (Netherlands)

    Beekman, AC; Woerdenbag, HJ; Van Uden, W; Pras, N; Konings, AWT; Wikstrom, HV

    1997-01-01

    We have recently shown artemisinin to be cytotoxic against Ehrlich ascites tumour cells. The aim of this study was to investigate the stability of this compound in the aqueous environment of the in-vitro Ehrlich ascites tumour cell system (RPMI 1640 cell culture medium supplemented with 10% foetal b

  5. Differential cytotoxic effects of mono-(2-ethylhexyl) phthalate on blastomere-derived embryonic stem cells and differentiating neurons

    International Nuclear Information System (INIS)

    Potential applications of embryonic stem (ES) cells are not limited to regenerative medicine but can also include in vitro screening of various toxicants. In this study, we established mouse ES cell lines from isolated blastomeres of two-cell stage embryos and examined their potential use as an in vitro system for the study of developmental toxicity. Two ES cell lines were established from 69 blastomere-derived blastocysts (2.9%). The blastomere-derived ES (bm-ES) cells were treated with mono-(2-ethylhexyl) phthalate (MEHP) in an undifferentiated state or after directed differentiation into early neural cell types. We observed significantly decreased cell viability when undifferentiated bm-ES cells were exposed to a high dose of MEHP (1000 μM). The cytotoxic effects of MEHP were accompanied by increased DNA fragmentation, nuclear condensation, and activation of Caspase-3, which are biochemical and morphological features of apoptosis. Compared to undifferentiated bm-ES cells, considerably lower doses of MEHP (50 and 100 μM) were sufficient to induce cell death in early neurons differentiated from bm-ES cells. At the lower doses, the number of neural cells positive for the active form of Caspase-3 was greater than that for undifferentiated bm-ES cells. Thus, our data indicate that differentiating neurons are more sensitive to MEHP than undifferentiated ES cells, and that undifferentiated ES cells may have more efficient defense systems against cytotoxic stresses. These findings might contribute to the development of a new predictive screening method for assessment of hazards for developmental toxicity.

  6. Human herpesvirus-6 enhances natural killer cell cytotoxicity via IL-15.

    OpenAIRE

    Flamand, L.; Stefanescu, I.(Argonne National Laboratory, Argonne, IL, 60439, USA); Menezes, J.

    1996-01-01

    The marked tropism of human herpesvirus-6 (HHV-6) for natural killer (NK) cells and T lymphocytes has led us to investigate the effect of HHV-6 on cellular cytotoxicity. We describe here how HHV-6 infection of peripheral blood mononuclear cells (PBMC) leads to upregulation of their NK cell cytotoxicity. The induction of NK cell activity by HHV-6 was abrogated by monoclonal antibodies (mAbs) to IL-15 but not by mAbs to other cytokines (IFN-alpha, IFN-gamma, TNF-alpha, TNF-beta, IL-2, IL-12) su...

  7. CD107a as a marker of activation in chicken cytotoxic T cells

    DEFF Research Database (Denmark)

    Wattrang, Eva; Dalgaard, Tina Sørensen; Norup, Liselotte Rothmann;

    2015-01-01

    The study aimed to evaluate cell surface mobilisation of CD107a as a general activation marker on chicken cytotoxic T cells (CTL). Experiments comprised establishment of an in vitro model for activation-induced CD107a mobilisation and design of a marker panel for the detection of CD107a mobilisat......The study aimed to evaluate cell surface mobilisation of CD107a as a general activation marker on chicken cytotoxic T cells (CTL). Experiments comprised establishment of an in vitro model for activation-induced CD107a mobilisation and design of a marker panel for the detection of CD107a...

  8. Cytotoxicity of Buah Merah (Pandanus conoideus Lamk.) Extract on Breast Cancer Cell Line (T47D)

    OpenAIRE

    Tri R Nuringtyas; Yoga Pratama; Galih G; Subagus Wahyuono; Sukarti Moeljopawiro

    2015-01-01

    Buah Merah (Pandanus conoideus Lamk.) has been extensively used to treat various diseases includingcancer. There are many varieties of buah merah and there was no scientifi c study comparing cytotoxicity ofdifferent varieties. The objective of this study was to investigate the cytotoxicity of three varieties of buah merahknown as Barugum, Maler and Yanggiru on breast cancer cell line (T47D). All samples were collected fromPapua, Indonesia. Each sample was extracted consecutively using three s...

  9. Immunoglobulin fragments, F(ab')2, that are cytotoxic to enzyme-treated cells.

    Science.gov (United States)

    Holtgrewe, E M; Killion, J J

    1984-07-01

    Bivalent immunoglobulin fragments of IgG, F(ab')2, prepared from normal murine sera were found to be cytotoxic to neuraminidase-treated cells. The fragments were cytotoxic to both allogenic and syngeneic targets (with respect to the source of the sera), suggesting that the antigen bound by the F(ab')2 is not related to the major histocompatibility locus of mice (H-2).

  10. Cytotoxicity of Selected Medicinal and Nonmedicinal Plant Extracts to Microbial and Cervical Cancer Cells

    OpenAIRE

    Gary M. Booth; Malmstrom, Robert D.; Erica Kipp; Alexandra Paul

    2012-01-01

    This study investigated the cytotoxicity of 55 species of plants. Each plant was rated as medicinal, or nonmedicinal based on the existing literature. About 79% of the medicinal plants showed some cytotoxicity, while 75% of the nonmedicinal plants showed bioactivity. It appears that Asteraceae, Labiatae, Pinaceae, and Chenopodiaceae were particularly active against human cervical cancer cells. Based on the literature, only three of the 55 plants have been significantly investigated for cytoto...

  11. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: sjoo@ssu.ac.kr [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: leeso@snu.ac.kr [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)

    2012-12-15

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  12. Cytotoxic activity of water extracts of Trichilia hirta leaves on human tumor cells

    International Nuclear Information System (INIS)

    Trichilia hirta L. (Meliaceae) is traditionally used by patients suffering from cancer as an antitumoral resource. Therefore, the objectives of this study were to evaluate the cytotoxic activity of water extracts of Trichilia hirta leaves on tumour cells and identify through a phytochemical screening the principal families of phytocomponents contained in these extracts. The cytotoxic activity of these extracts was also evaluated on human melanoma cells (SK-mel-3) and human breast carcinoma (T-47D). The African green monkey kidney (AGMK) cells Cercopithecus aethiops (Vero) were used as a non-tumour cells control. The results showed the presence of triterpenes/steroids, saponins, coumarins, reductor sugars, phenols and tannins, flavonoids and carbohydrates/glycosides in the extracts. The water leaf extracts showed cytotoxic activity mainly on tumour cells, which contributes to explain the referred recovery by patients suffering form cancer that traditionally consume these extracts

  13. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  14. Cyclamen exerts cytotoxicity in solid tumor cell lines: a step toward new anticancer agents?

    Science.gov (United States)

    Yildiz, Mustafa; Bozcu, Hakan; Tokgun, Onur; Karagur, Ege Riza; Akyurt, Oktay; Akca, Hakan

    2013-01-01

    Cyclamen coum is a traditional medicinal plant in the Turkey. Its anticancer properties and whether cyclamen extract induces any cytotoxicity in solid cancer cell lines have not been thoroughly investigated previously. Therefore we examined cytotoxic effects on cervical cancer, HeLa, and non small cell lung cancer cell, H1299, lines. Cyclamen extract induced cellular death of both HeLa and H1299 cells in a dose dependent manner. We also analyzed the capacity of cyclamen extract to induce apoptosis by the TUNEL method. Here, we for the first time report that the extract of Cyclamen coum, an endemic plant for Turkey, can induce cytotoxicity via apoptosis in HeLa and H1299 cells. These results imply that cyclamen extract can be further analyzed to potentially find novel anticancer compounds.

  15. Cell surface antigens detected on mature and leukemic granulocytic populations by cytotoxicity testing.

    Science.gov (United States)

    Drew, S I; Carter, B M; Terasaki, P I; Naiem, F; Nathanson, D S; Abromowitz, B; Gale, R P

    1978-08-01

    Using a microcytotoxicity assay, the serological reactivity of human granulocytes, namely neutrophils and eosinophils, and chronic myeloid leukemia (CML) cells and cultured CML cell lines (K562, NALM-1) were examined. Mature granulocyte forms and cord granulocytes are readily lysed by specific granulocyte cytotoxins that do not react with random T and B lymphocytes, monocytes, red blood cells, or platelets. Furthermore, certain antisera were preferentially cytotoxic for eosinophil-enriched populations. Granulocytotoxin detected antigens on one of three CML blast cell populations tested and K562, but failed to react with NALM-1. By cytotoxicity, mature granulocytes were poor targets for B2-microglobulin and the appropriate HLA antisera although both sera types are absorbed with granulocytes. Furthermore, granulocytes did not possess B-lymphocytes (Ia-like) or blood group A, B, and Rh (D) antigens. Except for K562, both HLA and heterologous B-lymphocyte antisera were cytotoxic for the CML blast cell populations tested.

  16. Esters of Bendamustine Are by Far More Potent Cytotoxic Agents than the Parent Compound against Human Sarcoma and Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Stefan Huber

    Full Text Available The alkylating agent bendamustine is approved for the treatment of hematopoietic malignancies such as non-Hodgkin lymphoma, chronic lymphocytic leukemia and multiple myeloma. As preliminary data on recently disclosed bendamustine esters suggested increased cytotoxicity, we investigated representative derivatives in more detail. Especially basic esters, which are positively charged under physiological conditions, were in the crystal violet and the MTT assay up to approximately 100 times more effective than bendamustine, paralleled by a higher fraction of early apoptotic cancer cells and increased expression of p53. Analytical studies performed with bendamustine and representative esters revealed pronounced cellular accumulation of the derivatives compared to the parent compound. In particular, the pyrrolidinoethyl ester showed a high enrichment in tumor cells and inhibition of OCT1- and OCT3-mediated transport processes, suggesting organic cation transporters to be involved. However, this hypothesis was not supported by the differential expression of OCT1 (SLC22A1 and OCT3 (SLC22A3, comparing a panel of human cancer cells. Bendamustine esters proved to be considerably more potent cytotoxic agents than the parent compound against a broad panel of human cancer cell types, including hematologic and solid malignancies (e.g. malignant melanoma, colorectal carcinoma and lung cancer, which are resistant to bendamustine. Interestingly, spontaneously immortalized human keratinocytes, as a model of "normal" cells, were by far less sensitive than tumor cells against the most potent bendamustine esters.

  17. Cytotoxicity of protein corona-graphene oxide nanoribbons on human epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mbeh, Doris A. [Laboratory for Innovation and Analysis of Bio-Performance, École Polytechnique, C.P. 6079, Succursale Centre-ville, Montréal, Québec H3C 3A7 (Canada); Akhavan, Omid, E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Javanbakht, Taraneh [Laboratory for Innovation and Analysis of Bio-Performance, École Polytechnique, C.P. 6079, Succursale Centre-ville, Montréal, Québec H3C 3A7 (Canada); Mahmoudi, Morteza [Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Yahia, L’Hocine [Laboratory for Innovation and Analysis of Bio-Performance, École Polytechnique, C.P. 6079, Succursale Centre-ville, Montréal, Québec H3C 3A7 (Canada)

    2014-11-30

    Highlights: • Graphene oxide nanoribons (GONRs) were synthesized by unzipping of multi-walled carbon nanotubes. • GONRs were functionalized by the albumin originated from the two different protein sources. • Concentration-dependent cytotoxicity of the functionalized GONRs was investigated on human epithelial cells. - Abstract: Graphene oxide nanoribbons (GONRs) were synthesized using an oxidative unzipping of multi-walled carbon nanotubes. The interactions of the GONRs with various concentrations of fetal bovine serum or human plasma serum indicated that the GONRs were functionalized substantially by the albumin originated from the two different protein sources. Then, concentration-dependent cytotoxicity of the protein-functionalized GONRs on human epithelial cells was studied. Although the GONRs with concentrations ≤50 μg/mL did not exhibit significant cytotoxicity on the cells (with the cell viability >85%), the concentration of 100 μg/mL exhibited significant cytotoxicity including prevention of cell proliferation and induction of cell apoptosis. These results can provide more in-depth understanding about cytotoxic effects of graphene nanostructures which can be functionalized by the proteins of media.

  18. Arecoline induced cell cycle arrest, apoptosis, and cytotoxicity to human endothelial cells.

    Science.gov (United States)

    Tseng, Shuei-Kuen; Chang, Mei-Chi; Su, Cheng-Yao; Chi, Lin-Yang; Chang, Jenny Zwei-Ching; Tseng, Wan-Yu; Yeung, Sin-Yuet; Hsu, Ming-Lun; Jeng, Jiiang-Huei

    2012-08-01

    Betel quid (BQ) chewing is a common oral habit in South Asia and Taiwan. BQ consumption may increase the risk of oral squamous cell carcinoma (OSCC), oral submucous fibrosis (OSF), and periodontitis as well as systemic diseases (atherosclerosis, hypertension, etc.). However, little is known about the toxic effect of BQ components on endothelial cells that play important roles for angiogenesis, carcinogenesis, tissue fibrosis, and cardiovascular diseases. EAhy 926 (EAHY) endothelial cells were exposed to arecoline, a major BQ alkaloid, for various time periods. Cytotoxicity was estimated by 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. The cell cycle distribution of EAHY cells residing in sub-G0/G1, G0/G1, S-, and G2/M phases was analyzed by propidium iodide staining of cellular DNA content and flow cytometry. Some EAHY cells retracted, became round-shaped in appearance, and even detached from the culture plate after exposure to higher concentrations of arecoline (> 0.4 mM). At concentrations of 0.4 and 0.8 mM, arecoline induced significant cytotoxicity to EAHY cells. At similar concentrations, arecoline induced G2/M cell cycle arrest and increased sub-G0/G1 population, a hallmark of apoptosis. Interestingly, prolonged exposure to arecoline (0.1 mM) for 12 and 21 days significantly suppressed the proliferation of EAHY cells, whereas EAHY cells showed adaptation and survived when exposed to 0.05 mM arecoline. These results suggest that BQ components may contribute to the pathogenesis of OSF and BQ chewing-related cardiovascular diseases via toxicity to oral or systemic endothelial cells, leading to impairment of vascular function. During BQ chewing, endothelial damage may be induced by areca nut components and associate with the pathogenesis of OSF, periodontitis, and cardiovascular diseases. PMID:21847594

  19. Cytotoxic Efficacy of Photodynamic Therapy in Osteosarcoma Cells In Vitro

    OpenAIRE

    Meier, Daniela; Campanile, Carmen; Botter, Sander M.; Born, Walter; Fuchs, Bruno

    2014-01-01

    In recent years, there has been the difficulty in finding more effective therapies against cancer with less systemic side effects. Therefore Photodynamic Therapy is a novel approach for a more tumor selective treatment. Photodynamic Therapy (PDT) that makes use of a nontoxic photosensitizer (PS), which, upon activation with light of a specific wavelength in the presence of oxygen, generates oxygen radicals that elicit a cytotoxic response(1). Despite its approval almost twenty years ago by th...

  20. Enhanced cytotoxicity of natural killer cells following the acquisition of chimeric antigen receptors through trogocytosis.

    Directory of Open Access Journals (Sweden)

    Fu-Nan Cho

    Full Text Available Natural killer (NK cells have the capacity to target tumors and are ideal candidates for immunotherapy. Viral vectors have been used to genetically modify in vitro expanded NK cells to express chimeric antigen receptors (CARs, which confer cytotoxicity against tumors. However, use of viral transduction methods raises the safety concern of viral integration into the NK cell genome. In this study, we used trogocytosis as a non-viral method to modify NK cells for immunotherapy. A K562 cell line expressing high levels of anti-CD19 CARs was generated as a donor cell to transfer the anti-CD19 CARs onto NK cells via trogocytosis. Anti-CD19 CAR expression was observed in expanded NK cells after these cells were co-cultured for one hour with freeze/thaw-treated donor cells expressing anti-CD19 CARs. Immunofluorescence analysis confirmed the localization of the anti-CD19 CARs on the NK cell surface. Acquisition of anti-CD19 CARs via trogocytosis enhanced NK cell-mediated cytotoxicity against the B-cell acute lymphoblastic leukemia (B-ALL cell lines and primary B-ALL cells derived from patients. To our knowledge, this is the first report that describes the increased cytotoxicity of NK cells following the acquisition of CARs via trogocytosis. This novel strategy could be a potential valuable therapeutic approach for the treatment of B-cell tumors.

  1. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  2. In vitro evaluation of cytotoxicity of engineered carbon nanotubes in selected human cell lines

    International Nuclear Information System (INIS)

    In this study, we used a systematic approach to study and compare the in vitro cytotoxicity of selected engineered carbon nanotubes (CNTs) to test cell lines including human skin keratinocytes, lung cells and lymphocytes. Results of fluorescein diacetate (FDA) uptake in T4 lymphocyte A3 cells indicated cytotoxicity caused by single-walled carbon nanotubes (SWCNTs) at concentrations of 2, 5 and 10 ppm. At 2 ppm, the SWCNT treatment group retained 71.3% viability compared to the PBS control group. At 10 ppm, cellular viability further decreased to 56.5% of the PBS control group. In the skin keratinocyte HaCaT cells and lung MSTO-211H cells, the SWCNT did not demonstrate any cytotoxicity at concentrations of 2 and 5 ppm but slightly inhibited HaCaT cells and caused significant toxicity to MSTO-211H cells at 10 ppm. Multi-walled carbon nanotube (MWCNT) testing showed significant cytotoxicity to A3 cells in a dose-dependent manner. At 10 ppm the viability of the cells decreased to 89.1% compared to the PBS control. In MSTO-211H cells, MWCNT caused significant toxicity at concentrations of 2 ppm and higher. By comparison, HaCaT cells were inhibited significantly only at 10 ppm. Overall, the test CNTs inhibited cellular viabilities in a concentration, cell type, and CNT type-dependent pattern. The viabilities of the MWCNT-impacted cells are higher than the corresponding SWCNT groups. We speculate that on a per volume basis, the greater availability of defects and contaminants for cellular interaction may contribute to the higher cytotoxicity of SWCNT in this study. The interaction between the SWCNTs and A3 lymphocytes was also observed by scanning electron microscopy. The mechanism for causing cell death in this study was attributed to apoptosis and necrosis after physical penetration by CNTs and oxidative stress via formation of reactive oxygen species.

  3. Preliminary Study on Cytotoxic Effect of Biodegradation of Magnesium on Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Yu Zhang; Ling Ren; Mei Li; Xiao Lin; Huafu Zhao; Ke Yang

    2012-01-01

    Biodegradation of magnesium (Mg) based metals in body fluid can lead to a strong alkalinity as well as an increase of Mg2+ concentration in its surrounding environment. In vitro cytotoxic effects of the extracts of pure Mg with and without micro arc oxidation (MAO) coating on osteosarcoma U2-OS cells, a kind of bone cancer cells, were preliminarily studied, independently considering the increase of either alkalinity or Mg2+ concentration. The results indicated that the high alkalinity, i.e., a great increase of pH value, caused by the degradations of Mg with and without MAO coating in the culture medium all showed strong cytotoxic effects on U2-OS cells. However, the increase of Mg2+ concentration had no such cytotoxic effect. This finding may provide an alternative way to cure bone cancers through creating a high alkalinity surrounding the cancer cells.

  4. Cytotoxicity assessment of antibiofouling compounds and by-products in marine bivalve cell cultures.

    Science.gov (United States)

    Domart-Coulon, I; Auzoux-Bordenave, S; Doumenc, D; Khalanski, M

    2000-06-01

    Short-term primary cell cultures were derived from adult marine bivalve tissues: the heart of oyster Crassostrea gigas and the gill of clam Ruditapes decussatus. These cultures were used as experimental in vitro models to assess the acute cytotoxicity of an organic molluscicide, Mexel-432, used in antibiofouling treatments in industrial cooling water systems. A microplate cell viability assay, based on the enzymatic reduction of tetrazolium dye (MTT) in living bivalve cells, was adapted to test the cytotoxicity of this compound: in both in vitro models, toxicity thresholds of Mexel-432 were compared to those determined in vivo with classic acute toxicity tests. The clam gill cell model was also used to assess the cytotoxicity of by-products of chlorination, a major strategy of biofouling control in the marine environment. The applications and limits of these new in vitro models for monitoring aquatic pollutants were discussed, in reference with the standardized Microtox test. PMID:10806375

  5. Cytotoxic activity of coumarins from the fruits of Cnidium monnieri on leukemia cell lines.

    Science.gov (United States)

    Yang, Ling-Ling; Wang, Min-Chieh; Chen, Lih-Geeng; Wang, Ching-Chiung

    2003-12-01

    Cnidii monnieri Fructus [CmF; Cnidium monnieri (L.) Cusson] is used as a tonic agent in traditional Chinese medicine. In a previous Chinese herb-cytotoxicity screening test, the ethanol extract of CmF exhibited strong effects on human leukemia (HL-60), cervical carcinoma (HeLa) and colorectal carcinoma (CoLo 205) cells. Then, the CmF extract was subjected to silica gel column chromatography and recrystallization to give five coumarins: osthol, imperatorin, bergapten, isopimpinellin, and xanthotoxin. Among these compounds, osthol showed the strongest cytotoxic activity on tumor cell lines. The structure-activity relationship established from the results indicated that the prenyl group has an important role in the cytotoxic effects. However, imperatorin showed the highest sensitivity to HL-60 cells and the least cytotoxicity to normal PBMCs. Osthol and imperatorin both caused apoptotic bodies, DNA fragmentation, and enhanced PARP degradation in HL-60 cells by biochemical analysis. These results indicate that osthol and imperatorin can induce apoptosis in HL-60 cells. Therefore, osthol and imperatorin are cytotoxic marker substances in the fruits of Cnidium monnieri. PMID:14750023

  6. DMSO exhibits similar cytotoxicity effects to thalidomide in mouse breast cancer cells

    OpenAIRE

    Öz, Ece Simsek; Aydemir, Esra; Fışkın, Kayahan

    2012-01-01

    The purpose of this study was to evaluate the cytotoxic effect of thalidomide on 4T1 and 4THMpc mouse breast cancer cell lines. Mouse breast cancer cells (4T1) and cells derived from metastatic lesions (4THMpc) were treated with various doses of thalidomide [10-2-100 µM dissolved in dimethyl sulfoxide (DMSO) as recommended] and 1.4 µM DMSO (maximum DMSO concentration in the highest thalidomide dose) as a DMSO control against the untreated control groups. MTT was used to evaluate the cytotoxic...

  7. Cytotoxic activity of kaempferol glycosides against human leukaemic cell lines in vitro.

    Science.gov (United States)

    Dimas, K; Demetzos, C; Mitaku, S; Marselos, M; Tzavaras, T; Kokkinopoulos, D

    2000-01-01

    Two kaempferol coumaroyl glycosides (i.e. platanoside and tiliroside) isolated from the methanolic extract of Platanus orientalis L. buds, were examined for their in vitro cytotoxic activity against a panel of human leukaemic cell lines. Platanoside (1) exhibited cytotoxic activity against most of the cell lines tested, while tiliroside (2) was active against two of the nine tested cell lines. Compound 1, was examined for its effect on the uptake of [(3)H]thymidine as a marker of DNA synthesis. Kaempferol was used as a control.

  8. Cytotoxic activity of labdane type diterpenes against human leukemic cell lines in vitro.

    Science.gov (United States)

    Dimas, K; Demetzos, C; Marsellos, M; Sotiriadou, R; Malamas, M; Kokkinopoulos, D

    1998-04-01

    Nine labdane type diterpenes isolated from the plant Cistus creticus subsp. creticus and from the resin "Ladano" which is excreted on the surface of the leaves and stems of this plant, were examined for their in vitro cytotoxic activity against 14 human leukemic cell lines. Compound 1, (13E)-labd-13-ene-8 alpha,15-diol, exhibited cytotoxic activity against 13 of the cell lines tested, while compound 2, (13E)-labd-7,13-dienol, was active only against HL60 cells. Further compound 1 was examined for its effect on the uptake of [3H]-thymidine as a marker of DNA synthesis. PMID:9581515

  9. Cytotoxic effects of new MTA-based cement formulations on fibroblast-like MDPL-20 cells.

    Science.gov (United States)

    Garcia, Lucas da Fonseca Roberti; Santos, Alailson Domingos dos; Moraes, João Carlos Silos; Costa, Carlos Alberto de Souza

    2016-01-01

    The present study aimed at evaluating the cytotoxic effects of a novel cement called CER on periodontal fibroblast-like cells of mice (MDPL-20), in comparison with different formulations of Mineral Trioxide Aggregate (MTA), by means of the cell viability test (MTT) and cell morphology analysis. Thirty-two round-shaped samples were fabricated with the following cements: white MTA, white and gray CER and experimental white MTA. The samples were immersed in serum-free culture medium for 24 hours or 7 days (n = 16). The extracts (culture medium + components released from the cements) were applied for 24 hours to previously cultured cells (40.000 cells/cm2) in the wells of 24-well plates. Cells seeded in complete culture medium were used as a negative control. Cell viability was assessed using the MTT assay. Two samples of each cement were used for cell morphology analysis by Scanning Electron Microscopy (SEM). The extracts obtained at the 7-day period presented higher cytotoxicity compared with the 24-hour period (p 0.05). However, at the 7-day period, the experimental white MTA presented no significant difference in comparison with the other cements (p > 0.05). At the 7-day period, CER cement presented cytotoxic effects on fibroblast-like cells, similar to different MTA formulations. However, the immersion period in the culture medium influenced the cytotoxicity of the cements, which was greater for CER cement at 24 hours.

  10. NK cells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease

    Science.gov (United States)

    Azeredo, E L; De Oliveira-Pinto, L M; Zagne, S M; Cerqueira, D I S; Nogueira, R M R; Kubelka, C F

    2006-01-01

    During the innate immune response against infections, Natural Killer (NK) cells are as important effector cells as are Cytotoxic T lymphocytes (CTL) generated after antigenic stimulation in the adaptative response. NK cells increase in numbers, after viral infection or vaccination. We investigated the NK cell and CD8 T lymphocyte status in 55 dengue infected patients. The NK (CD56+CD3−) and CD56+ T cell (CD56+CD3+) rates rise during the acute phase of disease. The majority of NK cells from dengue patients display early markers for activation (CD69, HLA-DR, and CD38) and cell adhesion molecules (CD44, CD11a) during the acute phase of disease. The intracellular cytotoxic granule, TIA-1, is also up-regulated early in NK cells. Most of these markers appear also on CD8+ T lymphocytes but during the late acute phase. Circulating IL-15 is elevated in a significant number of patients during early acute infection and its values were statistically correlated with NK frequencies and cytotoxic markers on NKs. We have therefore shown that dengue virus infection is very likely stimulating a cytotoxic response that may be efficient in controlling the virus in synergism with CD8+ T lymphocytes. Interestingly, the heightened CD56+CD3−, CD56+CD3+, CD56+TIA-1+ and CD56+CD11a+ cell rates are associated with mild dengue clinical manifestations and might indicate a good prognosis of the disease. PMID:16412060

  11. Cytotoxic effects of new MTA-based cement formulations on fibroblast-like MDPL-20 cells

    Directory of Open Access Journals (Sweden)

    Lucas da Fonseca Roberti GARCIA

    2016-01-01

    Full Text Available Abstract The present study aimed at evaluating the cytotoxic effects of a novel cement called CER on periodontal fibroblast-like cells of mice (MDPL-20, in comparison with different formulations of Mineral Trioxide Aggregate (MTA, by means of the cell viability test (MTT and cell morphology analysis. Thirty-two round-shaped samples were fabricated with the following cements: white MTA, white and gray CER and experimental white MTA. The samples were immersed in serum-free culture medium for 24 hours or 7 days (n = 16. The extracts (culture medium + components released from the cements were applied for 24 hours to previously cultured cells (40.000 cells/cm2 in the wells of 24-well plates. Cells seeded in complete culture medium were used as a negative control. Cell viability was assessed using the MTT assay. Two samples of each cement were used for cell morphology analysis by Scanning Electron Microscopy (SEM. The extracts obtained at the 7-day period presented higher cytotoxicity compared with the 24-hour period (p 0.05. However, at the 7-day period, the experimental white MTA presented no significant difference in comparison with the other cements (p > 0.05. At the 7-day period, CER cement presented cytotoxic effects on fibroblast-like cells, similar to different MTA formulations. However, the immersion period in the culture medium influenced the cytotoxicity of the cements, which was greater for CER cement at 24 hours.

  12. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Paula M Kustiawan; Songchan Puthong; Enos T Arung; Chanpen Chanchao

    2014-01-01

    Objective: To screen crude extracts of propolis, bee pollen and honey from four stingless bee species [Trigona incisa (T. incisa)], Timia apicalis, Trigona fusco-balteata and Trigona fuscibasis) native to East Kalimantan, Indonesia for cytotoxic activity against five human cancer cell lines (HepG2, SW620, ChaGo-I, KATO-III and BT474).Methods:All samples were extracted with methanol, and then subpartitioned with n-hexane and ethyl acetate. Each crude extract was screened at 20 µg/mL for in vitro cytotoxicity against the cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, four previously shown bioactive components from propolis (apigenin, caffeic acid phenyl ester, kaempferol and naringenin) and two chemotherapeutic drugs (doxorubicin and 5-fluorouracil) were used to evaluate the sensitivity of the cell lines.Results:Overall, crude extracts from propolis and honey had higher cytotoxic activities than bee pollen, but the activity was dependent upon the extraction solvent, bee species and cell line. Propolis extracts from T. incisa and Timia apicalis showed the highest and lowest cytotoxic activity, respectively. Only the HepG2 cell line was broadly sensitive to the honey extracts. For pure compounds, doxorubicin was the most cytotoxic, the four propolis compounds the least, but the ChaGo-I cell line was sensitive to kaempferol at 10 µg/mL and KATO-III was sensitive to kaempferol and apigenin at 10 µg/mL. All pure compounds were effective against the BT474 cell line.Conclusions:Propolis from T. incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines. Further study is required, including the isolation and characterization of the active antiproliferative agent(s).

  13. Cytotoxicity of clove (Syzygium aromaticum) oil and its major components to human skin cells.

    Science.gov (United States)

    Prashar, A; Locke, I C; Evans, C S

    2006-08-01

    The essential oil extracted from clove (Syzygium aromaticum) is used as a topical application to relieve pain and promote healing in herbal medicine and also finds use in the fragrance and flavouring industries. Clove oil has two major components, eugenol and beta-caryophyllene, which constitute 78% and 13% of the oil, respectively. Clove oil and these components are generally recognized as 'safe', but the in-vitro study here demonstrates cytotoxic properties of both the oil and eugenol, towards human fibroblasts and endothelial cells. Clove oil was found to be highly cytotoxic at concentrations as low as 0.03% (v/v) with up to 73% of this effect attributable to eugenol. beta-caryophyllene did not exhibit any cytotoxic activity, indicating that other cytotoxic components may also exist within the parent oil. PMID:16872360

  14. Cytotoxicity and genotoxicity assessment of Euphorbia hirta in MCF-7 cell line model using comet assay

    Institute of Scientific and Technical Information of China (English)

    Kwan Yuet Ping; Ibrahim Darah; Yeng Chen; Sreenivasan Sasidharan

    2013-01-01

    Objective:To evaluate the cytotoxicity and genotoxicity activity of Euphorbia hirta (E. hirta) in MCF-7 cell line model using comet assay. Methods: The cytotoxicity of E. hirta extract was investigated by employing brine shrimp lethality assay and the genotoxicity of E. hirta was assessed by using Comet assay. Results: Both toxicity tests exhibited significant toxicity result. In the comet assay, the E. hirta extract exhibited genotoxicity effects against MCF-7 DNA in a time-dependent manner by increasing mean percentage of DNA damage. The extract of E. hirta showed significant toxicity against brine shrimp with an LC50 value of 620.382 μg/mL (24 h). Comparison with positive control potassium dichromate signifies that cytotoxicity exhibited by the methanol extract might have moderate activity. Conclusion:The present work confirmed the cytotoxicity and genotoxicity of E. hirta. However, the observed toxicity of E. hirta extracts needs to be confirmed in additional studies.

  15. Generation of MHC class I-restricted cytotoxic T cell lines and clones against colonic epithelial cells from ulcerative colitis.

    Science.gov (United States)

    Yonamine, Y; Watanabe, M; Kinjo, F; Hibi, T

    1999-01-01

    We established CTL lines and clones against colonic epithelial cells from PBLs of patients with ulcerative colitis by continuous stimulation with HLA-A locus-matched colonic epithelial cell lines. We developed a nonradioactive europium release cytotoxicity assay to detect CTLs. PBLs from 3 of 12 patients but not from any of 14 normal controls who shared at least one haplotype of HLA-A locus with two colonic epithelial cell lines, CW2 and ACM, showed increased cytotoxicity against these lines. Three CTL lines established from the PBLs of patients showed increased cytotoxicity against HLA-A locus-matched CW2 or ACM but not against matched lung or esophagus cell lines. The phenotypes of CTL lines were alpha beta-TCR+ CD3+ CD8+ CD16-. The CTL line MS showed increased cytotoxicity against freshly isolated colonic epithelial cells but not against cells with a different HLA-A locus. Two CTL clones were generated from MS and clone 3-2, expressing CD3+ CD8+ CD4- CD56-, showed high MHC class I-restricted cytotoxicity against the colonic epithelial cells. These results indicated that CTLs against colonic epithelial cells may contribute to epithelial cell damage in ulcerative colitis. PMID:10080107

  16. Cytotoxic activity to acute myeloid leukemia cells by Antp-TPR hybrid peptide targeting Hsp90.

    Science.gov (United States)

    Horibe, Tomohisa; Kawamoto, Megumi; Kohno, Masayuki; Kawakami, Koji

    2012-07-01

    We previously reported that Antp-TPR hybrid peptide inhibited the interaction of Hsp90 with TPR2A and had selective cytotoxic activity discriminating between normal and cancer cells to induce cancer cell death. In this study, we investigated the cytotoxic activity of Antp-TPR peptide toward acute myeloid leukemia (AML) cells. It was demonstrated that Antp-TPR peptide induced AML cell death in cell lines such as U937, K562, THP-1, and HL-60 via activation of caspases 3 and 7, and disruption of mitochondrial membrane potential. Conversely, Antp-TPR peptide did not reduce the viability of normal cells including peripheral blood mononuclear cells (PBMCs), although both geldanamycin and 17-AAG, small-molecule inhibitors of Hsp90, mediated cytotoxicity to these normal cells at low concentrations. In addition, mutation analysis of TPR peptide demonstrated that the highly conserved amino acids Lys and Arg were critical to the cytotoxic activity. These results indicated that Antp-TPR hybrid peptide would provide potent and selective therapeutic options in the treatment of AML.

  17. [Cytotoxicity of polyphenolic/flavonoid compounds in a leukaemia cell culture].

    Science.gov (United States)

    Josipović, Pavle; Orsolić, Nada

    2008-12-01

    Flavonoid components of propolis are biologically active substances with antioxidative, immunostimulative, immunomodulative, and anti-inflamatory properties. The aim of the study was to investigate their cytotoxic effect on different leukaemia cell lines. For this purpose we used five different flavonoids (quercetin, caffeic acid, chrysin, naringenin, and naringin) and five types of leukemia cell lines (MOLT, JURKAT, HL-60, RAJI and U937). Cells were cultured at 37 degrees C in the RPMI-1640 medium supplemented with 10% FCS in humified atmosphere with 5% of CO2. Flavonoids were added in the following concentrations: 100 microg mL(-1), 50 microg mL(-1), 25 microg mL(-1), or 12.5 microg mL(-1). The results show different dose- and cell-type-dependent cytotoxicity. Among the flavonoids, quercetin showed the strongest cytotoxic effect in all cell lines. Caffeic acid and chrisyn also expressed a high level of cytotoxicty. Treatment of U937 and HL-60 cell lines with low concentrations of chrisyn or naringenin stimulated cell proliferation. These results suggest a biphase effect of the tested compounds on monocyte cell lines. Cytotoxicity and growth stimulation mechanisms caused directly by flavonoids should further be investigated on the molecular level.

  18. In vitro Acute Cytotoxicity of Abamectin to the Gill Cell Line of Flounder Paralichthy olivaceus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The cytotoxicity of abamectin to the Gill Cell Line of Flounder (FG cell line) was examined in this study. It was found that the exposure of FG cells to abamectin caused the decreases of both cell growth rate and antioxidant enzyme activities, and the increase of intracellular O2- content. It was proposed that the reduction of antioxidant enzyme activities in FG cells caused the accumulation of O2- content in FG cells, leading to the change of cell morphology and even the death of cells. The results showed that FG cell line is suitable for the evaluation of the acute toxicity of abamectin.

  19. A novel method for producing target cells and assessing cytotoxic T lymphocyte activity in outbred hosts

    Directory of Open Access Journals (Sweden)

    Bendinelli Mauro

    2009-03-01

    Full Text Available Abstract Background Cytotoxic T lymphocytes play a crucial role in the immunological control of microbial infections and in the design of vaccines and immunotherapies. Measurement of cytotoxic T lymphocyte activity requires that the test antigen is presented by target cells having the same or compatible class I major hystocompatibility complex antigens as the effector cells. Conventional assays use target cells labeled with 51chromium and infer cytotoxic T lymphocyte activity by measuring the isotope released by the target cells lysed following incubation with antigen-specific cytotoxic T lymphocytes. This assay is sensitive but needs manipulation and disposal of hazardous radioactive reagents and provides a bulk estimate of the reporter released, which may be influenced by spontaneous release of the label and other poorly controllable variables. Here we describe a novel method for producing target in outbred hosts and assessing cytotoxic T lymphocyte activity by flow cytometry. Results The method consists of culturing skin fibroblasts, immortalizing them with a replication defective clone of simian virus 40, and finally transducing them with a bicistronic vector encoding the target antigen and the reporter green fluorescent protein. When used in a flow cytometry-based assay, the target cells obtained with this method proved valuable for assessing the viral envelope protein specific cytotoxic T lymphocyte activity in domestic cats acutely or chronically infected with feline immunodeficiency virus, a lentivirus similar to human immunodeficiency virus and used as animal model for AIDS studies. Conclusion Given the versatility of the bicistronic vector used, its ability to deliver multiple and large transgenes in target cells, and its extremely wide cell specificity when pseudotyped with the vesicular stomatitis virus envelope protein, the method is potentially exploitable in many animal species.

  20. Chloroquine enhances gefitinib cytotoxicity in gefitinib-resistant nonsmall cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Mei-Chuan Tang

    Full Text Available Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs, including gefitinib, are effective for non-small cell lung cancer (NSCLC patients with EGFR mutations. However, these patients eventually develop resistance to EGFR-TKI. The goal of the present study was to investigate the involvement of autophagy in gefitinib resistance. We developed gefitinib-resistant cells (PC-9/gef from PC-9 cells (containing exon 19 deletion EGFR after long-term exposure in gefitinib. PC-9/gef cells (B4 and E3 were 200-fold more resistant to gefitinib than PC-9/wt cells. Compared with PC-9/wt cells, both PC-9/gefB4 and PC-9/gefE3 cells demonstrated higher basal LC3-II levels which were inhibited by 3-methyladenine (3-MA, an autophagy inhibitor and potentiated by chloroquine (CQ, an inhibitor of autophagolysosomes formation, indicating elevated autophagy in PC-9/gef cells. 3-MA and CQ concentration-dependently inhibited cell survival of both PC-9wt and PC-9/gef cells, suggesting that autophagy may be pro-survival. Furthermore, gefitinib increased LC3-II levels and autolysosome formation in both PC-9/wt cells and PC-9/gef cells. In PC-9/wt cells, CQ potentiated the cytotoxicity by low gefitinib (3 nM. Moreover, CQ overcame the acquired gefitinib resistance in PC-9/gef cells by enhancing gefitinib-induced cytotoxicity, activation of caspase 3 and poly (ADP-ribose polymerase cleavage. Using an in vivo model xenografting with PC-9/wt and PC-9/gefB4 cells, oral administration of gefitinib (50 mg/kg completely inhibited the tumor growth of PC-9/wt but not PC-9/gefB4cells. Combination of CQ (75 mg/kg, i.p. and gefitinib was more effective than gefitinib alone in reducing the tumor growth of PC-9/gefB4. Our data suggest that inhibition of autophagy may be a therapeutic strategy to overcome acquired resistance of gefitinib in EGFR mutation NSCLC patients.

  1. Mdm2 inhibition confers protection of p53-proficient cells from the cytotoxic effects of Wee1 inhibitors.

    Science.gov (United States)

    Li, Yizhu; Saini, Priyanka; Sriraman, Anusha; Dobbelstein, Matthias

    2015-10-20

    Pharmacological inhibition of the cell cycle regulatory kinase Wee1 represents a promising strategy to eliminate cancer cells. Wee1 inhibitors cooperate with chemotherapeutics, e. g. nucleoside analogues, pushing malignant cells from S phase towards premature mitosis and death. However, considerable toxicities are observed in preclinical and clinical trials. A high proportion of tumor cells can be distinguished from all other cells of a patient's body by inactivating mutations in the tumor suppressor p53. Here we set out to develop an approach for the selective protection of p53-proficient cells against the cytotoxic effects of Wee1 inhibitors. We pretreated such cells with Nutlin-3a, a prototype inhibitor of the p53-antagonist Mdm2. The resulting transient cell cycle arrest effectively increased the survival of cells that were subsequently treated with combinations of the Wee1 inhibitor MK-1775 and/or the nucleoside analogue gemcitabine. In this constellation, Nutlin-3a reduced caspase activation and diminished the phosphorylation of Histone 2AX, an indicator of the DNA damage response. Both effects were strictly dependent on the presence of p53. Moreover, Nutlin pre-treatment reduced the fraction of cells that were undergoing premature mitosis in response to Wee1 inhibition. We conclude that the pre-activation of p53 through Mdm2 antagonists serves as a viable option to selectively protect p53-proficient cells against the cytotoxic effects of Wee1 inhibitors, especially when combined with a nucleoside analogue. Thus, Mdm2 antagonists might prove useful to avoid unwanted side effects of Wee1 inhibitors. On the other hand, when a tumor contains wild type p53, care should be taken not to induce its activity before applying Wee1 inhibitors. PMID:26431163

  2. Effects of spider Macrothele raven venom on cell proliferation and cytotoxicity in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Li GAO; Bao-en SHAN; Jing CHEN; Jiang-hui LIU; Da-xiang SONG; Bao-cheng ZHU

    2005-01-01

    Aim: To examine the effect of venom from the spider Macrothele raven on cell proliferation and cytotoxicity in human cervical carcinoma, HeLa cells. Methods:Morphological and biochemical signs of apoptosis appeared using acridine orange-ethidium bromide (AO/EB) staining. Marked morphological changes in HeLa cells after treatment with spider venom were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cell proliferation and cytotoxicity were determined by [methyl-3H] thymidine assay ([3H]TdR) and lactate dehydrogenase (LDH) release, respectively. DNA fragmentation and cell cycle distribution were monitored using flow cytometry. In addition, Western blot analysis was used to evaluate the level of caspase-3 expression. In vivo examination of the inhibition of the size of tumors in nude mice treated with spider venom was measured. Results: Marked morphological changes were observed using AO/EB staining, SEM and TEM assay. Spider venom at concentrations of 10-40 mg/L caused dose- and time-dependent inhibition of HeLa cell proliferation.The ratio of apoptosis and necrosis increased. The activity of caspase-3 was upregulated after spider venom treatment. In vivo study of tumor size revealed that tumors significantly decreased in size from controls to tumors treated for 3 weeks with spider venom (P<0.05). Conclusion: The inhibition of HeLa cells by the venom of the spider Macrothele raveni was carried out in three ways: induction of apoptosis, necrosis of toxicity damage and direct lysis. Spider venom is a novel anti-tumor material both in vitro and in vivo.

  3. Deoxynivalenol induces cytotoxicity and genotoxicity in animal primary cell culture.

    Science.gov (United States)

    Singh, Shweta; Banerjee, Subham; Chattopadhyay, Pronobesh; Borthakur, Sashin Kumar; Veer, Vijay

    2015-03-01

    Deoxynivalenol (DON), a mycotoxin produced by Fusarium graminearum, is widely found as a contaminant of food. DON is responsible for a wide range of toxic activities, including gastro-intestinal, lymphoid, bone-marrow and cardiotoxicity. But, the complete explorations of toxicity in terms of hepatotoxicity, nephrotoxicity, cytotoxicity and genotoxicity as well have not been documented well. Again, the mechanisms through which DON damages the DNA and promotes cellular toxicity are not well established. Considering the above fact, this research article is focused on the effects of DON-induced toxicities on experimental animal model as well as its effects on cellular level via various toxicological investigations. DON treatment showed cytotoxicity and DNA damage. Further, flow cytometric analysis of hepatocytes showed cellular apoptosis, suggesting that DON-induced hepatotoxicity is, may be partly, mediated by apoptosis. Moreover, significant differences were found in each haematology and clinical chemistry value, either (p > 0.05). No abnormality of any organ was found during histopathological examination. Hence, it can be concluded that DON induces oxidative DNA damage and increases the formation of centromere positive micronuclei due to aneugenic activity. PMID:25578892

  4. A distinct subset of self-renewing human memory CD8+ T cells survives cytotoxic chemotherapy

    OpenAIRE

    Turtle, Cameron J.; Swanson, Hillary M.; Fujii, Nobuharu; Estey, Elihu H.; Riddell, Stanley R.

    2009-01-01

    The mechanisms that maintain human T cell memory during normal and perturbed homeostasis are not fully understood. The repeated induction of profound lymphocytopenia in patients undergoing multiple cycles of cytotoxic chemotherapy infrequently results in severe infections with viruses controlled by memory T cells, suggesting that some memory T cells survive chemotherapy and restore immunity. Here we identify a distinct subpopulation of memory CD8+ T cells with the ability to rapidly efflux an...

  5. Phenolics-saponins rich fraction of defatted kenaf seed meal exhibits cytotoxicity towards cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Latifah Saiful Yazan; Napsiah Abd Rahman; Kim Wei Chan; Wan Nor Hafiza Wan Abd Ghani; Yin Sim Tor; Jhi Biau Foo

    2016-01-01

    Objectives: To determine the cytotoxicity of crude ethanolic extract, n-butanol fraction and aqueous fraction on selected cancer cell lines, and to observe the morphological changes of the cancer cells treated with n-butanol fraction. Methods: The cytotoxic effect of n-butanol fraction, crude ethanolic extract and aqueous fraction on breast cancer (MCF-7 and MDA-MB-231), colon cancer (HT29), lung cancer (A549), cervical cancer (HeLa) and normal mouse fibroblast (3T3) cell lines was deter-mined using MTT assay. The morphological changes of the treated cells were observed under an inverted light microscope. Results: n-Butanol fraction was the most cytotoxic towards HT29 and MCF-7 cells in a dose-dependent manner compared to crude ethanolic extract and aqueous fraction (P Conclusions: In conclusion, n-butanol fraction was more cytotoxic than crude ethanolic extract and aqueous fraction towards the selected cancerous cell lines and induced apoptosis in HT29 cells.

  6. Decreased NK-Cell Cytotoxicity after Short Flights on the Space Shuttle

    Science.gov (United States)

    Mehta, Satish K.; Grimm, Elizabeth A.; Smid, Christine; Kaur, Indreshpal; Feeback, Daniel L.; Pierson, Duane L.

    2000-01-01

    Cytotoxic activity of natural killer (NK) cells and cell surface marker expression of peripheral blood mononuclear cells (PBMCs) isolated from 11 U.S. astronauts on two different missions were determined before and after 9 or 10 days of spaceflight aboard the space shuttle. Blood samples were collected 10 and 3 days before launch, within 3 hours after landing, and 3 days after landing. All PBMC preparations were cryopreserved and analyzed simultaneously in a 4-hour cytotoxicity "Cr-release assay using NK-sensitive K-562 target cells. Compared to preflight values, NK-cell cytotoxicity (corrected for lymphopenia observed on landing day) was significantly decreased at landing (P < 0.0125). It then apparently began to recover and approached preflight values by 3 days after landing. Consistent with decreased NK-cell cytotoxicity, significant increases from preflight values were found in plasma adrenocorticotropic hormone at landing. Plasma and urinary cortisol levels did not change significantly from preflight values. Expression of major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), determined by flow cytometric analysis, revealed no consistent phenotypic changes in relative percent of NK or other lymphoid cells after 10 days of spaceflight.

  7. Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Hadrup, Sine Reker; Svane, Inge Marie;

    2011-01-01

    Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme that is implicated in suppressing T-cell immunity in normal and pathologic settings. Here, we describe that spontaneous cytotoxic T-cell reactivity against IDO exists not only in patients with cancer but also in healthy persons. We......, this caused an increase in the production of the proinflammatory cytokines IL-6 and tumor necrosis factor-alpha while decreasing the IL-10 production. Finally, the addition of IDO-inducing agents (ie, the TLR9 ligand cytosine-phosphate- guanosine, soluble cytotoxic T lymphocyte-associated antigen 4...

  8. Cytotoxic effects of methionine alkyl esters and amides in normal and neoplastic cell lines.

    Science.gov (United States)

    Clement, M A; Chapman, J M; Roberts, J

    1989-06-01

    Homologous series of L-methionine alkyl ester hydrochlorides and tosylates were synthesized and evaluated for in vitro growth inhibitory activity in Meth A sarcoma. Cytotoxicity, as determined by [3H]thymidine incorporation, was found to be directly proportional to alkyl chain length and surface tension lowering activity. L-Methionine decyl and dodecyl ester hydrochlorides possessed optimum cytotoxic activity (IC50 = 29, 28 microM) which was not reversible by the addition of L-methionine. Surface tension of a 50 microM solution of the decyl and dodecyl ester hydrochlorides were 35.4 and 32.7 dyn/cm, respectively. The corresponding decyl and dodecyl ester tosylates and amide hydrochlorides were less active. The N-t-butoxycarbonyl analogues were essentially inactive, demonstrating the necessity of an unsubstituted and/or potentially cationic amino group. Methionine dependence characteristics and cytotoxicity were also determined for three human (IMR-90, LX-1, MCF7) and four additional murine (L1210, L5178Y, 3T3, SV-T2) cell lines. The human cell lines Meth A, LX-1, and SV-T2 were found to be methionine independent. The LX-1 tumor cell line and the SV-T2 transformed line exhibited two to four times more sensitivity to the cytotoxic and cytolytic properties of the decyl and dodecyl ester hydrochlorides than their normal counterparts. The dodecyl amide hydrochloride derivative demonstrated enhanced cytotoxic activity in vivo relative to the corresponding ester, possibly due to decreased metabolic hydrolysis.

  9. Synthesis and cytotoxicity evaluation of 4-amino-4-dehydroxylarctigenin derivatives in glucose-starved A549 tumor cells.

    Science.gov (United States)

    Lei, Min; Gan, Xianwen; Zhao, Kun; Yu, Qiang; Hu, Lihong

    2015-02-01

    The natural product arctigenin (ATG) demonstrated preferential cytotoxicity to cancer cells under glucose starvation. A series of 4-amino-4-dehydroxylarctigenin derivatives based on lead compound ATG were designed and synthesized by bioisosteric modifications. Their cytotoxicities were evaluated in glucose-starved A549 tumor cells and the results indicated that the 4-amino-4-dehydroxylarctigenin showed more potent cytotoxicity than arctigenin, and the further substituent group on 4-amino would result in the cytotoxicities decreased significantly. 4-Substituted-arctigenin could selectively target on glucose-starved A549 tumor cells which provide an alternative strategy for anticancer drug development with minimal normal tissue toxicity. PMID:25571795

  10. Synthesis and cytotoxicity evaluation of 4-amino-4-dehydroxylarctigenin derivatives in glucose-starved A549 tumor cells.

    Science.gov (United States)

    Lei, Min; Gan, Xianwen; Zhao, Kun; Yu, Qiang; Hu, Lihong

    2015-02-01

    The natural product arctigenin (ATG) demonstrated preferential cytotoxicity to cancer cells under glucose starvation. A series of 4-amino-4-dehydroxylarctigenin derivatives based on lead compound ATG were designed and synthesized by bioisosteric modifications. Their cytotoxicities were evaluated in glucose-starved A549 tumor cells and the results indicated that the 4-amino-4-dehydroxylarctigenin showed more potent cytotoxicity than arctigenin, and the further substituent group on 4-amino would result in the cytotoxicities decreased significantly. 4-Substituted-arctigenin could selectively target on glucose-starved A549 tumor cells which provide an alternative strategy for anticancer drug development with minimal normal tissue toxicity.

  11. Cytotoxicity evaluation of carbon-encapsulated iron nanoparticles in melanoma cells and dermal fibroblasts

    International Nuclear Information System (INIS)

    Carbon-encapsulated iron nanoparticles (CEINs) are emerging as promising biomedical tools due to their unique physicochemical properties. In this study, the cytotoxic effect of CEINs (the mean diameter distribution ranges 46–56 nm) has been explored by MTT, LDH leakage, Calcein-AM/propidium iodide (PI) and Annexin V-FITC/PI assays in human melanoma (HTB-140), mouse melanoma (B16-F10) cells, and human dermal fibroblasts (HDFs). The results demonstrated that CEINs produce mitochondrial and cell membrane cytotoxicities in a dose (0.0001–100 μg/ml)-dependent manner. Moreover, the studies elucidated some differences in cytotoxic effects between CEINs used as raw and purified materials composing of the carbon surface with acidic groups. Experiments showed that HTB-140 cells are more sensitive to prone early apoptotic events due to raw CEINs as compared to B16-F10 or HDF cells, respectively. Taken together, these results suggest that the amount of CEINs administered to cells and the composition of CEINs containing different amounts of iron as well as the carbon surface modification type is critical determinant of cytotoxic responses in both normal and cancer (melanoma) cells

  12. Dynamics of mercury, cadmium and vanadium in cultured bovine kidney cells: an examination of relationships to cytotoxicity and cell function

    International Nuclear Information System (INIS)

    The objective of this study was to partially define the in vitro cellular response to mercury, cadmium and vanadium insult. A bovine kidney cell line served as the model system for examining the relationship of the cellular dynamics of metal accumulation and distribution to cytotoxicity. Additionally, biochemical marker functions were monitored in surviving cells to determine the importance of metal uptake and distribution to cell functionality. Each metal (HgCl2, CdCl2, and Na3VO4) elicited a concentration-related cytotoxicity which was correlated to the cellular metal burden. Multiphasic accumulation kinetics were established for mercury and vanadium; cadmium was accumulated in a linear fashion. Subcellular metal distribution was independent of both the extra-cellular metal concentration and the degree of cytotoxicity. Biochemical marker functions indicated a toxicity-related decrease in cell functionality in surviving cells for all metals

  13. Cytotoxic reactivity of gut lamina propria CD4+ alpha beta T cells in SCID mice with colitis

    DEFF Research Database (Denmark)

    Bonhagen, K; Thoma, S; Bland, P;

    1996-01-01

    SCID mice express the Fas ligand on the surface. Gut lamina propria CD4+ T cells show Fas-dependent cytotoxicity. A large fraction of gut lamina propria CD4+ T cells that infiltrate the inflamed colon in transplanted SCID mice are activated in situ and many CD4+ T cells are apoptotic. Hence, a large...... fraction of colitis-inducing CD4+ T cells undergo activation-induced cell death in situ and can damage other cells through Fas-dependent cytotoxicity....

  14. Antigen-specific B cells reactivate an effective cytotoxic T cell response against phagocytosed Salmonella through cross-presentation.

    Directory of Open Access Journals (Sweden)

    Jelle de Wit

    Full Text Available BACKGROUND: The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8(+ T cell response. Dendritic cells (DCs are considered to orchestrate the cytotoxic CD8(+ T cell response via cross-presentation of bacterial antigens onto MHC class I molecules. Cross-presentation of Salmonella by DCs however, is accompanied by the induction of apoptosis in the DCs. Besides antibody production, B cells are required to clear Salmonella infection for other unknown reasons. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that Salmonella-specific B cells that phagocytose Salmonella upon BCR-ligation reactivate human memory CD8(+ T cells via cross-presentation yielding a Salmonella-specific cytotoxic T cell response. The reactivation of CD8(+ T cells is dependent on CD4(+ T cell help. Unlike the DCs, B cell-mediated cross-presentation of Salmonella does not coincide with apoptosis. CONCLUSIONS/SIGNIFICANCE: B cells form a new player in the activation of the cytotoxic effector arm of the immune response and the generation of effective adaptive immunity in Salmonella infection.

  15. Synthesis and Selective Cytotoxic Activities on Rhabdomyosarcoma and Noncancerous Cells of Some Heterocyclic Chalcones.

    Science.gov (United States)

    Do, Tuong-Ha; Nguyen, Dai-Minh; Truong, Van-Dat; Do, Thi-Hong-Tuoi; Le, Minh-Tri; Pham, Thanh-Quan; Thai, Khac-Minh; Tran, Thanh-Dao

    2016-01-01

    Chemically diverse heterocyclic chalcones were prepared and evaluated for cytotoxicity, aiming to push forward potency and selectivity. They were tested against rhabdomyosarcoma (RMS) and noncancerous cell line (LLC-PK1). The influence of heteroaryl patterns on rings A and B was studied. Heterocycle functionalities on both rings, such as phenothiazine, thiophene, furan and pyridine were evaluated. Notably, the introduction of three methoxy groups at positions 3, 4, 5 on ring B appears to be critical for cytotoxicity. The best compound, with potent and selective cytotoxicity (IC50 = 12.51 μM in comparison with the value 10.84 μM of paclitaxel), contains a phenothiazine moiety on ring A and a thiophene heterocycle on ring B. Most of the potential compounds only show weak cytoxicity on the noncancerous cell line LLC-PK1. PMID:27005608

  16. Synthesis and Selective Cytotoxic Activities on Rhabdomyosarcoma and Noncancerous Cells of Some Heterocyclic Chalcones

    Directory of Open Access Journals (Sweden)

    Tuong-Ha Do

    2016-03-01

    Full Text Available Chemically diverse heterocyclic chalcones were prepared and evaluated for cytotoxicity, aiming to push forward potency and selectivity. They were tested against rhabdomyosarcoma (RMS and noncancerous cell line (LLC-PK1. The influence of heteroaryl patterns on rings A and B was studied. Heterocycle functionalities on both rings, such as phenothiazine, thiophene, furan and pyridine were evaluated. Notably, the introduction of three methoxy groups at positions 3, 4, 5 on ring B appears to be critical for cytotoxicity. The best compound, with potent and selective cytotoxicity (IC50 = 12.51 μM in comparison with the value 10.84 μM of paclitaxel, contains a phenothiazine moiety on ring A and a thiophene heterocycle on ring B. Most of the potential compounds only show weak cytoxicity on the noncancerous cell line LLC-PK1.

  17. Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells.

    Science.gov (United States)

    Olteanu, Diana; Filip, Adriana; Socaci, Crina; Biris, Alexandru Radu; Filip, Xenia; Coros, Maria; Rosu, Marcela Corina; Pogacean, Florina; Alb, Camelia; Baldea, Ioana; Bolfa, Pompei; Pruneanu, Stela

    2015-12-01

    Graphene-oxide (GO) and its most encountered derivatives, thermally reduced graphene oxide (TRGO) and nitrogen-doped graphene (N-Gr), were synthesized and structurally characterized by spectroscopic techniques, like Raman and (13)C MAS solid state NMR. Several biological effects (cytotoxicity, oxidative stress induction, and cellular and mithocondrial membrane alterations) induced by such graphene-based materials on human dental follicle stem cells were investigated. Graphene oxide shows the lowest cytotoxic effect, followed by the nitrogen-doped graphene, while thermally reduced graphene oxide exhibits high cytotoxic effects. Graphene oxide induces oxidative stress without causing cell membrane damage. Nitrogen-doped graphene shows a slight antioxidant activity; however, at high doses (20 and 40 μg/ml) it causes membrane damage. Both graphene oxide and nitrogen-doped graphene seem to be valuable candidates for usage in dental nanocomposites.

  18. Withania somnifera Root Extract Has Potent Cytotoxic Effect against Human Malignant Melanoma Cells.

    Science.gov (United States)

    Halder, Babli; Singh, Shruti; Thakur, Suman S

    2015-01-01

    In Ayurveda, Withania somnifera is commonly known as Ashwagandha, its roots are specifically used in medicinal and clinical applications. It possesses numerous therapeutic actions which include anti-inflammatory, sedative, hypnotic and narcotic. Extracts from this plant have been reported for its anticancer properties. In this study we evaluated for the first time, the cytotoxic effect of Withania root extract on human malignant melanoma A375 cells. The crude extract of Withania was tested for cytotoxicity against A375 cells by MTT assay. Cell morphology of treated A375 cells was visualized through phase contrast as well as fluorescence microscopy. Agarose gel electrophoresis was used to check DNA fragmentation of the crude extract treated cells. Crude extract of Withania root has the potency to reduce viable cell count in dose as well as time dependent manner. Morphological change of the A375 cells was also observed in treated groups in comparison to untreated or vehicle treated control. Apoptotic body and nuclear blebbing were observed in DAPI stained treated cells under fluorescence microscope. A ladder of fragmented DNA was noticed in treated cells. Thus it might be said that the crude water extract of Withania somnifera has potent cytotoxic effect on human malignant melanoma A375 cells.

  19. Cytotoxicity and genotoxicity of intravitreal adalimumab administration in rabbit retinal cells

    Directory of Open Access Journals (Sweden)

    Álcio Coutinho de Paula

    2015-04-01

    Full Text Available Purpose: To assess the cytotoxicity and genotoxicity of intravitreal adalimumab treatment in an animal experimental model using cytological and molecular techniques. Methods: Eighteen rabbits were randomly assigned to three groups: control, adalimumab treatment, and placebo. Cytotoxicity on retinal cells was evaluated using flow cytometry assays to determine the level of apoptosis and necrosis. Genotoxicity was evaluated by comet assays to assess DNA damage, and quantitative real-time polymerase chain reaction (qPCR was used to evaluate expression of apoptosis-inducing caspases (8 and 3. Results: No cytotoxicity or genotoxicity was observed in any of the two treatment groups (adalimumab and placebo following intravitreal administration compared with the control group. Flow cytometry analysis revealed that more than 90% of the cells were viable, and only a low proportion of retinal cells presented apoptotic (~10% or necrotic (<1% activity across all groups. Molecular damage was also low with a maximum of 6.4% DNA degradation observed in the comet assays. In addition, no increase in gene expression of apoptosis-inducing caspases was observed on retinal cells by qPCR in both the adalimumab and placebo groups compared with the control group. Conclusion: The use of adalimumab resulted in no detectable cytotoxicity or genotoxicity on retinal cells for up to 60 days upon administration. These results therefore indicate that adalimumab may be a safe option for intravitreal application to treat ocular inflammatory diseases in which TNF-α is involved.

  20. Cellular distribution of inorganic mercury and its relation to cytotoxicity in bovine kidney cell cultures

    International Nuclear Information System (INIS)

    A bovine kidney cell culture system was used to assess what relationship mercuric chloride (HgCl2) uptake and subcellular distribution had to cytotoxicity. Twenty-four-hour incubations with 0.05-50 μM HgCl2 elicited a concentration-related cytotoxicity. Cellular accumulation of 203Hg was also concentration-related, with 1.0 nmol/106 cells at the IC50. Measurement of Hg uptake over the 24-h exposure period revealed a multiphasic process. Peak accumulation was attained by 1 h and was followed by extrusion and plateauing of intracellular Hg levels. Least-squares regression analysis of the cytotoxicity and cellular uptake data indicated a potential relationship between the Hg uptake and cytotoxicity. However, the subcellular distribution of Hg was not concentration-related. Mitochondria and soluble protein fractions accounted for greater than 65% of the cell-associated Hg at all concentrations. The remaining Hg was distributed between the microsomal (6-10%) and nuclear and cell debris (11-22%) fractions at all concentrations tested. Less than 20% of the total cell-associated Hg was bound with metallothionein-like protein. 31 references, 4 figures, 3 tables

  1. Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line

    Science.gov (United States)

    Khanavi, Mahnaz; Gheidarloo, Razieh; Sadati, Nargess; Ardekani, Mohammad Reza Shams; Nabavi, Seyed Mohammad Bagher; Tavajohi, Shohreh; Ostad, Seyed Nasser

    2012-01-01

    Context: Marine algae produce different secondary metabolites with a wide range of biological activities. Many studies have been achieved on the screening of biological effects of marine organisms and a lot of active compounds were isolated and characterized. Aims: In an attempt to find cytotoxic compound of hexane fraction, isolation, identification, and cytotoxicity of active compound of this fraction were performed. Materials and Methods: In this study, total methanolic (70%) extract and partition fractions of hexane, chloroform (CHCl3), ethyl acetate (EtOAc), and MeOH–H2O of Sargassum angustifolium, Chondria dasyphylla, and Ulva flexuosa, collected from coastlines of the Persian Gulf in south of Iran, were studied against colon carcinoma (HT-29), colorectal adenocarcinoma (Caco-2), breast ductal carcinoma (T47D), and Swiss mouse embryo fibroblast (NIH 3T3) cell lines by MTT assay. Statistical Analysis Used: IC50 (median growth inhibitory concentration) values were calculated by Sigmaplot (10) software. Results: Hexane fraction of Chondria dasyphylla (IC50 82.26 ± 4.09 μg/ml) and MeOH-H2O fraction of Ulva flexuosa (IC50 116.92 ± 8.58 μg/ml) showed cytotoxic activity against proliferation of T47D cells. Hexane fraction of Sargassum angustifolium was also observed for cytotoxicity against T47D and HT-29 cell lines (IC50 166.42 ± 26.7 and 190.24 ± 52.8 μg/ml), respectively. An investigation of a component from the hexane fraction of Sargassum angustifolium yielded a steroidal metabolite, fucosterol, with cytotoxicity in T47D and HT29 (IC50 27.94 ± 9.3 and 70.41 ± 7.5 μg/ml). Conclusions: These results indicated that fucosterol, the most abundant phytosterol in brown algae, is responsible for cytotoxic effect of this extract against breast and colon carcinoma cell lines. PMID:22438665

  2. Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Mahnaz Khanavi

    2012-01-01

    Full Text Available Context: Marine algae produce different secondary metabolites with a wide range of biological activities. Many studies have been achieved on the screening of biological effects of marine organisms and a lot of active compounds were isolated and characterized. Aims: In an attempt to find cytotoxic compound of hexane fraction, isolation, identification, and cytotoxicity of active compound of this fraction were performed. Materials and Methods: In this study, total methanolic (70% extract and partition fractions of hexane, chloroform (CHCl 3 , ethyl acetate (EtOAc, and MeOH-H 2 O of Sargassum angustifolium, Chondria dasyphylla, and Ulva flexuosa, collected from coastlines of the Persian Gulf in south of Iran, were studied against colon carcinoma (HT-29, colorectal adenocarcinoma (Caco-2, breast ductal carcinoma (T47D, and Swiss mouse embryo fibroblast (NIH 3T3 cell lines by MTT assay. Statistical Analysis Used: IC 50 (median growth inhibitory concentration values were calculated by Sigmaplot (10 software. Results: Hexane fraction of Chondria dasyphylla (IC 50 82.26 ± 4.09 μg/ml and MeOH-H 2 O fraction of Ulva flexuosa (IC 50 116.92 ± 8.58 μg/ml showed cytotoxic activity against proliferation of T47D cells. Hexane fraction of Sargassum angustifolium was also observed for cytotoxicity against T47D and HT-29 cell lines (IC 50 166.42 ± 26.7 and 190.24 ± 52.8 μg/ml, respectively. An investigation of a component from the hexane fraction of Sargassum angustifolium yielded a steroidal metabolite, fucosterol, with cytotoxicity in T47D and HT29 (IC 50 27.94 ± 9.3 and 70.41 ± 7.5 μg/ml. Conclusions: These results indicated that fucosterol, the most abundant phytosterol in brown algae, is responsible for cytotoxic effect of this extract against breast and colon carcinoma cell lines.

  3. Non-synergistic cytotoxic effects of Fusarium and Alternaria toxin combinations in Caco-2 cells.

    Science.gov (United States)

    Vejdovszky, Katharina; Warth, Benedikt; Sulyok, Michael; Marko, Doris

    2016-01-22

    Exposure of humans and animals to mycotoxins via food and feed generally involves a conglomeration of compounds contaminating the consumed products. Investigations on combinatory effects of mycotoxins are therefore of great importance. In this study, cytotoxic effects of binary mixtures of the Fusarium toxins enniatin B, aurofusarin, deoxynivalenol, nivalenol and zearalenone, and tenuazonic acid produced by Alternaria spp., were evaluated by the WST-1 assay in the colorectal carcinoma cell-line Caco-2 after 24h of incubation. The selection of these mycotoxins was based on typically occurring natural contamination patterns in grains. Aurofusarin, which can be found abundantly in contaminated foodstuff and has not been toxicologically characterized properly so far, showed pronounced cytotoxicity, decreasing the mitochondrial activity at 10μM to 51% compared to a solvent control. Combinations of other mycotoxins with aurofusarin showed additive effects. In contrast, binary mixtures of enniatin B, deoxynivalenol, nivalenol and zearalenone at cytotoxic concentrations, predominantly resulted in antagonistic effects. Binary combinations of these four Fusarium toxins with tenuazonic acid also revealed interacting effects leading to a decrease in cytotoxicity, compared to expected combinatory effects. Especially in combination with deoxynivalenol, tenuazonic acid was found to significantly reduce the cytotoxicity of this mycotoxin in Caco-2 cells. Synergistic effects were not observed for any toxin combination under the chosen conditions. PMID:26529482

  4. Mannose 6-, fructose 1-, and fructose 6-phosphates inhibit human natural cell-mediated cytotoxicity.

    OpenAIRE

    Forbes, J T; Bretthauer, R. K.; Oeltmann, T N

    1981-01-01

    In vitro human natural cell-mediated cytotoxicity (NCMC) to K-562, Molt-4, and F-265 cells is inhibited in a dose-dependent manner by mannose 6-phosphate, fructose 1-phosphate and fructose 6-phosphate. This inhibition is not observed with mannose, glucose, fucose, glucose 6-phosphate, mannose 1-phosphate, galactose 1-phosphate, or galactose 6-phosphate. Preincubation of the effector cells, obtained from fresh whole blood, with mannose-6-phosphate, fructose-1-phosphate, or fructose-6-phosphate...

  5. Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu.

    Science.gov (United States)

    Cooley, S; Burns, L J; Repka, T; Miller, J S

    1999-10-01

    Treatment of advanced breast cancer with autologous stem cell transplantation is limited by a high probability of disease relapse. In clinical trials, interleukin 2 (IL-2) alone can expand natural killer (NK) cells in vivo and increase their cytotoxic activity against breast cancer cell lines, but this increase is modest. Understanding the mechanisms that mediate NK cell lysis of breast cancer targets may lead to improvements of current immunotherapy strategies. NK cells from normal donors or patients receiving subcutaneous IL-2 were tested in cytotoxicity assays against five breast cancer cell lines. The role of adhesion molecules and antibodies that interact through Fc receptors on NK cells was explored. NK cell lysis of breast cancer targets is variable and is partially dependent on recognition through ICAM-1 and CD18. While blocking CD2 slightly decreased cytotoxicity, contrary to expectations, an antibody against CD58 (the ligand for CD2), failed to block killing and instead mediated an increased cytotoxicity that correlated with target density of CD58. The CD58 antibody-enhanced killing was dependent not only on FcRgammaIII but also on CD2 and ICAM-1/CD18. To further elucidate the mechanism of this CD58 antibody-dependent cellular cytotoxicity (ADCC), another antibody was tested. Trastuzumab (Herceptin), a humanized antibody against HER2/neu, mediated potent ADCC against all the HER2/neu positive breast cancer targets. Unlike CD58 antibody-mediated ADCC, Herceptin ADCC was minimally affected by blocking antibodies to CD2 or ICAM-1/CD18, which suggests a different mechanism of action. This study shows that multiple mechanisms are involved in NK cell lysis of breast cancer targets, that none of the targets are inherently resistant to killing, and that two distinct mechanisms of ADCC can target immunotherapy to breast cancer cells. PMID:10517495

  6. Artemisinin-derived sesquiterpene lactones as potential antitumour compounds : Cytotoxic action against bone marrow and tumour cells

    NARCIS (Netherlands)

    Beekman, AC; Wierenga, PK; Woerdenbag, HJ; Van Uden, W; Pras, N; Konings, AWT; El-Feraly, FS; Galal, AM; Wikstrom, HV

    1998-01-01

    We determined the in vitro cytotoxic activity of the sesquiterpene lactone endoperoxide artemisinin (1) and some chemically prepared derivatives, which have been found to display cytotoxicity to cloned murine Ehrlich ascites tumour (EAT) cells and human HeLa cells and against murine bone marrow usin

  7. Cytotoxicity of some edible mushrooms extracts over liver hepatocellular carcinoma cells in conjunction with their antioxidant and antibacterial properties

    Directory of Open Access Journals (Sweden)

    Gökhan Sadi

    2015-01-01

    Full Text Available Background: Mushrooms have been valued for their nutritive content and as traditional medicines; several important medicinal properties of mushrooms have been recognized worldwide. Objective: The purpose of this study was to elucidate the cell growth inhibitory potential of four edible mushrooms; Coprinus comatus (O.F. Mull. Pers. (Agaricaceae, Tricholoma fracticum (Britzelm. Kreisel (Tricholomataceae, Rhizopogon luteolus Fr. and Nordholm (Rhizopogonaceae, Lentinus tigrinus (Bull. Fr. (Polyporaceae on hepatocellular carcinoma (HepG2 cells in conjunction with their antioxidant and antibacterial capacities. Materials and Methods: Five different extracts of edible mushrooms were obtained using water, methanol, acetone, n-hexane and chloroform as solvent systems for cytotoxic, antioxidant and antibacterial properties. Results: C. comatus showed substantial in vitro cytotoxic activity against HepG2 cell lines with all extracts especially with chloroform 50% inhibition (IC 50 value of 0.086 mg/ml and acetone (IC 50 value of 0.420 mg/ml. Chloroform extract of C. comatus had maximum amount of β-carotene (25.94 μg/mg, total phenolic content (76.32 μg/mg and lycopene (12.00 μg/mg, and n-hexane extract of L. tigrinus had maximum amount of flavonoid (3.67 μg/mg. While chloroform extract of C. comatus showed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH capturing activity (1.579 mg/ml, the best result for metal chelating activity was obtained from methanolic extract (0.842 mg/ml. Moreover, all tested mushrooms demonstrated antibacterial activity and n-hexane extract of L. tigrinus and acetone extracts of T. fracticum were the most active against tested microorganism. Conclusion: These results indicate that different extracts of investigated mushroom have considerable cytotoxic, antioxidant and antibacterial properties and may be utilized as a promising source of therapeutics.

  8. Decreased non-MHC-restricted (CD56+) killer cell cytotoxicity after spaceflight

    Science.gov (United States)

    Mehta, S. K.; Kaur, I.; Grimm, E. A.; Smid, C.; Feeback, D. L.; Pierson, D. L.

    2001-01-01

    Cytotoxic activity of non-major histocompatibility complex-restricted (CD56+) (NMHC) killer cells and cell surface marker expression of peripheral blood mononuclear cells were determined before and after spaceflight. Ten astronauts (9 men, 1 woman) from two space shuttle missions (9- and 10-day duration) participated in the study. Blood samples were collected 10 days before launch, within 3 h after landing, and 3 days after landing. All peripheral blood mononuclear cell preparations were cryopreserved and analyzed simultaneously in a 4-h cytotoxicity (51)Cr release assay using K562 target cells. NMHC killer cell lytic activity was normalized per 1,000 CD56+ cells. When all 10 subjects were considered as one study group, NMHC killer cell numbers did not change significantly during the three sampling periods, but at landing lytic activity had decreased by approximately 40% (P < 0.05) from preflight values. Nine of ten astronauts had decreased lytic activity immediately after flight. NMHC killer cell cytotoxicity of only three astronauts returned toward preflight values by 3 days after landing. Consistent with decreased NMHC killer cell cytotoxicity, urinary cortisol significantly increased after landing compared with preflight levels. Plasma cortisol and ACTH levels at landing were not significantly different from preflight values. No correlation of changes in NMHC killer cell function or hormone levels with factors such as age, gender, mission, or spaceflight experience was found. After landing, expression of the major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), as determined by flow cytometric analysis, did not show any consistent changes from measurements made before flight.

  9. In Vitro Cytotoxic Effects of Celecoxib, Mefenamic Acid, Aspirin and Indometacin on Several Cells Lines

    Science.gov (United States)

    Hashemipour, Maryam Alsadat; Mehrabizadeh Honarmand, Hoda; Falsafi, Farideh; Tahmasebi Arashlo, Mehrnaz; Rajabalian, Saied; Gandjalikhan Nassab, Sayed Amir Hossein

    2016-01-01

    Statement of the Problem Use of cyclooxygenase inhibitors as chemotherapy agents has attracted the attention of a large number of investigators in recent years. Given the importance of cancer therapy, only a limited number of studies have been carried out to investigate the effects of cyclooxygenase inhibitors on specific cell lines. Purpose This research aimed to determine the in vitro cytotoxic effects of cyclooxygenase inhibitors (COX-1 and COX-2 inhibitors) on KB, Saos-2, 1321N, U-87MG, SFBF-PI 39 cell lines. Materials and Method Powders of celecoxib, mefenamic acid, aspirin and indometacin were dissolved in the appropriate solvent. The viability of cell lines was carried out by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay technique. Data gathered from four separate experiments were expressed as mean±SD. Statistical significance was defined at p< 0.05 by using analysis of variance. Significant treatment mean values were subjected to post-hoc Tukey’s test. Results Celecoxib showed marked cytotoxic effects on KB, Saos-2, and 1321N cells, which was significant in comparison with the control group. Celecoxib was not effective in killing U-87MG cell line. Mefenamic acid exerted cytotoxic effects on KB, Saos-2, and 1321N cells, where the viability was approximately 75%. U-87MG cells were resistant to mefenamic acid. Indometacin had the highest rate of activity on U-87MG cells, which was significant in comparison with the control group. Aspirin did not exhibit any activity on these cell lines and was not effective in killing U-87MG, KB, Saos-2, and 1321N cells. Conclusion This research showed that celecoxib, indometacin, and mefenamic acid have the cytotoxic effects on KB, Saos-2, 1321N and U-87MG cell lines. Therefore, it appears that these drugs can be considered as anti-neoplastic agents in the experimental phase. PMID:27602398

  10. Candidate mosaic proteins for a pan-filoviral cytotoxic T-Cell lymphocyte vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Paul W [Los Alamos National Laboratory; Fischer, William M [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Foley, Brian T [Los Alamos National Laboratory; Thurmond, J R [Los Alamos National Laboratory; Yusim, K [Los Alamos National Laboratory; Korber, B T [Los Alamos National Laboratory

    2008-01-01

    The extremely high fatality rates of many filovirus (FILV) strains the recurrent but rarely identified origin of human epidemics, the only partly identified viral reservoirs and the continuing non-human primate epizootics in Africa make a broadly-protective filovirus vaccine highly desirable. Cytotoxic T-cells (CTL) have been shown to be protective in mice, guinea pigs and non-human primates. In murine models the cytotoxic T-cell epitopes that are protective against Ebola virus have been mapped and in non-human primates CTL-mediated protection between viral strains (John Dye: specify) has been demonstrated using two filoviral proteins, nucleoprotein (NP) and glycoprotein (GP). These immunological results suggest that the CTL avenue of immunity deserves consideration for a vaccine. The poorly-understood viral reservoirs means that it is difficult to predict what strains are likely to cause epidemics. Thus, there is a premium on developing a pan-filoviral vaccine. The genetic diversity of FILV is large, roughly the same scale as human immunodeficiency virus (HIV). This presents a serious challenge for the vaccine designer because a traditional vaccine aspiring to pan-filoviral coverage is likely to require the inclusion of many antigenic reagents. A recent method for optimizing cytotoxic T-cell lymphocyte epitope coverage with mosaic antigens was successful in improving potential CTL epitope coverage against HIV and may be useful in the context of very different viruses, such as the filoviruses discussed here. Mosaic proteins are recombinants composed of fragments of wild-type proteins joined at locations resulting in exclusively natural k-mers, 9 {le} k {le} 15, and having approximately the same length as the wild-type proteins. The use of mosaic antigens is motivated by three conjectures: (1) optimizing a mosaic protein to maximize coverage of k-mers found in a set of reference proteins will give better odds of including broadly-protective CTL epitopes in a vaccine

  11. A biophysical model of cell evolution after cytotoxic treatments: Damage, repair and cell response.

    Science.gov (United States)

    Tomezak, M; Abbadie, C; Lartigau, E; Cleri, F

    2016-01-21

    We present a theoretical agent-based model of cell evolution under the action of cytotoxic treatments, such as radiotherapy or chemotherapy. The major features of cell cycle and proliferation, cell damage and repair, and chemical diffusion are included. Cell evolution is based on a discrete Markov chain, with cells stepping along a sequence of discrete internal states from 'normal' to 'inactive'. Probabilistic laws are introduced for each type of event a cell can undergo during its life: duplication, arrest, senescence, damage, reparation, or death. We adjust the model parameters on a series of cell irradiation experiments, carried out in a clinical LINAC, in which the damage and repair kinetics of single- and double-strand breaks are followed. Two showcase applications of the model are then presented. In the first one, we reconstruct the cell survival curves from a number of published low- and high-dose irradiation experiments. We reobtain a very good description of the data without assuming the well-known linear-quadratic model, but instead including a variable DSB repair probability. The repair capability of the model spontaneously saturates to an exponential decay at increasingly high doses. As a second test, we attempt to simulate the two extreme possibilities of the so-called 'bystander' effect in radiotherapy: the 'local' effect versus a 'global' effect, respectively activated by the short-range or long-range diffusion of some factor, presumably secreted by the irradiated cells. Even with an oversimplified simulation, we could demonstrate a sizeable difference in the proliferation rate of non-irradiated cells, the proliferation acceleration being much larger for the global than the local effect, for relatively small fractions of irradiated cells in the colony. PMID:26549470

  12. Classification of human natural killer cells based on migration behavior and cytotoxic response.

    Science.gov (United States)

    Vanherberghen, Bruno; Olofsson, Per E; Forslund, Elin; Sternberg-Simon, Michal; Khorshidi, Mohammad Ali; Pacouret, Simon; Guldevall, Karolin; Enqvist, Monika; Malmberg, Karl-Johan; Mehr, Ramit; Önfelt, Björn

    2013-02-21

    Despite intense scrutiny of the molecular interactions between natural killer (NK) and target cells, few studies have been devoted to dissection of the basic functional heterogeneity in individual NK cell behavior. Using a microchip-based, time-lapse imaging approach allowing the entire contact history of each NK cell to be recorded, in the present study, we were able to quantify how the cytotoxic response varied between individual NK cells. Strikingly, approximately half of the NK cells did not kill any target cells at all, whereas a minority of NK cells was responsible for a majority of the target cell deaths. These dynamic cytotoxicity data allowed categorization of NK cells into 5 distinct classes. A small but particularly active subclass of NK cells killed several target cells in a consecutive fashion. These "serial killers" delivered their lytic hits faster and induced faster target cell death than other NK cells. Fast, necrotic target cell death was correlated with the amount of perforin released by the NK cells. Our data are consistent with a model in which a small fraction of NK cells drives tumor elimination and inflammation.

  13. Fasting-Mimicking Diet Reduces HO-1 to Promote T Cell-Mediated Tumor Cytotoxicity.

    Science.gov (United States)

    Di Biase, Stefano; Lee, Changhan; Brandhorst, Sebastian; Manes, Brianna; Buono, Roberta; Cheng, Chia-Wei; Cacciottolo, Mafalda; Martin-Montalvo, Alejandro; de Cabo, Rafael; Wei, Min; Morgan, Todd E; Longo, Valter D

    2016-07-11

    Immune-based interventions are promising strategies to achieve long-term cancer-free survival. Fasting was previously shown to differentially sensitize tumors to chemotherapy while protecting normal cells, including hematopoietic stem and immune cells, from its toxic side effects. Here, we show that the combination of chemotherapy and a fasting-mimicking diet (FMD) increases the levels of bone marrow common lymphoid progenitor cells and cytotoxic CD8(+) tumor-infiltrating lymphocytes (TILs), leading to a major delay in breast cancer and melanoma progression. In breast tumors, this effect is partially mediated by the downregulation of the stress-responsive enzyme heme oxygenase-1 (HO-1). These data indicate that FMD cycles combined with chemotherapy can enhance T cell-dependent targeted killing of cancer cells both by stimulating the hematopoietic system and by enhancing CD8(+)-dependent tumor cytotoxicity. PMID:27411588

  14. Protein-binding, cytotoxicity in vitro and cell cycle arrest of ruthenium(II) polypyridyl complexes

    Science.gov (United States)

    Liu, Si-Hong; Zhu, Jian-Wei; Xu, Hui-Hua; Wang, Yan; Liu, Ya-Min; Liang, Jun-Bo; Zhang, Gui-Qiang; Cao, Di-Hua; Lin, Yang-Yang; Wu, Yong; Guo, Qi-Feng

    2016-05-01

    The cytotoxic activity of two Ru(II) complexes against A549, BEL-7402, HeLa, PC-12, SGC-7901 and SiHa cell lines was investigated by MTT method. Complexes 1 and 2 show moderate cytotoxicity toward BEL-7402 cells with an IC50 value of 53.9 ± 3.4 and 39.3 ± 2.1 μM. The effects of the complexes inducing apoptosis, cellular uptake, reactive oxygen species and mitochondrial membrane potential in BEL-7402 cells have been studied by fluorescence microscopy. The percentages of apoptotic and necrotic cells and cell cycle arrest were studied by flow cytometry. The BSA-binding behaviors were investigated by UV/visible and fluorescent spectra.

  15. Induction of Foot-and-Mouth Disease Virus-Specific Cytotoxic T Cell Killing by Vaccination

    DEFF Research Database (Denmark)

    Patch, J.R.; Pedersen, Lasse Eggers; Toka, F.N.;

    2011-01-01

    strategies are all directed toward the induction of neutralizing antibody responses. However, the role of cytotoxic T lymphocytes (CTLs) has not received a great deal of attention, in part because of the technical difficulties associated with establishing a reliable assay of cell killing for this highly...

  16. CYTOTOXICITY OF ARTEMISININ-RELATED ENDOPEROXIDES TO EHRLICH ASCITES TUMOR-CELLS

    NARCIS (Netherlands)

    WOERDENBAG, HJ; MOSKAL, TA; PRAS, N; MALINGRE, TM; ELFERALY, FS; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    A series of artemisinin-related endoperoxides was tested for cytotoxicity to Ehrlich ascites tumor (EAT) cells using the microculture tetrazolium (MTT) assay. Artemisinin [1] had an IC50 value of 29.8 muM. Derivatives of dihydroartemisinin [2], being developed as antimalarial drugs (artemether [3],

  17. Cytotoxic/natural killer cell cutaneous lymphomas. Report of EORTC Cutaneous Lymphoma Task Force Workshop.

    NARCIS (Netherlands)

    Santucci, M.; Pimpinelli, N; Massi, D; Kadin, ME; Meijer, C.J.L.M.; Muller-Hermelink, HK; Paulli, M; Wechsler, J.; Willemze, R.; Audring, H; Bernengo, MG; Cerroni, L.; Chimenti, S.; Chott, A.; Diaz-Perez, J.L.; Dippel, E; Duncan, LM; Feller, AC; Geerts, M.L.; Hallermann, C; Kempf, W; Russell-Jones, R; Sander, C; Berti, E.

    2003-01-01

    BACKGROUND: Cutaneous lymphomas expressing a cytotoxic or natural killer (NK) cell phenotype represent a group of lymphoproliferative disorders for which there is currently much confusion and little consensus regarding the best nomenclature and classification. METHODS: This study analyzes 48 cases o

  18. Cytotoxicity screening of Bangladeshi medicinal plant extracts on pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Abbasi Atiya

    2010-09-01

    Full Text Available Abstract Background There has been a long standing interest in the identification of medicinal plants and derived natural products for developing cancer therapeutics. Our study focuses upon pancreatic cancer, due to its high mortality rate, that is attributed in part to the lack of an effective chemotherapeutic agent. Previous reports on the use of medicinal plant extracts either alone or alongside conventional anticancer agents in the treatment of this cancer have shown promising results. This work aims to investigate the therapeutic properties of a library of medicinal plants from Bangladesh. Methods 56 extracts of 44 unique medicinal plants were studied. The extracts were screened for cytotoxicity against the pancreatic adenocarcinoma cell line Panc-1, using a label-free biosensor assay. The top cytotoxic extracts identified in this screen were tested on two additional pancreatic cancer cell lines (Mia-Paca2 and Capan-1 and a fibroblast cell line (Hs68 using an MTT proliferation assay. Finally, one of the most promising extracts was studied using a caspase-3 colorimetric assay to identify induction of apoptosis. Results Crude extracts of Petunia punctata, Alternanthera sessilis, and Amoora chittagonga showed cytotoxicity to three cancer cell lines with IC50 values ranging between 20.3 - 31.4 μg/mL, 13.08 - 34.9 μg/mL, and 42.8 - 49.8 μg/mL, respectively. Furthermore, treatment of Panc-1 cells with Petunia punctata was shown to increase caspase-3 activity, indicating that the observed cytotoxicity was mediated via apoptosis. Only Amoora chittagonga showed low cytotoxicity to fibroblast cells with an IC50 value > 100 μg/mL. Conclusion Based upon the initial screening work reported here, further studies aimed at the identification of active components of these three extracts and the elucidation of their mechanisms as cancer therapeutics are warranted.

  19. Dicoumarol enhances gemcitabine-induced cytotoxicity in high NQO1-expressing cholangiocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Benjaporn; Buranrat; Auemduan; Prawan; Upa; Kukongviriyapan; Sarinya; Kong-petch; Veerapol; Kukongviriyapan

    2010-01-01

    AIM: To investigate whether dicoumarol, a potent inhibitor of NAD(P)H quinone oxidoreductase-1 (NQO1), potentiates gemcitabine to induce cytotoxicity in chol-angiocarcinoma cells (CCA) and the role of reactive oxygen generation in sensitizing the cells. METHODS: Four human cell lines with different NQO1 activity were used; the human CCA cell lines, KKU-100, KKU-OCA17, KKU-M214, and Chang liver cells. NQO1 activity and mRNA expression were determined. The cells were pretreated with dicoumarol at relevant con...

  20. Subamolide B Isolated from Medicinal Plant Cinnamomum subavenium Induces Cytotoxicity in Human Cutaneous Squamous Cell Carcinoma Cells through Mitochondrial and CHOP-Dependent Cell Death Pathways

    OpenAIRE

    Shu-Yi Yang; Hui-Min Wang; Tai-Wen Wu; Yi-Ju Chen; Jeng-Jer Shieh; Ju-Hwa Lin; Tsing-Fen Ho; Ren-Jie Luo; Chung-Yi Chen; Chia-Che Chang

    2013-01-01

    Subamolide B is a butanolide isolated from Cinnamomum subavenium, a medicinal plant traditionally used to treat various ailments including carcinomatous swelling. We herein reported for the first time that subamolide B potently induced cytotoxicity against diverse human skin cancer cell lines while sparing nonmalignant cells. Mechanistic studies on human cutaneous squamous cell carcinoma (SCC) cell line SCC12 highlighted the involvement of apoptosis in subamolide B-induced cytotoxicity, as ev...

  1. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    Science.gov (United States)

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level.

  2. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    Science.gov (United States)

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level. PMID:24021157

  3. Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions.

    Science.gov (United States)

    Saadoun, Samira; Bridges, Leslie R; Verkman, A S; Papadopoulos, Marios C

    2012-12-19

    Neuromyelitis optica is a severe inflammatory demyelinating disease of the central nervous system. Most patients with neuromyelitis optica have circulating immunoglobulin G (IgG) antibodies against the astrocytic water channel protein aquaporin-4 (AQP4), which are pathogenic. Anti-AQP4 IgG-mediated complement-dependent astrocyte toxicity is a key mechanism of central nervous system damage in neuromyelitis optica, but the role of natural killer and cytotoxic T cells is unknown. Our objective was to determine whether natural killer and cytotoxic T cells play a role in human neuromyelitis optica lesions. We immunostained four actively demyelinating lesions, obtained from patients with anti-AQP4 IgG positive neuromyelitis optica, for Granzyme B and Perforin. The inflammatory cells were perivascular neutrophils, eosinophils and macrophages, with only occasional Granzyme B+ or Perforin+ cells. Greater than 95% of inflamed vessels in each lesion had no surrounding Granzyme B+ or Perforin+ cells. Granzyme B+ or Perforin+ cells were abundant in human spleen (positive control). Although natural killer cells produce central nervous system damage in mice injected with anti-AQP4 IgG, our findings here indicate that natural killer-mediated and T cell-mediated cytotoxicity are probably not involved in central nervous system damage in human neuromyelitis optica.

  4. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    del Batlle Alcira M

    2002-03-01

    Full Text Available Abstract Background Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA and porphobilinogen (PBG. ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. Results We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations.

  5. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    Science.gov (United States)

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  6. Methotrexate-loaded biodegradable nanoparticles: preparation, characterization and evaluation of its cytotoxic potential against U-343 MGa human neuronal glioblastoma cells

    Indian Academy of Sciences (India)

    Kranti P Musmade; Praful B Deshpande; Prashant B Musmade; M Naseer Maliyakkal; A Ranjith Kumar; M Sreenivasa Reddy; N Udupa

    2014-06-01

    Nanoparticles represent one of the attractive alternatives in the effective treatment of cancer chemotherapy. In the present work, formulation and development of a novel methotrexate (MTX)-loaded biodegradable nanoparticles using poly(D,L-lactide-co-glycolide) (PLGA) was carried out. The prepared nanoparticles were evaluated for physicochemical properties such as particle size, zeta potential, release studies, etc and also evaluated for its in vitro cytotoxic potential against U-343 MGa human neuronal glioblastoma cells. Particle size of optimized formulation was < 200 nm. There was a considerable decrease in cell viability and enhancement in cytotoxic activity of MTX-loaded nanoparticles compared to MTX alone when tested against U-343 MGa human neuronal glioblastoma cells.

  7. Synthesis and Cytotoxic Activity on Human Cancer Cells of Novel Isoquinolinequinone-Amino Acid Derivatives.

    Science.gov (United States)

    Valderrama, Jaime A; Delgado, Virginia; Sepúlveda, Sandra; Benites, Julio; Theoduloz, Cristina; Buc Calderon, Pedro; Muccioli, Giulio G

    2016-09-08

    A variety of aminoisoquinoline-5,8-quinones bearing α-amino acids moieties were synthesized from 3-methyl-4-methoxycarbonylisoquinoline-5,8-quinone and diverse l- and d-α-amino acid methyl esters. The members of the series were evaluated for their cytotoxic activity against normal and cancer cell lines by using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. From the current investigation, structure-activity relationships demonstrate that the location and structure of the amino acid fragment plays a significant role in the cytotoxic effects. Moderate to high cytotoxic activity was observed and four members, derived from l-alanine, l-leucine, l-phenylalanine, and d-phenylalanine, were selected as promising compounds by their IC50 ranging from 0.5 to 6.25 μM and also by their good selectivity indexes (≥2.24).

  8. Effect of Polyethylene Glycol Modification of TiO2 Nanoparticles on Cytotoxicity and Gene Expressions in Human Cell Lines

    Directory of Open Access Journals (Sweden)

    Shuji Sonezaki

    2012-03-01

    Full Text Available Nanoparticles (NPs are tiny materials used in a wide range of industrial and medical applications. Titanium dioxide (TiO2 is a type of nanoparticle that is widely used in paints, pigments, and cosmetics; however, little is known about the impact of TiO2 on human health and the environment. Therefore, considerable research has focused on characterizing the potential toxicity of nanoparticles such as TiO2 and on understanding the mechanism of TiO2 NP-induced nanotoxicity through the evaluation of biomarkers. Uncoated TiO2 NPs tend to aggregate in aqueous media, and these aggregates decrease cell viability and induce expression of stress-related genes, such as those encoding interleukin-6 (IL-6 and heat shock protein 70B’ (HSP70B’, indicating that TiO2 NPs induce inflammatory and heat shock responses. In order to reduce their toxicity, we conjugated TiO2 NPs with polyethylene glycol (PEG to eliminate aggregation. Our findings indicate that modifying TiO2 NPs with PEG reduces their cytotoxicity and reduces the induction of stress-related genes. Our results also suggest that TiO2 NP-induced effects on cytotoxicity and gene expression vary depending upon the cell type and surface modification.

  9. Cytotoxic Effect of Erythroxylum suberosum Combined with Radiotherapy in Head and Neck Cancer Cell Lines.

    Science.gov (United States)

    Macedo, Taysa B C; Elias, Silvia T; Torres, Hianne M; Yamamoto-Silva, Fernanda Paula; Silveira, Dâmaris; Magalhães, Pérola O; Lofrano-Porto, Adriana; Guerra, Eliete N S; Silva, Maria Alves G

    2016-01-01

    The mouth and oropharynx cancer is the 6th most common type of cancer in the world. The treatment may involve surgery, chemotherapy and radiotherapy. More than 50% of drugs against cancer were isolated from natural sources, such as Catharanthus roseus and epipodophyllotoxin, isolated from Podophyllum. The biggest challenge is to maximize the control of the disease, while minimizing morbidity and toxicity to the surrounding normal tissues. The Erythroxylum suberosum is a common plant in the Brazilian Cerrado biome and is popularly known as "cabelo-de-negro". The objective of this study was to evaluate the cytotoxic activity of Erythroxylum suberosum plant extracts of the Brazilian Cerrado biome associated with radiotherapy in human cell lines of oral and hypopharynx carcinomas. Cells were treated with aqueous, ethanolic and hexanic extracts of Erythroxylum suberosum and irradiated at 4 Gy, 6 Gy and 8 Gy. Cytotoxicity was evaluated by MTT assay and the absorbance was measured at 570 nm in a Beckman Counter reader. Cisplatin, standard chemotherapy, was used as positive control. The use of Erythroxylum suberosum extracts showed a possible radiosensitizing effect in vitro for head and neck cancer. The cytotoxicity effect in the cell lines was not selective and it is very similar to the effect of standard chemotherapy. The aqueous extract of Erythroxylum suberosum, combined with radiotherapy was the most cytotoxic extract to oral and hypopharynx carcinomas. PMID:27007356

  10. Cytotoxic effect of Erythroxylum suberosum combined with radiotherapy in head and neck cancer cell lines

    International Nuclear Information System (INIS)

    The mouth and oropharynx cancer is the 6th most common type of cancer in the world. The treatment may involve surgery, chemotherapy and radiotherapy. More than 50% of drugs against cancer were isolated from natural sources, such as Catharanthus roseus and epipodophyllotoxin, isolated from Podophyllum. The biggest challenge is to maximize the control of the disease, while minimizing morbidity and toxicity to the surrounding normal tissues. The Erythroxylum suberosum is a common plant in the Brazilian Cerrado biome and is popularly known as 'cabelo-de-negro'. The objective of this study was to evaluate the cytotoxic activity of Erythroxylum suberosum plant extracts of the Brazilian Cerrado biome associated with radiotherapy in human cell lines of oral and hypopharynx carcinomas. Cells were treated with aqueous, ethanolic and hexanic extracts of Erythroxylum suberosum and irradiated at 4 Gy, 6 Gy and 8 Gy. Cytotoxicity was evaluated by MTT assay and the absorbance was measured at 570 nm in a Beckman Counter reader. Cisplatin, standard chemotherapy, was used as positive control. The use of Erythroxylum suberosum extracts showed a possible radiosensitizing effect in vitro for head and neck cancer. The cytotoxicity effect in the cell lines was not selective and it is very similar to the effect of standard chemotherapy. The aqueous extract of Erythroxylum suberosum, combined with radiotherapy was the most cytotoxic extract to oral and hypopharynx carcinomas. (author)

  11. Cytotoxic effect of Erythroxylum suberosum combined with radiotherapy in head and neck cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Taysa B.C.; Torres, Hianne M.; Yamamoto-Silva, Fernanda Paula; Silva, Maria Alves G. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Escola de Odontologia; Elias, Silvia T.; Silveira, Damaris; Magalhaes, Perola O.; Lofrano-Porto, Adriana; Guerra, Eliete N.S., E-mail: elieteneves@unb.br [Universidade de Brasilia (UnB), Brasilia, DF (Brazil). Faculdade de Ciencias da Saude

    2016-01-15

    The mouth and oropharynx cancer is the 6{sup th} most common type of cancer in the world. The treatment may involve surgery, chemotherapy and radiotherapy. More than 50% of drugs against cancer were isolated from natural sources, such as Catharanthus roseus and epipodophyllotoxin, isolated from Podophyllum. The biggest challenge is to maximize the control of the disease, while minimizing morbidity and toxicity to the surrounding normal tissues. The Erythroxylum suberosum is a common plant in the Brazilian Cerrado biome and is popularly known as 'cabelo-de-negro'. The objective of this study was to evaluate the cytotoxic activity of Erythroxylum suberosum plant extracts of the Brazilian Cerrado biome associated with radiotherapy in human cell lines of oral and hypopharynx carcinomas. Cells were treated with aqueous, ethanolic and hexanic extracts of Erythroxylum suberosum and irradiated at 4 Gy, 6 Gy and 8 Gy. Cytotoxicity was evaluated by MTT assay and the absorbance was measured at 570 nm in a Beckman Counter reader. Cisplatin, standard chemotherapy, was used as positive control. The use of Erythroxylum suberosum extracts showed a possible radiosensitizing effect in vitro for head and neck cancer. The cytotoxicity effect in the cell lines was not selective and it is very similar to the effect of standard chemotherapy. The aqueous extract of Erythroxylum suberosum, combined with radiotherapy was the most cytotoxic extract to oral and hypopharynx carcinomas. (author)

  12. Cytotoxicity of Various Endodontic Materials on Stem Cells of Human Apical Papilla

    Science.gov (United States)

    Saberi, Eshagh Ali; Karkehabadi, Hamed; Mollashahi, Narges Farhad

    2016-01-01

    Introduction: This in vitro study assessed and compared the cytotoxicity of mineral trioxide aggregate (MTA), calcium-enriched mixture (CEM) cement, Biodentine (BD) and octacalcium phosphate (OCP) on stem cells of the human apical papilla (SCAP). Methods and Materials: SCAPs were isolated from two semi-impacted third molars. The cells were cultured in wells of an insert 24-well plate and were then incubated. The plates were then removed from the incubator and randomly divided into four experimental groups that were exposed to 1-mm discs of set MTA, CEM, BD or OCP, and one untreated control group. After 24, 48 and 168 h, the plates were removed from the incubator and 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) solution was added to each well. Data were analyzed at different time points using the repeated measures ANOVA followed by Bonferroni test and the level of significance was set at 0.05. Results: Cytotoxicity of the four materials was not significantly different from that of the control group at 24, 48 and 168 h (P>0.05). Two-by-two comparison revealed that cytotoxicity of MTA and CEM cement was significantly different from each other at 168 h (P<0.05) although the cytotoxicity of CEM was less than MTA. Cytotoxicity of OCP and MTA was also significantly different from each other at 48 h and OCP had more favorable biocompatibility than MTA (P<0.05). Conclusion: CEM, OCP, BD and MTA showed acceptable biocompatibility when exposed to SCAP. Over time, CEM showed the least cytotoxicity among the materials under study. PMID:26843872

  13. Cancer Cell Cytotoxicities of 1-(4-Substitutedbenzoyl-4-(4-chlorobenzhydrylpiperazine Derivatives

    Directory of Open Access Journals (Sweden)

    Mine Yarim

    2012-06-01

    Full Text Available A series of novel 1-(4-substitutedbenzoyl-4-(4-chlorobenzhydrylpiperazine derivatives 5ag was designed by a nucleophilic substitution reaction of 1-(4-chlorobenzhydrylpiperazine with various benzoyl chlorides and characterized by elemental analyses, IR and 1H nuclear magnetic resonance spectra. Cytotoxicity of the compounds was demonstrated on cancer cell lines from liver (HUH7, FOCUS, MAHLAVU, HEPG2, HEP3B, breast (MCF7, BT20, T47D, CAMA-1, colon (HCT-116, gastric (KATO-3 and endometrial (MFE-296 cancer cell lines. Time-dependent cytotoxicity analysis of compound 5a indicated the long-term in situ stability of this compound. All compounds showed significant cell growth inhibitory activity on the selected cancer cell lines.

  14. PROTECTIVE EFFECT OF MELATONIN ON NEURAL CELLS AGAINST THE CYTOTOXICITY OF OXYRADICALS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. To investigate the exact mechanism of melatonin to prohibit the apoptosis of neural cells induced by various kinds of cytotoxic agents.Methods. We used the methods of phase contrast microscopy, MTT assay and hoechst dye staining to check this mechanism in SKNSH and U251 cell lines.Results. Both 2mmol/L H2O2 and 0.5 μ mol/L amyloid β- protein (Aβ) induce these two cell lines die via apoptosis. Either melatonin or glutathione can significantly protect both cell lines. The protective effect of 10 μ mol/L melatonin is as same as that of 60 μ mol/L glutathione.Conclusion. Melatonin can partly inhibit the cytotoxicity of H2O2 and Aβ through its role as a free radical scavenger.

  15. Comparison of the cytotoxicity of cladribine and clofarabine when combined with fludarabine and busulfan in AML cells: enhancement of cytotoxicity with epigenetic modulators

    OpenAIRE

    Valdez, Benigno C.; Li, Yang; Murray, David; Ji, Jie; Liu, Yan; Popat, Uday; Champlin, Richard E.; Andersson, Borje S.

    2015-01-01

    Clofarabine (Clo), fludarabine (Flu) and busulfan (Bu) combinations are efficacious in hematopoietic stem cell transplantation (HSCT) for myeloid leukemia. We now determined if the more affordable drug cladribine (Clad) can provide a viable alternative to Clo, with or without panobinostat (Pano) and 5-aza-2′-deoxycytidine (DAC). Both [Clad+Flu+Bu] and [Clo+Flu+Bu] combinations showed synergistic cytotoxicity in KBM3/Bu2506, HL60 and OCI-AML3 cell lines. Cell exposure to these drug combination...

  16. Enhancement of cytotoxicity of antimicrobial peptide magainin Ⅱ in tumor cells by bombesin-targeted delivery

    Institute of Scientific and Technical Information of China (English)

    Shan LIU; Hao YANG; Lin WAN; Hua-wei CAI; Sheng-fu LI; You-ping LI; Jing-qiu CHENG; Xiao-feng LU

    2011-01-01

    Aim: To investigate whether the conjugation of magainin II(MG2),an antimicrobial peptides(AMPs),to the tumor-homing peptide bombesin could enhance its cytotoxicity in tumor cells.Methods: A magainin Ⅱ-bombesin conjugate(MG2B)was constructed by attaching magainin Ⅱ(MG2)to bombesin at its N-terminus.The peptides were synthesized using Fmoc-chemistry.The in vitro cytotoxicity of the peptide in cancer cells was quantitatively determined using the CCK-8 celt counting kit.Moreover,the in vivo antitumor effect of the peptide was determined in tumor xenograft models.Results: The IC50 of MG2B for cancer cells(10-15 μmol/L)was at least 10 times lower than the IC50 of unconjugated MG2(125μmol/L).Moreover,the binding affinity of MG2B for cancer cells was higher than that of unconjugated MG2.In contrast,conjugation to a bombesin analog lacking the receptor-binding domain failed to increase the cytotoxicity of MG2,suggesting that bombesin conjugation enhances the cytotoxicity of MG2 in cancer cells through improved binding.Indeed,MG2B selectively induced cell death in cancer cells in vitro with the IC50 ranging from 10 to 15 μmol/L,which was about 6-10 times lower than the IC50 for normal cells.MG2B(20mg/kg per day,intratumorally injected for 5 d)also exhibited antitumor effects in mice bearing MCF-7 tumor grafts.The mean weights of tumor grafts in MG2B-and PBS-treated mice were 0.21±0.05 g and 0.59±0.12 g,respectively.Conclusion: The results suggest that conjugation of AMPs to bombesin might be an alternative approach for targeted cancer therapy.

  17. Sex steroids do not affect shigatoxin cytotoxicity on human renal tubular or glomerular cells

    OpenAIRE

    Kohan Donald E; Schmid Douglas I; Hughes Alisa K

    2002-01-01

    Abstract Background The greater susceptibility of children to renal injury in post-diarrheal hemolytic-uremic syndrome (HUS) may be related, at least in part, to heightened renal cell sensitivity to the cytotoxic effect of Shiga toxin (Stx), the putative mediator of kidney damage in HUS. We hypothesized that sexual maturation, which coincides with a falling incidence of HUS, may induce a relatively Stx-resistant state in the renal cells. Methods Cultured human glomerular endothelial (HGEN), h...

  18. Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells

    OpenAIRE

    Sangiliyandi Gurunathan; Jae Woong Han; Vasuki Eppakayala; Muniyandi Jeyaraj; Jin-Hoi Kim

    2013-01-01

    Silver nanoparticles (AgNPs) have been used as an antimicrobial and disinfectant agents. However, there is limited information about antitumor potential. Therefore, this study focused on determining cytotoxic effects of AgNPs on MDA-MB-231 breast cancer cells and its mechanism of cell death. Herein, we developed a green method for synthesis of AgNPs using culture supernatant of Bacillus funiculus, and synthesized AgNPs were characterized by various analytical techniques such as UV-visible spe...

  19. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity.

    Science.gov (United States)

    Wingett, Denise; Louka, Panagiota; Anders, Catherine B; Zhang, Jianhui; Punnoose, Alex

    2016-01-01

    ZnO nanoparticles (NPs) have previously been shown to exhibit selective cytotoxicity against certain types of cancerous cells suggesting their potential use in biomedical applications. In this study, we investigate the effect of surface modification of ZnO NPs on their cytotoxicity to both cancerous and primary T cells. Our results show that polyacrylic acid capping produces negatively charged ZnO NPs that are significantly more toxic compared to uncapped positively charged NPs of identical size and composition. In contrast, the greatest selectivity against cancerous cells relative to normal cells is observed with cationic NPs. In addition, differences in NP cytotoxicity inversely correlate with NP hydrodynamic size, propensity for aggregation, and dissolution profiles. The generation of reactive oxygen species (ROS) was also observed in the toxicity mechanism with anionic NPs generating higher levels of mitochondrial superoxide without appreciably affecting glutathione levels. Additional experiments evaluated the combined effects of charged ZnO NPs and nontoxic cationic or anionic CeO2 NPs. Results show that the CeO2 NPs offer protective effects against cytotoxicity from anionic ZnO NPs via antioxidant properties. Altogether, study data indicate that surface modification of NPs and resulting changes in their surface charge affect the level of intracellular ROS production, which can be ameliorated by the CeO2 ROS scavenger, suggesting that ROS generation is a dominant mechanism of ZnO NP cytotoxicity. These findings demonstrate the importance of surface electrostatic properties for controlling NP toxicity and illustrate an approach for engineering NPs with desired properties for potential use in biological applications. PMID:27486313

  20. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A2-induced degranulation in mast cells

    International Nuclear Information System (INIS)

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (GM1), di-sialoganglioside (GD1a) and tri-sialoganglioside (GT1b). In contrast, honeybee venom-derived phospholipase A2 induced the net degranulation directly without cytotoxicity, which was not inhibited by GM1, GD1a and GT1b. For analysis of distribution of Gαq and Gαi protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gαq and Gαi at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A2-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A2-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting.

  1. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity

    Science.gov (United States)

    Wingett, Denise; Louka, Panagiota; Anders, Catherine B; Zhang, Jianhui; Punnoose, Alex

    2016-01-01

    ZnO nanoparticles (NPs) have previously been shown to exhibit selective cytotoxicity against certain types of cancerous cells suggesting their potential use in biomedical applications. In this study, we investigate the effect of surface modification of ZnO NPs on their cytotoxicity to both cancerous and primary T cells. Our results show that polyacrylic acid capping produces negatively charged ZnO NPs that are significantly more toxic compared to uncapped positively charged NPs of identical size and composition. In contrast, the greatest selectivity against cancerous cells relative to normal cells is observed with cationic NPs. In addition, differences in NP cytotoxicity inversely correlate with NP hydrodynamic size, propensity for aggregation, and dissolution profiles. The generation of reactive oxygen species (ROS) was also observed in the toxicity mechanism with anionic NPs generating higher levels of mitochondrial superoxide without appreciably affecting glutathione levels. Additional experiments evaluated the combined effects of charged ZnO NPs and nontoxic cationic or anionic CeO2 NPs. Results show that the CeO2 NPs offer protective effects against cytotoxicity from anionic ZnO NPs via antioxidant properties. Altogether, study data indicate that surface modification of NPs and resulting changes in their surface charge affect the level of intracellular ROS production, which can be ameliorated by the CeO2 ROS scavenger, suggesting that ROS generation is a dominant mechanism of ZnO NP cytotoxicity. These findings demonstrate the importance of surface electrostatic properties for controlling NP toxicity and illustrate an approach for engineering NPs with desired properties for potential use in biological applications. PMID:27486313

  2. Cytotoxicity of α-terpineol in HeLa cell line and its effects to apoptosis and cell cycle

    Directory of Open Access Journals (Sweden)

    Rasuane Noor Indwiani Astuti Mustofa

    2014-08-01

    Full Text Available α-Terpineol is a natural compound of terpenoid alcohols class. However, it can be synthesizedfrom α-pinene of turpentin content. α-Terpineol has been reported as potential anticancer agentdue to its activity on inhibition of cells growth and induction of tumor cell death. However, itsanticancer activity in HeLa cervical cancer cells line has never been studied, yet. The aim of thisstudy was to evaluate the cytotoxicity of α-terpineol and its effects to apoptosis and cell cycle.This was a quasi-experimental study with post-test only with non-equivalent control groupdesign. Cytotoxicity of á-terpineol was evaluated using MTT cell viability assay. The effect of α-terpineol on cell apoptotis was tested using acridine orange-ethidium bromide staining method,whereas its effect on cell cycle was evaluated by flowcytometry method. The results showedthat α-terpineol had cytotoxicity against HeLa cell with an IC50 value about 12.46 μg/mL.Furthermore, α-terpineol induced the HeLa with an IC50 value about 13.12 μg/mL. Cell accumulationat G1 phase during cell cycle after incubation with α-terpineol (52.78was observed. In conclusion,α-terpineol is potential as an anticancer due to its ability to induce cell apoptosis and to inhibitthe cell cycle at G1 phase.

  3. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Paula; M.Kustiawan; Songchan; Puthong; Enos; T.Arung; Chanpen; Chanchao

    2014-01-01

    Objective:To screen crude extracts of propolis,bee pollen and honey from four stingless bee species[Trigona incisa(T.incisa)],Timia apicalis,Trigona fuso-baltata and Trigona filscibasis)native to East Kalimantan.Indonesia for cytotoxic activity against five human cancer cell lines(HepG2,SW620,ChaGo-1,KATO-Ⅲand BT474).Methods:All samples were extracted with methanol,and then subpartitioned with n-hexane and ethyl acetate.Each crude extract was screened at 20μg/mL for in vitro cytotoxicity against the cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Tn addition,four previously shown bioactive components from propolis(apigenin,cafieic acid phenyl ester,kaempferol and naringenin)and two chemotherapeutic drugs(doxorubicin and 5-fluorouracil)were used to evaluate the sensitivity of the cell lines.Results:Overall,crude extracts from propolis and honey had higher cytotoxic activities than bee pollen,but the activity was dependent upon the extraction solvent,bee species and cell line.Propolis extracts from T.incisa and Tarda apicalis showed the highest and lowest cytotoxic activity,respectively.Only the HepG2 cell line was broadly sensitive to the honey extracts.For pure compounds,doxorubicin was the most cytotoxic,the four propolis compounds the least,but the ChaGo-I cell line was sensitive to kaempferol at 10μg/mL and KATO-Ⅲwas sensitive to kaempferol and apigenin at 10μg/mL,.All pure compounds were effective against the BT474 cell line.Conclusions:Propolis from f,incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines.Further study is required,including the isolation and characterization of the active antiproliferative agent(s).

  4. Manool, a Salvia officinalis diterpene, induces selective cytotoxicity in cancer cells.

    Science.gov (United States)

    de Oliveira, Pollyanna Francielli; Munari, Carla Carolina; Nicolella, Heloiza Diniz; Veneziani, Rodrigo Cassio Sola; Tavares, Denise Crispim

    2016-10-01

    Manool, a diterpene isolated from Salvia officinalis, was evaluated by the XTT colorimetric assay for cytotoxicity and selectivity against different cancer cell lines: B16F10 (murine melanoma), MCF-7 (human breast adenocarcinoma), HeLa (human cervical adenocarcinoma), HepG2 (human hepatocellular carcinoma), and MO59J, U343 and U251 (human glioblastoma). A normal cell line (V79, Chinese hamster lung fibroblasts) was used to compare the selectivity of the test substance. Manool exhibited higher cytotoxic activity against HeLa (IC50 = 6.7 ± 1.1 µg/mL) and U343 (IC50 = 6.7 ± 1.2 µg/mL) cells. In addition, in the used experimental protocols, the treatment with manool was significantly more cytotoxic for different tumor cell lines than for the normal cell line V79 (IC50 = 49.3 ± 3.3 µg/mL), and showed high selectivity. These results suggest that manool may be used to treat cancer without affecting normal cells.

  5. Cytotoxic Effects of Re-Activated Lunar Dust Stimulant on Human Lung Cells

    Science.gov (United States)

    Upadhyaya, Krishna

    2009-01-01

    Lunar dust has been of significant concern due to various problems observed on the Apollo missions. Reports from astronauts have shown that the dust may have caused eye and nasal irritation as well as possible hay fever like symptoms. As NASA hopes to go to the Moon within the next few years, we hope to understand the possible toxic effects the dust might have. In these studies, we are looking at the effect of "re-activated" lunar dust stimulant on human bronchial cells. A simple grinding analog as a method of simulating micrometeorite crushing on the moon is used to "activate" the dust stimulant, i.e. capable of producing hydroxyl radicals. These radicals could then interact with human cells and may lead to a loss in membrane integrity and cell death. (Castranova, 1994) Cells are exposed to the dust for 6 and 24 hour intervals to assess cytotoxicity. Cytotoxicity is measured by looking at the production of inflammatory cytokines. Cells are exposed to ground and unground stimulant and compared to cytokine production from cells exposed to quartz which have a known toxicity. Here we look at the cytotoxicity of the lunar dust stimulant relative to quartz by measuring the production of inflammatory cytokines.

  6. Armed and accurate: engineering cytotoxic T cells for eradication of leukemia

    Directory of Open Access Journals (Sweden)

    Radic Marko

    2012-02-01

    Full Text Available Abstract Translational medicine depends on a rapid and efficient exchange of results between the bench and the bedside. A recent example from the field of cancer immunotherapy highlights the essential nature of this exchange. Methods have been developed to convert a patient's cytotoxic T cells into efficient and specific killers of cancer cells in patients with leukemia. By using recombinant DNA techniques, a lentiviral vector was constructed to express chimeric antigen receptors in cytotoxic T cells from patients with advanced chronic lymphocytic leukemia. The purpose of the chimeric receptors was to direct the cytotoxic T cell activity against cells causing the cancer. The effect of infusing the engineered T cells back into the cancer patients was tested in a Phase I trial at the University of Pennsylvania, and the initial results were described in two articles from the research team of Dr. Carl June. The remarkable success of this trial should energize further applications of biotechnology in the development of new cancer immunotherapies.

  7. Cytotoxic Effects of Alcoholic Extract of Dorema Glabrum Seed on Cancerous Cells Viability

    Directory of Open Access Journals (Sweden)

    Maryam Bannazadeh Amirkhiz

    2013-08-01

    Full Text Available Purpose: In the present study cytotoxic effects of the alcoholic extract of Dorema Glabrum seed on viability of WEHI-164 cells, mouse Fibrosarcoma cell line and L929 normal cells were compared with the cytotoxic effects of Taxol (anticancer and apoptosis inducer drug. Methods: To find out the plant extract cytotoxic effects, MTT test and DNA fragmentation assay, the biochemical hallmark of apoptosis were performed on cultured and treated cells. Results: According to the findings the alcoholic extract of Dorema Glabrum seed can alter cells morphology and because of chromatin condensation and other changes they shrink and take a spherical shape, and lose their attachment too. So the plant extract inhibits cell growth albeit in a time and dose dependent manner and results in degradation of chromosomal DNA. Conclusion: Our data well established the anti-proliferative effect of methanolic extract of Dorema Glabrum seed and clearly showed that the plant extract can induce apoptosis and not necrosis in vitro, but the mechanism of its activities remained unknown. These results demonstrated that Dorema Glabrum seed might be a novel and attractive therapeutic candidate for tumor treatment in clinical practices.

  8. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Yu Hua Wong; Wai Yan Tan; Chin Ping Tan; Kamariah Long; Kar Lin Nyam

    2014-01-01

    Objective: To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines.Methods:kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope.Results:The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected.Conclusions:KSE and KSO could be potential sources of natural anti-cancer agents. Further The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the investigations on using kenaf seeds for anti-proliferative properties are warranted.

  9. Sex steroids do not affect shigatoxin cytotoxicity on human renal tubular or glomerular cells

    Directory of Open Access Journals (Sweden)

    Kohan Donald E

    2002-08-01

    Full Text Available Abstract Background The greater susceptibility of children to renal injury in post-diarrheal hemolytic-uremic syndrome (HUS may be related, at least in part, to heightened renal cell sensitivity to the cytotoxic effect of Shiga toxin (Stx, the putative mediator of kidney damage in HUS. We hypothesized that sexual maturation, which coincides with a falling incidence of HUS, may induce a relatively Stx-resistant state in the renal cells. Methods Cultured human glomerular endothelial (HGEN, human glomerular visceral epithelial (HGEC and human proximal tubule (HPT cells were exposed to Stx-1 after pre-incubation with progesterone, β-estradiol or testosterone followed by determination of cytotoxicity. Results Under basal conditions, Stx-1 potently and dose-dependently killed HPT and HGEC, but had relatively little effect on HGEN. Pre-incubation for 1, 2 or 7 days with physiologic or pharmacologic concentrations of progesterone, β-estradiol or testosterone had no effect on Stx-1 cytotoxicity dose-response on any cell type. In addition, no steroid altered Gb3 expression (Stx receptor by any cell type at any time point. Conclusion These data do not support the notion that hormonal changes associated with puberty induce an Stx-resistant state within kidney cells.

  10. IN VITRO CYTOTOXICITY OF MADHUCA INDICA AGAINST DIFFERENT HUMAN CANCER CELL LINES

    Directory of Open Access Journals (Sweden)

    Satish K. Verma et al.

    2012-05-01

    Full Text Available Cancer is a public health problem all over the world. Large number of plants and their isolated constituents has been shown to potential anticancer activity. Ethanolic whole plant extract of Madhuca indica showed in vitro cytotoxicity against different human cancer cell lines such as lung, neuroblastima, and colon. There was no growth of inhibition recorded against liver cancer cell line. Sulforhodamine B dye (SRB assay was done for in vitro cytotoxicity test assay. The in vitro cytotoxicity was performed against five human cancer cell lines namely of lung (A-549, liver (Hep-2 colon (502713 HT-29 and neuroblastima (IMR-32. The activity was done using 100µg/ml of the extract. Against lung (A-549 cell line plant extract showed 83% growth of inhibition. In case of liver (Hep-2 showed no activity reported, where as in case of colon 502713 cell line plant extract showed maximum activity. In case of HT-29 liver human cancer line and IMR-32 neuroblastima cell line plant extract showed 99% and 98% activity respectively.

  11. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica Papaya Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Thao T. Nguyen

    2015-12-01

    Full Text Available In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.

  12. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica papaya Leaf Extracts.

    Science.gov (United States)

    Nguyen, Thao T; Parat, Marie-Odile; Hodson, Mark P; Pan, Jenny; Shaw, Paul N; Hewavitharana, Amitha K

    2015-12-24

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.

  13. Combined cytotoxic effects of tumor necrosis factor-alpha with various cytotoxic agents in tumor cell lines that are drug resistant due to mutated p53

    NARCIS (Netherlands)

    Sleijfer, S; Le, TKP; de Jong, S; Timmer-Bosscha, H; Withoff, S; Mulder, NH

    1999-01-01

    Several studies suggest that tumor necrosis factor-alpha (TNF) is able to overcome drug resistance in tumors. Whether TNF is able to do so in tumor cell lines that are drug resistant due to a mutation in the tumor suppressor gene p53 is unclear. Therefore, we studied the in vitro cytotoxic effects o

  14. Concanavalin A-mediated in vitro activation of a secondary cytotoxic T-cell response in virus-primed splenocytes

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Jensen, B L

    1980-01-01

    In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt to chara......In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt...... to characterize further these effector cells and, in particular, to establish whether the Con A-activated cytotoxic effectors are qualitatively different from the secondary cytotoxic T cells induced by restimulation with the homologous antigen. It was found that: (1) in vitro activation with Con A could...... be obtained with populations harvested between 13 days (the earliest tested) and at least 300 days after priming; (2) cytotoxicity was independent of the presence of carried-over Con A in the cytotoxicity assay; (3) cytotoxicity was dependent on close association between activated T cells and target cells...

  15. Cytotoxicity of (-)-vitisin B in human leukemia cells.

    Science.gov (United States)

    Wu, Shing-Sheng; Chen, Lih-Geeng; Lin, Ren-Jye; Lin, Shyr-Yi; Lo, Yueh-E; Liang, Yu-Chih

    2013-07-01

    Vitis thunbergii var. taiwaniana (VTT) is an indigenous Taiwanese wild grape and is used as a folk medicine in Taiwan. VTT is rich in polyphenols, especially quercetin and resveratrol derivatives, which were demonstrated to exhibit inhibitory activities against carcinogenesis and prevent some neurodegenerative diseases. (-)-Vitisin B is one of the resveratrol tetramers extracted from VTT. In this study, we investigated the mechanisms of (-)-vitisin B on the induction of apoptosis in human HL-60 promyelocytic leukemia cells. First, (-)-vitisin B significantly inhibited cell proliferation through inducing cell apoptosis. This effect appeared to occur in a time- and dose-dependent manner. Cell-cycle distribution was also examined, and we found that (-)-vitisin B significantly induced a sub-G1 population in a dose-dependent manner. In addition, (-)-vitisin B exhibited stronger inhibitory effects on cell proliferation than resveratrol. Second, (-)-vitisin B dose dependently induced apoptosis-related protein expressions, such as the cleavage form of caspase-3, caspase-8, caspase-9, poly(ADP ribose) polymerase, and the proapoptotic Bax protein. Third, (-)-vitisin B treatment also resulted in increases in c-Jun N-terminal kinase (JNK) phosphorylation and Fas ligand (FasL) expression. Moreover, the (-)-vitisin B-induced FasL expression and caspase-3 activation could be reversed by a JNK inhibitor. These results suggest that (-)-vitisin B-induced apoptosis of leukemia cells might be mediated through activation of JNK and Fas death-signal transduction.

  16. Ethanolic Extract Cytotoxic Effect of Zingiber Afficinale in Breast Cancer (MCF7 Cell Line

    Directory of Open Access Journals (Sweden)

    J Tavakkol Afshari

    2010-07-01

    Full Text Available Introduction & Objective: Biological activities of Zingiber afficieale plants have been reported as possessing anticancer, antibacterial, anti ulcer, antifungal, and insecticidal properties. However, its antitumor effects haven't been studied in cancer cell lines. The aim of this study was to investigate the antitumor effect of zingiber afficieale on breast cancer cell lines. Materials & Methods: This experimental study was conducted in 2010 at Mashhad University of medical Sciences. Breast cancer cell line (MCF7 and normal connective tissue cell line (L929 were cultured in DMEM medium. Ethanolic extract of Zingiber afficinale was prepared and cell lines were treated with different concentration of extract (5000 to 78 µg. Cell viability was measured by MTT assay after 24, 48, and 72 hours. The collected data were statistically analyzed by SPSS software. Results: The effects of Zingiber afficinale on cell viability were observed after 48 hours on cell lines. Ginger doses in 2500 µg concentration inhibited 50% of cell growth (IC50 in cell lines after 48 hours. Conclusion: Our study revealed that fresh ginger extract has cytotoxic effects on tumor cells, but it doesn’t have any cytotoxic effect on normal cells. It seems that ginger could be considered as a promising chemotherapeutic agent in cancer treatment.

  17. Cytotoxicity of Marchantia convoluta leaf extracts to human liver and lung cancer cells

    Directory of Open Access Journals (Sweden)

    Xiao J.B.

    2006-01-01

    Full Text Available The cytotoxicity of three extracts (petroleum ether, ethyl acetate and n-butanol from a plant used in folk medicine, Marchantia convoluta, to human non-small cell lung carcinoma (H1299 and liver carcinoma (HepG2 cell lines was tested. After 72-h incubation of lung and liver cancer cell cultures with varying concentrations of extracts (15 to 200 µg/mL, cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and reported in terms of cell viability. The extracts that showed a significant cytotoxicity were subjected to gas chromatography-mass spectrometry analysis to identify the components. The ethyl acetate, but not the petroleum ether or n-butanol extract, had a significant cytotoxicity against lung and liver carcinoma cells with IC50 values of 100 and 30 µg/mL, respectively. A high concentration of ethyl acetate extract (100 µg/mL rapidly reduced the number of H1299 cells. At lower concentrations of ethyl acetate extract (15, 30, and 40 µg/mL, the numbers of HepG2 cells started to decrease markedly. Gas chromatography-mass spectrometry analysis of the ethyl acetate extract revealed the presence of several compounds such as phytol (23.42%, 1,2,4-tripropylbenzene (13.09%, 9-cedranone (12.75%, ledene oxide (7.22%, caryophyllene (1.82%, and caryophyllene oxide (1.15%. HPLC analysis result showed that there were no flavonoids in ethyl acetate extract, but flavonoids are abundant in n-butanol extract. Further studies are needed regarding the identification, toxicity, and mechanism of action of active compounds.

  18. GENETICALLY MODIFIED DENDRITIC CELLS INDUCED SPECIFIC CYTOTOXITY AGAINST HUMAN HCC CELLS IN VITRO

    Institute of Scientific and Technical Information of China (English)

    刘彬彬; 叶胜龙; 贺平; 郑宁; 赵燕; 孙瑞霞; 刘银坤; 汤钊猷

    2004-01-01

    Objective: to transduce the tumor associated antigen gene MAGE-1 and/or IL-12 gene into dendritic cells (DC) and to observe the in vitro cytotoxic effect induced by the genetically modified DC against the human hepatocellular carcinoma (HCC) cell line SMMC7721. Methods: the MAGE-1 gene was inserted into the retrovirus vector LXSN to construct the recombinant retrovirus LMSN. The monocyte-derived DCs were transfected at appropriate differentiation stage by LMSN and/or a recombinant adenovirus AdmiL-12, which containing murine IL-12 gene. The control groups included retrovirus LXSN transfected, adenovirus AdBGFP transfected and non-transfected DCs. The MAGE-1 gene expression was identified by western blot and the mIL-12 p70 secretion was detected by ELISA assay. The in vitro cytotoxicities against SMMC7721 induced by genetically modified and control groups of DC were tested by MTT assay. Results: The MAGE-1 expression was detected by a monoclonal antibody in DCs tranfected with LMSN but not in control groups. At 16 h, 24 h and 48 h after transfection with AdmIL-12, the concentration of the mIL-12 p70 in the culture medium was 580pg/106 cells, 960pg/106 cells and 1100pg/106 cells respectively. The mIL-12 p70 secretions were not detected in other groups. The lytic activity (as judged by % lysis) induced by each groups of DC was 94.2(5.2% (LMSN and AdmIL-12 cotransfected group), 78.9(3.6% (LMSN transfected groups), 52.6(9.7% (AdmIL-12 transfected group), 34.7(4.3% (LXSN transfected group), 36.3(3.8% (AdBGFP transfected group) and 3.9(2.0% (non-transfected group) respectively. Except for LXSN transfected and AdBGFP transfected group, the difference of the lytic activities between other groups were statistically significant (P<0.05). Conclusion: The MAGE-1 gene modified DCs can induce relatively specific cytotoxicty against SMMC7721 in vitro and thus suggested that those genetically engineered DCs have the potential to serve as novel vaccine for HCC. Transduction of

  19. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Siti Sarah Omar Zaki

    2015-01-01

    Full Text Available Chitosan nanoparticles (CSNPs have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs. CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential. Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW. Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  20. Cytotoxic Activities against Breast Cancer Cells of Local Justicia gendarussa Crude Extracts

    Directory of Open Access Journals (Sweden)

    Zahidah Ayob

    2014-01-01

    Full Text Available Justicia gendarussa methanolic leaf extracts from five different locations in the Southern region of Peninsular Malaysia and two flavonoids, kaempferol and naringenin, were tested for cytotoxic activity. Kaempferol and naringenin were two flavonoids detected in leaf extracts using gas chromatography-flame ionization detection (GC-FID. The results indicated that highest concentrations of kaempferol and naringenin were detected in leaves extracted from Mersing with 1591.80 mg/kg and 444.35 mg/kg, respectively. Positive correlations were observed between kaempferol and naringenin concentrations in all leaf extracts analysed with the Pearson method. The effects of kaempferol and naringenin from leaf extracts were examined on breast cancer cell lines (MDA-MB-231 and MDA-MB-468 using MTT assay. Leaf extract from Mersing showed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 40 μg/mL, respectively, compared to other leaf extracts. Kaempferol possessed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 34 μg/mL, respectively. These findings suggest that the presence of kaempferol in Mersing leaf extract contributed to high cytotoxicity of both MDA-MB-231 and MDA-MB-468 cancer cell lines.

  1. Cytotoxic Activities against Breast Cancer Cells of Local Justicia gendarussa Crude Extracts.

    Science.gov (United States)

    Ayob, Zahidah; Mohd Bohari, Siti Pauliena; Abd Samad, Azman; Jamil, Shajarahtunnur

    2014-01-01

    Justicia gendarussa methanolic leaf extracts from five different locations in the Southern region of Peninsular Malaysia and two flavonoids, kaempferol and naringenin, were tested for cytotoxic activity. Kaempferol and naringenin were two flavonoids detected in leaf extracts using gas chromatography-flame ionization detection (GC-FID). The results indicated that highest concentrations of kaempferol and naringenin were detected in leaves extracted from Mersing with 1591.80 mg/kg and 444.35 mg/kg, respectively. Positive correlations were observed between kaempferol and naringenin concentrations in all leaf extracts analysed with the Pearson method. The effects of kaempferol and naringenin from leaf extracts were examined on breast cancer cell lines (MDA-MB-231 and MDA-MB-468) using MTT assay. Leaf extract from Mersing showed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 40 μg/mL, respectively, compared to other leaf extracts. Kaempferol possessed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 34 μg/mL, respectively. These findings suggest that the presence of kaempferol in Mersing leaf extract contributed to high cytotoxicity of both MDA-MB-231 and MDA-MB-468 cancer cell lines. PMID:25574182

  2. The Role of Dextran Coatings on the Cytotoxicity Properties of Ceria Nanoparticles Toward Bone Cancer Cells

    Science.gov (United States)

    Yazici, Hilal; Alpaslan, Ece; Webster, Thomas J.

    2015-04-01

    Cerium oxide nanoparticles have demonstrated great potential as antioxidant and radioprotective agents for nanomedicine applications especially for cancer therapy. The surface chemistry of nanoparticles is an important property that has a significant effect on their performance in biological applications including cancer diagnosis, cancer treatment, and bacterial infection. Recently, various nanosized cerium oxide particles with different types of polymer coatings have been developed to improve aqueous solubility and allow for surface functionalization for distinct applications. In this study, the role of ceria nanoparticles coated with dextran on the cytotoxicity properties of bone cancer cells was shown. Specifically, 0.1 M and 0.01 M dextran-coated, bone cancer cells was observed for the 0.01 M dextran coating after 3 days compared with the 0.1 M dextran coating. These results indicated that surface dextran functionalization had a positive impact on the cytotoxicity of cerium oxide nanoparticles against osteosarcoma cells.

  3. Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomitaka, Asahi [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Yokohama, Kanagawa 240-8501 (Japan)], E-mail: d07gd158@ynu.ac.jp; Hirukawa, Atsuo; Yamada, Tsutomu [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Yokohama, Kanagawa 240-8501 (Japan); Morishita, Shin [Department of Mechanical Engineering and Materials Science, Yokohama National University, Tokiwadai 79-5, Yokohama, Kanagawa 240-8501 (Japan); Takemura, Yasushi [Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Yokohama, Kanagawa 240-8501 (Japan)

    2009-05-15

    Magnetic nanoparticles for thermotherapy must be biocompatible and possess high thermal efficiency as heating elements. The biocompatibility of Fe{sub 3}O{sub 4} (20-30 nm), ZnFe{sub 2}O{sub 4} (15-30 nm) and NiFe{sub 2}O{sub 4} (20-30 nm) nanoparticles was studied using a cytotoxicity colony formation assay and a cell viability assay. The Fe{sub 3}O{sub 4} sample was found to be biocompatible on HeLa cells. While ZnFe{sub 2}O{sub 4} and NiFe{sub 2}O{sub 4} were non-toxic at low concentrations, HeLa cells exhibited cytotoxic effects when exposed to concentrations of 100 {mu}g/ml nanoparticles.

  4. Relationship of CD86 surface marker expression and cytotoxicity on dendritic cells exposed to chemical allergen

    International Nuclear Information System (INIS)

    Human peripheral blood-derived dendritic cells (DC) respond to a variety of chemical allergens by up-regulating expression of the co-stimulatory molecule CD86. It has been postulated that this measure might provide the basis for an in vitro alternative approach for the identification of skin sensitizing chemicals. We recently reported that DC, exposed in culture to the highest non-cytotoxic concentrations of various chemical allergens, displayed marginal up-regulation of membrane CD86 expression; the interpretation being that such changes were insufficiently sensitive for the purposes of hazard identification. For the work presented here, immature DC were derived from human monocytes and treated with the chemical allergens 2,4-dinitrobenzenesulfonic acid (DNBS), nickel sulfate (NiSO4), p-phenylenediamine (PPD), Bandrowski's base (BB), hydroquinone (HQ) and propyl gallate (PG) for 48 h at concentrations which induced both no to slight to moderate cytotoxicity. For comparison, DC were treated with the irritants sodium dodecyl sulfate (SDS), benzoic acid (BA), and benzalkonium chloride (BZC) at concentrations resulting in comparable levels of cytotoxicity. CD86 expression, as measured by flow cytometry, was consistently up-regulated (ranging from 162 to 386% control) on DC treated with concentrations of chemical allergens that induced approximately 10-15% cytotoxicity. The irritants BA and BZC did not induce up-regulation of CD86 expression when tested at concentrations that induced similar levels of cytotoxicity. SDS, however, up-regulated CD86 expression to 125-138% of control in 2/4 preparations when tested at concentrations which induced similar toxicity. Our results confirm that chemical allergens up-regulate CD86 expression on blood-derived DC and illustrate further that up-regulation of CD86 surface marker expression is more robust when DC are treated with concentrations of chemical allergen that induce slight to moderate cytotoxicity

  5. Reduced cadmium-induced cytotoxicity in cultured liver cells following 5-azacytidine pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, M.P.; Wilson, M.J.; Poirier, L.A.

    1985-11-01

    Recent work indicated that administration of the pyrimidine analog 5-azacytidine (AZA), either to cells in culture or to rats, results in an enhancement of expression of the metallothionein (MT) gene. Since MT is thought to play a central role in the detoxification of cadmium, the present study was designed to assess the effect of AZA pretreatment on cadmium cytotoxicity. Cultured rat liver cells in log phase of growth were first exposed to AZA (8 microM). Forty-eight hours later, cadmium was added. A modest increase in MT amounts over control was detected after AZA treatment alone. Cadmium alone resulted in a 10-fold increase in MT concentrations. The combination of AZA pretreatment followed by cadmium exposure caused a 23-fold increase in MT concentrations over control. Treatment with the DNA synthesis inhibitor hydroxyurea (HU) eliminated the enhancing effect of AZA pretreatment on cadmium induction of MT, indicating that cell division is required. AZA-pretreated cells were also harvested and incubated in suspension with cadmium for 0 to 90 min. AZA-pretreated cells showed marked reductions in cadmium-induced cytotoxicity as reflected by reduced intracellular potassium loss, glutamic-oxaloacetic transaminase loss, and lipid peroxidation following cadmium exposure. Results suggest that AZA pretreatment induces tolerance to cadmium cytotoxicity which appears to be due to an increased capacity to synthesize MT rather than high quantities of preexisting MT at the time of cadmium exposure.

  6. Reduced cadmium-induced cytotoxicity in cultured liver cells following 5-azacytidine pretreatment

    International Nuclear Information System (INIS)

    Recent work indicated that administration of the pyrimidine analog 5-azacytidine (AZA), either to cells in culture or to rats, results in an enhancement of expression of the metallothionein (MT) gene. Since MT is thought to play a central role in the detoxification of cadmium, the present study was designed to assess the effect of AZA pretreatment on cadmium cytotoxicity. Cultured rat liver cells in log phase of growth were first exposed to AZA (8 microM). Forty-eight hours later, cadmium was added. A modest increase in MT amounts over control was detected after AZA treatment alone. Cadmium alone resulted in a 10-fold increase in MT concentrations. The combination of AZA pretreatment followed by cadmium exposure caused a 23-fold increase in MT concentrations over control. Treatment with the DNA synthesis inhibitor hydroxyurea (HU) eliminated the enhancing effect of AZA pretreatment on cadmium induction of MT, indicating that cell division is required. AZA-pretreated cells were also harvested and incubated in suspension with cadmium for 0 to 90 min. AZA-pretreated cells showed marked reductions in cadmium-induced cytotoxicity as reflected by reduced intracellular potassium loss, glutamic-oxaloacetic transaminase loss, and lipid peroxidation following cadmium exposure. Results suggest that AZA pretreatment induces tolerance to cadmium cytotoxicity which appears to be due to an increased capacity to synthesize MT rather than high quantities of preexisting MT at the time of cadmium exposure

  7. Cytotoxicity and Apoptotic Effects of Polyphenols from Sugar Beet Molasses on Colon Carcinoma Cells in Vitro.

    Science.gov (United States)

    Chen, Mingshun; Zhao, Zhengang; Yu, Shujuan

    2016-01-01

    Three polyphenols were isolated and purified from sugar beet molasses by ultrasonic-aid extraction and various chromatographic techniques, and their structures were elucidated by spectral analysis. Cytotoxicity and the molecular mechanism were measured by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry, caspase-3 activity assay and Western blot assay. The results showed that gallic acid, cyanidin-3-O-glucoside chloride and epicatechin have cytotoxicity to the human colon, hepatocellular and breast cancer cells. Cyanidin-3-O-glucoside chloride showed its cytotoxicity against various tumor cell lines, particularly against colon cancer Caco-2 cells with half maximal inhibitory concentration (IC50) value of 23.21 ± 0.14 μg/mL in vitro. Cyanidin-3-O-glucoside chloride may be a potential candidate for the treatment of colon cancer. In the mechanism study, cyanidin-3-O-glucoside chloride increased the ratio of cell cycle at G₀/G₁ phase and reduced cyclin D1 expression on Caco-2 cells. Cyanidin-3-O-glucoside chloride decreased mutant p21 expression, and increased the ratio of Bax/Bcl-2 and the activation of caspase-3 to induce apoptosis. PMID:27347927

  8. Cytotoxic and toxicological effects of phthalimide derivatives on tumor and normal murine cells

    Directory of Open Access Journals (Sweden)

    PAULO MICHEL PINHEIRO FERREIRA

    2015-03-01

    Full Text Available Eleven phthalimide derivatives were evaluated with regards to their antiproliferative activity on tumor and normal cells and possible toxic effects. Cytotoxic analyses were performed against murine tumors (Sarcoma 180 and B-16/F-10 cells and peripheral blood mononuclear cells (PBMC using MTT and Alamar Blue assays. Following, the investigation of cytotoxicity was executed by flow cytometry analysis and antitumoral and toxicological potential by in vivo techniques. The molecules 3b, 3c, 4 and 5 revealed in vitro cytotoxicity against Sarcoma 180, B-16/F-10 and PBMC. Since compound 4 was the most effective derivative, it was chosen to detail the mechanism of action after 24, 48 and 72 h exposure (22.5 and 45 µM. Sarcoma 180 cells treated with compound 4 showed membrane disruption, DNA fragmentation and mitochondrial depolarization in a time- and dose-dependent way. Compounds 3c, 4 and 5 (50 mg/kg/day did not inhibit in vivotumor growth. Compound 4-treated animals exhibited an increase in total leukocytes, lymphocytes and spleen relative weight, a decreasing in neutrophils and hyperplasia of spleen white pulp. Treated animals presented reversible histological changes. Molecule 4 had in vitro antiproliferative action possibly triggered by apoptosis, reversible toxic effects on kidneys, spleen and livers and exhibited immunostimulant properties that can be explored to attack neoplasic cells.

  9. Deoxysphingolipids, novel biomarkers for type 2 diabetes, are cytotoxic for insulin-producing cells.

    Science.gov (United States)

    Zuellig, Richard A; Hornemann, Thorsten; Othman, Alaa; Hehl, Adrian B; Bode, Heiko; Güntert, Tanja; Ogunshola, Omolara O; Saponara, Enrica; Grabliauskaite, Kamile; Jang, Jae-Hwi; Ungethuem, Udo; Wei, Yu; von Eckardstein, Arnold; Graf, Rolf; Sonda, Sabrina

    2014-04-01

    Irreversible failure of pancreatic β-cells is the main culprit in the pathophysiology of diabetes, a disease that is now a global epidemic. Recently, elevated plasma levels of deoxysphingolipids, including 1-deoxysphinganine, have been identified as a novel biomarker for the disease. In this study, we analyzed whether deoxysphingolipids directly compromise the functionality of insulin-producing Ins-1 cells and primary islets. Treatment with 1-deoxysphinganine induced dose-dependent cytotoxicity with senescent, necrotic, and apoptotic characteristics and compromised glucose-stimulated insulin secretion. In addition, 1-deoxysphinganine altered cytoskeleton dynamics, resulting in intracellular accumulation of filamentous actin and activation of the Rho family GTPase Rac1. Moreover, 1-deoxysphinganine selectively upregulated ceramide synthase 5 expression and was converted to 1-deoxy-dihydroceramides without altering normal ceramide levels. Inhibition of intracellular 1-deoxysphinganine trafficking and ceramide synthesis improved the viability of the cells, indicating that the intracellular metabolites of 1-deoxysphinganine contribute to its cytotoxicity. Analyses of signaling pathways identified Jun N-terminal kinase and p38 mitogen-activated protein kinase as antagonistic effectors of cellular senescence. The results revealed that 1-deoxysphinganine is a cytotoxic lipid for insulin-producing cells, suggesting that the increased levels of this sphingolipid observed in diabetic patients may contribute to the reduced functionality of pancreatic β-cells. Thus, targeting deoxysphingolipid synthesis may complement the currently available therapies for diabetes. PMID:24379346

  10. Synthesis and Cytotoxic Evaluation of a Series of 2-Amino-Naphthoquinones against Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Thiago A. P. de Moraes

    2014-08-01

    Full Text Available The cytotoxicity of a series of aminonaphthoquinones resulting from the reaction of suitable aminoacids with 1,4-naphthoquinone was assayed against SF-295 (glioblastoma, MDAMB-435 (breast, HCT-8 (colon, HCT-116 (colon, HL-60 (leukemia, OVCAR-8 (ovarian, NCI-H358M (bronchoalveolar lung carcinoma and PC3-M (prostate cancer cells and also against PBMC (peripheral blood mononuclear cells. The results demonstrated that all the synthetic aminonaphthoquinones had relevant cytotoxic activity against all human cancer lines used in this experiment. Five of the compounds showed high cytotoxicity and selectivity against all cancer cell lines tested (IC50 = 0.49 to 3.89 µg·mL−1. The title compounds were less toxic to PBMC, since IC50 was 1.5 to eighteen times higher (IC50 = 5.51 to 17.61 µg·mL−1 than values shown by tumour cell lines. The mechanism of cell growth inhibition and structure–activity relationships remains as a target for future investigations.

  11. Cytotoxicity and Apoptotic Effects of Polyphenols from Sugar Beet Molasses on Colon Carcinoma Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Mingshun Chen

    2016-06-01

    Full Text Available Three polyphenols were isolated and purified from sugar beet molasses by ultrasonic-aid extraction and various chromatographic techniques, and their structures were elucidated by spectral analysis. Cytotoxicity and the molecular mechanism were measured by methyl thiazolyl tetrazolium (MTT assay, flow cytometry, caspase-3 activity assay and Western blot assay. The results showed that gallic acid, cyanidin-3-O-glucoside chloride and epicatechin have cytotoxicity to the human colon, hepatocellular and breast cancer cells. Cyanidin-3-O-glucoside chloride showed its cytotoxicity against various tumor cell lines, particularly against colon cancer Caco-2 cells with half maximal inhibitory concentration (IC50 value of 23.21 ± 0.14 μg/mL in vitro. Cyanidin-3-O-glucoside chloride may be a potential candidate for the treatment of colon cancer. In the mechanism study, cyanidin-3-O-glucoside chloride increased the ratio of cell cycle at G0/G1 phase and reduced cyclin D1 expression on Caco-2 cells. Cyanidin-3-O-glucoside chloride decreased mutant p21 expression, and increased the ratio of Bax/Bcl-2 and the activation of caspase-3 to induce apoptosis.

  12. Analysis of cytotoxic T cell epitopes in relation to cancer

    DEFF Research Database (Denmark)

    Stranzl, Thomas

    CTL methods, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively. Part III reports the results of an analysis investigating how the alternatively spliced cancer exome differs from the exome of normal tissue in terms of containing predicted MHC class I binding....... Part IV of the thesis deals with the analysis of 93 patient-donor pairs that underwent hematopoietic stem cell transplantation (HCT). HCT is a standard treatment for a variety of hematological diseases. Graft-versus-host disease is a possible complication after an HCT, where the recipient´s cells...

  13. The Aryl Hydrocarbon Receptor: Differential Contribution to T Helper 17 and T Cytotoxic 17 Cell Development

    OpenAIRE

    Mark D Hayes; Vitalijs Ovcinnikovs; Smith, Andrew G.; Ian Kimber; Dearman, Rebecca J.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) has been shown to be required for optimal Thelper (Th) 17 cell activation. Th17 cells provide immunity against extracellular pathogens and are implicated in autoimmune diseases. Herein, the role of the AhR in cytokine production by Th17, and by the analogous population of T cytotoxic (Tc)17 cells, has been examined. Lymph node Tc (CD8(+)) and Th (CD4(+)) cells were isolated by negative selection from naive AhR(+/-) and AhR(-/-) mice and polarised to Tc1/Th1...

  14. Cytotoxicity of Metal Ions Released from Nitinol Alloys on Endothelial Cells

    Science.gov (United States)

    Haider, W.; Munroe, N.; Tek, V.; Gill, P. K. S.; Tang, Y.; McGoron, A. J.

    2011-07-01

    Most implantable medical devices are expected to function in the body over an extended period of time. Therefore, immersion tests under simulated conditions can be useful for assessing the amount of metal ions released in situ. In this investigation, dissolved ions from as-received binary and ternary Nitinol alloys in cell culture media were periodically measured under static and dynamic conditions. Endothelial cells were grown in aliquots of culture media obtained and the effect of dissolved ions on cell proliferation and viability of endothelial cells (HUVEC) was studied by cytotoxicity assays. The concentration of metal ions in the media was measured by inductively coupled plasma mass spectrometry.

  15. The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction

    Directory of Open Access Journals (Sweden)

    Thurber Aaron

    2009-01-01

    Full Text Available Abstract Nanotechnology represents a new and enabling platform that promises to provide a range of innovative technologies for biological applications. ZnO nanoparticles of controlled size were synthesized, and their cytotoxicity toward different human immune cells evaluated. A differential cytotoxic response between human immune cell subsets was observed, with lymphocytes being the most resistant and monocytes being the most susceptible to ZnO nanoparticle-induced toxicity. Significant differences were also observed between previously activated memory lymphocytes and naive lymphocytes, indicating a relationship between cell-cycle potential and nanoparticle susceptibility. Mechanisms of toxicity involve the generation of reactive oxygen species, with monocytes displaying the highest levels, and the degree of cytotoxicity dependent on the extent of nanoparticle interactions with cellular membranes. An inverse relationship between nanoparticle size and cytotoxicity, as well as nanoparticle size and reactive oxygen species production was observed. In addition, ZnO nanoparticles induce the production of the proinflammatory cytokines, IFN-γ, TNF-α, and IL-12, at concentrations below those causing appreciable cell death. Collectively, these results underscore the need for careful evaluation of ZnO nanoparticle effects across a spectrum of relevant cell types when considering their use for potential new nanotechnology-based biological applications.

  16. Salidroside inhibits endogenous hydrogen peroxide induced cytotoxicity of endothelial cells.

    Science.gov (United States)

    Zhao, Xingyu; Jin, Lianhai; Shen, Nan; Xu, Bin; Zhang, Wei; Zhu, Hongli; Luo, Zhengli

    2013-01-01

    Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., shows potent antioxidant property. Herein, we investigated the protective effects of salidroside against hydrogen peroxide (H2O2)-induced oxidative damage in human endothelial cells (EVC-304). EVC-304 cells were incubated in the presence or absence of low steady states of H2O2 (3-4 µM) generated by glucose oxidase (GOX) with or without salidroside. 3(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) assays were performed, together with Hoechst 33258 staining and flow cytometric analysis using Annexin-V and propidium iodide (PI) label. The results indicated that salidroside pretreatment attenuated endogenous H2O2 induced apoptotic cell death in EVC-304 cells in a dose-dependent pattern. Furthermore, Western blot data revealed that salidroside inhibited activation of caspase-3, 9 and cleavage of poly(ADP-ribose) polymerase (PARP) induced by endogenous H2O2. It also decreased the expression of Bax and rescued the balance of pro- and anti-apoptotic proteins. All these results demonstrated that salidroside may present a potential therapy for oxidative stress in cardiovascular and cerebrovascular diseases.

  17. Procyanidin b2 cytotoxicity to mcf-7 human breast adenocarcinoma cells.

    Science.gov (United States)

    Avelar, Monalisa M; Gouvêa, Cibele M C P

    2012-07-01

    Procyanidins have attracted some attention due to their demonstrated chemopreventive action, a relatively new and promising strategy to prevent cancer. Breast cancer is one of the leading causes of death in women worldwide and its treatment needs improvements. The aim of this work was to verify the procyanidin dimmer B2 cytotoxic effect to MCF-7 human breast cancer cells. MCF-7 cells were cultured in RPMI medium, containing 20% fetal bovine serum and antibiotics in a CO2 chamber. The cells were treated with different concentrations of B2 and its cytotoxic potential was assessed by the sulforhodamine B assay, morphologically through haematoxylin-eosin staining and by DNA fragmentation analysis. The significance of differences between experimental conditions was determined using the ANOVA test, followed by the Tukey test when P<0.05. Cell proliferation decreased in a concentration and time-dependent manner upon procyanidin dimmer B2 treatment, being 19.20 μM the IC50. Procyanidin dimmer B2 treatment displayed concentration and time-dependent decline in MCF-7 cells compared to control and also induced morphological alterations compatible with cell-death induction. Cell condensation and cell diameter decreased (3.5 folds compared to control cells), after 48 h cell-exposure to 50 μM procyanidin dimmer B2, but the DNA ladder formation was not observed. In conclusion, our results demonstrated that procyanidin dimmer B2 exhibits cytotoxic activity to MCF-7 cells and it could be a potential antineoplastic agent. Further studies are necessary to clarify the procyanidin dimmer B2 mechanism of action. The evaluation of biological efficacy of individual components is an important step towards drug discovery and development. PMID:23626391

  18. Procyanidin B2 cytotoxicity to MCF-7 human breast adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Monalisa M Avelar

    2012-01-01

    Full Text Available Procyanidins have attracted some attention due to their demonstrated chemopreventive action, a relatively new and promising strategy to prevent cancer. Breast cancer is one of the leading causes of death in women worldwide and its treatment needs improvements. The aim of this work was to verify the procyanidin dimmer B2 cytotoxic effect to MCF-7 human breast cancer cells. MCF-7 cells were cultured in RPMI medium, containing 20% fetal bovine serum and antibiotics in a CO 2 chamber. The cells were treated with different concentrations of B2 and its cytotoxic potential was assessed by the sulforhodamine B assay, morphologically through haematoxylin-eosin staining and by DNA fragmentation analysis. The significance of differences between experimental conditions was determined using the ANOVA test, followed by the Tukey test when P<0.05. Cell proliferation decreased in a concentration and time-dependent manner upon procyanidin dimmer B2 treatment, being 19.20 μM the IC 50 . Procyanidin dimmer B2 treatment displayed concentration and time-dependent decline in MCF-7 cells compared to control and also induced morphological alterations compatible with cell-death induction. Cell condensation and cell diameter decreased (3.5 folds compared to control cells, after 48 h cell-exposure to 50 μM procyanidin dimmer B2, but the DNA ladder formation was not observed. In conclusion, our results demonstrated that procyanidin dimmer B2 exhibits cytotoxic activity to MCF-7 cells and it could be a potential antineoplastic agent. Further studies are necessary to clarify the procyanidin dimmer B2 mechanism of action. The evaluation of biological efficacy of individual components is an important step towards drug discovery and development.

  19. A Comparison between the Cytotoxicity Induced by Gossypol in Two Testicular Cell Lines

    Directory of Open Access Journals (Sweden)

    Neda MahdinezhadGorji

    2014-12-01

    Full Text Available Background: Gossypol is a yellow toxic pigment from the cottonseed that can cause acute or chronic toxicity in humans and animals by affecting the testicular tissues. Nowadays cottonseed is used as food supplement for ruminants specially the sheep. In this study, two different stem cell lines of testicular tissue including GC1-spg (mouse testis and SFTF-PI43 (sheep testis cells were used to evaluation of gossypol cytotoxicity. Methods: The GC-1spg and the SFTF_PI43 cells were cultured in RPMI-1640 supplemented with fetal bovine serum (10% and antibiotic (penicillin 105/ml, streptomycin100μg/ml, and then 5×104 cells/well were seeded in 24 well plates. Cultured cells were exposed to four different concentrations of gossypol (1.25, 2.5, 5 and 10μM. After 24 h incubation, cells viability test was performed using Trypan Blue dye exclusion and MTT assay. The Thiobarbituric Acid Reacting Substances (TBARS and Ferric Reducing Activity Potential (FRAP assays was performed on media. Result: In high concentrations (over than 2.5μM, Gossypol showed cytotoxic effects on cells. The IC50 for gossypol (using MTT assays on SFTF-PI43 and GC-1spg cell lines was 2.2 μM and 3.2 μM, respectively. While the results for FRAP assay did not show any significant differences between the test and control groups, significantly higher lipid peroxidation was observed in SFTF-PI43 cells that were treated with higher doses of gossypol (10μM. Conclusion: In this research, we found that gossypol has cytotoxic effects on both examined testicular cell lines and increased lipid peroxidation, which is a probable mechanism of its toxicity on cell lines.

  20. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Itharat Arunporn

    2010-09-01

    Full Text Available Abstract Background Cholangiocarcinoma is a serious public health in Thailand with increasing incidence and mortality rates. The present study aimed to investigate cytotoxic activities of crude ethanol extracts of a total of 28 plants and 5 recipes used in Thai folklore medicine against human cholangiocarcinoma (CL-6, human laryngeal (Hep-2, and human hepatocarcinoma (HepG2 cell lines in vitro. Methods Cytotoxic activity of the plant extracts against the cancerous cell lines compared with normal cell line (renal epithelial cell: HRE were assessed using MTT assay. 5-fluorouracil was used as a positive control. The IC50 (concentration that inhibits cell growth by 50% and the selectivity index (SI were calculated. Results The extracts from seven plant species (Atractylodes lancea, Kaempferia galangal, Zingiber officinal, Piper chaba, Mesua ferrea, Ligusticum sinense, Mimusops elengi and one folklore recipe (Pra-Sa-Prao-Yhai exhibited promising activity against the cholangiocarcinoma CL-6 cell line with survival of less than 50% at the concentration of 50 μg/ml. Among these, the extracts from the five plants and one recipe (Atractylodes lancea, Kaempferia galangal, Zingiber officinal, Piper chaba, Mesua ferrea, and Pra-Sa-Prao-Yhai recipe showed potent cytotoxic activity with mean IC50 values of 24.09, 37.36, 34.26, 40.74, 48.23 and 44.12 μg/ml, respectively. All possessed high activity against Hep-2 cell with mean IC50 ranging from 18.93 to 32.40 μg/ml. In contrast, activity against the hepatoma cell HepG2 varied markedly; mean IC50 ranged from 9.67 to 115.47 μg/ml. The only promising extract was from Zingiber officinal (IC50 = 9.67 μg/ml. The sensitivity of all the four cells to 5-FU also varied according to cell types, particularly with CL-6 cell (IC50 = 757 micromolar. The extract from Atractylodes lancea appears to be both the most potent and most selective against cholangiocarcinoma (IC50 = 24.09 μg/ml, SI = 8.6. Conclusions The

  1. Structure of the Human Activating Natural Cytotoxicity Receptor NKp30 Bound to its Tumor Cell Ligand B7-H6

    Energy Technology Data Exchange (ETDEWEB)

    Y Li; Q Wang; R Mariuzza

    2011-12-31

    Natural killer (NK) cells are lymphocytes of the innate immune system that participate in the elimination of tumor cells. In humans, the activating natural cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 play a major role in NK cell-mediated tumor cell lysis. NKp30 recognizes B7-H6, a member of the B7 family which is expressed on tumor, but not healthy, cells. To understand the basis for tumor surveillance by NCRs, we determined the structure of NKp30, a member of the CD28 family which includes CTLA-4 and PD-1, in complex with B7-H6. The overall organization of the NKp30-B7-H6-activating complex differs considerably from those of the CTLA-4-B7 and PD-1-PD-L T cell inhibitory complexes. Whereas CTLA-4 and PD-1 use only the front {beta}-sheet of their Ig-like domain to bind ligands, NKp30 uses both front and back {beta}-sheets, resulting in engagement of B7-H6 via the side, as well as face, of the {beta}-sandwich. Moreover, B7-H6 contacts NKp30 through the complementarity-determining region (CDR) - like loops of its V-like domain in an antibody-like interaction that is not observed for B7 or PD-L. This first structure of an NCR bound to ligand provides a template for designing molecules to stimulate NKp30-mediated cytolytic activity for tumor immunotherapy.

  2. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles.

    Science.gov (United States)

    Kong, Tao; Zeng, Jie; Wang, Xiaoping; Yang, Xiaoyan; Yang, Jing; McQuarrie, Steve; McEwan, Alexander; Roa, Wilson; Chen, Jie; Xing, James Z

    2008-09-01

    Gold nanoparticles (GNPs) and modified GNPs having two kinds of functional molecules, cysteamine (AET) and thioglucose (Glu), are synthesized. Cell uptake and radiation cytotoxicity enhancement in a breast-cancer cell line (MCF-7) versus a nonmalignant breast-cell line (MCF-10A) are studied. Transmission electron microscopy (TEM) results show that cancer cells take up functional Glu-GNPs significantly more than naked GNPs. The TEM results also indicate that AET-capped GNPs are mostly bound to the MCF-7 cell membrane, while Glu-GNPs enter the cells and are distributed in the cytoplasm. After MCF-7 cell uptake of Glu-GNPs, or binding of AET-GNPs, the in vitro cytotoxicity effects are observed at 24, 48, and 72 hours. The results show that these functional GNPs have little or no toxicity to these cells. To validate the enhanced killing effect on cancer cells, various forms of radiation are applied such as 200 kVp X-rays and gamma-rays, to the cells, both with and without functional GNPs. By comparison with irradiation alone, the results show that GNPs significantly enhance cancer killing. PMID:18712753

  3. Cytotoxicity, apoptosis induction, and mitotic arrest by a novel podophyllotoxin glucoside, 4DPG, in tumor cells

    Institute of Scientific and Technical Information of China (English)

    Yi-lin QI; Fan LIAO; Chang-qi ZHAO; Yong-da LIN; Ming-xue ZUO

    2005-01-01

    Aim: To define the in vitro cytotoxic activities of 4-demethyl-picropodophyllotoxin 7'-O-β-D-glucopyranoside (4DPG), a new podophyllotoxin glucoside. Methods:Antiproliferation activity was measured in several tumor cell lines by using the microculture tetrazolium MTT assays. Cell cycle distribution was analyzed using flow cytometry and mitosis index assays. Furthermore, transmission electron microscopy, TUNEL, DNA agarose electrophoresis, and activated caspase-3 were used to analyze the induction of apoptotic cell death. Moreover, intracellular changes in the cytoskeleton were detected using immunocytochemistry. Results:4DPG effectively inhibited the proliferation of cancer cells (HeLa, CNE, SH-SY5Y,and K562 cell lines). For the K562 cell line, the antiproliferation effect of 4DPG was much more potent than that of etoposide (IC50 value: 7.79× 10-9 mol/L for 4DPG vs 2.23× 10-5 mol/L for etoposide). Further, 4DPG blocked the cell cycle in the mitotic phase. The induction of apoptosis and elevated levels of activated caspase-3were confirmed in cells treated with 4DPG. The microtubule skeleton of HeLa cells was disrupted immediately after treatment with 4DPG. Conclusion: The cytotoxicity of 4DPG is due to its inhibition of the microtubule assembly of cancer cells at a low concentration, thus inducing apoptosis. These properties qualify 4DPG to be a potential antitumor drug.

  4. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Biljana [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Bosnjak, Mihajlo [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Arsikin, Katarina [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Mircic, Aleksandar; Suzin-Zivkovic, Violeta [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Bogdanovic, Andrija [Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade (Serbia); Perovic, Vladimir [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Trajkovic, Vladimir, E-mail: vtrajkovic@med.bg.ac.rs [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Harhaji-Trajkovic, Ljubica, E-mail: buajk@yahoo.com [Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia)

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  5. Cytotoxic murine monoclonal antibody LAM8 with specificity for human small cell carcinoma of the lung.

    Science.gov (United States)

    Stahel, R A; O'Hara, C J; Mabry, M; Waibel, R; Sabbath, K; Speak, J A; Bernal, S D

    1986-04-01

    The reactivity of the murine immunoglobulin monoclonal antibody LAM8 directed against a membrane antigen of human small cell carcinoma (SCC) of the lung was investigated on human cell lines and tissues. Indirect immunofluorescence staining, radioimmunoassays, and cytotoxicity assays showed LAM8 antibody to selectively react with SCC but not with non-SCC lung cancer cell lines and extrapulmonary tumor cell lines. Unlike other SCC antibodies, including those we have previously described, highly preferential reactivity with SCC tissues was also demonstrated by immunoperoxidase staining of deparaffinized formalin-fixed tissue sections. Membrane and cytoplasmic staining was seen in of 9 of 12 SCC tissues. No significant staining was seen in non-SCC lung cancer and a wide range of other tumors, including mesothelioma and bronchial carcinoids. Significant LAM8 reactivity was also absent in normal tissues of all major organs. Few tumors and epithelial tissues, including bronchial epithelium had rare LAM8 positive cells which were always less than 2% of the entire cell population. In vitro treatment with antibody and human complement was highly cytotoxic to SCC cells, but had not effect on bone marrow progenitor cells. Immunoblotting of membrane extracts separated on sodium dodecyl sulfate-polyacrylamide gels showed the LAM8 antigen to have a band of an approximate molecular weight of 135,000 and a cluster of bands with approximate molecular weights of 90,000. This reactivity was lost after incubation of the extracts with periodate. LAM8 antibody shows a highly preferential reactivity with SCC cell lines and formalin-fixed paraffin-embedded SCC tissues and is selectively cytotoxic to cells expressing LAM8 antigen.

  6. CYTOTOXICITY AND MODE OF CELL DEATH INDUCED BY TRIPHENYLTIN (IV) COMPOUNDS IN VITRO

    OpenAIRE

    Normah Awang; Zalila Abdul Aziz; Nurul Farahana Kamaludin; Kok Meng Chan

    2014-01-01

    A series of newly synthesized organotin (IV) with N-alkyl-N-phenyldithiocarbamate ligands namely triphenyltin (IV) ethylphenyldithiocarbamate (compound 1) and triphenyltin (IV) butylphenyldithiocarbamate (compound 2) were assessed for their cytotoxic effect against HT-29 human colon adenocarcinoma cells and human CCD-18Co normal colon cells. The cytotoxicity of these organotins in both cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazholium bromide (MTT) assay upon 24 ...

  7. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    International Nuclear Information System (INIS)

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm2 lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm2 lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health

  8. Molecular basis of arsenite (As+3-induced acute cytotoxicity in human cervical epithelial carcinoma cells

    Directory of Open Access Journals (Sweden)

    Muhammad Nauman Arshad

    2015-04-01

    Full Text Available Background: Rapid industrialization is discharging toxic heavy metals into the environment, disturbing human health in many ways and causing various neurologic, cardiovascular, and dermatologic abnormalities and certain types of cancer. The presence of arsenic in drinking water from different urban and rural areas of the major cities of Pakistan, for example, Lahore, Faisalabad, and Kasur, was found to be beyond the permissible limit of 10 parts per billion set by the World Health Organization. Therefore the present study was initiated to examine the effects of arsenite (As+3 on DNA biosynthesis and cell death. Methods: After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and flow cytometry. Results: We show that As+3 ions have a dose- and time-dependent cytotoxic effect through the activation of the caspase-dependent apoptotic pathway. In contrast to previous research, the present study was designed to explore the early cytotoxic effects produced in human cells during exposure to heavy dosage of As+3 (7.5 µg/ml. Even treatment for 1 h significantly increased the mRNA levels of p21 and p27 and caspases 3, 7, and 9. It was interesting that there was no change in the expression levels of p53, which plays an important role in G2/M phase cell cycle arrest. Conclusion: Our results indicate that sudden exposure of cells to arsenite (As+3 resulted in cytotoxicity and mitochondrial-mediated apoptosis resulting from up-regulation of caspases.

  9. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S., E-mail: sandra.wise@maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Xie, Hong, E-mail: hongxie@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Fukuda, Tomokazu, E-mail: tomofukuda009@gmail.com [Graduate School of Agricultural Sciences, Tohoku University, Laboratory of Animal Breeding and Genetics, Second Research Building, Rm 112, 1-1 Amamiyamachi, Aoba-ku, Sendai 981-8555 (Japan); Douglas Thompson, W., E-mail: dougt@usm.maine.edu [Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); and others

    2014-09-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health.

  10. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells

    Directory of Open Access Journals (Sweden)

    Ohayon-Courtès Céline

    2011-03-01

    Full Text Available Abstract Background Some manufactured nanoparticles are metal-based and have a wide variety of applications in electronic, engineering and medicine. Until now, many studies have described the potential toxicity of NPs on pulmonary target, while little attention has been paid to kidney which is considered to be a secondary target organ. The objective of this study, on human renal culture cells, was to assess the toxicity profile of metallic nanoparticles (TiO2, ZnO and CdS usable in industrial production. Comparative studies were conducted, to identify whether particle properties impact cytotoxicity by altering the intracellular oxidative status. Results Nanoparticles were first characterized by size, surface charge, dispersion and solubility. Cytotoxicity of NPs was then evaluated in IP15 (glomerular mesangial and HK-2 (epithelial proximal cell lines. ZnO and CdS NPs significantly increased the cell mortality, in a dose-dependent manner. Cytotoxic effects were correlated with the physicochemical properties of NPs tested and the cell type used. Analysis of reactive oxygen species and intracellular levels of reduced and oxidized glutathione revealed that particles induced stress according to their composition, size and solubility. Protein involved in oxidative stress such as NF-κb was activated with ZnO and CdS nanoparticles. Such effects were not observed with TiO2 nanoparticles. Conclusion On glomerular and tubular human renal cells, ZnO and CdS nanoparticles exerted cytotoxic effects that were correlated with metal composition, particle scale and metal solubility. ROS production and oxidative stress induction clearly indicated their nephrotoxic potential.

  11. Interactive cytotoxicity of etoposide and radiation on cultured Chinese hamster V-79 cells

    International Nuclear Information System (INIS)

    Etoposide is a semisynthetic derivative of podophyllotoxin and is an active antitumor agent. The interactive cytotoxic effect of Etoposide and radiation was investigated using cultured Chinese hamster V-79 cells. The surviving fraction of the cells was reduced by only 20%, when the cells were exposed to 5μg/ml of Etoposide for 30 min. Etoposide at this concentration reduced the width of the shoulder of the radiation survival curve. The change became more significant with increase in the concentration of Etoposide. The Dqs (quasithreshold doses) of the radiation survival curves were 5.39, 3.28, 2.13 and 0.54Gy, although the Dos (37% dose slopes) of the radiation survival curves were 2.55, 2.49, 2.39 and 2.18 Gy, when combination treatment with radiaiton and 0, 5, 10 and 20 μg/ml of Etoposide, respectively, was carried out. The cytotoxic effect became increased when fractional treatments with Etoposide and radiation were performed. The results obtained suggest that the mechanism of the interactive cytotoxic effect of this combination treatment involves a reciprocal action of Etoposide and sublethal damage by the radiation to the cells. (author)

  12. Interactive cytotoxicity of etoposide and radiation on cultured Chinese hamster V-79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Tsutomu; Shimada, Yuji; Kamata, Rikisaburo (Nihon Univ., Tokyo (Japan). School of Medicine)

    1989-10-01

    Etoposide is a semisynthetic derivative of podophyllotoxin and is an active antitumor agent. The interactive cytotoxic effect of Etoposide and radiation was investigated using cultured Chinese hamster V-79 cells. The surviving fraction of the cells was reduced by only 20%, when the cells were exposed to 5mug/ml of Etoposide for 30 min. Etoposide at this concentration reduced the width of the shoulder of the radiation survival curve. The change became more significant with increase in the concentration of Etoposide. The Dqs (quasithreshold doses) of the radiation survival curves were 5.39, 3.28, 2.13 and 0.54Gy, although the Dos (37% dose slopes) of the radiation survival curves were 2.55, 2.49, 2.39 and 2.18 Gy, when combination treatment with radiaiton and 0, 5, 10 and 20 mug/ml of Etoposide, respectively, was carried out. The cytotoxic effect became increased when fractional treatments with Etoposide and radiation were performed. The results obtained suggest that the mechanism of the interactive cytotoxic effect of this combination treatment involves a reciprocal action of Etoposide and sublethal damage by the radiation to the cells. (author).

  13. The cancer process as a type of immunocomplex hypersensibility involving C3b, natural killer cytotoxicity and antibody-dependent cell cytotoxicity: proposals for tumour immunotherapy and vaccine.

    Science.gov (United States)

    Manzo, G

    1998-05-01

    I have previously assumed that stem tumour cells are 'para-embryonal cells' (PECs) poor or missing in major histocompatibility complex (MHC) antigens. PECs might induce adjoining differentiated hyperplastic cells to also express tumoral phenotype and properties, thus transforming them into 'differentiated para-embryonal cells' (DPECs), MHC-endowed. In such a way, PECs, MHC-lacking, would be automatically surrounded by DPECs, MHC-endowed: this tumour organization was experimentally found by Cordon-Cardo et al in a variety of cancers. Now, I suggest that such a tumour histology might preferentially induce an anti-DPEC T cell immune response which, sparing PECs, might release increasing amounts of DPEC antigens in the peritumour site. DPEC antigens might increase synthesis of specific antibodies and subsequent immunocomplex formation at the peritumour site. Here, abundant immunocomplexes might react through their Fc pieces with CD16 receptors of antibody-dependent cell cytotoxicity (ADCC)-endowed immune cells (natural killer (NK) cells, macrophages, polymorphonuclear cells). These cells would thus be stimulated to secrete their lytic factors before and without their coming into contact with target tumour cells. On the other hand, abundant immunocomplexes at the peritumour site might massively activate the complement system, thus generating large amounts of C3b. C3b might react with CD11b receptors of NK cells, stimulating them to also secrete their lytic factors in an ectopic way at the peritumour site, thus impairing NK cytotoxicity. In such a way, in the absence of ADCC and NK cytotoxicity, a tumour cell enhancement might easily occur. In the light of these ideas, a strategy for antitumour immunotherapy and vaccine is then proposed. PMID:9681920

  14. Studies on the cytotoxicity of diamond nanoparticles against human cancer cells and lymphocytes.

    Science.gov (United States)

    Adach, Kinga; Fijalkowski, Mateusz; Gajek, Gabriela; Skolimowski, Janusz; Kontek, Renata; Blaszczyk, Alina

    2016-07-25

    Detonation nanodiamonds (DND) are a widely studied group of carbon nanomaterials. They have the ability to adsorb a variety of biomolecules and drugs onto their surfaces, and additionally their surfaces may be subjected to chemical functionalization by covalent bonds. We present a procedure for the purification and surface oxidation of diamond nanoparticles, which were then tested by spectroscopic analysis such as ATR-FTIR, Raman spectroscopy, and thermogravimetric analysis. We also examined the zeta potential of the tested material. Analysis of the cytotoxic effect of nanodiamonds against normal lymphocytes derived from human peripheral blood, the non-small cell lung cancer cell line (A549) and the human colorectal adenocarcinoma cell line (HT29) was performed using MTT colorimetric assay. Evaluation of cell viability was performed after 1-h and 24-h treatment with the tested nanoparticles applied at concentrations ranging from 1 μg/ml to 100 μg/ml. We found that the survival of the examined cells was strongly associated with the presence of serum proteins in the growth medium. The incubation of cells with nanodiamonds in the presence of serum did not exert a significant effect on cell survival, while the cell treatment in a serum-free medium resulted in a decrease in cell survival compared to the negative control. The role of purification and functionalization of nanodiamonds on their cytotoxicity was also demonstrated. PMID:27270448

  15. Soluble fibrin inhibits monocyte adherence and cytotoxicity against tumor cells: implications for cancer metastasis

    Directory of Open Access Journals (Sweden)

    Patel Shonak

    2006-08-01

    Full Text Available Abstract Background Soluble fibrin (sFn is a marker for disseminated intravascular coagulation and may have prognostic significance, especially in metastasis. However, a role for sFn in the etiology of metastatic cancer growth has not been extensively studied. We have reported that sFn cross-linked platelet binding to tumor cells via the major platelet fibrin receptor αIIbβ3, and tumor cell CD54 (ICAM-1, which is the receptor for two of the leukocyte β2 integrins (αLβ2 and aMβ2. We hypothesized that sFn may also affect leukocyte adherence, recognition, and killing of tumor cells. Furthermore, in a rat experimental metastasis model sFn pre-treatment of tumor cells enhanced metastasis by over 60% compared to untreated cells. Other studies have shown that fibrin(ogen binds to the monocyte integrin αMβ2. This study therefore sought to investigate the effect of sFn on β2 integrin mediated monocyte adherence and killing of tumor cells. Methods The role of sFn in monocyte adherence and cytotoxicity against tumor cells was initially studied using static microplate adherence and cytotoxicity assays, and under physiologically relevant flow conditions in a microscope perfusion incubator system. Blocking studies were performed using monoclonal antibodies specific for β2 integrins and CD54, and specific peptides which inhibit sFn binding to these receptors. Results Enhancement of monocyte/tumor cell adherence was observed when only one cell type was bound to sFn, but profound inhibition was observed when sFn was bound to both monocytes and tumor cells. This effect was also reflected in the pattern of monocyte cytotoxicity. Studies using monoclonal blocking antibodies and specific blocking peptides (which did not affect normal coagulation showed that the predominant mechanism of fibrin inhibition is via its binding to αMβ2 on monocytes, and to CD54 on both leukocytes and tumor cells. Conclusion sFn inhibits monocyte adherence and cytotoxicity of

  16. In vitro study on the biotransformation and cytotoxicity of three hexabromocyclododecane diastereoisomers in liver cells.

    Science.gov (United States)

    Huang, Xiaomei; Chen, Cen; Shang, Yu; Zhong, Yufang; Ren, Guofa; Yu, Zhiqiang; An, Jing

    2016-10-01

    In order to clarify the cytotoxicity of hexabromocyclododecane (HBCD) diastereoisomers, and to investigate the correlation of cytotoxicity and biotransformation of HBCDs, the immortalized human liver cells L02 and human hepatoma cells HepG2 were exposed to individual HBCD diastereoisomer (α-, β- and γ-HBCD). Cytotoxicity was assayed in terms of cell viability, reactive oxygen species (ROS) level and DNA damage. Metabolic rate, bioisomerization and enantiomer fractions were analyzed using the liquid chromatograph coupled to triple quadrupole mass spectrometer (LC-MS/MS). The α-, β- and γ-HBCD all had cytotoxicity in L02 and HepG2 cells with the toxicity order β-HBCD ≥ γ-HBCD > α-HBCD according to the results of proliferation assay. The cytotoxicity mechanism between the two cells seemed different: a) the stability of intracellular redox state plays an important role in inducing cell toxicity in HepG2 cells. b) DNA damage status is central to inhibit proliferation in L02 cells. The metabolic capability of HepG2 was superior to L02 for HBCD diastereoisomers, which may explain the greater toxicity of HBCDs in HepG2 cells. The bioisomerization and enantiomer enrichment were also detected in this study, although the results were inconsistent with other reports, which might result from species-specific differences in HBCDs metabolism or experimental conditions. The cytotoxicity and metabolic mechanism of individual enantiomers must be further investigated to evaluate the health risks of HBCDs. PMID:27434255

  17. Influenza a virus induces an immediate cytotoxic activity in all major subsets of peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Sanda Sturlan

    Full Text Available BACKGROUND: A replication defective influenza A vaccine virus (delNS1 virus was developed. Its attenuation is due to potent stimulation of the innate immune system by the virus. Since the innate immune system can also target cancer cells, we reasoned that delNS1 virus induced immune-stimulation should also lead to the induction of innate cytotoxic effects towards cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood mononuclear cells (PBMCs, isolated CD56+, CD3+, CD14+ and CD19+ subsets and different combinations of the above subsets were stimulated by delNS1, wild type (wt virus or heat inactivated virus and co-cultured with tumor cell lines in the presence or absence of antibodies against the interferon system. Stimulation of PBMCs by the delNS1 virus effectively induced cytotoxicity against different cancer cell lines. Surprisingly, virus induced cytotoxicity was exerted by all major subtypes of PBMCs including CD56+, CD3+, CD14+ and CD19+ cells. Virus induced cytotoxicity in CD3+, CD14+ and CD19+ cells was dependent on virus replication, whereas virus induced cytotoxicity in CD56+ cells was only dependent on the binding of the virus. Virus induced cytotoxicity of isolated cell cultures of CD14+, CD19+ or CD56+ cells could be partially blocked by antibodies against type I and type II (IFN interferon. In contrast, virus induced cytotoxicity in the complete PBMC preparation could not be inhibited by blocking type I or type II IFN, indicating a redundant system of activation in whole blood. CONCLUSIONS/SIGNIFICANCE: Our data suggest that apart from their well known specialized functions all main subsets of peripheral blood cells also initially exert a cytotoxic effect upon virus stimulation. This closely links the innate immune system to the adaptive immune response and renders delNS1 virus a potential therapeutic tool for viro-immunotherapy of cancer.

  18. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNT) are cytotoxic to several cell types. However, the mechanism of CNT toxicity has not been fully studied, and dosimetric analyses of CNT in the cell culture system are lacking. Here, we describe a novel, high throughput method to measure cellular uptake of CNT using turbimetry. BEAS-2B, a human bronchial epithelial cell line, was used to investigate cellular uptake, cytotoxicity, and inflammatory effects of multi-walled CNT (MWCNT). The cytotoxicity of MWCNT was higher than that of crocidolite asbestos in BEAS-2B cells. The IC50 of MWCNT was 12 μg/ml, whereas that of asbestos (crocidolite) was 678 μg/ml. Over the course of 5 to 8 h, BEAS-2B cells took up 17-18% of the MWCNT when they were added to the culture medium at a concentration of 10 μg/ml. BEAS-2B cells were exposed to 2, 5, or 10 μg/ml of MWCNT, and total RNA was extracted for cytokine cDNA primer array assays. The culture supernatant was collected for cytokine antibody array assays. Cytokines IL-6 and IL-8 increased in a dose dependent manner at both the mRNA and protein levels. Migration inhibitory factor (MIF) also increased in the culture supernatant in response to MWCNT. A phosphokinase array study using lysates from BEAS-2B cells exposed to MWCNT indicated that phosphorylation of p38, ERK1, and HSP27 increased significantly in response to MWCNT. Results from a reporter gene assays using the NF-κB or AP-1 promoter linked to the luciferase gene in transiently transfected CHO-KI cells revealed that NF-κB was activated following MWCNT exposure, while AP-1 was not changed. Collectively, MWCNT activated NF-κB, enhanced phosphorylation of MAP kinase pathway components, and increased production of proinflammatory cytokines in human bronchial epithelial cells.

  19. Comparison of two methods to evaluate drug-cytotoxicity on tumor cell lines cultured in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Pinelli, A.; Trivulzio, S.; Von Hoff, D.D.; Warfel, L.

    1987-12-01

    Some porphyrin compounds: P-NO2 and CVRIV were screened for cytotoxic activity against HT-29, LOVO, human tumor cell lines. The new radiometric assay was used for all cell lines. The soft agar cloning system was also utilized. The tested compounds decrease the growth index, measured in the radiometric assay, as /sup 14/CO/sub 2/ production, and similarly depress the growth of tumor colonies on soft agar in the clonogenic assay. The cytotoxic effects of the compounds tested by these different methods were analysed statistically and resulted quantitatively similar. Based on these findings the radiometric assay represents a method, simple and rapid, which can be used as the clonogenic assay to screen new anticancer drugs.

  20. Cytotoxic mechanism of flavonoid from Temu Kunci (Kaempferia pandurata) in cell culture of human mammary carcinoma.

    Science.gov (United States)

    Sukardiman; Darwanto, A; Tanjung, M; Darmadi, M O

    2000-01-01

    The cytotoxic activity of flavonoid from Temu Kunci (Kaempferia pandurata) was tested by brine shrimp lethality test and cell culture of human mammary carcinoma. This compound is pinostrobin, and has antitumor activity. However, the critical biochemical target of these pinostrobin has not been identified. In our present studies, we used DNA topoisomerase I which was isolated from human tumor. This result showed that pinostrobin inhibited DNA topoisomerase I activity. Pinostrobin may be interfere with DNA breakage-reunion reaction by stabilizing a key covalent intermediate between DNA and the enzyme, resulting in the cleavage DNA. An inhibition in the activity of DNA topoisomerase I is suggesting that this could be a possible mechanism of pinostrobin from Temu Kunci for the cytotoxicity observed in cell culture of human mammary carcinoma. PMID:11321439

  1. Parasporal Proteins from Bacillus thuringiensis and Their Cytotoxicity on Human Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; LV Yuan; YI Yin-sha; YI Shang-hui; LI Lin

    2015-01-01

    Parasporins(PSs) represent a novel functional category of crystal proteins (Cry) produced by non-insecticidal Bacillus thuringiensisA distinct feature for PSs is their specific cytotoxicity against human cancer cells from diverse origins, other than hemolytic or insecticidal activityAs structurally/functionally Cry proteins, parasporins are expressed as protoxins that require protease cleavage for activationCurrently, identified PSs is classified into 6 groups:PS1, PS2, PS3, PS4, PS5 and PS6, which are heterogeneous in cytotoxic spectrum and activity levelSome PSs have been explored for their mode of anticancer activities, reports mainly include pore formation induced by binding to putative receptors on cell membrane and apoptosis by intracellular Ca 2+concentrationFurther work should focus on the identification of new PS or PS homologs and better understanding of their anticancer mechanism before possible application in cancer therapy.

  2. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    Science.gov (United States)

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process.

  3. The Effects of Royal Jelly on In-Vitro Cytotoxicity of K562 Cells and Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    SE Hosseini

    2014-02-01

    Full Text Available Abstract Background & aim: Royal jelly, secreted by worker bees, has different biological activities on cells and tissues. The aim of this study was to evaluate the effects of royal jelly on peripheral blood mononuclear cells and on the tumor category of K562 cell line. Methods: In the present experimental study, three subjects were selected separately with three repetitions. K562 (104 cells and PBMC (105 cells with different concentrations of royal jelly (5, 10, 25, 50 and 100 mg/ml were cultured under standard conditions for 48 and 72 h separately. The fatality rate on PBMC cells and K562 cancer cells was evaluated by using MTT (Tetrazolium Dye-Reduction Assay. The number of viable cells in PBMC that were exposed for 48 hours with Royal Jelly was evaluated by trypan blue staining. Data were analyzed by ANOVA. Results: The royal jelly had no cytotoxicity effect on PBMC cells but at concentration of 50 and 100 mg/mL the cytotoxicity effect were observed on k562 cells whereas, at 10 and 25 mg/ml the number of PBMC viable cells increased. Conclusion: Due to the lack of lethality of royal jelly on PBMC cells and PBMC cell viability and an increase in the fatality rate of cancer cells in the future, royal jelly can be used as a potential candidate for treatment of leukemia. Keywords: Royal jelly, K562, peripheral blood mononuclear cell

  4. Cytotoxicity evaluation of self-etching dentine bonding agents in a cell culture perfusion condition

    OpenAIRE

    Korsuwannawong, Suwanna; Srichan, Ratchaporn; Vajrabhaya, La-Ongthong

    2012-01-01

    Objective: The aim of this study was to evaluate the cytotoxicity of three dentine bonding agents (G-Bond, Clearfil S3 Bond and Clearfil SE Bond X) in cell-culture perfusion. Methods: In this experiment, 8×104 TCPC SV40 cells (bovine-pulp-derived cells transfected with simian virus 40 large T-antigen) in MEM-alpha media, 20%FCS were seeded on mesh in a 6-well plate and incubated at 37 °C with 5% CO2. After 2 days, the mesh inserts were transferred to a 24-well plate and incubated in MEM-alpha...

  5. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs.

    Science.gov (United States)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-07-18

    In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter is activated by E2F only in cancer cells and therefore may be more cancer cell-specific than E2F1 promoter to drive gene expression. We show here that the ARF promoter has lower activity in normal growing fibroblasts and shows higher cancer cell-specificity compared to the E2F1 promoter. We also demonstrate that adenovirus expressing HSV

  6. Phytic acid protects porcine intestinal epithelial cells from deoxynivalenol (DON) cytotoxicity.

    OpenAIRE

    Pacheco, Graziela Drociunas; Silva, Caio Abércio da; Pinton, Philippe; Oswald, Isabelle

    2012-01-01

    The purpose of this study was to evaluate the effects of phytic acid (IP(6)) as a possible inhibitor of cellular damage induced by toxic substances such as mycotoxins on a porcine intestinal epithelial cell line (IPEC-1). We first observed that a dose of 5 mM phytic acid decreases cell viability and transepithelial electrical resistance (TEER) of cell monolayer. We next investigate the effect of non-cytotoxic dose of phytic acid on the deoxinivalenol (DON) induced decreased TEER. We showed th...

  7. Induction of cancer-specific cytotoxicity towards human prostate and skin cells using quercetin and ultrasound

    OpenAIRE

    Paliwal, S; SUNDARAM, J.; Mitragotri, S

    2005-01-01

    Bioflavonoids, such as quercetin, have recently emerged as a new class of chemotherapeutic drugs for the treatment of various cancer types, but are marred by their low potency and poor selectivity. We report that a short application of low-frequency ultrasound selectively sensitises prostate and skin cancer cells against quercetin. Pretreatment of cells with ultrasound (20 kHz, 2 W cm−2, 60 s) selectively induced cytotoxicity in skin and prostate cancer cells, while having minimal effect on c...

  8. Cytotoxic effect of Argentine medicinal plant extracts on human hepatocellular carcinoma cell line.

    Science.gov (United States)

    Ruffa, M J; Ferraro, G; Wagner, M L; Calcagno, M L; Campos, R H; Cavallaro, L

    2002-03-01

    Methanolic extracts from Achyrocline satureioides (Dc.) Lam, Aristolochia macroura Gomez, Lithraea molleoides (Vell.) Engl., Schinus molle L., unlike those from Celtis spinosa Spreng, Chenopodium ambrosioides L., Petiveria alliacea L., and Plantago major L. showed cytotoxic activity against a human hepatocellular carcinoma cell line, Hep G2. Schinus molle L. was the most active (IC50=50+/-7 microg/ml). These results call for further studies of these extracts.

  9. Cytotoxic effect of Argentine medicinal plant extracts on human hepatocellular carcinoma cell line.

    Science.gov (United States)

    Ruffa, M J; Ferraro, G; Wagner, M L; Calcagno, M L; Campos, R H; Cavallaro, L

    2002-03-01

    Methanolic extracts from Achyrocline satureioides (Dc.) Lam, Aristolochia macroura Gomez, Lithraea molleoides (Vell.) Engl., Schinus molle L., unlike those from Celtis spinosa Spreng, Chenopodium ambrosioides L., Petiveria alliacea L., and Plantago major L. showed cytotoxic activity against a human hepatocellular carcinoma cell line, Hep G2. Schinus molle L. was the most active (IC50=50+/-7 microg/ml). These results call for further studies of these extracts. PMID:11849838

  10. In-vitro screening of organotin compounds and sediment extracts for cytotoxicity to fish cells

    OpenAIRE

    Giltrap, Michelle; Macken, Ailbhe; McHugh, Brendan; McGovern, Evin; Foley, Barry; Davoren, Maria

    2011-01-01

    The present study reports an in vitro screening method for contaminants in sediment samples utilizing an RTG-2 cell line. This technique integrates cytotoxicity testing with analytical chemistry with the aim of achieving a toxicity evaluation of the sediment sample. The toxic effect of individual organotin (OT) compounds and their presence in the sediment sample is the focus of the present study; however, other contaminants are also discussed. The following OT compounds: tributyltin (TBT), di...

  11. Unraveling the response of plant cells to cytotoxic saponins: Role of metallothionein and nitric oxide

    OpenAIRE

    Balestrazzi, Alma; Macovei, Anca; Tava, Aldo; Avato, Pinarosa; Raimondi, Elena; Daniela CARBONERA

    2011-01-01

    A wide range of pharmacological properties are ascribed to natural saponins, in addition to their biological activities against herbivores, plant soil-borne pathogens and pests. As for animal cells, the cytotoxicity and the chemopreventive role of saponins are mediated by a complex network of signal transduction pathways which include reactive oxygen species (ROS) and nitric oxide (NO). The involvement of other relevant components of the saponin-related signaling routes, such as the Tumor Nec...

  12. The cytotoxic effects a of ACA1 on human melanoma cell line

    OpenAIRE

    R. Yaraie; M.R. Jalali Nadoushan; Naseri, M.; S. Shahrokhi; T. Ghazanfari; Kardar, M.

    2006-01-01

    Background and purpose: Different methods such as surgery, chemotherapy, radiotherapy, hormone therapy and immunotherapy are used for treatment of melanoma cancer. Unfortunately they don't always have desirable results and they may have unfavorable side effects. Researchers try to find new, more effective drugs with low side effects. In this study we evaluated the cytotoxic effect of ACA-1, a water extract of a traditional Iranian medicinal herbs on a melanoma cell line SKMEL-3.Materials and ...

  13. Cytotoxicity activities of chloroform extract of Cichorium intybus seed against HCT-15 and Vero cell line

    OpenAIRE

    Prashant Y Mali

    2015-01-01

    Background: Cichorium intybus L., (Asteraceae) is well-known as a coffee substitute but is also widely used medicinally to treat various ailments ranging from wounds to diabetes. Other plant parts are also used for liver and cancer disorder. Objective: The objective was to study the cytotoxic potential of chloroform extract of C. intybus seed against HCT-15 and Vero (normal) cell line. Materials and Methods: Fourier transform infrared spectroscopy (FTIR) analysis of the extract was performed....

  14. Regulatory T Cells and IL-10 Independently Counterregulate Cytotoxic T Lymphocyte Responses Induced by Transcutaneous Immunization

    OpenAIRE

    Pamela Stein; Michael Weber; Steve Prüfer; Beate Schmid; Edgar Schmitt; Hans-Christian Probst; Ari Waisman; Peter Langguth; Hansjörg Schild; Markus P Radsak

    2011-01-01

    BACKGROUND: The imidazoquinoline derivate imiquimod induces inflammatory responses and protection against transplanted tumors when applied to the skin in combination with a cognate peptide epitope (transcutaneous immunization, TCI). Here we investigated the role of regulatory T cells (T(reg)) and the suppressive cytokine IL-10 in restricting TCI-induced cytotoxic T lymphocyte (CTL) responses. METHODOLOGY/PRINCIPAL FINDINGS: TCI was performed with an ointment containing the TLR7 agonist imiqui...

  15. Induced Resistance to Ofatumumab Mediated Cell Clearance Mechanisms, Including Complement Dependent Cytotoxicity, in Chronic Lymphocytic Leukemia

    OpenAIRE

    Baig, Nisar A.; Taylor, Ronald P.; Lindorfer, Margaret A.; Church, Amy K.; LaPlant, Betsy R.; Pettinger, Adam M.; Shanafelt, Tait D.; Nowakowski, Grzegorz S.; Zent, Clive S.

    2014-01-01

    Ofatumumab (OFA), a human CD20 targeting mAb, kills B-lymphocytes utilizing the innate immune system including complement dependent cytotoxicity (CDC). The efficacy of OFA in patients with chronic lymphocytic leukemia (CLL) is limited by drug resistance, which is not well characterized. To better understand mechanisms of resistance, we prospectively studied CLL cells isolated from blood samples collected before and after in vivo exposure to the initial dose of OFA therapy in 25 patients under...

  16. Cytotoxicity and DNA damage associated with pyrazoloacridine in MCF-7 breast cancer cells.

    Science.gov (United States)

    Grem, J L; Politi, P M; Berg, S L; Benchekroun, N M; Patel, M; Balis, F M; Sinha, B K; Dahut, W; Allegra, C J

    1996-06-28

    We examined the effects of pyrazoloacridine (PZA), an investigational anticancer agent in clinical trials, on cytotoxicity, DNA synthesis, and DNA damage in MCF-7 human breast carcinoma cells. With PZA concentrations ranging from 0.5 to 50 microM for durations of 3-72 hr, cytotoxicity increased in proportion to the total PZA exposure (concentration x time). Inhibition of DNA and RNA syntheses increased with increasing PZA concentration x time (microM.hr). A 24-hr exposure to 1 and 10 microM PZA reduced DNA synthesis to 62 and 5% of control, respectively, decreased the proportion of cells in S phase with accumulation of cells in G2 + M phase, and inhibited cell growth at 72 hr by 68 and 100%. Newly synthesized DNA was more susceptible to damage during PZA exposure, with subsequent induction of parental DNA damage. Significant damage to newly synthesized DNA as monitored by alkaline elution was evident after a 3-hr exposure to > or = 5 microM PZA. Longer PZA exposures (> or = 10 microM for 16 hr) were required to elicit damage to parental DNA. Induction of single-strand breaks in parental DNA correlated closely with induction of double-strand breaks and detachment of cells from the monolayer. PZA-mediated DNA fragmentation was not accompanied by the generation of oligonucleosomal laddering in MCF-7 cells, but induction of very high molecular weight DNA fragmentation (0.5 to 1 Mb) was detected by pulsed-field gel electrophoresis. In vitro binding of PZA to linear duplex DNA (1 kb DNA ladder) and closed, circular plasmid DNA was demonstrated by a shift in migration during agarose electrophoresis. PZA interfered with topoisomerase I- and II-mediated relaxation of plasmid DNA in a cell-free system, but the cytotoxic effects of PZA did not appear to involve a direct interaction with topoisomerase I or II (stabilization of the topoisomerase I- or II-DNA cleavable complex). PZA-mediated cytotoxicity correlated strongly with inhibition of DNA and RNA syntheses, and damage to

  17. Cytotoxic Effects of Newly Synthesized Palladium(II Complexes of Diethyldithiocarbamate on Gastrointestinal Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Shahram Hadizadeh

    2014-01-01

    Full Text Available As a part of a drug development program to discover novel therapeutic and more effective palladium (Pd based anticancer drugs, a series of water-soluble Pd complexes have been synthesized by interaction between [Pd (phen(H2O2(NO32] and alkylenebisdithiocarbamate(al-bis-dtc disodium salts. This study was undertaken to examine the possible cytotoxic effect of three novel complexes (0.125–64 µg/mL on human gastric carcinoma (AGS, esophageal squamous cell carcinoma (Kyse-30, and hepatocellular carcinoma (HepG2 cell lines. The cytotoxicity was examined using cell proliferation and acridine orange/ethidium bromide (AO/EB assay. In order to examine the effects of new Pd(II complexes on cell cycle status, we performed cell cycle analysis. The complexes were found to have completely lethal effects on the cell lines, and the half maximal inhibitory concentration (IC50 values obtained for the cell lines were much lower in comparison with cisplatin. We demonstrated that the three new Pd(II complexes are able to induce G2/M phase arrest in AGS and HepG2; in addition, the Pd(II complexes caused an S phase arrest in Kyse-30 cell line. Our results indicate that newly synthesized Pd(II complexes may provide a novel class of chemopreventive compounds for anticancer therapy.

  18. Human milk oligosaccharides protect bladder epithelial cells against uropathogenic Escherichia coli invasion and cytotoxicity.

    Science.gov (United States)

    Lin, Ann E; Autran, Chloe A; Espanola, Sophia D; Bode, Lars; Nizet, Victor

    2014-02-01

    The invasive pathogen uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infections (UTIs). Recurrent infection that can progress to life-threatening renal failure has remained as a serious global health concern in infants. UPEC adheres to and invades bladder epithelial cells to establish infection. Studies have detected the presence of human milk oligosaccharides (HMOs) in urine of breast-fed, but not formula-fed, neonates. We investigated the mechanisms HMOs deploy to elicit protection in human bladder epithelial cells infected with UPEC CFT073, a prototypic urosepsis-associated strain. We found a significant reduction in UPEC internalization into HMO-pretreated epithelial cells without observing any significant effect in UPEC binding to these cells. This event coincides with a rapid decrease in host cell cytotoxicity, recognized by LIVE/DEAD staining and cell detachment, but independent of caspase-mediated or mitochondrial-mediated programmed cell death pathways. Further investigation revealed HMOs, and particularly the sialic acid-containing fraction, reduced UPEC-mediated MAPK and NF-κB activation. Collectively, our results indicate that HMOs can protect bladder epithelial cells from deleterious cytotoxic and proinflammatory effects of UPEC infection, and may be one contributing mechanism underlying the epidemiological evidence of reduced UTI incidence in breast-fed infants.

  19. Cytotoxic effects of Gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Rotiroti Domenicoantonio

    2004-09-01

    Full Text Available Abstract Background Identification of effective systemic antineoplastic drugs against anaplastic thyroid carcinomas has particularly important implications. In fact, the efficacy of the chemotherapeutic agents presently used in these tumours, is strongly limited by their low therapeutic index. Methods In this study gemcitabine was entrapped within a pegylated liposomal delivery system to improve the drug antitumoral activity, thus exploiting the possibility to reduce doses to be administered in cancer therapy. The cytotoxic effects of free or liposome-entrapped gemcitabine was evaluated against a human thyroid tumour cell line. ARO cells, derived from a thyroid anaplastic carcinoma, were exposed to different concentrations of the drug. Liposomes formulations were made up of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-MPEG (8:3:1 molar ratio. Cell viability was assessed by both trypan bleu dye exclusion assay and fluorimetric analysis of cell DNA content. Results A cytotoxic effect of free gemcitabine was present only after 72 h incubation (ARO cell mortality increased of approximately 4 fold over control at 1 μM, 7 fold at 100 μM. When gemcitabine was encapsulated in liposomes, a significant effect was observed by using lower concentrations of the drug (increased cell mortality of 2.4 fold vs. control at 0.3 μM and earlier exposure time (24 h. Conclusion These findings show that, in vitro against human thyroid cancer cells, the gemcitabine incorporation within liposomes enhances the drug cytotoxic effect with respect to free gemcitabine, thus suggesting a more effective drug uptake inside the cells. This may allow the use of new formulations with lower dosages (side effect free for the treatment of anaplastic human thyroid tumours.

  20. Catalytic nanomedicine technology: copper complexes loaded on titania nanomaterials as cytotoxic agents of cancer cell.

    Science.gov (United States)

    Lopez, Tessy; Ortiz-Islas, Emma; Guevara, Patricia; Gómez, Esteban

    2013-01-01

    The anticancer properties of pure copper (II) acetate and copper (II) acetylacetonate, alone and loaded on functionalized sol-gel titania (TiO(2)), were determined in four different cancer cell lines (C6, RG2, B16, and U373), using increasing concentrations of these compounds. The copper complexes were loaded onto the TiO(2) network during its preparation by the solgel process. Once copper-TiO(2) materials were obtained, these were characterized by several physical-chemical techniques. An in vitro copper complex-release test was developed in an aqueous medium at room temperature and monitored by ultraviolet spectroscopy. The toxic effect of the copper complexes, alone and loaded on TiO(2), was determined using a cell viability 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, when cancer cells were treated with increasing concentrations (15.75-1000 mg/mL) of these. Characterization studies revealed that the addition of copper complexes to the TiO(2) sol-gel network during its preparation, did not generate changes in the molecular structure of the complexes. The surface area, pore volume, and pore diameter were affected by the copper complex additions and by the crystalline phases obtained. The kinetic profiles of both copper complexes released indicated two different stages of release: The first one was governed by first-order kinetics and the second was governed by zero-order kinetics. The cell viability assay revealed a cytotoxic effect of copper complexes, copper-TiO(2), and cisplatin in a dose-dependent response for all the cell lines; however, the copper complexes exhibited a better cytotoxic effect than the cisplatin compound. TiO(2) alone presented a minor cytotoxicity for C6 and B16 cells; however, it did not cause any toxic effect on the RG2 and U373 cells, which indicates its high biocompatibility with these cells. PMID:23413123

  1. Catalytic nanomedicine technology: copper complexes loaded on titania nanomaterials as cytotoxic agents of cancer cell.

    Science.gov (United States)

    Lopez, Tessy; Ortiz-Islas, Emma; Guevara, Patricia; Gómez, Esteban

    2013-01-01

    The anticancer properties of pure copper (II) acetate and copper (II) acetylacetonate, alone and loaded on functionalized sol-gel titania (TiO(2)), were determined in four different cancer cell lines (C6, RG2, B16, and U373), using increasing concentrations of these compounds. The copper complexes were loaded onto the TiO(2) network during its preparation by the solgel process. Once copper-TiO(2) materials were obtained, these were characterized by several physical-chemical techniques. An in vitro copper complex-release test was developed in an aqueous medium at room temperature and monitored by ultraviolet spectroscopy. The toxic effect of the copper complexes, alone and loaded on TiO(2), was determined using a cell viability 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, when cancer cells were treated with increasing concentrations (15.75-1000 mg/mL) of these. Characterization studies revealed that the addition of copper complexes to the TiO(2) sol-gel network during its preparation, did not generate changes in the molecular structure of the complexes. The surface area, pore volume, and pore diameter were affected by the copper complex additions and by the crystalline phases obtained. The kinetic profiles of both copper complexes released indicated two different stages of release: The first one was governed by first-order kinetics and the second was governed by zero-order kinetics. The cell viability assay revealed a cytotoxic effect of copper complexes, copper-TiO(2), and cisplatin in a dose-dependent response for all the cell lines; however, the copper complexes exhibited a better cytotoxic effect than the cisplatin compound. TiO(2) alone presented a minor cytotoxicity for C6 and B16 cells; however, it did not cause any toxic effect on the RG2 and U373 cells, which indicates its high biocompatibility with these cells.

  2. Improved cytotoxic effects of Salmonella-producing cytosine deaminase in tumour cells

    Science.gov (United States)

    Mesa-Pereira, Beatriz; Medina, Carlos; Camacho, Eva María; Flores, Amando; Santero, Eduardo

    2015-01-01

    In order to increase the cytotoxic activity of a Salmonella strain carrying a salicylate-inducible expression system that controls cytosine deaminase production, we have modified both, the vector and the producer bacterium. First, the translation rates of the expression module containing the Escherichia coli codA gene cloned under the control of the Pm promoter have been improved by using the T7 phage gene 10 ribosome binding site sequence and replacing the original GUG start codon by AUG. Second, to increase the time span in which cytosine deaminase may be produced by the bacteria in the presence of 5-fluorocytosine, a 5-fluorouracyl resistant Salmonella strain has been constructed by deleting its upp gene sequence. This new Salmonella strain shows increased cytosine deaminase activity and, after infecting tumour cell cultures, increased cytotoxic and bystander effects under standard induction conditions. In addition, we have generated a purD mutation in the producer strain to control its intracellular proliferation by the presence of adenine and avoid the intrinsic Salmonella cell death induction. This strategy allows the analysis and comparison of the cytotoxic effects of cytosine deaminase produced by different Salmonella strains in tumour cell cultures. PMID:25227763

  3. Modulation of Tamoxifen Cytotoxicity by Caffeic Acid Phenethyl Ester in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tarek K. Motawi

    2016-01-01

    Full Text Available Although Tamoxifen (TAM is one of the most widely used drugs in managing breast cancer, many women still relapse after long-term therapy. Caffeic acid phenethyl ester (CAPE is a polyphenolic compound present in many medicinal plants and in propolis. The present study examined the effect of CAPE on TAM cytotoxicity in MCF-7 cells. MCF-7 cells were treated with different concentrations of TAM and/or CAPE for 48 h. This novel combination exerted synergistic cytotoxic effects against MCF-7 cells via induction of apoptotic machinery with activation of caspases and DNA fragmentation, along with downregulation of Bcl-2 and Beclin 1 expression levels. However, the mammalian microtubule-associated protein light chain LC 3-II level was unchanged. Vascular endothelial growth factor level was also decreased, whereas levels of glutathione and nitric oxide were increased. In conclusion, CAPE augmented TAM cytotoxicity via multiple mechanisms, providing a novel therapeutic approach for breast cancer treatment that can overcome resistance and lower toxicity. This effect provides a rationale for further investigation of this combination.

  4. Combined cytotoxic effects of pesticide mixtures present in the Chinese diet on human hepatocarcinoma cell line.

    Science.gov (United States)

    Ma, Mengmeng; Chen, Chen; Yang, Guiling; Li, Yun; Chen, Zhijun; Qian, Yongzhong

    2016-09-01

    Consumers might be simultaneously exposed to several pesticide residues contained in their food. Based on the results of previous studies, 20 pesticides were selected due to their high exposure levels to which the Chinese population is likely exposed through the diet. The purpose of this study was to measure the cytotoxicity of these pesticides in HepG2 cells in vitro, as an alternative approach to assess the toxicity of chemicals. Then, the pesticides and some of the mixtures with comparatively high cell-proliferating inhibitory activities were selected to test the cellular ROS level and apoptosis-related protein Caspase-3/7 content in HepG2 cells. The combined effects of these pesticide mixtures with the prediction was based on a combination index (CI)-isobologram equation and the pesticide combinations exhibited various types of interactions (synergism, antagonism, and additivity). Two individuals, one binary combinations, and three uniform design (UD) mixtures of the pesticides were found to have significant cytotoxic effects, along with significant time- and dose-dependent induction of caspase-3/7 activity in vitro, indicating that cytotoxicity caused by these pesticides might be attributed to the pro-oxidative and apoptosis induced potential. PMID:27300773

  5. Nanoliposomal formulation of Agrostemma githago aqueous extract shows enhanced cytotoxic effect on gastric cancer cell line

    Directory of Open Access Journals (Sweden)

    Shahab Bohlooli

    2015-01-01

    Full Text Available Objective(s: The objective of this study was to determine the cytotoxic effects of nanoliposomal form of lyophilized aqueous extract of Agrostemma githago (A. githago seeds on gastric cancer cell line (AGS using cell viability tests. Materials and Methods: Lyophilized aqueous extract of A. githago seeds was prepared. Liposomes were also prepared by thin-film hydration method and their stability and size were characterized by SEM. The size and zeta potential were determined by Malvern Zetasizer. Cytotoxic effects of nanoliposomes on gastric cancer cell line was determined using MTT, Neutral Red and Frame methods. Results: The size of liposomes was around 171.5 nm with proper dispersion (PDI=0.268. The morphology of the liposomes was suitable according to SEM images. The IC50 values indicated that the nanoliposomal form of extract was 3-4 times more active than extract alone. Average IC50 values for extract and liposomal form of extract were 13.02 ± 0.95 and 4.43 ± 1.49 ug/ml, respectively. Conclusion: This study showed that liposomal form of aqueous extract of A. githago seeds exerts cytotoxic effect at significantly lower concentrations than the extract itself.

  6. Effect of linear alkylbenzene sulfonate (LAS) on human intestinal Caco-2 cells at non cytotoxic concentrations.

    Science.gov (United States)

    Bradai, Mohamed; Han, Junkyu; Omri, Abdelfatteh El; Funamizu, Naoyuki; Sayadi, Sami; Isoda, Hiroko

    2016-08-01

    Linear alkylbenzene sulfonate (LAS) is a cytotoxic synthetic anionic surfactant widely present in the environment due to its large-scale production and intensive use in the detergency field. In this study, we investigated the effect of LAS (CAS No. 25155-30-0) at non cytotoxic concentrations on human intestinal Caco-2 cells using different in vitro bioassays. As results, LAS increased Caco-2 cell proliferation at concentrations ranging from 1 to 15 ppm, more significantly for shorter exposure time (24 h), confirmed using flow cytometry and trypan blue exclusion methods. Moreover, proteomics analysis revealed that this effect was associated with an over-expression of elongation factor 2 and dipeptidyl peptidase 3, and a down-regulation of 14-3-3 protein theta, confirmed at mRNA level using real-time PCR. These findings suggest that LAS at non cytotoxic concentrations, similar to those observed at wastewater treatment plants outlets, increases the growth rate of colon cancer cells, raising thereby its tumor promotion effect potential. PMID:25999174

  7. Cytotoxicity of graphene oxide and graphene oxide loaded with doxorubicin on human multiple myeloma cells

    Directory of Open Access Journals (Sweden)

    Wu S

    2014-03-01

    Full Text Available Shaoling Wu,1 Xindong Zhao,2 Zhongguang Cui,1 Chunting Zhao,1 Yuzhen Wang,1 Li Du,1 Yanhui Li3 1Department of Hematology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong, People's Republic of China; 2Department of Hematology, Medical College of Qingdao University, Qingdao, Shandong, People's Republic of China; 3Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong, People's Republic of China Abstract: The purpose of this study was to evaluate the cytotoxicity of human multiple myeloma cells (RPMI-8226 treated with graphene oxide (GO, doxorubicin (DOX, and GO loaded with DOX (GO/DOX. Cell viability was determined using the Cell Counting Kit-8 assay and analyzing the cell cycle and cell apoptosis. Cells treated with GO, GO/DOX, and pure DOX for 24 hours showed a decrease in proliferation. GO/DOX significantly inhibited cell proliferation as compared with pure DOX (P<0.01. When the effects of GO were removed, there was no observed difference between GO/DOX and pure DOX (P>0.05. Flow cytometry analysis of untreated and GO-, DOX-, and GO/DOX-treated cells found no significant differences in the G0/G1 phase (P>0.05, while significant differences were observed in the total apoptotic rates (P<0.05. No significant differences existed in the total apoptotic rates of GO-treated and untreated cells (P>0.05. These findings suggest that GO caused low cytotoxicity and did not induce cell apoptosis or change the cell cycle in multiple myeloma cells. Moreover, GO did not affect the antitumor activity of DOX. In conclusion, GO would be suitable as an anticancer drug nanocarrier and used to treat hematological malignancies. Keywords: graphene oxide, doxorubicin, human multiple myeloma cell, CCK-8, cell cycle, cell apoptosis

  8. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Coulter JA

    2012-06-01

    Full Text Available Jonathan A Coulter,1 Suneil Jain,2 Karl T Butterworth,2 Laura Taggart,2 Glenn Dickson,2 Stephen J McMahon,3 Wendy Hyland,1 Mark F Muir,3 Coleman Trainor,2 Alan Hounsell,2,4 Joe M O'Sullivan,2,4 Giuseppe Schettino,2 Fred Currell,3 David G Hirst,1 Kevin M Prise21School of Pharmacy, McClay Research Centre, 2Centre for Cancer Research and Cell Biology, 3School of Mathematics and Physics, Queens University Belfast, 4Belfast Health and Social Care Trust, Belfast, IrelandBackground: This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data.Methods: We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species.Results: Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential.Conclusion: Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic

  9. Cytotoxicity of Silver Nanoparticles in Human Embryonic Stem Cell-Derived Fibroblasts and an L-929 Cell Line

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2012-01-01

    Full Text Available Consensus about the toxicity of silver nanoparticles (Ag-NPs has not been reached, even though extensive attention has been paid to this issue. This confusion may be due to physicochemical factors of Ag-NPs and the cell model used for biological safety evaluation. In the present study, human embryonic stem cell-derived fibroblasts (EBFs, which have been considered a closer representative of the in vivo response, were used as a novel cell model to assess the cytotoxicity of Ag-NPs (~20 nm and ~100 nm in comparison with L-929 fibroblast cell line. Cell proliferation, cell cycle, apoptosis, p53 expression, and cellular uptake were examined. Results showed that Ag-NPs presented higher cytotoxicity to EBF than to L-929. EBF demonstrated a stronger capacity to ingest Ag-NPs, a higher G2/M arrest, and more upgraduated p53 expression after exposed to Ag-NPs for 48 h when compared with L-929. It could be concluded that EBF exhibited a more sensitive response to Ag-NPs compared with L-929 cells, indicating that EBF may be a valid candidate for cytotoxicity screening assays of nanoparticles.

  10. Do cancer cells in human and meristematic cells in plant exhibit similar responses toward plant extracts with cytotoxic activities?

    Science.gov (United States)

    Khalifa, Noha S; Barakat, Hoda S; Elhallouty, Salwa; Salem, Dina

    2015-01-01

    We examined the effect of water extracts of Persea americana fruit, and of the leaves of Tabernamontana divericata, Nerium oleander and Annona cherimolia (positive control) on Vicia faba root cells. We had confirmed in our previously published data the cytotoxicity of these plant extracts on four human cancer cell lines: liver (HepG-2), lung (A549), colon (HT-29) and breast (MCF-7). Vicia faba roots were soaked in plant extracts at dilutions of 100, 1,250, 2,500, 5,000, 10,000, 20,000 ppm for 4 and 24 h. All treatments resulted in a significant reduction in the mitotic index in a dose dependant manner. Root cells treated with T. divericata, N. oleander and A. cherimolia exhibited a decrease in prophase cell percentage, increase in micronuclei and chromosomal abnormalities as concentration increased. The P. americana treatment showed the highest cytotoxic effect on cancer cells, prophase cell percentage increased linearly with the applied concentration and no micronuclei were detected. This study shows that root tip assay of beans can be used in initial screening for new plant extracts to validate their use as candidates for containing active cytotoxic agents against malignant cells. This will greatly help in exploring new plant extracts as drugs for cancer treatment. PMID:24705601

  11. SOMATOSTATIN MAY ENHANCE CYTOTOXIC EFFECT OF DOXORUBICIN ON GALLBLADDER CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    李济宇; 全志伟; 张强; 刘建文

    2004-01-01

    Objective: To explore the change of chemosensitivity of gallbladder cancer cells pre-treated with somatostatin. Methods: Twenty-four hours after somatostatin treatment, gradient concentrated Doxorubicin was added and growth curve of gallbladder cancer cells was investigated to measure IC50, I.e., concentration of Doxorubicin at 50% cell viability. Results: Somatostatin ccould induce gallbladder cancer cell growth arrest in S phase. Inhibition of growth of cancer cell line was detected by Doxorubicin concentration- dependently (P<0.05). IC50 value was significantly lower by combined-treating with somatostatin and Doxorubicin compared with by Doxorubicin alone (P<0.05). Conclusion: Somatostatin could increase the cytotoxic effect of Doxorubicin on gallbladder cancer cell by modulating its cell cycle.

  12. Butachlor is cytotoxic and clastogenic and induces apoptosis in mammalian cells.

    Science.gov (United States)

    Panneerselvam, N; Sinha, S; Shanmugam, G

    1999-09-01

    The ability of butachlor to induce cytotoxicity, clastogenicity and DNA damage was assessed using Chinese hamster ovary cells (CHO), Swiss mouse embryo fibroblasts (MEF) and human peripheral blood lymphocytes. A dose and time dependent loss of viability was evident upon treatment of CHO cells with butachlor. Cell killing to an extent of 50% was observed when cells were treated with 16.2 micrograms/ml of butachlor for 24 hr or with 11.5 micrograms/ml for 48 hr. The herbicide induced micronuclei significantly in cultured lymphocytes at 24 and 48 hr of treatment suggesting that it is clastogenic. To understand the mechanism of cell death caused by butachlor, its effect on DNA strand breaks was studied in MEF. A concomitant decrease in cell viability was observed with increase in DNA strand breaks. Agarose gel electrophoresis of DNA from herbicide treated CHO cells and cytochemical staining indicate the induction of apoptosis by butachlor.

  13. Electroporation enhances mitomycin C cytotoxicity on T24 bladder cancer cell line

    DEFF Research Database (Denmark)

    Vasquez, Juan Luis; Gehl, Julie; Hermann, Gregers G

    2012-01-01

    Intravesical mitomycin instillation combined with electric pulses is being used experimentally for the treatment of T1 bladder tumors, in patients unfit for surgery. Electroporation may enhance the uptake of chemotherapeutics by permeabilization of cell membranes. We investigated if electroporation...... improves the cytotoxicity of mitomycin. In two cell lines, T24 (bladder cancer cell line) and DC3F (Chinese hamster fibroblast), exposure to different concentrations of mitomycin (0.01-2000μM) was tested with and without electroporation (6 pulses of 1kV/cm, duration: 99μs, frequency: 1Hz). Cell viability...... was assessed by colorimetric assay (MTT). For both cell lines, mitomycin's IC_50 was approximately 1000μM in both pulsed and unpulsed cells. On T24 cells, electroporation and mitomycin caused (relative reduction) RR of survival of: 25%, 31% and 29%, by concentrations 0μM, 500μM and 1000μM respectively. For DC3...

  14. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion.

    Directory of Open Access Journals (Sweden)

    Markus Munder

    Full Text Available Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8(+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i CD8(+ T cells with specificity against the MART-1aa26-35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii clonal CMV pp65aa495-503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495-503 specific T cell receptor were analyzed. Our data demonstrate that human CD8(+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency.

  15. In vitro Cytotoxicity of TCDD on SPC-A1 Cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective The toxicology of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) has been studied mainly with regard to the carcinogenicity of its metabolites, but its phototoxicity is not well understood. Although some studies have indicated the lethal phototoxicity of TCDD, this study was designed to investigate its effect on SPC-A1 cells. Methods SPC-A1 cells were cultured in 1640 medium and treated with 10 nmol/L, 0.1 μmol/L, 1 μmol/L TCDD for either 24 h or 96 h at each concentration. SPC-A1 cells were co-cultured with TCDD at different concentrations. Then the cell morphology, DNA fragment electrophoresis, and cell cycle were analyzed by flow cytometry, and enzyme assays were used to observe the effect of TCDDon the morphology, growth rate, and enxyme change of SPC-A1 cells. Results With the increasing concentrations of TCDD and prolongation of culture time, the morphology of SPC-A1 cells was changed from round shape to spindle, and the ability of SPC-A1 cells to adhere to wall was decreased. With debris emitted around the cells, the morphologic changes included reduction in cell volume. Nuclear chromatin condensation and PI were observed. With the increasing concentrations of TCDD,DNA ladder occurred. After treatment with TCDD, extraction of cancer cells exhibited typical DNA fragmentation, and flow cytometry analysis showed apoptosis in a dose-dependent manner. As the concentration of TCDD rose from 10 nmol/L to 1 μmol/L, the ratio of apoptotic cells increased from 10.76% to 21.82%. Conclusions TCDD has in vitro cytotoxicity on SPC-A1 cells, and the cytotoxicity is positively related to its concentration and culture time. TCDD may inhibit the growth and proliferation of SPC-A 1 cells through the pathway of apoptosis introduction.

  16. Cytotoxic and inflammatory responses of TiO2 nanoparticles on human peripheral blood mononuclear cells.

    Science.gov (United States)

    Kongseng, Supunsa; Yoovathaworn, Krongtong; Wongprasert, Kanokpan; Chunhabundit, Rodjana; Sukwong, Patinya; Pissuwan, Dakrong

    2016-10-01

    Titanium dioxide nanoparticles (TiO2 -NPs) have been widely used in many applications. Owing to their nanoscale size, interactions between cells and NPs have been expansively investigated. With the health concerns raised regarding the adverse effects of these interactions, closer examination of whether TiO2 -NPs can induce toxicity towards human cells is greatly needed. Therefore, in this study, we investigated the cytotoxicity of TiO2 -NPs towards human blood cells (peripheral blood mononuclear cells [PBMCs]) in serum-free medium, for which there is little information regarding the cytotoxic effects of TiO2 -NPs. Our results provide evidence that PBMCs treated with TiO2 -NPs (at concentrations ≥25 μg ml(-1) ) for 24 h significantly reduced cell viability and significantly increased production of toxic mediators such as reactive oxygen species and inflammatory response cytokines such as interleukin-6 and tumor necrosis factor-α (P < 0.05). Cell apoptosis induction also occurred at these concentrations. Significant expressions of cyclooxygenase-2 and interleukin-1β were also observed in PBMCs treated with TiO2 -NPs at concentrations ≥125 μg ml(-1) . Our data presented here clearly indicate that the concentration of TiO2 -NPs (at size ~26.4 ± 1.2 nm) applied to human blood cells has a strong impact on cytotoxic induction. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27225715

  17. Schedule-Dependent Antiangiogenic and Cytotoxic Effects of Chemotherapy on Vascular Endothelial and Retinoblastoma Cells.

    Science.gov (United States)

    Winter, Ursula; Mena, Hebe A; Negrotto, Soledad; Arana, Eloisa; Pascual-Pasto, Guillem; Laurent, Viviana; Suñol, Mariona; Chantada, Guillermo L; Carcaboso, Angel M; Schaiquevich, Paula

    2016-01-01

    Current treatment of retinoblastoma involves using the maximum dose of chemotherapy that induces tumor control and is tolerated by patients. The impact of dose and schedule on the cytotoxicity of chemotherapy has not been studied. Our aim was to gain insight into the cytotoxic and antiangiogenic effect of the treatment scheme of chemotherapy used in retinoblastoma by means of different in vitro models and to evaluate potential effects on multi-drug resistance proteins. Two commercial and two patient-derived retinoblastoma cell types and two human vascular endothelial cell types were exposed to increasing concentrations of melphalan or topotecan in a conventional (single exposure) or metronomic (7-day continuous exposure) treatment scheme. The concentration of chemotherapy causing a 50% decrease in cell proliferation (IC50) was determined by MTT and induction of apoptosis was evaluated by flow cytometry. Expression of ABCB1, ABCG2 and ABCC1 after conventional or metronomic treatments was assessed by RT-qPCR. We also evaluated the in vivo response to conventional (0.6 mg/kg once a week for 2 weeks) and metronomic (5 days a week for 2 weeks) topotecan in a retinoblastoma xenograft model. Melphalan and topotecan were cytotoxic to both retinoblastoma and endothelial cells after conventional and metronomic treatments. A significant decrease in the IC50 (median, 13-fold; range: 3-23) was observed following metronomic chemotherapy treatment in retinoblastoma and endothelial cell types compared to conventional treatment (p0.05). In mice, continuous topotecan lead to significantly lower tumor volumes compared to conventional treatment after 14 days of treatment (pretinoblastoma and endothelial cells to both chemotherapy agents with lower IC50 values compared to short-term treatment. These findings were validated in an in vivo model. None of the dosing modalities induced multidrug resistance mechanisms while apoptosis was the mechanism of cell death after both treatment

  18. Cytotoxicity of Human Cord Blood Natural Killer Cells is Enhanced by Recombinant Interleukin-15

    Directory of Open Access Journals (Sweden)

    Shiva Saghafi

    2010-06-01

    Full Text Available Hematopoietic cord blood (CB stem cell transplantation has more advantages to other cell sources because of lower Graft Versus Host Disease (GVHD. Interleukin-15(IL-15 is an immunoregulatory cytokine, known to enhance cytolytic function of cord Natural Killer (NK cells. The aim of this study was to investigate the effect of IL-15 on NK cytotoxicity simultaneously in different cell death stages.We compared the ability of IL-15 to enhance the NK cytotoxicity of CB in comparison to adult blood Mononuclear Cells (MNCs against K562 target cells by co-staining with AnnexinV-FITC and Propidium Iodide after 3.5 h incubation at 37C and 5% CO2 by using flow cytometric method. We also evaluated phenotypic changes after treatment by IL-15 in both cell sources.Our results indicated that CB samples had lower level of apoptosis, while necrosis was negligible; also by escalating Effector: Target (E: T, we got higher level of apoptosis and necrosis in peripheral blood (PB. NK activity of cord and adult MNCs was enhanced by incubation with IL-15 (10 ng/ml for 72 h with significantly higher results of PB in comparison to CB (pTaken together, these results indicated that NK cytotoxicity of CB MNCs could be augmented by human recombinant (hr IL-15, but this activity did not reach to same level of PB counterparts.We established that CD25 expression on CB MNCs could be increased with IL-15, in 72-hour cultures, but to a lesser degree compared to that on corresponding adult PB MNCs.

  19. Decreased Cytotoxicity of Peripheral and Peritoneal Natural Killer Cell in Endometriosis

    Science.gov (United States)

    Jeung, InCheul; Cheon, Keunyoung; Kim, Mee-Ran

    2016-01-01

    Endometriosis causes significant chronic pelvic pain, dysmenorrhea, and infertility and affects 10% of all women. In endometriosis, ectopic endometrium surviving after retrograde menstruation exhibits an abnormal immune response characterized by increased levels of activated macrophages and inflammatory cytokines. Particularly, dysfunctional natural killer (NK) cells play an important role in the pathogenesis of the disease by either facilitating or inhibiting the survival, implantation, and proliferation of endometrial cells. NK cells in the peritoneum and peritoneal fluid exhibit reduced levels of cytotoxicity in women with endometriosis. Several cytokines and inhibitory factors in the serum and peritoneal fluid also dysregulate NK cell cytotoxicity. Additionally, increased numbers of immature peripheral NK cells and induction of NK cell apoptosis are evident in the peritoneal fluid of women with endometriosis. The high rate of endometriosis recurrence after pharmaceutical or surgical treatment, which is associated with dysfunctional NK cells, indicates that new immunomodulatory management strategies are required. A good understanding of immune dysfunction would enable improvement of current treatments for endometriosis. PMID:27294113

  20. Polyphenols of Mangifera indica modulate arsenite-induced cytotoxicity in a human proximal tubule cell line

    Directory of Open Access Journals (Sweden)

    Gabino Garrido

    2012-04-01

    Full Text Available Inorganic arsenic is an ubiquitous environmental contaminant able to cause severe pathologies in humans, including kidney disorders. The possible protective effects of Mangifera indica L., Anacardiaceae, stem bark extract (MSBE and some mango phenols on the cytotoxicity of arsenite (AsIII in the proximal tubule cell line HK-2 was investigated. In cells cultured for 24 h in presence of AsIII, a dose-dependent loss of cell viability occurred that was significantly alleviated by MSBE, followed by gallic acid, catechin and mangiferin. Mangiferin complexed with Fe+++ proved more efficacious than mangiferin alone. MSBE and pure phenols increased significantly the cell surviving fraction in clonogenic assays. In cells pretreated with MSBE or phenols for 72 h the protection afforded by MSBE resulted decreased in comparison with the shorter experiments. Cells pretreated with a subcytotoxic amount of AsIII or cultured in continuous presence of low concentration of mangiferin proved to be more resistant to AsIII, while cells cultured in presence of albumin resulted more sensitive. Because all the above conditions share changes in expression/activity of P-glycoprotein (P-gp, a transporter potentially involved in arsenic resistance, the capability of M. indica phenols in modulating AsIII-induced cytotoxicity would be at least in part dependent on their interactions with P-gp.

  1. Cytotoxicity of some oxysterols on human vascular smooth muscle cells was mediated by apoptosis.

    Science.gov (United States)

    Miyashita, Y; Shirai, K; Ito, Y; Watanabe, J; Urano, Y; Murano, T; Tomioka, H

    1997-01-01

    A decrease in smooth muscle cells is observed in advanced atherosclerotic lesion. To understand this mechanism, we selected oxysterols as candidates for toxic lipid, and examined their cytotoxicity on human cultured vascular smooth muscle cells, together with the manner of cell death. In the presence of 7-ketocholesterol or 7 beta-hydroxycholesterol (50 mumol/L), the percentage of detached cells increased significantly with dose dependency, and an increase in detached cell number and DNA nick detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling study (TUNEL) preceded an increase in lactate dehydrogenase released into the medium. DNA extracted from smooth muscle cells incubated with 7-ketocholesterol or 7 beta-hydroxycholesterol showed a laddering pattern on agarose electrophoresis. In the presence of 7-ketocholesterol or 7 beta-hydroxycholesterol, fragmented DNA quantified by the quantitative sandwich enzyme immunoassay was significantly increased. From these results, it is proposed that 7-ketocholesterol and 7 beta-hydroxycholesterol are toxic to smooth muscle cells, and that this cytotoxicity is mediated by apoptosis. PMID:9638517

  2. The Natural Killer Cell Cytotoxic Function Is Modulated by HIV-1 Accessory Proteins

    Directory of Open Access Journals (Sweden)

    Edward Barker

    2011-07-01

    Full Text Available Natural killer (NK cells’ major role in the control of viruses is to eliminate established infected cells. The capacity of NK cells to kill virus-infected cells is dependent on the interactions between ligands on the infected cell and receptors on the NK cell surface. Because of the importance of ligand-receptor interactions in modulating the NK cell cytotoxic response, HIV has developed strategies to regulate various NK cell ligands making the infected cell surprisingly refractory to NK cell lysis. This is perplexing because the HIV-1 accessory protein Vpr induces expression of ligands for the NK cell activating receptor, NKG2D. In addition, the accessory protein Nef removes the inhibitory ligands HLA-A and -B. The reason for the ineffective killing by NK cells despite the strong potential to eliminate infected cells is due to HIV-1 Vpu’s ability to down modulate the co-activation ligand, NTB-A, from the cell surface. Down modulation of NTB-A prevents efficient NK cell degranulation. This review will focus on the mechanisms through which the HIV-1 accessory proteins modulate their respective ligands, and its implication for NK cell killing of HIV-infected cells.

  3. Cytotoxic Effect of Immunotoxin Containing The Truncated Form of Pseudomonas Exotoxin Cell Lines

    Directory of Open Access Journals (Sweden)

    Elahe Safari

    2014-06-01

    Full Text Available Objective: Immunotoxins (ITs have been developed for the treatment of cancer, and comprise of antibodies linked to toxins. Also vascular endothelial growth factor (VEGF plays a key role in tumor angiogenesis, and the blockade of VEGF receptor-2 (VEGFR2 inhibits angiogenesis and tumor growth. The aim of this study was to produce anti-VEGFR2/rPE (Pseudomonas exotoxin 38 IT to test its cytotoxic activity and mechanism of action. Materials and Methods: In this basic research and experimental study, at first, DNA that encodes recombinant PE38 protein was inductively expressed in Escherichia coli (E.coli and purified by nickel-sepharose chromatography and further analyzed by western blot. Then, for production of IT, rPE38 was chemically conjugated to anti-VEGFR2. The cytotoxicity response of IT treatment was evaluated by 3-(4,5-Dimethylthiazol-2-Yl-2,5-Diphenyltetrazolium Bromide (MTT test in Human Umbilical Vein Endothelial Cell (HUVEC and Michigan Cancer Foundation-7 (MCF-7 (VEGFR2+ cell lines. The mechanism of IT cytotoxicity was observed by Annexin V staining and flow cytometry. Continuous variables were compared with the analysis of variance (ANOVA; for all groups. P values less than 0.05 were considered statistically significant. Results: SDS-PAGE showed 98% purity of rPE38 and IT. In vitro dose-dependent cytotoxicity assay demonstrated that anti-VEGFR2/PE38 is toxic to VEGFR2-positive cells. IT treatment significantly inhibited proliferation of HUVEC and MCF-7 in a VEGFR2-specific manner as compared with the control groups (p<0.05. Flow cytometry showed that the mechanism of IT induced cell death is mediated by apoptosis. Conclusion: IT treatment also caused remarkable synergistic cytotoxicity characterized by decreased cell viability, and an increased apoptotic index by both anti-VEGFR2 and PE38. Thus these results raise the possibility of using anti-VEGFR2/PE38 IT for cancer therapy because nearly all tumors induce local angiogenesis with

  4. Cytotoxicity of Elaoephorbia drupifera and other Cameroonian medicinal plants against drug sensitive and multidrug resistant cancer cells

    OpenAIRE

    Kuete, Victor; Voukeng, Igor K; Tsobou, Roger; Mbaveng, Armelle T; Wiench, Benjamin; Beng, Veronique P; Efferth, Thomas

    2013-01-01

    Background Multidrug resistance (MDR) is a major hurdle for cancer treatment worldwide and accounts for chemotherapy failure in over 90% of patients with metastatic cancer. Evidence of the cytotoxicity of Cameroonian plants against cancer cell lines including MDR phenotypes is been intensively and progressively provided. The present work was therefore designed to evaluate the cytotoxicity of the methanol extracts of twenty-two Cameroonian medicinal plants against sensitive and MDR cancer cell...

  5. Characterization of crude Echis carinatus venom-induced cytotoxicity in HEK 293T cells.

    Science.gov (United States)

    Pierce, Rebecca D; Kim, Ethan S; Girton, Lance W; McMurry, Jonathan L; Francis, Joshua W; Albrecht, Eric A

    2011-01-01

    Echis carinatus (saw-scaled viper) produces potent hemorrhagic venom that causes the development of apoptotic and necrotic tissues. In this study, we used polyethyleneimine (PEI) to enhance cellular adherence, and to determine whether the substrate attachment influenced the survival of cells treated with crude E. carinatus venom. Human embryonic kidney (HEK) 293T cells were grown for 18hr in tissue culture plates with or without polyethyleneimine (PEI), and were then stimulated with crude E. carinatus venom for 3 or 12hr. HEK 293T cells grown without PEI displayed a robust oxidative response to corresponding substrate detachment, loss of plasma membrane integrity and decreased cell viability. Cells grown on PEI adsorbed substrates demonstrated prolonged substrate attachment resulting in significantly higher cell viabilities. These observations suggest that the cytotoxicity of crude E. carinatus venom is dependent upon cellular detachment. PMID:22331993

  6. CDK8-Mediated STAT1-S727 Phosphorylation Restrains NK Cell Cytotoxicity and Tumor Surveillance

    Directory of Open Access Journals (Sweden)

    Eva Maria Putz

    2013-08-01

    Full Text Available The transcription factor STAT1 is important in natural killer (NK cells, which provide immediate defense against tumor and virally infected cells. We show that mutation of a single phosphorylation site (Stat1-S727A enhances NK cell cytotoxicity against a range of tumor cells, accompanied by increased expression of perforin and granzyme B. Stat1-S727A mice display significantly delayed disease onset in NK cell-surveilled tumor models including melanoma, leukemia, and metastasizing breast cancer. Constitutive phosphorylation of S727 depends on cyclin-dependent kinase 8 (CDK8. Inhibition of CDK8-mediated STAT1-S727 phosphorylation may thus represent a therapeutic strategy for stimulating NK cell-mediated tumor surveillance.

  7. Enhanced Growth Inhibition of Osteosarcoma by Cytotoxic Polymerized Liposomal Nanoparticles Targeting the Alcam Cell Surface Receptor

    Directory of Open Access Journals (Sweden)

    Noah Federman

    2012-01-01

    Full Text Available Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%–30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.

  8. Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression.

    Directory of Open Access Journals (Sweden)

    Anna Frenzel

    Full Text Available Expression of MYC is deregulated in a wide range of human cancers, and is often associated with aggressive disease and poorly differentiated tumor cells. Identification of compounds with selectivity for cells overexpressing MYC would hence be beneficial for the treatment of these tumors. For this purpose we used cell lines with conditional MYCN or c-MYC expression, to screen a library of 80 conventional cytotoxic compounds for their ability to reduce tumor cell viability and/or growth in a MYC dependent way. We found that 25% of the studied compounds induced apoptosis and/or inhibited proliferation in a MYC-specific manner. The activities of the majority of these were enhanced both by c-MYC or MYCN over-expression. Interestingly, these compounds were acting on distinct cellular targets, including microtubules (paclitaxel, podophyllotoxin, vinblastine and topoisomerases (10-hydroxycamptothecin, camptothecin, daunorubicin, doxorubicin, etoposide as well as DNA, RNA and protein synthesis and turnover (anisomycin, aphidicholin, gliotoxin, MG132, methotrexate, mitomycin C. Our data indicate that MYC overexpression sensitizes cells to disruption of specific pathways and that in most cases c-MYC and MYCN overexpression have similar effects on the responses to cytotoxic compounds. Treatment of the cells with topoisomerase I inhibitors led to down-regulation of MYC protein levels, while doxorubicin and the small molecule MYRA-A was found to disrupt MYC-Max interaction. We conclude that the MYC pathway is only targeted by a subset of conventional cytotoxic drugs currently used in the clinic. Elucidating the mechanisms underlying their specificity towards MYC may be of importance for optimizing treatment of tumors with MYC deregulation. Our data also underscores that MYC is an attractive target for novel therapies and that cellular screenings of chemical libraries can be a powerful tool for identifying compounds with a desired biological activity.

  9. Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells.

    Directory of Open Access Journals (Sweden)

    Ding Zhang

    Full Text Available Cadmium ions (Cd2+ have been reported to accumulate in bovine tissues, although Cd2+ cytotoxicity has not been investigated thoroughly in this species. Zinc ions (Zn2+ have been shown to antagonize the toxic effects of heavy metals such as Cd2+ in some systems. The present study investigated Cd2+ cytotoxicity in Madin-Darby bovine kidney (MDBK epithelial cells, and explored whether this was modified by Zn2+. Exposure to Cd2+ led to a dose- and time-dependent increase in apoptotic cell death, with increased intracellular levels of reactive oxygen species and mitochondrial damage. Zn2+ supplementation alleviated Cd2+-induced cytotoxicity and this protective effect was more obvious when cells were exposed to a lower concentration of Cd2+ (10 μM, as compared to 50 μM Cd2+. This indicated that high levels of Cd2+ accumulation might induce irreversible damage in bovine kidney cells. Metallothioneins (MTs are metal-binding proteins that play an essential role in heavy metal ion detoxification. We found that co-exposure to Zn2+ and Cd2+ synergistically enhanced RNA and protein expression of MT-1, MT-2, and the metal-regulatory transcription factor 1 in MDBK cells. Notably, addition of Zn2+ reduced the amounts of cytosolic Cd2+ detected following MDBK exposure to 10 μM Cd2+. These findings revealed a protective role of Zn2+ in counteracting Cd2+ uptake and toxicity in MDBK cells, indicating that this approach may provide a means to protect livestock from excessive Cd2+ accumulation.

  10. Enhancement of radionuclide induced cytotoxicity by 2-deoxy-D-glucose in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Shrivastava V

    2006-01-01

    Full Text Available The efficacy of targeted radiotherapy can be enhanced by selective delivery of radionuclide to the tumors and/or by differentially enhancing the manifestation of radiation damage in tumors. Our earlier studies have shown that the 2-deoxy-D-glucose (2-DG, an inhibitor of glucose transport and glycolytic ATP production, selectively enhances the cytotoxicity of external beam radiation in tumor cells. Therefore, it is suggested that 2-DG may also enhance the cytotoxic effects of radionuclides selectively in tumor cells, thereby improving the efficacy of radionuclide therapy. In vitro studies on breast carcinoma (MDA-MB-468 and glioma (U-87 cell lines, has been carried out to verify this proposition. Clonogenicity (macrocolony assay, cell proliferation, cytogenetic damage (micronuclei formation and apoptosis were investigated as parameters of radiation response. Mean inactivation dose D (dose required to reduce the survival from 1 to 0.37, was 48 MBq/ml and 96 MBq/ml for 99 mTc, treated MDA-MB-468 and U-87, respectively. The dose response of growth inhibition, induction of micronuclei formation and apoptosis observed under these conditions, were correlated well with the changes in cell survival. Presence of 2-DG (5 mM during radionuclide exposure (24 hrs, reduced the survival by nearly 2 folds in MDA-MB-468 (from 48.5 MBq to18.5 MBq and by 1.6 folds in U-87 cells (from 96 MBq to 66 Mbq. These results clearly show that the presence of 2-DG during radionuclide exposure, significantly enhances the cytotoxicity, by increasing mitotic as well as interphase death. Further studies to understand the mechanisms of radio-sensitization by 2-DG and preclinical studies using tumor-bearing animals, are required for optimizing the treatment schedule.

  11. Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells.

    Science.gov (United States)

    Zhang, Ding; Liu, Jingying; Gao, Jianfeng; Shahzad, Muhammad; Han, Zhaoqing; Wang, Zhi; Li, Jiakui; Sjölinder, Hong

    2014-01-01

    Cadmium ions (Cd2+) have been reported to accumulate in bovine tissues, although Cd2+ cytotoxicity has not been investigated thoroughly in this species. Zinc ions (Zn2+) have been shown to antagonize the toxic effects of heavy metals such as Cd2+ in some systems. The present study investigated Cd2+ cytotoxicity in Madin-Darby bovine kidney (MDBK) epithelial cells, and explored whether this was modified by Zn2+. Exposure to Cd2+ led to a dose- and time-dependent increase in apoptotic cell death, with increased intracellular levels of reactive oxygen species and mitochondrial damage. Zn2+ supplementation alleviated Cd2+-induced cytotoxicity and this protective effect was more obvious when cells were exposed to a lower concentration of Cd2+ (10 μM), as compared to 50 μM Cd2+. This indicated that high levels of Cd2+ accumulation might induce irreversible damage in bovine kidney cells. Metallothioneins (MTs) are metal-binding proteins that play an essential role in heavy metal ion detoxification. We found that co-exposure to Zn2+ and Cd2+ synergistically enhanced RNA and protein expression of MT-1, MT-2, and the metal-regulatory transcription factor 1 in MDBK cells. Notably, addition of Zn2+ reduced the amounts of cytosolic Cd2+ detected following MDBK exposure to 10 μM Cd2+. These findings revealed a protective role of Zn2+ in counteracting Cd2+ uptake and toxicity in MDBK cells, indicating that this approach may provide a means to protect livestock from excessive Cd2+ accumulation.

  12. Synthesis, characterization, plasmid cleavage and cytotoxicity of cancer cells by a copper(II) complex of anthracenyl-terpyridine.

    Science.gov (United States)

    Kumar, Amit; Chinta, Jugun Prakash; Ajay, Amrendra Kumar; Bhat, Manoj Kumar; Rao, Chebrolu P

    2011-11-01

    Metallo-organic compounds are interesting to study for their antitumor activity and related applications. This paper deals with the syntheses, characterization, structure determination of a copper complex of anthracenyl terpyridine (1) and its plasmid cleavage and cytotoxicity towards different cancer cell lines. The complex binds CT-DNA through partial intercalation mode. The plasmid cleavage studies carried out using pBR322 and pUC18 resulted in the formation of all the three forms of the plasmid DNA. Plasmid cleavage studies carried out with a non-redoxable Zn(2+) complex (2) supported the role of the redox activity of copper in 1. The complex 1 showed remarkable antiproliferative activity against cancer cell lines, viz., cervical (HeLa, SiHa, CaSki), breast (MCF-7), liver (HepG2) and lung (H1299). A considerable lowering was observed in the IC(50) values of HPV-infected (viz., HeLa, SiHa, CaSki) vs. non-HPV-infected cell lines (MCF-7, HepG2, H1299). Antiproliferative activity of 1 was found to be much higher than the carboplatin when treated with the same cell lines. Incubation of the cells with 1 results in granular structures only with the HPV-infected cells and not with others as studied by phase contrast and fluorescence microscopy. The lower IC(50) value observed in case of 1 with HPV-infected cell lines may be correlated with the involvement of HPV oncoprotein. The role of HPV has been further augmented by transfecting the MCF-7 cells (originally not possessing HPV copy) with e6 oncoprotein cDNA. To our knowledge this is the first copper complex that causes cell death by interacting with HPV oncoprotein followed by exhibition of remarkable antiproliferative activity.

  13. Synthesis, characterization, plasmid cleavage and cytotoxicity of cancer cells by a copper(II) complex of anthracenyl-terpyridine.

    Science.gov (United States)

    Kumar, Amit; Chinta, Jugun Prakash; Ajay, Amrendra Kumar; Bhat, Manoj Kumar; Rao, Chebrolu P

    2011-11-01

    Metallo-organic compounds are interesting to study for their antitumor activity and related applications. This paper deals with the syntheses, characterization, structure determination of a copper complex of anthracenyl terpyridine (1) and its plasmid cleavage and cytotoxicity towards different cancer cell lines. The complex binds CT-DNA through partial intercalation mode. The plasmid cleavage studies carried out using pBR322 and pUC18 resulted in the formation of all the three forms of the plasmid DNA. Plasmid cleavage studies carried out with a non-redoxable Zn(2+) complex (2) supported the role of the redox activity of copper in 1. The complex 1 showed remarkable antiproliferative activity against cancer cell lines, viz., cervical (HeLa, SiHa, CaSki), breast (MCF-7), liver (HepG2) and lung (H1299). A considerable lowering was observed in the IC(50) values of HPV-infected (viz., HeLa, SiHa, CaSki) vs. non-HPV-infected cell lines (MCF-7, HepG2, H1299). Antiproliferative activity of 1 was found to be much higher than the carboplatin when treated with the same cell lines. Incubation of the cells with 1 results in granular structures only with the HPV-infected cells and not with others as studied by phase contrast and fluorescence microscopy. The lower IC(50) value observed in case of 1 with HPV-infected cell lines may be correlated with the involvement of HPV oncoprotein. The role of HPV has been further augmented by transfecting the MCF-7 cells (originally not possessing HPV copy) with e6 oncoprotein cDNA. To our knowledge this is the first copper complex that causes cell death by interacting with HPV oncoprotein followed by exhibition of remarkable antiproliferative activity. PMID:21709916

  14. Short communication: selective cytotoxicity of curcumin on osteosarcoma cells compared to healthy osteoblasts

    Directory of Open Access Journals (Sweden)

    Chang R

    2014-01-01

    Full Text Available Run Chang,1 Linlin Sun,1 Thomas J Webster1,21Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: Curcumin is a natural phenolic compound extracted from the plant Curcuma longa L. In previous studies, curcumin has been shown to have anticancer, antioxidant, and anti-inflammatory effects. In this study, the cytotoxicity of different concentrations (5, 10, 25, 50, 75, and 100 µM of curcumin dissolved in dimethyl sulfoxide was compared between MG-63 osteosarcoma and healthy human osteoblast cells. Consequently, the viability of osteosarcoma cells was less than 50% at a concentration of 10 µM compared to the control sample without curcumin, but healthy osteoblast cells had at least 80% viability throughout all the concentrations tested. The results demonstrated that MG-63 osteosarcoma cells were much more sensitive in terms of cytotoxicity to curcumin, while the healthy human osteoblasts exhibited a higher healthy viability after 24 hours of curcumin treatment. Therefore, this study showed that at the right concentrations (5 µM to 25 µM, curcumin, along with a proper nanoparticle drug delivery carrier, may selectively kill bone cancer cells over healthy bone cells.Keywords: curcumin, osteosarcoma, human osteoblast, viability, bone cancer

  15. Cytotoxic effect of the biotechnologically-derived justicidin B on human lymphoma cells.

    Science.gov (United States)

    Ilieva, Y; Zhelezova, I; Atanasova, T; Zaharieva, M M; Sasheva, P; Ionkova, I; Konstantinov, S

    2014-11-01

    Purpose of work: The study was aimed to assess the antineoplastic activity of justicidin B in vitro and to search for its general toxicological profile in vivo. The anti-neoplastic activity of the arylnaphthalene lignin, justicidin B, was assessed in a panel of human lymphoma cell lines and compared with etoposide as a reference compound. A screening of the cytotoxicity after 24, 48 and 72 h exposure was performed by the MTT-dye reduction assay. Dose- and time-dependent cytotoxic effect was observed and the IC50 values ranged from 0.17 µM (RPMI-8226, 72 h) to 183 µM (U-266, 24 h) and more than 200 µM (HD-MY-Z, 24 and 48 h). Activation of caspase 3 and 8 was involved in the induction of programmed cell death in DOHH-2 cell line. NF-κB modulation occurred in DOHH-2 and HH cells. The general toxicity in mice after i.p. injection was also tested. The highest applied dose (50 mg/kg = 137.25 µM) did not show any toxicity. Justicidin B possesses definite and potent selective antineoplastic activity, related to its ability to induce programmed cell death in NHL-derived human cell lines at concentrations that can be reached in mice without toxicity. PMID:25048236

  16. Oxidative stress-mediated cytotoxicity of zirconia nanoparticles on PC12 and N2a cells

    Energy Technology Data Exchange (ETDEWEB)

    Asadpour, Elham [Shiraz University of Medical Sciences, Anesthesiology and Critical Care Research Center (Iran, Islamic Republic of); Sadeghnia, Hamid R. [Mashhad University of Medical Sciences, Department of Pharmacology, Faculty of Medicine (Iran, Islamic Republic of); Ghorbani, Ahmad [Mashhad University of Medical Sciences, Pharmacological Research Center of Medicinal Plants (Iran, Islamic Republic of); Sedaghat, Mehran, E-mail: m-sedaghat81@yahoo.com [Mashhad University of Medical Sciences, Department of Neurosurgery (Iran, Islamic Republic of); Boroushaki, Mohammad T., E-mail: boroushakimt@mums.ac.ir [Mashhad University of Medical Sciences, Department of Pharmacology, Faculty of Medicine (Iran, Islamic Republic of)

    2016-01-15

    In recent years, there is a growing interest in the application of nanoparticles like zirconium dioxide (zirconia <100 nm), for many purposes. Since a comprehensive study on the toxic effects of zirconia has not been done, we decided to investigate the effects of zirconia nanoparticles on cultured PC12 and N2a cells. In this study, cytotoxic effect of different concentrations of zirconia nanoparticles at three different time intervals were evaluated using MTT and ROS (reactive oxygen species) assays. Also, Lipid peroxidation, glutathione (GSH) content changes, and DNA damage were measured. Zirconia nanoparticles caused a significant reduction in cell viability and GSH content of the cells, and induce a significant increase in intracellular ROS and MDA content of PC12 and N2a cells. Moreover, it increases the percentage of DNA tail of treated cells as compared with control group. Zirconia nanoparticles have cytotoxic and genotoxic effects in PC12 and N2a cells in a time and concentration-dependent manner in concentration more than 31 µg/mL.

  17. Houttuynia cordata Thunb extract induces cytotoxicity in human nasopharyngeal carcinoma cells: Raman spectroscopic studies

    Science.gov (United States)

    Chen, Weiwei; Li, Zuanfang; Yu, Yun; Lin, Duo; Huang, Hao; Shi, Hong

    2016-01-01

    The molecular mechanisms of cytotoxicity induced by Houttuynia cordata Thunb (HCT) in nasopharyngeal carcinoma (NPC) cells was investigated by Raman spectroscopy (RS). The average Raman spectra of cell groups treated with HCT (0, 62.5, 125, 250, and 500 μg ml-1) for 24 h were measured separately. Compared to the control group, the intensities of the selected bands (1002, 1338, and 1448 cm-1) related to protein, DNA, and lipid in the treatment groups decreased obviously as the concentration of HCT increased. Both cell groups treated with 250 and 500 μg ml-1 of HCT could be differentiated from the control group by principal component analysis (PCA) combined with linear discriminate analysis (LDA) with a diagnostic accuracy of 100%, suggesting that cytotoxicity occurred and that 250 μg ml-1 was the proper dose for treatment. Simultaneously, the Raman spectra of cells treated with different treatment times with 250 μg ml-1 of HCT were obtained. We can get that treatment with HCT decreased cell viability in a dose and time-dependent fashion. The results indicated that the RS combined with PCA-LDA can be used for pharmacokinetics studies of HCT in NPC cells, which could also provide useful data for clinical dosage optimization for HCT.

  18. Oxidative stress-mediated cytotoxicity of zirconia nanoparticles on PC12 and N2a cells

    International Nuclear Information System (INIS)

    In recent years, there is a growing interest in the application of nanoparticles like zirconium dioxide (zirconia <100 nm), for many purposes. Since a comprehensive study on the toxic effects of zirconia has not been done, we decided to investigate the effects of zirconia nanoparticles on cultured PC12 and N2a cells. In this study, cytotoxic effect of different concentrations of zirconia nanoparticles at three different time intervals were evaluated using MTT and ROS (reactive oxygen species) assays. Also, Lipid peroxidation, glutathione (GSH) content changes, and DNA damage were measured. Zirconia nanoparticles caused a significant reduction in cell viability and GSH content of the cells, and induce a significant increase in intracellular ROS and MDA content of PC12 and N2a cells. Moreover, it increases the percentage of DNA tail of treated cells as compared with control group. Zirconia nanoparticles have cytotoxic and genotoxic effects in PC12 and N2a cells in a time and concentration-dependent manner in concentration more than 31 µg/mL

  19. Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells.

    Science.gov (United States)

    Johari-Ahar, Mohammad; Barar, Jaleh; Alizadeh, Ali Mohammad; Davaran, Soodabeh; Omidi, Yadollah; Rashidi, Mohammad-Reza

    2016-01-01

    Methotrexate (MTX), a folic acid derivative, is a potent anticancer used for treatment of different malignancies, but possible initiation of drug resistance to MTX by cancer cells has limited its applications. Nanoconjugates (NCs) of MTX to quantum dots (QDs) may favour the cellular uptake via folate receptors (FRs)-mediated endocytosis that circumvents the efflux functions of cancer cells. We synthesised MTX-conjugated l-cysteine capped CdSe QDs (MTX-QD nanoconjugates) and evaluated their internalisation and cytotoxicity in the KB cells with/without resistancy to MTX. The NCs were fully characterised by high resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and optical spectroscopy. Upon conjugation with MTX, the photoluminescence (PL) properties of QDs altered, while an obvious quenching in PL of QDs was observed after physical mixing. The MTX-QD nanoconjugates efficiently internalised into the cancer cells, and induced markedly high cytotoxicity (IC50, 12.0 µg/mL) in the MTX-resistant KB cells as compared to the free MTX molecules (IC50,105.0 µg/mL), whereas, these values were respectively about 7.0 and 0.6 µg/mL in the MTX-sensitive KB cells. Based on these findings, the MTX-QD nanoconjugates are proposed for the targeted therapy of MTX-resistant cancers, which may provide an improved outcome in the relapsed FR-overexpressing cancers. PMID:26176269

  20. Cytotoxic effect of Eucalyptus citriodora resin on human hepatoma HepG2 cells.

    Science.gov (United States)

    Shen, Kun-Hung; Chen, Zong-Tsi; Duh, Pin-Der

    2012-01-01

    The aim of this study was to evaluate the antiproliferative effect of Eucalyptus citriodora resin (ECR) on human hepatoma HepG2 cells. The results from MTT assay and LDH leakage analysis showed that water extracts of ECR (WEECR) in the dose range of 0-500 μg/ml displayed stronger cytotoxic effects on HepG2 cells than other organic solvent extracts of ECR. By flow cytometry analysis, WEECR slowed down the cell cycle at the G0/G1 phase after 24 h of incubation. Moreover, WEECR treatment induced an apoptotic response in HepG2 cells. WEECR-induced apoptosis was in association with the attenuation of mitochondrial transmembrane potentials (ΔΨ(m)), increased Bax/Bcl-2 ratio and activation of caspase-3. In addition, WEECR contained high concentration of phenolics and flavonoids, which may be responsible for the potent cytotoxicity of WEECR on HepG2 cells. Taken together, WEECR may be a potent antihepatoma agent due to apoptosis in HepG2 cells. PMID:22419432

  1. Rapamycin potentiates cytotoxicity by docetaxel possibly through downregulation of Survivin in lung cancer cells

    Directory of Open Access Journals (Sweden)

    Li Hui

    2011-03-01

    Full Text Available Abstract Background To elucidate whether rapamycin, the inhibitor of mTOR (mammalian target of rapamycin, can potentiate the cytotoxic effect of docetaxel in lung cancer cells and to probe the mechanism underlying such enhancement. Methods Lung cancer cells were treated with docetaxel and rapamycin. The effect on the proliferation of lung cancer cells was evaluated using the MTT method, and cell apoptosis was measured by flow cytometry. Protein expression and level of phosphorylation were assayed using Western Blot method. Results Co-treatment of rapamycin and docetaxel was found to favorably enhance the cytotoxic effect of docetaxel in four lung cancer cell lines. This tumoricidal boost is associated with a reduction in the expression and phosphorylation levels of Survivin and ERK1/2, respectively. Conclusion The combined application of mTOR inhibitor and docetaxel led to a greater degree of cancer cell killing than that by either compound used alone. Therefore, this combination warrants further investigation in its suitability of serving as a novel therapeutic scheme for treating advanced and recurrent lung cancer patients.

  2. Potent in vitro Cytotoxic Effect of Gmelina arborea Roxb. (Verbenaceae on Three Human Cancer Cell lines.

    Directory of Open Access Journals (Sweden)

    David Punitha

    2012-04-01

    Full Text Available Cancer is one of the most common devastating disease affecting millions of people per year. It has been estimated as the second leading cause of death in humans. In the present study, the cytotoxicity of ethanolic leaf extracts of Gmelina arborea (Verbenaceae was tested against Colon cancer (COLO 201, Gastric cancer (HT- 29 and Human oesophagel cancer (TE-2 cell lines using the thiazolyl blue test (MTT assay. Ethanolic leaf extracts of G. arborea was exhibited a prominent inhibitory effect against COLO 201 (IC 50- 20±0.15 mg/ml, HT-29 (IC 50-12±0.32 mg/ml and TE-2 (IC 50- 16±0.05mg/ml under in vitro condition. From the results it could be found that G. arborea ethanolic leaf extract has potent in vitro cytotoxic activity.

  3. Cytotoxic effect of fucoidan extracted from Sargassum cinereum on colon cancer cell line HCT-15.

    Science.gov (United States)

    Somasundaram, Sivasankara Narayani; Shanmugam, Saravanan; Subramanian, Bharathiraja; Jaganathan, Ravindran

    2016-10-01

    The present study was aimed to investigate the antioxidant and cytotoxicity activity against HCT-15 of fucoidan from Sargassum cinereum. Purification of fucoidan was done by DEAE cellulose and dialysis. Physicochemical characterization of fucoidan was analysed by calorimetric assay, FT-IR, HPLC and NMR. The extracted fucoidan contains 65.753% of fucose and 3.7±1.54% of sulphate respectively. HPLC results showed that the fucoidan contains the monosaccharide composition such as fucose, galactose, mannose and xylose. Antioxidant effect of fucoidan in Sargassum Cinereum was determined by DPPH. The maximum DPPH activity was found at the concentration of 100μg, where as the crude extract showed the scavenging activity was 63.58±0.56%. Cytotoxicity effect was done by MTT assay. Fucoidan extract caused about 50% of cell death after 24h of incubation with 75±0.9037μg/ml against HCT-15. PMID:27370748

  4. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    Science.gov (United States)

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ∼1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol.

  5. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells

    Science.gov (United States)

    Bhopale, Kamlesh K.; Falzon, Miriam; Ansari, G. A. S.

    2016-01-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with l,10-PT + ethanol and ~1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I—III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol. PMID:24281792

  6. Cytotoxicity and DNA lesions produced by mitomycin C and porfiromycin in hypoxic and aerobic EMT6 and Chinese hamster ovary cells.

    Science.gov (United States)

    Fracasso, P M; Sartorelli, A C

    1986-08-01

    Solid neoplasms may contain deficient or poorly functional vascular beds, a property that leads to the formation of hypoxic tumor cells, which form a therapeutically resistant cell population within the tumor that is difficult to eradicate by ionizing irradiation and most existing chemotherapeutic agents. As an approach to the therapeutic attack of hypoxic cells, we have measured the cytotoxicity and DNA lesions produced by the bioreductive alkylating agents mitomycin C and porfiromycin, two structurally similar antibiotics, in oxygen-deficient and aerobic cells. Mitomycin C and porfiromycin were preferentially cytotoxic to hypoxic EMT6 cells in culture, with porfiromycin producing a greater differential kill of hypoxic EMT6 cells relative to their oxygenated counterparts than did mitomycin C. Chinese hamster ovary cells were more resistant to these quinone antibiotics; although in this cell line, porfiromycin was significantly more cytotoxic to hypoxic cells than to aerobic cells, and the degree of oxygenation did not affect the toxicity of mitomycin C. Alkaline elution methodology was utilized to study the formation of DNA single-strand breaks and DNA interstrand cross-links produced by mitomycin C and porfiromycin in both EMT6 and Chinese hamster ovary cells. A negligible quantity of DNA single-strand breaks and DNA interstrand cross-links were produced in hypoxic and aerobic Chinese hamster ovary cells by exposure to mitomycin C or porfiromycin, a finding consistent with the considerably lower sensitivity of this cell line to these agents. In EMT6 tumor cells, no single-strand breaks appeared to be produced by these antitumor antibiotics under both hypoxic and aerobic conditions; however, a significant number of DNA interstrand cross-links were formed in this cell line following drug treatment, with substantially more DNA interstrand cross-linking being produced under hypoxic conditions. Mitomycin C and porfiromycin caused the same amount of cross-linking under

  7. Cytotoxicity and Antitumor Properties of a Marine Compound , HESA-A , on Cancer Cells.

    OpenAIRE

    Hojjat Sadeghi- Aliabadi; Amrollah Ahmadi

    2003-01-01

    Majority of the currently available anticancer drugs are designed to have selective toxicity to rapidly dividing cells. Among these agents the focus of many studies are compounds obtained from natural products with high therapeutic index. In this study the cytotoxicity of HESA-A, a marine compound, on cancer and normal cells was evaluated. HESA-A was prepared in normal saline as a stock solution (0.8 mg/ml, pH=7.4), sterilized and further diluted to final concentrations of 0.4, 0.2, 0.1 and 0...

  8. Effects of Ganoderma lucidum polysaccharides on CIK cells proliferation and cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    Xiao-lingZHU; Zhi-binLIN

    2004-01-01

    AIM: To study the effect of Ganoderma lucidum polysaccharides (G/-PS) on proliferation, cytotoxicity and phenotype in cytokine-induced killer (CIK) cells as well as anti-tumor activity of CIK cells induced by GI-PS and cytokines on mice bearing tumor in vivo. METHODS: Nonadherent splenocytes were incubated at 1×109/L in complete medium with IFN-γ (1000 U/mL) 24 h before IL-2 (300U/mL) plus anti-CD3 (50ng/mL) and

  9. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Wingett D

    2016-07-01

    Full Text Available Denise Wingett,1–3 Panagiota Louka,1 Catherine B Anders,2 Jianhui Zhang,4 Alex Punnoose2,41Department of Biological Sciences, 2Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 3Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 4Department of Physics, Boise State University, Boise, ID, USA Abstract: ZnO nanoparticles (NPs have previously been shown to exhibit selective cytotoxicity against certain types of cancerous cells suggesting their potential use in biomedical applications. In this study, we investigate the effect of surface modification of ZnO NPs on their cytotoxicity to both cancerous and primary T cells. Our results show that polyacrylic acid capping produces negatively charged ZnO NPs that are significantly more toxic compared to uncapped positively charged NPs of identical size and composition. In contrast, the greatest selectivity against cancerous cells relative to normal cells is observed with cationic NPs. In addition, differences in NP cytotoxicity inversely correlate with NP hydrodynamic size, propensity for aggregation, and dissolution profiles. The generation of reactive oxygen species (ROS was also observed in the toxicity mechanism with anionic NPs generating higher levels of mitochondrial superoxide without appreciably affecting glutathione levels. Additional experiments evaluated the combined effects of charged ZnO NPs and nontoxic cationic or anionic CeO2 NPs. Results show that the CeO2 NPs offer protective effects against cytotoxicity from anionic ZnO NPs via antioxidant properties. Altogether, study data indicate that surface modification of NPs and resulting changes in their surface charge affect the level of intracellular ROS production, which can be ameliorated by the CeO2 ROS scavenger, suggesting that ROS generation is a dominant mechanism of ZnO NP cytotoxicity. These findings demonstrate the importance of surface electrostatic

  10. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  11. Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines.

    Science.gov (United States)

    Bradshaw, Michael J; Saviola, Anthony J; Fesler, Elizabeth; Mackessy, Stephen P

    2016-08-01

    Snake venoms are mixtures of bioactive proteins and peptides that exhibit diverse biochemical activities. This wide array of pharmacologies associated with snake venoms has made them attractive sources for research into potentially novel therapeutics, and several venom-derived drugs are now in use. In the current study we performed a broad screen of a variety of venoms (61 taxa) from the major venomous snake families (Viperidae, Elapidae and "Colubridae") in order to examine cytotoxic effects toward MCF-7 breast cancer cells and A-375 melanoma cells. MTT cell viability assays of cancer cells incubated with crude venoms revealed that most venoms showed significant cytotoxicity. We further investigated venom from the Red-bellied Blacksnake (Pseudechis porphyriacus); venom was fractionated by ion exchange fast protein liquid chromatography and several cytotoxic components were isolated. SDS-PAGE and MALDI-TOF mass spectrometry were used to identify the compounds in this venom responsible for the cytotoxic effects. In general, viper venoms were potently cytotoxic, with MCF-7 cells showing greater sensitivity, while elapid and colubrid venoms were much less toxic; notable exceptions included the elapid genera Micrurus, Naja and Pseudechis, which were quite cytotoxic to both cell lines. However, venoms with the most potent cytotoxicity were often not those with low mouse LD50s, including some dangerously venomous viperids and Australian elapids. This study confirmed that many venoms contain cytotoxic compounds, including catalytic PLA2s, and several venoms also showed significant differential toxicity toward the two cancer cell lines. Our results indicate that several previously uncharacterized venoms could contain promising lead compounds for drug development.

  12. Generation of cytotoxic T cell against HBcAg using retrovirally transduced dendritic cells

    Institute of Scientific and Technical Information of China (English)

    Chuan-Lin Ding; Kun Yao; Tian-Tai Zhang; Feng Zhou; Lin Xu; Jiang-Ying Xu

    2003-01-01

    AIM: Cytotoxic T lymphocytes (CTLs) play an important role in resolving HBV infection. In the present study, we attempted to evaluate the efficiency of bone marrow-derived dendritic cells (DCs) transduced with recombinant retroviral vector bearing hepatitis B virus (HBV) core gene and the capability of generating CTLs against HBcAg by genetically modified DCs in vivo.METHODS: A retroviral vector containing HBV core gene was constructed. Replicating DC progenitor of C57BL/6 mice was transduced by retroviral vector and continually cultured in the presence of recombinant mouse granulocytemacrophage colony-stimulating factor (rmGM-CSF) and interleukin-4(IL-4) for 6 days. LPS was added and cultured for additional two days. The efficiency of gene transfer was determined by PCR, Western blot and FACS. Transduced DCs immunized C57BL/6 mice subcutaneously 2 times at an oneweek interval. Intracellular IFN-γ and IL-4 of immunized mice lymphocytes were analyzed. Generation of CTLs in lymphooytes stimulated with mitomycin C-treated EL4-C cell which stably expresses HBcAg was determined by LDH release assays.RESULTS: Recombinant retroviral expression vector (pLCSN) was positively detected by PCR as well as enzyme digestion with EcoRI and BamH I. Retroviruses were generated by pLCSN transfection packing cell and the virus titer was 3x10s CFU/ml. Indirect immunofluorescence and FACS showed that HBV core gene was expressed in murine fibroblasts. Transduced bone marrow cells had capability of differentiating into DCsc in vitro in the presence of rmGMCSF and rmIL-4. The result of PCR showed that HBV core gene was integrated into the genome of transduced DCs.Western blot analysis showed that HBV core gene was expressed in DCs. The transduction rate was 28 % determined by FACS. Retroviral transduction had no influence on DCs expressions of CD80 and MHC class Ⅱ. HBcAg specific CTLs and Th1 type immune responses could be generated in the mice by using transduced DCs as antigen

  13. Genotoxicity and cytotoxicity of cisplatin treatment combined with anaesthetics on EAT cells in vivo.

    Science.gov (United States)

    Brozovic, Gordana; Orsolic, Nada; Knezevic, Fabijan; Horvat Knezevic, Anica; Benkovic, Vesna; Sakic, Katarina; Hrgovic, Zlatko; Bendelja, Kreso; Fassbender, Walter J

    2009-06-01

    In this study, DNA damage in tumour cells, as well as irreversible cell damage leading to apoptosis induced in vivo by the combined application of cisplatin and inhalation anaesthetics, was investigated. The genotoxicity of anaesthetics on Ehrlich ascites tumour (EAT) cells of mice, alone or in combined application with cisplatin, was estimated by using the alkaline comet assay. The percentage of EAT cell apoptosis was quantified by flow cytometry. Groups of EAT-bearing mice were (i) treated intraperitoneally with cisplatin, (ii) exposed to repeated anaesthesia with inhalation anaesthetic, and (iii) subjected to combined treatment of exposure to anaesthetics after cisplatin for 3 days. Sevoflurane, halothane and isoflurane caused strong genotoxic effects on tumour cells in vivo. The tested anaesthetics alone showed no direct effect on programmed cell death although sevoflurane and especially halothane decreased the number of living EAT cells in peritoneal cavity lavage. Repeated anaesthesia with isoflurane had stimulatory effects on EAT cell proliferation and inhibited tumour cell apoptosis (6.11%), compared to the control group (10.26%). Cisplatin caused massive apoptosis of EAT cells (41.14%) and decreased the number of living EAT cells in the peritoneal cavity. Combined cisplatin and isoflurane treatment additionally increased EAT cell apoptosis to 51.32%. Combined treatment of mice with cisplatin and all anaesthetics increased the number of living tumour cells in the peritoneal cavity compared to cisplatin treatment of mice alone. These results suggest that the inhalation of anaesthetics may protect tumour cells from the cisplatin-induced genotoxic and cytotoxic effects.

  14. CIK cells from patients with HCC possess strong cytotoxicity to multidrug-resistant cell line Bel-7402/R

    Institute of Scientific and Technical Information of China (English)

    You-Shun Zhang; Fang-Jun Yuan; Guo-Feng Jia; Ji-Fa Zhang; Li-Yi Hu; Ling Huang; Ju Wang; Zong-Qing Dai

    2005-01-01

    AIM: To investigate the cytotoxicity of the cytokine-induced killer (CIK) cells from the post-operation patients with primary hepatocellular carcinoma (HCC) to multidrugresistant (MDR) cell of HCC bothin vitro and in vivo. METHODS: A drug-resistant cell line was established by culturing human HCC cell line Bel-7402 in complete RPMI 1640 medium with increasing concentrations of adriamycin from 10 to 2 000 nmol/L. CIK cells were obtained by inducing the peripheral blood mononuclear cells with rhIFN-γ, monoclonal anti-CD3 antibody, rhIL-1α as well as rhIL-2, which were added into the culture. To detect the cytotoxicityof the CIK cells from HCC patients, the Bel-7402/R was taken as target (T) cells and CIK cells as effect (E) cells. Cytotoxic test was performed and measured by MTT. Asto in vivo test, CIK cells were transfused into patients with HCC. The tumor specimens of the patients were obtained and immunohistochemistry was carried out to detect CD3, CD45, CD45RO as well as CD68. RESULTS: A MDR 1 HCC cell line Bel-7402/R was established. Its MDR1 mRNA overexpressed which was shown by RT PCR; the P-glycoprotein expression increased from 1.32%of parent cells to 54%. CIK cells expanded vigorously bymore than 70-fold and the CD3+CD56+ increased by more than 600-fold after 3-wk incubation on average. The cytotoxicity of CIK from HCC patients to Bel-7402/R was about 50% and to L-02 below 10% (t = 8.87, P<0.01),the same as that of CIK from normal individuals. Each of the 17 patients received 1-5×1010 of CIK celltransfusion. No side effects were observed. After CIK treatment, the tumor tissue nodules formed and a large amount of lymphocytes infiltrated in the liver cancer tissue and CD3, CD45, CD45RO, and CD68 increased greatly which was shown by immunohistochemistry.CONCLUSION: A stable MDR1 HCC cell line has been established which could recover from liquid nitrogen and CIK from HCC patients has strong cytotoxicity to MDR HCC cell. CIK adoptive immunotherapy is safe

  15. Cytotoxic Effects of the Ethanol Bane Skin Extract in Human Prostate Cancer Pc3 Cells

    Science.gov (United States)

    Amiri, Maryam; Kazerouni, Faranak; Namaki, Saeed; Darbandi Tamijani, Hassan; Rahimipour, Hooman; Boroumand, Nasrin; Barghi, Siyamak; Ebrahimi, Nazanin; Gheibi Hayat, Seyed Mohammad

    2016-01-01

    Background: It is extensively supposed that vegetarian diet could affect cancer progress and increase the influence of formal chemotherapy. Objectives: The present study was designed to determine the effect of the ethanol Bane skin extract against chemo resistant prostate cancer PC3 cells. Materials and Methods: PC3 and L929 cells were cultivated and then incubated in the ethanol Bane skin extract with various concentrations of 0.78, 1.5, 3.13, 6.25, 12.5 mg/mL in 3 times 24, 48, 72 hours. Cytotoxic effect of the ethanol Bane skin extract on PC3 and L929 cells was examined by MTT assay after 24, 48, and 72 hours. Morphology of PC3 cells was evaluated by Gimsa staining. Results: The ethanol Bane skin extract inhibited proliferation and caused cell death with IC50 values of 2.8 mg/mL on PC3 cells and the IC50 was 6.1 mg/mL on l929 cells. Morphological changes and apoptotic bodies were observed in PC3 cells faced with the ethanol Bane skin extract by staining with Gimsa. Conclusions: The ethanol Bane skin extract could repress the growth of PC3 cell line. This inhibitory effect of the Bane extract depended on the dose and the time on PC3. The result of this study shows that the ethanol Bane skin extract includes photochemical and inhibitory function against proliferation and inducer of apoptosis in human prostate cancer PC3 cells and also has less cytotoxic effect on l929 than PC3 cells. The ethanol Bane skin extract might be a good candidate for the new herbal anticancer drug. PMID:27482333

  16. Ochratoxin A: induction of (oxidative) DNA damage, cytotoxicity and apoptosis in mammalian cell lines and primary cells

    International Nuclear Information System (INIS)

    Ochratoxin A (OTA) is a nephrotoxic/-carcinogenic mycotoxin, produced by several Aspergillus- and Penicillium-strains. Humans are exposed to OTA via food contamination, a causal relationship of OTA to human endemic Balkan nephropathy is still under debate. Since DNA-adducts of OTA or its metabolites could not be identified unambiguously, its carcinogenic effectiveness might be related to secondary effects, such as oxidative cell damage or cell proliferation. In this study, OTA mediated induction of (oxidative) DNA damage, cytotoxicity (necrosis, growth inhibition, apoptosis) and modulation of glutathione were investigated in cell lines (V79, CV-1) and primary rat kidney cells. After 24 h incubation, viability of V79 cells was strongly decreased by OTA concentrations >2.5 μmol/L, whereas CV-1 cells were clearly less sensitive. Strong growth inhibition occurred in both cell lines (IC50 ∼2 μmol/L). Apoptosis, detected with an immunochemical test and with flow cytometry, was induced by >1 μmol/L OTA. Oxidative DNA damage, detected by comet assay after additional treatment with repair enzymes, was induced in all cell systems already at five-fold lower concentrations. Glutathione in CV-1 cells was depleted after 1 h incubation (>100 μmol/L). In contrast, an increase was measured after 24 h incubation (>0.5 μmol/L). In conclusion, OTA induces oxidative DNA damage at low, not yet cytotoxic concentrations. Oxidative DNA damage might initiate cell transformation eventually in connection with proliferative response following cytotoxic cell death. Both events might represent pivotal factors in the chain of cellular events leading into nephro-carcinogenicity of OTA

  17. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    International Nuclear Information System (INIS)

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  18. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  19. Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection.

    Science.gov (United States)

    Steinbach, Karin; Vincenti, Ilena; Kreutzfeldt, Mario; Page, Nicolas; Muschaweckh, Andreas; Wagner, Ingrid; Drexler, Ingo; Pinschewer, Daniel; Korn, Thomas; Merkler, Doron

    2016-07-25

    Tissue-resident memory T cells (TRM) persist at sites of prior infection and have been shown to enhance pathogen clearance by recruiting circulating immune cells and providing bystander activation. Here, we characterize the functioning of brain-resident memory T cells (bTRM) in an animal model of viral infection. bTRM were subject to spontaneous homeostatic proliferation and were largely refractory to systemic immune cell depletion. After viral reinfection in mice, bTRM rapidly acquired cytotoxic effector function and prevented fatal brain infection, even in the absence of circulating CD8(+) memory T cells. Presentation of cognate antigen on MHC-I was essential for bTRM-mediated protective immunity, which involved perforin- and IFN-γ-dependent effector mechanisms. These findings identify bTRM as an organ-autonomous defense system serving as a paradigm for TRM functioning as a self-sufficient first line of adaptive immunity. PMID:27377586

  20. Selective cytotoxicity of indirect nonequilibrium atmospheric pressure plasma against ovarian clear-cell carcinoma.

    Science.gov (United States)

    Utsumi, Fumi; Kajiyama, Hiroaki; Nakamura, Kae; Tanaka, Hiromasa; Hori, Masaru; Kikkawa, Fumitaka

    2014-01-01

    Ovarian clear cell carcinoma (CCC) is a histological type of epithelial ovarian cancer that is less responsive to chemotherapy and associated with a poorer prognosis than serous and endometrioid carcinoma. Non-thermal atmospheric pressure plasma which produces reactive species has recently led to an explosion of research in plasma medicine. Plasma treatment can be applied to cancer treatment to induce apoptosis and tumor growth arrest. Furthermore, recent studies have shown that a medium exposed to plasma also has an anti-proliferative effect against cancer in the absence of direct exposure to plasma. In this study, we confirmed whether this indirect plasma has an anti-tumor effect against CCC, and investigated whether this efficacy is selective for cancer cells. Non-thermal atmospheric pressure plasma induced apoptosis in CCC cells, while human peritoneal mesothelial cells remained viable. Non-thermal atmospheric pressure plasma exhibits selective cytotoxicity against CCC cells which are resistant to chemotherapy.

  1. Dichlorophen and Dichlorovos mediated genotoxic and cytotoxic assessment on root meristem cells of Allium cepa

    Directory of Open Access Journals (Sweden)

    Sibhghatulla Shaikh

    2012-06-01

    Full Text Available Plants are direct recipients of agro – toxics and therefore important materials for assessing environmental chemicals for genotoxicity. The meristematic mitotic cell of Allium cepa is an efficient cytogenetic material for chromosome aberration assay on environmental pollutants. Onion root tips were grown on moistened filter paper in petri dish at room temperature. Germinated root tips were then exposed to three concentrations of each pesticide for 24 h. About 1 – 2 mm length of root tip was cut, fixed in cornoy’s fixative, hydrolyzed in warm 1 N HCL, stained with acetocarmine and squashed on glass slide. About 3000 cells were scored and classified into interphase and normal or aberrant division stage. Cytotoxicity was determined by comparing the mitotic index (MI of treated cells with that of the negative control. The MI of cells treated with Dichlorophen and Dichlorovos at one or more concentration was half or less than that of control are said to be cytotoxic. Genotoxicity was measured by comparing the number of cells/1000 in aberrant division stages at each dose with the negative control using Mann – Whitney U test. Both Dichlorophen and Dichlorovos are genotoxic at higher concentrations i.e. 0.001%, 0.002% and 0.028%, 0.056% inducing chromosome fragment, chromosome lagging and bridges, stick chromosome and multipolar anaphase.

  2. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92

    International Nuclear Information System (INIS)

    NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-α, IFN-γ), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-κB pathways related with immune response. Our results demonstrated that ATRA suppressed NF-κB activity and prevented IκBα degradation in a dose-dependent way, inhibited IFN-γ production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo

  3. Enhancing the copper(II) complexes cytotoxicity to cancer cells through bound to human serum albumin.

    Science.gov (United States)

    Gou, Yi; Zhang, Yao; Qi, Jinxu; Zhou, Zuping; Yang, Feng; Liang, Hong

    2015-03-01

    We use Schiff-base salicylaldehyde benzoylhydrazone (HL) as the ligand for copper(II), resulting in the complexes [CuCl(L)]·H2O (C1), [CuNO3(L)]·H2O (C2) and [CuBr(L)]2 (C3). We characterize the Cu(II) compounds' interactions with human serum albumin (HSA) using fluorescence spectroscopy and molecular docking. These studies revealed that Cu(II) compounds propensity bound to IIA subdomain of HSA possible by hydrophobic interactions and hydrogen bond. Cu(II) compounds produce intracellular reactive oxygen species (ROS) in cancer cells. Complexes of HSA and copper(II) compounds enhance about 2-fold cytotoxicity in cancer cells but do not raise cytotoxicity levels in normal cells in vitro. Compared with C3 alone, HSA-C3 complex promotes HepG2 cell apoptosis and has a stronger capacity to promote cell cycle arrest at the G2/M phase of HepG2.

  4. Cytotoxic mechanism related to dihydrolipoamide dehydrogenase in Leydig cells exposed to heavy metals

    International Nuclear Information System (INIS)

    Heavy metals are common environmental toxicants with adverse effects on steroid biosynthesis. The importance of mitochondria has been recognized in cytotoxic mechanism of heavy metals on Leydig cells these years. But it is still poorly known. Our previous study reported that dihydrolipoamide dehydrogenase (DLD) located on the mitochondria was significantly decreased in Leydig cells exposed to cadmium, which suggested that DLD might be involved in the cytotoxic effects. Therefore, the altered expression of DLD was validated in rats and R2C cells exposed to cadmium, manganese and lead, and the role of DLD in the steroid synthesis pathway cAMP/PKA-ERK1/2 was investigated in this study. With a low expression of DLD, heavy metals dramatically reduced the levels of steroid hormone by inhibiting the activation of cAMP/PKA, PKC signaling pathway and the steroidogenic enzymes StAR, CYP11A1 and 3β-HSD. After knockdown of DLD in R2C cells, progesterone synthesis was reduced by 40%, and the intracellular concentration of cAMP, protein expression of StAR, 3β-HSD, PKA, and the phosphorylation of ERK1/2 were also decreased. These results highlight that DLD is down-regulation and related to steroid biosynthesis in Leyig cells exposed to heavy metals; cAMP/PKA act as downstream effector molecules of DLD, which activate phosphorylation of ERK1/2 to initiate the steroidogenesis

  5. Cytotoxic activity of some marine brown algae against cancer cell lines.

    Science.gov (United States)

    Khanavi, Mahnaz; Nabavi, Maryam; Sadati, Nargess; Shams Ardekani, Mohammadreza; Sohrabipour, Jelve; Nabavi, Seyed Mohammad B; Ghaeli, Padideh; Ostad, Seyed Nasser

    2010-01-01

    The aim of this study was to investigate the in vitro cytotoxic activity of total extract of MeOH (70%) and partition fractions of hexan, chloroform (CHCL3), ethylacetate (EtOAc) and MeOH-H2O of brown algae species (Sargassum swartzii, Cystoseira myrica, Colpomenia sinuosa) found in the Persian Gulf against in different cell lines including HT-29, Caco-2, T47D, MDA-MB468 and NIH 3T3 cell lines by MTT and AnnexinV-PI assay. The hexan fraction of S. swartzii and C. myrica showed selective cytotoxicity against proliferation of Caco-2 cells (IC50 hexan fraction of C. myrica on T47D parent cells was lower than it was on T47D-TR cells (IC50 99.9 ± 8.11 vs. 143.15 ± 7.80). This finding suggests a role for the MDR-1 in the development of possible future tolerance to the extract. PMID:21157630

  6. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells

    Science.gov (United States)

    Qi, Lei; Lv, Xiujuan; Zhang, Tongwei; Jia, Peina; Yan, Ruiying; Li, Shuli; Zou, Ruitao; Xue, Yuhua; Dai, Liming

    2016-06-01

    A variety of nanomaterials have been developed for ocular diseases. The ability of these nanomaterials to pass through the blood-ocular barrier and their biocompatibility are essential characteristics that must be considered. Bacterial magnetosomes (BMs) are a type of biogenic magnetic nanomaterials synthesized by magnetotactic bacteria. Due to their unique biomolecular membrane shell and narrow size distribution of approximately 30 nm, BMs can pass through the blood-brain barrier. The similarity of the blood-ocular barrier to the blood-brain barrier suggests that BMs have great potential as treatments for ocular diseases. In this work, BMs were isolated from magnetotactic bacteria and evaluated in various cytotoxicity and genotoxicity studies in human retinal pigment epithelium (ARPE-19) cells. The BMs entered ARPE-19 cells by endocytosis after a 6-h incubation and displayed much lower cytotoxicity than chemically synthesized magnetic nanoparticles (MNPs). MNPs exhibited significantly higher genotoxicity than BMs and promoted the expression of Bax (the programmed cell death acceleration protein) and the induction of greater cell necrosis. In BM-treated cells, apoptosis tended to be suppressed via increased expression of the Bcl-2 protein. In conclusion, BMs display excellent biocompatibility and potential for use in the treatment of ocular diseases.

  7. Real-time monitoring of copper ions-induced cytotoxicity by EIS cell chips.

    Science.gov (United States)

    Primiceri, Elisabetta; Chiriacò, Maria Serena; D'Amone, Eliana; Urso, Emanuela; Ionescu, Rodica Elena; Rizzello, Antonia; Maffia, Michele; Cingolani, Roberto; Rinaldi, Ross; Maruccio, Giuseppe

    2010-08-15

    An important goal of biomedical research is the development of tools for high-throughput evaluation of drug effects and cytotoxicity tests. Here we demonstrate EIS cell chips able to monitor cell growth, morphology, adhesion and their changes as a consequence of treatment with drugs or toxic compounds. As a case study, we investigate the uptake of copper ions and its effect on two cell lines: B104 and HeLa cells. For further understanding, we also carried out in parallel with EIS studies, a complete characterization of cell morphology and changes induced by copper ions through complementary methodologies (including state-of-the-art AFM, viability test and Western blot). Our results reveal a strong correlation between EIS data and both MTT test and AFM characterization so our chip can be used as powerful tools in all biology lab in combination with other standard methods giving additional information that can be useful in a complete and deep investigation of a biological process. This chip can be used even alone replacing in vitro drug tests based on conventional biochemical methods, being very cheap and reusable and allowing to perform cytotoxicity tests without using any expensive reagent or equipment.

  8. Cytotoxic activity of the methanolic extract of Turnera diffusa Willd on breast cancer cells.

    Science.gov (United States)

    Avelino-Flores, María Del Carmen; Cruz-López, María del Carmen; Jiménez-Montejo, Fabiola E; Reyes-Leyva, Julio

    2015-03-01

    Turnera diffusa Willd, commonly known as Damiana, is employed in traditional medicine as a stimulant, aphrodisiac, and diuretic. Its leaves and stems are used for flavoring and infusion. Damiana is considered to be safe for medicinal use by the FDA. Pharmacological studies have established the hypoglycemic, antiaromatase, prosexual, estrogenic, antibacterial, and antioxidant activity of T. diffusa. The aim of the present study was to evaluate the possible cytotoxic effect of extracts and organic fractions of this plant on five tumor cell lines (SiHa, C-33, Hep G2, MDA-MB-231, and T-47D) and normal human fibroblasts. The results show that the methanolic extract (TdM) displayed greater activity on MDA-MB-231 breast cancer cells (with an IC50 of 30.67 μg/mL) than on the other cancer cell lines. Four organic fractions of this extract exhibited activity on this cancer cell line. In the most active fraction (F4), two active compounds were isolated, arbutin (1) and apigenin (2). This is the first report of a cytotoxic effect by T. diffusa on cancer cells. The IC50 values suggest that the methanolic extract of T. diffusa has potential as an anticancer therapy. PMID:25299247

  9. Cytotoxicity of superoxide dismutase 1 in cultured cells is linked to Zn2+ chelation.

    Directory of Open Access Journals (Sweden)

    Ann-Sofi Johansson

    Full Text Available Neurodegeneration in protein-misfolding disease is generally assigned to toxic function of small, soluble protein aggregates. Largely, these assignments are based on observations of cultured neural cells where the suspect protein material is titrated directly into the growth medium. In the present study, we use this approach to shed light on the cytotoxic action of the metalloenzyme Cu/Zn superoxide dismutase 1 (SOD1, associated with misfolding and aggregation in amyotrophic lateral sclerosis (ALS. The results show, somewhat unexpectedly, that the toxic species of SOD1 in this type of experimental setting is not an aggregate, as typically observed for proteins implicated in other neuro-degenerative diseases, but the folded and fully soluble apo protein. Moreover, we demonstrate that the toxic action of apoSOD1 relies on the protein's ability to chelate Zn(2+ ions from the growth medium. The decreased cell viability that accompanies this extraction is presumably based on disturbed Zn(2+ homeostasis. Consistently, mutations that cause global unfolding of the apoSOD1 molecule or otherwise reduce its Zn(2+ affinity abolish completely the cytotoxic response. So does the addition of surplus Zn(2+. Taken together, these observations point at a case where the toxic response of cultured cells might not be related to human pathology but stems from the intrinsic limitations of a simplified cell model. There are several ways proteins can kill cultured neural cells but all of these need not to be relevant for neurodegenerative disease.

  10. Interdependence of initial cell density, drug concentration and exposure time revealed by real-time impedance spectroscopic cytotoxicity assay

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Zor, Kinga; Canepa, Silvia;

    2015-01-01

    between the rate of cell death and the initial cell seeding density was found at 2.5 μM doxorubicin concentration, whereas this was not observed at 5 or 100 μM. By sensing the changes in the cell–substrate interaction using impedance spectroscopy under static conditions, the onset of cytotoxicity......We investigated the combined effect of the initial cell density (12 500, 35 000, 75 000, and 100 000 cells cm−2) and concentration of the anti-cancer drug doxorubicin on HeLa cells by performing timedependent cytotoxicity assays using real-time electrochemical impedance spectroscopy. A correlation...

  11. In Vitro Cytotoxic Activity of Origanum vulgare L. on HCT-116 and MDA-MB-231 Cell Lines

    OpenAIRE

    Filip Grbović; Stanković, Milan S.; Milena Ćurčić; Nataša Đorđević; Dragana Šeklić; Marina Topuzović; Snežana Marković

    2013-01-01

    In the present investigation, we examined the cytotoxic effect of methanolic extract from Origanum vulgare on HCT-116 and MDA-MB-231 cell line in vitro. In order to determine the cytotoxic effects we used an MTT viability assay. The results showed that cell growth is significantly lower in extract treated cells compared to untreated control. The effect of inhibition of cell growth was higher in the treatment of HCT-116 cell line than in MDA-MB-231. Based on the results it is determined that O...

  12. Effects of Ganoderma lucidum polysaccharides on proliferation and cytotoxicity of cytokine-induced killer cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-ling ZHU; Zhi-bin LIN

    2005-01-01

    Aim: To study the effects (and the mechanisms thereof) of Ganoderma lucidum polysaccharides (Gl-PS) on the proliferation and the anti-tumor activity of cytokineinduced killer (CIK) cells, and to make use of CIK cells as a means to investigate the interactions between Gl-PS and cytokines. Methods: CIK cells were prepared by using the standard protocol as a positive control. Experimental groups also underwent the standard protocol, except that Gl-PS (400 mg/L or 100 mg/L) was added and the dose of anti-CD3 and interleukin-2 they received was reduced by 50% and 75%, respectively. For negative controls, Gl- PS in the experimental protocol was replaced with soluble starch or methylcellulose (400 mg/L or 100 mg/L).CIK cell proliferation, cytotoxicity, and phenotype weredetermined by using the Trypan blue exclusion method, MTT assay, and flow cytometry. Results: By synergizing cytokines, Gl-PS (400 mg/L or 100 mg/L) could decrease the amount of cytokine in lymphokine activated killer (LAK) cells and CIK cells culture, but had no significant effect on the proliferation, cytotoxicity, or phenotype of LAK cells, or CIK cells induced by cytokines at higher doses alone, in which CIK cells expanded about 80-fold and the main effectors, CD3+NK1.1+ cells, expanded by more than 15%. The cytotoxicity of CIK cells in experimental groups was 79.3%±4.7%, 76.9%±6.8% versus the positive control 80.7%±6.8% against P815 (P>0.05)and 88.9%±5.5%, 84.7%±7.9% versus the positive control 89.8%±4.5% against YAC-1 (P>0.05). The activity of Gl-PS could mostly be blocked by anti-CR3.Conclusion: Gl-PS was shown to be a promising biological response modifier and immune potentiator. The effect of Gl-PS on CIK cells is possibly mediated primarily through complement receptor type 3.

  13. Cytotoxic effects of the novel isoflavone, phenoxodiol, on prostate cancer cell lines

    Indian Academy of Sciences (India)

    Simon Mahoney; Frank Arfuso; Pierra Rogers; Susan Hisheh; David Brown; Michael Millward; Arun Dharmarajan

    2012-03-01

    Phenoxodiol is an isoflavone derivative that has been shown to elicit cytotoxic effects against a broad range of human cancers. We examined the effect of phenoxodiol on cell death pathways on the prostate cell lines LNCaP, DU145 and PC3, representative of different stages of prostate cancer, and its effects on cell death pathways in these cell lines. Cell proliferation assays demonstrated a significant reduction in the rate of cell proliferation after 48 h exposure to phenoxodiol (10 and 30 M). FACS analysis and 3′-end labelling indicated that all three prostate cancer cell lines underwent substantial levels of cell death 48 h after treatment. Mitochondrial membrane depolarization, indicative of early-stage cell death signalling, using JC-1 detection, was also apparent in all cell lines after exposure to phenoxodiol in the absence of caspase-3 activation. Caspase inhibition assays indicated that phenoxodiol operates through a caspase-independent cell death pathway. These data demonstrate that phenoxodiol elicits anti-cancer effects in prostate cancer cell lines representative of early and later stages of development through an as-yet-unknown cell death mechanism. These data warrant the further investigation of phenoxodiol as a potential treatment for prostate cancer.

  14. Ethanolic Extracts of California Mugwort (Artemisia douglasiana Besser) Are Cytotoxic against Normal and Cancerous Human Cells

    Science.gov (United States)

    Somaweera, Himali; Lai, Gary C.; Blackeye, Rachel; Littlejohn, Beverly; Kirksey, Justine; Aguirre, Richard M.; LaPena, Vince; Pasqua, Anna; Hintz, Mary McCarthy

    2013-01-01

    California mugwort (Artemisia douglasiana Besser) is used by many tribes throughout California to treat a variety of conditions, including colds, allergies, and pain. California mugwort is also utilized as women’s medicine. Its use is on the rise outside of Native communities, often without the guidance of a traditional healer or experienced herbalist. Because it has been shown to have antiproliferative activity against plant and animal cells, we investigated whether California mugwort extracts have an effect on normal human cells as well as estrogen receptor positive (ER+) and estrogen receptor negative (ER−) human breast cancer cells. Ethanolic and aqueous extracts of A. douglasiana leaves were tested for cytotoxicity against unstimulated normal human peripheral blood mononuclear cells (hPBMC), as well as against an ER+ human breast cancer cell line (BT-474) and an ER− human breast cancer cell line (MDA-MB-231). An ethanolic leaf extract killed hPBMC, BT-474, and MDA-MB-231 cells with IC50 values of 23.6 ± 0.3, 27 ± 5, and 37 ± 4 μg/ml, respectively. An aqueous extract killed hPBMC with an IC50 value of 60 ± 10 μg/ml, but had no effect on the two cancer cell lines at concentrations up to 100 μg/ml. The results of this study indicate that the cytotoxicity of California mugwort extends to normal human cells, as well as cancerous cells. Therefore, until further is known about the safety of this medicine, caution should be taken when consuming extracts of California mugwort, whether as a tincture or as a tea. PMID:24073389

  15. Cytotoxicity Testing of Temporary Luting Cements with Two- and Three-Dimensional Cultures of Bovine Dental Pulp-Derived Cells

    Directory of Open Access Journals (Sweden)

    Hayriye Esra Ülker

    2013-01-01

    Full Text Available This study evaluated the cytotoxicity of eugenol-containing and eugenol-free temporary luting cements. For cytotoxicity testing, bovine pulp-derived cells transfected with Simian virus 40 Large T antigen were exposed to extracts of eugenol-containing (Rely X Temp E and eugenol-free (Provicol, PreVISION CEM, and Rely X Temp NE temporary luting cements for 24 h. The cytotoxicity of the same materials was also evaluated in a dentin barrier test device using three-dimensional cell cultures of bovine pulp-derived cells. The results of the cytotoxicity studies with two-dimensional cultures of bovine dental pulp-derived cells revealed that cell survival with the extracts of Rely X Temp E, Provicol, PreVISION CEM, and Rely X Temp NE was 89.1%, 84.9%, 92.3%, and 66.8%, respectively. Rely X Temp NE and Provicol showed cytotoxic effects on bovine dental pulp-derived cells (. The results of the dentin barrier test revealed that cell survival with the above-mentioned temporary cement was 101.5%, 91.9%, 93.5%, and 90.6%, respectively. None of the temporary luting cements significantly reduced cell survival compared with the negative control in the dentin barrier test (. Biologically active materials released from temporary luting cements may not influence the dentine-pulp complex if the residual dentine layer is at least 0.5 mm thick.

  16. Cytotoxic evaluation of different fractions of Salvia chorassanica Bunge on MCF-7 and DU 145 cell lines

    Directory of Open Access Journals (Sweden)

    Alireza Golshan

    2016-01-01

    Full Text Available Because of antimicrobial, antioxidant, and anticancer potential, Salvia chorassanica Bunge (Lamiaceae has been considered as a popular herb in Iranian traditional medicine. Previous studies have shown remarkable cytotoxic properties of the methanol, n-hexane and dichloromethane extract of S. chorassanica on human cervical cancer cells. To seek the therapeutic potentials of S. chorassanica, this study was undertaken to evaluate the cytotoxic activities of various extracts of this plant on human breast MCF-7 and prostate cancer DU 145 cells. The DU 145 cells were exposed to different concentrations of plant extracts (1-200 μg/ml. Cytotoxic activities were examined using alamarBlue ® assay and apoptosis was assessed by acridine orange/propodium iodide double staining and evaluation of DNA fragmentation by flow cytometry. Our findings indicated that n-hexane and dichloromethane extracts had more cytotoxic activities against DU 145 and MCF-7 cell lines compared with other extracts (P<0.05. The acridine orange/propodium iodide staining showed apoptogenic properties of n-hexane and dichloromethane extracts which was consequently confirmed by flow cytometric histogram that exhibited an increase in sub-G1 peak in treated cells as compared with untreated cancer cell lines. Taken together, these observations demonstrated cytotoxic effects of S. chorassanica extracts on MCF-7 and DU 145 cell lines which is most likely exerted via apoptosis cell death. Therefore, further investigations on S. chorassanica extracts as potential chemotherapeutic agents are warranted.

  17. Cytotoxic drug sensitivity of Epstein-Barr virus transformed lymphoblastoid B-cells

    Directory of Open Access Journals (Sweden)

    Olah Eva

    2006-11-01

    Full Text Available Abstract Background Epstein-Barr virus (EBV is the causative agent of immunosuppression associated lymphoproliferations such as post-transplant lymphoproliferative disorder (PTLD, AIDS related immunoblastic lymphomas (ARL and immunoblastic lymphomas in X-linked lymphoproliferative syndrome (XLP. The reported overall mortality for PTLD often exceeds 50%. Reducing the immunosuppression in recipients of solid organ transplants (SOT or using highly active antiretroviral therapy in AIDS patients leads to complete remission in 23–50% of the PTLD/ARL cases but will not suffice for recipients of bone marrow grafts. An additional therapeutic alternative is the treatment with anti-CD20 antibodies (Rituximab or EBV-specific cytotoxic T-cells. Chemotherapy is used for the non-responding cases only as the second or third line of treatment. The most frequently used chemotherapy regimens originate from the non-Hodgkin lymphoma protocols and there are no cytotoxic drugs that have been specifically selected against EBV induced lymphoproliferative disorders. Methods As lymphoblastoid cell lines (LCLs are well established in vitro models for PTLD, we have assessed 17 LCLs for cytotoxic drug sensitivity. After three days of incubation, live and dead cells were differentially stained using fluorescent dyes. The precise numbers of live and dead cells were determined using a custom designed automated laser confocal fluorescent microscope. Results Independently of their origin, LCLs showed very similar drug sensitivity patterns against 29 frequently used cytostatic drugs. LCLs were highly sensitive for vincristine, methotrexate, epirubicin and paclitaxel. Conclusion Our data shows that the inclusion of epirubicin and paclitaxel into chemotherapy protocols against PTLD may be justified.

  18. Screening of Venezuelan medicinal plant extracts for cytostatic and cytotoxic activity against tumor cell lines.

    Science.gov (United States)

    Taylor, Peter; Arsenak, Miriam; Abad, María Jesús; Fernández, Angel; Milano, Balentina; Gonto, Reina; Ruiz, Marie-Christine; Fraile, Silvia; Taylor, Sofía; Estrada, Omar; Michelangeli, Fabian

    2013-04-01

    There are estimated to be more than 20,000 species of plants in Venezuela, of which more than 1500 are used for medicinal purposes by indigenous and local communities. Only a relatively small proportion of these have been evaluated in terms of their potential as antitumor agents. In this study, we screened 308 extracts from 102 species for cytostatic and cytotoxic activity against a panel of six tumor cell lines using a 24-h sulphorhodamine B assay. Extracts from Clavija lancifolia, Hamelia patens, Piper san-vicentense, Physalis cordata, Jacaranda copaia, Heliotropium indicum, and Annona squamosa were the most cytotoxic, whereas other extracts from Calotropis gigantea, Hyptis dilatata, Chromolaena odorata, Siparuna guianensis, Jacaranda obtusifolia, Tapirira guianensis, Xylopia aromatica, Protium heptaphyllum, and Piper arboreum showed the greatest cytostatic activity. These results confirm previous reports on the cytotoxic activities of the above-mentioned plants as well as prompting further studies on others such as C. lancifolia and H. dilatata that have not been so extensively studied. PMID:22648665

  19. Cytotoxicity and mutagenicity of cola and grape flavored soft drinks in bone marrow cells of rodents

    Directory of Open Access Journals (Sweden)

    Elisângela Düsman

    2013-03-01

    Full Text Available Due to the large consumption of soft drinks in Brazil and worldwide in recent years and considering that some of the components present in their composition pose potential risks to human health, the aim of this study was to evaluate the cytotoxic and mutagenic potential of specific cola and grape-flavored soft drink brands. Bone marrow cells of Wistar rats were initially treated by gavage with one single dose of Cola or Grape soft drink, which was next offered ad libitum (instead of water for 24 hours. A negative control treatment was performed by administering one single dose of water and a positive control administering cyclophosphamide intraperitoneally. Statistical analysis showed that the Cola and Grape soft drinks studied were not cytotoxic. However, the Cola soft drink proved mutagenic in this experiment treatment time. Therefore, this study serves as a warning about the consumption of Cola-flavored soft drink and for the need for further subchronic and chronic studies on soft drinks in order to evaluate the long term mutagenic and cytotoxic effects of these substances.

  20. Screening of Venezuelan medicinal plant extracts for cytostatic and cytotoxic activity against tumor cell lines.

    Science.gov (United States)

    Taylor, Peter; Arsenak, Miriam; Abad, María Jesús; Fernández, Angel; Milano, Balentina; Gonto, Reina; Ruiz, Marie-Christine; Fraile, Silvia; Taylor, Sofía; Estrada, Omar; Michelangeli, Fabian

    2013-04-01

    There are estimated to be more than 20,000 species of plants in Venezuela, of which more than 1500 are used for medicinal purposes by indigenous and local communities. Only a relatively small proportion of these have been evaluated in terms of their potential as antitumor agents. In this study, we screened 308 extracts from 102 species for cytostatic and cytotoxic activity against a panel of six tumor cell lines using a 24-h sulphorhodamine B assay. Extracts from Clavija lancifolia, Hamelia patens, Piper san-vicentense, Physalis cordata, Jacaranda copaia, Heliotropium indicum, and Annona squamosa were the most cytotoxic, whereas other extracts from Calotropis gigantea, Hyptis dilatata, Chromolaena odorata, Siparuna guianensis, Jacaranda obtusifolia, Tapirira guianensis, Xylopia aromatica, Protium heptaphyllum, and Piper arboreum showed the greatest cytostatic activity. These results confirm previous reports on the cytotoxic activities of the above-mentioned plants as well as prompting further studies on others such as C. lancifolia and H. dilatata that have not been so extensively studied.

  1. INVESTIGATION OF INDUCING EFFECT OF SPECIFIC CYTOTOXICITY OF CTLS BY ANTIGEN PEPTIDES FROM T LYMPHOCYTIC LEUKEMIA CELLS

    Institute of Scientific and Technical Information of China (English)

    张桂梅; 黄波; 李东; 王洪涛; 冯作化

    2003-01-01

    Objective: To investigate the characteristics of specific antitumor immunity induced by antigen peptides mixture from T lymphocytic leukemia cells. Method: Antigen peptides mixtures were prepared from different leukemia cell lines and then bound with Hsp70 in vitro. Human peripheral blood mononuclear cells (PBMC) were cultured in vitro, and activated with Hsp70-antigen peptides. The activated PBMC was cultured continuously in vitro, and used as effector cells in vitro test of cytotoxicity to different target cells. Results: The antigen peptides from different leukemia cell lines were peptides mixture and could activate PBMC effectively if they were presented by Hsp70. The activated PBMC could proliferate in the presence of IL-2 and Hsp70-antigen peptides. The proliferative PBMC had specific cytotoxicity to leukemia cells corresponding to the antigen peptides. PBMC activated by antigen peptides from T lymphocytic leukemia cell lines could effectively kill T lymphocytic leukemia cells, and the cytotoxicity of these PBMC to T lymphocytic leukemia cells was significantly stronger than that of PBMC activated by antigen peptides from other leukemia cells (P < 0.05). PBMC activated by either Hut78-peptides or Molt 4-peptides could effectively kill Jurkat cells. And the cytotoxicity of PBMC activated by Hut78/Molt-4-peptides to Jurkat cells was significantly stronger than that of PBMC activated by either Hut78-peptides or Molt-4-peptides alone (P<0.05).Conclusion: Antigen peptides mixture from T lymphocytic leukemia cell lines can induce specific cytotoxic effect to T lymphocytic leukemia cells. There exists cross-reactivity among antigen peptides mixture from different T lymphocytic leukemia cell lines. The cross-reactivity could be amplified by blending of different antigen peptides from different T lymphocytic leukemia cell lines, suggesting that it is possible to prepare broad-spectrum antigen peptide vaccine against T lymphocytic leukemia by using multiple leukemia

  2. Effector cell mediated cytotoxicity measured by intracellular Granzyme B release in HIV infected subjects

    Directory of Open Access Journals (Sweden)

    Mahajan Supriya D.

    2003-01-01

    Full Text Available CD8+ cytotoxic T lymphocyte (CTL activity is currently believed to be one of the key immunologic mechanisms responsible for the prevention or attenuation of HIV-1 infection. The induction of CD8+ T cell activation may also result in the production of soluble or non-classical lytic factors that are associated with protection from infection or slower disease progression. Traditionally, CD8+ CTL responses have been measured by the classic chromium release assay, monitoring the ability of T cells (Effector cells to lyse radiolabelled HLA – matched “target cells” that express the appropriate antigen-MHC complex. This method is not only labor intensive, semi quantitative assay at best, but also needs fresh, non-cryopreserved cells. Recently, cytokine specific ELISPOT assays or tetrameric MHC-I/ peptide complexes have utilized to directly quantitate circulating CD8+ effector cells, and these assays are more sensitive, quantitative and reproducible than the traditional CTL lysis assay and can also be performed on cryopreserved cells. Although these are reproducible assays for the assessment of soluble antiviral activity secreted by activated T cell populations they can be extremely expensive to perform. We have used FACS Analysis to measure Granzyme B release as a function of cell mediated cytotoxicity. This method helps quantitate the CTL activity and also identifies the phenotype of the cells elucidating this immune response. The method described not only monitors immunological response but also is also simple to perform, precise and extremely time efficient and is ideal for screening a large number of samples.

  3. Cytotoxicity of Thirdhand Smoke and Identification of Acrolein as a Volatile Thirdhand Smoke Chemical That Inhibits Cell Proliferation.

    Science.gov (United States)

    Bahl, Vasundhra; Weng, Nikki J-H; Schick, Suzaynn F; Sleiman, Mohamad; Whitehead, Jacklyn; Ibarra, Allison; Talbot, Prue

    2016-03-01

    Thirdhand smoke (THS) is a mixture of chemicals that remain on indoor surfaces after smoking has ceased. These chemicals can be inhaled, ingested, or absorbed dermally, and thus could impact human health. We evaluated the cytotoxicity and mode of action of fresh and aged THS, the toxicity of volatile organic chemicals (VOCs) in THS, and the molecular targets of acrolein, a VOC in THS. Experiments were done using mouse neural stem cells (mNSC), human pulmonary fibroblasts (hPF), and lung A549 epithelial cells. THS-exposed cotton cloth was extracted in Dulbecco's Eagle Medium and caused cytotoxicity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. THS extracts induced blebbing, immotility, vacuolization, cell fragmentation, severing of microfilaments and depolymerization of microtubules in mNSC. Cytotoxicity was inversely related to headspace volume in the extraction container and was lost upon aging, suggesting that VOCs in THS were cytotoxic. Phenol, 2',5'-dimethyl furan and acrolein were identified as the most cytotoxic VOCs in THS, and in combination, their cytotoxicity increased. Acrolein inhibited proliferation of mNSC and hPF and altered expression of cell cycle regulatory genes. Twenty-four hours of treatment with acrolein decreased expression of transcription factor Dp-1, a factor needed for the G1 to S transition in the cell cycle. At 48 h, WEE1 expression increased, while ANACP1 expression decreased consistent with blocking entry into and completion of the M phase of the cell cycle. This study identified acrolein as a highly cytotoxic VOC in THS which killed cells at high doses and inhibited cell proliferation at low doses. PMID:26719373

  4. Chemistry of Renieramycins. 15. Synthesis of 22-O-Ester Derivatives of Jorunnamycin A and Their Cytotoxicity against Non-Small-Cell Lung Cancer Cells.

    Science.gov (United States)

    Sirimangkalakitti, Natchanun; Chamni, Supakarn; Charupant, Kornvika; Chanvorachote, Pithi; Mori, Nanae; Saito, Naoki; Suwanborirux, Khanit

    2016-08-26

    Eighteen 22-O-ester derivatives of jorunnamycin A (2) were prepared via 2, and their cytotoxicity against human non-small-cell lung cancer (NSCLC) cells was evaluated. Preliminary study of the structure-cytotoxicity relationship revealed that the ester part containing a nitrogen-heterocyclic ring elevated the cytotoxicity of the 22-O-ester derivatives. Among them, 22-O-(4-pyridinecarbonyl) ester 6a is the most potent compound (IC50 1.1 and 1.6 nM), exhibiting 21-fold and 5-fold increases in cytotoxicity against the H292 and H460 NSCLC cell lines, respectively, relative to renieramycin M (1), the major cytotoxic bistetrahydroisoquinolinequinone alkaloid of the Thai blue sponge Xestospongia sp. PMID:27487087

  5. A Potential Daidzein Derivative Enhances Cytotoxicity of Epirubicin on Human Colon Adenocarcinoma Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Yu-Li Lo

    2012-12-01

    Full Text Available In this study, we evaluated the effects of 8-hydroxydaidzein (8HD, an isoflavone isolated from fermented soy germ koji, and epirubicin (Epi, an antineoplastic agent, on the production of reactive oxygen species (ROS. We subsequently correlated the ROS levels to the anticancer mechanisms of Epi and 8HD in human colon adenocarcinoma Caco-2 cells. 8HD enhanced cytotoxicity of Epi and generated a synergistic effect. Epi and/or 8HD treatments increased the hydrogen peroxide and superoxide levels. Combined treatment markedly decreased mRNA expression levels of multidrug resistance protein 1 (MDR1, MDR-associated protein (MRP 1, and MRP2. 8HD significantly intensified Epi intracellular accumulation in Caco-2 cells. 8HD and/or Epi-induced apoptosis, as indicated by the reduced mitochondrial membrane potential and increased sub-G1 phase in cell cycle. Moreover, 8HD and Epi significantly enhanced the mRNA expressions of Bax, p53, caspases-3, -8, and -9. To our best knowledge, this study verifies for the first time that 8HD effectively circumvents MDR in Caco-2 cells through the ROS-dependent inhibition of efflux transporters and p53-mediated activation of both death receptor and mitochondrial pathways of apoptosis. Our findings of 8HD shed light on the future search for potential biotransformed isoflavones to intensify the cytotoxicity of anticancer drugs through simultaneous reversal of pump and nonpump resistance.

  6. Interactive effects of metals as measured in cytotoxicity assays with established fish cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Segner, H.; Schuurmann, G. [Centre for Environmental Research, Leipzig (Germany). Dept. of Chemical Ecotoxicology

    1995-12-31

    The environmental toxicity of chemicals is often judged on the basis of toxicity tests with single compounds. One major drawback of this approach is the fact, that mixture effects occurring in aquatic ecosystems with a multitude of different chemicals are not accounted for. The present work explores the use of cytotoxicity assays with established fish cell lines as a rapid and economic approach to derive basic data on joint toxicity effects of heavy metals. For the assessment of mixture toxicity, concentration addition is taken as the reference model of no interaction, and both isobolographic analysis and calculation of mixture toxicity indices are used to analyze the effect profile of various equitoxic compound mixtures. Cytotoxic endpoints used include neutral red uptake inhibition assay as a measure of cell viability, proliferation measurements to estimate toxic effects on cell growth, and analysis of glutathion contents to estimate metabolic stress effects. The single toxicity of the metals silver, mercury, cadmium, copper, zinc, lead and nickel towards the cell lines RI from rainbow trout liver and RTG-2 from rainbow trout gonads was found to depend on the chemical softness parameter of the cations. The joint effect profile will be discussed in terms of the single effects and softness domain of the heavy metals.

  7. Evaluation of Cassia occidentalis for in vitro cytotoxicity against human cancer cell lines and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Bhagat Madhulika

    2010-01-01

    Full Text Available Objective : To evaluate the in vitro cytotoxicity and antibacterial properties of Cassia occidentalis (whole plant via alcoholic, hydro-alcoholic, and aqueous extracts against eight human cancer cell lines from six different tissues and four bacterial strains. Material and Methods : In vitro cytotoxicity against the human cancer cells, cultured for 48h in presence of different concentrations C. occidentalis extracts and percentage of cell viability, was evaluated using the sulforhodamine-B (SRB assay. The antibacterial activity was performed using the standard protocol against bacterial strains. Results : It was observed that aqueous extract of C. occidentalis (whole plant had more potential than hydro-alcoholic and alcoholic extracts against HCT-15, SW-620, PC-3, MCF-7, SiHa, and OVCAR-5 human cancer cell lines at 100, 30, and 10 μg/ml in a dose-dependent manner. The hydro-alcoholic extract showed potential against Bacillus subtillis. Conclusion : The plant can be explored for the possible development of lead molecules for drug discovery.

  8. Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells

    Directory of Open Access Journals (Sweden)

    M Jamshidiha

    2010-06-01

    Full Text Available "n  "nBackground and the purpose of the study: Etoposide is an antineoplastic agent used in multiple cancers. It is known that etoposide induce cell death via interaction with topoisomerase II; however, the etopoisde cellular response is poorly understood. Upon etoposide induced DNA damage, many stress signaling pathways including JNK are activated. In response to DNA damage, it has been shown that WWOX, a recently introduced tumor suppressor, can be activated. In this study the activation of WWOX and JNK and their interaction following etoposide treatment were evaluated. "nMaterials and Methods:HEK293 cells treated with etoposide were lysed in a time course manner. The whole cell lysates were used to evaluate JNK and WWOX activation pattern using Phospho specific antibodies on western blots. The viability of cells treated with etoposide, JNK specific inhibitor and their combination was examined using MTT assay. "nResults:Findings of this study indicate that WWOX and JNK are activated in a simultaneous way in response to DNA damage. Moreover, JNK inhibition enhances etoposide induced cytotoxicity in HEK293. "nConclusion:Taken together, our results indicate that etoposide induces cytotoxicity and WWOX phosphorylation and the cytotoxicty is augmented by blocking JNK pathway.

  9. Compound A398, a novel podophyllotoxin analogue: cytotoxicity and induction of apoptosis in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Alethéia L Silveira

    Full Text Available Despite advances in oncology research, cancer is one of the leading causes of death worldwide. Thus, there is a demand for the development of more selective and effective antitumor agents. This study showed that A398, a novel podophyllotoxin analogue, was cytotoxic to the HT-29, MCF-7, MOLT-4 and HL-60 tumor cell lines, being less active in human peripheral blood mononuclear cells and normal cell lines FGH and IEC-6. Tests using the HepG2 lineage indicated that its metabolites do not contribute to its cytotoxicity. In the HL-60 cells, A398 induced apoptosis in a time and concentration-dependent manner, promoting mitochondrial depolarization, inhibition of Bcl-2, phosphatidylserine exposure, activation of caspases -8, -9 and -3, and DNA fragmentation. The production of reactive oxygen species does not seem to be a crucial event for the apoptotic process. Pretreatment with specific inhibitors of kinases ERK1/2, JNK and p38 resulted in an increased percentage of death induced by A398. These results indicate that the compound induced apoptosis through activation of intrinsic and extrinsic death pathways with the mechanism involving the inhibition of the MAPKs and Bcl-2. Taken together, our findings suggest that A398 has an anticancer potential, proving itself to be a candidate for preclinical studies.

  10. Effects of soyasaponin I and soyasaponins-rich extract on the alternariol-induced cytotoxicity on Caco-2 cells.

    Science.gov (United States)

    Vila-Donat, Pilar; Fernández-Blanco, Celia; Sagratini, Gianni; Font, Guillermina; Ruiz, María-José

    2015-03-01

    Alternariol (AOH) is a mycotoxin produced by Alternaria spp. Soyasaponin I (Ss-I) is present naturally in legumes, and it has antioxidant properties. Cytotoxic and genotoxic effects of AOH have been demonstrated previously in vitro. In the present study, the cytotoxicity of AOH, Ss-I, and soyasaponins-rich extract from lentils was investigated; as well as, the cytoprotective effects of Ss-I and lentil extracts against AOH induced-cytotoxicity on Caco-2 cells. Cytotoxicity was carried out using MTT and PC assays (AOH: 3.125-100 µM, Ss-I: 3.125-50 µM, and lentil extracts: 1:0-1:32) during 24 h of exposure. Only AOH showed cytotoxic effect. The reduction in cell proliferation ranged from 25% to 47%. Simultaneous combination of Ss-I with AOH (1:1) increased cell proliferation (35%) compared to AOH tested alone. The Ss-I and extracts showed synergistic cytoprotective effects against cytotoxicity induced by AOH on Caco-2 cells. Food commodities containing Ss-I could contribute to diminish the toxicological risk that natural contaminant as AOH in diet can produce to humans.

  11. Effects of soyasaponin I and soyasaponins-rich extract on the alternariol-induced cytotoxicity on Caco-2 cells.

    Science.gov (United States)

    Vila-Donat, Pilar; Fernández-Blanco, Celia; Sagratini, Gianni; Font, Guillermina; Ruiz, María-José

    2015-03-01

    Alternariol (AOH) is a mycotoxin produced by Alternaria spp. Soyasaponin I (Ss-I) is present naturally in legumes, and it has antioxidant properties. Cytotoxic and genotoxic effects of AOH have been demonstrated previously in vitro. In the present study, the cytotoxicity of AOH, Ss-I, and soyasaponins-rich extract from lentils was investigated; as well as, the cytoprotective effects of Ss-I and lentil extracts against AOH induced-cytotoxicity on Caco-2 cells. Cytotoxicity was carried out using MTT and PC assays (AOH: 3.125-100 µM, Ss-I: 3.125-50 µM, and lentil extracts: 1:0-1:32) during 24 h of exposure. Only AOH showed cytotoxic effect. The reduction in cell proliferation ranged from 25% to 47%. Simultaneous combination of Ss-I with AOH (1:1) increased cell proliferation (35%) compared to AOH tested alone. The Ss-I and extracts showed synergistic cytoprotective effects against cytotoxicity induced by AOH on Caco-2 cells. Food commodities containing Ss-I could contribute to diminish the toxicological risk that natural contaminant as AOH in diet can produce to humans. PMID:25542527

  12. Cytotoxic effects of bulk fill composite resins on human dental pulp stem cells.

    Science.gov (United States)

    Şişman, Reyhan; Aksoy, Ayça; Yalçın, Muhammet; Karaöz, Erdal

    2016-01-01

    Five bulk fill composite resins, including SDR, Tetric EvoCeram Bulk Fill (TEC), X-trafil (XTF), Sonic Fill (SF), Filtek Bulk Fill (FBF), were used in this study. Human dental pulp stem cells were cultured in 12-well culture dishes (3 × 104 cells per cm(2)) and stored in an incubator at 37°C and 5% CO2 for 1 day. On days 1, 7, 14, and 21 of co-culture, viable cells were measured using a WST-1 assay. Lower cell viability was observed with XTF and SDR bulk fill composite resins compared to the control group during the WST-1 assay. Although bulk fill composite resins provide advantages in practical applications, they are limited by their cytotoxic properties. (J Oral Sci 58, 299-305, 2016).

  13. Memory lineage relationships in HTLV-1-specific CD8+ cytotoxic T cells

    Science.gov (United States)

    Johnson-Nauroth, Julie M.; Graber, Jerome; Yao, Karen; Jacobson, Steve; Calabresi, Peter A.

    2016-01-01

    Cytotoxic memory T cells play a critical role in combating viral infections; however, in some diseases they may contribute to tissue damage. In HAM/TSP, HTLV-1 Tax 11–19+ cells proliferate spontaneously in vitro and can be tracked using the Tax 11–19 MHC Class I tetramer. Immediately ex vivo, these cells were a mix of CD45RA−/CCR7− TEM and CD45RA+/CCR7− TDiff memory CTL. The subsequent proliferating Tax 11–19 tetramer+ population expressed low levels of IL-7Rα, failed to respond to IL-7 and IL-15, and did not develop a TCM phenotype. Thus, chronic exposure to viral antigen may result in a sustained pool of TEM cells that home to the CNS and mediate the spinal cord pathology seen in this disease. PMID:16740321

  14. Emergence of cytotoxic resistance in cancer cell populations: Single-cell mechanisms and population-level consequences

    Science.gov (United States)

    Lorenzi, Tommaso; Chisholm, Rebecca H.; Lorz, Alexander; Larsen, Annette K.; de Almeida, Luís Neves; Escargueil, Alexandre; Clairambault, Jean

    2016-06-01

    We formulate an individual-based model and a population model of phenotypic evolution, under cytotoxic drugs, in a cancer cell population structured by the expression levels of survival-potential and proliferation-potential. We apply these models to a recently studied experimental system. Our results suggest that mechanisms based on fundamental laws of biology can reversibly push an actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and drug-tolerant cells.

  15. Specific induction of anti-leukemia effects by umbilical cord cell-derived CD8~+ T cytotoxic lymphocytes

    Institute of Scientific and Technical Information of China (English)

    刘芯

    2006-01-01

    Objective To explore the specific anti-leukemia immune response of CD8+ cytotoxic T lymphocyte (CTL) derived from cord blood (CB) ex vivo and evaluate the feasibilities and values of the CTL for specific immunotherapy. Methods Dendritic cells (DC) were induced from mononuclear cells (MNC) by combination cytokines in 10 CB samples. Loading U937 cell lysate antigen on

  16. CYTOTOXICITY OF FLAVONOIDS AND SESQUITERPENE LACTONES FROM ARNICA SPECIES AGAINST THE GLC(4) AND THE COLO-320 CELL-LINES

    NARCIS (Netherlands)

    WOERDENBAG, HJ; MERFORT, [No Value; PASSREITER, CM; SCHMIDT, TJ; WILLUHN, G; VANUDEN, W; PRAS, N; KAMPINGA, HH; KONINGS, AWT

    1994-01-01

    The cytotoxicity of 21 flavonoids and 5 sesquiterpene lactones, as present in Arnica species, was studied in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. Following continuous incubation, mos

  17. Tumor-specific cytotoxic t cells are crucial for efficacy of immunomodulatory antibodies in patients with lung cancer

    NARCIS (Netherlands)

    J.G.J.V. Aerts (Joachim); J.P.J.J. Hegmans (Joost)

    2013-01-01

    textabstractThere is growing evidence that activation of the immune system may be an effective treatment for patients with either small cell lung cancer or non-small cell lung cancer (NSCLC). Immunomodulatory antibodies directed against cytotoxic T cell-associated antigen 4 (CTLA-4/CD152) and progra

  18. IL-6 trans-Signaling-Dependent Rapid Development of Cytotoxic CD8+ T Cell Function

    Directory of Open Access Journals (Sweden)

    Jan P. Böttcher

    2014-09-01

    Full Text Available Immune control of infections with viruses or intracellular bacteria relies on cytotoxic CD8+ T cells that use granzyme B (GzmB for elimination of infected cells. During inflammation, mature antigen-presenting dendritic cells instruct naive T cells within lymphoid organs to develop into effector T cells. Here, we report a mechanistically distinct and more rapid process of effector T cell development occurring within 18 hr. Such rapid acquisition of effector T cell function occurred through cross-presenting liver sinusoidal endothelial cells (LSECs in the absence of innate immune stimulation and known costimulatory signaling. Rather, interleukin-6 (IL-6 trans-signaling was required and sufficient for rapid induction of GzmB expression in CD8+ T cells. Such LSEC-stimulated GzmB-expressing CD8+ T cells further responded to inflammatory cytokines, eliciting increased and protracted effector functions. Our findings identify a role for IL-6 trans-signaling in rapid generation of effector function in CD8+ T cells that may be beneficial for vaccination strategies.

  19. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

    International Nuclear Information System (INIS)

    Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV–Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose–response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

  20. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Arunkumar, Pichaimani [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India); Vedagiri, Hemamalini [Bharathidasan University, Department of Biotechnology (India); Premkumar, Kumpati, E-mail: pkumpati@hotmail.com [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India)

    2013-03-15

    Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV-Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose-response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

  1. Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    Full Text Available Dopamine (DA, a neurotransmitter in the nervous system, has been shown to modulate immune function. We have previously reported that five subtypes of DA receptors, including D1R, D2R, D3R, D4R and D5R, are expressed in T lymphocytes and they are involved in regulation of T cells. However, roles of these DA receptor subtypes and their coupled signal-transduction pathway in modulation of natural killer (NK cells still remain to be clarified. The spleen of mice was harvested and NK cells were isolated and purified by negative selection using magnetic activated cell sorting. After NK cells were incubated with various drugs for 4 h, flow cytometry measured cytotoxicity of NK cells against YAC-1 lymphoma cells. NK cells expressed the five subtypes of DA receptors at mRNA and protein levels. Activation of D1-like receptors (including D1R and D5R with agonist SKF38393 enhanced NK cell cytotoxicity, but activation of D2-like receptors (including D2R, D3R and D4R with agonist quinpirole attenuated NK cells. Simultaneously, SKF38393 elevated D1R and D5R expression, cAMP content, and phosphorylated cAMP-response element-binding (CREB level in NK cells, while quinpirole reduced D3R and D4R expression, cAMP content, and phosphorylated CREB level in NK cells. These effects of SKF38393 were blocked by SCH23390, an antagonist of D1-like receptors, and quinpirole effects were abolished by haloperidol, an antagonist of D2-like receptors. In support these results, H89, an inhibitor of phosphokinase A (PKA, prevented the SKF38393-dependent enhancement of NK cells and forskolin, an activator of adenylyl cyclase (AC, counteracted the quinpirole-dependent suppression of NK cells. These findings show that DA receptor subtypes are involved in modulation of NK cells and suggest that D1-like receptors facilitate NK cells by stimulating D1R/D5R-cAMP-PKA-CREB signaling pathway and D2-like receptors suppress NK cells by inhibiting D3R/D4R-cAMP-PKA-CREB signaling pathway. The

  2. Amino and nitro derivatives of 5,7-dimethoxyflavone from Kaempferia parviflora and cytotoxicity against KB cell line.

    Science.gov (United States)

    Wanich, Suchana; Yenjai, Chavi

    2009-09-01

    Structural modification of 5,7-dimethoxyflavone isolated from Kaempferia parviflora furnished two nitro and seven amino derivatives. Among these, six new (3, 5-6, 8-10) and three known (2, 4, 7) flavonoid derivatives were synthesized. All compounds were evaluated for cytotoxicity against KB cell line using colorimetric method. Compounds 6 and 8 exhibited strong cytotoxicity with IC50 values of 6.80 and 5.84 microg/mL, respectively. PMID:19784572

  3. Cytotoxic and antiproliferative activity of Securidaca longepedunculata aqueous extract on Ehrlich ascites carcinoma cells in Swiss albino mice.

    OpenAIRE

    R A Lawal; M D Ozaslan; O S Odesanmi; I D Karagoz; I H Kilic; O AT Ebuehi

    2012-01-01

    Summary: Securidaca longepedunculata is a savannah shrub found growing in tropical Africa. It is reputed to have more than a hundred medicinal uses and is a major component of anticancer decoctions in Nigeria. An attempt was made in this study to determine the in vitro and in vivo cytotoxic activity and possible pro-apoptotic effect of Securidaca longepedunculata aqueous root bark extract on Ehrlich ascites carcinoma cells. In vitro cytotoxic activity was determined using the Trypan blue assa...

  4. Ganoderma lucidum stimulates NK cell cytotoxicity by inducing NKG2D/NCR activation and secretion of perforin and granulysin.

    Science.gov (United States)

    Chang, Chih-Jung; Chen, Yi-Yuan M; Lu, Chia-Chen; Lin, Chuan-Sheng; Martel, Jan; Tsai, Sheng-Hui; Ko, Yun-Fei; Huang, Tsung-Teng; Ojcius, David M; Young, John D; Lai, Hsin-Chih

    2014-04-01

    Ganoderma lucidum (G. lucidum) is a medicinal mushroom long used in Asia as a folk remedy to promote health and longevity. Recent studies indicate that G. lucidum activates NK cells, but the molecular mechanism underlying this effect has not been studied so far. To address this question, we prepared a water extract of G. lucidum and examined its effect on NK cells. We observed that G. lucidum treatment increases NK cell cytotoxicity by stimulating secretion of perforin and granulysin. The mechanism of activation involves an increased expression of NKG2D and natural cytotoxicity receptors (NCRs), as well as increased phosphorylation of intracellular MAPKs. Our results indicate that G. lucidum induces NK cell cytotoxicity against various cancer cell lines by activating NKG2D/NCR receptors and MAPK signaling pathways, which together culminate in exocytosis of perforin and granulysin. These observations provide a cellular and molecular mechanism to account for the reported anticancer effects of G. lucidum extracts in humans.

  5. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung

    International Nuclear Information System (INIS)

    Our previous work has shown that coarse particulate matter (PM10-2.5) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 ± 3.2 pg/mL to 83.9 ± 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 ± 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5–1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ► We studied very early events (0.5–1 hour) after giving

  6. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death.

    Science.gov (United States)

    Armstrong, Jane L; Hill, David S; McKee, Christopher S; Hernandez-Tiedra, Sonia; Lorente, Mar; Lopez-Valero, Israel; Eleni Anagnostou, Maria; Babatunde, Fiyinfoluwa; Corazzari, Marco; Redfern, Christopher P F; Velasco, Guillermo; Lovat, Penny E

    2015-06-01

    Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease. PMID:25674907

  7. Semi-automated limit-dilution assay and clonal expansion of all T-cell precursors of cytotoxic lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.; Chen, W.F.; Scollay, R.; Shortman, K. (Walter and Eliza Hall Inst. of Medical Research, Parkville (Australia))

    1982-08-13

    A limit-dilution microculture system is described, where almost all precursor T cells of the cytotoxic lineage (CTL-p) develop into extended clones of cytotoxic T cells (CTL), which are then detected with a new radio-autographic /sup 111/In-release assay. The principle is to polyclonally activate all T cells with concanavalin A, to expand the resultant clones over an 8-9 day period in cultures saturated with growth factors, then to detect all clones with cytotoxic function by phytohaemagglutinin mediated lysis of P815 tumour cells. The key variables for obtaining high cloning efficiency are the use of flat-bottomed 96-well culture trays, the use of appropriately irradiated spleen filler cells, and the inclusion of a T-cell growth factor supplement. Cultures are set up at input levels of around one T cell per well. Forty percent of T cells then form CTL clones readily detected by the cytotoxic assay. The lytic activity of the average clone is equivalent to 3000 CTL, but clone size appears to be much larger. The precursor cells are predominantly if not entirely from the Lyt 2/sup +/ T-cell subclass and almost all cells of this subclass form cytolytic clones. Analysis of the frequency of positive cultures shows a good fit to the expected Poisson distribution, with no evidence of the CTL-p frequency estimates being distorted by helper or suppressor effects.

  8. Cytotoxic T Cells in H. pylori-Related Gastric Autoimmunity and Gastric Lymphoma

    Directory of Open Access Journals (Sweden)

    Mathijs P. Bergman

    2010-01-01

    Full Text Available Helicobacter pylori infection is the major cause of gastroduodenal pathologies, but only a minority of infected patients develop gastric B-cell lymphoma, gastric autoimmunity, or other life threatening diseases, as gastric cancer or peptic ulcer. The type of host immune response against H. pylori, particularly the cytolytic effector functions of T cells, is crucial for the outcome of the infection. T cells are potentially able to kill a target via different mechanisms, such as perforins or Fas-Fas ligand interaction. In H. pylori-infected patients with gastric autoimmunity cytolytic T cells, that cross-recognize different epitopes of H. pylori proteins and H+K+-ATPase autoantigen, infiltrate the gastric mucosa and lead to gastric atrophy via long-lasting activation of Fas ligand-mediated appotosis and perforin-induced cytotoxicity. On the other hand, gastric T cells from MALT lymphoma exhibit defective perforin- and Fas-Fas ligand-mediated killing of B cells, with consequent abnormal help for B-cell proliferation, suggesting that deregulated and exhaustive H. pylori-induced T cell-dependent B-cell activation can support both the onset and the promotion of low-grade B-cell lymphoma.

  9. Cisplatin enhances the cytotoxicity of fast neutrons in a murine lymphoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, B.; Benzina, S.; Ganansia-Leymarie, V. [Hopitaux Universitaires, Lab. de Cancerologie Experimentale et de Radiobiologie, Strasbourg CEDEX (France); Denis, J.M. [Universite Catholique de Louvain (UCL-RBNT), Lab. de Radiobiologie et de Radioprotection, Faculte de Medecine, Bruxelles (Belgium); Bergerat, J.P.; Dufour, P. [Hopitaux Universitaires, Lab. de Cancerologie Experimentale et de Radiobiologie, Strasbourg CEDEX (France); Gueulette, J. [Universite Catholique de Louvain (UCL-RBNT), Lab. de Radiobiologie et de Radioprotection, Faculte de Medecine, Bruxelles (Belgium); Bischoff, P. [Hopitaux Universitaires, Lab. de Cancerologie Experimentale et de Radiobiologie, Strasbourg CEDEX (France)]. E-mail: Pierre.Bischoff@ircad.u-strasbg.fr

    2004-02-01

    The utilization of high linear energy transfer (LET) radiations, such as fast neutrons or carbon ions (hadrontherapy), offers promising perspectives in radiotherapy. While it is well known that by combining radiotherapy and chemotherapy, important therapeutic advantages can be obtained to cure cancer, there have been, so far, very few investigations on the effects of treatments combining an irradiation with high-LET particles and cancer drugs. The present study was therefore undertaken to examine the effects of exposure to 65 MeV fast neutrons combined with cisplatin in a murine T cell lymphoma (RDM4) in vitro. The cells were irradiated at doses ranging from 2 to 8 Gy without or with addition of cisplatin shortly before the irradiation, at concentrations between 0.3 and 12.5 {mu}M. These treatments were applied concomitantly. Proliferation and apoptosis were assessed at different time intervals thereafter. The combination of irradiation with cisplatin was found to be more cytotoxic than either treatment alone. Furthermore, the cytotoxicity induced by this cotreatment resulted not only from apoptosis but also from other forms of cell death. (author)

  10. Bioactive Compound Content and Cytotoxic Effect on Human Cancer Cells of Fresh and Processed Yellow Tomatoes

    Directory of Open Access Journals (Sweden)

    Assunta Raiola

    2015-12-01

    Full Text Available Tomato, as a fresh or processed product, has a high nutritional value due to its content of bioactive components such as phenolic compounds. Few studies describe the effect of processing on antioxidant content and the cancer cell growth inhibition activity. In this study we determined the phenolic and ascorbic acid content of three yellow tomato varieties, before and after thermal processing. Moreover, we determined the antioxidative power and tested the effects of tomato extracts on three human cancer cell lines. We found that the amount of phenolic acids (chlorogenic acid and caffeic acid decreased in all the samples after processing, whereas the flavonoid content increased after the heat treatment in two samples. A cytotoxic effect of tomato extracts was observed only after processing. This result well correlates with the flavonoid content after processing and clearly indicates that processed yellow tomatoes have a high content of bioactive compounds endowed with cytotoxicity towards cancer cells, thus opening the way to obtain tomato-based functional foods.

  11. Cytotoxicity of Different Excipients on RPMI 2650 Human Nasal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Tamás Horváth

    2016-05-01

    Full Text Available The nasal route receives a great deal of attention as a non-invasive method for the systemic administration of drugs. For nasal delivery, specific formulations containing excipients are used. Because of the sensitive respiratory mucosa, not only the active ingredients, but also additives need to be tested in appropriate models for toxicity. The aim of the study was to measure the cytotoxicity of six pharmaceutical excipients, which could help to reach larger residence time, better permeability, and increased solubility dissolution rate. The following excipients were investigated on RPMI 2650 human nasal septum tumor epithelial cells: β-d-mannitol, sodium hyaluronate, α and β-cyclodextrin, polyvinyl alcohol and methylcellulose. 3-(4,5-dimethyltiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT dye conversion assay and real-time impedance analysis were used to investigate cytotoxicity. No excipient showed toxicity at 0.3% (w/v concentration or below while 1% concentration a significantly reduced metabolic activity was measured by MTT assay for methylcellulose and cyclodextrins. Using impedance measurements, only β-cyclodextrin (1% was toxic to cells. Mannitol at 1% concentration had a barrier opening effect on epithelial cells, but caused no cellular damage. Based on the results, all additives at 0.3%, sodium hyaluronate and polyvinyl alcohol at 1% concentrations can be safely used for nasal formulations.

  12. Effects of aldicarb and propoxur on cytotoxicity and lipid peroxidation in CHO-K1 cells.

    Science.gov (United States)

    Maran, E; Fernández-Franzón, M; Font, G; Ruiz, M J

    2010-06-01

    Cytotoxic effects of aldicarb, its sulfone and sulfoxide, and propoxur, lipid peroxidation and antioxidant parameters in Chinese Hamster Ovary (CHO-K1) cells were determined. D,L-buthionine-(S,R)-sulfoximine (BSO) was assayed to determine the role of GSH in the protection against carbamate cytotoxicity. Pre-treatment with 60 microM BSO, induced a significant decrease in the glutathione reductase (GR; 64-141%), the glutathione peroxidase (GPx; 10-30%) and the glutathione S-transferase (GST; 59-93%) activities, and its GSH levels (79-85%), while the oxidized glutathione (GSSG) levels significantly increased (64-78%) respect to experiment non-BSO-pretreated. Carbamates BSO pre-treated vs. non-BSO pre-treated showed a significant increase in malondialdehyde (MDA) production (from 13% to 52% vs. 25% to 93%). These data suggest that carbamates could injure CHO-K1 cells via oxidative stress by the increase of MDA production; moreover, BSO enhance the oxidative damage caused by carbamates. However, the glutathione system protects cells from carbamates damage.

  13. L929 cell response to root perforation repair cements: an in vitro cytotoxicity assay.

    Science.gov (United States)

    Miranda, Rosana Belchior; Fidel, Sandra Rivera; Boller, Maria Aparecida Affonso

    2009-01-01

    This study compared the cytotoxicity of an experimental epoxy-resin and calcium hydroxide-based cement (MBPc), gray mineral trioxide aggregate (MTA) and white mineral trioxide aggregate (WMTA) using the agar overlay method with neutral red dye. L929 cells were seeded into 6-well culture plates where 48-h set test materials were placed on the agar overlay, in triplicate. Teflon and natural rubber served as negative and positive controls. After an incubation period of 24 h at 37 degrees C in a humidified atmosphere of 5% CO2 in air, a discolored area around the samples and the positive controls could be observed and measured per quadrant. The mean values were compared and converted into grades to classify the results according to the table of cytotoxicity grades according to the Standard Operating Procedures (SOP) of the Oswaldo Cruz Foundation, Brazil. The nonviable cell areas and the morphological changes in the cells were observed with an inverted microscope. The results showed grade 1 (slight) for the two types of MTA (p>0.05) and grade 2 (mild) for the MBPc (p<0.001). All samples met the requirements of the test as none of the cultures showed reactivity higher than grade 2. PMID:19466226

  14. Novel magnesium alloy Mg–2La caused no cytotoxic effects on cells in physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weizbauer, Andreas, E-mail: weizbauer.andreas@mh-hannover.de [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Str. 31, 30625 Hannover (Germany); Seitz, Jan-Marten [Institute of Materials Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Werle, Peter [ABB AG, Trafoweg 4, 06112 Halle (Germany); Hegermann, Jan [Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover (Germany); Willbold, Elmar [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Str. 31, 30625 Hannover (Germany); Eifler, Rainer [Institute of Materials Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Windhagen, Henning [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); Reifenrath, Janin [Small Animal Clinic, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover (Germany); Waizy, Hazibullah [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany)

    2014-08-01

    Using several different in vitro assays, a new biodegradable magnesium alloy Mg–2La, composed of 98% magnesium and 2% lanthanum, was investigated as a possible implant material for biomedical applications. An in vitro cytotoxicity test, according to EN ISO 10993-5/12, with L929 and human osteoblastic cells identified no toxic effects on cell viability at physiological concentrations (at 50% dilutions and higher). The metabolic activity of human osteoblasts in the 100% extract was decreased to < 70% and was therefore rated as cytotoxic. The degradation rates of Mg–2La were evaluated in phosphate buffered saline and four different cell culture media. The degradation rates were shown to be influenced by the composition of the solution, and the addition of fetal bovine serum slightly accelerated the corrosive process. The results of these in vitro experiments suggest that Mg–2La is a promising candidate for use as an orthopedic implant material. - Highlights: • A new magnesium alloy (Mg–2La) has been developed. • Magnesium alloy Mg–2La revealed no toxic effect in physiological concentrations. • Degradation rates were influenced by the corrosion media. • The addition of fetal bovine serum increased the corrosive process slightly.

  15. Zinc at Sub-Cytotoxic Concentrations Induces Heme Oxygenase-1 Expression in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jing Xue

    2013-07-01

    Full Text Available Background/Aims: This study investigated the effects of zinc on heme oxygenase-1 (HO-1 expression in human cancer cells. Methods/Results: Zinc at sub-cytotoxic concentrations (50-100 μM induces HO-1 expression in the MDA-MB-231 (human breast cancer and A2780 (human ovarian cancer cell lines in a concentration- and time-dependent manner. The induction of HO-1 by zinc was detected after 4-6 hours of treatment, reached maximal level at 8 hours, and declined thereafter. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs that mediated the zinc-induced increase in HO-1 gene transcription, indicating that the nuclear factor (erythroid-derived 2-like 2 (Nrf2 signaling pathway is involved in this event. This assumption was supported by the observations that knockdown of Nrf2 expression compromised the zinc-induced increase in HO-1 gene transcription, and that zinc increased Nrf2 protein expression and the Nrf2 binding to the AREs. Additionally, we found that the zinc-induced HO-1 gene transcription can be enhanced by clioquinol, a zinc ionophore, and reversed by pretreatment with TPEN, a known zinc chelator, indicating that an increase in intracellular zinc levels is responsible for this induction. Conclusion: These findings demonstrate that zinc at sub-cytotoxic concentrations induces HO-1 expression in human cancer cells. The biological significance of this induction merits further investigation.

  16. Novel magnesium alloy Mg–2La caused no cytotoxic effects on cells in physiological conditions

    International Nuclear Information System (INIS)

    Using several different in vitro assays, a new biodegradable magnesium alloy Mg–2La, composed of 98% magnesium and 2% lanthanum, was investigated as a possible implant material for biomedical applications. An in vitro cytotoxicity test, according to EN ISO 10993-5/12, with L929 and human osteoblastic cells identified no toxic effects on cell viability at physiological concentrations (at 50% dilutions and higher). The metabolic activity of human osteoblasts in the 100% extract was decreased to < 70% and was therefore rated as cytotoxic. The degradation rates of Mg–2La were evaluated in phosphate buffered saline and four different cell culture media. The degradation rates were shown to be influenced by the composition of the solution, and the addition of fetal bovine serum slightly accelerated the corrosive process. The results of these in vitro experiments suggest that Mg–2La is a promising candidate for use as an orthopedic implant material. - Highlights: • A new magnesium alloy (Mg–2La) has been developed. • Magnesium alloy Mg–2La revealed no toxic effect in physiological concentrations. • Degradation rates were influenced by the corrosion media. • The addition of fetal bovine serum increased the corrosive process slightly

  17. Cytotoxicity of Different Excipients on RPMI 2650 Human Nasal Epithelial Cells.

    Science.gov (United States)

    Horváth, Tamás; Bartos, Csilla; Bocsik, Alexandra; Kiss, Lóránd; Veszelka, Szilvia; Deli, Mária A; Újhelyi, Gabriella; Szabó-Révész, Piroska; Ambrus, Rita

    2016-01-01

    The nasal route receives a great deal of attention as a non-invasive method for the systemic administration of drugs. For nasal delivery, specific formulations containing excipients are used. Because of the sensitive respiratory mucosa, not only the active ingredients, but also additives need to be tested in appropriate models for toxicity. The aim of the study was to measure the cytotoxicity of six pharmaceutical excipients, which could help to reach larger residence time, better permeability, and increased solubility dissolution rate. The following excipients were investigated on RPMI 2650 human nasal septum tumor epithelial cells: β-d-mannitol, sodium hyaluronate, α and β-cyclodextrin, polyvinyl alcohol and methylcellulose. 3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye conversion assay and real-time impedance analysis were used to investigate cytotoxicity. No excipient showed toxicity at 0.3% (w/v) concentration or below while 1% concentration a significantly reduced metabolic activity was measured by MTT assay for methylcellulose and cyclodextrins. Using impedance measurements, only β-cyclodextrin (1%) was toxic to cells. Mannitol at 1% concentration had a barrier opening effect on epithelial cells, but caused no cellular damage. Based on the results, all additives at 0.3%, sodium hyaluronate and polyvinyl alcohol at 1% concentrations can be safely used for nasal formulations. PMID:27213303

  18. Withania somnifera Induces Cytotoxic and Cytostatic Effects on Human T Leukemia Cells.

    Science.gov (United States)

    Turrini, Eleonora; Calcabrini, Cinzia; Sestili, Piero; Catanzaro, Elena; de Gianni, Elena; Diaz, Anna Rita; Hrelia, Patrizia; Tacchini, Massimo; Guerrini, Alessandra; Canonico, Barbara; Papa, Stefano; Valdrè, Giovanni; Fimognari, Carmela

    2016-01-01

    Cancer chemotherapy is characterized by an elevated intrinsic toxicity and the development of drug resistance. Thus, there is a compelling need for new intervention strategies with an improved therapeutic profile. Immunogenic cell death (ICD) represents an innovative anticancer strategy where dying cancer cells release damage-associated molecular patterns promoting tumor-specific immune responses. The roots of Withania somnifera (W. somnifera) are used in the Indian traditional medicine for their anti-inflammatory, immunomodulating, neuroprotective, and anticancer activities. The present study is designed to explore the antileukemic activity of the dimethyl sulfoxide extract obtained from the roots of W. somnifera (WE). We studied its cytostatic and cytotoxic activity, its ability to induce ICD, and its genotoxic potential on a human T-lymphoblastoid cell line by using different flow cytometric assays. Our results show that WE has a significant cytotoxic and cytostatic potential, and induces ICD. Its proapoptotic mechanism involves intracellular Ca(2+) accumulation and the generation of reactive oxygen species. In our experimental conditions, the extract possesses a genotoxic potential. Since the use of Withania is suggested in different contexts including anti-infertility and osteoarthritis care, its genotoxicity should be carefully considered for an accurate assessment of its risk-benefit profile.

  19. Human purified CD8+ T cells: Ex vivo expansion model to generate a maximum yield of functional cytotoxic cells.

    Science.gov (United States)

    Al-Shanti, Nasser; Aldahoudi, Ziyad

    2007-01-01

    CD8+ T cells are a critical component of the cellular immune response. They play an important role in the control of viral infection and eliminating cells with malignant potential. However, attempts to generate and expand human CD8+ T cells in vitro for an adoptive immunotherapy have been conducted with limitation of the very low frequency of CD8+ T cells in blood. Therefore, several expansion protocols have been developed to obtain large and efficient numbers of human CD8+ T cells for use in adoptive immunotherapies. In this study various common culture conditions using different cytokines IL-2, IL-4, IL-7, IL-10, IL-12 and IL-15 and autologous feeders and sera were investigated to expand human purified CD8+ T cells. The importance and the influence of these factors on the growth and phenotype of CD8+ T cell were assessed by serially sampling cultures using flow cytometry. We demonstrated that combination of IL-2 (50 U/ml) and autologous feeders induced maximal CD8+ T cell proliferation (40-50 folds) compared to other cytokines. Immunophenotypic analysis of cultured cells showed that expanded CD8+ T cells were activated and differentiated. Furthermore our expansion model also demonstrated that expanded CD8+ T cells are functionally cytotoxic active by killing Allogeneic LCLs cells. In conclusion, we have developed a reliable, simple method that uses minimal cell numbers to generate a high yield of functional cytotoxic CD8+ T cells, which can be used for the development of cellular immunotherapies. PMID:17190652

  20. Intracellular trafficking as a determinant of AS-DACA cytotoxicity in rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Stewart Bernard W

    2011-08-01

    Full Text Available Abstract Background Rhabdomyosarcoma (RMS is a malignant soft tissue sarcoma derived from skeletal muscle precursor cells, which accounts for 5-8% of all childhood malignancies. Disseminated RMS represents a major clinical obstacle, and the need for better treatment strategies for the clinically aggressive alveolar RMS subtype is particularly apparent. Previously, we have shown that the acridine-4-carboxamide derivative AS-DACA, a known topoisomerase II poison, is potently cytotoxic in the alveolar RMS cell line RH30, but is 190-fold less active in the embryonal RMS cell line RD. Here, we investigate the basis for this selectivity, and demonstrate in these RMS lines, and in an AS-DACA- resistant subclone of RH30, that AS-DACA-induced cytotoxicity correlates with the induction of DNA double strand breaks. Results We show that inhibition of the multidrug-resistance associated protein (MRP1 has no effect on AS-DACA sensitivity. By exploiting the pH-dependent fluorescence properties of AS-DACA, we have characterized its intracellular distribution, and show that it concentrates in the cell nucleus, as well as in acidic vesicles of the membrane trafficking system. We show that fluorescence microscopy can be used to determine the localization of AS-DACA to the nuclear and cytoplasmic compartments of RMS cells grown as spheroids, penetrance being much greater in RH30 than RD spheroids, and that the vesicular signal leads the way into the spheroid mass. EEA1 and Rab5 proteins, molecular markers expressed on early-endosomal vesicles, are reduced by > 50% in the sensitive cell lines. Conclusion Taking the evidence as a whole, suggests that endosomal vesicle trafficking influences the toxicity of AS-DACA in RMS cells.

  1. Cytotoxic cell involvement in human cutaneous leishmaniasis: assessments in active disease, under therapy and after clinical cure.

    Science.gov (United States)

    Cunha, C F; Ferraz, R; Pimentel, M I F; Lyra, M R; Schubach, A O; Da-Cruz, A M; Bertho, A L

    2016-04-01

    Cutaneous leishmaniasis (CL) is an important public health issue worldwide. The control of Leishmania infection depends on cellular immune mechanisms, and the inflammatory response may contribute to pathogenesis. A beneficial role of CD8(+) T lymphocytes has been proposed; nevertheless, other studies suggest a cytotoxic role of CD8(+) T lymphocytes involved in tissue damage, showing controversial role of these cells. The goal of the current study was to understand the immunopathology of CL and determine the profile of cytotoxic cells--such as CD4(+) T, natural killer and natural killer T cells--that might be involved in triggering immunological mechanisms, and may lead to cure or disease progression. The frequencies of cytotoxic cell populations in peripheral blood, obtained from patients with active disease, during treatment and after clinical healing, were assessed by flow cytometry. Cytotoxicity could not be related to a deleterious role in Leishmania braziliensis infection, as patients with active CL showed similar percentages of degranulation to healthy individuals (HI). Cured patients exhibited a lower percentage of degranulating cells, which may be due to a downregulation of the immune response. The understanding of the immunopathological mechanisms involved in CL and the commitment of cytotoxic cells enables improvements in therapeutic strategies.

  2. Cytotoxic and Antiproliferative Effect of Tepary Bean Lectins on C33-A, MCF-7, SKNSH, and SW480 Cell Lines

    Directory of Open Access Journals (Sweden)

    Carmen Valadez-Vega

    2014-07-01

    Full Text Available For many years, several studies have been employing lectin from vegetables in order to prove its toxic effect on various cell lines. In this work, we analyzed the cytotoxic, antiproliferative, and post-incubatory effect of pure tepary bean lectins on four lines of malignant cells: C33-A; MCF-7; SKNSH, and SW480. The tests were carried out employing MTT and 3[H]-thymidine assays. The results showed that after 24 h of lectin exposure, the cells lines showed a dose-dependent cytotoxic effect, the effect being higher on MCF-7, while C33-A showed the highest resistance. Cell proliferation studies showed that the toxic effect induced by lectins is higher even when lectins are removed, and in fact, the inhibition of proliferation continues after 48 h. Due to the use of two techniques to analyze the cytotoxic and antiproliferative effect, differences were observed in the results, which can be explained by the fact that one technique is based on metabolic reactions, while the other is based on the 3[H]-thymidine incorporated in DNA by cells under division. These results allow concluding that lectins exert a cytotoxic effect after 24 h of exposure, exhibiting a dose-dependent effect. In some cases, the cytotoxic effect is higher even when the lectins are eliminated, however, in other cases, the cells showed a proliferative effect.

  3. 3-bromopyruvate enhanced daunorubicin-induced cytotoxicity involved in monocarboxylate transporter 1 in breast cancer cells.

    Science.gov (United States)

    Liu, Zhe; Sun, Yiming; Hong, Haiyu; Zhao, Surong; Zou, Xue; Ma, Renqiang; Jiang, Chenchen; Wang, Zhiwei; Li, Huabin; Liu, Hao

    2015-01-01

    Increasing evidence demonstrates that the hexokinase inhibitor 3-bromopyruvate (3-BrPA) induces the cell apoptotic death by inhibiting ATP generation in human cancer cells. Interestingly, some tumor cell lines are less sensitive to 3-BrPA-induced apoptosis than others. Moreover, the molecular mechanism of 3-BrPA-trigged apoptosis is unclear. In the present study, we examined the effects of 3-BrPA on the viability of the breast cancer cell lines MDA-MB-231 and MCF-7. We further investigated the potential roles of monocarboxylate transporter 1 (MCT1) in drug accumulation and efflux of breast cancer cells. Finally, we explored whether 3-BrPA enhanced daunorubicin (DNR)-induced cytotoxicity through regulation of MCT1 in breast cancer cells. MTT and colony formation assays were used to measure cell viability. Western blot analysis, flow cytometric analysis and fluorescent microscopy were used to determine the molecular mechanism of actions of MCT1 in different breast cancer cell lines. Whole-body bioluminescence imaging was used to investigate the effect of 3-BrPA in vivo. We found that 3-BrPA significantly inhibited cell growth and induced apoptosis in MCF-7 cell line, but not in MDA-MB-231 cells. Moreover, we observed that 3-BrPA efficiently enhanced DNR-induced cytotoxicity in MCF-7 cells by inhibiting the activity of ATP-dependent efflux pumps. We also found that MCT1 overexpression increased the efficacy of 3-BrPA in MDA-MB-231 cells. 3-BrPA markedly suppressed subcutaneous tumor growth in combination with DNR in nude mice implanted with MCF-7 cells. Lastly, our whole-body bioluminescence imaging data indicated that 3-BrPA promoted DNR accumulation in tumors. These findings collectively suggest that 3-BrPA enhanced DNR antitumor activity in breast cancer cells involved MCT-1, suggesting that inhibition of glycolysis could be an effective therapeutic approach for breast cancer treatment. PMID:26609475

  4. Dynamic visualization the whole process of cytotoxic T lymphocytes killing the B16 tumor cells in vitro

    Science.gov (United States)

    Qi, Shuhong; Zhang, Zhihong

    2016-03-01

    Cytotoxic T lymphocytes (CTLs) played a key role in the immune system to destroy the tumor cells. Although some mechanisms of CTLs killing the tumor cells are revealed already, the dynamic information of CTLs interaction with tumor cells are still not known very clearly. Here we used confocal microscopy to visualize the whole process of CTLs killing the tumor cells in vitro. The imaging data showed that CTLs destroyed the target tumor cells rapidly and efficiently. Several CTLs surrounded one or some tumor cells and the average time for CTLs destroying one tumor cell is just a few minutes in vitro. The study displayed the temporal events of CTLs interacting with tumor cells at the beginning and finally killing them and directly presented the efficient tumor cell cytotoxicity of the CTLs. The results helped us to deeply understand the mechanism of the CTLs destroying the tumor cells and to develop the cancer immunotherapy.

  5. Protective Effect of Curcumin against Ionizing Radiation (IR)-induced Cytotoxicity and Genotoxicity in HepG2 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dong Min; Nasir Uddin, S. M.; Ryu, Tae Ho; Kang, Mi Young; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Ionizing radiation (IR) has many practical applications such as medicine, foods, agricultures, industries, and research laboratories. However, the increasing use of radiation is associated with radiation accidents threatening human health. It is well known that exposure to IR gives rise to genomic alterations, mutagenesis, and cell death. IR is absorbed directly by DNA, leading to various DNA damages (single or double-strand breaks, base damage, and DNA-DNA or DNA-protein cross-linkages) in many living organisms. Therefore, the development of effective and nontoxic radioprotective agents is of considerable interest. Curcumin (C{sub 12}H{sub 20}O{sub 6}, structure is the major yellow component of Curcuma longa with biological activities (antioxidant, anti-proliferative and anti-inflammatory properties). It has been widely used as food and medicine for a long time. The aim of our present study is to investigate the protective effects of curcumin against IR-induced cytotoxicity and genotoxicity in cultured HepG2 cells.

  6. Antibody-Dependent Cell-Mediated Cytotoxicity to Hemagglutinin of Influenza A Viruses After Influenza Vaccination in Humans

    Science.gov (United States)

    Zhong, Weimin; Liu, Feng; Wilson, Jason R.; Holiday, Crystal; Li, Zhu-Nan; Bai, Yaohui; Tzeng, Wen-Pin; Stevens, James; York, Ian A.; Levine, Min Z.

    2016-01-01

    Background. Detection of neutralizing antibodies (nAbs) to influenza A virus hemagglutinin (HA) antigens by conventional serological assays is currently the main immune correlate of protection for influenza vaccines However, current prepandemic avian influenza vaccines are poorly immunogenic in inducing nAbs despite considerable protection conferred. Recent studies show that Ab-dependent cell-mediated cytotoxicity (ADCC) to HA antigens are readily detectable in the sera of healthy individuals and patients with influenza infection. Methods. Virus neutralization and ADCC activities of serum samples from individuals who received either seasonal or a stock-piled H5N1 avian influenza vaccine were evaluated by hemagglutination inhibition assay, microneutralization assay, and an improved ADCC natural killer (NK) cell activation assay. Results. Immunization with inactivated seasonal influenza vaccine led to strong expansion of both nAbs and ADCC-mediating antibodies (adccAbs) to H3 antigen of the vaccine virus in 24 postvaccination human sera. In sharp contrast, 18 individuals vaccinated with the adjuvanted H5N1 avian influenza vaccine mounted H5-specific antibodies with strong ADCC activities despite moderate virus neutralization capacity. Strength of HA-specific ADCC activities is largely associated with the titers of HA-binding antibodies and not with the fine antigenic specificity of anti-HA nAbs. Conclusions. Detection of both nAbs and adccAbs may better reflect protective capacity of HA-specific antibodies induced by avian influenza vaccines.

  7. Characterization of cytotoxic factors of Yersinia pseudotuberculosis using the MDBK cell line.

    Science.gov (United States)

    el-Sukhon, S N; Abu-Harfeil, N

    1998-01-01

    The cytotoxin of four strains of Yersinia pseudotuberculosis was characterized using the MDBK cell line and by application of the MTT colorimetric test. The highest cytotoxin yield was obtained in tryptic soy broth medium after 24 h. It was detected in the cell-free culture filtrate, and treatment of the cells with CHAPS as a membrane detergent did not decrease significantly their cytotoxic activity. The cytotoxin was inhibited by trypsinization and by increasing values of either acidity or alkalinity. The cytotoxin was inactivated partially by heating at 70 degrees C for 20 min and totally at 90 degrees C for 10 min. The results obtained indicate that the cytotoxin is protein in nature and produced mainly as free exotoxin.

  8. Cytotoxic Induction and Photoacoustic Imaging of Breast Cancer Cells Using Astaxanthin-Reduced Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Subramaniyan Bharathiraja

    2016-04-01

    Full Text Available Astaxanthin, a kind of photosynthetic pigment, was employed for gold nanoparticle formation. Nanoparticles were characterized using Ulteraviolet-Visible (UV-Vis spectroscopy, transmission electron microscopy, and X-ray diffraction, and the possible presence of astaxanthin functional groups were analyzed by Fourier transform infrared spectroscopy (FTIR. The cytotoxic effect of synthesized nanoparticles was evaluated against MDA-MB-231 (human breast cancer cells using a tetrazolium-based assay, and synthesized nanoparticles exhibited dose-dependent toxicity. The morphology upon cell death was differentiated through fluorescent microscopy using different stains that predicted apoptosis. The synthesized nanoparticles were applied in ultrasound-coupled photoacoustic imaging to obtain good images of treated cells. Astaxanthin-reduced gold nanoparticle has the potential to act as a promising agent in the field of photo-based diagnosis and therapy.

  9. Non-major histocompatibility complex-restricted cytotoxic activity of blood mononuclear cells stimulated with secreted mycobacterial proteins and other mycobacterial antigens

    DEFF Research Database (Denmark)

    Ravn, P; Pedersen, B K

    1994-01-01

    Several observations indicate that non-major histocompatibility complex (MHC)-restricted cytotoxicity, mediated for example by natural killer cells and lymphokine-activated killer cells, may serve as an important antimicrobial defense mechanism. The purpose of the present study was to investigate...... the influences of different mycobacterial antigens on non-MHC-restricted cytotoxicity and further to investigate the ways by which various lymphocyte subpopulations contribute to the development of this cytotoxicity. Non-MHC-restricted cytotoxicity was induced following stimulation of mononuclear cells......+ cells proliferated and expressed interleukin-2 receptors following stimulation with mycobacterial antigens. Depletion studies after antigen stimulation showed that the cytotoxic effector cells were CD16+ CD56+ and CD4-; the CD4+ cells alone did not mediate non-MHC-restricted cytotoxicity. To evaluate...

  10. Trichomonas vaginalis and Tritrichomonas foetus: interaction with fibroblasts and muscle cells - new insights into parasite-mediated host cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2012-09-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such

  11. THE CYTOTOXIC EFFECTS OF CRUDE BILE ON HUMAN PANCREATIC CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To identify effects of bile acids on pancreatic cancer, The ultrastructure and growth of PANC-1 and MIA PaCa-2 cell lines in crude bile modified medium were studied. Methods The growth of PANC-1 and MIA PaCa-2 cells in RPMI 1640 with or without 1%, 2% and 4% of the purified crude bile (containing total bile acids 10.17mmol/L) was assessed for 2, 4, 6, 8d by using MTT assay to determine inhibitory rate. The cell surface and intracellular ultrastructure of PANC-1 cells was investigated by SEM and TEM at 24h and 48h, respectively. Re sults The proliferation of both cell lines in bile treated medium were greatly retarded (P <0.001). The inhibitory rate of 1%, 2% and 4% bile on Panc-1 cells in 4d were 38%, 60% and 66%, respectively (P <0. 05), on MIA PaCa-2 cells at 4d were 28%, 39% and 52%, respectively (P <0. 05). The cells grown in bile for 48h lost their mi crovilli, their mitochondria and other organelles became vacuolated. Conclusion The bile acids in bile has cytotoxicity on PANC-1 and MIAPACA-2 cells, which may inhibit pancreatic cancer progress in patients clinically.

  12. [Preparation of NK-enriched LAK cells--their potential cytotoxic and ADCC activities].

    Science.gov (United States)

    Kobayashi, Yasunobu; Sudo, Toshimi; Matsushita, Norimasa; Nakao, Masanobu; Tanaka, Yoshinori; Shimizu, Kouichi; Tanigawa, Keishi; Aruga, Atsushi

    2003-10-01

    We examined several culture methods to induce proliferation of natural killer (NK) cells from peripheral blood mononuclear cells (PBMC). In the presence of IL-2, a remarkable proliferation of NK cells was observed when PBMC were co-cultured with MMC-treated K562, which is known as a highly sensitive in vitro target cell for the NK assay. Addition of OK-432 or TNF-alpha and IL-1 beta also induced marked NK proliferation in a dose dependent manner. These NK-enriched lymphokine activated killer (LAK) cells showed highly cytotoxic activities against various MHC class I positive or negative tumor cells. They also showed potent ADCC activities against Herceptin-coated SK-BR-3, a HER2/neu positive breast cancer cell line. These results indicated that NK-enriched LAK cells are potent effector cells, and suggested novel therapeutic strategies for nonspecific immunotherapy as well as target immunotherapy in combination with anticancer antibodies, such as Herceptin. PMID:14619517

  13. Comparative Analysis of Immune Cells Activation and Cytotoxicity upon Exposure Pathogen and Glycoconjugates

    Science.gov (United States)

    Saheb, Entsar; Tarasenko, Olga

    2010-04-01

    Peripheral mononuclear cells (PMNC) including macrophages are key players in the immune responses against pathogens. Any infection could be attenuated if PMNC would be activated and capable to kill pathogen on exposure. It was shown that glycoconjugates (GCs) play an important role in adhesion to, activation, and recognition of pathogens. Nitric oxide (NO) is a regulatory molecule released by immune cells against pathogens that include bacteria, protozoa, helminthes, and fungi. NO is a highly reactive and diffusible molecule that controls replication or intracellular killing of pathogens during infection and immune responses against infections caused by pathogens. Avirulent Bacillus anthracis Sterne spores were used as a model in our study. The purpose of this study was two-fold: A) to analyze PMNC activation through NO production and B) to determine the cytotoxicity effect based on lactate dehydrogenase (LDH) upon exposure to pathogen exerted by GCs. The latter were used "prior to," "during," and "following" PMNC exposure to pathogen in order to modulate immune responses to spores during phagocytosis. Post-phagocytosis study involved the assessment of NO and LDH release by macrophages upon exposure to spores. Results have shown that untreated PMNC released low levels of NO. However, in the presence of GCs, PMNC were activated and produced high levels of NO under all experimental conditions. In addition, the results showed that GC1, GC3 are capable of increasing PMNC activity as evidenced by higher NO levels under the "prior," "during" and "following" to pathogen exposure conditions. On the other hand, GCs were capable of controlling cytotoxicity and decreased LDH levels during phagocytosis of spores. Our findings suggest that GCs stimulate NO production by activating PMNC and decrease cytotoxicity caused by pathogens on PMNC.

  14. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    Science.gov (United States)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  15. Cytotoxic Effects of Biosynthesized Zinc Oxide Nanoparticles on Murine Cell Lines

    Directory of Open Access Journals (Sweden)

    Farideh Namvar

    2015-01-01

    Full Text Available The aim of this study is to evaluate the in vitro cytotoxic activity and cellular effects of previously prepared ZnO-NPs on murine cancer cell lines using brown seaweed (Sargassum muticum aqueous extract. Treated cancer cells with ZnO-NPs for 72 hours demonstrated various levels of cytotoxicity based on calculated IC50 values using MTT assay as follows: 21.7 ± 1.3 μg/mL (4T1, 17.45 ± 1.1 μg/mL (CRL-1451, 11.75 ± 0.8 μg/mL (CT-26, and 5.6 ± 0.55 μg/mL (WEHI-3B, respectively. On the other hand, ZnO-NPs treatments for 72 hours showed no toxicity against normal mouse fibroblast (3T3 cell line. On the other hand, paclitaxel, which imposed an inhibitory effect on WEHI-3B cells with IC50 of 2.25 ± 0.4, 1.17 ± 0.5, and 1.6 ± 0.09 μg/mL after 24, 48, and 72 hours treatment, respectively, was used as positive control. Furthermore, distinct morphological changes were found by utilizing fluorescent dyes; apoptotic population was increased via flowcytometry, while a cell cycle block and stimulation of apoptotic proteins were also observed. Additionally, the present study showed that the caspase activations contributed to ZnO-NPs triggered apoptotic death in WEHI-3 cells. Thus, the nature of biosynthesis and the therapeutic potential of ZnO-NPs could prepare the way for further research on the design of green synthesis therapeutic agents, particularly in nanomedicine, for the treatment of cancer.

  16. Dendritic cells decreased the concomitant expanded Tregs and Tregs related IL-35 in cytokine-induced killer cells and increased their cytotoxicity against leukemia cells.

    Science.gov (United States)

    Pan, Ying; Tao, Qianshan; Wang, Huiping; Xiong, Shudao; Zhang, Rui; Chen, Tianping; Tao, Lili; Zhai, Zhimin

    2014-01-01

    Regulatory T cells (Tregs) are potent immunosuppressive cells and essential for inducing immune tolerance. Recent studies have reported that Tregs and Tregs related cytokines can inhibit the antitumor activity of cytokine-induced killer (CIK) cells, but dendritic cells co-cultured CIK (DC-CIK) cells can be used for induction of a specific immune response by blocking of Tregs and TGF-β, IL-10. As a novel identified cytokine, IL-35 is specially produced by Tregs and plays an essential role in immune regulation. However, it remains unknown whether IL-35 roles in tumor immunotherapy mediated by CIK and DC-CIK cells. In this study, we cultured CIK and DC-CIK cells from the same healthy adult samples, and investigated their phenotype, proliferation, cytotoxic activity against leukemia cell lines K562 and NB4 by FCM and CCK-8, measured IL-35, TGF-β and IL-10 protein by ELISA, detected Foxp3, IL-35 and IL-35 receptor mRNA by Real-time PCR, respectively. We found Tregs and IL-35 concomitantly expanded by a time-dependent way during the generation of CIK cells, but DC significantly down-regulated the expression of them and simultaneously up-regulated the proliferation ability as well as cytotoxic activity of CIK cells against leukemia cell lines. Therefore, our data suggested that DC decreased concomitant expanded Tregs and Tregs related IL-35 in CIK cells and might contribute to improve their cytotoxicity against leukemia cells in vitro.

  17. C22:0- and C24:0-dihydroceramides confer mixed cytotoxicity in T-cell acute lymphoblastic leukemia cell lines.

    Directory of Open Access Journals (Sweden)

    Michael W Holliday

    Full Text Available We previously reported that fenretinide (4-HPR was cytotoxic to acute lymphoblastic leukemia (ALL cell lines in vitro in association with increased levels of de novo synthesized dihydroceramides, the immediate precursors of ceramides. However, the cytotoxic potentials of native dihydroceramides have not been defined. Therefore, we determined the cytotoxic effects of increasing dihydroceramide levels via de novo synthesis in T-cell ALL cell lines and whether such cytotoxicity was dependent on an absolute increase in total dihydroceramide mass versus an increase of certain specific dihydroceramides. A novel method employing supplementation of individual fatty acids, sphinganine, and the dihydroceramide desaturase-1 (DES inhibitor, GT-11, was used to increase de novo dihydroceramide synthesis and absolute levels of specific dihydroceramides and ceramides. Sphingolipidomic analyses of four T-cell ALL cell lines revealed strong positive correlations between cytotoxicity and levels of C22:0-dihydroceramide (ρ = 0.74-0.81, P ≤ 0.04 and C24:0-dihydroceramide (ρ = 0.84-0.90, P ≤ 0.004, but not between total or other individual dihydroceramides, ceramides, or sphingoid bases or phosphorylated derivatives. Selective increase of C22:0- and C24:0-dihydroceramide increased level and flux of autophagy marker, LC3B-II, and increased DNA fragmentation (TUNEL assay in the absence of an increase of reactive oxygen species; pan-caspase inhibition blocked DNA fragmentation but not cell death. C22:0-fatty acid supplemented to 4-HPR treated cells further increased C22:0-dihydroceramide levels (P ≤ 0.001 and cytotoxicity (P ≤ 0.001. These data demonstrate that increases of specific dihydroceramides are cytotoxic to T-cell ALL cells by a caspase-independent, mixed cell death mechanism associated with increased autophagy and suggest that dihydroceramides may contribute to 4-HPR-induced cytotoxicity. The targeted increase of specific acyl chain dihydroceramides

  18. Two new neolignans from Patrinia scabra with potent cytotoxic activity against HeLa and MNK-45 cells.

    Science.gov (United States)

    Di, Lei; Yan, Guo-Qing; Wang, Ling-Yu; Ma, Wei; Wang, Kai-Jin; Li, Ning

    2013-10-01

    Two new neolignans, patrineolignan A (1) and patrineolignan B (2), together with seven known lignans, were isolated from the 90 % aqueous EtOH extract of the roots of Patrinia scabra. Their structures were elucidated on the basis of spectroscopic data (HRESIMS, IR, 1D and 2D NMR) and comparison with literature data. The two new neolignans were evaluated in vitro for cytotoxic properties against human cervical carcinoma HeLa cell line and gastric carcinoma MNK-45 cell line using the microculture tetrazolium assay, and both 1 and 2 exhibited strongly cytotoxic activity against the two tumor cell lines. PMID:23737105

  19. Cryptomoschatone D2 from Cryptocarya mandioccana: cytotoxicity against human cervical carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    CHRISTIANE PIENNA SOARES

    2010-06-01

    Full Text Available

    Among the substances isolated from Cryptocarya sp, some styrylpyrones, such as goniothalamin, demonstrate antiproliferative activity in a broad range of human cell lines. In the present study, we assessed the cytotoxicity of a styrylpyrone (cryptomoschatone D2, isolated from Cryptocarya mandiocanna, in HPV-infected (HeLa and SiHa and uninfected (C33A human cervical carcinoma cell lines and a human lung fibroblast line (MRC-5. The cytotoxicity was tested by the MTT assay. In this assay, cells were treated with cryptomoschatone D2 at 15, 30, 60 or 90 μM for 6, 24 or 48 hours, as well as for 6 hours followed by a post-treatment recovery period of 24, 48 or 72 hours. High cytotoxicity (dose- and timedependent was observed in HeLa, SiHa, C33A and MRC-5 cell lines. Although in general the styrylpyrone cytotoxicity was not significantly different among the cell lines tested, it was apparently stronger in HeLa and C33A than in MRC-5 and SiHa in the 24 or 48-hour treatments. Moreover, HeLa and SiHa were able to recover their ability to proliferate, in direct proportion to the post-treatment recovery time. On the other hand, C33A did not demonstrate a similar post-treatment recovery. We can conclude that cryptomoschatone D2 possesses high dose-dependent or time-dependent cytotoxicity. Keywords: Cell culture. Antiproliferative activity. Styrylpyrone, Cryptomoschatone D2. RESUMO Cryptomoscatona D2 de Cryptocarya mandioccana: atividade citotóxica contra linhagem celular de carcinoma cervical humano Dentre as substâncias isoladas de Cryptocarya sp, algumas estirilpironas, como a goniotalamina, apresentam atividade antiproliferativa em diferentes linhagens celulares. No presente estudo, foram avaliadas as atividades citotóxica de uma estirilpirona (criptomoscatona D2 isolada de Cryptocarya mandiocanna, em linhagens celulares de carcinoma cervical humano infectada por HPV (HeLa e SiHa, não infectada (C33A e fibroblasto pulmonar

  20. Cytotoxicity of Portuguese Propolis: The Proximity of the In Vitro Doses for Tumor and Normal Cell Lines

    Directory of Open Access Journals (Sweden)

    Ricardo C. Calhelha

    2014-01-01

    Full Text Available With a complex chemical composition rich in phenolic compounds, propolis (resinous substance collected by Apis mellifera from various tree buds exhibits a broad spectrum of biological activities. Recently, in vitro and in vivo data suggest that propolis has anticancer properties, but is the cytoxicity of propolis specific for tumor cells? To answer this question, the cytotoxicity of phenolic extracts from Portuguese propolis of different origins was evaluated using human tumor cell lines (MCF7—breast adenocarcinoma, NCI-H460—non-small cell lung carcinoma, HCT15—colon carcinoma, HeLa—cervical carcinoma, and HepG2—hepatocellular carcinoma, and non-tumor primary cells (PLP2. The studied propolis presented high cytotoxic potential for human tumor cell lines, mostly for HCT15. Nevertheless, excluding HCT15 cell line, the extracts at the GI50 obtained for tumor cell lines showed, in general, cytotoxicity for normal cells (PLP2. Propolis phenolic extracts comprise phytochemicals that should be further studied for their bioactive properties against human colon carcinoma. In the other cases, the proximity of the in vitro cytotoxic doses for tumor and normal cell lines should be confirmed by in vivo tests and may highlight the need for selection of specific compounds within the propolis extract.

  1. 17β-Estradiol Suppresses Cytotoxicity and Proliferative Capacity of Murine Splenic NK1.1+ Cells

    Institute of Scientific and Technical Information of China (English)

    Sha Hao; Pengfei Li; Junli Zhao; Yali Hu; Yayi Hou

    2008-01-01

    In order to clarify the effects of 17β-estradiol(E2)on natural killer(NK)cells and the possibly regulatory mechanisms,we obtained highly purified and viable NK cells from C57BL/6J mouse spleen by a magnetic cell sorter(MACS).These cells were treated with E2 and then their cytotoxicity and proliferative capacity were examined.To further investigate the mechanisms on the effect of E2 on NK cells,expressions of activationassociated markers(CD69,CD122)and inhibitory receptors(CD94,Ly49),and intracellular cytokine production Were analyzed.At last,we performed the cDNA microarray to explore the possible involved genes.We found that E2 could suppress NK cell cytotoxicity and proliferative capacity in vitro.E2 reduced NK cell cytotoxicity and proliferative capacity,which may be through influencing the phenotypes and cytokine expression of NK cells, mainly involving CD94 and IFN-γ.Furthermore,regulation of Stat4,Fyn,Sh2d1a,Eat2,Cd244,Irf1,Runx1,Irf7, Irf5,Esrra and Nr5a1 genes may be related to the cytotoxicity,proliferation and cytokine production of E2-mediated purified NK cells.

  2. 17beta-estradiol suppresses cytotoxicity and proliferative capacity of murine splenic NK1.1+ cells.

    Science.gov (United States)

    Hao, Sha; Li, Pengfei; Zhao, Junli; Hu, Yali; Hou, Yayi

    2008-10-01

    In order to clarify the effects of 17beta-estradiol (E2) on natural killer (NK) cells and the possibly regulatory mechanisms, we obtained highly purified and viable NK cells from C57BL/6J mouse spleen by a magnetic cell sorter (MACS). These cells were treated with E2 and then their cytotoxicity and proliferative capacity were examined. To further investigate the mechanisms on the effect of E2 on NK cells, expressions of activation-associated markers (CD69, CD122) and inhibitory receptors (CD94, Ly49), and intracellular cytokine production were analyzed. At last, we performed the cDNA microarray to explore the possible involved genes. We found that E2 could suppress NK cell cytotoxicity and proliferative capacity in vitro. E2 reduced NK cell cytotoxicity and proliferative capacity, which may be through influencing the phenotypes and cytokine expression of NK cells, mainly involving CD94 and IFN-gamma. Furthermore, regulation of Stat4, Fyn, Sh2d1a, Eat2, Cd244, Irf1, Runx1, Irf7, Irf5, Esrra and Nr5a1 genes may be related to the cytotoxicity, proliferation and cytokine production of E2-mediated purified NK cells.

  3. The aryl hydrocarbon receptor: differential contribution to T helper 17 and T cytotoxic 17 cell development.

    Directory of Open Access Journals (Sweden)

    Mark D Hayes

    Full Text Available The aryl hydrocarbon receptor (AhR has been shown to be required for optimal Thelper (Th 17 cell activation. Th17 cells provide immunity against extracellular pathogens and are implicated in autoimmune diseases. Herein, the role of the AhR in cytokine production by Th17, and by the analogous population of T cytotoxic (Tc17 cells, has been examined. Lymph node Tc (CD8(+ and Th (CD4(+ cells were isolated by negative selection from naive AhR(+/- and AhR(-/- mice and polarised to Tc1/Th1 or Tc17/Th17 phenotypes with appropriate cytokines. Cell differentiation was assessed as a function of mRNA and protein (ELISA and flow cytometry expression for interferon (IFN-γ and for key Th17 cytokines. In AhR(+/- mice, Th17 cells displayed an exclusive IL-17 profile, which was markedly inhibited by a selective AhR antagonist to levels observed in AhR knockout mice. Addition of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ markedly enhanced Th17 cell activity in the heterozygotes. In contrast, Tc17 cells polarised into 3 distinct subsets: producing either IL-17 or IFN-γ alone, or both cytokines. Blocking AhR was also detrimental to Tc17 development, with reduced responses recorded in AhR(-/- mice and antagonist-mediated reduction of IL-17 expression in the heterozygotes. However, Tc17 cells were largely refractory to exogenous FICZ, presumably because Tc17 cells express baseline AhR mRNA, but unlike Th17 cells, there is no marked up-regulation during polarisation. Thus, Th17 cell development is more dependent upon AhR activation than is Tc17 cell development, suggesting that endogenous AhR ligands play a much greater role in driving Th17 cell responses.

  4. The aryl hydrocarbon receptor: differential contribution to T helper 17 and T cytotoxic 17 cell development.

    Science.gov (United States)

    Hayes, Mark D; Ovcinnikovs, Vitalijs; Smith, Andrew G; Kimber, Ian; Dearman, Rebecca J

    2014-01-01

    The aryl hydrocarbon receptor (AhR) has been shown to be required for optimal Thelper (Th) 17 cell activation. Th17 cells provide immunity against extracellular pathogens and are implicated in autoimmune diseases. Herein, the role of the AhR in cytokine production by Th17, and by the analogous population of T cytotoxic (Tc)17 cells, has been examined. Lymph node Tc (CD8(+)) and Th (CD4(+)) cells were isolated by negative selection from naive AhR(+/-) and AhR(-/-) mice and polarised to Tc1/Th1 or Tc17/Th17 phenotypes with appropriate cytokines. Cell differentiation was assessed as a function of mRNA and protein (ELISA and flow cytometry) expression for interferon (IFN)-γ and for key Th17 cytokines. In AhR(+/-) mice, Th17 cells displayed an exclusive IL-17 profile, which was markedly inhibited by a selective AhR antagonist to levels observed in AhR knockout mice. Addition of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) markedly enhanced Th17 cell activity in the heterozygotes. In contrast, Tc17 cells polarised into 3 distinct subsets: producing either IL-17 or IFN-γ alone, or both cytokines. Blocking AhR was also detrimental to Tc17 development, with reduced responses recorded in AhR(-/-) mice and antagonist-mediated reduction of IL-17 expression in the heterozygotes. However, Tc17 cells were largely refractory to exogenous FICZ, presumably because Tc17 cells express baseline AhR mRNA, but unlike Th17 cells, there is no marked up-regulation during polarisation. Thus, Th17 cell development is more dependent upon AhR activation than is Tc17 cell development, suggesting that endogenous AhR ligands play a much greater role in driving Th17 cell responses. PMID:25203682

  5. In vitro evaluation of triazenes: DNA cleavage, antibacterial activity and cytotoxicity against acute myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, Vanessa O.; Hoerner, Rosmari; Reetz, Luiz G.B.; Kuhn, Fabio, E-mail: rosmari.ufsm@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Analises Clinicas e Toxicologicas; Coser, Virginia M.; Rodrigues, Jacqueline N.; Bauchspiess, Rita; Pereira, Waldir V. [Hospital Universitario de Santa Maria, RS (Brazil). Dept. de Hematologia-Oncologia; Paraginski, Gustavo L.; Locatelli, Aline; Fank, Juliana de O.; Giglio, Vinicius F.; Hoerner, Manfredo, E-mail: hoerner.manfredo@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2010-07-01

    The asymmetric diazoamines 1-(2-chlorophenyl)-3-(4-carboxyphenyl)triazene (1), 1-(2-fluorophenyl)-3-(4-carboxyphenyl)triazene (2) and 1-(2-fluorophenyl)-3-(4-amidophenyl) triazene (3) were evaluated for their ability to cleave pUC18 and pBSKII plasmid DNA, antibacterial activity and in vitro cytotoxicity against acute myeloid leukemia cells and normal leukocytes using the bioassay of reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The triazenes showed ability to cleave the two types of plasmid DNA: triazene 1 at pH 8.0 and 50 deg C; triazene 2 at pH 6.5 and 37 and 50 deg C; triazene 3 at pH 6.5 and 37 deg C. The compounds presented cytotoxic activity against myeloid leukemia cells. Compound 1 showed high activity against B. cereus (MIC = 32 {mu}g mL{sup -1}). The observation of intermolecular hydrogen bonding in the solid state of compound 3, based on the structural analysis by X-ray crystallography, as well as the results of IR and UV-Vis spectroscopic analyses of compounds 1, 2 and 3 are discussed in the present work. (author)

  6. Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line

    Science.gov (United States)

    Gnana Selvi, B. Clara; Madhavan, J.; Santhanam, Amutha

    2016-09-01

    In recent years researchers were attracted towards marine sources due to the presence of active components in it. Seaweeds were widely used in pharmaceutical research for their known biological activities. The biological synthesis method of silver nanoparticles (AgNPs) using Padina tetrastromatica seaweed extract and their cytotoxicity against breast cancer MCF-7 cells was reported in this study. The synthesized AgNPs using seaweed extract were subjected to x-ray diffraction, UV–visible spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscope, energy dispersive x-ray, zeta potential to elucidate the structural, morphology, size as well as surface potential parameters. An absorption peak at 430 nm in UV-visible spectrum reveals the excitation and surface plasmon resonance of AgNPs. FE-SEM micrographs exhibits the biosynthesized AgNPs, which are pre-dominantly round shaped and the size ranges between 40–50 nm. The zeta potential value of ‑27.6 mV confirms the stable nature of biosynthesized silver nanoparticles. Furthermore, the biological synthesized Ag NPs exhibited a dose-dependent cytotoxicity against human breast cancer cell (MCF-7) and the inhibitory concentration (IC50) was found for AgNPs against MCF-7 at 24 h incubation. Biological method of synthesizing silver nanoparticles shows a environmental friendly property which helps in effective electrifying usage in many fields.

  7. Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line

    Science.gov (United States)

    Gnana Selvi, B. Clara; Madhavan, J.; Santhanam, Amutha

    2016-09-01

    In recent years researchers were attracted towards marine sources due to the presence of active components in it. Seaweeds were widely used in pharmaceutical research for their known biological activities. The biological synthesis method of silver nanoparticles (AgNPs) using Padina tetrastromatica seaweed extract and their cytotoxicity against breast cancer MCF-7 cells was reported in this study. The synthesized AgNPs using seaweed extract were subjected to x-ray diffraction, UV-visible spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscope, energy dispersive x-ray, zeta potential to elucidate the structural, morphology, size as well as surface potential parameters. An absorption peak at 430 nm in UV-visible spectrum reveals the excitation and surface plasmon resonance of AgNPs. FE-SEM micrographs exhibits the biosynthesized AgNPs, which are pre-dominantly round shaped and the size ranges between 40-50 nm. The zeta potential value of -27.6 mV confirms the stable nature of biosynthesized silver nanoparticles. Furthermore, the biological synthesized Ag NPs exhibited a dose-dependent cytotoxicity against human breast cancer cell (MCF-7) and the inhibitory concentration (IC50) was found for AgNPs against MCF-7 at 24 h incubation. Biological method of synthesizing silver nanoparticles shows a environmental friendly property which helps in effective electrifying usage in many fields.

  8. Isoeugenol is a selective potentiator of camptothecin cytotoxicity in vertebrate cells lacking TDP1.

    Science.gov (United States)

    Elsayed, Waheba; El-Shafie, Lamia; Hassan, Mohamed K; Farag, Mohamed A; El-Khamisy, Sherif F

    2016-01-01

    Camptothecin (CPT), a topoisomerase I (TOP1) inhibitor, exhibits anti-tumor activity against a wide range of tumors. Redundancy of TOP1-mediated repair mechanisms is a major challenge facing the efficiency of TOP1-targetting therapies. This study aims to uncover new TOP1 targeting approaches utilising a selection of natural compounds in the presence or absence of tyrosyl DNA phosphodiesterase I (TDP1); a key TOP1-mediated protein-linked DNA break (PDB) repair enzyme. We identify, isoeugenol, a phenolic ether found in plant essential oils, as a potentiator of CPT cytotoxicity in Tdp1 deficient but not proficient cells. Consistent with our cellular data, isoeugenol did not inhibit Tdp1 enzymatic activity in vitro nor it sensitized cells to the PARP1 inhibitor olaparib. However, biochemical analyses suggest that isoeugenol inhibits TDP2 catalytic activity; a pathway that can compensate for the absence of TDP1. Consistent with this, isoeugenol exacerbated etoposide-induced cytotoxicity, which generates TOP2-mediated PDBs for which TDP2 is required for processing. Together, these findings identify isoeugenol as a potential lead compound for developing TDP2 inhibitors and encourage structure-activity relationship studies to shed more light on its utility in drug discovery programs. PMID:27220325

  9. Doppel-induced cytotoxicity in human neuronal SH-SY5Y cells is antagonized by the prion protein

    Institute of Scientific and Technical Information of China (English)

    Ping Li; Kun Xu; Chan Tian; Jun Han; Xiaoping Dong; Chenfang Dong; Yanjun Lei; Bing Shan; Xinli Xiao; Huiying Jiang; Xin Wang; Chen Gao; Qi Shi

    2009-01-01

    Doppel(Dpl)is a prion(PrP)-like protein due to the structural and biochemical similarities;however,the natural functions of Dpl and PrP remain unclear.In this study,a 531-bp human PRND gene sequence encoding Dpl protein was amplified from human peripheral blood leucocytes.Full-length and various truncated human Dpi and PrP proteins were expressed and purified from Escherichia coll.Supplement of the full-length Dpl onto human neuroblastoma cell SH-SY5Y induced remarkable cytotoxicity,and the region responsible for its cytotoxicity was mapped at the middle segment of Dpl [amino acids(aa)81-122].Interestingly,Dpl-induced cytotoxicity was antagonized by the presence of fulllength wild-type PrP.Analysis on fragments of PrP mutants showed that the N-terminal fragment(aa 23-90)of PrP was responsible for the protective activity.A truncated PrP(PrPA32-121)with similar secondary structure as Dpl induced Dpl-like cytotoxicity on SHSY5Y cells.Furthermore,binding of copper ion could enhance the antagonizing effect of PrP on Dpl-induced cytotoxicity.Apoptosis assays revealed that cytotoxicity induced by Dpl occurred through an apoptotic mechanism.These results suggested that the function of Dpi is antagonistic to PrP rather than synergistic.

  10. Cytotoxicity activities of chloroform extract of Cichorium intybus seed against HCT-15 and Vero cell line

    Directory of Open Access Journals (Sweden)

    Prashant Y Mali

    2015-01-01

    Full Text Available Background: Cichorium intybus L., (Asteraceae is well-known as a coffee substitute but is also widely used medicinally to treat various ailments ranging from wounds to diabetes. Other plant parts are also used for liver and cancer disorder. Objective: The objective was to study the cytotoxic potential of chloroform extract of C. intybus seed against HCT-15 and Vero (normal cell line. Materials and Methods: Fourier transform infrared spectroscopy (FTIR analysis of the extract was performed. 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide assay was used for evaluation of the cytotoxic potential of chloroform extract of C. intybus seed. Doxorubicin was considered as standard reference drug. The concentrations 1000–0.05 μg/ml was used in the experiment. Result and Discussion: FTIR spectrum showed 1025.363, 1083.126, 1291.366, 1389.144, and 1569.294 peaks/centers in the wavelength region of 4,000.00–650.00 cm−1. The chloroform extract of C. intybus seed and doxorubicin was showed 1411.37 μg/ml and 460.13 μg/ml 50% cell growth inhibition (IC50 against the HCT-15 cell line. Both extract and doxorubicin were safe against the Vero (normal cell line. Conclusion: It can be concluded that the chloroform extract of C. intybus seed was not efficient against the HCT-15 cell line at the concentrations used in the experiment. Furthermore, there is no need to explore the said studies by in vivo models.

  11. Non-major histocompatibility complex-restricted cytotoxic activity of blood mononuclear cells stimulated with secreted mycobacterial proteins and other mycobacterial antigens

    DEFF Research Database (Denmark)

    Ravn, P; Pedersen, B K

    1994-01-01

    Several observations indicate that non-major histocompatibility complex (MHC)-restricted cytotoxicity, mediated for example by natural killer cells and lymphokine-activated killer cells, may serve as an important antimicrobial defense mechanism. The purpose of the present study was to investigate...... the influences of different mycobacterial antigens on non-MHC-restricted cytotoxicity and further to investigate the ways by which various lymphocyte subpopulations contribute to the development of this cytotoxicity. Non-MHC-restricted cytotoxicity was induced following stimulation of mononuclear...... interferon. The CD4+ cells proliferated and expressed interleukin-2 receptors following stimulation with mycobacterial antigens.Depletion studies after antigen stimulation showed that the cytotoxic effector cells were CD16+ CD56+ and CD4-; the CD4+ cells alone did not mediate non-MHC-restricted cytotoxicity...

  12. Cytotoxicity and Antitumor Properties of a Marine Compound , HESA-A , on Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hojjat Sadeghi- Aliabadi

    2003-09-01

    Full Text Available Majority of the currently available anticancer drugs are designed to have selective toxicity to rapidly dividing cells. Among these agents the focus of many studies are compounds obtained from natural products with high therapeutic index. In this study the cytotoxicity of HESA-A, a marine compound, on cancer and normal cells was evaluated. HESA-A was prepared in normal saline as a stock solution (0.8 mg/ml, pH=7.4, sterilized and further diluted to final concentrations of 0.4, 0.2, 0.1 and 0.05 mg/ml. Cells (MDA-MB-468, Hep-2, Hela as cancer cells; L929 and McCoy as normal cells were grown in completed RPMI 1640 and seeded in 96 well micro plates at a concentration of 1-5 ´ 104 cells/ml. After incubation for 24 h, different concentrations of HESA-A were added and cells were further incubated for 72 h. Using MTT assay, percent cell survival was determined by ELISA at 540 nm. Doxorubicin was used as a positive control (20 mg /ml. HESA-A (0.4 mg/ml reduced the number of viable MDA-MB-468 and Hela cells to less than 50%. For Hep-2 cells the IC50 was 0.8 mg/ml. In normal cells IC50 could not be obtained at any given concentrations. These results suggest that HESA-A in therapeutic doses and in a concentration dependent manner inhibits the growth of cancer cells more selectively than normal cells.

  13. The Genotoxic and Cytotoxic Effects of Bisphenol-A (BPA) in MCF-7 Cell Line and Amniocytes.

    Science.gov (United States)

    Aghajanpour-Mir, Seyed Mohsen; Zabihi, Ebrahim; Akhavan-Niaki, Haleh; Keyhani, Elahe; Bagherizadeh, Iman; Biglari, Sajjad; Behjati, Farkhondeh

    2016-01-01

    Bisphenol-A (BPA) is an industrial xenoestrogen used widely in our living environment. Recently, several studies suggested that BPA has destructive effects on DNA and chromosomes in normal body cells via estrogen receptors (ER). Therefore, BPA could be considered as an important mediator in many diseases such as cancer. However, there are still many controversial issues which need clarification. In this study, we investigated the BPA-induced chromosomal damages in MCF-7 cell line, ER-positive and negative amniocyte cells. Cytotoxicity and genotoxicity effects of BPA were also compared between these three cell groups. Expression of estrogen receptors was determined using immunocytochemistry technique. The cell cytotoxicity of BPA was measured by MTT assay. Classic cytogenetic technique was carried out for the investigation of chromosome damage. BPA, in addition to cytotoxicity, had remarkable genotoxicity at concentrations close to the traceable levels in tissues or biological fluids. Although some differences were observed in the amount of damages between ER-positive and negative fetal cells, interestingly, these differences were not significant. The present study showed that BPA could lead to chromosomal aberrations in both ER-dependent and independent pathways at some concentrations or in cell types yet not reported. Also, BPA could probably be considered as a facilitator for some predisposed cells to be cancerous by raising the chromosome instability levels. Finally, estrogen receptor seems to have a different role in cytotoxicity and genotoxicity effects. PMID:27386435

  14. Evaluation of the cytotoxic activity of Hypericum spp. on human glioblastoma A1235 and breast cancer MDA MB-231 cells.

    Science.gov (United States)

    Madunić, Josip; Matulić, Maja; Friščić, Maja; Pilepić, Kroata Hazler

    2016-11-01

    Cytotoxic activity of 16 Hypericum ethanolic extracts was evaluated by MTT assay on two human cancer cell lines: glioblastoma A1235 and breast cancer MDA MB-231. Morphology and the type of induced cell death were determined using light and fluorescence microscopy. The majority of Hypericum extracts had no significant cytotoxic effect on MDA MB-231 cells. Eight extracts exhibited mild cytotoxic effect on A1235 cells after 24 h incubation, ranging from 8.0% (H. patulum) to 21.7% (H. oblongifolium). After 72 h of treatment, the strongest inhibition of A1235 viability was observed for extracts of H. androsaemum (26.4-43.9%), H. balearicum (25.8-36.3%), H. delphicum (14.8-27.4%) and H. densiflorum (11.2-24.1%). Micro-scopic examination of cells showed apoptosis as the dominant type of cell death. Due to observed high viability of treated cells, we propose that cytotoxic effects of Hypericum extracts could be related to alternations/interruptions in the cell cycle.

  15. No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro

    DEFF Research Database (Denmark)

    Bengtson, Stefan; Kling, Kirsten; Madsen, Anne Mette;

    2016-01-01

    mainly sulphur, manganese, and silicon. GO generated more ROS than the two rGO materials, but none of the graphene materials influenced cytotoxicity in terms of cell viability and cell proliferation after 24 hr. Furthermore, no genotoxicity was observed using the alkaline comet assay following 3 or 24 hr...

  16. Intracellular protease activation in apoptosis and cell-mediated cytotoxicity characterized by cell-permeable fluorogenic protease substrates

    Institute of Scientific and Technical Information of China (English)

    Beverly Z Packard; Akira Komoriya

    2008-01-01

    Over the past decade the importance of signaling from reporter molecules inside live cells and tissues has been clearly established. Biochemical events related to inflammation, tumor metastasis and proliferation, and viral infectivity and replication are examples of processes being further defined as more molecular tools for live cell measurements become available. Moreover, in addition to quantitating parameters related to physiologic processes, real-time imaging of molecular interactions that compose basic cellular activities are providing insights into understanding disease mechanisms as well as extending clinical efficacy of therapeutic regimens. In this review the use of highly cell-permeable fluorogenic substrates that report protease activities inside live cells is described; applications to defining the molecular events of two cellular processes, i.e., apoptosis and cell-mediated cytotoxicity, are then illustrated.

  17. Cytotoxic Study of L-Leucine and Methotrexate Combination in Presence of Super-oxide Dismutase (SOD on EAC Cells

    Directory of Open Access Journals (Sweden)

    Lopamudra Roy

    2016-06-01

    Full Text Available Our aim was to evaluate the cyto-toxicity of combination of L-Leucine and Methotrexate in presence of SOD (Superoxide dismutase on EAC cells. Freshly collected EAC cells were sufficiently diluted and was incorporated to evaluate the cyto-toxicity of Methotrexate alone, Methotrexate and L-Leucine in combination and lastly to evaluate in vitro cyto-toxicity of Methotrexate, L-Leucine and SOD. The mechanism of action was investigated in terms of production of free radicals. IC50 value of Methotrexate was found to be as 95.34 ± 1.28 µg/ml whereas IC50 value of Methotrexate and L-Leucine combination 73.15 ± 0.98 µg/ml and IC50 value Methotrexate, L-Leucine and SOD was decreased to 47.08 ± 1.18 µg/ml. Due to the fact that Methotrexate is a toxic drug, it will increase the production of O2- in cell. Our research hypothesis is based on the fact that decrease of O2- by SOD in combination therapy with Methotrexate and L-Leucine may alter its combined cytotoxic effect. So, it can be concluded from the study that presence of SOD in combination therapy with Methotrexate and L-Leucine alters their combined cyto-toxic effects over EAC cells.

  18. Urea derivates of ursolic, oleanolic and maslinic acid induce apoptosis and are selective cytotoxic for several human tumor cell lines.

    Science.gov (United States)

    Sommerwerk, Sven; Heller, Lucie; Kuhfs, Julia; Csuk, René

    2016-08-25

    2,3-Di-O-acetyl-maslinic acid benzylamide (5) has previously been shown to possess high cytotoxicity for a variety of human tumor cell lines while being of low cytotoxicity to non-malignant cells. Structural modifications performed on 5 revealed that the presence of these acetyl groups in 5 and the presence of (2β,3β)-configurated centers seems necessary for obtaining high cytotoxicity combined with best selectivity between malignant cells and non-malignant mouse fibroblasts. Compounds carrying an ursane skeleton showed weaker cytotoxicity than their oleanane derived analogs. In addition, the benzylamide function in compound 5 should be replaced by a phenylurea moiety to gain better cytotoxicity while retaining and improving the selectivity. Thus, maslinic acid derived N-[2β,3β-di-O-acetyl-17β-amino-28-norolean-12-en-17-yl]phenylurea (45) gave best results showing EC50 = 0.9 μM (for A2780 ovarian cancer cells) with EC50 > 120 μM for fibroblasts (NIH 3T3) and triggered apoptosis while caspase-3 was not activated by this compound.

  19. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricata) skin cells.

    Science.gov (United States)

    Young, Jamie L; Wise, Sandra S; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-12-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered concentration, particulate and soluble Cr(VI) were more cytotoxic and clastogenic to human cells than sea turtle cells. When the analysis was based on the intracellular concentration of Cr, the data showed that the response of both species was similar. The one exception was the cytotoxicity of intracellular Cr ions from soluble Cr(VI), which caused more cytotoxicity in sea turtle cells (LC50=271μM) than that of human cells (LC50=471μM), but its clastogenicity was similar between the two species. Thus, adjusting for differences in uptake indicated that the explanation for the difference in potency was mostly due to uptake rather than differently affected mechanisms. Overall these data indicate that sea turtles may be a useful sentinel for human health responses to marine pollution. PMID:26440299

  20. Cells of the J774 macrophage cell line are primed for antibody-dependent cell-mediated cytotoxicity following exposure to γ-irradiation

    International Nuclear Information System (INIS)

    Activation of macrophages (M phi) for host defense against tumor cells follows a sequence of priming events followed by an initiating stimulus that results in production and release of cytotoxic molecules that mediate target cell killing. The authors have developed a model to study specific macrophage cytotoxicity in vitro utilizing a cultured murine M phi cell line, J774. Specific cytotoxicity of cultured human gastrointestinal tumor cells is achieved in the presence of murine IgG2a monoclonal antibody (mAb) 17-1-A. The ability of these cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) is greatly enhanced following gamma-irradiation. ADCC can be demonstrated at mAb 17-1-A concentrations greater than or equal to 1 microgram/ml and effector/target cell ratios greater than or equal to 2. Exposure to doses greater than or equal to 10 Gy of gamma-irradiation increases ADCC threefold. Varying the duration from J774 M phi exposure to γ-irradiation until addition of antibody-coated target cells showed that the primed state for ADCC is stable for at least 8 days but approximately 24 hr is required for complete development of the primed state. mAb-dependent target cell death begins 8 hr after addition of mAb and labeled target cells to primed effector cells and is complete by 24 hr. Incubation of unirradiated J774 M phi effector cells with recombinant murine interferon-γ (rmIFN-γ) also results in enhanced ADCC, but the extent of target cell killing achieved is less than that following priming by γ-irradiation. Concomitant priming of γ-irradiated J774 M phi with rmIFN-γ increases the extent of ADCC. Further study of irradiated J774 cells may elucidate the molecular pathways utilized by M phi for achieving and maintaining the primed state for ADCC

  1. Spred2 is involved in imatinib-induced cytotoxicity in chronic myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao-Yun; Yang, Yue-Feng; Wu, Chu-Tse; Xiao, Feng-Jun; Zhang, Qun-Wei [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Ma, Xiao-Ni [Lanzhou University of Technology, Lanzhou 730050 (China); Li, Qing-Fang; Yan, Jun [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wang, Hua, E-mail: wanghualjh@gmail.com [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wang, Li-Sheng, E-mail: wangls@nic.bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)

    2010-03-19

    Spreds, a recently established class of negative regulators of the Ras-ERK (extracellular signal-regulated kinase) pathway, are involved in hematogenesises, allergic disorders and tumourigenesis. However, their role in hematologic neoplasms is largely unknown. Possible effects of Spreds on other signal pathways closely related to Ras-ERK have been poorly investigated. In this study, we investigated the in vitro effects of Spred2 on chronic myeloid leukemia (CML) cells. In addition to inhibiting the well-established Ras-ERK cascade, adenovirus-mediated Spred2 over-expression inhibits constitutive and stem cell factor (SCF)-stimulated sphingosine kinase-1 (SPHK1) and Mcl-1 expression, as well as inhibiting proliferation and inducing apoptosis in CML cells. In K562 cells and primary CML cells, imatinib induces endogenous Spred2 expression. Spred2 silencing by stable RNA interference partly protects K562 cells against imatinib-induced apoptosis. Together, these data implicate Spred2 in imatinib-induced cytotoxicity in CML cells, possibly by inhibiting the Ras-ERK cascade and the pro-survival signaling molecules SPHK1 and Mcl-1. These findings reveal potential targets for selective therapy of CML.

  2. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Science.gov (United States)

    Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.

    2009-12-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.

  3. P53 alters the cytotoxicity and genotoxicity for oxidized graphene in human B-lymphoblastoid cells

    Science.gov (United States)

    Petibone, Dayton Matthew

    Widespread use of oxidized graphene nanomaterials in industry, medicine, and consumer products raises concern about potential adverse impacts on human health. The p53 tumor suppressor protein is crucial to maintaining cellular and genetic stability to prevent carcinogenesis. Here, we show that oxygen functionalized graphene (f-G) absorption and p53 functional status correlate with cytotoxicity and genotoxicity in human B-lymphoblastoid cells. Trends in f-G absorption by were dose-dependent. Cells with functional p53 exposed to f-G arrested in G0/G1 phase of the cell cycle, suppressed f-G induced reactive oxygen species (ROS), and had elevated apoptosis. While compared to p53 competent cells, the p53 deficient cells exposed to f-G accumulated in S-phase of the cell cycle, had elevated ROS levels, and evaded apoptosis. The f-G genotoxicity was evident as increased loss-of-heterozygosity mutants independent of p53 status, and structural chromosome damage in p53 deficient cells. These findings have broad implications for the safety and efficacy of oxidized graphene nanomaterials in industrial, consumer products and biomedical applications.

  4. Differential effects of radical scavengers on X-ray-induced mutation and cytotoxicity in human cells

    International Nuclear Information System (INIS)

    The cytotoxic and mutagenic effects of X irradiation on a human lymphoblast cell line were examined in the presence of two radioprotective agents which modulate damage to DNA. The cells were treated with X rays alone or in the presence of either dimethyl sulfoxide or cysteamine. Surviving fraction and mutation to trifluorothymidine resistance (tk locus) and to 6-thioguanine resistance (hgprt locus) were measured. Survival was enhanced when the cells were irradiated in the presence of dimethyl sulfoxide; the D0 rose from 58 to 107 rad. However, at both genetic loci the induced mutant fractions were identical in the presence or absence of dimethyl sulfoxide. Survival was enhanced to a greater degree when the cells were irradiated in the presence of cysteamine; the D0 rose from 58 to 200 rad. Cysteamine also protected the cells from X-ray-induced mutation; the frequencies of X-ray-induced mutation at both the tk and hgprt loci were reduced by 50-75%. No protective effects were observed unless dimethyl sulfoxide or cysteamine was present during irradiation. These findings are discussed in terms of the hypothesis that, unlike for cell killing, radiation-induced mutagenesis in human lymphoblast cells is not mediated by the actions of aqueous free radicals, but rather by the direct effects of ionizing radiation

  5. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Directory of Open Access Journals (Sweden)

    Witkowski Colette

    2009-01-01

    Full Text Available Abstract Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS and sodium dodecylbenzene sulfonate (SDBS are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood–brain barrier to the brain and the central nervous system.

  6. Cytotoxicity of Buah Merah (Pandanus conoideus Lamk. Extract on Breast Cancer Cell Line (T47D

    Directory of Open Access Journals (Sweden)

    Tri R Nuringtyas

    2015-12-01

    Full Text Available Buah Merah (Pandanus conoideus Lamk. has been extensively used to treat various diseases includingcancer. There are many varieties of buah merah and there was no scientifi c study comparing cytotoxicity ofdifferent varieties. The objective of this study was to investigate the cytotoxicity of three varieties of buah merahknown as Barugum, Maler and Yanggiru on breast cancer cell line (T47D. All samples were collected fromPapua, Indonesia. Each sample was extracted consecutively using three solvents chloroform, methanol andwater resulted to nine crude extracts. The cytotoxic activities were determined using MTT assay. The crudeextract showed the lowest IC50 was selected for further bioassay-guided fractionation. Fractionation was doneusing vacuum liquid chromatography coupled with preparative TLC to fi nd the active compounds. Severaldetection reagents were applied to TLC for identifi cation of the class of the potent compounds. The resultshowed that the potent extracts was obtained from Barugum methanol extract followed by Maler chloroformextract with IC50 value of 132.83 μg/ml and 139.72 μg/ml, respectively. All Yanggiru extracts did not showactivity. The bioassay-guided fractionation of Barugum and Maler extracts showed that the most potent fractioneluted by a mixture of hexane:ethyl acetate (75:25, was in Maler variety with IC50 value of 25,7 μg/ml, fourtimes higher than the most potent fraction of Barugum with IC50 value of 104,61 μg/ml. TLC analysis of themost potent fraction showed that the active compounds was class of terpene. Result of this study supportedthe utilization of buah merah Maler variety for breast cancer treatment.

  7. Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells

    Directory of Open Access Journals (Sweden)

    Sengupta Tapas K

    2011-03-01

    Full Text Available Abstract The DNA degradation potential and anti-cancer activities of copper nanoparticles of 4-5 nm size are reported. A dose dependent degradation of isolated DNA molecules by copper nanoparticles through generation of singlet oxygen was observed. Singlet oxygen scavengers such as sodium azide and Tris [hydroxyl methyl] amino methane were able to prevent the DNA degradation action of copper nanoparticles confirming the involvement of activated oxygen species in the degradation process. Additionally, it was observed that the copper nanoparticles are able to exert cytotoxic effect towards U937 and Hela cells of human histiocytic lymphoma and human cervical cancer origins, respectively by inducing apoptosis. The growth characteristics of U937 and Hela cells were studied applying various concentrations of the copper nanoparticles.

  8. Effect of dexamethasone on the cytotoxic and enzymatic response of cultured endothelial cells to radiation

    International Nuclear Information System (INIS)

    Experiments were conducted to determine (1) whether glucocorticoids directly protected endothelial cells (EC) from radiation and (2) if angiotensin converting enzyme (ACE) activity, known to be increased by glucocorticoid, played a role in the EC response to radiation. Confluent monolayers of EC cultured from bovine aorta EC were treated with dexamethasone (10-6 M); after irradiation (5.0 Gy, 60Co γ) ACE and lactate dehydrogenase (LDH) activities, DNA and protein contents, and nuclei number were measured. Combined dexamethasone treatment and radiation increased cellular ACE activity at a time when neither agent alone had an effect (24-hr dexamethasone exposure before 5 Gy and assayed 24 hr after 5 Gy). This interaction between radiation and dexamethasone treatment suggests that the glucocorticoid modifies the cell's response to injury. Although this interaction does not ameliorate radiation cytotoxicity, maintenance of ACE levels in injured vessels by hormones may have physiological significance in the hemodynamics of irradiated tissues

  9. Cytotoxic functions and susceptibility to apoptosis of human CD56(bright) NK cells differentiated in vitro from CD34⁺ hematopoietic progenitors.

    Science.gov (United States)

    Zamai, Loris; Del Zotto, Genny; Buccella, Flavia; Galeotti, Laura; Canonico, Barbara; Luchetti, Francesca; Papa, Stefano

    2012-04-01

    Cytotoxic functions and susceptibility to apoptosis are crucial aspects of NK cells suitable to counter cancer after infusion in oncologic patients. To test the feasibility and the usefulness of infusing in vitro generated NK cells, these two features were investigated in NK cells developed in vitro from CD34⁺ hematopoietic progenitors. Purified CD34⁺ cells were cultured for 15-30 days with FLT-3 ligand (FLT3-L) and IL-15 with or without IL-21. To induce terminal differentiation, NK cells were cultured for further 15 days with IL-15, IL-21, or their combination. A CD56(dim) /CD16⁺ NK subset, expressing high level of perforin, granzymes, and LFA-1, appeared early in cultures with FLT3-L, IL-15, and IL-21, but it quickly died, indicating its predisposition to apoptosis. On the contrary, CD56(bright) NK cells generated after 30 days of culture with FLT3-L plus IL-15 did not show a considerable apoptosis, nevertheless only a subset of these cells expressed granzyme-B, perforin, LFA-1, and CD94-CD159a heterodimer, indicating a functional immaturity. Interestingly, further 15 days of culture with IL-21 plus IL-15 did not induce the generation of CD56(dim) cells from the CD56(bright) subset and actually inhibited IL-15-induced maturation/activation of this latter subset. In fact, IL-15 alone upregulated granzyme-B, TRAIL, Fas ligand, CD94-CD159a, LFA-1, CD16, KIRs, and TRAIL-R2 on CD56(bright) NK cells. Our results s