WorldWideScience

Sample records for cells controls visual

  1. Requirements for future control room and visualization features in the Web-of-Cells framework defined in the ELECTRA project

    DEFF Research Database (Denmark)

    Tornelli, Carlo; Zuelli, Roberto; Marinelli, Mattia

    2017-01-01

    This paper outlines an overview of the general requirements for the control rooms of the future power systems (2030+). The roles and activities in the future control centres will evolve with respect to the switching, dispatching and restoration functions currently active. The control centre...... operators will supervise on the power system and intervene - when necessary - thanks to the maturation and wide scale deployment of flexible controls. For the identification of control room requirements, general trends in power system evolution are considered and mainly the outcomes of the ELECTRA IRP...... project, that proposes a new Web-of-Cell (WoC) power system control architecture. Dedicated visualization features are proposed, aimed to support the control room operators activities in a WoC oriented approach. Furthermore, the work takes into account the point of view of network operators about future...

  2. Influence of hemianopic visual field loss on visual motor control.

    Directory of Open Access Journals (Sweden)

    Diederick C Niehorster

    Full Text Available BACKGROUND: Homonymous hemianopia (HH is an anisotropic visual impairment characterized by the binocular inability to see one side of the visual field. Patients with HH often misperceive visual space. Here we investigated how HH affects visual motor control. METHODS AND FINDINGS: Seven patients with complete HH and no neglect or cognitive decline and seven gender- and age-matched controls viewed displays in which a target moved randomly along the horizontal or the vertical axis. They used a joystick to control the target movement to keep it at the center of the screen. We found that the mean deviation of the target position from the center of the screen along the horizontal axis was biased toward the blind side for five out of seven HH patients. More importantly, while the normal vision controls showed more precise control and larger response amplitudes when the target moved along the horizontal rather than the vertical axis, the control performance of the HH patients was not different between these two target motion experimental conditions. CONCLUSIONS: Compared with normal vision controls, HH affected patients' control performance when the target moved horizontally (i.e., along the axis of their visual impairment rather than vertically. We conclude that hemianopia affects the use of visual information for online control of a moving target specific to the axis of visual impairment. The implications of the findings for driving in hemianopic patients are discussed.

  3. Visual control of walking velocity.

    Science.gov (United States)

    François, Matthieu; Morice, Antoine H P; Bootsma, Reinoud J; Montagne, Gilles

    2011-06-01

    Even if optical correlates of self-motion velocity have already been identified, their contribution to the control of displacement velocity remains to be established. In this study, we used a virtual reality set-up coupled to a treadmill to test the role of both Global Optic Flow Rate (GOFR) and Edge Rate (ER) in the regulation of walking velocity. Participants were required to walk at a constant velocity, corresponding to their preferred walking velocity, while eye height and texture density were manipulated. This manipulation perturbed the natural relationship between the actual walking velocity and its optical specification by GOFR and ER, respectively. Results revealed that both these sources of information are indeed used by participants to control walking speed, as demonstrated by a slowing down of actual walking velocity when the optical specification of velocity by either GOFR or ER gives rise to an overestimation of actual velocity, and vice versa. Gait analyses showed that these walking velocity adjustments result from simultaneous adaptations in both step length and step duration. The role of visual information in the control of self-motion velocity is discussed in relation with other factors.

  4. Cloud-based Networked Visual Servo Control

    DEFF Research Database (Denmark)

    Wu, Haiyan; Lu, Lei; Chen, Chih-Chung

    2013-01-01

    The performance of vision-based control systems, in particular of highly dynamic vision-based motion control systems, is often limited by the low sampling rate of the visual feedback caused by the long image processing time. In order to overcome this problem, the networked visual servo control......, which integrates networked computational resources for cloud image processing, is considered in this article. The main contributions of this article are i) a real-time transport protocol for transmitting large volume image data on a cloud computing platform, which enables high sampling rate visual...... feedback, ii) a stabilizing control law for the networked visual servo control system with time-varying feedback time delay, and iii) a sending rate scheduling strategy aiming at reducing the communication network load. The performance of the networked visual servo control system with sending rate...

  5. Training Visual Control in Wheelchair Basketball Shooting

    Science.gov (United States)

    Oudejans, Raoul R. D.; Heubers, Sjoerd; Ruitenbeek, Jean-Rene J. A. C.; Janssen, Thomas W. J.

    2012-01-01

    We examined the effects of visual control training on expert wheelchair basketball shooting, a skill more difficult than in regular basketball, as players shoot from a seated position to the same rim height. The training consisted of shooting with a visual constraint that forced participants to use target information as late as possible.…

  6. Neural Network Controlled Visual Saccades

    Science.gov (United States)

    Johnson, Jeffrey D.; Grogan, Timothy A.

    1989-03-01

    The paper to be presented will discuss research on a computer vision system controlled by a neural network capable of learning through classical (Pavlovian) conditioning. Through the use of unconditional stimuli (reward and punishment) the system will develop scan patterns of eye saccades necessary to differentiate and recognize members of an input set. By foveating only those portions of the input image that the system has found to be necessary for recognition the drawback of computational explosion as the size of the input image grows is avoided. The model incorporates many features found in animal vision systems, and is governed by understandable and modifiable behavior patterns similar to those reported by Pavlov in his classic study. These behavioral patterns are a result of a neuronal model, used in the network, explicitly designed to reproduce this behavior.

  7. Visual cues for manual control of headway

    Directory of Open Access Journals (Sweden)

    Simon eHosking

    2013-05-01

    Full Text Available The ability to maintain appropriate gaps to objects in one's environment is important when navigating through a three-dimensional world. Previous research has shown that the visual angle subtended by a lead/approaching object and its rate of change are important variables for timing interceptions, collision avoidance, continuous regulation of braking, and manual control of headway. However, investigations of headway maintenance have required participants to maintain a fixed following distance and have notinvestigated how information about speed is taken into account. In the following experiment, we asked participants to use a joystick to follow computer-simulated lead objects. The results showed that ground texture, following speed, and the size of the lead object had significant effects on both mean following distances and following distance variance. Furthermore, models of the participants' joystick responses provided better fits when it was assumed that the desired visual extent of the lead object would vary over time. Taken together, the results indicate that while information about own-speed is used by controllers to set the desired headway to a lead object, the continuous regulation of headway is influenced primarily by the visual angle of the lead object and its rate of change. The reliance on visual angle, its rate of change, and/or own-speed information also varied depending on the controldynamics of the system. Such findings are consistent with an optimal control criterion that reflects a differential weighting on different sources of information depending on the plant dynamics. As in other judgements of motion in depth, the information used for controlling headway to other objects in the environment varies depending on the constraints of the task and different strategies of control.

  8. Real time visual servoing using controlled illumination

    Science.gov (United States)

    Urban, J. P.; Motyl, G.; Gallice, J.

    1994-02-01

    A real-time visual servoing approach is applied to robotics tasks consisting of the positioning of the end effector with respect to a priori known polyhedral objects. The vision apparatus is consituted by a compact CCD camera rigidly coupled with two laser stripes mounted on the wrist of a robot manipulator. The objective is to servo the robot and effector at a constant position and orientation with respect to a known object in three- dimensional space in the field of view of the sensory system. The approach is expressed in terms of sensor-based control applied to visual servoing. In the case of camera-light stripe coupling, the elementary visual signals used for visual servoing are the points of discontinuity in the light stripes. The feasibility of the approach is demonstrated in a factory automation task consisting of the positioning of the end-effector tool over a vehicle battery. Both simulation and experimentation results are presented, proving the robustness and stability of the algorithm.

  9. Visualizing T cell migration in-situ

    Directory of Open Access Journals (Sweden)

    Alexandre P Benechet

    2014-07-01

    Full Text Available Mounting a protective immune response is critically dependent on the orchestrated movement of cells within lymphoid tissues. The structure of secondary lymphoid organs regulates immune responses by promoting optimal cell-cell and cell-extracellular matrix interactions. Naïve T cells are initially activated by antigen presenting cells in secondary lymphoid organs. Following priming, effector T cells migrate to the site of infection to exert their functions. Majority of the effector cells die while a small population of antigen specific T cells persist as memory cells in distinct anatomical locations. The persistence and location of memory cells in lymphoid and non-lymphoid tissues is critical to protect the host from re-infection. The localization of memory T cells is carefully regulated by several factors including the highly organized secondary lymphoid structure, the cellular expression of chemokine receptors and compartmentalized secretion of their cognate ligands. This balance between the anatomy and the ordered expression of cell surface and soluble proteins regulates the subtle choreography of T cell migration. In recent years, our understanding of cellular dynamics of T cells has been advanced by the development of new imaging techniques allowing in-situ visualization of T cell responses. Here we review the past and more recent studies that have utilized sophisticated imaging technologies to investigate the migration dynamics of naive, effector and memory T cells.

  10. Visual operations control in administrative environments

    Energy Technology Data Exchange (ETDEWEB)

    Carson, M.L.; Levine, L.O.

    1995-03-01

    When asked what comes to mind when they think of ``controlling work`` in the office, people may respond with ``overbearing boss,`` ``no autonomy,`` or ``Theory X management.`` The idea of controlling work in white collar or administrative environments can have a negative connotation. However, office life is often chaotic and miserable precisely because the work processes are out of control, and managers must spend their time looking over people`s shoulders and fighting fires. While management styles and structures vary, the need for control of work processes does not. Workers in many environments are being reorganized into self-managed work teams. These teams are expected to manage their own work through increased autonomy and empowerment. However, even empowered work teams must manage their work processes because of process variation. The amount of incoming jobs vary with both expected (seasonal) and unexpected demand. The mixture of job types vary over time, changing the need for certain skills or knowledge. And illness and turnover affect the availability of workers with needed skills and knowledge. Clearly, there is still a need to control work, whether the authority for controlling work is vested in one person or many. Visual control concepts provide simple, inexpensive, and flexible mechanisms for managing processes in work teams and continuous improvement administrative environments.

  11. Beyond Control Panels: Direct Manipulation for Visual Analytics

    Energy Technology Data Exchange (ETDEWEB)

    Endert, Alexander; Bradel, Lauren; North, Chris

    2013-07-19

    Information Visualization strives to provide visual representations through which users can think about and gain insight into information. By leveraging the visual and cognitive systems of humans, complex relationships and phenomena occurring within datasets can be uncovered by exploring information visually. Interaction metaphors for such visualizations are designed to enable users direct control over the filters, queries, and other parameters controlling how the data is visually represented. Through the evolution of information visualization, more complex mathematical and data analytic models are being used to visualize relationships and patterns in data – creating the field of Visual Analytics. However, the expectations for how users interact with these visualizations has remained largely unchanged – focused primarily on the direct manipulation of parameters of the underlying mathematical models. In this article we present an opportunity to evolve the methodology for user interaction from the direct manipulation of parameters through visual control panels, to interactions designed specifically for visual analytic systems. Instead of focusing on traditional direct manipulation of mathematical parameters, the evolution of the field can be realized through direct manipulation within the visual representation – where users can not only gain insight, but also interact. This article describes future directions and research challenges that fundamentally change the meaning of direct manipulation with regards to visual analytics, advancing the Science of Interaction.

  12. Synchronization trigger control system for flow visualization

    Science.gov (United States)

    Chun, K. S.

    1987-01-01

    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.

  13. Visual Control of Robots Using Range Images

    Directory of Open Access Journals (Sweden)

    Fernando Torres

    2010-08-01

    Full Text Available In the last years, 3D-vision systems based on the time-of-flight (ToF principle have gained more importance in order to obtain 3D information from the workspace. In this paper, an analysis of the use of 3D ToF cameras to guide a robot arm is performed. To do so, an adaptive method to simultaneous visual servo control and camera calibration is presented. Using this method a robot arm is guided by using range information obtained from a ToF camera. Furthermore, the self-calibration method obtains the adequate integration time to be used by the range camera in order to precisely determine the depth information.

  14. Cholinergic control of visual categorisation in macaques

    Directory of Open Access Journals (Sweden)

    Nikolaos C. Aggelopoulos

    2011-11-01

    Full Text Available Acetylcholine (ACh is a neurotransmitter acting via muscarinic and nicotinic receptors that is implicated in several cognitive functions and impairments, such as Alzheimer’s disease. It is believed to especially affect the acquisition of new information, which is particularly important when behaviour needs to be adapted to new situations and to novel sensory events. Categorisation, the process of assigning stimuli to a category, is a cognitive function that also involves information acquisition. The role of ACh on categorisation has not been previously studied. We have examined the effects of scopolamine, an antagonist of muscarinic ACh receptors, on visual categorisation in macaque monkeys using familiar and novel stimuli. When the peripheral effects of scopolamine on the parasympathetic nervous system were controlled for, categorisation performance was disrupted following systemic injections of scopolamine. This impairment was observed only when the stimuli that needed to be categorised had not been seen before. In other words, the monkeys were not impaired by the central action of scopolamine in categorising a set of familiar stimuli (stimuli which they had categorised successfully in previous sessions. Categorisation performance also deteriorated as the stimulus became less salient by an increase in the level of visual noise. However, scopolamine did not cause additional performance disruptions for difficult categorisation judgements at lower coherence levels. Scopolamine, therefore, specifically affects the assignment of new exemplars to established cognitive categories, presumably by impairing the processing of novel information. Since we did not find an effect of scopolamine in the categorisation of familiar stimuli, scopolamine had no significant central action on other cognitive functions such as perception, attention, memory or executive control within the context of our categorisation task.

  15. Effect of visual stimulus using central and peripheral visual field on postural control of normal subjects.

    Science.gov (United States)

    Park, Du-Jin

    2016-06-01

    [Purpose] This study investigated the effects of visual stimulus using central and peripheral vision fields on postural control. [Subjects and Methods] The subjects consisted of 40 young adult volunteers (15 males, 25 females) who had been informed of the study purpose and procedure. The subjects were randomly divided into four groups of differing visual stimulus. Each group was given visual intervention in a standing position for 3 minutes. Postural control was evaluated before and after visual intervention. [Results] The results of the functional reach test and body sway test showed significant differences among the four groups. [Conclusion] The two-way peripheral vision-field group showed significantly more body sway after visual intervention than the other three groups. This finding may suggest two-way peripheral vision field is a more effective visual stimulus for training postural control and balance.

  16. [Visual attention and its control mechanisms].

    Science.gov (United States)

    Ogawa, Hirokazu

    2014-04-01

    Given the vast amount of visual information in visual scenes, the capacity of our brain to processes such scenes is severely limited. The core mechanism of selection is referred to as visual attention, and it has been the topic of intense investigation for over 25 years in experimental psychology and cognitive neuroscience. Visual attention is not a single, unitary mechanism, but consists of multiple subcomponents. Attention can be directed to various aspects of visual information, such as spatial location, features, or objects. Additionally, attention is guided by external factors such as the salience of stimuli, or whether we are able to move our attention volitionally. The purpose of this article is to review the status of these components of attentional guidance and how they interact with each other, with an emphasis on psychophysical studies.

  17. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  18. CONTROL SCHEMES FOR CMAC NEURAL NETWORK-BASED VISUAL SERVOING

    Institute of Scientific and Technical Information of China (English)

    Wang Huaming; Xi Wenming; Zhu Jianying

    2003-01-01

    In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of image Jacobian, CMAC (cerebellar model articulation controller) neural network is inserted into visual servo control loop to implement the nonlinear mapping. Two control schemes are used. Simulation results on two schemes are provided, which show a better tracking precision and stability can be achieved using scheme 2.

  19. Visual Features Involving Motion Seen from Airport Control Towers

    Science.gov (United States)

    Ellis, Stephen R.; Liston, Dorion

    2010-01-01

    Visual motion cues are used by tower controllers to support both visual and anticipated separation. Some of these cues are tabulated as part of the overall set of visual features used in towers to separate aircraft. An initial analyses of one motion cue, landing deceleration, is provided as a basis for evaluating how controllers detect and use it for spacing aircraft on or near the surface. Understanding cues like it will help determine if they can be safely used in a remote/virtual tower in which their presentation may be visually degraded.

  20. Scanning tunneling microscope data acquisition and control in visual basic

    Science.gov (United States)

    Porter, T. L.

    1993-12-01

    A general purpose data acquisition and control system for scanning tunneling microscopy (STM) using Visual Basic is presented. This Windows hosted Visual Basic environment is highly desirable for use in STM image manipulation, storage, and printing, but in its standard form is not suitable for most data acquisition and display applications. Many of the inherent limitations in the Visual Basic language have been overcome by the use of direct calls to the Windows Application Program Interface. In this paper, we describe a general Visual Basic STM user interface and control system, and the extensions to the language using the Windows API needed to implement this system.

  1. A hybrid Jacobian control for uncalibrated robot visual servoing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qizhi; GE Xinsheng; TEO Chee-Leong; LIM Siak-Piang

    2005-01-01

    This paper focuses on the visual servo control of an uncalibrated robotic arm with an eye-in-hand camera. Without a prior knowledge of the kinematics of the robotic arm or camera calibration, the proposed hybrid Jacobian controller can track a moving object using visual feedback and joint-space velocity feedback. The proposed hybrid control method is a combination of the uncalibrated visual servoing and approximate Jacobian feedback control. First, the Jacobian matrix from joint-space to image-space is estimated by recursive leastsquares (RLS) algorithm, and then the approximate Jacobian feedback controller is designed by using visual feedback and joint-space velocity feedback. The performances of the proposed control methods are illustrated by computer simulations.

  2. Proprioceptive versus Visual Control in Autistic Children.

    Science.gov (United States)

    Masterton, B. A.; Biederman, G. B.

    1983-01-01

    The autistic children's presumed preference for proximal over distal sensory input was studied by requiring that "autistic," retarded, and "normal" children (7-15 years old) adapt to lateral displacement of the visual field. Only autistic Ss demonstrated transfer of adaptation to the nonadapted hand, indicating reliance on proprioception rather…

  3. Visualizing Concurrency Control Algorithms for Real-Time Database Systems

    Directory of Open Access Journals (Sweden)

    Olusegun Folorunso

    2008-11-01

    Full Text Available This paper describes an approach to visualizing concurrency control (CC algorithms for real-time database systems (RTDBs. This approach is based on the principle of software visualization, which has been applied in related fields. The Model-View-controller (MVC architecture is used to alleviate the black box syndrome associated with the study of algorithm behaviour for RTDBs Concurrency Controls. We propose a Visualization "exploratory" tool that assists the RTDBS designer in understanding the actual behaviour of the concurrency control algorithms of choice and also in evaluating the performance quality of the algorithm. We demonstrate the feasibility of our approach using an optimistic concurrency control model as our case study. The developed tool substantiates the earlier simulation-based performance studies by exposing spikes at some points when visualized dynamically that are not observed using usual static graphs. Eventually this tool helps solve the problem of contradictory assumptions of CC in RTDBs.

  4. Visualizing Without Vision at the Microscale: Students With Visual Impairments Explore Cells With Touch

    Science.gov (United States)

    Jones, M. Gail; Minogue, James; Oppewal, Tom; Cook, Michelle P.; Broadwell, Bethany

    2006-12-01

    Science instruction is typically highly dependent on visual representations of scientific concepts that are communicated through textbooks, teacher presentations, and computer-based multimedia materials. Little is known about how students with visual impairments access and interpret these types of visually-dependent instructional materials. This study explored the efficacy of new haptic (simulated tactile feedback and kinesthetics) instructional technology for teaching cell morphology and function to middle and high school students with visual impairments. The study examined students' prior experiences learning about the cell and cell functions in classroom instruction, as well as how haptic feedback technology impacted students' awareness of the 3-D nature of an animal cell, the morphology and function of cell organelles, and students' interest in the haptic technology as an instructional tool. Twenty-one students with visual impairment participated in the study. Students explored a tactile model of the cell with a haptic point probe that allowed them to feel the cell and its organelles. Results showed that students made significant gains in their ability to identify cell organelles and found the technology to be highly interesting as an instructional tool. The need for additional adaptive technology for students with visual impairments is discussed.

  5. Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.

    Science.gov (United States)

    Whitwell, Robert L; Milner, A David; Cavina-Pratesi, Cristiana; Barat, Masihullah; Goodale, Melvyn A

    2015-05-01

    Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback. We report here that DF's grip scaling remained intact when her vision was completely suppressed during grasp movements, and it still dissociated sharply from her poor perceptual estimates of target size. We then tested whether providing trial-by-trial haptic feedback after making such perceptual estimates might improve DF's performance, but found that they remained significantly impaired. In a final experiment, we re-examined whether DF's grip scaling depends on receiving veridical haptic feedback during grasping. In one condition, the haptic feedback was identical to the visual targets. In a second condition, the haptic feedback was of a constant intermediate width while the visual target varied trial by trial. Despite this incongruent feedback, DF still scaled her grip aperture to the visual widths of the target blocks, showing only normal adaptation to the false haptically-experienced width. Taken together, these results strengthen the view that DF's spared grasping relies on a normal mode of dorsal-stream functioning, based chiefly on visual feedforward processing.

  6. Predictive Control for Visual Servo Stabilization of Nonholonomic Mobile Robots

    Institute of Scientific and Technical Information of China (English)

    CAO Zheng-Cai; YIN Long-Jie; FU Yi-Li; LIU Tian-Long

    2013-01-01

    Visual servo stabilization of nonholonomic mobile robots has gained extensive attention.However,currently,the solution of the problem does not consider both the visibility constraints and the actuator limitations,so the designed controller is difficult to realize satisfactory performance in practical application.In this paper,a predictive controller for the visual servo stabilization of a mobile robot is presented.Firstly,a kinematic predictive stabilization controller utilized to generate the command of velocity is introduced.Then,in order to make the actual velocity of the mobile robot asymptotically approach to the desired one,a dynamic predictive controller is designed.The proposed predictive controller can deal with the constraints easily.Finally,several simulations are performed,and the results illustrate that the proposed control scheme is effective to solve the visual servo stabilization problem.

  7. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process....... It facilitates the understanding of the task and structure of cell controllers and uses this knowledge directly in the implementation of the system. By applying generic models CCE facilitates reuse of software components and maintenance of applications. In many enterprises, software makes up an increasing part...

  8. Closed-Loop Learning of Visual Control Policies

    CERN Document Server

    Jodogne, S R; 10.1613/jair.2110

    2011-01-01

    In this paper we present a general, flexible framework for learning mappings from images to actions by interacting with the environment. The basic idea is to introduce a feature-based image classifier in front of a reinforcement learning algorithm. The classifier partitions the visual space according to the presence or absence of few highly informative local descriptors that are incrementally selected in a sequence of attempts to remove perceptual aliasing. We also address the problem of fighting overfitting in such a greedy algorithm. Finally, we show how high-level visual features can be generated when the power of local descriptors is insufficient for completely disambiguating the aliased states. This is done by building a hierarchy of composite features that consist of recursive spatial combinations of visual features. We demonstrate the efficacy of our algorithms by solving three visual navigation tasks and a visual version of the classical Car on the Hill control problem.

  9. Visual control of steering in the box jellyfish Tripedalia cystophora

    DEFF Research Database (Denmark)

    Petie, Ronald; Garm, Anders; Nilsson, Dan-Eric

    2011-01-01

    Box jellyfish carry an elaborate visual system consisting of 24 eyes, which they use for driving a number of behaviours. However, it is not known how visual input controls the swimming behaviour. In this study we exposed the Caribbean box jellyfish Tripedalia cystophora to simple visual stimuli...... their bell in such a way that, if not tethered, they would turn and swim away from the dark area. We conclude that the visual system of T. cystophora has a predictable effect on swimming behaviour....... to the darkening of one quadrant of the equatorial visual world by (1) increasing pulse frequency, (2) creating an asymmetry in the structure that constricts the outflow opening of the bell, the velarium, and (3) delaying contraction at one of the four sides of the bell. This causes the animals to orient...

  10. Atypical visual loss in giant cell arteritis

    DEFF Research Database (Denmark)

    Thystrup, Jan Deichmann; Knudsen, G M; Mogensen, A M

    1994-01-01

    in the terminal stage of his disease due to bilateral occipital cortex infarctions, verified by CT-scan. Autopsy revealed involvement of several intracranial arteries. In case No. 2 there was severe unilateral visual loss and cotton-wool exudates in both eyes. Central vision recovered after corticosteroid therapy......; in our experience this is unusual. In case No. 3 irreversible unilateral visual loss was typical for GCA, but the association with polyneuropathy unique. Neurological remission coincided with systemic corticosteroid therapy....

  11. Robust Control for High-Speed Visual Servoing Applications

    DEFF Research Database (Denmark)

    Ellekilde, Lars-Peter; Favrholdt, Peter; Paulin, Mads;

    2007-01-01

    This paper presents a new control scheme for visual servoing applications. The approach employs quadratic optimization, and explicitly handles both joint position, velocity and acceleration limits. Contrary to existing techniques, our method does not rely on large safety margins and slow task...... the correctness and efficiency of our approach in a number of visual servoing applications, and compare it to a range of previously proposed techniques....

  12. The use of visual cues for vehicle control and navigation

    Science.gov (United States)

    Hart, Sandra G.; Battiste, Vernol

    1991-01-01

    At least three levels of control are required to operate most vehicles: (1) inner-loop control to counteract the momentary effects of disturbances on vehicle position; (2) intermittent maneuvers to avoid obstacles, and (3) outer-loop control to maintain a planned route. Operators monitor dynamic optical relationships in their immediate surroundings to estimate momentary changes in forward, lateral, and vertical position, rates of change in speed and direction of motion, and distance from obstacles. The process of searching the external scene to find landmarks (for navigation) is intermittent and deliberate, while monitoring and responding to subtle changes in the visual scene (for vehicle control) is relatively continuous and 'automatic'. However, since operators may perform both tasks simultaneously, the dynamic optical cues available for a vehicle control task may be determined by the operator's direction of gaze for wayfinding. An attempt to relate the visual processes involved in vehicle control and wayfinding is presented. The frames of reference and information used by different operators (e.g., automobile drivers, airline pilots, and helicopter pilots) are reviewed with particular emphasis on the special problems encountered by helicopter pilots flying nap of the earth (NOE). The goal of this overview is to describe the context within which different vehicle control tasks are performed and to suggest ways in which the use of visual cues for geographical orientation might influence visually guided control activities.

  13. Visual world perception modeling and control of cooperative mobile robots

    Science.gov (United States)

    Shirkhodaie, Amir

    2003-10-01

    There has been a great interest in the recent years in visual coordination and target tracking for mobile robots cooperating in unstructured environments. This paper describes visual servo control techniques suitable for intelligent task planning of cooperative robots operating in unstructured environment. In this paper, we have considered a team of semi-autonomous robots controlled by a remote supervisory control system. We have presented an algorithm for visual position tracking of individual cooperative robots within their working environment. Initially, we present a technique suitable for visual servoing of a robot toward its landmark targets. Secondly, we present an image-processing technique that utilizes images from a remote surveillance camera for localization of the robots within the operational environment. In this algorithm, the surveillance camera can be either stationary or mobile. The supervisor control system keeps tracks of relative locations of individual robots and utilizes relative coordinate information of the robots to plan their cooperative activities. We presented some results of this research effort that illustrates effectiveness of the proposed algorithms for cooperative robotic systems visual team working and target tracking.

  14. [Visual hallucinations and giant cell arteritis: the Charles Bonnet syndrome].

    Science.gov (United States)

    Bloch, J; Morell-Dubois, S; Koch, E; Launay, D; Maillard-Lefebvre, H; Buchdahl, A-L; Hachulla, E; Rouland, J-F; Hatron, P-Y; Lambert, M

    2011-12-01

    In patients with visual hallucinations, diagnostic strategy is unclearly codified. In patients known to have giant cell arteritis, the main diagnostic assumption is disease relapse. Indeed, this should lead to rapid corticosteroid therapy. However, the Charles Bonnet syndrome, that is a poorly known etiology of visual hallucinations usually observed in elderly people, should be part of the differential diagnosis. We report a 87-year-old woman, with a 2-year history of giant cell arteritis who was admitted with an acute onset of visual hallucinations and who met all the criteria for Charles Bonnet syndrome.

  15. A case-control study of visual acuity in onychocryptosis.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    BACKGROUND: There are many theories surrounding the etiology of ingrown toenails (IGTN). Few factors have been formally assessed, but it is widely accepted that a poor nail cutting technique has a causative role. AIM: To investigate the hypothesis that decreased visual acuity may lead to inadequate nail cutting and the formation of IGTN. METHODS: A prospective case-control study was performed. Near and distance visual acuity were tested on a population with IGTN (n = 19) and compared with that of an age- and sex-matched control cohort (n = 24) who underwent epidermal cyst excision in the same tertiary referral center. Comparisons of visual acuity were made between groups by Mann-Whitney U-test. Differences were taken to be significant if P < 0.05. Institutional Review Board approval was sought and granted. RESULTS: No significant difference in visual acuity (near or distance) was demonstrated between patients with IGTN and the control group (P = 0.33). CONCLUSION: Visual acuity does not appear to play a significant role in the development of IGTN.

  16. Visual Flight Control of a Quadrotor Using Bioinspired Motion Detector

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2012-01-01

    Full Text Available Motion detection in the fly is extremely fast with low computational requirements. Inspired from the fly's vision system, we focus on a real-time flight control on a miniquadrotor with fast visual feedback. In this work, an elaborated elementary motion detector (EMD is utilized to detect local optical flow. Combined with novel receptive field templates, the yaw rate of the quadrotor is estimated through a lookup table established with this bioinspired visual sensor. A closed-loop control system with the feedback of yaw rate estimated by EMD is designed. With the motion of the other degrees of freedom stabilized by a camera tracking system, the yaw-rate of the quadrotor during hovering is controlled based on EMD feedback under real-world scenario. The control performance of the proposed approach is compared with that of conventional approach. The experimental results demonstrate the effectiveness of utilizing EMD for quadrotor control.

  17. Visual-Motor Control in Baseball Batting

    Directory of Open Access Journals (Sweden)

    Rob Gray

    2011-05-01

    Full Text Available With margins for error of a few milliseconds and fractions of an inch it is not surprising that hitting a baseball is considered to be one of the most difficult acts in all of sports. We have been investigating this challenging behavior using a virtual baseball batting setup in which simulations of an approaching ball, pitcher, and field are combined with real-time recording of bat and limb movements. I will present evidence that baseball batting involves variable pre-programmed control in which the swing direction and movement time (MT are set prior to the initiation of the action but can take different values from swing-to-swing. This programming process utilizes both advance information (pitch history and count and optical information picked-up very early in the ball's flight (ball time to contact TTC and rotation direction. The pre-programmed value of MT is used to determine a critical value of TTC for swing initiation. Finally, because a baseball swing is an action that is occasionally interrupted online (i.e., a “check swing”, I will discuss experiments that examine when this pre-programmed action can be stopped and the sources of optical information that trigger stopping.

  18. Visualization

    OpenAIRE

    Balon, Andreja

    1990-01-01

    The present thesis entails the field of visualization which is divided into visualization along traditional lines and visualization in computer science. As the psychological aspect of image is of vital importance for visualization, it is shortly described in the beginning. Visualization in computer science is divided into three main fields: scientific visualization, program visualization and visual programming. An explanation and examples of approach to applications are given for each field....

  19. Follow the leader: visual control of speed in pedestrian following.

    Science.gov (United States)

    Rio, Kevin W; Rhea, Christopher K; Warren, William H

    2014-02-07

    When people walk together in groups or crowds they must coordinate their walking speed and direction with their neighbors. This paper investigates how a pedestrian visually controls speed when following a leader on a straight path (one-dimensional following). To model the behavioral dynamics of following, participants in Experiment 1 walked behind a confederate who randomly increased or decreased his walking speed. The data were used to test six models of speed control that used the leader's speed, distance, or combinations of both to regulate the follower's acceleration. To test the optical information used to control speed, participants in Experiment 2 walked behind a virtual moving pole, whose visual angle and binocular disparity were independently manipulated. The results indicate the followers match the speed of the leader, and do so using a visual control law that primarily nulls the leader's optical expansion (change in visual angle), with little influence of change in disparity. This finding has direct applications to understanding the coordination among neighbors in human crowds.

  20. CONTROLLING STUDENT RESPONSES DURING VISUAL PRESENTATIONS--STUDIES IN TELEVISED INSTRUCTION, THE ROLE OF VISUALS IN VERBAL LEARNING, REPORT 2.

    Science.gov (United States)

    GROPPER, GEORGE L.

    THIS IS A REPORT OF TWO STUDIES IN WHICH PRINCIPLES OF PROGRAMED INSTRUCTION WERE ADAPTED FOR VISUAL PRESENTATIONS. SCIENTIFIC DEMONSTRATIONS WERE PREPARED WITH A VISUAL PROGRAM AND A VERBAL PROGRAM ON--(1) ARCHIMEDES' LAW AND (2) FORCE AND PRESSURE. RESULTS SUGGESTED THAT RESPONSES ARE MORE READILY BROUGHT UNDER THE CONTROL OF VISUAL PRESENTATION…

  1. An autonomous miniature wheeled robot based on visual feedback control

    Institute of Scientific and Technical Information of China (English)

    CHEN Haichu

    2007-01-01

    Using two micro-motors,a novel omni-direction miniature wheeled robot is designed on the basis of the bi-corner driving principle.The robot takes advantage of the Bluetooth technology to wirelessly transmit data at a short distance.Its position and omni-direction motion are precise.A Charge Coupled Device(CCD)camera is used for measuring and for visual navigation.A control system is developed.The precision of the position is 0.5 mm,the resolution is about 0.05 mm,and the maximum velocity is about 52 mm/s.The visual navigation and control system allow the robot to navigate and track the target and to accomplish autonomous locomotion.

  2. Visual and non-visual control of landing movements in humans

    Science.gov (United States)

    Santello, Marco; McDonagh, Martin J N; Challis, John H

    2001-01-01

    The role of vision in controlling leg muscle activation in landing from a drop was investigated. Subjects (n = 8) performed 10 drops from four heights (0.2, 0.4, 0.6 and 0.8 m) with and without vision. Drop height was maintained constant throughout each block of trials to allow adaptation. The aim of the study was to assess the extent to which proprioceptive and vestibular information could substitute for the lack of vision in adapting landing movements to different heights. At the final stages of the movement, subjects experienced similar peak centre of body mass (CM) displacements and joint rotations, regardless of the availability of vision. This implies that subjects were able to adapt the control of landing to different heights. The amplitude and timing of electromyographic signals from the leg muscles scaled to drop height in a similar fashion with and without vision. However, variables measured throughout the execution of the movement indicated important differences. Without vision, landings were characterised by 10 % larger ground reaction forces, 10 % smaller knee joint rotations, different time lags between peak joint rotations, and more variable ground reaction forces and times to peak CM displacement. We conclude that non-visual sensory information (a) could not fully compensate for the lack of continuous visual feedback and (b) this non-visual information was used to reorganise the motor output. These results suggest that vision is important for the very accurate timing of muscle activity onset and the kinematics of landing. PMID:11711583

  3. First responder tracking and visualization for command and control toolkit

    Science.gov (United States)

    Woodley, Robert; Petrov, Plamen; Meisinger, Roger

    2010-04-01

    In order for First Responder Command and Control personnel to visualize incidents at urban building locations, DHS sponsored a small business research program to develop a tool to visualize 3D building interiors and movement of First Responders on site. 21st Century Systems, Inc. (21CSI), has developed a toolkit called Hierarchical Grid Referenced Normalized Display (HiGRND). HiGRND utilizes three components to provide a full spectrum of visualization tools to the First Responder. First, HiGRND visualizes the structure in 3D. Utilities in the 3D environment allow the user to switch between views (2D floor plans, 3D spatial, evacuation routes, etc.) and manually edit fast changing environments. HiGRND accepts CAD drawings and 3D digital objects and renders these in the 3D space. Second, HiGRND has a First Responder tracker that uses the transponder signals from First Responders to locate them in the virtual space. We use the movements of the First Responder to map the interior of structures. Finally, HiGRND can turn 2D blueprints into 3D objects. The 3D extruder extracts walls, symbols, and text from scanned blueprints to create the 3D mesh of the building. HiGRND increases the situational awareness of First Responders and allows them to make better, faster decisions in critical urban situations.

  4. Current techniques for visualizing RNA in cells

    Science.gov (United States)

    Mannack, Lilith V.J.C.; Eising, Sebastian; Rentmeister, Andrea

    2016-01-01

    Labeling RNA is of utmost interest, particularly in living cells, and thus RNA imaging is an emerging field. There are numerous methods relying on different concepts ranging from hybridization-based probes, over RNA-binding proteins to chemo-enzymatic modification of RNA. These methods have different benefits and limitations. This review aims to outline the current state-of-the-art techniques and point out their benefits and limitations. PMID:27158473

  5. Visual control of prey-capture flight in dragonflies.

    Science.gov (United States)

    Olberg, Robert M

    2012-04-01

    Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects.

  6. Cell-fusion method to visualize interphase nuclear pore formation.

    Science.gov (United States)

    Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko

    2014-01-01

    In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods.

  7. Visual outcome, ocular findings, and visual processing skills after allogeneic stem cell transplantation in children

    OpenAIRE

    Törnquist, Alba Lucia

    2010-01-01

    Background: Stem cell transplantation (SCT) offers a chance of cure in children with leukaemia and other life-threatening haematological, immunological, and metabolic diseases that do not respond to conventional treatment. Pre and post SCT, these children receive irradiation, and/or chemotherapy and immunosuppressive agents which like the primary disease may adversely affect the eye, the central nervous system as well as the posterior visual pathways and potentially threaten...

  8. A visual motion detecting module for dragonfly-controlled robots.

    Science.gov (United States)

    Pham, Thuy T; Higgins, Charles M

    2014-01-01

    When imitating biological sensors, we have not completely understood the early processing of the input to reproduce artificially. Building hybrid systems with both artificial and real biological components is a promising solution. For example, when a dragonfly is used as a living sensor, the early processing of visual information is performed fully in the brain of the dragonfly. The only significant remaining tasks are recording and processing neural signals in software and/or hardware. Based on existing works which focused on recording neural signals, this paper proposes a software application of neural information processing to design a visual processing module for dragonfly hybrid bio-robots. After a neural signal is recorded in real-time, the action potentials can be detected and matched with predefined templates to detect when and which descending neurons fire. The output of the proposed system will be used to control other parts of the robot platform.

  9. Cognitive Control Network Contributions to Memory-Guided Visual Attention.

    Science.gov (United States)

    Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C

    2016-05-01

    Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network(CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention.

  10. Simple Instrumental and Visual Tests for Nonlaboratory Environmental Control

    Directory of Open Access Journals (Sweden)

    L. P. Eksperiandova

    2016-01-01

    Full Text Available Proposed are simple and available techniques that can be used for rapid and reliable environmental control specifically of natural water by means of instrumental and visual tests in outdoor conditions. Developed are the chemical colorimetric modes for fast detection of socially dangerous trace impurities in water such as Co(II, Pd(II, and Rh(III as well as NO2--ions and Fe(III serving as model impurities. Application of portable digital devices and scanner allows estimating the color coordinates and increasing the accuracy and sensitivity of the tests. The combination of complex formation with preconcentration of colored complexes replaces the sensitive but time-consuming and capricious kinetic method that is usually used for this purpose at the more convenient and reliable colorimetric method. As the test tools, the following ones are worked out: polyurethane foam tablets with sorbed colored complexes, the two-layer paper sandwich packaged in slide adapter and saturated by reagents, and polyethylene terephthalate blister with dried reagents. Fast analysis of polyurethane foam tablets is realized using a pocket digital RGB-colorimeter or portable photometer. Express analysis of two-layer paper sandwich or polyethylene terephthalate blister is realized by visual and instrumental tests. The metrological characteristics of the developed visual and instrumental express analysis techniques are estimated.

  11. Temperature and oxygen visual estimator for carbonization process control

    Science.gov (United States)

    Martínez, Fredy; Martínez, Fernando; Montiel, Holman

    2017-02-01

    This paper proposes a visual estimator for temperature and oxygen content for closed loop control of carbonization furnace in the production of activated carbon. The carbonization process involves thermal decomposition of vegetal material in the absence of air; this requires rigorous sensing and control of these two variables. The system consists of two cameras, a thermographic camera to estimate the temperature, and a traditional digital camera to estimate the oxygen content. In both cases we use similarity measures between images to estimate the value of the variables into the furnace, estimation that is used to control the furnace flame. The algorithm is tested with reference photos taken at the production plant, and the experimental results prove the performance of the proposed technique.

  12. A Multimedia Visual Feedback in the Web-controlled Laboratory

    Directory of Open Access Journals (Sweden)

    J. Turan

    2012-06-01

    Full Text Available The paper presents development work related to create WWW based remote control laboratory for teaching Applied Photonics. In order to minimize the cost at the end-user domain, simple WWW browser with fundamental plug-in (Java applets, HTML Pages and LabWindows applets to support the remote control and video transmission functionality of the remote control is proposed. As for telepresence and monitoring of device actions, a simple type zooming web-camera is connected to the hosting multimedia PC via the USB port. The web-camera assists in visual feedback of the system and presents the feeling of telepresence for the end-user (student. USB web-cameras are normally efficient and the presence of another video server is not necessary in this case, thanks to LabWindows.

  13. Ankylosing Spondylitis and Posture Control: The Role of Visual Input

    Directory of Open Access Journals (Sweden)

    Alessandro Marco De Nunzio

    2015-01-01

    Full Text Available Objectives. To assess the motor control during quiet stance in patients with established ankylosing spondylitis (AS and to evaluate the effect of visual input on the maintenance of a quiet posture. Methods. 12 male AS patients (mean age 50.1 ± 13.2 years and 12 matched healthy subjects performed 2 sessions of 3 trials in quiet stance, with eyes open (EO and with eyes closed (EC on a baropodometric platform. The oscillation of the centre of feet pressure (CoP was acquired. Indices of stability and balance control were assessed by the sway path (SP of the CoP, the frequency bandwidth (FB1 that includes the 80% of the area under the amplitude spectrum, the mean amplitude of the peaks (MP of the sway density curve (SDC, and the mean distance (MD between 2 peaks of the SDC. Results. In severe AS patients, the MD between two peaks of the SDC and the SP of the center of feet pressure were significantly higher than controls during both EO and EC conditions. The MP was significantly reduced just on EC. Conclusions. Ankylosing spondylitis exerts negative effect on postural stability, not compensable by visual inputs. Our findings may be useful in the rehabilitative management of the increased risk of falling in AS.

  14. Visual control of movement patterns and the grammar of action.

    Science.gov (United States)

    Smyth, M M

    1989-05-01

    In this experiment adult subjects copied three types of material (letters, reversed letters and geometric shapes) with and without sight of the hand and the writing trace. Without vision the number of movement segments decreased and the sequence and direction of movements were altered. This means that subjects did not use a fixed stored representation to produce items nor did they obey the rules of Goodnow and Levine's (1973) grammar of action. When spatial location is made more difficult by the removal of vision, movement production is simplified to reduce the number of relocations required. The use of consistent directions of movement depends on the ability to use visual control of spatial location.

  15. In vivo cell biology of cancer cells visualized with fluorescent proteins.

    Science.gov (United States)

    Hoffman, Robert M

    2005-01-01

    This chapter describes a new cell biology where the behavior of individual cells can be visualized in the living animal. Previously it has been demonstrated that fluorescent proteins can be used for whole-body imaging of metastatic tumor growth, bacterial infection, and gene expression. An example of the new cell biology is dual-color fluorescence imaging using red fluorescent protein (RFP)-expressing tumors transplanted in green fluorescent protein (GFP)-expressing transgenic mice. These models show with great clarity the details of tumor-stroma interactions and especially tumor-induced angiogenesis, tumor-infiltrating lymphocytes, stromal fibroblasts, and macrophages. Another example is the color coding of cells with RFP or GFP such that both cell types can be simultaneously visualized in vivo. Stem cells can also be visualized and tracked in vivo. Mice in which the regulatory elements of the stem cell marker nestin drive GFP expression enable nascent vasculature to be visualized interacting with transplanted RFP-expressing cancer cells. Nestin-driven GFP expression can also be used to visualize hair follicle stem cells. Dual-color cells expressing GFP in the nucleus and RFP in the cytoplasm enable real-time visualization of nuclear-cytoplasm dynamics including cell cycle events and apoptosis. Highly elongated cancer cells in capillaries in living mice were observed within skin flaps. The migration velocities of the cancer cells in the capillaries were measured by capturing images of the dual-color fluorescent cells over time. The cells in the capillaries elongated to fit the width of these vessels. The use of the dual-color cancer cells differentially labeled in the cytoplasm and nucleus and associated fluorescent imaging provide a powerful tool to understand the mechanism of cancer cell migration and deformation in small vessels.

  16. Visual control in children with developmental dyslexia Controle visual em crianças com dislexia do desenvolvimento

    Directory of Open Access Journals (Sweden)

    Stella Maris Costa Castro

    2008-12-01

    Full Text Available PURPOSE: To assess binocular control in children with dyslexia. METHODS: Cross-sectional study with 26 children who were submitted to a set of ophthalmologic and visual tests. RESULTS: In the dyslexic children less eye movement control in voluntary convergence and unstable binocular fixation was observed. CONCLUSION: The results support the hypothesis that developmental dyslexia might present deficits which involve the magnocellular pathway and a part of the posterior cortical attentional network.OBJETIVO: Avaliar o controle binocular em crianças com dislexia. MÉTODOS: Estudo transversal do qual participaram 26 crianças, nas quais foram aplicadas uma série de exames oftalmológicos e visuais. RESULTADOS: Nas crianças com dislexia observou-se controle menor na convergência voluntária e na estabilidade da fixação binocular. CONCLUSÃO: Os resultados apóiam a hipótese de que na dislexia do desenvolvimento podem ocorrer déficits que envolvem a via visual magnocelular e uma parte da rede cortical posterior da atenção.

  17. IN-CELL visual examinations of K east fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.; Pyecha, T.D., Fluor Daniel Hanford

    1997-03-06

    Nine outer fuel elements were recovered from the K East Basin and transferred to a hot cell for examination. Extensive testing planned for these elements will support the process design for the Integrated Process Strategy (IPS), with emphasis on drying and conditioning behavior. Visual examinations of the fuel elements confirmed that they are appropriate to meet testing objectives to provide design guidance for IPS processing parameters.

  18. Closed-loop response properties of a visual interneuron involved in fly optomotor control.

    Science.gov (United States)

    Ejaz, Naveed; Krapp, Holger G; Tanaka, Reiko J

    2013-01-01

    Due to methodological limitations neural function is mostly studied under open-loop conditions. Normally, however, nervous systems operate in closed-loop where sensory input is processed to generate behavioral outputs, which again change the sensory input. Here, we investigate the closed-loop responses of an identified visual interneuron, the blowfly H1-cell, that is part of a neural circuit involved in optomotor flight and gaze control. Those behaviors may be triggered by attitude changes during flight in turbulent air. The fly analyses the resulting retinal image shifts and performs compensatory body and head rotations to regain its default attitude. We developed a fly robot interface to study H1-cell responses in a 1 degree-of-freedom image stabilization task. Image shifts, induced by externally forced rotations, modulate the cell's spike rate that controls counter rotations of a mobile robot to minimize relative motion between the robot and its visual surroundings. A feedback controller closed the loop between neural activity and the rotation of the robot. Under these conditions we found the following H1-cell response properties: (i) the peak spike rate decreases when the mean image velocity is increased, (ii) the relationship between spike rate and image velocity depends on the standard deviation of the image velocities suggesting adaptive scaling of the cell's signaling range, and (iii) the cell's gain decreases linearly with increasing image accelerations. Our results reveal a remarkable qualitative similarity between the response dynamics of the H1-cell under closed-loop conditions with those obtained in previous open-loop experiments. Finally, we show that the adaptive scaling of the H1-cell's responses, while maximizing information on image velocity, decreases the cell's sensitivity to image accelerations. Understanding such trade-offs in biological vision systems may advance the design of smart vision sensors for autonomous robots.

  19. Effect of Contrast on Visual Spatial Summation in Different Cell Categories in Cat Primary Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Ke Chen

    Full Text Available Multiple cell classes have been found in the primary visual cortex, but the relationship between cell types and spatial summation has seldom been studied. Parvalbumin-expressing inhibitory interneurons can be distinguished from pyramidal neurons based on their briefer action potential durations. In this study, we classified V1 cells into fast-spiking units (FSUs and regular-spiking units (RSUs and then examined spatial summation at high and low contrast. Our results revealed that the excitatory classical receptive field and the suppressive non-classical receptive field expanded at low contrast for both FSUs and RSUs, but the expansion was more marked for the RSUs than for the FSUs. For most V1 neurons, surround suppression varied as the contrast changed from high to low. However, FSUs exhibited no significant difference in the strength of suppression between high and low contrast, although the overall suppression decreased significantly at low contrast for the RSUs. Our results suggest that the modulation of spatial summation by stimulus contrast differs across populations of neurons in the cat primary visual cortex.

  20. An interactive graphical system of XBT data quality control and visualization

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.; Sarupria, J.S.; Gopalakrishna, V.V.

    A PC-based system has been developed for quality control and visualization of expendable bathy thermograph (XBT) data archived at the Indian Oceanographic Data Centre. The system, coded in Visual C++, is user interactive and runs on Windows-95...

  1. Purification, Visualization, and Molecular Signature of Neural Stem Cells

    Science.gov (United States)

    Yu, Yuan Hong; Narayanan, Gunaseelan; Sankaran, Shvetha; Ramasamy, Srinivas; Chan, Shi Yu; Lin, Shuping; Chen, Jinmiao; Yang, Henry; Srivats, Hariharan

    2016-01-01

    Neural stem cells (NSCs) are isolated from primary brain tissue and propagated as a heterogeneous mix of cells, including neural progenitors. To date, NSCs have not been purified in vitro to allow study of their biology and utility in regenerative medicine. In this study, we identify C1qR1as a novel marker for NSCs and show that it can be used along with Lewis-X (LeX) to yield a highly purified population of NSCs. Using time-lapse microscopy, we are able to follow NSCs forming neurospheres, allowing their visualization. Finally, using single-cell polymerase chain reaction (PCR), we determine the molecular signature of NSCs. The single-cell PCR data suggest that along with the Notch and Shh pathways, the Hippo pathway plays an important role in NSC activity. PMID:26464067

  2. Therapeutic Options for Controlling Fluids in the Visual System

    Science.gov (United States)

    Curry, Kristina M.; Wotring, Virginia E.

    2014-01-01

    Visual Impairment/Intracranial Pressure (VIIP) is a newly recognized risk at NASA. The VIIP project examines the effect of long-term exposure to microgravity on vision of crewmembers before and after they return to Earth. Diamox (acetazolamide) is a medication which is used to decrease intraocular pressure; however, it carries a 3% risk of kidney stones. Astronauts are at a higher risk of kidney stones during spaceflight and the use Diamox would only increase the risk; therefore alternative therapies were investigated. Histamine 2 (H2) antagonist acid blockers such as cimetidine, ranitidine, famotidine and nizatidine are typically used to relieve the symptoms of gastroesophageal reflux disease (GERD). H2 receptors have been found in the human visual system, which has led to research on the use of H2 antagonist blockers to control fluid production in the human eye. Another potential therapeutic strategy is targeted at aquaporins, which are water channels that help maintain fluid homeostasis. Aquaporin antagonists are also known to affect intracranial pressure which can in turn alter intraocular pressure. Studies on aquaporin antagonists suggest high potential for effective treatment. The primary objective of this investigation is to review existing research on alternate medications or therapy to significantly reduce intracranial and intraocular pressure. A literature review was conducted. Even though we do not have all the answers quite yet, a considerable amount of information was discovered, and findings were narrowed, which should allow for more conclusive answers to be found in the near future.

  3. Neural substrates of visual spatial coding and visual feedback control for hand movements in allocentric and target-directed tasks

    Directory of Open Access Journals (Sweden)

    Lore eThaler

    2011-08-01

    Full Text Available Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g. pointing or reaching, and movements that are based on allocentric visual information (e.g. drawing or copying. Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n=14 performed right-hand movements in either a target-directed task (moving a cursor to a target dot or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole-brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intraparietal sulcus (IPS, in posterior IPS, in bilateral dorsal premotor cortex (PMd, and in the Lateral Occipital Complex (LOC. Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal occipital cortex (SPOC and posterior IPS (all bilateral. In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, in particular in pre-supplementary motor area, PMd, IPS and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector-coding of movements.

  4. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    Science.gov (United States)

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  5. Visualization and Quality Control Web Tools for CERES Products

    Science.gov (United States)

    Mitrescu, C.; Doelling, D.; Chu, C.; Mlynczak, P.

    2014-12-01

    The CERES project continues to provide the scientific community a wide variety of satellite-derived data products. The flagship products TOA broadband shortwave and longwave observed fluxes, computed TOA and Surface fluxes, as well as cloud, aerosol, and other atmospheric parameters. These datasets encompass a wide range of temporal and spatial resolutions, suited to specific applications. We thus offer time resolutions that range from instantaneous to monthly means, with spatial resolutions that range from 20-km footprint to global scales. The 14-year record is mostly used by climate modeling communities that focus on global mean energetics, meridianal heat transport, and climate trend studies. CERES products are also used by the remote sensing community for their climatological studies. In the last years however, our CERES products had been used by an even broader audience, like the green energy, health and environmental research communities, and others. Because of that, the CERES project has implemented a now well-established web-oriented Ordering and Visualization Tool (OVT), which is well into its fifth year of development. In order to help facilitate a comprehensive quality control of CERES products, the OVT Team began introducing a series of specialized functions. These include the 1- and 2-D histogram, anomaly, deseasonalization, temporal and spatial averaging, side-by-side parameter comparison, and other specialized scientific application capabilities. Over time increasingly higher order temporal and spatial resolution products are being made available to the public through the CERES OVT. These high-resolution products require accessing the existing long-term archive - thus the reading of many very large netCDF or HDF files that pose a real challenge to the task of near instantaneous visualization. An overview of the CERES OVT basic functions and QC capabilities as well as future steps in expanding its capabilities will be presented at the meeting.

  6. Development of visual 3D virtual environment for control software

    Science.gov (United States)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  7. Controlling Cell Function with Geometry

    Science.gov (United States)

    Mrksich, Milan

    2012-02-01

    This presentation will describe the use of patterned substrates to control cell shape with examples that illustrate the ways in which cell shape can regulate cell function. Most cells are adherent and must attach to and spread on a surface in order to survive, proliferate and function. In tissue, this surface is the extracellular matrix (ECM), an insoluble scaffold formed by the assembly of several large proteins---including fibronectin, the laminins and collagens and others---but in the laboratory, the surface is prepared by adsorbing protein to glass slides. To pattern cells, gold-coated slides are patterned with microcontact printing to create geometric features that promote cell attachment and that are surrounded by inert regions. Cells attach to these substrates and spread to adopt the shape defined by the underlying pattern and remain stable in culture for several days. Examples will be described that used a series of shapes to reveal the relationship between the shape of the cell and the structure of its cytoskeleton. These geometric cues were used to control cell polarity and the tension, or contractility, present in the cytoskeleton. These rules were further used to control the shapes of mesenchymal stem cells and in turn to control the differentiation of these cells into specialized cell types. For example, stem cells that were patterned into a ``star'' shape preferentially differentiated into bone cells whereas those that were patterned into a ``flower'' shape preferred a fat cell fate. These influences of shape on differentiation depend on the mechanical properties of the cytoskeleton. These examples, and others, reveal that shape is an important cue that informs cell function and that can be combined with the more common soluble cues to direct and study cell function.

  8. Data Presentation and Visualization (DPV) Interface Control Document

    Science.gov (United States)

    Mazzone, Rebecca A.; Conroy, Michael P.

    2015-01-01

    Data Presentation and Visualization (DPV) is a subset of the modeling and simulation (M&S) capabilities at Kennedy Space Center (KSC) that endeavors to address the challenges of how to present and share simulation output for analysts, stakeholders, decision makers, and other interested parties. DPV activities focus on the development and provision of visualization tools to meet the objectives identified above, as well as providing supporting tools and capabilities required to make its visualization products available and accessible across NASA.

  9. Visualizing spatiotemporal dynamics of multicellular cell-cycle progressions with fucci technology.

    Science.gov (United States)

    Sakaue-Sawano, Asako; Miyawaki, Atsushi

    2014-05-01

    The visualization of cell-cycle behavior of individual cells within complex tissues presents an irresistible challenge to biologists studying multicellular structures. However, the transition from G1 to S in the cell cycle is difficult to monitor despite the fact that the process involves the critical decision to initiate a new round of DNA replication. Here, we use ubiquitination oscillators that control cell-cycle transitions to develop genetically encoded fluorescent probes for cell-cycle progression. Fucci (fluorescent ubiquitination-based cell-cycle indicator) probes exploit the regulation of cell-cycle-dependent ubiquitination to effectively label individual nuclei in G1 phase red, and those in S/G2/M phases green. Cultured cells and transgenic mice constitutively expressing the probes have been generated, such that every cell nucleus shows either red or green fluorescence. This protocol details two experiments that use biological samples expressing Fucci probes. One experiment involves time-lapse imaging of cells stably expressing a Fucci derivative (Fucci2), which allows for the exploration of the spatiotemporal patterns of cell-cycle dynamics during structural and behavioral changes of cultured cells. The other experiment involves large-field, high-resolution imaging of fixed sections of Fucci transgenic mouse embryos, which provides maps that illustrate cell proliferation versus differentiation in various developing organs.

  10. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    Science.gov (United States)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-06-01

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.

  11. Controlling cell-cell interactions using surface acoustic waves.

    Science.gov (United States)

    Guo, Feng; Li, Peng; French, Jarrod B; Mao, Zhangming; Zhao, Hong; Li, Sixing; Nama, Nitesh; Fick, James R; Benkovic, Stephen J; Huang, Tony Jun

    2015-01-06

    The interactions between pairs of cells and within multicellular assemblies are critical to many biological processes such as intercellular communication, tissue and organ formation, immunological reactions, and cancer metastasis. The ability to precisely control the position of cells relative to one another and within larger cellular assemblies will enable the investigation and characterization of phenomena not currently accessible by conventional in vitro methods. We present a versatile surface acoustic wave technique that is capable of controlling the intercellular distance and spatial arrangement of cells with micrometer level resolution. This technique is, to our knowledge, among the first of its kind to marry high precision and high throughput into a single extremely versatile and wholly biocompatible technology. We demonstrated the capabilities of the system to precisely control intercellular distance, assemble cells with defined geometries, maintain cellular assemblies in suspension, and translate these suspended assemblies to adherent states, all in a contactless, biocompatible manner. As an example of the power of this system, this technology was used to quantitatively investigate the gap junctional intercellular communication in several homotypic and heterotypic populations by visualizing the transfer of fluorescent dye between cells.

  12. Uncalibrated Neuro-Visual Servoing Control for Multiple Robot Arms

    Directory of Open Access Journals (Sweden)

    Rodolfo García-Rodríguez

    2013-09-01

    Full Text Available Diverse image-based tracking schemes for a robot moving in free motion have been proposed and experimentally validated. However, few visual servoing schemes have addressed the tracking of the desired trajectory and the contact forces for multiple robot arms. The main difficulty stems from the fact that camera information cannot be used to drive force trajectories. Recognizing this fact, a unique error manifold that includes position-velocity and force errors in orthogonal complements is proposed. A synergistic scheme that fuses camera, encoder and force sensor signals into a unique error manifold allows proposing a control system which guarantees exponential tracking errors under parametric uncertainty. Additionally a small neural network driven by a second order sliding mode surface is derived to compensate robot dynamics. Residual errors that arise because of the finite size of the neural network are compensated via an orthogonalized second order sliding mode. The performance of the proposed scheme, in two significant applications of the multiple robot arms, is validated through numerical simulations.

  13. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    Science.gov (United States)

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs.

  14. Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells.

    Science.gov (United States)

    Schürmann, Matthias; Frese, Natalie; Beyer, André; Heimann, Peter; Widera, Darius; Mönkemöller, Viola; Huser, Thomas; Kaltschmidt, Barbara; Kaltschmidt, Christian; Gölzhäuser, Armin

    2015-11-18

    Cell membranes are composed of 2D bilayers of amphipathic lipids, which allow a lateral movement of the respective membrane components. These components are arranged in an inhomogeneous manner as transient micro- and nanodomains, which are believed to be crucially involved in the regulation of signal transduction pathways in mammalian cells. Because of their small size (diameter 10-200 nm), membrane nanodomains cannot be directly imaged using conventional light microscopy. Here, direct visualization of cell membrane nanodomains by helium ion microscopy (HIM) is presented. It is shown that HIM is capable to image biological specimens without any conductive coating and that HIM images clearly allow the identification of nanodomains in the ultrastructure of membranes with 1.5 nm resolution. The shape of these nanodomains is preserved by fixation of the surrounding unsaturated fatty acids while saturated fatty acids inside the nanodomains are selectively removed. Atomic force microscopy, fluorescence microscopy, 3D structured illumination microscopy, and direct stochastic optical reconstruction microscopy provide additional evidence that the structures in the HIM images of cell membranes originate from membrane nanodomains. The nanodomains observed by HIM have an average diameter of 20 nm and are densely arranged with a minimal nearest neighbor distance of ≈ 15 nm.

  15. Closed-loop response properties of a visual interneuron involved in fly optomotor control

    Directory of Open Access Journals (Sweden)

    Naveed eEjaz

    2013-03-01

    Full Text Available Due to methodological limitations neural function is mostly studied under open-loop conditions. Normally, however, nervous systems operate in closed-loop where sensory input is processed to generate behavioural outputs, which again change the sensory input. Here, we investigate the closed-loop responses of an identified visual interneuron, the blowfly H1-cell, that is part of a neural circuit involved in optomotor flight and gaze control. Those behaviours may be triggered by attitude changes during flight in turbulent air. The fly analyses the resulting retinal image shifts and performs compensatory body and head rotations to regain its default attitude. We developed a fly-robot interface to study H1-cell responses in a 1 degree-of-freedom image stabilization task. Image shifts, induced by externally forced rotations, modulate the cell’s spike rate that controls counter rotations of a mobile robot to minimize relative motion between the robot and its visual surroundings. A feedback controller closed the loop between neural activity and the rotation of the robot. Under these conditions we found the following H1-cell response properties: (i the peak spike rate decreases when the mean image velocity is increased, (ii the relationship between spike rate and image velocity depends on the standard deviation of the image velocities suggesting adaptive scaling of the cell’s signalling range, and (iii the cell’s gain decreases linearly with increasing image accelerations.Our results reveal a remarkable qualitative similarity between the response dynamics of the H1-cell under closed-loop conditions with those obtained in previous open-loop experiments. Finally, we show that the adaptive scaling of the H1-cell’s responses, while maximizing information on image velocity, decreases the cell’s sensitivity to image accelerations. Understanding such trade-offs in biological vision systems may advance the design of smart vision sensors for autonomous

  16. Industrial image processing visual quality control in manufacturing

    CERN Document Server

    Demant, Christian; Garnica, Carsten

    2013-01-01

    This practical introduction focuses on how to build integrated solutions to industrial vision problems from individual algorithms. It gives a hands-on guide for setting up automated visual inspection systems using the NeuroCheck software package.

  17. Visualization and Quality Control Web Tools for CERES Products

    Science.gov (United States)

    Mitrescu, C.; Doelling, D.; Chu, C.; Rutan, D. A.

    2015-12-01

    The CERES project continues to provide the scientific community a wide variety of satellite-derived data products such as observed TOA broadband shortwave and longwave observed fluxes, computed TOA and Surface fluxes, as well as cloud, aerosol, and other atmospheric parameters. These datasets encompass a wide range of temporal and spatial resolutions, suited to specific applications. Now in its 15-year, CERES products are mostly used by climate modeling communities that focus on global mean energetics, meridianal heat transport, and climate trend studies. However, CERES products are now beginning to be used by an even broader audience, like the green energy, health and environmental agencies. With its well-established web-oriented Ordering and Visualization Tool (OVT), CERES products are now much more assessable to users of all communities. The OVT Team introduced a series of specialized functions such as 1- and 2-D histogram, anomaly, deseasonalization, temporal and spatial averaging, side-by-side parameter comparison, and others that made the process of Quality Control far easier and faster. Over time increasingly higher order temporal and spatial resolution products are being made available to the public through the CERES OVT's web-pages. Moreover, ground site observed surface fluxes are being integrated into the OVT to facilitate the CERES project to QC the CERES computed surface fluxes. These features will give users the opportunity to perform their own comparisons of the CERES computed surface fluxes and observed ground site fluxes. An overview of the CERES OVT basic functions and its QC capabilities, new developments, as well as future steps in expanding its capabilities will be presented at the meeting.

  18. Characterization of Visual Scanning Patterns in Air Traffic Control

    Directory of Open Access Journals (Sweden)

    Sarah N. McClung

    2016-01-01

    Full Text Available Characterization of air traffic controllers’ (ATCs’ visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1 defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2 developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1 the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs’ linguistic inputs, (2 the pattern classification occurrences differed between scenarios, and (3 increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process.

  19. Visual cells remember earlier applied target: plasticity of orientation selectivity.

    Directory of Open Access Journals (Sweden)

    Narcis Ghisovan

    Full Text Available BACKGROUND: A canonical proposition states that, in mature brain, neurons responsive to sensory stimuli are tuned to specific properties installed shortly after birth. It is amply demonstrated that that neurons in adult visual cortex of cats are orientation-selective that is they respond with the highest firing rates to preferred oriented stimuli. METHODOLOGY/PRINCIPAL FINDINGS: In anesthetized cats, prepared in a conventional fashion for single cell recordings, the present investigation shows that presenting a stimulus uninterruptedly at a non-preferred orientation for twelve minutes induces changes in orientation preference. Across all conditions orientation tuning curves were investigated using a trial by trial method. Contrary to what has been previously reported with shorter adaptation duration, twelve minutes of adaptation induces mostly attractive shifts, i.e. toward the adapter. After a recovery period allowing neurons to restore their original orientation tuning curves, we carried out a second adaptation which produced three major results: (1 more frequent attractive shifts, (2 an increase of their magnitude, and (3 an additional enhancement of responses at the new or acquired preferred orientation. Additionally, we also show that the direction of shifts depends on the duration of the adaptation: shorter adaptation in most cases produces repulsive shifts, whereas adaptation exceeding nine minutes results in attractive shifts, in the same unit. Consequently, shifts in preferred orientation depend on the duration of adaptation. CONCLUSION/SIGNIFICANCE: The supplementary response improvements indicate that neurons in area 17 keep a memory trace of the previous stimulus properties, thereby upgrading cellular performance. It also highlights the dynamic nature of basic neuronal properties in adult cortex since repeated adaptations modified both the orientation tuning selectivity and the response strength to the preferred orientation. These

  20. A controlled experiment for program comprehension through trace visualization

    NARCIS (Netherlands)

    Cornelissen, B.; Zaidman, A.

    2009-01-01

    Accepted version for publication in IEEE Transactions on Software Engineering. Software maintenance activities require a sufficient level of understanding of the software at hand that unfortunately is not always readily available. Execution trace visualization is a common approach in gaining this u

  1. Cell biology. Metabolic control of cell death.

    Science.gov (United States)

    Green, Douglas R; Galluzzi, Lorenzo; Kroemer, Guido

    2014-09-19

    Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.

  2. Experimental study on the effects of visualized functionally abstracted information on process control tasks

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Dong-Han [School of Computing Science, Middlesex University, The Burroughs London, London NW4 4BT (United Kingdom)], E-mail: d.ham@mdx.ac.uk; Yoon, Wan Chul [Department of Industrial Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of); Han, Byoung-Tae [Global Consumer Group, Citibank Korea Inc., Shinmoon-ro, Chongro-gu, Seoul 110-762 (Korea, Republic of)

    2008-02-15

    Two distinct design problems of information display for process control are information content representation and visual form design. Regarding information content, we experimentally showed the effectiveness of functionally abstracted information without the benefits of sophisticated graphical presentation in various task situations. However, since it is obvious that the effects of the information display are also influenced by display formats (i.e., visual forms) as well as the information content, further research was required to investigate the effectiveness of visualized functionally abstracted information. For this purpose, this study conducted an experiment in complex process control tasks (operation and fault diagnosis). The experimental purposes were to confirm the effectiveness of the functionally abstracted information visualized with emergent features or peculiar geometric forms and to examine the additional effects of the visualization on task performance. The results showed that functionally abstracted information presented with sophisticated visual forms helped operators perform process control tasks in more efficient and safe way. The results also indicated the importance of explicit visualization of goal-means relation between higher and lower abstraction levels. Lastly, this study proposed a framework for designing visual forms for process control display.

  3. Effects of visual feedback therapy on postural control in bilateral standing after stroke: a systematic review.

    NARCIS (Netherlands)

    Peppen, R.P. van; Kortsmit, M.; Lindeman, E.; Kwakkel, G.

    2006-01-01

    OBJECTIVE: To establish whether bilateral standing with visual feedback therapy after stroke improves postural control compared with conventional therapy and to evaluate the generalization of the effects of visual feedback therapy on gait and gait-related activities. DESIGN: A systematic review. MET

  4. Preparing Content-Rich Learning Environments with VPython and Excel, Controlled by Visual Basic for Applications

    Science.gov (United States)

    Prayaga, Chandra

    2008-01-01

    A simple interface between VPython and Microsoft (MS) Office products such as Word and Excel, controlled by Visual Basic for Applications, is described. The interface allows the preparation of content-rich, interactive learning environments by taking advantage of the three-dimensional (3D) visualization capabilities of VPython and the GUI…

  5. Statistical and Variational Methods for Problems in Visual Control

    Science.gov (United States)

    2009-03-02

    invariant visual tracking by particle filtering" (with A. Nakhmani), SPIE, 2008. 81. "Adaptive Bayesian shrinkage model for spherical wavelet based denoising ...vision. In recent work, we have described a random particle system, evolving on the discretized unit circle, whose profile converges toward the Gauss...34). Specifically, we have chosen to smooth by evolving P° according to a discretized version of the partial differential equation r apt -^ = {{P$)2PL

  6. Visual Problem Solving and Self‐regulation in Training Air Traffic Control

    NARCIS (Netherlands)

    Meeuwen van, Ludo

    2015-01-01

    Van Meeuwen, L. W. (2013). Visual problem solving and self-regulation in training air traffic control (Unpublished doctoral dissertation). Centre for Learning Sciences and Technologies, Open Universiteit, Heerlen, The Netherlands.

  7. Visual problem solving and self-regulation in training air traffic control

    NARCIS (Netherlands)

    Van Meeuwen, Ludo

    2013-01-01

    Van Meeuwen, L. W. (2013). Visual problem solving and self-regulation in training air traffic control (Unpublished doctoral dissertation). Centre for Learning Sciences and Technologies, Open Universiteit, Heerlen, The Netherlands.

  8. Relationship between writing skills and visual-motor control in low-vision students.

    Science.gov (United States)

    Atasavun Uysal, Songül; Aki, Esra

    2012-08-01

    The purpose of this study was to investigate the relationship between handwriting skills and visual motor control among students with low vision and to compare this with the performance of their normal sighted peers. 42 students with low vision and 26 normal sighted peers participated. The Bruininks-Oseretsky Motor Proficiency Test-Short Form (BOTMP-SF), Jebsen Taylor Hand Function Test's writing subtest, and a legibility assessment were administered. Significant differences were found between groups for students' writing speed, legibility, and visual motor control. Visual motor control was correlated both writing speed and legibility. Students with low vision had poorer handwriting performance, with lower legibility and slower writing speed. Writing performance time was related to visual motor control in students with low vision.

  9. Experimental System for Investigation of Visual Sensory Input in Postural Feedback Control

    Directory of Open Access Journals (Sweden)

    Jozef Pucik

    2012-01-01

    Full Text Available The human postural control system represents a biological feedback system responsible for maintenance of upright stance. Vestibular, proprioceptive and visual sensory inputs provide the most important information into the control system, which controls body centre of mass (COM in order to stabilize the human body resembling an inverted pendulum. The COM can be measured indirectly by means of a force plate as the centre of pressure (COP. Clinically used measurement method is referred to as posturography. In this paper, the conventional static posturography is extended by visual stimulation, which provides insight into a role of visual information in balance control. Visual stimuli have been designed to induce body sway in four specific directions – forward, backward, left and right. Stabilograms were measured using proposed single-PC based system and processed to calculate velocity waveforms and posturographic parameters. The parameters extracted from pre-stimulus and on-stimulus periods exhibit statistically significant differences.

  10. On-line and Model-based Approaches to the Visual Control of Action

    OpenAIRE

    Zhao, Huaiyong; Warren, William H.

    2014-01-01

    Two general approaches to the visual control of action have emerged in last few decades, known as the on-line and model-based approaches. The key difference between them is whether action is controlled by current visual information or on the basis of an internal world model. In this paper, we evaluate three hypotheses: strong on-line control, strong model-based control, and a hybrid solution that combines on-line control with weak off-line strategies. We review experimental research on the co...

  11. Role of Visual Dysfunction in Postural Control in Children With Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    G. Porro

    2005-01-01

    Full Text Available Introduction: Deficient postural control is one of the key problems in cerebral palsy (CP. Little, however, is known about the specific nature of postural problems of children with CP, nor of the relation between abnormal posture and dysfunction of the visual system. Aim of the study: To provide additional information on the association of abnormalities in postural control and visual dysfunction of the anterior or posterior part of the visual system. Methods: Data resulting from ophthalmologic, orthoptic, neurological, neuro-radiological, and ethological investigations of more than 313 neurologically impaired children were retrospectively analyzed. Results: Abnormal postural control related to ocular and ocular motor disorders consisted of anomalous head control and subsequent abnormal head posture and torticollis. The abnormal postural control related to retrochiasmatical damage of the visual system consisted of a torticollis combined with adjustment of the upper part of the body, as if at the same time adapting to a combination of defects and optimizing residual visual functions. Conclusion: Visual dysfunctions play a distinct role in the postural control of children with CP.

  12. Real-Time Visualization and Quantification of Contractile Ring Proteins in Single Living Cells

    Science.gov (United States)

    Davidson, Reshma; Liu, Yajun; Gerien, Kenneth S.; Wu, Jian-Qiu

    2017-01-01

    Single-cell microscopy provides a powerful tool to visualize cellular and subcellular processes in wild-type and mutant cells by observing fluorescently tagged proteins. Here, we describe three simple methods to visualize fission yeast cells: gelatin slides, coverslip-bottom dishes, and tetrad fluorescence microscopy. These imaging methods and data analysis using free software make it possible to quantify protein localization, dynamics, and concentration with high spatial and temporal resolution. In fission yeast, the actomyosin contractile ring is essential for cytokinesis. We use the visualization and quantification of contractile ring proteins as an example to demonstrate how to use these methods. PMID:26519302

  13. Real-Time Visualization and Quantification of Contractile Ring Proteins in Single Living Cells.

    Science.gov (United States)

    Davidson, Reshma; Liu, Yajun; Gerien, Kenneth S; Wu, Jian-Qiu

    2016-01-01

    Single-cell microscopy provides a powerful tool to visualize cellular and subcellular processes in wild-type and mutant cells by observing fluorescently tagged proteins. Here, we describe three simple methods to visualize fission yeast cells: gelatin slides, coverslip-bottom dishes, and tetrad fluorescence microscopy. These imaging methods and data analysis using free software make it possible to quantify protein localization, dynamics, and concentration with high spatial and temporal resolution. In fission yeast, the actomyosin contractile ring is essential for cytokinesis. We use the visualization and quantification of contractile ring proteins as an example to demonstrate how to use these methods.

  14. Effect of visual biofeedback to acquire supraglottic swallow in healthy individuals: a randomized-controlled trial.

    Science.gov (United States)

    Imada, Miho; Kagaya, Hitoshi; Ishiguro, Yuriko; Kato, Miho; Inamoto, Yoko; Tanaka, Takashi; Shibata, Seiko; Saitoh, Eiichi

    2016-06-01

    The aim of this study is to evaluate the effect of visual biofeedback therapy in acquiring supraglottic swallow (SGS) in a randomized-controlled trial with healthy individuals. Eighteen individuals (mean age, 26 years) who could not close or keep closed the vocal folds before and during the swallow in SGS were allocated randomly to either a visual biofeedback group (eight individuals) or a nonbiofeedback group (10 individuals). A videoendoscope was inserted intranasally and an SGS exercise, using 4 ml of green-colored water, was performed 30 times per day up to 5 days. When the participant failed to perform SGS, the result was provided only to the participants in the visual biofeedback group. The median length of time until acquiring SGS was 1.5 days in the visual biofeedback group and 3.5 days in the nonbiofeedback group (P=0.040). We concluded that visual biofeedback effectively enabled participants to acquire SGS earlier.

  15. Hybrid Visual Servoing Control for Robotic Arc Welding Based on Structured Light Vision

    Institute of Scientific and Technical Information of China (English)

    XUDe; WANGLin-Kun; TUZhi-Guo; TANMin

    2005-01-01

    A novel hybrid visual servoing control method based on structured light vision is proposed for robotic arc welding with a general six degrees of freedom robot. It consists of a position control inner-loop in Cartesian space and two outer-loops. One is position-based visual control inCartesian space for moving in the direction of weld seam, i.e., weld seam tracking, another is imagebased visual control in image space for adjustment to eliminate the errors in the process of tracking.A new Jacobian matrix from image space of the feature point on structured light stripe to Cartesian space is provided for differential movement of the end-effector. The control system model is simplified and its stability is discussed. An experiment of arc welding protected by gas CO2 for verifying is well conducted.

  16. A method of initial welding position guiding for arc welding robot based on visual servo control

    Institute of Scientific and Technical Information of China (English)

    郭振民; 陈善本; 邱涛; 吴林

    2003-01-01

    In order to solve the visual guiding task of initial welding position for arc welding robot, this paper presents a practice-prone image-based visual servo control strategy without calibration, and we perform validating experiments on a nine-DOF arc welding robot system. Experimental results illustrate presented method has the function to fulfill the task of welding robot initial positioning with certain anti-jamming ability. This method provides a basis for guiding welding gun to initial welding pose with real typical seam's image properties to replace flag block properties, and is a significant exploit to realize visual guiding of initial welding position and seam tracing in robot welding system.

  17. Design of novel non-contact multimedia controller for disability by using visual stimulus.

    Science.gov (United States)

    Pan, Jeng-Shyang; Lo, Chi-Chun; Tsai, Shang-Ho; Lin, Bor-Shyh

    2015-12-01

    The design of a novel non-contact multimedia controller is proposed in this study. Nowadays, multimedia controllers are generally used by patients and nursing assistants in the hospital. Conventional multimedia controllers usually involve in manual operation or other physical movements. However, it is more difficult for the disabled patients to operate the conventional multimedia controller by themselves; they might totally depend on others. Different from other multimedia controllers, the proposed system provides a novel concept of controlling multimedia via visual stimuli, without manual operation. The disabled patients can easily operate the proposed multimedia system by focusing on the control icons of a visual stimulus device, where a commercial tablet is used as the visual stimulus device. Moreover, a wearable and wireless electroencephalogram (EEG) acquisition device is also designed and implemented to easily monitor the user's EEG signals in daily life. Finally, the proposed system has been validated. The experimental result shows that the proposed system can effectively measure and extract the EEG feature related to visual stimuli, and its information transfer rate is also good. Therefore, the proposed non-contact multimedia controller exactly provides a good prototype of novel multimedia controlling scheme.

  18. Control Framework for Dexterous Manipulation Using Dynamic Visual Servoing and Tactile Sensors’ Feedback

    Directory of Open Access Journals (Sweden)

    Carlos A. Jara

    2014-01-01

    Full Text Available Tactile sensors play an important role in robotics manipulation to perform dexterous and complex tasks. This paper presents a novel control framework to perform dexterous manipulation with multi-fingered robotic hands using feedback data from tactile and visual sensors. This control framework permits the definition of new visual controllers which allow the path tracking of the object motion taking into account both the dynamics model of the robot hand and the grasping force of the fingertips under a hybrid control scheme. In addition, the proposed general method employs optimal control to obtain the desired behaviour in the joint space of the fingers based on an indicated cost function which determines how the control effort is distributed over the joints of the robotic hand. Finally, authors show experimental verifications on a real robotic manipulation system for some of the controllers derived from the control framework.

  19. Combining Dense Structure From Motion and Visual SLAM in a Behavior-Based Robot Control Architecture

    OpenAIRE

    Geert De Cubber; Sid Ahmed Berrabah; Daniela Doroftei; Yvan Baudoin; Hichem Sahli

    2010-01-01

    In this paper, we present a control architecture for an intelligent outdoor mobile robot. This enables the robot to navigate in a complex, natural outdoor environment, relying on only a single on-board camera as sensory input. This is achieved through a twofold analysis of the visual data stream: a dense structure from motion algorithm calculates a depth map of the environment and a visual simultaneous localization and mapping algorithm builds a map of the surroundings using image features. T...

  20. Demonstration of visualization techniques for the control room engineer in 2030

    DEFF Research Database (Denmark)

    Marinelli, Mattia; Heussen, Kai; Strasser, Thomas

    2017-01-01

    Deliverable 8.1 reports results on analytics and visualizations of real time flexibility in support of voltage and frequency control in 2030+ power system. The investigation is carried out by means of relevant control room scenarios in order to derive the appropriate analytics needed for each...

  1. Visual Servo Tracking Control of a Wheeled Mobile Robot with a Monocular Fixed Camera

    Science.gov (United States)

    2004-01-01

    41), it is clear that the controller developed in the previous section can not be applied to solve the regulation problem . In this section, an...extension is presented to illustrate how a visual servo controller can be developed to solve the regulation problem for the fixed camera configuration. To

  2. Iterative development of visual control systems in a research vivarium.

    Directory of Open Access Journals (Sweden)

    James A Bassuk

    Full Text Available The goal of this study was to test the hypothesis that reintroduction of Continuous Performance Improvement (CPI methodology, a lean approach to management at Seattle Children's (Hospital, Research Institute, Foundation, would facilitate engagement of vivarium employees in the development and sustainment of a daily management system and a work-in-process board. Such engagement was implemented through reintroduction of aspects of the Toyota Production System. Iterations of a Work-In-Process Board were generated using Shewhart's Plan-Do-Check-Act process improvement cycle. Specific attention was given to the importance of detecting and preventing errors through assessment of the following 5 levels of quality: Level 1, customer inspects; Level 2, company inspects; Level 3, work unit inspects; Level 4, self-inspection; Level 5, mistake proofing. A functioning iteration of a Mouse Cage Work-In-Process Board was eventually established using electronic data entry, an improvement that increased the quality level from 1 to 3 while reducing wasteful steps, handoffs and queues. A visual workplace was realized via a daily management system that included a Work-In-Process Board, a problem solving board and two Heijunka boards. One Heijunka board tracked cage changing as a function of a biological kanban, which was validated via ammonia levels. A 17% reduction in cage changing frequency provided vivarium staff with additional time to support Institute researchers in their mutual goal of advancing cures for pediatric diseases. Cage washing metrics demonstrated an improvement in the flow continuum in which a traditional batch and queue push system was replaced with a supermarket-type pull system. Staff engagement during the improvement process was challenging and is discussed. The collective data indicate that the hypothesis was found to be true. The reintroduction of CPI into daily work in the vivarium is consistent with the 4P Model of the Toyota Way and

  3. Iterative development of visual control systems in a research vivarium.

    Science.gov (United States)

    Bassuk, James A; Washington, Ida M

    2014-01-01

    The goal of this study was to test the hypothesis that reintroduction of Continuous Performance Improvement (CPI) methodology, a lean approach to management at Seattle Children's (Hospital, Research Institute, Foundation), would facilitate engagement of vivarium employees in the development and sustainment of a daily management system and a work-in-process board. Such engagement was implemented through reintroduction of aspects of the Toyota Production System. Iterations of a Work-In-Process Board were generated using Shewhart's Plan-Do-Check-Act process improvement cycle. Specific attention was given to the importance of detecting and preventing errors through assessment of the following 5 levels of quality: Level 1, customer inspects; Level 2, company inspects; Level 3, work unit inspects; Level 4, self-inspection; Level 5, mistake proofing. A functioning iteration of a Mouse Cage Work-In-Process Board was eventually established using electronic data entry, an improvement that increased the quality level from 1 to 3 while reducing wasteful steps, handoffs and queues. A visual workplace was realized via a daily management system that included a Work-In-Process Board, a problem solving board and two Heijunka boards. One Heijunka board tracked cage changing as a function of a biological kanban, which was validated via ammonia levels. A 17% reduction in cage changing frequency provided vivarium staff with additional time to support Institute researchers in their mutual goal of advancing cures for pediatric diseases. Cage washing metrics demonstrated an improvement in the flow continuum in which a traditional batch and queue push system was replaced with a supermarket-type pull system. Staff engagement during the improvement process was challenging and is discussed. The collective data indicate that the hypothesis was found to be true. The reintroduction of CPI into daily work in the vivarium is consistent with the 4P Model of the Toyota Way and selected Principles

  4. Radiation therapy for primary carcinoma of the eyelid. Tumor control and visual function

    Energy Technology Data Exchange (ETDEWEB)

    Hata, M.; Koike, I.; Odagiri, K.; Kasuya, T.; Minagawa, Y.; Kaizu, H.; Mukai, Y.; Inoue, T. [Yokohama City Univ. Graduate School of Medicine, Kanagawa (Japan). Dept. of Radiology; Maegawa, J. [Yokohama City Univ. Graduate School of Medicine, Kanagawa (Japan). Dept. of Plastic and Reconstructive Surgery; Kaneko, A. [Yokohama City Univ. Graduate School of Medicine, Kanagawa (Japan). Dept. of Ophthalmology

    2012-12-15

    Background and purpose: Surgical excision remains the standard and most reliable curative treatment for eyelid carcinoma, but frequently causes functional and cosmetic impairment of the eyelid. We therefore investigated the efficacy and safety of radiation therapy in eyelid carcinoma. Patients and methods: Twenty-three patients with primary carcinoma of the eyelid underwent radiation therapy. Sebaceous carcinoma was histologically confirmed in 16 patients, squamous cell carcinoma in 6, and basal cell carcinoma in 1. A total dose of 50-66.6 Gy (median, 60 Gy) was delivered to tumor sites in 18-37 fractions (median, 30 fractions). Results: All but 3 of the 23 patients had survived at a median follow-up period of 49 months. The overall survival and local progression-free rates were 87% and 93% at 2 years, and 80% and 93% at 5 years, respectively. Although radiation-induced cataracts developed in 3 patients, visual acuity in the other patients was relatively well preserved. There were no other therapy-related toxicities of grade 3 or greater. Conclusion: Radiation therapy is safe and effective for patients with primary carcinoma of the eyelid. It appears to contribute to prolonged survival as a result of good tumor control, and it also facilitates functional and cosmetic preservation of the eyelid. (orig.)

  5. Soft-computing based visual control for unmanned vehicles

    OpenAIRE

    Olivares Méndez, Miguel Ángel

    2013-01-01

    El objetivo principal de esta Tesis es extender la utilización del “Soft- Computing” para el control de vehículos sin piloto utilizando visión. Este trabajo va más allá de los típicos sistemas de control utilizados en entornos altamente controlados, demonstrando la fuerza y versatilidad de la lógica difusa (Fuzzy Logic) para controlar vehículos aéreos y terrestres en un abanico de applicaciones diferentes. Para esta Tesis se ha realizado un gran número de pruebas reales en las cuales los cont...

  6. GFP-specific CD8 T cells enable targeted cell depletion and visualization of T-cell interactions.

    Science.gov (United States)

    Agudo, Judith; Ruzo, Albert; Park, Eun Sook; Sweeney, Robert; Kana, Veronika; Wu, Meng; Zhao, Yong; Egli, Dieter; Merad, Miriam; Brown, Brian D

    2015-12-01

    There are numerous cell types with scarcely understood functions, whose interactions with the immune system are not well characterized. To facilitate their study, we generated a mouse bearing enhanced green fluorescent protein (EGFP)-specific CD8(+) T cells. Transfer of the T cells into EGFP reporter animals can be used to kill EGFP-expressing cells, allowing selective depletion of desired cell types, or to interrogate T-cell interactions with specific populations. Using this system, we eliminate a rare EGFP-expressing cell type in the heart and demonstrate its role in cardiac function. We also show that naive T cells are recruited into the mouse brain by antigen-expressing microglia, providing evidence of an immune surveillance pathway in the central nervous system. The just EGFP death-inducing (Jedi) T cells enable visualization of a T-cell antigen. They also make it possible to utilize hundreds of existing EGFP-expressing mice, tumors, pathogens and other tools, to study T-cell interactions with many different cell types, to model disease states and to determine the functions of poorly characterized cell populations.

  7. A systematic review of controlled trials on visual stress using Intuitive Overlays or the Intuitive Colorimeter.

    Science.gov (United States)

    Evans, Bruce J W; Allen, Peter M

    2016-01-01

    Claims that coloured filters aid reading date back 200 years and remain controversial. Some claims, for example, that more than 10% of the general population and 50% of people with dyslexia would benefit from coloured filters lack sound evidence and face validity. Publications with such claims typically cite research using methods that have not been described in the scientific literature and lack a sound aetiological framework. Notwithstanding these criticisms, some researchers have used more rigorous selection criteria and methods of prescribing coloured filters that were developed at a UK Medical Research Council unit and which have been fully described in the scientific literature. We review this research and disconfirm many of the more extreme claims surrounding this topic. This literature indicates that a minority subset of dyslexics (circa 20%) may have a condition described as visual stress which most likely results from a hyperexcitability of the visual cortex. Visual stress is characterised by symptoms of visual perceptual distortions, headaches, and eyestrain when viewing repetitive patterns, including lines of text. This review indicates that visual stress is distinct from, although sometimes co-occurs with, dyslexia. Individually prescribed coloured filters have been shown to improve reading performance in people with visual stress, but are unlikely to influence the phonological and memory deficits associated with dyslexia and therefore are not a treatment for dyslexia. This review concludes that larger and rigorous randomised controlled trials of interventions for visual stress are required. Improvements in the diagnosis of the condition are also a priority.

  8. Development of visual motion perception for prospective control: Brain and behavioural studies in infants

    Directory of Open Access Journals (Sweden)

    Seth B. Agyei

    2016-02-01

    Full Text Available During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioural and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioural data when studying the neural correlates of prospective control.

  9. ASPNET AJAX Control Development with Visual Studio 2008 and NET 35 Framework

    CERN Document Server

    White, Damien

    2010-01-01

    This Wrox Blox empowers developers to develop ASP.NET AJAX controls by giving them a look "under the hood" of AJAX controls. While this Wrox Blox focuses on Visual Studio 2008 and .NET 3.5, developers should know that the concepts for creating custom controls in Visual Studio 2005 and .NET 2.0 with ASP.NET AJAX 1.0 are very similar. Visual Studio 2008 offers many improvements concerning JavaScript editing/debugging, and .NET 3.5 includes ASP.NET AJAX right out of the box, simplifying the install to get AJAX up and running. This Wrox Blox takes developers gradually through creating a custom ASP

  10. The interaction between emotion and executive control: Comparison between visual, auditory, and tactile modalities.

    Science.gov (United States)

    Fruchtman-Steinbok, Tom; Salzer, Yael; Henik, Avishai; Cohen, Noga

    2017-08-01

    The reciprocal connections between emotion and attention are vital for adaptive behaviour. Previous results demonstrated that the behavioural effects of emotional stimuli on performance are attenuated when executive control is recruited. The current research studied whether this attenuation is modality dependent. In two experiments, negative and neutral pictures were presented shortly before a visual, tactile, or auditory target in a Simon task. All three modalities demonstrated a Simon effect, a conflict adaptation effect, and an emotional interference effect. However, the interaction between picture valence and Simon congruency was found only in the visual task. Specifically, when the Simon target was visual, emotional interference was reduced during incongruent compared to congruent trials. These findings suggest that although the control-related effects observed in the Simon tasks are not modality dependent, the link between emotion and executive control is modality dependent. Presumably, this link occurs only when the emotional stimulus and the target are presented in the same modality.

  11. Postural control responses sitting on unstable board during visual stimulation

    Science.gov (United States)

    Mizuno, Y.; Shindo, M.; Kuno, S.; Kawakita, T.; Watanabe, S.

    2001-08-01

    Concerning with the relation of vection induced by the optokinetic stimulation and the body movement, especially we attended to the neck joint movement, which counteracted to the shoulder movement. Then, we analyzed the mechanisms of the sitting postural control by using the seesaw board. By the optokinetic stimulation through the head mounted display (H.M.D.), the vection was leaded, and it affected to the sway of the body on the seesaw board. In this experiment, we found that the movement of upper part of body except for the head was the same direction to the seesaw board but the head moved out of phase to the seesaw board. This phenomenon will be suggested that the unstable condition of sway is balanced by the counter swing of head and the neck muscle tonus is controlled by acting of the vestiburo-collic reflex.

  12. Visually Guiding and Controlling the Search While Mining Chemical Structures

    OpenAIRE

    Max Pereira; Vitor Santos Costa; Rui Camacho; Fonseca, Nuno A.

    2009-01-01

    In this paper we present the work in progress on LogCHEM, an ILP based tool for discriminative interactive mining of chemical fragments. In particular, we describe the integration with a molecule visualisation software that allows the chemist to graphically control the search for interesting patterns in chemical fragments. Furthermore, we show how structured information, such as rings, functional groups like carboxyl, amine, methyl, ester, etc are integrated and exploited in LogCHEM.

  13. Proof-of-Concept Demonstration Results for Robotic Visual Servo Controllers

    Energy Technology Data Exchange (ETDEWEB)

    Chawda, P.V.

    2004-09-22

    There is significant motivation to provide robotic systems with improved autonomy as a means to significantly accelerate deactivation and decommissioning operations while also reducing the associated costs, removing human operators from hazardous environments, and reducing the required burden and skill of human operators. To achieve improved autonomy, fundamental research is focused on the challenges of developing visual servo controllers. The challenge in developing these controllers is that a camera provides 2-dimensional image information about the 3-dimensional Euclidean-space through a perspective (range dependent) projection that can be corrupted by uncertainty in the camera calibration matrix. Disturbances in this relationship (i.e., corruption in the sensor information) propagate erroneous information to the feedback controller of the robot, leading to potentially unpredictable task execution. This technical manual describes 3 proof-of-concept demonstrations of visual servo controllers developed from fundamental research aimed at these challenges. Specifically, one section describes the implementation of a cooperative visual servo control scheme with a camera-in-hand and a fixed camera to track a moving target despite uncertainty in the camera calibration and the unknown constant distance from the camera to a target where the camera is mounted on the end-effector of a 6 degrees-of-freedom hydraulic robot manipulator. The next section describes the implementation of 2 homography-based visual servo tracking and regulation controllers for a mobile robot with a calibrated camera despite an unknown time-varying distance from the camera to a target.

  14. The Next Generation of Ground Operations Command and Control; Scripting in C Sharp and Visual Basic

    Science.gov (United States)

    Ritter, George; Pedoto, Ramon

    2010-01-01

    This slide presentation reviews the use of scripting languages in Ground Operations Command and Control. It describes the use of scripting languages in a historical context, the advantages and disadvantages of scripts. It describes the Enhanced and Redesigned Scripting (ERS) language, that was designed to combine the features of a scripting language and the graphical and IDE richness of a programming language with the utility of scripting languages. ERS uses the Microsoft Visual Studio programming environment and offers custom controls that enable an ERS developer to extend the Visual Basic and C sharp language interface with the Payload Operations Integration Center (POIC) telemetry and command system.

  15. Top-Down Control of Visual Alpha Oscillations: Sources of Control Signals and Their Mechanisms of Action.

    Science.gov (United States)

    Wang, Chao; Rajagovindan, Rajasimhan; Han, Sahng-Min; Ding, Mingzhou

    2016-01-01

    Alpha oscillations (8-12 Hz) are thought to inversely correlate with cortical excitability. Goal-oriented modulation of alpha has been studied extensively. In visual spatial attention, alpha over the region of visual cortex corresponding to the attended location decreases, signifying increased excitability to facilitate the processing of impending stimuli. In contrast, in retention of verbal working memory, alpha over visual cortex increases, signifying decreased excitability to gate out stimulus input to protect the information held online from sensory interference. According to the prevailing model, this goal-oriented biasing of sensory cortex is effected by top-down control signals from frontal and parietal cortices. The present study tests and substantiates this hypothesis by (a) identifying the signals that mediate the top-down biasing influence, (b) examining whether the cortical areas issuing these signals are task-specific or task-independent, and (c) establishing the possible mechanism of the biasing action. High-density human EEG data were recorded in two experimental paradigms: a trial-by-trial cued visual spatial attention task and a modified Sternberg working memory task. Applying Granger causality to both sensor-level and source-level data we report the following findings. In covert visual spatial attention, the regions exerting top-down control over visual activity are lateralized to the right hemisphere, with the dipoles located at the right frontal eye field (FEF) and the right inferior frontal gyrus (IFG) being the main sources of top-down influences. During retention of verbal working memory, the regions exerting top-down control over visual activity are lateralized to the left hemisphere, with the dipoles located at the left middle frontal gyrus (MFG) being the main source of top-down influences. In both experiments, top-down influences are mediated by alpha oscillations, and the biasing effect is likely achieved via an inhibition

  16. Visual Servoing

    OpenAIRE

    Chaumette, Francois; Hutchinson, Seth; Corke, Peter

    2016-01-01

    International audience; This chapter introduces visual servo control, using computer vision data in the servo loop to control the motion of a robot. We first describe the basic techniques that are by now well established in the field. We give a general overview of the formulation of the visual servo control problem, and describe the two archetypal visual servo control schemes: image-based and pose-based visual servo control. We then discuss performance and stability issues that pertain to the...

  17. Real-Time Inverse Optimal Neural Control for Image Based Visual Servoing with Nonholonomic Mobile Robots

    Directory of Open Access Journals (Sweden)

    Carlos López-Franco

    2015-01-01

    Full Text Available We present an inverse optimal neural controller for a nonholonomic mobile robot with parameter uncertainties and unknown external disturbances. The neural controller is based on a discrete-time recurrent high order neural network (RHONN trained with an extended Kalman filter. The reference velocities for the neural controller are obtained with a visual sensor. The effectiveness of the proposed approach is tested by simulations and real-time experiments.

  18. Ontogenetic cell death and phagocytosis in the visual system of vertebrates.

    Science.gov (United States)

    Francisco-Morcillo, Javier; Bejarano-Escobar, Ruth; Rodríguez-León, Joaquín; Navascués, Julio; Martín-Partido, Gervasio

    2014-10-01

    Programmed cell death (PCD), together with cell proliferation, cell migration, and cell differentiation, is an essential process during development of the vertebrate nervous system. The visual system has been an excellent model on which to investigate the mechanisms involved in ontogenetic cell death. Several phases of PCD have been reported to occur during visual system ontogeny. During these phases, comparative analyses demonstrate that dying cells show similar but not identical spatiotemporally restricted patterns in different vertebrates. Additionally, the chronotopographical coincidence of PCD with the entry of specialized phagocytes in some regions of the developing vertebrate visual system suggests that factors released from degenerating cells are involved in the cell migration of macrophages and microglial cells. Contradicting this hypothesis however, in many cases the cell corpses generated during degeneration are rapidly phagocytosed by neighboring cells, such as neuroepithelial cells or Müller cells. In this review, we describe the occurrence and the sites of PCD during the morphogenesis and differentiation of the retina and optic pathways of different vertebrates, and discuss the possible relationship between PCD and phagocytes during ontogeny.

  19. Visualization and orchestration of the dynamic molecular society in cells

    Institute of Scientific and Technical Information of China (English)

    Xuebiao Yao; Guowei Fang

    2009-01-01

    @@ Visualization of specific molecules and their interactions in real space and time is essential to delineate how cellular plasticity and dynamics are achieved and orchestrated as perturbation of cellular plasticity and dynamics is detrimental to health. Elucidation of cellular dynamics requires molecular imaging at nanometer scale at millisecond resolution. The 1st International Conference on Cellular Dynamics and Chemical Biology held in Hefei, China (from 12 September to 15 September,2008) launched the quest by bringing synergism among photonics, chemistry and biology.

  20. Relationship between reaction time, fine motor control, and visual-spatial perception on vigilance and visual-motor tasks in 22q11.2 Deletion Syndrome.

    LENUS (Irish Health Repository)

    Howley, Sarah A

    2012-10-15

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  1. Pineal photoreceptor cells are required for maintaining the circadian rhythms of behavioral visual sensitivity in zebrafish.

    Directory of Open Access Journals (Sweden)

    Xinle Li

    Full Text Available In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.

  2. Working memory load and distraction: dissociable effects of visual maintenance and cognitive control.

    Science.gov (United States)

    Konstantinou, Nikos; Beal, Eleanor; King, Jean-Remi; Lavie, Nilli

    2014-10-01

    We establish a new dissociation between the roles of working memory (WM) cognitive control and visual maintenance in selective attention as measured by the efficiency of distractor rejection. The extent to which focused selective attention can prevent distraction has been shown to critically depend on the level and type of load involved in the task. High perceptual load that consumes perceptual capacity leads to reduced distractor processing, whereas high WM load that reduces WM ability to exert priority-based executive cognitive control over the task results in increased distractor processing (e.g., Lavie, Trends in Cognitive Sciences, 9(2), 75-82, 2005). WM also serves to maintain task-relevant visual representations, and such visual maintenance is known to recruit the same sensory cortices as those involved in perception (e.g., Pasternak & Greenlee, Nature Reviews Neuroscience, 6(2), 97-107, 2005). These findings led us to hypothesize that loading WM with visual maintenance would reduce visual capacity involved in perception, thus resulting in reduced distractor processing-similar to perceptual load and opposite to WM cognitive control load. Distractor processing was assessed in a response competition task, presented during the memory interval (or during encoding; Experiment 1a) of a WM task. Loading visual maintenance or encoding by increased set size for a memory sample of shapes, colors, and locations led to reduced distractor response competition effects. In contrast, loading WM cognitive control with verbal rehearsal of a random letter set led to increased distractor effects. These findings confirm load theory predictions and provide a novel functional distinction between the roles of WM maintenance and cognitive control in selective attention.

  3. Robotic Label Applicator: Design, Development and Visual Servoing Based Control

    Directory of Open Access Journals (Sweden)

    Lin Chyi-Yeu

    2016-01-01

    Full Text Available Use of robotic arms and computer vision in manufacture, and assembly process are getting more interest as flexible customization is becoming priority over mass production as frontier industry practice. In this paper an innovative label applicator as end of arm tooling (EOAT capable of dispensing and applying label stickers of various dimensions to a product is designed, fabricated and tested. The system incorporates a label dispenserapplicator and had eye-in-hand camera system, attached to 6-dof robot arm can autonomously apply a label sticker to the target position on a randomly placed product. Employing multiple advantages from different knowledge basis, mechanism design and vision based automatic control, offers this system distinctive efficiency as well as flexibility to change in manufacturing and assembly process with time and cost saving.

  4. Control of the flow behind a backward-facing step by visual feedback

    CERN Document Server

    Gautier, N

    2013-01-01

    The separated flow downstream a backward-facing step is controlled using visual information for feedback. This is done when looking at the flow from two vantage points. Flow velocity fields are computed in real-time and used to yield inputs to a control loop. This approach to flow control is shown to be able to control the detached flow in the same way as has been done before by using the area of the recirculation region downstream the step as input for a gradient descent optimization scheme. Visual feedback using real-time computations of 2D velocity fields also allows for novel inputs to the feedback scheme. As a proof of concept, the spatially averaged value of the swirling strength is successfully used as input for an automatically tuned PID controller.

  5. Image-Based Visual Servoing for Manipulation Via Predictive Control – A Survey of Some Results

    Directory of Open Access Journals (Sweden)

    Corneliu Lazăr

    2016-09-01

    Full Text Available In this paper, a review of predictive control algorithms developed by the authors for visual servoing of robots in manipulation applications is presented. Using these algorithms, a control predictive framework was created for image-based visual servoing (IBVS systems. Firstly, considering the point features, in the year 2008 we introduced an internal model predictor based on the interaction matrix. Secondly, distinctly from the set-point trajectory, we introduced in 2011 the reference trajectory using the concept from predictive control. Finally, minimizing a sum of squares of predicted errors, the optimal input trajectory was obtained. The new concept of predictive control for IBVS systems was employed to develop a cascade structure for motion control of robot arms. Simulation results obtained with a simulator for predictive IBVS systems are also presented.

  6. Visual information gain and task asymmetry interact in bimanual force coordination and control.

    Science.gov (United States)

    Hu, Xiaogang; Newell, Karl M

    2011-08-01

    This study examined the question of whether and how the influence of visual information on force coordination patterns is dependent on the settings of a task asymmetry constraint. In a bimanual isometric force experiment, the task asymmetry was manipulated via imposing different coefficients on the index finger forces such that the weighted sum of the finger forces matched the target force. The environmental constraint was quantified by the visual performance error and was manipulated through the change of visual gain (number of pixels on the screen representing the unit of force). The constraint arising from the individual was quantified by the bilateral coupling effect (i.e., symmetric force production) between hands. The results revealed improved performance in terms of lower variability and performance error and more complex total force structure with higher visual gain. The influence of visual gain on the force coordination pattern, however, was found to be dependent on the task coefficients imposed on the finger forces. Namely, the force sharing between hands became more symmetric with high visual gain only when the right finger force had the higher coefficient, and an error-compensatory strategy was evident with high gain only when symmetric coefficients were imposed on the two fingers. The findings support the proposition that the motor coordination and control patterns are organized by the interactive influence of different categories of constraints where the functional influence of the information provided is dependent on the motor output.

  7. Direct visualization of both DNA and RNA quadruplexes in human cells via an uncommon spectroscopic method

    Science.gov (United States)

    Laguerre, Aurélien; Wong, Judy M. Y.; Monchaud, David

    2016-01-01

    Guanine-rich DNA or RNA sequences can fold into higher-order, four-stranded structures termed quadruplexes that are suspected to play pivotal roles in cellular mechanisms including the control of the genome integrity and gene expression. However, the biological relevance of quadruplexes is still a matter of debate owing to the paucity of unbiased evidences of their existence in cells. Recent reports on quadruplex-specific antibodies and small-molecule fluorescent probes help dispel reservations and accumulating evidences now pointing towards the cellular relevance of quadruplexes. To better assess and comprehend their biology, developing new versatile tools to detect both DNA and RNA quadruplexes in cells is essential. We report here a smart fluorescent probe that allows for the simple detection of quadruplexes thanks to an uncommon spectroscopic mechanism known as the red-edge effect (REE). We demonstrate that this effect could open avenues to greatly enhance the ability to visualize both DNA and RNA quadruplexes in human cells, using simple protocols and fluorescence detection facilities. PMID:27535322

  8. PopulationProfiler: A Tool for Population Analysis and Visualization of Image-Based Cell Screening Data.

    Directory of Open Access Journals (Sweden)

    Damian J Matuszewski

    Full Text Available Image-based screening typically produces quantitative measurements of cell appearance. Large-scale screens involving tens of thousands of images, each containing hundreds of cells described by hundreds of measurements, result in overwhelming amounts of data. Reducing per-cell measurements to the averages across the image(s for each treatment leads to loss of potentially valuable information on population variability. We present PopulationProfiler-a new software tool that reduces per-cell measurements to population statistics. The software imports measurements from a simple text file, visualizes population distributions in a compact and comprehensive way, and can create gates for subpopulation classes based on control samples. We validate the tool by showing how PopulationProfiler can be used to analyze the effect of drugs that disturb the cell cycle, and compare the results to those obtained with flow cytometry.

  9. PopulationProfiler: A Tool for Population Analysis and Visualization of Image-Based Cell Screening Data.

    Science.gov (United States)

    Matuszewski, Damian J; Wählby, Carolina; Puigvert, Jordi Carreras; Sintorn, Ida-Maria

    2016-01-01

    Image-based screening typically produces quantitative measurements of cell appearance. Large-scale screens involving tens of thousands of images, each containing hundreds of cells described by hundreds of measurements, result in overwhelming amounts of data. Reducing per-cell measurements to the averages across the image(s) for each treatment leads to loss of potentially valuable information on population variability. We present PopulationProfiler-a new software tool that reduces per-cell measurements to population statistics. The software imports measurements from a simple text file, visualizes population distributions in a compact and comprehensive way, and can create gates for subpopulation classes based on control samples. We validate the tool by showing how PopulationProfiler can be used to analyze the effect of drugs that disturb the cell cycle, and compare the results to those obtained with flow cytometry.

  10. Cell types, circuits, and receptive fields in the mouse visual cortex.

    Science.gov (United States)

    Niell, Cristopher M

    2015-07-08

    Over the past decade, the mouse has emerged as an important model system for studying cortical function, owing to the advent of powerful tools that can record and manipulate neural activity in intact neural circuits. This advance has been particularly prominent in the visual cortex, where studies in the mouse have begun to bridge the gap between cortical structure and function, allowing investigators to determine the circuits that underlie specific visual computations. This review describes the advances in our understanding of the mouse visual cortex, including neural coding, the role of different cell types, and links between vision and behavior, and discusses how recent findings and new approaches can guide future studies.

  11. Molecular mechanisms controlling the cell cycle in embryonic stem cells.

    Science.gov (United States)

    Abdelalim, Essam M

    2013-12-01

    Embryonic stem (ES) cells are originated from the inner cell mass of a blastocyst stage embryo. They can proliferate indefinitely, maintain an undifferentiated state (self-renewal), and differentiate into any cell type (pluripotency). ES cells have an unusual cell cycle structure, consists mainly of S phase cells, a short G1 phase and absence of G1/S checkpoint. Cell division and cell cycle progression are controlled by mechanisms ensuring the accurate transmission of genetic information from generation to generation. Therefore, control of cell cycle is a complicated process, involving several signaling pathways. Although great progress has been made on the molecular mechanisms involved in the regulation of ES cell cycle, many regulatory mechanisms remain unknown. This review summarizes the current knowledge about the molecular mechanisms regulating the cell cycle of ES cells and describes the relationship existing between cell cycle progression and the self-renewal.

  12. Visualization of multivalent histone modification in a single cell reveals highly concerted epigenetic changes on differentiation of embryonic stem cells

    DEFF Research Database (Denmark)

    Hattori, Naoko; Niwa, Tohru; Kimura, Kana;

    2013-01-01

    Combinations of histone modifications have significant biological roles, such as maintenance of pluripotency and cancer development, but cannot be analyzed at the single cell level. Here, we visualized a combination of histone modifications by applying the in situ proximity ligation assay, which....... Bivalent modification was clearly visualized by iChmo in wild-type embryonic stem cells (ESCs) known to have it, whereas rarely in Suz12 knockout ESCs and mouse embryonic fibroblasts known to have little of it. iChmo was applied to analysis of epigenetic and phenotypic changes of heterogeneous cell...... population, namely, ESCs at an early stage of differentiation, and this revealed that the bivalent modification disappeared in a highly concerted manner, whereas phenotypic differentiation proceeded with large variations among cells. Also, using this method, we were able to visualize a combination...

  13. Acute Caffeine Consumption Enhances the Executive Control of Visual Attention in Habitual Consumers

    Science.gov (United States)

    Brunye, Tad T.; Mahoney, Caroline R.; Lieberman, Harris R.; Giles, Grace E.; Taylor, Holly A.

    2010-01-01

    Recent work suggests that a dose of 200-400mg caffeine can enhance both vigilance and the executive control of visual attention in individuals with low caffeine consumption profiles. The present study seeks to determine whether individuals with relatively high caffeine consumption profiles would show similar advantages. To this end, we examined…

  14. Image-based visual servo control using the port-Hamiltonian Approach

    NARCIS (Netherlands)

    Muñoz Arias, Mauricio; El Hawwary, Mohamed; Scherpen, Jacquelien M.A.

    2015-01-01

    This work is devoted to an image-based visual servo control strategy for standard mechanical systems in the port-Hamiltonian framework. We utilize a change of variables that transforms the port-Hamiltonian system into one with constant mass-inertia matrix, and we use an interaction matrix that inclu

  15. Self-Esteem, Locus of Control and Various Aspects of Psychopathology of Adults with Visual Impairments

    Science.gov (United States)

    Papadopoulos, Konstantinos; Paralikas, Theodosis; Barouti, Marialena; Chronopoulou, Elena

    2014-01-01

    The exploratory study presented in this article looks into the possible differences in psychosocial aspects (self-esteem and locus of control) and aspects of psychopathology (depression, anxiety, melancholia, asthenia, and mania) amongst sighted adults and adults with visual impairments. Moreover, the study aims to examine the possible…

  16. Gaze Behavior in Basketball Shooting: Further Evidence for Online Visual Control

    Science.gov (United States)

    de Oliveira, Rita F.; Oudejans, Raoul R. D.; Beek, Peter J.

    2008-01-01

    The aim of the present study was to help resolve conflicting findings and interpretations regarding the visual control of basketball shooting by examining the looking behavior of 6 expert basketball players (3 with a low shooting style and 3 with a high shooting style) executing both free throws and jump shots. Based on previous findings, they…

  17. Circadian control of dendrite morphology in the visual system of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Paweł Weber

    Full Text Available BACKGROUND: In the first optic neuropil (lamina of the fly's visual system, monopolar cells L1 and L2 and glia show circadian rhythms in morphological plasticity. They change their size and shape during the day and night. The most pronounced changes have been detected in circadian size of the L2 axons. Looking for a functional significance of the circadian plasticity observed in axons, we examined the morphological plasticity of the L2 dendrites. They extend from axons and harbor postsynaptic sites of tetrad synaptic contacts from the photoreceptor terminals. METHODOLOGY/PRINCIPAL FINDINGS: The plasticity of L2 dendrites was evaluated by measuring an outline of the L2 dendritic trees. These were from confocal images of cross sections of L2 cells labeled with GFP. They were in wild-type and clock mutant flies held under different light conditions and sacrified at different time points. We found that the L2 dendrites are longest at the beginning of the day in both males and females. This rhythm observed under a day/night regime (LD was maintained in constant darkness (DD but not in continuous light (LL. This rhythm was not present in the arrhythmic per(01 mutant in LD or in DD. In the clock photoreceptor cry(b mutant the rhythm was maintained but its pattern was different than that observed in wild-type flies. CONCLUSIONS/SIGNIFICANCE: The results obtained showed that the L2 dendrites exhibit circadian structural plasticity. Their morphology is controlled by the per gene-dependent circadian clock. The L2 dendrites are longest at the beginning of the day when the daytime tetrad presynaptic sites are most numerous and L2 axons are swollen. The presence of the rhythm, but with a different pattern in cry(b mutants in LD and DD indicates a new role of cry in the visual system. The new role is in maintaining the circadian pattern of changes of the L2 dendrite length and shape.

  18. Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion.

    Science.gov (United States)

    Armstrong, D M; Marple-Horvat, D E

    1996-04-01

    An account is given of the current state of knowledge of the contributions of the cerebellum and the forelimb motor cortex (MC) to the neural control of walking movements in the cat. The main emphasis is on information obtained by recording from single MC and cerebellar neurones in chronically instrumented cats engaged in walking on the rungs of a horizontal ladder, a form of locomotion that is heavily dependent on visual input and for which the integrity of MC is essential. Evidence from the authors' laboratory and from other studies is presented which establishes that MC neurones, including pyramidal tract neurones, show higher levels of activity during ladder walking than during overground walking (i.e., when less constraint exists over the locus of footfall) and that this increase is greatest in late swing-early stance in the contralateral forelimb, consistent with one role of MC being to help determine the locus of footfall. However, many MC neurones develop peak activity at other times in the step cycle, and a comparison with recordings during treadmill walking suggests MC may also help regulate stance duration when walking speed is an important performance variable. Recordings from Purkinje cells and cerebellar nuclear neurones show that during ladder walking step-related activity is widespread in the vermal, paravermal, and crural regions of cortex and in the interposed and dentate nuclei. Nuclear cell activity is so timed that it could be contributing to producing the locomotor rhythms evident in MC cells, although this is not yet proven. Results are also presented and discussed relating to MC and cerebellar neuronal responses that occur when a step onto an unstable rung results in an unexpected external perturbation of the forelimb step cycle. MC responses begin with onset latency as short as 20 ms so that MC may assist spinal reflex mechanisms to produce a post hoc compensatory change in motor output. However, work in progress suggests that corresponding

  19. Three-dimensional visualization and control of electronic warfare (EW) payloads

    Science.gov (United States)

    Kirsch, Patricia; Tremper, David; Cortesi, Roger

    2008-04-01

    The proliferation of unmanned vehicles carrying tactical payloads in the battle-space has accelerated the need for user-friendly visualization with graphical interfaces to provide remote command and control. Often these platforms and payloads receive their control functions from command centers located half a world away via satellite communications. Operators require situational awareness tools capable of graphically presenting the remote battlefield asset positions and collected sensor data. Often these systems use 2D software mapping tools in conjunction with video for real time situational awareness. The Special Projects Group (SPG) in the Tactical Electronic Warfare Division of the U.S. Naval Research Laboratory has been developing an operator control interface called the Jammer Control Station (JCS) to provide 3D battle-space visualization with built-in, remote EW payload command and control (C2) capabilities. The JCS interface presents the operator with graphic depictions of both the platforms' states and the RF environment. Text based messaging between the JCS and the EW payload reduces the impact of the system on the available bandwidth. This paper will discuss the use of the SIMDIS 3-D visualization tool as a real-time command and control interface for electronic warfare (EW) payloads.

  20. Audio-visual feedback improves the BCI performance in the navigational control of a humanoid robot.

    Science.gov (United States)

    Tidoni, Emmanuele; Gergondet, Pierre; Kheddar, Abderrahmane; Aglioti, Salvatore M

    2014-01-01

    Advancement in brain computer interfaces (BCI) technology allows people to actively interact in the world through surrogates. Controlling real humanoid robots using BCI as intuitively as we control our body represents a challenge for current research in robotics and neuroscience. In order to successfully interact with the environment the brain integrates multiple sensory cues to form a coherent representation of the world. Cognitive neuroscience studies demonstrate that multisensory integration may imply a gain with respect to a single modality and ultimately improve the overall sensorimotor performance. For example, reactivity to simultaneous visual and auditory stimuli may be higher than to the sum of the same stimuli delivered in isolation or in temporal sequence. Yet, knowledge about whether audio-visual integration may improve the control of a surrogate is meager. To explore this issue, we provided human footstep sounds as audio feedback to BCI users while controlling a humanoid robot. Participants were asked to steer their robot surrogate and perform a pick-and-place task through BCI-SSVEPs. We found that audio-visual synchrony between footsteps sound and actual humanoid's walk reduces the time required for steering the robot. Thus, auditory feedback congruent with the humanoid actions may improve motor decisions of the BCI's user and help in the feeling of control over it. Our results shed light on the possibility to increase robot's control through the combination of multisensory feedback to a BCI user.

  1. Handwriting performance in the absence of visual control in writer's cramp patients: Initial observations

    Directory of Open Access Journals (Sweden)

    Losch Florian

    2006-04-01

    Full Text Available Abstract Background The present study was aimed at investigating the writing parameters of writer's cramp patients and control subjects during handwriting of a test sentence in the absence of visual control. Methods Eight right-handed patients with writer's cramp and eight healthy volunteers as age-matched control subjects participated in the study. The experimental task consisted in writing a test sentence repeatedly for fifty times on a pressure-sensitive digital board. The subject did not have visual control on his handwriting. The writing performance was stored on a PC and analyzed off-line. Results During handwriting all patients developed a typical dystonic limb posture and reported an increase in muscular tension along the experimental session. The patients were significantly slower than the controls, with lower mean vertical pressure of the pen tip on the paper and they could not reach the endmost letter of the sentence in the given time window. No other handwriting parameter differences were found between the two groups. Conclusion Our findings indicate that during writing in the absence of visual feedback writer's cramp patients are slower and could not reach the endmost letter of the test sentence, but their level of automatization is not impaired and writer's cramp handwriting parameters are similar to those of the controls except for even lower vertical pressure of the pen tip on the paper, which is probably due to a changed strategy in such experimental conditions.

  2. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  3. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Mumps viruses show diverse cytopathic effects (CPEs of infected cells and viral plaque formation (no CPE or no plaque formation in some cases depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac, was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study, even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  4. Selective use of visual information signaling objects' center of mass for anticipatory control of manipulative fingertip forces.

    Science.gov (United States)

    Salimi, Iran; Frazier, Wendy; Reilmann, Ralf; Gordon, Andrew M

    2003-05-01

    The present study examines whether visual information indicating the center of mass (CM) of an object can be used for the appropriate scaling of fingertip forces at each digit during precision grip. In separate experiments subjects lifted an object with various types of visual cues concerning the CM location several times and then rotated and lifted it again to determine whether the visual cues signaling the new location of the CM could be used to appropriately scale the fingertip forces. Specifically, subjects had either no visual cues, visual instructional cues (i.e., an indicator) or visual geometric cues where the longer axis of the object indicated the CM. When no visual cues were provided, subjects were unable to appropriately scale the load forces at each digit following rotation despite their knowledge of the new weight distribution. When visual cues regarding the CM location were provided, the nature of the visual cues determined their effectiveness in retrieval of internal representations underlying the anticipatory scaling of fingertip forces. Specifically, when subjects were provided with visual instructional information, they were unable to appropriately scale the forces. More appropriate scaling of the load forces occurred when the visual cues were ecologically meaningful, i.e., when the shape of the object indicated the CM location. We suggest that visual instructional cues do not have access to the implicit processes underlying dynamic force control, whereas visual geometric cues can be used for the retrieval of the internal representation related to CM for appropriate partitioning of the forces in each digit.

  5. Processing of visual information compromises the ability of older adults to control novel fine motor tasks.

    Science.gov (United States)

    Baweja, Harsimran S; Kwon, MinHyuk; Onushko, Tanya; Wright, David L; Corcos, Daniel M; Christou, Evangelos A

    2015-12-01

    We performed two experiments to determine whether amplified motor output variability and compromised processing of visual information in older adults impair short-term adaptations when learning novel fine motor tasks. In Experiment 1, 12 young and 12 older adults underwent training to learn how to accurately trace a sinusoidal position target with abduction-adduction of their index finger. They performed 48 trials, which included 8 blocks of 6 trials (the last trial of each block was performed without visual feedback). Afterward, subjects received an interference task (watched a movie) for 60 min. We tested retention by asking subjects to perform the sinusoidal task (5 trials) with and without visual feedback. In Experiment 2, 12 young and 10 older adults traced the same sinusoidal position target with their index finger and ankle at three distinct visual angles (0.25°, 1° and 5.4°). In Experiment 1, the movement error and variability were greater for older adults during the visual feedback trials when compared with young adults. In contrast, during the no-vision trials, age-associated differences in movement error and variability were ameliorated. Short-term adaptations in learning the sinusoidal task were similar for young and older adults. In Experiment 2, lower amount of visual feedback minimized the age-associated differences in movement variability for both the index finger and ankle movements. We demonstrate that although short-term adaptations are similar for young and older adults, older adults do not process visual information as well as young adults and that compromises their ability to control novel fine motor tasks during acquisition, which could influence long-term retention and transfer.

  6. Retinal ganglion cell density of the black rhinoceros (Diceros bicornis): calculating visual resolution.

    Science.gov (United States)

    Pettigrew, John D; Manger, Paul R

    2008-01-01

    A single right retina from a black rhinoceros was whole mounted, stained and analyzed to determine the visual resolution of the rhinoceros, an animal with reputedly poor eyesight. A range of small (15-microm diameter) to large (100-microm diameter) ganglion cell types was seen across the retina. We observed two regions of high density of retinal ganglion cells at either end of a long, but thin, horizontal streak. The temporal specialization, which receives light from the anterior visual field, exhibited a ganglion cell density of approximately 2000/mm2, while the nasal specialization exhibited a density of approximately 1500/mm2. The retina exhibited a ganglion cell density bias toward the upper half, especially so, the upper temporal quadrant, indicating that the rhinoceros would be processing visual information from the visual field below the anterior horizon for the most part. Our calculations indicate that the rhinoceros has a visual resolution of 6 cycles/degree. While this resolution is one-tenth that of humans (60 cycles/deg) and less than that of the domestic cat (9 cycles/deg), it is comparable to that of the rabbit (6 cycles/deg), and exceeds that seen in a variety of other mammals including seals, dolphins, microbats, and rats. Thus, the reputation of the rhinoceros as a myopic, weakly visual animal is not supported by our observations of the retina. We calculate that the black rhinoceros could readily distinguish a 30 cm wide human at a distance of around 200 m given the appropriate visual background.

  7. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle

    OpenAIRE

    Hesse, Michael; Raulf, Alexandra; Pilz, Gregor-Alexander; Haberlandt, Christian; Klein, Alexandra M; Jabs, Ronald; Zaehres, Holm; Fügemann, Christopher J.; Zimmermann, Katrin; Trebicka, Jonel; Welz, Armin; Pfeifer, Alexander; Röll, Wilhelm; Kotlikoff, Michael I.; Steinhäuser, Christian

    2012-01-01

    Current approaches to monitor and quantify cell division in live cells, and reliably distinguish between acytokinesis and endoreduplication, are limited and complicate determination of stem cell pool identities. Here we overcome these limitations by generating an in vivo reporter system using the scaffolding protein anillin fused to enhanced green fluorescent protein, to provide high spatiotemporal resolution of mitotic phase. This approach visualizes cytokinesis and midbody formation as hall...

  8. Research on flight stability performance of rotor aircraft based on visual servo control method

    Science.gov (United States)

    Yu, Yanan; Chen, Jing

    2016-11-01

    control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.

  9. Visual Control for Unicycle-Like Mobile Robots Formation Under the Leader-Follower Scheme

    Directory of Open Access Journals (Sweden)

    Bugarin-Carlos Eusebio

    2014-10-01

    Full Text Available This paper describes a visual control proposal for the formation of unicycle-like mobile robots under the leader-follower scheme. It is considered a single fixed camera observing the robots workspace that, in terms of the processed information, can be shared by both the leader robot and the follower robot. This would enable the implementation of this proposal to be performed by centralized or decentralized control strategies. For the purpose of simplifying the analysis, it is also considered that the image plane is parallel to the robots motion plane. The formation objective is established directly in image space and the proposed visual controller does not depend explicitly on the vision system parameters (extrinsic or intrinsic; which together represents the main contribution of this paper. Finally, also as an important part of this work, to validate the proposed theory satisfactory experiments using a real-time and high-speed vision system are detailed.

  10. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort

    Energy Technology Data Exchange (ETDEWEB)

    Software, Anyhere; Fernandes, Luis; Lee, Eleanor; Ward, Greg

    2013-03-15

    A simulation study was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled to satisfy key visual comfort parameters. Using the Radiance lighting simulation software, interior illuminance and luminance levels were computed for a south-facing private office illuminated by a window split into two independently-controlled EC panes. The transmittance of these was optimized hourly for a workplane illuminance target while meeting visual comfort constraints, using a least-squares algorithm with linear inequality constraints. Blinds were successively deployed until visual comfort criteria were satisfied. The energy performance of electrochromics proved to be highly dependent on how blinds were controlled. With hourly blind position adjustments, electrochromics showed significantly higher (62percent and 53percent, respectively without and with overhang) lighting energy consumption than clear glass. With a control algorithm designed to better approximate realistic manual control by an occupant, electrochromics achieved significant savings (48percent and 37percent, respectively without and with overhang). In all cases, energy consumption decreased when the workplace illuminance target was increased. In addition, the fraction of time during which the occupant had an unobstructed view of the outside was significantly greater with electrochromics: 10 months out of the year versus a handful of days for the reference case.

  11. 1Click1View: Interactive Visualization Methodology for RNAi Cell-Based Microscopic Screening

    Directory of Open Access Journals (Sweden)

    Lukasz Zwolinski

    2013-01-01

    Full Text Available Technological advancements are constantly increasing the size and complexity of data resulting from large-scale RNA interference screens. This fact has led biologists to ask complex questions, which the existing, fully automated analyses are often not adequate to answer. We present a concept of 1Click1View (1C1V as a methodology for interactive analytic software tools. 1C1V can be applied for two-dimensional visualization of image-based screening data sets from High Content Screening (HCS. Through an easy-to-use interface, one-click, one-view concept, and workflow based architecture, visualization method facilitates the linking of image data with numeric data. Such method utilizes state-of-the-art interactive visualization tools optimized for fast visualization of large scale image data sets. We demonstrate our method on an HCS dataset consisting of multiple cell features from two screening assays.

  12. Analysis and visualization of cell movement in the developing zebrafish brain.

    Science.gov (United States)

    Langenberg, Tobias; Dracz, Tadeusz; Oates, Andrew C; Heisenberg, Carl-Philip; Brand, Michael

    2006-04-01

    Detailed reconstruction of the spatiotemporal history of embryonic cells is key to understanding tissue formation processes but is often complicated by the large number of cells involved, particularly so in vertebrates. Through a combination of high-resolution time-lapse lineage tracing and antibody staining, we have analyzed the movement of mesencephalic and metencephalic cell populations in the early zebrafish embryo. To facilitate the analysis of our cell tracking data, we have created TracePilot, a software tool that allows interactive manipulation and visualization of tracking data. We demonstrate its utility by showing novel visualizations of cell movement in the developing zebrafish brain. TracePilot (http://www.mpi-cbg.de/tracepilot) is Java-based, available free of charge, and has a program structure that allows the incorporation of additional analysis tools.

  13. A Model of Generating Visual Place Cells Based on Environment Perception and Similar Measure

    Directory of Open Access Journals (Sweden)

    Yang Zhou

    2016-01-01

    Full Text Available It is an important content to generate visual place cells (VPCs in the field of bioinspired navigation. By analyzing the firing characteristic of biological place cells and the existing methods for generating VPCs, a model of generating visual place cells based on environment perception and similar measure is abstracted in this paper. VPCs’ generation process is divided into three phases, including environment perception, similar measure, and recruiting of a new place cell. According to this process, a specific method for generating VPCs is presented. External reference landmarks are obtained based on local invariant characteristics of image and a similar measure function is designed based on Euclidean distance and Gaussian function. Simulation validates the proposed method is available. The firing characteristic of the generated VPCs is similar to that of biological place cells, and VPCs’ firing fields can be adjusted flexibly by changing the adjustment factor of firing field (AFFF and firing rate’s threshold (FRT.

  14. The role of starburst amacrine cells in visual signal processing

    Science.gov (United States)

    TAYLOR, W.R.; SMITH, R.G.

    2012-01-01

    Starburst amacrine cells (SBACs) within the adult mammalian retina provide the critical inhibition that underlies the receptive field properties of direction-selective ganglion cells (DSGCs). The SBACs generate direction-selective output of GABA that differentially inhibits the DSGCs. We review the biophysical mechanisms that produce directional GABA release from SBACs and test a network model that predicts the effects of reciprocal inhibition between adjacent SBACs. The results of the model simulations suggest that reciprocal inhibitory connections between closely spaced SBACs should be spatially selective, while connections between more widely spaced cells could be indiscriminate. SBACs were initially identified as cholinergic neurons and were subsequently shown to contain release both acetylcholine and GABA. While the role of the GABAergic transmission is well established, the role of the cholinergic transmission remains unclear. PMID:22310373

  15. [Endothelial origin for hematopoietic stem cells: a visual proof].

    Science.gov (United States)

    Boisset, Jean-Charles; Robin, Catherine

    2011-10-01

    Hematopoietic stem cells (HSC) are the source of all blood cell types produced during the entire life of an organism. They appear during embryonic development, where they will transit through different successive hematopoietic organs, before to finally colonize the bone marrow. Nowadays, the precise origin of HSC remains a matter of controversy. Different HSC precursor candidates, located in different anatomical sites, have been proposed. Here, we summarize and discuss the different theories in light of the recent articles, especially those using in vivo confocal microscopy technology.

  16. Real-time gesture recognition by learning and selective control of visual interest points.

    Science.gov (United States)

    Kirishima, Toshiyuki; Sato, Kosuke; Chihara, Kunihiro

    2005-03-01

    For the real-time recognition of unspecified gestures by an arbitrary person, a comprehensive framework is presented that addresses two important problems in gesture recognition systems: selective attention and processing frame rate. To address the first problem, we propose the Quadruple Visual Interest Point Strategy. No assumptions are made with regard to scale or rotation of visual features, which are computed from dynamically changing regions of interest in a given image sequence. In this paper, each of the visual features is referred to as a visual interest point, to which a probability density function is assigned, and the selection is carried out. To address the second problem, we developed a selective control method to equip the recognition system with self-load monitoring and controlling functionality. Through evaluation experiments, we show that our approach provides robust recognition with respect to such factors as type of clothing, type of gesture, extent of motion trajectories, and individual differences in motion characteristics. In order to indicate the real-time performance and utility aspects of our approach, a gesture video system is developed that demonstrates full video-rate interaction with displayed image objects.

  17. Asymmetric cell division during T cell development controls downstream fate

    Science.gov (United States)

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  18. Visualizing how cancer chromosome abnormalities form in living cells

    Science.gov (United States)

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  19. 3D visualization of membrane failures in fuel cells

    Science.gov (United States)

    Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik

    2017-03-01

    Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.

  20. Visual servo walking control for humanoids with finite-time convergence and smooth robot velocities

    Science.gov (United States)

    Delfin, Josafat; Becerra, Hector M.; Arechavaleta, Gustavo

    2016-07-01

    In this paper, we address the problem of humanoid locomotion guided from information of a monocular camera. The goal of the robot is to reach a desired location defined in terms of a target image, i.e., a positioning task. The proposed approach allows us to introduce a desired time to complete the positioning task, which is advantageous in contrast to the classical exponential convergence. In particular, finite-time convergence is achieved while generating smooth robot velocities and considering the omnidirectional waking capability of the robot. In addition, we propose a hierarchical task-based control scheme, which can simultaneously handle the visual positioning and the obstacle avoidance tasks without affecting the desired time of convergence. The controller is able to activate or inactivate the obstacle avoidance task without generating discontinuous velocity references while the humanoid is walking. Stability of the closed loop for the two task-based control is demonstrated theoretically even during the transitions between the tasks. The proposed approach is generic in the sense that different visual control schemes are supported. We evaluate a homography-based visual servoing for position-based and image-based modalities, as well as for eye-in-hand and eye-to-hand configurations. The experimental evaluation is performed with the humanoid robot NAO.

  1. Receptive Field Vectors of Genetically-Identified Retinal Ganglion Cells Reveal Cell-Type-Dependent Visual Functions.

    Directory of Open Access Journals (Sweden)

    Matthew L Katz

    Full Text Available Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs which utilises a modified form of mutual information ("Quadratic Mutual Information". We analysed the firing patterns of RGCs during presentation of short duration (~10 second complex visual scenes (natural movies. We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells' response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types.

  2. Representation of the visual field in the primary visual area of the marmoset monkey: magnification factors, point-image size, and proportionality to retinal ganglion cell density.

    Science.gov (United States)

    Chaplin, Tristan A; Yu, Hsin-Hao; Rosa, Marcello G P

    2013-04-01

    The primary visual area (V1) forms a systematic map of the visual field, in which adjacent cell clusters represent adjacent points of visual space. A precise quantification of this map is key to understanding the anatomical relationships between neurons located in different stations of the visual pathway, as well as the neural bases of visual performance in different regions of the visual field. We used computational methods to quantify the visual topography of V1 in the marmoset (Callithrix jacchus), a small diurnal monkey. The receptive fields of neurons throughout V1 were mapped in two anesthetized animals using electrophysiological recordings. Following histological reconstruction, precise 3D reconstructions of the V1 surface and recording sites were generated. We found that the areal magnification factor (M(A) ) decreases with eccentricity following a function that has the same slope as that observed in larger diurnal primates, including macaque, squirrel, and capuchin monkeys, and humans. However, there was no systematic relationship between M(A) and polar angle. Despite individual variation in the shape of V1, the relationship between M(A) and eccentricity was preserved across cases. Comparison between V1 and the retinal ganglion cell density demonstrated preferential magnification of central space in the cortex. The size of the cortical compartment activated by a punctiform stimulus decreased from the foveal representation towards the peripheral representation. Nonetheless, the relationship between the receptive field sizes of V1 cells and the density of ganglion cells suggested that each V1 cell receives information from a similar number of retinal neurons, throughout the visual field.

  3. Developmental control of cell division

    NARCIS (Netherlands)

    Boxem, M. (Mike)

    2002-01-01

    During development of multicellular organisms, cell divisions need to be coordinated with the developmental program of the entire organism. Although the mechanisms that drive cells through the division cycle are well understood, very little is known about the pathways that link extracellular signals

  4. Line Tracking Control of a Two-Wheeled Mobile Robot Using Visual Feedback

    Directory of Open Access Journals (Sweden)

    G. H. Lee

    2013-03-01

    Full Text Available This article presents the development and control of a two‐wheeled mobile robot as the base of a human carrier for an amusement/transportation vehicle. The robot has a combined structure of two systems: a line tracking mobile robot and an inverted pendulum system that maintains balance while following a line on the floor. The mobile robot is purposely designed to carry a human operator or humanoid arms. The robot has the capability to follow the line on the floor using visual feedback, as well as maintaining its balance on two wheels. A visual servoing technique allows the robot to follow the line on the floor captured by a camera as the desired trajectory. Controllers are designed to have good line tracking and balancing performance using sensor fusion techniques. Experimental studies involving the robot following a line demonstrate the feasibility of it being an amusement vehicle.

  5. Behavioural system identification of visual flight speed control in Drosophila melanogaster.

    Science.gov (United States)

    Rohrseitz, Nicola; Fry, Steven N

    2011-02-06

    Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.

  6. The Next Generation of Ground Operations Command and Control; Scripting in C no. and Visual Basic

    Science.gov (United States)

    Ritter, George; Pedoto, Ramon

    2010-01-01

    Scripting languages have become a common method for implementing command and control solutions in space ground operations. The Systems Test and Operations Language (STOL), the Huntsville Operations Support Center (HOSC) Scripting Language Processor (SLP), and the Spacecraft Control Language (SCL) offer script-commands that wrap tedious operations tasks into single calls. Since script-commands are interpreted, they also offer a certain amount of hands-on control that is highly valued in space ground operations. Although compiled programs seem to be unsuited for interactive user control and are more complex to develop, Marshall Space flight Center (MSFC) has developed a product called the Enhanced and Redesign Scripting (ERS) that makes use of the graphical and logical richness of a programming language while offering the hands-on and ease of control of a scripting language. ERS is currently used by the International Space Station (ISS) Payload Operations Integration Center (POIC) Cadre team members. ERS integrates spacecraft command mnemonics, telemetry measurements, and command and telemetry control procedures into a standard programming language, while making use of Microsoft's Visual Studio for developing Visual Basic (VB) or C# ground operations procedures. ERS also allows for script-style user control during procedure execution using a robust graphical user input and output feature. The availability of VB and C# programmers, and the richness of the languages and their development environment, has allowed ERS to lower our "script" development time and maintenance costs at the Marshall POIC.

  7. Cdc42-mediated tubulogenesis controls cell specification

    DEFF Research Database (Denmark)

    Kesavan, Gokul; Sand, Fredrik Wolfhagen; Greiner, Thomas Uwe

    2009-01-01

    Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled......, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and later...... for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the Supplemental Data...

  8. Visual illusions, delayed grasping, and memory: no shift from dorsal to ventral control.

    Science.gov (United States)

    Franz, V H; Hesse, C; Kollath, S

    2009-05-01

    We tested whether a delay between stimulus presentation and grasping leads to a shift from dorsal to ventral control of the movement, as suggested by the perception-action theory of Milner and Goodale (Milner, A.D., & Goodale, M.A. (1995). The visual brain in action. Oxford: Oxford University Press.). In this theory the dorsal cortical stream has a short memory, such that after a few seconds the dorsal information is decayed and the action is guided by the ventral stream. Accordingly, grasping should become responsive to certain visual illusions after a delay (because only the ventral stream is assumed to be deceived by these illusions). We used the Müller-Lyer illusion, the typical illusion in this area of research, and replicated the increase of the motor illusion after a delay. However, we found that this increase is not due to memory demands but to the availability of visual feedback during movement execution which leads to online corrections of the movement. Because such online corrections are to be expected if the movement is guided by one single representation of object size, we conclude that there is no evidence for a shift from dorsal to ventral control in delayed grasping of the Müller-Lyer illusion. We also performed the first empirical test of a critique Goodale (Goodale, M.A. (2006, October 27). Visual duplicity: Action without perception in the human visual system. The XIV. Kanizsa lecture, Triest, Italy.) raised against studies finding illusion effects in grasping: Goodale argued that these studies used methods that lead to unnatural grasping which is guided by the ventral stream. Therefore, these studies might never have measured the dorsal stream, but always the ventral stream. We found clear evidence against this conjecture.

  9. Survey of Visual Control Bionics%视觉仿生控制研究综述

    Institute of Scientific and Technical Information of China (English)

    毛晓波; 陈铁军

    2013-01-01

    借鉴生物头眼协调运动灵活改变视线的神经控制机理构建智能仿生眼是机器人视觉控制研究的新热点.本综述分析了灵长类动物眼球运动的特点及其利用价值,从视觉仿生控制的视角,对国内外仿生机器眼的研究现状、存在的问题和发展趋势做了概括和总结.就利用生理学、仿生学和控制理论等多学科交叉融合的方法开展研究,针对多自由度双目头颈运动建模、机器人3D头眼协调运动控制、视觉偏差补偿算法以及视觉跟踪模式自适应切换策略等视觉控制难题,进行了讨论和展望.%Developing intelligent biomimetic eye is a new hot issue in the domain of robot visual control, which is based on neurophysiological mechanism of biological coordinated head-eye movement during gaze shift. In this work, oculomotor characteristics of primates and its utility values were reviewed, and next, the worldwide research status and development direction of biomimetic eye from the view of visual control were summarized. Some new bionic ideas and policies were given as well, such as making use of physiology, bionics, control theory and interdisciplinary study to explore multi-degree-of-freedom binocular biomimetic eye model, 3D head-eye coordinated control method, robot visual error compensation algorithms and adaptive patterns switching strategy of robot visual tracking.

  10. Research on Visual Simulation of UAV Formation Flight Control Based on Vega

    Directory of Open Access Journals (Sweden)

    Li Teng

    2015-01-01

    Full Text Available This paper proposes a control method of UAV formation reconfiguration, and accomplishes simulation of the transformation of UAV formation from a defensive formation to an offensive one using MATLAB/Simulink. Then, a visual simulation platform is built to display the simulation process in the form of animation and make the results more intuitive. The platform is built by means of MFC, Vega API and MATLAB engine.

  11. Progress in animation of an EMA-controlled tongue model for acoustic-visual speech synthesis

    CERN Document Server

    Steiner, Ingmar

    2012-01-01

    We present a technique for the animation of a 3D kinematic tongue model, one component of the talking head of an acoustic-visual (AV) speech synthesizer. The skeletal animation approach is adapted to make use of a deformable rig controlled by tongue motion capture data obtained with electromagnetic articulography (EMA), while the tongue surface is extracted from volumetric magnetic resonance imaging (MRI) data. Initial results are shown and future work outlined.

  12. NaviCell Web Service for network-based data visualization.

    Science.gov (United States)

    Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P A; Barillot, Emmanuel; Zinovyev, Andrei

    2015-07-01

    Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of 'omics' data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases.

  13. Effect of visual field locus and oscillation frequencies on posture control in an ecological environment.

    Science.gov (United States)

    Piponnier, Jean-Claude; Hanssens, Jean-Marie; Faubert, Jocelyn

    2009-01-14

    To examine the respective roles of central and peripheral vision in the control of posture, body sway amplitude (BSA) and postural perturbations (given by velocity root mean square or vRMS) were calculated in a group of 19 healthy young adults. The stimulus was a 3D tunnel, either static or moving sinusoidally in the anterior-posterior direction. There were nine visual field conditions: four central conditions (4, 7, 15, and 30 degrees); four peripheral conditions (central occlusions of 4, 7, 15, and 30 degrees); and a full visual field condition (FF). The virtual tunnel respected all the aspects of a real physical tunnel (i.e., stereoscopy and size increase with proximity). The results show that, under static conditions, central and peripheral visual fields appear to have equal importance for the control of stance. In the presence of an optic flow, peripheral vision plays a crucial role in the control of stance, since it is responsible for a compensatory sway, whereas central vision has an accessory role that seems to be related to spatial orientation.

  14. Finite-time tracking control for multiple non-holonomic mobile robots based on visual servoing

    Science.gov (United States)

    Ou, Meiying; Li, Shihua; Wang, Chaoli

    2013-12-01

    This paper investigates finite-time tracking control problem of multiple non-holonomic mobile robots via visual servoing. It is assumed that the pinhole camera is fixed to the ceiling, and camera parameters are unknown. The desired reference trajectory is represented by a virtual leader whose states are available to only a subset of the followers, and the followers have only interaction. First, the camera-objective visual kinematic model is introduced by utilising the pinhole camera model for each mobile robot. Second, a unified tracking error system between camera-objective visual servoing model and desired reference trajectory is introduced. Third, based on the neighbour rule and by using finite-time control method, continuous distributed cooperative finite-time tracking control laws are designed for each mobile robot with unknown camera parameters, where the communication topology among the multiple mobile robots is assumed to be a directed graph. Rigorous proof shows that the group of mobile robots converges to the desired reference trajectory in finite time. Simulation example illustrates the effectiveness of our method.

  15. Effects of the AMPA antagonist ZK 200775 on visual function: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Richard Bergholz

    Full Text Available BACKGROUND: ZK 200775 is an antagonist at the alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA receptor and had earned attention as a possible neuroprotective agent in cerebral ischemia. Probands receiving the agent within phase I trials reported on an alteration of visual perception. In this trial, the effects of ZK 200775 on the visual system were analyzed in detail. METHODOLOGY: In a randomised controlled trial we examined eyes and vision before and after the intravenous administration of two different doses of ZK 200775 and placebo. There were 3 groups of 6 probands each: Group 1 recieved 0.03 mg/kg/h, group 2 0.75 mg/kg/h of ZK 200775, the control group received 0.9% sodium chloride solution. Probands were healthy males aged between 57 and 69 years. The following methods were applied: clinical examination, visual acuity, ophthalmoscopy, colour vision, rod absolute threshold, central visual field, pattern-reversal visual evoked potentials (pVEP, ON-OFF and full-field electroretinogram (ERG. PRINCIPAL FINDINGS: No effect of ZK 200775 was seen on eye position or motility, stereopsis, pupillary function or central visual field testing. Visual acuity and dark vision deteriorated significantly in both treated groups. Color vision was most remarkably impaired. The dark-adapted ERG revealed a reduction of oscillatory potentials (OP and partly of the a- and b-wave, furthermore an alteration of b-wave morphology and an insignificantly elevated b/a-ratio. Cone-ERG modalities showed decreased amplitudes and delayed implicit times. In the ON-OFF ERG the ON-answer amplitudes increased whereas the peak times of the OFF-answer were reduced. The pattern VEP exhibited lower amplitudes and prolonged peak times. CONCLUSIONS: The AMPA receptor blockade led to a strong impairment of typical OFF-pathway functions like color vision and the cone ERG. On the other hand the ON-pathway as measured by dark vision and the scotopic ERG was affected as well

  16. Knowledge Discovery for Smart Grid Operation, Control, and Situation Awareness -- A Big Data Visualization Platform

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yi; Jiang, Huaiguang; Zhang, Yingchen; Zhang, Jun Jason; Gao, Tianlu; Muljadi, Eduard

    2016-11-21

    In this paper, a big data visualization platform is designed to discover the hidden useful knowledge for smart grid (SG) operation, control and situation awareness. The spawn of smart sensors at both grid side and customer side can provide large volume of heterogeneous data that collect information in all time spectrums. Extracting useful knowledge from this big-data poll is still challenging. In this paper, the Apache Spark, an open source cluster computing framework, is used to process the big-data to effectively discover the hidden knowledge. A high-speed communication architecture utilizing the Open System Interconnection (OSI) model is designed to transmit the data to a visualization platform. This visualization platform uses Google Earth, a global geographic information system (GIS) to link the geological information with the SG knowledge and visualize the information in user defined fashion. The University of Denver's campus grid is used as a SG test bench and several demonstrations are presented for the proposed platform.

  17. Visual processing of optic flow and motor control in the human posterior cingulate sulcus.

    Science.gov (United States)

    Field, David T; Inman, Laura A; Li, Li

    2015-10-01

    Previous studies have shown that the human posterior cingulate contains a visual processing area selective for optic flow (CSv). However, other studies performed in both humans and monkeys have identified a somatotopic motor region at the same location (CMA). Taken together, these findings suggested the possibility that the posterior cingulate contains a single visuomotor integration region. To test this idea we used fMRI to identify both visual and motor areas of the posterior cingulate in the same brains and to test the activity of those regions during a visuomotor task. Results indicated that rather than a single visuomotor region the posterior cingulate contains adjacent but separate motor and visual regions. CSv lies in the fundus of the cingulate sulcus, while CMA lies in the dorsal bank of the sulcus, slightly superior in terms of stereotaxic coordinates. A surprising and novel finding was that activity in CSv was suppressed during the visuomotor task, despite the visual stimulus being identical to that used to localize the region. This may provide an important clue to the specific role played by this region in the utilization of optic flow to control self-motion.

  18. Visualization and 3D reconstruction of flame cells of Taenia solium (cestoda.

    Directory of Open Access Journals (Sweden)

    Laura E Valverde-Islas

    Full Text Available BACKGROUND: Flame cells are the terminal cells of protonephridial systems, which are part of the excretory systems of invertebrates. Although the knowledge of their biological role is incomplete, there is a consensus that these cells perform excretion/secretion activities. It has been suggested that the flame cells participate in the maintenance of the osmotic environment that the cestodes require to live inside their hosts. In live Platyhelminthes, by light microscopy, the cells appear beating their flames rapidly and, at the ultrastructural, the cells have a large body enclosing a tuft of cilia. Few studies have been performed to define the localization of the cytoskeletal proteins of these cells, and it is unclear how these proteins are involved in cell function. METHODOLOGY/PRINCIPAL FINDINGS: Parasites of two different developmental stages of T. solium were used: cysticerci recovered from naturally infected pigs and intestinal adults obtained from immunosuppressed and experimentally infected golden hamsters. Hamsters were fed viable cysticerci to recover adult parasites after one month of infection. In the present studies focusing on flame cells of cysticerci tissues was performed. Using several methods such as video, confocal and electron microscopy, in addition to computational analysis for reconstruction and modeling, we have provided a 3D visual rendition of the cytoskeletal architecture of Taenia solium flame cells. CONCLUSIONS/SIGNIFICANCE: We consider that visual representations of cells open a new way for understanding the role of these cells in the excretory systems of Platyhelminths. After reconstruction, the observation of high resolution 3D images allowed for virtual observation of the interior composition of cells. A combination of microscopic images, computational reconstructions and 3D modeling of cells appears to be useful for inferring the cellular dynamics of the flame cell cytoskeleton.

  19. Visualizing tropoelastin in a long-term human elastic fibre cell culture model.

    Science.gov (United States)

    Halm, M; Schenke-Layland, K; Jaspers, S; Wenck, H; Fischer, F

    2016-02-04

    Elastin is an essential protein found in a variety of tissues where resilience and flexibility are needed, such as the skin and the heart. When aiming to engineer suitable implants, elastic fibres are needed to allow adequate tissue renewal. However, the visualization of human elastogenesis remains in the dark. To date, the visualization of human tropoelastin (TE) production in a human cell context and its fibre assembly under live cell conditions has not been achieved. Here, we present a long-term cell culture model of human dermal fibroblasts expressing fluorescence-labelled human TE. We employed a lentiviral system to stably overexpress Citrine-labelled TE to build a fluorescent fibre network. Using immunofluorescence, we confirmed the functionality of the Citrine-tagged TE. Furthermore, we visualized the fibre assembly over the course of several days using confocal microscopy. Applying super resolution microscopy, we were able to investigate the inner structure of the elastin-fibrillin-1 fibre network. Future investigations will allow the tracking of TE produced under various conditions. In tissue engineering applications the fluorescent fibre network can be visualized under various conditions or it serves as a tool for investigating fibre degradation processes in disease-in-a-dish-models.

  20. Visualizing tropoelastin in a long-term human elastic fibre cell culture model

    Science.gov (United States)

    Halm, M.; Schenke-Layland, K.; Jaspers, S.; Wenck, H.; Fischer, F.

    2016-01-01

    Elastin is an essential protein found in a variety of tissues where resilience and flexibility are needed, such as the skin and the heart. When aiming to engineer suitable implants, elastic fibres are needed to allow adequate tissue renewal. However, the visualization of human elastogenesis remains in the dark. To date, the visualization of human tropoelastin (TE) production in a human cell context and its fibre assembly under live cell conditions has not been achieved. Here, we present a long-term cell culture model of human dermal fibroblasts expressing fluorescence-labelled human TE. We employed a lentiviral system to stably overexpress Citrine-labelled TE to build a fluorescent fibre network. Using immunofluorescence, we confirmed the functionality of the Citrine-tagged TE. Furthermore, we visualized the fibre assembly over the course of several days using confocal microscopy. Applying super resolution microscopy, we were able to investigate the inner structure of the elastin–fibrillin-1 fibre network. Future investigations will allow the tracking of TE produced under various conditions. In tissue engineering applications the fluorescent fibre network can be visualized under various conditions or it serves as a tool for investigating fibre degradation processes in disease-in-a-dish-models. PMID:26842906

  1. Globally visualizing the microtubule-dependent transport behaviors of influenza virus in live cells.

    Science.gov (United States)

    Liu, Shu-Lin; Zhang, Li-Juan; Wang, Zhi-Gang; Zhang, Zhi-Ling; Wu, Qiu-Mei; Sun, En-Ze; Shi, Yun-Bo; Pang, Dai-Wen

    2014-04-15

    Understanding the microtubule-dependent behaviors of viruses in live cells is very meaningful for revealing the mechanisms of virus infection and endocytosis. Herein, we used a quantum dots-based single-particle tracking technique to dynamically and globally visualize the microtubule-dependent transport behaviors of influenza virus in live cells. We found that the intersection configuration of microtubules can interfere with the transport behaviors of the virus in live cells, which lead to the changing and long-time pausing of the transport behavior of viruses. Our results revealed that most of the viruses moved along straight microtubules rapidly and unidirectionally from the cell periphery to the microtubule organizing center (MTOC) near the bottom of the cell, and the viruses were confined in the grid of microtubules near the top of the cell and at the MTOC near the bottom of the cell. These results provided deep insights into the influence of entire microtubule geometry on the virus infection.

  2. Real-time visualization of nanoparticles interacting with glioblastoma stem cells.

    Science.gov (United States)

    Pohlmann, Elliot S; Patel, Kaya; Guo, Sujuan; Dukes, Madeline J; Sheng, Zhi; Kelly, Deborah F

    2015-04-08

    Nanoparticle-based therapy represents a novel and promising approach to treat glioblastoma, the most common and lethal malignant brain cancer. Although similar therapies have achieved significant cytotoxicity in cultured glioblastoma or glioblastoma stem cells (GSCs), the lack of an appropriate approach to monitor interactions between cells and nanoparticle-based therapies impedes their further clinical application in human patients. To address this critical issue, we first obtained NOTCH1 positive GSCs from patient-derived primary cultures. We then developed a new imaging approach to directly observe the dynamic nature of nanoparticles at the molecular level using in situ transmission electron microscopy (TEM). Utilizing these tools we were able to visualize real-time movements of nanoparticles interacting with GSCs for the first time. Overall, we show strong proof-of-concept results that real-time visualization of nanoparticles in single cells can be achieved at the nanoscale using TEM, thereby providing a powerful platform for the development of nanotherapeutics.

  3. Controllability analysis of decentralised linear controllers for polymeric fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Aguado, Joaquin; Ansede, Xavier; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya - Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2005-10-10

    This work deals with the control of polymeric fuel cells. It includes a linear analysis of the system at different operating points, the comparison and selection of different control structures, and the validation of the controlled system by simulation. The work is based on a complex non linear model which has been linearised at several operating points. The linear analysis tools used are the Morari resiliency index, the condition number, and the relative gain array. These techniques are employed to compare the controllability of the system with different control structures and at different operating conditions. According to the results, the most promising control structures are selected and their performance with PI based diagonal controllers is evaluated through simulations with the complete non linear model. The range of operability of the examined control structures is compared. Conclusions indicate good performance of several diagonal linear controllers. However, very few have a wide operability range. (author)

  4. Effects of visual cues of object density on perception and anticipatory control of dexterous manipulation.

    Directory of Open Access Journals (Sweden)

    Céline Crajé

    Full Text Available Anticipatory force planning during grasping is based on visual cues about the object's physical properties and sensorimotor memories of previous actions with grasped objects. Vision can be used to estimate object mass based on the object size to identify and recall sensorimotor memories of previously manipulated objects. It is not known whether subjects can use density cues to identify the object's center of mass (CM and create compensatory moments in an anticipatory fashion during initial object lifts to prevent tilt. We asked subjects (n = 8 to estimate CM location of visually symmetric objects of uniform densities (plastic or brass, symmetric CM and non-uniform densities (mixture of plastic and brass, asymmetric CM. We then asked whether subjects can use density cues to scale fingertip forces when lifting the visually symmetric objects of uniform and non-uniform densities. Subjects were able to accurately estimate an object's center of mass based on visual density cues. When the mass distribution was uniform, subjects could scale their fingertip forces in an anticipatory fashion based on the estimation. However, despite their ability to explicitly estimate CM location when object density was non-uniform, subjects were unable to scale their fingertip forces to create a compensatory moment and prevent tilt on initial lifts. Hefting object parts in the hand before the experiment did not affect this ability. This suggests a dichotomy between the ability to accurately identify the object's CM location for objects with non-uniform density cues and the ability to utilize this information to correctly scale their fingertip forces. These results are discussed in the context of possible neural mechanisms underlying sensorimotor integration linking visual cues and anticipatory control of grasping.

  5. Effects of visual cues of object density on perception and anticipatory control of dexterous manipulation.

    Science.gov (United States)

    Crajé, Céline; Santello, Marco; Gordon, Andrew M

    2013-01-01

    Anticipatory force planning during grasping is based on visual cues about the object's physical properties and sensorimotor memories of previous actions with grasped objects. Vision can be used to estimate object mass based on the object size to identify and recall sensorimotor memories of previously manipulated objects. It is not known whether subjects can use density cues to identify the object's center of mass (CM) and create compensatory moments in an anticipatory fashion during initial object lifts to prevent tilt. We asked subjects (n = 8) to estimate CM location of visually symmetric objects of uniform densities (plastic or brass, symmetric CM) and non-uniform densities (mixture of plastic and brass, asymmetric CM). We then asked whether subjects can use density cues to scale fingertip forces when lifting the visually symmetric objects of uniform and non-uniform densities. Subjects were able to accurately estimate an object's center of mass based on visual density cues. When the mass distribution was uniform, subjects could scale their fingertip forces in an anticipatory fashion based on the estimation. However, despite their ability to explicitly estimate CM location when object density was non-uniform, subjects were unable to scale their fingertip forces to create a compensatory moment and prevent tilt on initial lifts. Hefting object parts in the hand before the experiment did not affect this ability. This suggests a dichotomy between the ability to accurately identify the object's CM location for objects with non-uniform density cues and the ability to utilize this information to correctly scale their fingertip forces. These results are discussed in the context of possible neural mechanisms underlying sensorimotor integration linking visual cues and anticipatory control of grasping.

  6. How to avoid the `invisible gorilla' in aluminum smelting process control: Visual guidelines

    Science.gov (United States)

    Gao, Yashuang; Taylor, Mark P.; Chen, John J. J.; Hautus, Michael J.

    2011-08-01

    Over the last three decades, process control in aluminum smelters has improved significantly as it is the biggest leverage for cost and energy reduction in production and product quality improvement, as well as for meeting environmental compliance. The implementation of computerized automatic control systems two decades ago was a step change in improvement in the state of the art of process control. However, the complex and dynamic nature of the process requires human monitoring, diagnosis, and intervention from time to time. This study investigates the use of the supervisory screen of the control system of a smelter, as well as the effectiveness of visual guidelines to help the operators to identify process abnormalities. The results show that visual guidelines such as voltage patterns which are used as a reference improve the performance of the operators. Detection time and falsealarm rates were reduced in addition to increasing detection sensitivities. It is proposed that a higher level of human and system interaction would improve the overall performance process control.

  7. Soure and Transmission Control for Wireless Visual Sensor Networks with Compressive Sensing and Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Lei You

    2013-05-01

    Full Text Available The lifetime of the emerging Wireless visual sensor network (WVSN is seriously dependent on the energy shored in the battery of its sensor nodes as well as the compression and resource allocation scheme. In this paper, the energy harvesting technology was adopted to provide almost perpetual operation of the WVSN and compressed-sensing-based encoding was used to decrease the power consumption of acquiring visual information at the front-end sensors. A Dynamic Source and Transmission Control Algorithm (DSTCA was proposed to jointly determine source rate, source energy consumption, and the allocation of transmission energy and available bandwidth under energy harvesting and queue stability constraints. A virtual energy queue was introduced to control the resource allocation and the measurement rate in each time slot. The algorithm can guarantee the stability of the visual data queues in all sensors and achieve near-optimal performance. The distributed implementation of the proposed algorithm was discussed and the achievable performance theorem was also given.

  8. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage.

    Science.gov (United States)

    Allen, Justine J; Mäthger, Lydia M; Barbosa, Alexandra; Hanlon, Roger T

    2009-06-01

    Cephalopods (octopus, squid and cuttlefish) are known for their camouflage. Cuttlefish Sepia officinalis use chromatophores and light reflectors for color change, and papillae to change three-dimensional physical skin texture. Papillae vary in size, shape and coloration; nine distinct sets of papillae are described here. The objective was to determine whether cuttlefish use visual or tactile cues to control papillae expression. Cuttlefish were placed on natural substrates to evoke the three major camouflage body patterns: Uniform/Stipple, Mottle and Disruptive. Three versions of each substrate were presented: the actual substrate, the actual substrate covered with glass (removes tactile information) and a laminated photograph of the substrate (removes tactile and three-dimensional information because depth-of-field information is unavailable). No differences in Small dorsal papillae or Major lateral mantle papillae expression were observed among the three versions of each substrate. Thus, visual (not tactile) cues drive the expression of papillae in S. officinalis. Two sets of papillae (Major lateral mantle papillae and Major lateral eye papillae) showed irregular responses; their control requires future investigation. Finally, more Small dorsal papillae were shown in Uniform/Stipple and Mottle patterns than in Disruptive patterns, which may provide clues regarding the visual mechanisms of background matching versus disruptive coloration.

  9. A Brain Computer Interface for Robust Wheelchair Control Application Based on Pseudorandom Code Modulated Visual Evoked Potential

    DEFF Research Database (Denmark)

    Mohebbi, Ali; Engelsholm, Signe K.D.; Puthusserypady, Sadasivan;

    2015-01-01

    In this pilot study, a novel and minimalistic Brain Computer Interface (BCI) based wheelchair control application was developed. The system was based on pseudorandom code modulated Visual Evoked Potentials (c-VEPs). The visual stimuli in the scheme were generated based on the Gold code...

  10. Visualization and cellular hierarchy inference of single-cell data using SPADE.

    Science.gov (United States)

    Anchang, Benedict; Hart, Tom D P; Bendall, Sean C; Qiu, Peng; Bjornson, Zach; Linderman, Michael; Nolan, Garry P; Plevritis, Sylvia K

    2016-07-01

    High-throughput single-cell technologies provide an unprecedented view into cellular heterogeneity, yet they pose new challenges in data analysis and interpretation. In this protocol, we describe the use of Spanning-tree Progression Analysis of Density-normalized Events (SPADE), a density-based algorithm for visualizing single-cell data and enabling cellular hierarchy inference among subpopulations of similar cells. It was initially developed for flow and mass cytometry single-cell data. We describe SPADE's implementation and application using an open-source R package that runs on Mac OS X, Linux and Windows systems. A typical SPADE analysis on a 2.27-GHz processor laptop takes ∼5 min. We demonstrate the applicability of SPADE to single-cell RNA-seq data. We compare SPADE with recently developed single-cell visualization approaches based on the t-distribution stochastic neighborhood embedding (t-SNE) algorithm. We contrast the implementation and outputs of these methods for normal and malignant hematopoietic cells analyzed by mass cytometry and provide recommendations for appropriate use. Finally, we provide an integrative strategy that combines the strengths of t-SNE and SPADE to infer cellular hierarchy from high-dimensional single-cell data.

  11. Visualization of flow separation and control by vortex generators on an single flap in landing configuration

    Directory of Open Access Journals (Sweden)

    Matějka Milan

    2012-04-01

    Full Text Available This paper focuses on a suppression of the flow separation, which occurs on a deflected flap, by means of vortex generators (VG's. An airfoil NACA 63A421 with a simple flap and vane-type vortex generators were used. The investigation was carried out by using experimental and numerical methods. The data from the numerical simulation of the flapped airfoil without VG's control were used for the vortex generator design. Two sizes, two different shapes and various spacing of the vortex generators were tested. The flow past the airfoil was visualized through three methods, namely tuft filaments technique, oil and thermo camera visualization. The experiments were performed in closed circuit wind tunnels with closed and open test sections. The lift curves for both cases without and with vortex generators were acquired for a lift coefficient improvement determination. The improvement was achieved for several cases by means all of the applied methods.

  12. Combining Dense Structure From Motion and Visual SLAM in a Behavior-Based Robot Control Architecture

    Directory of Open Access Journals (Sweden)

    Geert De Cubber

    2010-02-01

    Full Text Available In this paper, we present a control architecture for an intelligent outdoor mobile robot. This enables the robot to navigate in a complex, natural outdoor environment, relying on only a single on-board camera as sensory input. This is achieved through a twofold analysis of the visual data stream: a dense structure from motion algorithm calculates a depth map of the environment and a visual simultaneous localization and mapping algorithm builds a map of the surroundings using image features. This information enables a behavior-based robot motion and path planner to navigate the robot through the environment. In this paper, we show the theoretical aspects of setting up this architecture.

  13. Photosensitive chitosan to control cell attachment.

    Science.gov (United States)

    Cheng, Nan; Cao, Xudong

    2011-09-01

    An approach to control cell adhesion using a photocleavable molecule on chitosan has been developed and studied. Photocleavable 4,5-dimethoxy-2-nitrobenzyl chloroformate (NVOC) was introduced into chitosan to control the surface properties. The two UV illuminations with a photomask controlled the cleavage of NVOC and the presentation of deprotected amines on one chitosan surface spatially and temporally. The following immobilizations of cell repulsive poly(ethylene glycol) after the first illumination and cell adhesive sequence Arg-Gly-Asp-Ser (RGDS) after the second illumination on the surface helped create surface heterogeneity. Fourier transform infrared spectroscopy (FTIR), water contact angle, and UV-visible spectroscopy were used to characterize the surfaces and photoactivation during the process. To study the cell attachment and morphology on our designed surfaces, NIH/3T3 fibroblast cell was used. Cell number and morphology on the surfaces were investigated. The cell study demonstrated the feasibility of the surfaces on the control of cell adhesion and the formation of cell patterns by UV illuminations and the following immobilizations of different biomolecules.

  14. Effectiveness of basic display augmentation in vehicular control by visual field cues

    Science.gov (United States)

    Grunwald, A. J.; Merhav, S. J.

    1978-01-01

    The paper investigates the effectiveness of different basic display augmentation concepts - fixed reticle, velocity vector, and predicted future vehicle path - for RPVs controlled by a vehicle-mounted TV camera. The task is lateral manual control of a low flying RPV along a straight reference line in the presence of random side gusts. The man-machine system and the visual interface are modeled as a linear time-invariant system. Minimization of a quadratic performance criterion is assumed to underlie the control strategy of a well-trained human operator. The solution for the optimal feedback matrix enables the explicit computation of the variances of lateral deviation and directional error of the vehicle and of the control force that are used as performance measures.

  15. Visual Servoing Tracking Control of a Ball and Plate System: Design, Implementation and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Ming-Tzu Ho

    2013-07-01

    Full Text Available This paper presents the design, implementation and validation of real‐time visual servoing tracking control for a ball and plate system. The position of the ball is measured with a machine vision system. The image processing algorithms of the machine vision system are pipelined and implemented on a field programmable gate array (FPGA device to meet real‐ time constraints. A detailed dynamic model of the system is derived for the simulation study.By neglecting the high‐order coupling terms, the ball and plate system model is simplified into two decoupled ball and beam systems, and an approximate input‐ output feedback linearization approach is then used to design the controller for trajectory tracking. The designed control law is implemented on a digital signal processor (DSP. The validity of the performance of the developed control system is investigated through simulation and experimental studies. Experimental results show that the designed system functions well with reasonable agreement with simulations.

  16. Dyslexic children suffer from less informative visual cues to control posture.

    Science.gov (United States)

    Razuk, Milena; Barela, Jose A

    2014-09-01

    The goal of this study was to investigate the effects of manipulation of the characteristics of visual stimulus on postural control in dyslexic children. A total of 18 dyslexic and 18 non-dyslexic children stood upright inside a moving room, as still as possible, and looked at a target at different conditions of distance between the participant and a moving room frontal wall (25-150 cm) and vision (full and central). The first trial was performed without vision (baseline). Then four trials were performed in which the room remained stationary and eight trials with the room moving, lasting 60s each. Mean sway amplitude, coherence, relative phase, and angular deviation were calculated. The results revealed that dyslexic children swayed with larger magnitude in both stationary and moving conditions. When the room remained stationary, all children showed larger body sway magnitude at 150 cm distance. Dyslexic children showed larger body sway magnitude in central compared to full vision condition. In the moving condition, body sway magnitude was similar between dyslexic and non-dyslexic children but the coupling between visual information and body sway was weaker in dyslexic children. Moreover, in the absence of peripheral visual cues, induced body sway in dyslexic children was temporally delayed regarding visual stimulus. Taken together, these results indicate that poor postural control performance in dyslexic children is related to how sensory information is acquired from the environment and used to produce postural responses. In conditions in which sensory cues are less informative, dyslexic children take longer to process sensory stimuli in order to obtain precise information, which leads to performance deterioration.

  17. Integration of bio-inspired, control-based visual and olfactory data for the detection of an elusive target

    Science.gov (United States)

    Duong, Tuan A.; Duong, Nghi; Le, Duong

    2017-01-01

    In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.

  18. Executive control of stimulus-driven and goal-directed attention in visual working memory.

    Science.gov (United States)

    Hu, Yanmei; Allen, Richard J; Baddeley, Alan D; Hitch, Graham J

    2016-10-01

    We examined the role of executive control in stimulus-driven and goal-directed attention in visual working memory using probed recall of a series of objects, a task that allows study of the dynamics of storage through analysis of serial position data. Experiment 1 examined whether executive control underlies goal-directed prioritization of certain items within the sequence. Instructing participants to prioritize either the first or final item resulted in improved recall for these items, and an increase in concurrent task difficulty reduced or abolished these gains, consistent with their dependence on executive control. Experiment 2 examined whether executive control is also involved in the disruption caused by a post-series visual distractor (suffix). A demanding concurrent task disrupted memory for all items except the most recent, whereas a suffix disrupted only the most recent items. There was no interaction when concurrent load and suffix were combined, suggesting that deploying selective attention to ignore the distractor did not draw upon executive resources. A final experiment replicated the independent interfering effects of suffix and concurrent load while ruling out possible artifacts. We discuss the results in terms of a domain-general episodic buffer in which information is retained in a transient, limited capacity privileged state, influenced by both stimulus-driven and goal-directed processes. The privileged state contains the most recent environmental input together with goal-relevant representations being actively maintained using executive resources.

  19. Application of the control method by visual path to the water injection projects of Petroleos Mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Pechir, Q.V.M.

    1972-04-01

    In the present work, the importance is pointed out of the physical and economical magnitude of secondary recovery of oil by injection of water. This is for the purpose of emphasizing the urgent necessity of attending to the problems of control and supervision which present themselves during the development of the projects. An example of such a project is cited (Tamaulipas-Constitucion) where the problems and failures gave many opportunities for delay in completion of some of the work. In some instances, there was overspending which might have been avoided in great part, if there had been controls and supervision suitable and adequate in importance to the magnitude and complexity of the project. Because of such situations, and for overcoming the initial deficiencies in control and supervision of these water-injection projects, it was decided to adopt the Visiflex method of control and the Visual Path method of work scheduling. A description of the parts is integrated into the method as well as the techniques of its application n the mentioned project, including a model of the Visual Path Program for the water- injection project in the Caliza San Andres (San Andres Limestone) formations of the Tamaulipas-Constitucion oil field.

  20. Infrared-Controlled Welding of Solar Cells

    Science.gov (United States)

    Paulson, R.; Finnell, S. E.; Decker, H. J.; Hodor, J. R.

    1982-01-01

    Proposed apparatus for welding large arrays of solar cells to flexible circuit substrates would sense infrared emission from welding spot. Emission would provide feedback for control of welding heat. Welding platform containing optical fibers moves upward through slots in movable holding fixture to contact solar cells. Fibers pick up infrared radiation from weld area.

  1. Controlled surface chemistries and quantitative cell response

    Science.gov (United States)

    Plant, Anne L.

    2002-03-01

    Living cells experience a large number of signaling cues from their extracellular matrix. As a result of these inputs, a variety of intracellular signaling pathways are apparently initiated simultaneously. The vast array of alternative responses that result from the integration of these inputs suggests that it may be reasonable to look for cellular response not as an 'on' or 'off' condition but as a distribution of responses. A difficult challenge is to determine whether variations in responses from individual cells arise from the complexity of intracellular signals or are due to variations in the cell culture environment. By controlling surface chemistry so that every cell 'sees' the same chemical and physical environment, we can begin to assess how the distribution of cell response is affected strictly by changes in the chemistry of the cell culture surface. Using the gene for green fluorescent protein linked to the gene for the promoter of the extracellular matrix protein, tenascin, we can easily probe the end product in a signaling pathway that is purported to be linked to surface protein chemistry and to cell shape. Cell response to well-controlled, well-characterized, and highly reproducible surfaces prepared using soft lithography techniques are compared with more conventional ways of preparing extracellular matrix proteins for cell culture. Using fluorescence microscopy and image analysis of populations of cells on these surfaces, we probe quantitatively the relationship between surface chemistry, cell shape and variations in gene expression endpoint.

  2. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function.

    Science.gov (United States)

    Reinis, S; Landolt, J P; Weiss, D S; Money, K E

    1984-03-01

    /he spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent (14)--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique (19). Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. In cats with intact labyrinths, D2O changed the optimal length of the light bar that was able to stimulate the cortical cell as well as the path on which it evoked the response of the cell. Both values, which constitute the receptive field of the cell, changed approximately proportionately. This effect usually lasts for less than 4.5 h. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells (and the other cellular characteristics studied) did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease

  3. Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model1

    Directory of Open Access Journals (Sweden)

    Zinn Kurt R

    2009-08-01

    Full Text Available Abstract Background Rapid clonal expansion of T cells occurs in response to antigenic challenges. The kinetics of the T cell response has previously been described using tissue-based studies performed at defined time points. Luciferase bioluminescence has recently been utilized for non-invasive analysis of in vivo biologic processes in real-time. Results We have created a novel transgenic mouse model (T-Lux using a human CD2 mini-gene to direct luciferase expression specifically to the T cell compartment. T-Lux T cells demonstrated normal homing patterns within the intact mouse and following adoptive transfer. Bioluminescent signal correlated with T cell numbers in the whole body images as well as within specific organ regions of interest. Following transfer into lymphopenic (RAG2-/- recipients, homeostatic proliferation of T-Lux T cells was visualized using bioluminescent imaging. Real-time bioluminescent analysis of CD4+ T cell antigen-specific responses enabled real-time comparison of the kinetics and magnitude of clonal expansion and contraction in the inductive lymph node and tissue site of antigen injection. T cell expansion was dose-dependent despite the presence of supraphysiologic numbers of OVA-specific OT-II transgenic TCR T-Lux T cells. CD4+ T cells subsequently underwent a rapid (3–4 day contraction phase in the draining lymph node, with a delayed contraction in the antigen delivery site, with bioluminescent signal diminished below initial levels, representing TCR clonal frequency control. Conclusion The T-Lux mouse provides a novel, efficient model for tracking in vivo aspects of the CD4+ T cell response to antigen, providing an attractive approach for studies directed at immunotherapy or vaccine design.

  4. Volitional regulation of emotions produces distributed alterations in connectivity between visual, attention control, and default networks.

    Science.gov (United States)

    Sripada, Chandra; Angstadt, Michael; Kessler, Daniel; Phan, K Luan; Liberzon, Israel; Evans, Gary W; Welsh, Robert C; Kim, Pilyoung; Swain, James E

    2014-04-01

    The ability to volitionally regulate emotions is critical to health and well-being. While patterns of neural activation during emotion regulation have been well characterized, patterns of connectivity between regions remain less explored. It is increasingly recognized that the human brain is organized into large-scale intrinsic connectivity networks (ICNs) whose interrelationships are altered in characteristic ways during psychological tasks. In this fMRI study of 54 healthy individuals, we investigated alterations in connectivity within and between ICNs produced by the emotion regulation strategy of reappraisal. In order to gain a comprehensive picture of connectivity changes, we utilized connectomic psychophysiological interactions (PPI), a whole-brain generalization of standard single-seed PPI methods. In particular, we quantified PPI connectivity pair-wise across 837 ROIs placed throughout the cortex. We found that compared to maintaining one's emotional responses, engaging in reappraisal produced robust and distributed alterations in functional connections involving visual, dorsal attention, frontoparietal, and default networks. Visual network in particular increased connectivity with multiple ICNs including dorsal attention and default networks. We interpret these findings in terms of the role of these networks in mediating critical constituent processes in emotion regulation, including visual processing, stimulus salience, attention control, and interpretation and contextualization of stimuli. Our results add a new network perspective to our understanding of the neural underpinnings of emotion regulation, and highlight that connectomic methods can play a valuable role in comprehensively investigating modulation of connectivity across task conditions.

  5. A Randomized Control Trial Exploring the Effect of Mental Rehearsal and Cognitive Visualization on Microsurgery Skills.

    Science.gov (United States)

    Chadha, Priyanka; Hachach-Haram, Nadine; Shurey, Sandra; Mohanna, Pari-Naz

    2016-09-01

    Background Many factors are known to influence the performance of surgeons within the operating theater, including tiredness, previous experience, and stress levels. The effects of mental rehearsal and cognitive visualization on microsurgical skills have not been assessed. Methods Thirty-six subjects recruited from the Northwick Park Microsurgery Skills Course were randomized into three groups; (1) a control group (C) with no mental rehearsal script, (2) a visual anastomosis group (VA), with a detailed rat anastomosis script, and (3) a visual relaxation (VR) group with a relaxation script, unrelated to the anastomosis. Participants ran through relevant scripts from day 2 to 5 and were assessed through recorded arterial rat anastomosis, scored using the structured assessment of microsurgery skills. Results Results were analyzed by double-blinded assessors. No statistical significance was found on Monday and Tuesday (first day post intervention), p = 0.326 (VA vs. C) and p = 0.283 (VR vs. C). A statistically significant difference was noted at the end of day 4; p rehearsal in microsurgery may result in fewer complications from errors and thus lead to enhanced patient safety and better operative outcomes.

  6. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    Science.gov (United States)

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates.

  7. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.

    Directory of Open Access Journals (Sweden)

    Alex Costa

    Full Text Available Selective Plane Illumination Microscopy (SPIM is an imaging technique particularly suited for long term in-vivo analysis of transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET. Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca(2+ probe Cameleon, in the cytosol or nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca(2+ dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological phenomenon, namely Ca(2+ signal percolation, predicted in previous studies, has been directly visualized.

  8. Control of humanoid robot via motion-onset visual evoked potentials.

    Science.gov (United States)

    Li, Wei; Li, Mengfan; Zhao, Jing

    2014-01-01

    This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task.

  9. Visual and proprioceptive contributions to postural control of upright stance in unilateral vestibulopathy.

    Science.gov (United States)

    Eysel-Gosepath, Katrin; McCrum, Christopher; Epro, Gaspar; Brüggemann, Gert-Peter; Karamanidis, Kiros

    2016-06-01

    Preserving upright stance requires central integration of the sensory systems and appropriate motor output from the neuromuscular system to keep the centre of pressure (COP) within the base of support. Unilateral peripheral vestibular disorder (UPVD) causes diminished stance stability. The aim of this study was to determine the limits of stability and to examine the contribution of multiple sensory systems to upright standing in UPVD patients and healthy subjects. We hypothesized that closure of the eyes and Achilles tendon vibration during upright stance will augment the postural sway in UPVD patients more than in healthy subjects. Seventeen UPVD patients and 17 healthy subjects performed six tasks on a force plate: forwards and backwards leaning, to determine limits of stability, and upright standing with and without Achilles tendon vibration, each with eyes open and closed (with blackout glasses). The COP displacement of the patients was significantly greater in the vibration tasks than the controls and came closer to the posterior base of support boundary than the controls in all tasks. Achilles tendon vibration led to a distinctly more backward sway in both subject groups. Five of the patients could not complete the eyes closed with vibration task. Due to the greater reduction in stance stability when the proprioceptive, compared with the visual, sensory system was disturbed, we suggest that proprioception may be more important for maintaining upright stance than vision. UPVD patients, in particular, showed more difficulty in controlling postural stability in the posterior direction with visual and proprioceptive sensory disturbance.

  10. Comparison of Mars Science Laboratory Reaction Control System Jet Computations With Flow Visualization and Velocimetry

    Science.gov (United States)

    Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Ashcraft, Scott W.; Novak, Luke A.

    2013-01-01

    Numerical predictions of the Mars Science Laboratory reaction control system jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide planar laser-induced fluorescence data. The steady Reynolds Averaged Navier Stokes equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental fluorescence data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the fluorescence signal equation, computational flow images were produced and directly compared to the qualitative fluorescence data.

  11. Self-Control and Impulsiveness in Nondieting Adult Human Females: Effects of Visual Food Cues and Food Deprivation

    Science.gov (United States)

    Forzano, Lori-Ann B.; Chelonis, John J.; Casey, Caitlin; Forward, Marion; Stachowiak, Jacqueline A.; Wood, Jennifer

    2010-01-01

    Self-control can be defined as the choice of a larger, more delayed reinforcer over a smaller, less delayed reinforcer, and impulsiveness as the opposite. Previous research suggests that exposure to visual food cues affects adult humans' self-control. Previous research also suggests that food deprivation decreases adult humans' self-control. The…

  12. Visual control of wheeled mobile robots unifying vision and control in generic approaches

    CERN Document Server

    Becerra, Héctor M

    2014-01-01

    Vision-based control of wheeled mobile robots is an interesting field of research from a scientific and even social point of view due to its potential applicability. This book presents a formal treatment of some aspects of control theory applied to the problem of vision-based pose regulation of wheeled mobile robots. In this problem, the robot has to reach a desired position and orientation, which are specified by a target image. It is faced in such a way that vision and control are unified to achieve stability of the closed loop, a large region of convergence, without local minima, and good robustness against parametric uncertainty. Three different control schemes that rely on monocular vision as unique sensor are presented and evaluated experimentally. A common benefit of these approaches is that they are valid for imaging systems obeying approximately a central projection model, e.g., conventional cameras, catadioptric systems and some fisheye cameras. Thus, the presented control schemes are generic approa...

  13. In situ visualization of intracellular morphology of epidermal cells using stimulated Raman scattering microscopy

    Science.gov (United States)

    Egawa, Mariko; Tokunaga, Kyoya; Hosoi, Junichi; Iwanaga, Shinya; Ozeki, Yasuyuki

    2016-08-01

    Visualization of epidermal cells is important because the differentiation patterns of keratinocytes (KCs) are considered to be related to the functions and condition of skin. Optical microscopy has been widely used to investigate epidermal cells, but its applicability is still limited because of the need for sample fixation and staining. Here, we report our staining-free observation of epidermal cells in both tissue and culture by stimulated Raman scattering (SRS) microscopy that provides molecular vibrational contrast. SRS allowed us to observe a variety of cellular morphologies in skin tissue, including ladder-like structures in the spinous layer, enucleation of KCs in the granular layer, and three-dimensional cell column structures in the stratum corneum. We noticed that some cells in the spinous layer had a brighter signal in the cytoplasm than KCs. To examine the relevance of the observation of epidermal layers, we also observed cultured epidermal cells, including KCs at various differentiation stages, melanocytes, and Langerhans cell-like cells. Their SRS images also demonstrated various morphologies, suggesting that the morphological differences observed in tissue corresponded to the cell lineage. These results indicate the possible application of SRS microscopy to dermatological investigation of cell lineages and types in the epidermis by cellular-level analysis.

  14. Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    CERN Document Server

    Chattopadhyay, Manojit; Dan, Pranab K; 10.1007/s00170-010-2802-4

    2011-01-01

    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in t...

  15. A lower limb exoskeleton control system based on steady state visual evoked potentials

    Science.gov (United States)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2015-10-01

    Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

  16. Visual Attention Allocation Between Robotic Arm and Environmental Process Control: Validating the STOM Task Switching Model

    Science.gov (United States)

    Wickens, Christopher; Vieanne, Alex; Clegg, Benjamin; Sebok, Angelia; Janes, Jessica

    2015-01-01

    Fifty six participants time shared a spacecraft environmental control system task with a realistic space robotic arm control task in either a manual or highly automated version. The former could suffer minor failures, whose diagnosis and repair were supported by a decision aid. At the end of the experiment this decision aid unexpectedly failed. We measured visual attention allocation and switching between the two tasks, in each of the eight conditions formed by manual-automated arm X expected-unexpected failure X monitoring- failure management. We also used our multi-attribute task switching model, based on task attributes of priority interest, difficulty and salience that were self-rated by participants, to predict allocation. An un-weighted model based on attributes of difficulty, interest and salience accounted for 96 percent of the task allocation variance across the 8 different conditions. Task difficulty served as an attractor, with more difficult tasks increasing the tendency to stay on task.

  17. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    Science.gov (United States)

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-06-01

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.

  18. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    Science.gov (United States)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  19. Sample to answer visualization pipeline for low-cost point-of-care blood cell counting

    Science.gov (United States)

    Smith, Suzanne; Naidoo, Thegaran; Davies, Emlyn; Fourie, Louis; Nxumalo, Zandile; Swart, Hein; Marais, Philip; Land, Kevin; Roux, Pieter

    2015-03-01

    We present a visualization pipeline from sample to answer for point-of-care blood cell counting applications. Effective and low-cost point-of-care medical diagnostic tests provide developing countries and rural communities with accessible healthcare solutions [1], and can be particularly beneficial for blood cell count tests, which are often the starting point in the process of diagnosing a patient [2]. The initial focus of this work is on total white and red blood cell counts, using a microfluidic cartridge [3] for sample processing. Analysis of the processed samples has been implemented by means of two main optical visualization systems developed in-house: 1) a fluidic operation analysis system using high speed video data to determine volumes, mixing efficiency and flow rates, and 2) a microscopy analysis system to investigate homogeneity and concentration of blood cells. Fluidic parameters were derived from the optical flow [4] as well as color-based segmentation of the different fluids using a hue-saturation-value (HSV) color space. Cell count estimates were obtained using automated microscopy analysis and were compared to a widely accepted manual method for cell counting using a hemocytometer [5]. The results using the first iteration microfluidic device [3] showed that the most simple - and thus low-cost - approach for microfluidic component implementation was not adequate as compared to techniques based on manual cell counting principles. An improved microfluidic design has been developed to incorporate enhanced mixing and metering components, which together with this work provides the foundation on which to successfully implement automated, rapid and low-cost blood cell counting tests.

  20. Organic Based Solar Cells with Morphology Control

    OpenAIRE

    Andersen, Thomas Rieks; Bundgaard, Eva; Jørgensen, Mikkel

    2013-01-01

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need to be addressed. Among these are a more direct transfer of new materials tested on a laboratory scale to large scale production than offered by spincoating, a method offering direct control of the morpholog...

  1. Visual-based quadrotor control by means of fuzzy cognitive maps.

    Science.gov (United States)

    Amirkhani, Abdollah; Shirzadeh, Masoud; Papageorgiou, Elpiniki I; Mosavi, Mohammad R

    2016-01-01

    By applying an image-based visual servoing (IBVS) method, the intelligent image-based controlling of a quadrotor type unmanned aerial vehicle (UAV) tracking a moving target is studied in this paper. A fuzzy cognitive map (FCM) is a soft computing method which is classified as a fuzzy neural system and exploits the main aspects of fuzzy logic and neural network systems; so it seems to be a suitable choice for implementing a vision-based intelligent technique. An FCM has been employed in implementing an IBVS scheme on a quadrotor UAV, so that the UAV can track a moving target on the ground. For this purpose, by properly combining the perspective image moments, some features with the desired characteristics for controlling the translational and yaw motions of a UAV have been presented. In designing a vision-based control method for a UAV quadrotor, there are some challenges, including the target mobility and not knowing the height of UAV above the target. Also, no sensor has been installed on the moving object and the changes of its yaw angle are not available. Despite all the stated challenges, the proposed method, which uses an FCM in controlling the translational motion and the yaw rotation of a UAV, adequately enables the quadrotor to follow the moving target. The simulation results for different paths show the satisfactory performance of the designed controller.

  2. Translational control in germline stem cell development.

    Science.gov (United States)

    Slaidina, Maija; Lehmann, Ruth

    2014-10-13

    Stem cells give rise to tissues and organs during development and maintain their integrity during adulthood. They have the potential to self-renew or differentiate at each division. To ensure proper organ growth and homeostasis, self-renewal versus differentiation decisions need to be tightly controlled. Systematic genetic studies in Drosophila melanogaster are revealing extensive regulatory networks that control the switch between stem cell self-renewal and differentiation in the germline. These networks, which are based primarily on mutual translational repression, act via interlocked feedback loops to provide robustness to this important fate decision.

  3. A two- and three-dimensional approach for visualizing human embryonic stem cell differentiation

    DEFF Research Database (Denmark)

    Brøchner, Christian Beltoft; Vestentoft, Peter S; Lynnerup, Niels;

    2010-01-01

    visualization of this 2D-expression pattern can be created by developing a 3D-model of the culture, based on serial paraffin sections. Individual sections are stained using individual markers. Using 3D image processing software such as Mimics or 3D-Doctor, the actual 3D-rendering of an entire colony can...... be accomplished. An extended version of this technique even allows for a high-magnification 3D-reconstruction of an area of interest (AOI), e.g., the developing hepatic stem cells. These techniques allow both a 2D and a 3D visualization of hESC colonies and lead to new insights into and information about...

  4. Regulating outdoor advertisement boards; employing spatial decision support system to control urban visual pollution

    Science.gov (United States)

    Wakil, K.; Hussnain, MQ; Tahir, A.; Naeem, M. A.

    2016-06-01

    Unmanaged placement, size, location, structure and contents of outdoor advertisement boards have resulted in severe urban visual pollution and deterioration of the socio-physical living environment in urban centres of Pakistan. As per the regulatory instruments, the approval decision for a new advertisement installation is supposed to be based on the locational density of existing boards and their proximity or remoteness to certain land- uses. In cities, where regulatory tools for the control of advertisement boards exist, responsible authorities are handicapped in effective implementation due to the absence of geospatial analysis capacity. This study presents the development of a spatial decision support system (SDSS) for regularization of advertisement boards in terms of their location and placement. The knowledge module of the proposed SDSS is based on provisions and restrictions prescribed in regulatory documents. While the user interface allows visualization and scenario evaluation to understand if the new board will affect existing linear density on a particular road and if it violates any buffer restrictions around a particular land use. Technically the structure of the proposed SDSS is a web-based solution which includes open geospatial tools such as OpenGeo Suite, GeoExt, PostgreSQL, and PHP. It uses three key data sets including road network, locations of existing billboards and building parcels with land use information to perform the analysis. Locational suitability has been calculated using pairwise comparison through analytical hierarchy process (AHP) and weighted linear combination (WLC). Our results indicate that open geospatial tools can be helpful in developing an SDSS which can assist solving space related iterative decision challenges on outdoor advertisements. Employing such a system will result in effective implementation of regulations resulting in visual harmony and aesthetic improvement in urban communities.

  5. A comparison of kinesthetic-tactual and visual displays via a critical tracking task. [for aircraft control

    Science.gov (United States)

    Jagacinski, R. J.; Miller, D. P.; Gilson, R. D.

    1979-01-01

    The feasibility of using the critical tracking task to evaluate kinesthetic-tactual displays was examined. The test subjects were asked to control a first-order unstable system with a continuously decreasing time constant by using either visual or tactual unidimensional displays. The results indicate that the critical tracking task is both a feasible and a reliable methodology for assessing tactual tracking. Further, that the critical tracking methodology is as sensitive and valid a measure of tactual tracking as visual tracking is demonstrated by the approximately equal effects of quickening for the tactual and visual displays.

  6. A visual targeting system for the microinjection of unstained adherent cells.

    Science.gov (United States)

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2013-02-01

    Automatic localization and targeting are critical steps in automating the process of microinjecting adherent cells. This process is currently performed manually by highly trained operators and is characterized as a laborious task with low success rate. Therefore, automation is desired to increase the efficiency and consistency of the operations. This research offers a contribution to this procedure through the development of a vision system for a robotic microinjection setup. Its goals are to automatically locate adherent cells in a culture dish and target them for a microinjection. Here the major concern was the achievement of an error-free targeting system to guarantee high consistency in microinjection experiments. To accomplish this, a novel visual targeting algorithm integrating different image processing techniques was proposed. This framework employed defocusing microscopy to highlight cell features and improve cell segmentation and targeting reliability. Three main image processing techniques, operating at three different focus levels in a bright field (BF) microscope, were used: an anisotropic contour completion (ACC) method, a local intensity variation background-foreground classifier, and a grayscale threshold-based segmentation. The proposed framework combined information gathered by each of these methods using a validation map and this was shown to provide reliable cell targeting results. Experiments conducted with sets of real images from two different cell lines (CHO-K1 and HEK), which contained a total of more than 650 cells, yielded flawless targeting results along with a cell detection ratio greater than 50%.

  7. [Understanding of immune system by visualization of spatiotemporal regulation of immune cells in the entire body].

    Science.gov (United States)

    Tomura, Michio

    2013-01-01

    Immune system is high-dimensional integrated system distributed in the whole body. Many kinds of, total 10(11) of immune cells are regulated by receiving appropriate signals in appropriate places. We have been attempting to understand immune system by revealing spatiotemporal regulation of immune cells at the whole body level by "Visualization of immune response in vivo". Photoconvertible protein, "Kaede"-Tg mice allowed us to monitor cell-replacement and cell-movement in the whole body by marking cells with color of Kaede from green to red with exposure to violet light. It is applicable to small cell number populations in both lymphoid organs and also peripheral tissues under both normal and pathophysiological conditions. By using this system, we have demonstrated novel findings that "Naive CD4(+) T cell recirculation is an active process that they recirculate through lymphoid organs to seek limited niche for interacting with endogenous antigens and upregulate their function." and "Activated regulatory T cells emigrating from cutaneous immune response is responsible for termination of immune reponse." I will introduce these new tools of us and would like to discuss what is needed to understand immune system in the entire body.

  8. Wnt signaling and stem cell control

    Institute of Scientific and Technical Information of China (English)

    Roel Nusse

    2008-01-01

    Wnt signaling has been implicated in the control over various types of stem cells and may act as a niche factor to maintain stem cells in a self-renewing state.As currently understood,Wnt proteins bind to receptors of the Frizzled and LRP families on the cell surface.Through several cytoplasmic relay components,the signal is transduced to B-catenin,which then enters the nucleus and forms a complex with TCF to activate transcription of Wnt target genes.Wnts can also signal through tyrosine kinase receptors,in particular the ROR and RYK receptors,leading to alternative modes of Wnt signaling.During the growth of tissues,these ligands and receptors are dynamically expressed,often transcriptionally controlled by Wnt signals themselves,to ensure the right balance between proliferation and differentiation.Isolated Wnt proteins are active on a variety of stem cells,including neural,mammary and embryonic stem cells.In general,Wnt proteins act to maintain the undifferentiated state of stem cells,while other growth factors instruct the cells to proliferate.These other factors include FGF and EGF,signaling through tyrosine kinase pathways.

  9. Interactions of multiwalled carbon nanotubes with algal cells: quantification of association, visualization of uptake, and measurement of alterations in the composition of cells.

    Science.gov (United States)

    Rhiem, Stefan; Riding, Matthew J; Baumgartner, Werner; Martin, Francis L; Semple, Kirk T; Jones, Kevin C; Schäffer, Andreas; Maes, Hanna M

    2015-01-01

    Carbon nanotubes (CNTs) are considered promising materials in nanotechnology. We quantified CNT accumulation by the alga Desmodesmus subspicatus. Cells were exposed to radiolabeled CNTs ((14)C-CNTs;1 mg/L) to determine uptake and association, as well as elimination and dissociation in clear media.Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) was used to detect effects of CNTs on algae. CNT-cell interactions were visualized by electron microscopy and related to alterations in their cell composition. A concentration factor of 5000 L/kg dry weight was calculated. Most of the material agglomerated around the cells, but single tubes were detected in the cytoplasm. Computational analyses of the ATR-FTIR data showed that CNT treated algae differed from controls at all sampling times.CNT exposure changed the biochemical composition of cells. The fact that CNTs are bioavailable for algae and that they influence the cell composition is important with regard to environmental risk assessment of this nanomaterial.

  10. Plataforma de desarrollo para el control en tiempo real de estructuras cinemáticas con realimentación visual//Platform to develop real time visual servoing control in kinematics systems

    Directory of Open Access Journals (Sweden)

    René González-Rodríguez

    2012-09-01

    Full Text Available En este trabajo se presenta una plataforma de desarrollo para el control en tiempo real de estructuras cinemáticas con realimentación visual. Se ha diseñado una configuración genérica que permite la implementación de cualquier variante de control visual. Para el procesamiento de la imagen se ha propuesto una estrategia que permite el uso de diferentes herramientas comerciales o algoritmos propiospara la captura y extracción de características de la imagen. El uso de Real Time Work Shop y Real Time Windows Target en el lazo de control interno brinda la posibilidad de implementar algoritmos de control servovisual en tiempo real. Al final del trabajo se presentan los resultados de un esquema de controlservovisual aplicado en un manipulador industrial. La plataforma propuesta constituye una herramienta de desarrollo para aplicaciones industriales de control servovisual y sirve de apoyo a la enseñanza de la mecatrónica en pregrado y postgrado.Palabras claves: control servovisual, control en tiempo real, estructuras cinemáticas._______________________________________________________________________________AbstractIn this work we propose a platform to develop visual servoing control systems. The platform has a generic design with the possibility to implement direct or look and move visual servoing systems. For the image processing we present a generic design allowing the use of any image processing library like Matrox MIL,Intel IPP, OpenCV or any algorithms for image capture and target characteristics extraction. The uses of Real Time Work Shop and Real Time Windows Target in the internal loop permits modify the control structure in SIMULINK very easy.Key words: visual servoing, real time control, kinematics systems.

  11. A Polymer Visualization System with Accurate Heating and Cooling Control and High-Speed Imaging

    Directory of Open Access Journals (Sweden)

    Anson Wong

    2015-04-01

    Full Text Available A visualization system to observe crystal and bubble formation in polymers under high temperature and pressure has been developed. Using this system, polymer can be subjected to a programmable thermal treatment to simulate the process in high pressure differential scanning calorimetry (HPDSC. With a high-temperature/high-pressure view-cell unit, this system enables in situ observation of crystal formation in semi-crystalline polymers to complement thermal analyses with HPDSC. The high-speed recording capability of the camera not only allows detailed recording of crystal formation, it also enables in situ capture of plastic foaming processes with a high temporal resolution. To demonstrate the system’s capability, crystal formation and foaming processes of polypropylene/carbon dioxide systems were examined. It was observed that crystals nucleated and grew into spherulites, and they grew at faster rates as temperature decreased. This observation agrees with the crystallinity measurement obtained with the HPDSC. Cell nucleation first occurred at crystals’ boundaries due to CO2 exclusion from crystal growth fronts. Subsequently, cells were nucleated around the existing ones due to tensile stresses generated in the constrained amorphous regions between networks of crystals.

  12. A polymer visualization system with accurate heating and cooling control and high-speed imaging.

    Science.gov (United States)

    Wong, Anson; Guo, Yanting; Park, Chul B; Zhou, Nan Q

    2015-04-23

    A visualization system to observe crystal and bubble formation in polymers under high temperature and pressure has been developed. Using this system, polymer can be subjected to a programmable thermal treatment to simulate the process in high pressure differential scanning calorimetry (HPDSC). With a high-temperature/high-pressure view-cell unit, this system enables in situ observation of crystal formation in semi-crystalline polymers to complement thermal analyses with HPDSC. The high-speed recording capability of the camera not only allows detailed recording of crystal formation, it also enables in situ capture of plastic foaming processes with a high temporal resolution. To demonstrate the system's capability, crystal formation and foaming processes of polypropylene/carbon dioxide systems were examined. It was observed that crystals nucleated and grew into spherulites, and they grew at faster rates as temperature decreased. This observation agrees with the crystallinity measurement obtained with the HPDSC. Cell nucleation first occurred at crystals' boundaries due to CO₂ exclusion from crystal growth fronts. Subsequently, cells were nucleated around the existing ones due to tensile stresses generated in the constrained amorphous regions between networks of crystals.

  13. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    Directory of Open Access Journals (Sweden)

    Luis Botaya

    2016-05-01

    Full Text Available Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

  14. VISUAL PERCEPTION BASED AUTOMATIC RECOGNITION OF CELL MOSAICS IN HUMAN CORNEAL ENDOTHELIUMMICROSCOPY IMAGES

    Directory of Open Access Journals (Sweden)

    Yann Gavet

    2011-05-01

    Full Text Available The human corneal endothelium can be observed with two types of microscopes: classical optical microscope for ex-vivo imaging, and specular optical microscope for in-vivo imaging. The quality of the cornea is correlated to the endothelial cell density and morphometry. Automatic methods to analyze the human corneal endothelium images are still not totally efficient. Image analysis methods that focus only on cell contours do not give good results in presence of noise and of bad conditions of acquisition. More elaborated methods introduce regional informations in order to performthe cell contours completion, thus implementing the duality contour-region. Their good performance can be explained by their connections with several basic principles of human visual perception (Gestalt Theory and Marr's computational theory.

  15. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells.

    Science.gov (United States)

    Yamakoshi, Hiroyuki; Dodo, Kosuke; Palonpon, Almar; Ando, Jun; Fujita, Katsumasa; Kawata, Satoshi; Sodeoka, Mikiko

    2012-12-26

    Alkyne has a unique Raman band that does not overlap with Raman scattering from any endogenous molecule in live cells. Here, we show that alkyne-tag Raman imaging (ATRI) is a promising approach for visualizing nonimmobilized small molecules in live cells. An examination of structure-Raman shift/intensity relationships revealed that alkynes conjugated to an aromatic ring and/or to a second alkyne (conjugated diynes) have strong Raman signals in the cellular silent region and can be excellent tags. Using these design guidelines, we synthesized and imaged a series of alkyne-tagged coenzyme Q (CoQ) analogues in live cells. Cellular concentrations of diyne-tagged CoQ analogues could be semiquantitatively estimated. Finally, simultaneous imaging of two small molecules, 5-ethynyl-2'-deoxyuridine (EdU) and a CoQ analogue, with distinct Raman tags was demonstrated.

  16. Visualizing the effect of tumor microenvironments on radiation-induced cell kinetics in multicellular spheroids consisting of HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaida, Atsushi; Miura, Masahiko, E-mail: masa.mdth@tmd.ac.jp

    2013-10-04

    Highlights: •We visualized radiation-induced cell kinetics in spheroids. •HeLa-Fucci cells were used for detection of cell-cycle changes. •Radiation-induced G2 arrest was prolonged in the spheroid. •The inner and outer cell fractions behaved differently. -- Abstract: In this study, we visualized the effect of tumor microenvironments on radiation-induced tumor cell kinetics. For this purpose, we utilized a multicellular spheroid model, with a diameter of ∼500 μm, consisting of HeLa cells expressing the fluorescent ubiquitination-based cell-cycle indicator (Fucci). In live spheroids, a confocal laser scanning microscope allowed us to clearly monitor cell kinetics at depths of up to 60 μm. Surprisingly, a remarkable prolongation of G2 arrest was observed in the outer region of the spheroid relative to monolayer-cultured cells. Scale, an aqueous reagent that renders tissues optically transparent, allowed visualization deeper inside spheroids. About 16 h after irradiation, a red fluorescent cell fraction, presumably a quiescent G0 cell fraction, became distinct from the outer fraction consisting of proliferating cells, most of which exhibited green fluorescence indicative of G2 arrest. Thereafter, the red cell fraction began to emit green fluorescence and remained in prolonged G2 arrest. Thus, for the first time, we visualized the prolongation of radiation-induced G2 arrest in spheroids and the differences in cell kinetics between the outer and inner fractions.

  17. Control of apoptosis by asymmetric cell division.

    Directory of Open Access Journals (Sweden)

    Julia Hatzold

    2008-04-01

    Full Text Available Asymmetric cell division and apoptosis (programmed cell death are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.

  18. Visualization of mitochondrial DNA replication in individual cells by EdU signal amplification.

    Science.gov (United States)

    Haines, Kristine M; Feldman, Eva L; Lentz, Stephen I

    2010-11-15

    Mitochondria are key regulators of cellular energy and mitochondrial biogenesis is an essential component of regulating mitochondria numbers in healthy cells. One approach for monitoring mitochondrial biogenesis is to measure the rate of mitochondrial DNA (mtDNA) replication. We developed a sensitive technique to label newly synthesized mtDNA in individual cells in order to study mtDNA biogenesis. The technique combines the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) with a tyramide signal amplification (TSA) protocol to visualize mtDNA replication within subcellular compartments of neurons. EdU is superior to other thymidine analogs, such as 5-bromo-2-deoxyuridine (BrdU), because the initial click reaction to label EdU does not require the harsh acid treatments or enzyme digests that are required for exposing the BrdU epitope. The milder labeling of EdU allows for direct comparison of its incorporation with other cellular markers. The ability to visualize and quantify mtDNA biogenesis provides an essential tool for investigating the mechanisms used to regulate mitochondrial biogenesis and would provide insight into the pathogenesis associated with drug toxicity, aging, cancer and neurodegenerative diseases. Our technique is applicable to sensory neurons as well as other cell types. The use of this technique to measure mtDNA biogenesis has significant implications in furthering the understanding of both normal cellular physiology as well as impaired disease states.

  19. Hierarchical structural control of visual properties in self-assembled photonic-plasmonic pigments

    CERN Document Server

    Koay, Natalie; Kay, Theresa M; Nerger, Bryan A; Miles-Rossouw, Malaika; Shirman, Tanya; Vu, Thy L; England, Grant; Phillips, Katherine R; Utech, Stefanie; Vogel, Nicolas; Kolle, Mathias; Aizenberg, Joanna

    2014-01-01

    We present a simple one-pot co-assembly method for the synthesis of hierarchically structured pigment particles consisting of silica inverse-opal bricks that are doped with plasmonic absorbers. We study the interplay between the plasmonic and photonic resonances and their effect on the visual appearance of macroscopic collections of photonic bricks that are distributed in randomized orientations. Manipulating the pore geometry tunes the wavelength- and angle-dependence of the scattering profile, which can be engineered to produce angle-dependent Bragg resonances that can either enhance or contrast with the color produced by the plasmonic absorber. By controlling the overall dimensions of the photonic bricks and their aspect ratios, their preferential alignment can either be encouraged or suppressed. This causes the Bragg resonance to appear either as uniform color travel in the former case or as sparse iridescent sparkle in the later case. By manipulating the surface chemistry of these photonic bricks, which ...

  20. Realizing precision pulse TIG welding with arc length control and visual image sensing based weld detection

    Institute of Scientific and Technical Information of China (English)

    孙振国; 陈念; 陈强

    2003-01-01

    Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all-hardware circuit, arc voltage during peak current stage is sampled and integrated to indicate arc length, deviation of arc length and adjusting parameters are calculated and output to drive a step motor directly. According to the features of welding image grabbed with CCD camera, a special algorithm was developed to detect the central line of weld fast and accurately. Then an application system were established, whose static arc length error is ±0.1 mm with 20 A average current and 1 mm given arc length, static detection precision of weld is 0.01 mm, processing time of each image is less than 120 ms. Precision pulse TIG welding of some given thin stainless steel components with complicated curved surface was successfully realized.

  1. Standardizing visual control devices for tsetse flies: east African Species Glossina fuscipes fuscipes and Glossina tachinoides.

    Directory of Open Access Journals (Sweden)

    Francis Oloo

    2014-11-01

    Full Text Available Riverine species of tsetse are responsible for most human African trypanosomiasis (HAT transmission and are also important vectors of animal trypanosomiasis. This study concerns the development of visual control devices for two such species, Glossina fuscipes fuscipes and Glossina tachinoides, at the eastern limits of their continental range. The goal was to determine the most long-lasting, practical and cost-effective visually attractive device that induces the strongest landing responses in these species for use as insecticide-impregnated tools in vector population suppression.Field trials were conducted in different seasons on G. f. fuscipes in Kenya, Ethiopia and the Sudan and on G. tachinoides in Ethiopia to measure the performance of traps and 2D targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used to enumerate flies at these remote locations to compare trapping efficiencies. The findings show that targets made from black and blue fabrics (either phthalogen or turquoise covered with adhesive film render them equal to or more efficient than traps at capturing G. f. fuscipes and G. tachinoides. Biconical trap efficiency varied between 25% and 33% for the two species. Smaller 0.25 m×0.25 m phthalogen blue-black targets proved more efficient than the regular 1 m2 target for both species, by over six times for Glossina f. fuscipes and two times for G. tachinoides based on catches per m2. Overall, targets with a higher edge/surface area ratio were more efficient at capturing flies.Taking into account practical considerations and fly preferences for edges and colours, we propose a 0.5×0.75 m blue-black target as a simple cost-effective device for management of G. f. fuscipes and G. tachinoides, impregnated with insecticide for control and covered with adhesive film for population sampling.

  2. Benefit of bi-ocular visual stimulation for postural control in children with strabismus.

    Science.gov (United States)

    Gaertner, Chrystal; Creux, Charlotte; Espinasse-Berrod, Marie-Andrée; Orssaud, Christophe; Dufier, Jean-Louis; Kapoula, Zoï

    2013-01-01

    Vision is important for postural control as is shown by the Romberg quotient (RQ): with eyes closed, postural instability increases relative to eyes open (RQ = 2). Yet while fixating at far distance, postural stability is similar with eyes open and eyes closed (RQ = 1). Postural stability can be better with both eyes viewing than one eye, but such effect is not consistent among healthy subjects. The first goal of the study is to test the RQ as a function of distance for children with convergent versus divergent strabismus. The second goal is to test whether vision from two eyes relative to vision from one eye provides better postural stability. Thirteen children with divergent strabismus and eleven with convergent strabismus participated in this study. Posturtography was done with the Techno concept device. Experiment 1, four conditions: fixation at 40 cm and at 200 cm both with eyes open and eyes covered (evaluation of RQ). Experiment 2, six conditions: fixation at 40 cm and at 200 cm, with both eyes viewing or under monocular vision (dominant and non-dominant eye). For convergent strabismus, the groups mean value of RQ was 1.3 at near and 0.94 at far distance; for divergent, it was 1.06 at near and 1.68 at far. For all children, the surface of body sway was significantly smaller under both eyes viewing than monocular viewing (either eye). Increased RQ value at near for convergent and at far for divergent strabismus is attributed to the influence of the default strabismus angle and to better use of ocular motor signals. Vision with the two eyes improves postural control for both viewing distances and for both types of strabismus. Such benefit can be due to complementary mechanisms: larger visual field, better quality of fixation and vergence angle due to the use of visual inputs from both eyes.

  3. Benefit of bi-ocular visual stimulation for postural control in children with strabismus.

    Directory of Open Access Journals (Sweden)

    Chrystal Gaertner

    Full Text Available Vision is important for postural control as is shown by the Romberg quotient (RQ: with eyes closed, postural instability increases relative to eyes open (RQ = 2. Yet while fixating at far distance, postural stability is similar with eyes open and eyes closed (RQ = 1. Postural stability can be better with both eyes viewing than one eye, but such effect is not consistent among healthy subjects. The first goal of the study is to test the RQ as a function of distance for children with convergent versus divergent strabismus. The second goal is to test whether vision from two eyes relative to vision from one eye provides better postural stability. Thirteen children with divergent strabismus and eleven with convergent strabismus participated in this study. Posturtography was done with the Techno concept device. Experiment 1, four conditions: fixation at 40 cm and at 200 cm both with eyes open and eyes covered (evaluation of RQ. Experiment 2, six conditions: fixation at 40 cm and at 200 cm, with both eyes viewing or under monocular vision (dominant and non-dominant eye. For convergent strabismus, the groups mean value of RQ was 1.3 at near and 0.94 at far distance; for divergent, it was 1.06 at near and 1.68 at far. For all children, the surface of body sway was significantly smaller under both eyes viewing than monocular viewing (either eye. Increased RQ value at near for convergent and at far for divergent strabismus is attributed to the influence of the default strabismus angle and to better use of ocular motor signals. Vision with the two eyes improves postural control for both viewing distances and for both types of strabismus. Such benefit can be due to complementary mechanisms: larger visual field, better quality of fixation and vergence angle due to the use of visual inputs from both eyes.

  4. Effects of Anodal Transcranial Direct Current Stimulation on Visually Guided Learning of Grip Force Control

    Directory of Open Access Journals (Sweden)

    Tamas Minarik

    2015-03-01

    Full Text Available Anodal transcranial Direct Current Stimulation (tDCS has been shown to be an effective non-invasive brain stimulation method for improving cognitive and motor functioning in patients with neurological deficits. tDCS over motor cortex (M1, for instance, facilitates motor learning in stroke patients. However, the literature on anodal tDCS effects on motor learning in healthy participants is inconclusive, and the effects of tDCS on visuo-motor integration are not well understood. In the present study we examined whether tDCS over the contralateral motor cortex enhances learning of grip-force output in a visually guided feedback task in young and neurologically healthy volunteers. Twenty minutes of 1 mA anodal tDCS were applied over the primary motor cortex (M1 contralateral to the dominant (right hand, during the first half of a 40 min power-grip task. This task required the control of a visual signal by modulating the strength of the power-grip for six seconds per trial. Each participant completed a two-session sham-controlled crossover protocol. The stimulation conditions were counterbalanced across participants and the sessions were one week apart. Performance measures comprised time-on-target and target-deviation, and were calculated for the periods of stimulation (or sham and during the afterphase respectively. Statistical analyses revealed significant performance improvements over the stimulation and the afterphase, but this learning effect was not modulated by tDCS condition. This suggests that the form of visuomotor learning taking place in the present task was not sensitive to neurostimulation. These null effects, together with similar reports for other types of motor tasks, lead to the proposition that tDCS facilitation of motor learning might be restricted to cases or situations where the motor system is challenged, such as motor deficits, advanced age, or very high task demand.

  5. The role of online visual feedback for the control of target-directed and allocentric hand movements.

    Science.gov (United States)

    Thaler, Lore; Goodale, Melvyn A

    2011-02-01

    Studies that have investigated how sensory feedback about the moving hand is used to control hand movements have relied on paradigms such as pointing or reaching that require subjects to acquire target locations. In the context of these target-directed tasks, it has been found repeatedly that the human sensory-motor system relies heavily on visual feedback to control the ongoing movement. This finding has been formalized within the framework of statistical optimality according to which different sources of sensory feedback are combined such as to minimize variance in sensory information during movement control. Importantly, however, many hand movements that people perform every day are not target-directed, but based on allocentric (object-centered) visual information. Examples of allocentric movements are gesture imitation, drawing, or copying. Here we tested if visual feedback about the moving hand is used in the same way to control target-directed and allocentric hand movements. The results show that visual feedback is used significantly more to reduce movement scatter in the target-directed as compared with the allocentric movement task. Furthermore, we found that differences in the use of visual feedback between target-directed and allocentric hand movements cannot be explained based on differences in uncertainty about the movement goal. We conclude that the role played by visual feedback for movement control is fundamentally different for target-directed and allocentric movements. The results suggest that current computational and neural models of sensorimotor control that are based entirely on data derived from target-directed paradigms have to be modified to accommodate performance in the allocentric tasks used in our experiments. As a consequence, the results cast doubt on the idea that models of sensorimotor control developed exclusively from data obtained in target-directed paradigms are also valid in the context of allocentric tasks, such as drawing

  6. Focal electrical stimulation of major ganglion cell types in the primate retina for the design of visual prostheses.

    Science.gov (United States)

    Jepson, Lauren H; Hottowy, Pawel; Mathieson, Keith; Gunning, Deborah E; Dabrowski, Wladyslaw; Litke, Alan M; Chichilnisky, E J

    2013-04-24

    Electrical stimulation of retinal neurons with an advanced retinal prosthesis may eventually provide high-resolution artificial vision to the blind. However, the success of future prostheses depends on the ability to activate the major parallel visual pathways of the human visual system. Electrical stimulation of the five numerically dominant retinal ganglion cell types was investigated by simultaneous stimulation and recording in isolated peripheral primate (Macaca sp.) retina using multi-electrode arrays. ON and OFF midget, ON and OFF parasol, and small bistratified ganglion cells could all be activated directly to fire a single spike with submillisecond latency using brief pulses of current within established safety limits. Thresholds for electrical stimulation were similar in all five cell types. In many cases, a single cell could be specifically activated without activating neighboring cells of the same type or other types. These findings support the feasibility of direct electrical stimulation of the major visual pathways at or near their native spatial and temporal resolution.

  7. Demonstration of a visual cell-based assay for screening glucose transporter 4 translocation modulators in real time

    Indian Academy of Sciences (India)

    Maleppillil Vavachan Vijayakumar; Amrendra Kumar Ajay; Manoj Kumar Bhat

    2010-12-01

    Insulin-stimulated translocation of glucose transporter 4 (GLUT4) to cell membrane leading to glucose uptake is the rate-limiting step in diabetes. It is also a defined target of antidiabetic drug research. Existing GLUT4 translocation assays are based on time-consuming immunoassays and are hampered by assay variability and low sensitivity. We describe a real-time, visual, cell-based qualitative GLUT4 translocation assay using CHO-HIRc-myc-GLUT4eGFP cells that stably express myc- and eGFP-tagged GLUT4 in addition to human insulin receptor (HIRc). GLUT4 translocation is visualized by live cell imaging based on GFP fluorescence by employing a cooled charge-coupled device camera attached to a fluorescent microscope. This video imaging method and further quantitative analysis of GLUT4 on the cell membrane provide rapid and foolproof visual evidence that this method is suitable for screening GLUT4 translocation modulators.

  8. Spatial phase sensitivity of complex cells in primary visual cortex depends on stimulus contrast.

    Science.gov (United States)

    Meffin, H; Hietanen, M A; Cloherty, S L; Ibbotson, M R

    2015-12-01

    Neurons in primary visual cortex are classified as simple, which are phase sensitive, or complex, which are significantly less phase sensitive. Previously, we have used drifting gratings to show that the phase sensitivity of complex cells increases at low contrast and after contrast adaptation while that of simple cells remains the same at all contrasts (Cloherty SL, Ibbotson MR. J Neurophysiol 113: 434-444, 2015; Crowder NA, van Kleef J, Dreher B, Ibbotson MR. J Neurophysiol 98: 1155-1166, 2007; van Kleef JP, Cloherty SL, Ibbotson MR. J Physiol 588: 3457-3470, 2010). However, drifting gratings confound the influence of spatial and temporal summation, so here we have stimulated complex cells with gratings that are spatially stationary but continuously reverse the polarity of the contrast over time (contrast-reversing gratings). By varying the spatial phase and contrast of the gratings we aimed to establish whether the contrast-dependent phase sensitivity of complex cells results from changes in spatial or temporal processing or both. We found that most of the increase in phase sensitivity at low contrasts could be attributed to changes in the spatial phase sensitivities of complex cells. However, at low contrasts the complex cells did not develop the spatiotemporal response characteristics of simple cells, in which paired response peaks occur 180° out of phase in time and space. Complex cells that increased their spatial phase sensitivity at low contrasts were significantly overrepresented in the supragranular layers of cortex. We conclude that complex cells in supragranular layers of cat cortex have dynamic spatial summation properties and that the mechanisms underlying complex cell receptive fields differ between cortical layers.

  9. Reciprocal control of cell proliferation and migration

    Directory of Open Access Journals (Sweden)

    De Donatis Alina

    2010-09-01

    Full Text Available Abstract In adult tissue the quiescent state of a single cell is maintained by the steady state conditions of its own microenvironment for what concern both cell-cell as well as cell-ECM interaction and soluble factors concentration. Physiological or pathological conditions can alter this quiescent state through an imbalance of both soluble and insoluble factors that can trigger a cellular phenotypic response. The kind of cellular response depends by many factors but one of the most important is the concentration of soluble cytokines sensed by the target cell. In addition, due to the intrinsic plasticity of many cellular types, every single cell is able, in response to the same stimulus, to rapidly switch phenotype supporting minimal changes of microenviromental cytokines concentration. Wound healing is a typical condition in which epithelial, endothelial as well as mesenchymal cells are firstly subjected to activation of their motility in order to repopulate the damaged region and then they show a strong proliferative response in order to successfully complete the wound repair process. This schema constitute the leitmotif of many other physiological or pathological conditions such as development vasculogenesis/angiogenesis as well as cancer outgrowth and metastasis. Our review focuses on the molecular mechanisms that control the starting and, eventually, the switching of cellular phenotypic outcome in response to changes in the symmetry of the extracellular environment.

  10. Cell exclusion in couette flow: evaluation through flow visualization and mechanical forces.

    Science.gov (United States)

    Leslie, Laura J; Marshall, Lindsay J; Devitt, Andrew; Hilton, Andrew; Tansley, Geoff D

    2013-03-01

    Cell exclusion is the phenomenon whereby the hematocrit and viscosity of blood decrease in areas of high stress. While this is well known in naturally occurring Poiseuille flow in the human body, it has never previously been shown in Couette flow, which occurs in implantable devices including blood pumps. The high-shear stresses that occur in the gap between the boundaries in Couette flow are known to cause hemolysis in erythrocytes. We propose to mitigate this damage by initiating cell exclusion through the use of a spiral-groove bearing (SGB) that will provide escape routes by which the cells may separate themselves from the plasma and the high stresses in the gap. The force between two bearings (one being the SGB) in Couette flow was measured. Stained erythrocytes, along with silver spheres of similar diameter to erythrocytes, were visualized across a transparent SGB at various gap heights. A reduction in the force across the bearing for human blood, compared with fluids of comparable viscosity, was found. This indicates a reduction in the viscosity of the fluid across the bearing due to a lowered hematocrit because of cell exclusion. The corresponding images clearly show both cells and spheres being excluded from the gap by entering the grooves. This is the first time the phenomenon of cell exclusion has been shown in Couette flow. It not only furthers our understanding of how blood responds to different flows but could also lead to improvements in the future design of medical devices.

  11. Visualization of sialic acid produced on bacterial cell surfaces by lectin staining.

    Science.gov (United States)

    Kajiwara, Hitomi; Toda, Munetoyo; Mine, Toshiki; Nakada, Hiroshi; Wariishi, Hiroyuki; Yamamoto, Takeshi

    2010-01-01

    Oligosaccharides containing N-acetylneuraminic acid on the cell surface of some pathogenic bacteria are important for host-microbe interactions. N-acetylneuraminic acid (Neu5Ac) plays a major role in the pathogenicity of bacterial pathogens. For example, cell surface sialyloligosaccharide moieties of the human pathogen Haemophilus influenzae are involved in virulence and adhesion to host cells. In this study, we have established a method of visualizing Neu5Ac linked to a glycoconjugate on the bacterial cell surface based on lectin staining. Photobacterium damselae strain JT0160, known to produce a-2,6-sialyltransferase, was revealed to possess Neu5Ac by HPLC. Using the strain, a strong Sambucus sieboldiana lectin-binding signal was detected. The bacteria producing α-2,6-sialyltransferases could be divided into two groups: those with a lot of α-2,6-linked Neu5Ac on the cell surface and those with a little. In the present study, we developed a useful method for evaluating the relationship between Neu5Ac expression on the cell surface and the degree of virulence of marine bacteria.

  12. From Errors Treatment to Exceptions Treatment Regarding the Execution Control over Visual Basic Programs

    Directory of Open Access Journals (Sweden)

    Cristina Raluca POPESCU

    2008-01-01

    Full Text Available In order to comply with the quality standards and with the best practices, the execution of the professional programs must be rigorously controlled so that to avoid occurrence of unpredictable situations that might generate anomalies and could lead to computer blockage, forced termination of the execution and data loss. In traditional programming languages, including Visual Basic 6, the concept of error is extremely evolved. It is considered as error any situation in which the program fails to execute correctly, regardless if such anomaly is generated by a software or hardware cause. Nowadays the modern platforms, including VB.NET have introduced a new concept: exception. Unfortunately, perhaps by mistake, exception is assimilated by many IT specialists as an exceptional (extraordinary situation or a rare situation.We agree with the opinion of those IT specialists asserting that error is strictly dependant on the programmer, when he/she fails in correctly generating the application’s structures, whilst exception is a situation not fitting in the usual natural execution or as desired by the programmer or user, without meaning that it occurs more often or more rarely.Designing robust programs implies for such not to terminate abnormally or block, not even upon receiving improper parameters. Two aspects are referred to: the behavior regarding low level errors (caused by the operation system, memory allocation, reading/writing in files or hardware malfunctions and the reaction to the user’s errors, such as providing incorrect input data or incorrect use of operations in respect with their sequences. Notwithstanding what platform is used in designing the programs and regardless the controversy between the specialists, in order for the execution to be terminated under the program’s control, the commands that might generate anomalies and interruptions should be strictly monitored. Implicitly, the execution control

  13. Identification, control and visually-guided behavior for a model helicopter

    Science.gov (United States)

    Saripalli, Srikanth

    Research on unmanned aerial vehicles is motivated by applications where human intervention is impossible, risky or expensive e.g. hazardous material recovery, traffic monitoring, disaster relief support, military operations etc. Due to its vertical take-off, landing and hover capabilities, a helicopter is an attractive platform for such applications. There are significant challenges to building an autonomous robotic helicopter - these span the areas of system identification, low-level control, state estimation, and planning. Towards the goal of fully-autonomous helicopters this thesis makes the following contributions. A continuous-discrete extended Kalman filter has been developed that combines inertial data with GPS and compass data to provide estimates of the 6DOF state of the helicopter. Using this filter a model for the helicopter has been identified based on frequency response techniques. The model has been validated in flight tests on a small helicopter testbed (1.6 m rotor diameter) at speeds upto 5 m/s. Based on evidence from this model a decoupled low-level controller has been developed which is embedded in a control architecture suitable for visually-guided navigation. As a novel application, we show how such a controller can be used to perform trajectory following on the helicopter where the desired trajectories are typical spacecraft landing trajectories, and the only controls available are thrusters. This in effect, produces a low-cost testbed for testing spacecraft landing and hazard avoidance on a planetary surface. Finally, we develop and extensively experimentally characterize algorithms for vision-based autonomous landing, object tracking, and sensor deployment.

  14. Visualizing the Histotripsy Process: Bubble Cloud-Cancer Cell Interactions in a Tissue-Mimicking Environment.

    Science.gov (United States)

    Vlaisavljevich, Eli; Maxwell, Adam; Mancia, Lauren; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2016-10-01

    Histotripsy is a non-invasive ultrasonic ablation method that uses cavitation to mechanically fractionate tissue into acellular debris. With a sufficient number of pulses, histotripsy can completely fractionate tissue into a liquid-appearing homogenate with no cellular structures. The location, shape and size of lesion formation closely match those of the cavitation cloud. Previous work has led to the hypothesis that the rapid expansion and collapse of histotripsy bubbles fractionate tissue by inducing large stress and strain on the tissue structures immediately adjacent to the bubbles. In the work described here, the histotripsy bulk tissue fractionation process is visualized at the cellular level for the first time using a custom-built 2-MHz transducer incorporated into a microscope stage. A layer of breast cancer cells were cultured within an optically transparent fibrin-based gel phantom to mimic cells inside a 3-D extracellular matrix. To test the hypothesis, the cellular response to single and multiple histotripsy pulses was investigated using high-speed optical imaging. Bubbles were always generated in the extracellular space, and significant cell displacement/deformation was observed for cells directly adjacent to the bubble during both bubble expansion and collapse. The largest displacements were observed during collapse for cells immediately adjacent to the bubble, with cells moving more than 150-300 μm in less than 100 μs. Cells often underwent multiple large deformations (>150% strain) over multiple pulses, resulting in the bisection of cells multiple times before complete removal. To provide theoretical support to the experimental observations, a numerical simulation was conducted using a single-bubble model, which indicated that histotripsy exerts the largest strains and cell displacements in the regions immediately adjacent to the bubble. The experimental and simulation results support our hypothesis, which helps to explain the formation of the

  15. A transcriptional network controlling glial development in the Drosophila visual system.

    Science.gov (United States)

    Bauke, Ann-Christin; Sasse, Sofia; Matzat, Till; Klämbt, Christian

    2015-06-15

    In the nervous system, glial cells need to be specified from a set of progenitor cells. In the developing Drosophila eye, perineurial glia proliferate and differentiate as wrapping glia in response to a neuronal signal conveyed by the FGF receptor pathway. To unravel the underlying transcriptional network we silenced all genes encoding predicted DNA-binding proteins in glial cells using RNAi. Dref and other factors of the TATA box-binding protein-related factor 2 (TRF2) complex were previously predicted to be involved in cellular metabolism and cell growth. Silencing of these genes impaired early glia proliferation and subsequent differentiation. Dref controls proliferation via activation of the Pdm3 transcription factor, whereas glial differentiation is regulated via Dref and the homeodomain protein Cut. Cut expression is controlled independently of Dref by FGF receptor activity. Loss- and gain-of-function studies show that Cut is required for glial differentiation and is sufficient to instruct the formation of membrane protrusions, a hallmark of wrapping glial morphology. Our work discloses a network of transcriptional regulators controlling the progression of a naïve perineurial glia towards the fully differentiated wrapping glia.

  16. Estrategia de control para robots manipuladores con realimentación visual y plataforma electro-neumática de 3gdl // Control Scheme for robots manipulators visual servoingand 3DOF electro-pneumatic platform

    Directory of Open Access Journals (Sweden)

    René González-Rodríguez

    2011-08-01

    Full Text Available ResumenEn este artículo se presenta un esquema de control en el espacio de tarea para dos estructuras robóticas diferentes, una plataforma electro-neumática de tres grados de libertad y un sistema servovisual. El esquema de control está basado en la medición del espacio de tarea del sistema. Consta de dos lazos en cascada. En el lazo interno se ejecuta el control articular y en el externo el control en el espacio de tarea. Se presenta el análisis de estabilidad y los resultados experimentales que corroboran el buen funcionamiento del sistema propuesto en un robot manipulador y una plataforma electro-neumática de tres grados de libertad. El esquema presentado abre un nuevo campo de investigación en el área del control en el espacio de tarea para resolver problemas de control de trayectoria y control anticipatorio.Palabras claves: control en el espacio de tarea, control servo visual, robot paralelo__________________________________________________________________________Abstract In this paper a control scheme in the task space is presented for a 3DOF Electro-Pneumatic Platform and Servo-visual System. The control scheme is based on the measurement of system task space state. The control system considers two loops in cascade, an internal loop solving the robot’s joint control and an external loop the task space control. A stability analysis is developed under the conditions that it is possible to approximate the dynamic effect of the internal loop as an external loop time delay. To illustrate the proposed controller, the control system stability and its performance, experimental results using a 3DOF pneumatic parallel robot and servo-visual system are presented. Experimental results confirm the expected step response in the task space. The control scheme presented opens a new research field in the task space control with algorithms for the solution of, trajectory control and feed-forward control.Key words: task space control, visual

  17. Visualizing the endocytosis of phenylephrine in living cells by quantum dot-based tracking.

    Science.gov (United States)

    Ma, Jing; Wu, Lina; Hou, Zhun; Song, Yao; Wang, Lei; Jiang, Wei

    2014-08-01

    To study the intracellular receptor-drug transportation, a fluorescent probe consisting of phenylephrine-polyethylene glycol-quantum dots conjugate was employed to track endocytosis process of phenylephrine in living cells. This type of movement was studied by continuously filming fluorescent images in the same cell. We also calculated the movement parameters, and divided the endocytosis process into 6 stages. Furthermore, the movement parameters of this probe in different organelles were determined by co-localization of the probe fluorescent images and different cellular organelles. After comparing the parameters in cellular organelles with these in 6 stages, the whole endocytosis pathway was demonstrated. These results verified that this probe successfully tracked the whole intracellular dynamic endocytosis process of phenylephrine. Our method realized the visual tracking the whole receptor-mediated endocytosis, which is a new approach on investigating the molecular mechanisms and kinetic properties of intracellular receptor-drug transportation.

  18. Fluidic control over cell proliferation and chemotaxis

    Science.gov (United States)

    Groisman, Alex

    2006-03-01

    Microscopic flows are almost always stable and laminar that allows precise control of chemical environment in micro-channels. We describe design and operation of several microfluidic devices, in which various types of environments are created for different experimental assays with live cells. In a microfluidic chemostat, colonies of non-adherent bacterial and yeast cells are trapped in micro-chambers with walls permeable for chemicals. Fast chemical exchange between the chambers and nearby flow-through channels creates essentially chemostatic medium conditions in the chambers and leads to exponential growth of the colonies up to very high cell densities. Another microfluidic device allows creation of linear concentration profiles of a pheromone (α-factor) across channels with non-adherent yeast cells, without exposure of the cells to flow or other mechanical perturbation. The concentration profile remains stable for hours enabling studies of chemotropic response of the cells to the pheromone gradient. A third type of the microfluidic devices is used to study chemotaxis of human neutrophils exposed to gradients of a chemoattractant (fMLP). The devices generate concentration profiles of various shapes, with adjustable steepness and mean concentration. The ``gradient'' of the chemoattractant can be imposed and reversed within less than a second, allowing repeated quantitative experiments.

  19. Pyramidal cells make specific connections onto smooth (GABAergic neurons in mouse visual cortex.

    Directory of Open Access Journals (Sweden)

    Rita Bopp

    2014-08-01

    Full Text Available One of the hallmarks of neocortical circuits is the predominance of recurrent excitation between pyramidal neurons, which is balanced by recurrent inhibition from smooth GABAergic neurons. It has been previously described that in layer 2/3 of primary visual cortex (V1 of cat and monkey, pyramidal cells filled with horseradish peroxidase connect approximately in proportion to the spiny (excitatory, 95% and 81%, respectively and smooth (GABAergic, 5% and 19%, respectively dendrites found in the neuropil. By contrast, a recent ultrastructural study of V1 in a single mouse found that smooth neurons formed 51% of the targets of the superficial layer pyramidal cells. This suggests that either the neuropil of this particular mouse V1 had a dramatically different composition to that of V1 in cat and monkey, or that smooth neurons were specifically targeted by the pyramidal cells in that mouse. We tested these hypotheses by examining similar cells filled with biocytin in a sample of five mice. We found that the average composition of the neuropil in V1 of these mice was similar to that described for cat and monkey V1, but that the superficial layer pyramidal cells do form proportionately more synapses with smooth dendrites than the equivalent neurons in cat or monkey. These distributions may underlie the distinct differences in functional architecture of V1 between rodent and higher mammals.

  20. Controlling Functional Group Architecture in Artificial Cells

    Science.gov (United States)

    2015-07-02

    further enable enzyme encapsulation to improve the efficiency of light-driven hydrogen fuel production. 5. Changes in key personnel, if applicable : -None ...Controlling Functional Group Architecture in Artificial Cells 5a. CONTRACT NUMBER W9132T-14-2-0002 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...cycloadditions to modify reactive groups within the phospholipid membrane structure and how the nature of the reactive elements, the copper catalyst

  1. Carbon nanotubes for stem cell control

    Directory of Open Access Journals (Sweden)

    David A. Stout

    2012-07-01

    Full Text Available In the past decade, two major advancements have transformed the world of tissue engineering and regenerative medicine—stem cells and carbon nano-dimensional materials. In the past, stem cell therapy seemed like it may present a cure for all medical ailments, but problems arose (i.e., immune system clearance, control of differentiation in the body, etc. that have hindered progress. But, with the synergy of carbon nano-dimensional materials, researchers have been able to overcome these tissue engineering and regenerative medicine obstacles and have begun developing treatments for strokes, bone failure, cardiovascular disease, and many other conditions. Here, we briefly review research involving carbon nanotubes which are relevant to the tissue engineering and regenerative medicine field with a special emphasis on carbon nanotube applications for stem cell delivery, drug delivery applications, and their use as improved medical devices.

  2. Focal Electrical Stimulation of Major Ganglion Cell Types in the Primate Retina for the Design of Visual Prostheses

    OpenAIRE

    2013-01-01

    Electrical stimulation of retinal neurons with an advanced retinal prosthesis may eventually provide high-resolution artificial vision to the blind. However, the success of future prostheses depends on the ability to activate the major parallel visual pathways of the human visual system. Electrical stimulation of the five numerically dominant retinal ganglion cell types was investigated by simultaneous stimulation and recording in isolated peripheral primate (Macaca sp.) retina using multi-el...

  3. Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2.

    Science.gov (United States)

    Phillips, M Joseph; Perez, Enio T; Martin, Jessica M; Reshel, Samantha T; Wallace, Kyle A; Capowski, Elizabeth E; Singh, Ruchira; Wright, Lynda S; Clark, Eric M; Barney, Patrick M; Stewart, Ron; Dickerson, Sarah J; Miller, Michael J; Percin, E Ferda; Thomson, James A; Gamm, David M

    2014-06-01

    Human induced pluripotent stem cells (hiPSCs) have been shown to differentiate along the retinal lineage in a manner that mimics normal mammalian development. Under certain culture conditions, hiPSCs form optic vesicle-like structures (OVs), which contain proliferating progenitors capable of yielding all neural retina (NR) cell types over time. Such observations imply conserved roles for regulators of retinogenesis in hiPSC-derived cultures and the developing embryo. However, whether and to what extent this assumption holds true has remained largely uninvestigated. We examined the role of a key NR transcription factor, visual system homeobox 2 (VSX2), using hiPSCs derived from a patient with microphthalmia caused by an R200Q mutation in the VSX2 homeodomain region. No differences were noted between (R200Q)VSX2 and sibling control hiPSCs prior to OV generation. Thereafter, (R200Q)VSX2 hiPSC-OVs displayed a significant growth deficit compared to control hiPSC-OVs, as well as increased production of retinal pigmented epithelium at the expense of NR cell derivatives. Furthermore, (R200Q)VSX2 hiPSC-OVs failed to produce bipolar cells, a distinctive feature previously observed in Vsx2 mutant mice. (R200Q)VSX2 hiPSC-OVs also demonstrated delayed photoreceptor maturation, which could be overcome via exogenous expression of wild-type VSX2 at early stages of retinal differentiation. Finally, RNAseq analysis on isolated hiPSC-OVs implicated key transcription factors and extracellular signaling pathways as potential downstream effectors of VSX2-mediated gene regulation. Our results establish hiPSC-OVs as versatile model systems to study retinal development at stages not previously accessible in humans and support the bona fide nature of hiPSC-OV-derived retinal progeny.

  4. Haptic Addition to a Visual Menu Selection Interface Controlled by an In-Vehicle Rotary Device

    Directory of Open Access Journals (Sweden)

    Camilla Grane

    2012-01-01

    Full Text Available Today, several vehicles are equipped with a visual display combined with a haptic rotary device for handling in-vehicle information system tasks while driving. This experimental study investigates whether a haptic addition to a visual interface interferes with or supports secondary task performance and whether haptic information could be used without taking eyes off road. Four interfaces were compared during simulated driving: visual only, partly corresponding visual-haptic, fully corresponding visual-haptic, and haptic only. Secondary task performance and subjective mental workload were measured. Additionally, the participants were interviewed. It was found that some haptic support improved performance. However, when more haptic information was used, the results diverged in terms of task completion time and interface comprehension. Some participants did not sense all haptics provided, some did not comprehend the correspondence between the haptic and visual interfaces, and some did. Interestingly, the participants managed to complete the tasks when using haptic-only information.

  5. Application of an enzyme-labeled antigen method for visualizing plasma cells producing antibodies against Strep A, a carbohydrate antigen of Streptococcus pyogenes, in recurrent tonsillitis.

    Science.gov (United States)

    Onouchi, Takanori; Mizutani, Yasuyoshi; Shiogama, Kazuya; Inada, Ken-ichi; Okada, Tatsuyoshi; Naito, Kensei; Tsutsumi, Yutaka

    2015-01-01

    Streptococcus pyogenes is the main causative pathogen of recurrent tonsillitis. Histologically, lesions of recurrent tonsillitis contain numerous plasma cells. Strep A is an antigenic carbohydrate molecule on the cell wall of S. pyogenes. As expected, plasma cells in subjects with recurrent tonsillitis secrete antibodies against Strep A. The enzyme-labeled antigen method is a novel histochemical technique that visualizes specific antibody-producing cells in tissue sections by employing a biotin-labeled antigen as a probe. The purpose of the present study was to visualize plasma cells producing antibodies reactive with Strep A in recurrent tonsillitis. Firstly, the lymph nodes of rats immunized with boiled S. pyogenes were paraformaldehyde-fixed and specific plasma cells localized in frozen sections with biotinylated Strep A. Secondly, an enzyme-labeled antigen method was used on human tonsil surgically removed from 12 patients with recurrent tonsillitis. S. pyogenes genomes were PCR-detected in all 12 specimens. The emm genotypes belonged to emm12 in nine specimens and emm1 in three. Plasma cells producing anti-Strep A antibodies were demonstrated in prefixed frozen sections of rat lymph nodes, 8/12 human specimens from patients with recurrent tonsillitis but not in two control tonsils. In human tonsils, Strep A-reactive plasma cells were observed within the reticular squamous mucosa and just below the mucosa, and the specific antibodies belonged to either IgA or IgG classes. Our technique is effective in visualizing immunocytes producing specific antibodies against the bacterial carbohydrate antigen, and is thus a novel histochemical tool for analyzing immune reactions in infectious disorders.

  6. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides.

    Science.gov (United States)

    Martin, Robert M; Herce, Henry D; Ludwig, Anne K; Cardoso, M Cristina

    2016-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide.

  7. Cell biology in neuroscience: Architects in neural circuit design: glia control neuron numbers and connectivity.

    Science.gov (United States)

    Corty, Megan M; Freeman, Marc R

    2013-11-11

    Glia serve many important functions in the mature nervous system. In addition, these diverse cells have emerged as essential participants in nearly all aspects of neural development. Improved techniques to study neurons in the absence of glia, and to visualize and manipulate glia in vivo, have greatly expanded our knowledge of glial biology and neuron-glia interactions during development. Exciting studies in the last decade have begun to identify the cellular and molecular mechanisms by which glia exert control over neuronal circuit formation. Recent findings illustrate the importance of glial cells in shaping the nervous system by controlling the number and connectivity of neurons.

  8. Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells.

    Science.gov (United States)

    Yamazaki, Daiki; Yoshida, Shigeo; Asami, Tadao; Kuchitsu, Kazuyuki

    2003-07-01

    Abscisic acid (ABA) is a phytohormone that plays a key role as a stress signal, regulating water relations during drought conditions, by inducing stomatal closure. However, to date, no putative ABA receptor(s) has been reported at the protein sequence, gene family, or cellular localization levels. We used biotinylated ABA (bioABA) to characterize the ABA-perception sites in the stomatal guard cells of Vicia faba. Treatment with bioABA induced stomatal closure and shrinkage of guard cell protoplasts (GCPs). The ABA-perception sites were visualized by fluorescence microscopy and confocal laser scanning microscopy (CLSM), using bioABA and fluorescence-labeled avidin. Fluorescent particles were observed in patches on the surface of the GCPs. Fluorescence intensity was quantified by flow cytometry (FCM) as well as by CLSM. Binding of bioABA was inhibited by ABA in a dose-dependent manner. Pre-treatment of GCPs with proteinase K also blocked the binding of bioABA. Binding of bioABA was inhibited by RCA-7a, an ABA analog that induces stomatal closure, but not by RCA-16, which has no effect on stomatal aperture. Another ABA analog, PBI-51, inhibited ABA-induced stomatal closure. This ABA antagonist also inhibited binding of bioABA to the GCPs. These results suggest that ABA is perceived on the plasma membrane of stomatal guard cells, and that the present experimental methods constitute valuable tools for characterizing the nature of the ABA receptor(s) that perceives physiological ABA signals. These imaging studies allow us to demonstrate the spatial distribution of the ABA-perception sites. Visualization of the ABA-perception sites provides new insights into the nature of membrane-associated ABA receptor(s).

  9. Agency Decision-Making Control and Employment Outcomes by Vocational Rehabilitation Consumers Who Are Blind or Visually Impaired

    Science.gov (United States)

    Steinman, Bernard A.; Kwan, Ngai; Boeltzig-Brown, Heike; Haines, Kelly; Halliday, John; Foley, Susan M.

    2013-01-01

    Introduction: We hypothesized that consumers who are blind or visually impaired (that is, those who have low vision) who were served by state vocational rehabilitation agencies with decision-making control over administrative functions would experience better vocational rehabilitation outcomes than consumers served by vocational rehabilitation…

  10. Visualization of Mesenchymal Stromal Cells in 2Dand 3D-Cultures by Scanning Electron Microscopy with Lanthanide Contrasting.

    Science.gov (United States)

    Novikov, I A; Vakhrushev, I V; Antonov, E N; Yarygin, K N; Subbot, A M

    2017-02-01

    Mesenchymal stromal cells from deciduous teeth in 2D- and 3D-cultures on culture plastic, silicate glass, porous polystyrene, and experimental polylactoglycolide matrices were visualized by scanning electron microscopy with lanthanide contrasting. Supravital staining of cell cultures with a lanthanide-based dye (neodymium chloride) preserved normal cell morphology and allowed assessment of the matrix properties of the carriers. The developed approach can be used for the development of biomaterials for tissue engineering.

  11. Toward a visual cognitive system using active top-down saccadic control

    NARCIS (Netherlands)

    LaCroix, J.; Postma, E.; van den Herik, J.; Murre, J.

    2008-01-01

    The saccadic selection of relevant visual input for preferential processing allows the efficient use of computational resources. Based on saccadic active human vision, we aim to develop a plausible saccade-based visual cognitive system for a humanoid robot. This paper presents two initial steps towa

  12. Consumer Control Points: Creating a Visual Food Safety Education Model for Consumers.

    Science.gov (United States)

    Schiffman, Carole B.

    Consumer education has always been a primary consideration in the prevention of food-borne illness. Using nutrition education and the new food guide as a model, this paper develops suggestions for a framework of microbiological food safety principles and a compatible visual model for communicating key concepts. Historically, visual food guides in…

  13. Turtle Dorsal Cortex Pyramidal Neurons Comprise Two Distinct Cell Types with Indistinguishable Visual Responses.

    Directory of Open Access Journals (Sweden)

    Thomas Crockett

    Full Text Available A detailed inventory of the constituent pieces in cerebral cortex is considered essential to understand the principles underlying cortical signal processing. Specifically, the search for pyramidal neuron subtypes is partly motivated by the hypothesis that a subtype-specific division of labor could create a rich substrate for computation. On the other hand, the extreme integration of individual neurons into the collective cortical circuit promotes the hypothesis that cellular individuality represents a smaller computational role within the context of the larger network. These competing hypotheses raise the important question to what extent the computational function of a neuron is determined by its individual type or by its circuit connections. We created electrophysiological profiles from pyramidal neurons within the sole cellular layer of turtle visual cortex by measuring responses to current injection using whole-cell recordings. A blind clustering algorithm applied to these data revealed the presence of two principle types of pyramidal neurons. Brief diffuse light flashes triggered membrane potential fluctuations in those same cortical neurons. The apparently network driven variability of the visual responses concealed the existence of subtypes. In conclusion, our results support the notion that the importance of diverse intrinsic physiological properties is minimized when neurons are embedded in a synaptic recurrent network.

  14. Extended temporal integration in rapid serial visual presentation: Attentional control at Lag 1 and beyond.

    Science.gov (United States)

    Akyürek, Elkan G; Wolff, Michael J

    2016-07-01

    In the perception of target stimuli in rapid serial visual presentations, the process of temporal integration plays an important role when two targets are presented in direct succession (at Lag 1), causing them to be perceived as a singular episodic event. This has been associated with increased reversals of target order report and elevated task performance in classic paradigms. Yet, most current models of temporal attention do not incorporate a mechanism of temporal integration and it is currently an open question whether temporal integration is a factor in attentional processing: It might be an independent process, perhaps little more than a sensory sampling rate parameter, isolated to Lag 1, where it leaves the attentional dynamics otherwise unaffected. In the present study, these boundary conditions were tested. Temporal target integration was observed across sequences of three targets spanning an interval of 240ms. Integration rates furthermore depended strongly on bottom-up attentional filtering, and to a lesser degree on top-down control. The results support the idea that temporal integration is an adaptive process that is part of, or at least interacts with, the attentional system. Implications for current models of temporal attention are discussed.

  15. Sistema de servocontrol visual empleando redes neuronales y filtros en el dominio de CIELAB//Visual servo-control system using neural networks and filters based on CIELAB

    Directory of Open Access Journals (Sweden)

    Germán Buitrago Salazar

    2015-05-01

    Full Text Available En este trabajo se presentan los resultados de un sistema servocontrol visual de un brazo robótico de seis grados de libertad. Para esto, se utiliza una red neuronal de tipo feed forward, entrenada por back propagation, para determinar la distancia entre el brazo robótico y un objeto de referencia, que permite ubicarlo en un espacio de trabajo. Las entradas de la red corresponden a la información obtenida de las imágenes capturadas por el Kinect, utilizando un filtro que discrimina la posición de los elementos, en el espacio de color CIELAB (Commission Internationale de l'Eclairage L*a*b components. El resultado de esta investigación demostró que la distancia estimada por la red tiene un margen de error menor, que el algoritmo propuesto en otros trabajos. Igualmente, se probó que el sistema de procesamiento de imágenes es más robusto a ruidos digitales, en comparación con los sistemas que utilizan filtros en el dominio RGB (Red-Green-Blue.Palabras claves: sistema de servocontrol visual, CIELAB, redes neuronales, filtrado de imágenes.______________________________________________________________________________AbstractIn this paper the results of visual servo-control system for a robotic arm with six degrees of freedom are presented. For this purpose, a feed fordward neural network, which was trained by back propagation, is used to determine the distance between the robot arm and a reference object and sitting the robot in the workspace. The inputs of neural network correspond to the information obtained from the images captured by the Kinect, using a filter that discriminates the position of the elements in the CIELAB (Commission Internationale de l'Eclairage L*a*bcomponents color space. The result of this research showed that the estimated distance with the network has an errorless than the algorithm proposed in other works. Similarly, it was proved that the image processing system is more robust to digital noise, compared to

  16. Organic Based Solar Cells with Morphology Control

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need...... of the nanoparticles was investigated both internally and externally, both were attempted to be controlled by variation in preparation solvent and particle sizes. The inks were slot-die coated on both the R2R coater and mini roll coater but only after a number of inks modifications and adjustments of the coating...... deposition techniques which have been downscaled from the R2R coater i.e. slot-die coating and flexographic printing. Thereby allowing the device optimizations to be transferred almost directly from small to large scale. This is in contrast to devices prepared by spincoating. Another advantage...

  17. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity

    Science.gov (United States)

    Morin, Lawrence P.; Blanchard, Jane H.; Provencio, Ignacio

    2003-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) receives direct retinal input via the retinohypothalamic tract (RHT), and the retinal ganglion cells contributing to this projection may be specialized with respect to direct regulation of the circadian clock. However, some ganglion cells forming the RHT bifurcate, sending axon collaterals to the intergeniculate leaflet (IGL) through which light has secondary access to the circadian clock. The present studies provide a more extensive examination of ganglion cell bifurcation and evaluate whether ganglion cells projecting to several subcortical visual nuclei contain melanopsin, a putative ganglion cell photopigment. The results showed that retinal ganglion cells projecting to the SCN send collaterals to the IGL, olivary pretectal nucleus, and superior colliculus, among other places. Melanopsin-immunoreactive (IR) ganglion cells are present in the hamster retina, and some of these cells project to the SCN, IGL, olivary pretectal nucleus, or superior colliculus. Triple-label analysis showed that melanopsin-IR cells bifurcate and project bilaterally to each SCN, but not to the other visual nuclei evaluated. The melanopsin-IR cells have photoreceptive characteristics optimal for circadian rhythm regulation. However, the presence of moderately widespread bifurcation among ganglion cells projecting to the SCN, and projection by melanopsin-IR cells to locations distinct from the SCN and without known rhythm function, suggest that this ganglion cell type is generalized, rather than specialized, with respect to the conveyance of photic information to the brain. Copyright 2003 Wiley-Liss, Inc.

  18. Dynamic visualization the whole process of cytotoxic T lymphocytes killing the B16 tumor cells in vitro

    Science.gov (United States)

    Qi, Shuhong; Zhang, Zhihong

    2016-03-01

    Cytotoxic T lymphocytes (CTLs) played a key role in the immune system to destroy the tumor cells. Although some mechanisms of CTLs killing the tumor cells are revealed already, the dynamic information of CTLs interaction with tumor cells are still not known very clearly. Here we used confocal microscopy to visualize the whole process of CTLs killing the tumor cells in vitro. The imaging data showed that CTLs destroyed the target tumor cells rapidly and efficiently. Several CTLs surrounded one or some tumor cells and the average time for CTLs destroying one tumor cell is just a few minutes in vitro. The study displayed the temporal events of CTLs interacting with tumor cells at the beginning and finally killing them and directly presented the efficient tumor cell cytotoxicity of the CTLs. The results helped us to deeply understand the mechanism of the CTLs destroying the tumor cells and to develop the cancer immunotherapy.

  19. Uveal Melanoma Treated With Iodine-125 Episcleral Plaque: An Analysis of Dose on Disease Control and Visual Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Bradford A. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Mettu, Pradeep; Vajzovic, Lejla [Department of Ophthalmology, Duke University, Durham, North Carolina (United States); Rivera, Douglas [Austin Cancer Centers, Austin, Texas (United States); Alkaissi, Ali; Steffey, Beverly A.; Cai, Jing [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Stinnett, Sandra [Department of Biostatistics and Informatics, Duke University, Durham, North Carolina (United States); Dutton, Jonathan J. [Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina (United States); Buckley, Edward G. [Department of Ophthalmology, Duke University, Durham, North Carolina (United States); Halperin, Edward [Department of Radiation Oncology, New York Medical College, Valhalla, New York (United States); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina (United States); Mruthyunjaya, Prithvi [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Department of Ophthalmology, Duke University, Durham, North Carolina (United States); Kirsch, David G., E-mail: david.kirsch@duke.edu [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina (United States)

    2014-05-01

    Purpose: To investigate, in the treatment of uveal melanomas, how tumor control, radiation toxicity, and visual outcomes are affected by the radiation dose at the tumor apex. Methods and Materials: A retrospective review was performed to evaluate patients treated for uveal melanoma with {sup 125}I plaques between 1988 and 2010. Radiation dose is reported as dose to tumor apex and dose to 5 mm. Primary endpoints included time to local failure, distant failure, and death. Secondary endpoints included eye preservation, visual acuity, and radiation-related complications. Univariate and multivariate analyses were performed to determine associations between radiation dose and the endpoint variables. Results: One hundred ninety patients with sufficient data to evaluate the endpoints were included. The 5-year local control rate was 91%. The 5-year distant metastases rate was 10%. The 5-year overall survival rate was 84%. There were no differences in outcome (local control, distant metastases, overall survival) when dose was stratified by apex dose quartile (<69 Gy, 69-81 Gy, 81-89 Gy, >89 Gy). However, increasing apex dose and dose to 5-mm depth were correlated with greater visual acuity loss (P=.02, P=.0006), worse final visual acuity (P=.02, P<.0001), and radiation complications (P<.0001, P=.0009). In addition, enucleation rates were worse with increasing quartiles of dose to 5 mm (P=.0001). Conclusions: Doses at least as low as 69 Gy prescribed to the tumor apex achieve rates of local control, distant metastasis–free survival, and overall survival that are similar to radiation doses of 85 Gy to the tumor apex, but with improved visual outcomes.

  20. Epigenetic control of cell identity and plasticity

    KAUST Repository

    Orlando, Valerio

    2014-04-02

    The DNA centered dogma for genetic information and cell identity is now evolving into a much more complex and flexible dimension provided by the discovery of the Epigenome. This comprises those chromosome structural and topological components that complement DNA information and contribute to genome functional organization. Current concept is that the Epigenome constitutes the dynamic molecular interface allowing the Genome to interact with the Environment. Exploring how the genome interacts with the environment is a key to fully understand cellular and complex organism mechanisms of adaptation and plasticity. Our work focuses on the role of an essential, specialized group or chromatin associated proteins named Polycomb (PcG) that control maintenance of transcription programs during development and in adult life. In particular PcG proteins exert epigenetic “memory” function by modifying chromosome structures at various levels to maintain gene silencing in particular through cell division. While in the past decade substantial progress was made in understanding PcG mechanisms acting in development and partially during cell cycle, very little is known about their role in adult post-mitotic tissues and more in general the role of the epigenome in adaptation. To this, we studied the role of PcG in the context of mammalian skeletal muscle cell differentiation. We previously reported specific dynamics of PRC2 proteins in myoblasts and myotubes, in particular the dynamics of PcG Histone H3 K27 Methyl Transferases (HMT), EZH2 and EZH1, the latter apparently replacing for EZH2 in differentiated myotubes. Ezh1 protein, although almost identical to Ezh2, shows a weak H3K27 HMT activity and its primary function remains elusive. Recent ChIPseq studies performed in differentiating muscle cells revealed that Ezh1 associates with active and not repressed regulatory regions to control RNA pol II elongation. Since H3K27 tri-methylation levels are virtually steady in non

  1. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex.

    Science.gov (United States)

    Raudies, Florian; Hasselmo, Michael E

    2015-11-01

    Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules.

  2. Effectiveness of the addition of citicoline to patching in the treatment of amblyopia around visual maturity: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Prachee Vasant Pawar

    2014-01-01

    Full Text Available Aim: To study the effectiveness of the addition of citicoline to patching in the treatment of amblyopia in the age group of 4-13 years. Materials and Methods: A randomized controlled trial, which included patients who were randomly divided into two groups. Both the groups received patching therapy till plateau was achieved in phase 1 of the study. Then in phase 2, group I received citicoline plus patching and group II continued to receive only patching. Outcome Measures: Outcome was measured by the visual acuity in logMAR every month in phase 1 till plateau was achieved and then for 12 months in phase 2. Results: No significant difference was found in the mean visual acuities in these two groups in phase 1 till plateau was reached. In phase 2, for the initial four months, there was no significant difference in the visual acuities in these two groups, at the respective intervals. However, five months onward, up to 12 months, there was a significant difference in the visual acuities in these groups.The result was the same in younger patients ( seven years of age. In phase 2, the mean proportional improvement in group I was significantly more than that in group II, at two months and onward, at the respective intervals. Conclusion: The improvement in visual acuity with citicoline plus patching was significantly more than that with patching alone, in one year of treatment.

  3. Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse.

    Directory of Open Access Journals (Sweden)

    Marc Bajénoff

    Full Text Available Memory CD8(+ T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m. Memory CD8(+ T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8(+ T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8(+ T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8(+ T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8(+ T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8(+ T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8(+ T produce inflammatory cytokines such as IFN-gamma and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8(+ T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8(+ T cells provide a local response by secreting effector molecules around infected cells.

  4. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    Science.gov (United States)

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  5. Cell-cycle control by protein kinase B

    NARCIS (Netherlands)

    Kops, G.J.P.L.

    2002-01-01

    Numerous cells in the body divide, and do so in a well-controlled manner. In some situations where this control is deregulated, cells may divide continuously. Such uncontrolled proliferation of cells is thought to be responsible for the onset of cancer. In order for a cell to divide in a normal set

  6. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2000-01-01

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were...

  7. A Dynamic Visualization Environment For The Design And Evaluation Of Automatic Vehicle Control Systems

    OpenAIRE

    Xu, Z.

    1995-01-01

    This document presents Dynamic Visualization, a project associated with the California PATH Program. The objective of the project is to develop a software which can animate automated highways, visualize the dynamics of automatic vehicles, and help the design and evaluation of automatic vehicle systems. This report summarizes the accomplishments of the project, describes the functions of the developed software, and provides an explanation of how to use the software.

  8. The effects of visual control and distance in modulating peripersonal spatial representation.

    Directory of Open Access Journals (Sweden)

    Chiara Renzi

    Full Text Available In the presence of vision, finalized motor acts can trigger spatial remapping, i.e., reference frames transformations to allow for a better interaction with targets. However, it is yet unclear how the peripersonal space is encoded and remapped depending on the availability of visual feedback and on the target position within the individual's reachable space, and which cerebral areas subserve such processes. Here, functional magnetic resonance imaging (fMRI was used to examine neural activity while healthy young participants performed reach-to-grasp movements with and without visual feedback and at different distances of the target from the effector (near to the hand-about 15 cm from the starting position-vs. far from the hand-about 30 cm from the starting position. Brain response in the superior parietal lobule bilaterally, in the right dorsal premotor cortex, and in the anterior part of the right inferior parietal lobule was significantly greater during visually-guided grasping of targets located at the far distance compared to grasping of targets located near to the hand. In the absence of visual feedback, the inferior parietal lobule exhibited a greater activity during grasping of targets at the near compared to the far distance. Results suggest that in the presence of visual feedback, a visuo-motor circuit integrates visuo-motor information when targets are located farther away. Conversely in the absence of visual feedback, encoding of space may demand multisensory remapping processes, even in the case of more proximal targets.

  9. The effects of visual control and distance in modulating peripersonal spatial representation.

    Science.gov (United States)

    Renzi, Chiara; Ricciardi, Emiliano; Bonino, Daniela; Handjaras, Giacomo; Vecchi, Tomaso; Pietrini, Pietro

    2013-01-01

    In the presence of vision, finalized motor acts can trigger spatial remapping, i.e., reference frames transformations to allow for a better interaction with targets. However, it is yet unclear how the peripersonal space is encoded and remapped depending on the availability of visual feedback and on the target position within the individual's reachable space, and which cerebral areas subserve such processes. Here, functional magnetic resonance imaging (fMRI) was used to examine neural activity while healthy young participants performed reach-to-grasp movements with and without visual feedback and at different distances of the target from the effector (near to the hand-about 15 cm from the starting position-vs. far from the hand-about 30 cm from the starting position). Brain response in the superior parietal lobule bilaterally, in the right dorsal premotor cortex, and in the anterior part of the right inferior parietal lobule was significantly greater during visually-guided grasping of targets located at the far distance compared to grasping of targets located near to the hand. In the absence of visual feedback, the inferior parietal lobule exhibited a greater activity during grasping of targets at the near compared to the far distance. Results suggest that in the presence of visual feedback, a visuo-motor circuit integrates visuo-motor information when targets are located farther away. Conversely in the absence of visual feedback, encoding of space may demand multisensory remapping processes, even in the case of more proximal targets.

  10. Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex

    Directory of Open Access Journals (Sweden)

    Daniel James Miller

    2014-05-01

    Full Text Available Determining the cellular composition of specific brain regions is crucial to our understanding of the function of neurobiological systems. It is therefore useful to identify the extent to which different methods agree when estimating the same properties of brain circuitry. In this study, we estimated the number of neuronal and non-neuronal cells in the primary visual cortex (area 17 or V1 of both hemispheres from a single chimpanzee. Specifically, we processed samples distributed across V1 of the right hemisphere after cortex was flattened into a sheet using two variations of the isotropic fractionator cell and neuron counting method. We processed the left hemisphere as serial brain slices for stereological investigation. The goal of this study was to evaluate the agreement between these methods in the most direct manner possible by comparing estimates of cell density across one brain region of interest in a single individual. In our hands, these methods produced similar estimates of the total cellular population (approximately 1 billion as well as the number of neurons (approximately 675 million in chimpanzee V1, providing evidence that both techniques estimate the same parameters of interest. In addition, our results indicate the strengths of each distinct tissue preparation procedure, highlighting the importance of attention to anatomical detail. In summary, we found that the isotropic fractionator and the stereological optical fractionator produced concordant estimates of the cellular composition of V1, and that this result supports the conclusion that chimpanzees conform to the primate pattern of exceptionally high packing density in V1. Ultimately, our data suggest that investigators can optimize their experimental approach by using any of these counting methods to obtain reliable cell and neuron counts.

  11. Selective optical control of synaptic transmission in the subcortical visual pathway by activation of viral vector-expressed halorhodopsin.

    Directory of Open Access Journals (Sweden)

    Katsuyuki Kaneda

    Full Text Available The superficial layer of the superior colliculus (sSC receives visual inputs via two different pathways: from the retina and the primary visual cortex. However, the functional significance of each input for the operation of the sSC circuit remains to be identified. As a first step toward understanding the functional role of each of these inputs, we developed an optogenetic method to specifically suppress the synaptic transmission in the retino-tectal pathway. We introduced enhanced halorhodopsin (eNpHR, a yellow light-sensitive, membrane-targeting chloride pump, into mouse retinal ganglion cells (RGCs by intravitreously injecting an adeno-associated virus serotype-2 vector carrying the CMV-eNpHR-EYFP construct. Several weeks after the injection, whole-cell recordings made from sSC neurons in slice preparations revealed that yellow laser illumination of the eNpHR-expressing retino-tectal axons, putatively synapsing onto the recorded cells, effectively inhibited EPSCs evoked by electrical stimulation of the optic nerve layer. We also showed that sSC spike activities elicited by visual stimulation were significantly reduced by laser illumination of the sSC in anesthetized mice. These results indicate that photo-activation of eNpHR expressed in RGC axons enables selective blockade of retino-tectal synaptic transmission. The method established here can most likely be applied to a variety of brain regions for studying the function of individual inputs to these regions.

  12. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy.

    Science.gov (United States)

    Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C

    2015-11-15

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and

  13. Visualization of probiotic-mediated Ca2+ signaling in intestinal epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Takahiro Adachi

    2016-12-01

    Full Text Available Probiotics, such as lactic acid bacteria (LAB and Bacillus subtilis var. natto, have been shown to modulate immune responses. It is important to understand how probiotic bacteria impact intestinal epithelial cells (IECs, because IECs are the first line of defense at the mucosal surface barrier and their activities substantially affect the gut microenvironment and immunity. However, to date, their precise mechanism remains unknown due to a lack of analytical systems available for live animal models. Recently, we generated a conditional Ca2+ biosensor Yellow Cameleon (YC3.60 transgenic mouse line and established 5D (x, y, z, time, and Ca2+ intravital imaging systems of lymphoid tissues including those in Peyer’s patches and bone marrow. In the present study, we further advance our intravital imaging system for intestinal tracts to visualize IEC responses against orally administrated food compounds in real time. Using this system, heat-killed Bacillus subtilis natto, a probiotic TTCC012 strain, is shown to directly induce Ca2+ signaling in IECs in mice housed under specific pathogen-free conditions. In contrast, this activation is not observed in the Lactococcus lactis strain C60; however, when we generate germ-free YC3.60 mice and observe the LAB stimulation of IECs in the absence of gut microbiota, C60 is capable of inducing Ca2+ signaling. This is the first study to successfully visualize the direct effect of probiotics on IECs in live animals. These data strongly suggest that probiotic strains stimulate IECs under physiological conditions, and that their activity is affected by the microenvironment of the small intestine, such as commensal bacteria.

  14. Visualization of Probiotic-Mediated Ca2+ Signaling in Intestinal Epithelial Cells In Vivo

    Science.gov (United States)

    Adachi, Takahiro; Kakuta, Shigeru; Aihara, Yoshiko; Kamiya, Tomonori; Watanabe, Yohei; Osakabe, Naomi; Hazato, Naoki; Miyawaki, Atsushi; Yoshikawa, Soichiro; Usami, Takako; Karasuyama, Hajime; Kimoto-Nira, Hiromi; Hirayama, Kazuhiro; Tsuji, Noriko M.

    2016-01-01

    Probiotics, such as lactic acid bacteria (LAB) and Bacillus subtilis var. natto, have been shown to modulate immune responses. It is important to understand how probiotic bacteria impact intestinal epithelial cells (IECs), because IECs are the first line of defense at the mucosal surface barrier and their activities substantially affect the gut microenvironment and immunity. However, to date, their precise mechanism remains unknown due to a lack of analytical systems available for live animal models. Recently, we generated a conditional Ca2+ biosensor Yellow Cameleon (YC3.60) transgenic mouse line and established 5D (x, y, z, time, and Ca2+) intravital imaging systems of lymphoid tissues including those in Peyer’s patches and bone marrow. In the present study, we further advance our intravital imaging system for intestinal tracts to visualize IEC responses against orally administrated food compounds in real time. Using this system, heat-killed B. subtilis natto, a probiotic TTCC012 strain, is shown to directly induce Ca2+ signaling in IECs in mice housed under specific pathogen-free conditions. In contrast, this activation is not observed in the Lactococcus lactis strain C60; however, when we generate germ-free YC3.60 mice and observe the LAB stimulation of IECs in the absence of gut microbiota, C60 is capable of inducing Ca2+ signaling. This is the first study to successfully visualize the direct effect of probiotics on IECs in live animals. These data strongly suggest that probiotic strains stimulate IECs under physiological conditions and that their activity is affected by the microenvironment of the small intestine, such as commensal bacteria. PMID:28018362

  15. Comparative study on direction selectivity and functional organization of the primary visual cortical cells in monkeys and cats

    Institute of Scientific and Technical Information of China (English)

    寿天德; 周逸峰; 俞洪波

    2000-01-01

    Although the directionally selective cells in many visual cortical areas are organized in columnar manner, the functional organization of direction selectivity of area VI in the monkey still remains unclear. We quantitatively studied the proportion of directionally selective cells, direction selectivity and the functional organization of the striate cortical cells in the monkey and compared those with the cat. The results show that the direction selectivity and directional organization of striate cortical cells in the monkey are significantly weaker than those in the cat, suggesting that the species difference between the two kinds of animal is related to their different anatomic pathways.

  16. Comparative study on direction selectivity and functional organization of the primary visual cortical cells in monkeys and cats

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Although the directionally selective cells in many visual cortical areas are organized in columnar manner, the functional organization of direction selectivity of area Vl in the monkey still remains unclear. We quantitatively studied the proportion of directionally selective cells, direction selectivity and the functional organization of the striate cortical cells in the monkey and compared those with the cat. The results show that the direction selectivity and directional organization of striate cortical cells in the monkey are significantly weaker than those in the cat, suggesting that the species difference between the two kinds of animal is related to their different anatomic pathways.

  17. A Novel Grid-Wide Transient Stability Assessment and Visualization Method for Increasing Situation Awareness of Control Room Operators

    DEFF Research Database (Denmark)

    Pertl, Michael; Rezkalla, Michel M.N.; Marinelli, Mattia

    2016-01-01

    The aim of the paper is to introduce a grid-wide assessment method to determine the transient stability margin and visualize it effectively to increase the situation awareness of control room operators. Critical area(s) with insufficient transient stability margin have to be identified in order...... to be able to take appropriate preventive actions. The introduced method evaluates the transient stability margin with a time-domain approach by using the voltage angle of several buses across the power system. Information about the severity of a contingency and the location of the most critical buses...... is derived. Moreover, it is shown that the method facilitates the visual examination of transient stability. It provides control room operators with essential information about the state of the system and enables them to take appropriate preventive actions if insufficient transient stability margins...

  18. [Persistence of orientation-selective cells of the primary visual cortex in kittens enucleated unilaterally at birth and reared in darkness].

    Science.gov (United States)

    Fregnac, Y; Buisseret, P; Bienenstock, E; Gary-Bobo, E; Imbert, M

    1978-07-17

    In kittens dark reared (6 weeks old) orientation selective cells are no longer recorded in the primary visual cortex, while in kittens of same age, enucleated at birth unilaterally and reared in identical conditions, 30% of visual cortical cells are shown to be orientation selective and in addition respond preferentially to horizontal and vertical orientations.

  19. Structure and Control Strategies of Fuel Cell Vehicle

    Institute of Scientific and Technical Information of China (English)

    宋建国; 张承宁; 孙逢春; 钟秋海

    2004-01-01

    The structure and kinds of the fuel cell vehicle (FCV) and the mathematical model of the fuel cell processor are discussed in detail. FCV includes many parts: the fuel cell thermal and water management, fuel supply, air supply and distribution, AC motor drive, main and auxiliary power management, and overall vehicle control system. So it requires different kinds of control strategies, such as the PID method, zero-pole method, optimal control method, fuzzy control and neural network control. Along with the progress of control method, the fuel cell vehicle's stability and reliability is up-and-up. Experiment results show FCV has high energy efficiency.

  20. Out of mind, but not out of sight: intentional control of visual memory.

    Science.gov (United States)

    Yotsumoto, Yuko; Sekuler, Robert

    2006-06-01

    Does visual information enjoy automatic, obligatory entry into memory, or, after such information has been seen, can it still be actively excluded? To characterize the process by which visual information could be excluded from memory, we used Sternberg's (1966, 1975) recognition paradigm, measuring visual episodic memory for compound grating stimuli. Because recognition declines as additional study items enter memory, episodic recognition performance provides a sensitive index of memory's contents. Three experiments showed that an item occupying a fixed serial position in a series of study items could be intentionally excluded from memory. In addition, exclusion does not depend on low-level information, such as the stimulus's spatial location, orientation, or spatial frequency, and does not depend on the precise timing of irrelevant information, which suggests that the exclusionprocess is triggered by some event during a trial. The results, interpreted within the framework of a summed similarity model for visual recognition, suggest that exclusion operates after considerable visual processing of the to-be-excluded item.

  1. Sensorimotor control of gait: a novel approach for the study of the interplay of visual and proprioceptive feedback.

    Science.gov (United States)

    Frost, Ryan; Skidmore, Jeffrey; Santello, Marco; Artemiadis, Panagiotis

    2015-01-01

    Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by quantifying the functional role of expected vs. actual proprioceptive feedback for planning and regulation of gait in humans. We addressed this question by using a novel methodological approach to deliver fast perturbations of the walking surface stiffness, in conjunction with a virtual reality system that provided visual feedback of upcoming changes of surface stiffness. In the "predictable" experimental condition, we asked subjects to learn associating visual feedback of changes in floor stiffness (sand patch) during locomotion to quantify kinematic and kinetic changes in gait prior to and during the gait cycle. In the "unpredictable" experimental condition, we perturbed floor stiffness at unpredictable instances during the gait to characterize the gait-phase dependent strategies in recovering the locomotor cycle. For the "unpredictable" conditions, visual feedback of changes in floor stiffness was absent or inconsistent with tactile and proprioceptive feedback. The investigation of these perturbation-induced effects on contralateral leg kinematics revealed that visual feedback of upcoming changes in floor stiffness allows for both early (preparatory) and late (post-perturbation) changes in leg kinematics. However, when proprioceptive feedback is not available, the early responses in leg kinematics do not occur while the late responses are preserved although in a, slightly attenuated form. The methods proposed in this study and the preliminary results of the kinematic response of the contralateral leg open new directions for the investigation of the relative role of visual, tactile, and proprioceptive feedback

  2. Sensorimotor control of gait: A novel approach for the study of the interplay of visual and proprioceptive feedback

    Directory of Open Access Journals (Sweden)

    Ryan eFrost

    2015-02-01

    Full Text Available Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by quantifying the functional role of expected versus actual proprioceptive feedback for planning and regulation of gait in humans. We addressed this question by using a novel methodological approach to deliver fast perturbations of the walking surface stiffness, in conjunction with a virtual reality system that provided visual feedback of upcoming changes of surface stiffness. In the predictable experimental condition, we asked subjects to learn associating visual feedback of changes in floor stiffness (sand patch during locomotion to quantify kinematic and kinetic changes in gait. In the unpredictable experimental condition, we perturbed floor stiffness at unpredictable instances during the gait to characterize the gait-phase dependent strategies in recovering the locomotor cycle. For the unpredictable conditions, visual feedback of changes in floor stiffness was absent or inconsistent with tactile and proprioceptive feedback. The investigation of these perturbation-induced effects on legs kinematics revealed that visual feedback of upcoming changes in floor stiffness allows for both early (preparatory and late (post-perturbation changes in leg kinematics. However, when proprioceptive feedback is not available, the early responses do not occur while the late responses are preserved although in a, slightly attenuated form. The methods proposed and the preliminary results of this study open new directions for the investigation of the relative role of visual, tactile, and proprioceptive feedback on gait control, with potential implications for designing novel robot-assisted gait rehabilitation

  3. Divided visual attention: A comparison of patients with multiple sclerosis and controls, assessed with an optokinetic nystagmus suppression task.

    Science.gov (United States)

    Williams, Isla M; Schofield, Peter; Khade, Neha; Abel, Larry A

    2016-12-01

    Multiple sclerosis (MS) frequently causes impairment of cognitive function. We compared patients with MS with controls on divided visual attention tasks. The MS patients' and controls' stare optokinetic nystagmus (OKN) was recorded in response to a 24°/s full field stimulus. Suppression of the OKN response, judged by the gain, was measured during tasks dividing visual attention between the fixation target and a second stimulus, central or peripheral, static or dynamic. All participants completed the Audio Recorded Cognitive Screen. MS patients had lower gain on the baseline stare OKN. OKN suppression in divided attention tasks was the same in MS patients as in controls but in both groups was better maintained in static than in dynamic tasks. In only dynamic tasks, older age was associated with less effective OKN suppression. MS patients had lower scores on a timed attention task and on memory. There was no significant correlation between attention or memory and eye movement parameters. Attention, a complex multifaceted construct, has different neural combinations for each task. Despite impairments on some measures of attention, MS patients completed the divided visual attention tasks normally.

  4. Control of response reliability by parvalbumin-expressing interneurons in visual cortex.

    Science.gov (United States)

    Zhu, Yingjie; Qiao, Wenhui; Liu, Kefei; Zhong, Huiyuan; Yao, Haishan

    2015-04-14

    The responses of visual cortical neurons to natural stimuli are both reliable and sparse. These properties require inhibition, yet the contribution of specific types of inhibitory neurons is not well understood. Here we demonstrate that optogenetic suppression of parvalbumin (PV)- but not somatostatin (SOM)-expressing interneurons reduces response reliability in the primary visual cortex of anaesthetized and awake mice. PV suppression leads to increases in the low firing rates and decreases in the high firing rates of cortical neurons, resulting in an overall reduction of the signal-to-noise ratio (SNR). In contrast, SOM suppression generally increases the overall firing rate for most neurons, without affecting the SNR. Further analysis reveals that PV, but not SOM, suppression impairs neural discrimination of natural stimuli. Together, these results reveal a critical role for PV interneurons in the formation of reliable visual cortical representations of natural stimuli.

  5. Ultrastructural visualization of the Mesenchymal-to-Epithelial Transition during reprogramming of human fibroblasts to induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    M.K. Høffding

    2015-01-01

    Here, we integrate a panel of morphological approaches with gene expression analyses to visualize the dynamics of episomal reprogramming of human fibroblasts to iPSCs. We provide the first ultrastructural analysis of human fibroblasts at various stages of episomal iPSC reprogramming, as well as the first real-time live cell visualization of a MET occurring during reprogramming. The results indicate that the MET manifests itself approximately 6–12 days after electroporation, in synchrony with the upregulation of early pluripotency markers, and resembles a reversal of the Epithelial-to-Mesenchymal Transition (EMT which takes place during mammalian gastrulation.

  6. The interaction of respiration and visual feedback on the control of force and neural activation of the agonist muscle.

    Science.gov (United States)

    Baweja, Harsimran S; Patel, Bhavini K; Neto, Osmar P; Christou, Evangelos A

    2011-12-01

    The purpose of this study was to compare force variability and the neural activation of the agonist muscle during constant isometric contractions at different force levels when the amplitude of respiration and visual feedback were varied. Twenty young adults (20-32 years, 10 men and 10 women) were instructed to accurately match a target force at 15% and 50% of their maximal voluntary contraction (MVC) with abduction of the index finger while controlling their respiration at different amplitudes (85%, 100% and 125% normal) in the presence and absence of visual feedback. Each trial lasted 22s and visual feedback was removed from 8-12 and 16-20s. Each subject performed three trials with each respiratory condition at each force level. Force variability was quantified as the standard deviation of the detrended force data. The neural activation of the first dorsal interosseus (FDI) was measured with bipolar surface electrodes placed distal to the innervation zone. Relative to normal respiration, force variability increased significantly only during high-amplitude respiration (∼63%). The increase in force variability from normal- to high-amplitude respiration was strongly associated with amplified force oscillations from 0 to 3 Hz (R(2) ranged from .68 to .84, phigh-amplitude respiration and visual feedback of force interact and amplify force variability in young adults during moderate levels of effort.

  7. O tipo de trajetória não afeta o controle visual da freada em ciclistas El tipo de trayectoria no afecta el control visual de frenada en ciclistas Type of trajectory does not affect the visual control of braking in cyclists

    Directory of Open Access Journals (Sweden)

    Sérgio Tosi Rodrigues

    2012-09-01

    Full Text Available O controle visual da freada foi estudado em ciclistas recreacionais através da manipulação da velocidade no início da freada (baixa, média e alta e da trajetória de aproximação (retilínea e curvilínea da bicicleta em relação a um obstáculo estacionário. A hipótese foi que o tipo de trajetória da bicicleta, de modo exclusivo ou em interação com a velocidade inicial, afetaria a informação visual de tempo para colisão ("tau" margem e sua primeira derivada no tempo ("tau-dot", respectivamente, no início e durante a freada. Os resultados revelaram que a velocidade afetou significativamente "tau" margem, enquanto "tau-dot" manteve-se inalterado independentemente da condição. O tipo de trajetória claramente não afetou o controle visual da freada em ciclistas.El control visual de la frenada fue estudiado en ciclistas recreativos mediante la manipulación de la velocidad (baja, media y alta al principio de la frenada y la trayectoria de aproximación de la bicicleta (rectilínea y curvilínea en relación con un obstáculo fijo. La hipótesis era que el tipo de trayectoria de la bicicleta, de modo exclusivo o en interacción con la velocidad inicial, afectaría la información visual del momento de la colisión (margen "tau" y su primera derivada en el tiempo ("tau-dot", respectivamente, al principio y durante la frenada. Los resultados revelaron que la velocidad afectó significativamente el margen "tau", mientras que el "tau-dot" permaneció inalterado independientemente de su condición. El tipo de trayectoria claramente no afectó el control visual de frenado en los ciclistas.Braking visual control was studied in recreational cyclists through the manipulation of bicycle's velocity at braking initiation (low, medium, and high and approaching trajectory (straight and curved with respect to a stationary obstacle. The hypothesis was that the type of trajectory, exclusively or interacting with initial velocity, would affect time

  8. Standardising visual control devices for tsetse flies: Central and West African species Glossina palpalis palpalis.

    Directory of Open Access Journals (Sweden)

    Dramane Kaba

    Full Text Available BACKGROUND: Glossina palpalis palpalis (G. p. palpalis is one of the principal vectors of sleeping sickness and nagana in Africa with a geographical range stretching from Liberia in West Africa to Angola in Central Africa. It inhabits tropical rain forest but has also adapted to urban settlements. We set out to standardize a long-lasting, practical and cost-effective visually attractive device that would induce the strongest landing response by G. p. palpalis for future use as an insecticide-impregnated tool in area-wide population suppression of this fly across its range. METHODOLOGY/PRINCIPAL FINDINGS: Trials were conducted in wet and dry seasons in the Ivory Coast, Cameroon, the Democratic Republic of Congo and Angola to measure the performance of traps (biconical, monoconical and pyramidal and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a practical enumerator at these remote locations to compare landing efficiencies of devices. Independent of season and country, both phthalogen blue-black and blue-black-blue 1 m(2 targets covered with adhesive film proved to be as good as traps in phthalogen blue or turquoise blue for capturing G. p. palpalis. Trap efficiency varied (8-51%. There was no difference between the performance of blue-black and blue-black-blue 1 m(2 targets. Baiting with chemicals augmented the overall performance of targets relative to traps. Landings on smaller phthalogen blue-black 0.25 m(2 square targets were not significantly different from either 1 m(2 blue-black-blue or blue-black square targets. Three times more flies were captured per unit area on the smaller device. CONCLUSIONS/SIGNIFICANCE: Blue-black 0.25 m(2 cloth targets show promise as simple cost effective devices for management of G. p. palpalis as they can be used for both control when impregnated with insecticide and for

  9. Standardizing visual control devices for tsetse flies: East African species Glossina swynnertoni.

    Directory of Open Access Journals (Sweden)

    Furaha Mramba

    Full Text Available BACKGROUND: Here we set out to standardize long-lasting, visually-attractive devices for Glossina swynnertoni, a vector of both human and animal trypanosomiasis in open savannah in Tanzania and Kenya, and in neighbouring conservation areas used by pastoralists. The goal was to determine the most practical device/material that would induce the strongest landing response in G. swynnertoni for use in area-wide population suppression of this fly with insecticide-impregnated devices. METHODS AND FINDINGS: Trials were conducted in wet and dry seasons in the Serengeti and Maasai Mara to measure the performance of traps and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a simple enumerator at these remote locations to compare trapping efficiencies of devices. Independent of season or presence of chemical baits, targets in phthalogen blue or turquoise blue cloth with adhesive film were the best devices for capturing G. swynnertoni in all situations, catching up to 19 times more flies than pyramidal traps. Baiting with chemicals did not affect the relative performance of devices. Fly landings were two times higher on 1 m(2 blue-black targets as on pyramidal traps when equivalent areas of both were covered with adhesive film. Landings on 1 m(2 blue-black targets were compared to those on smaller phthalogen blue 0.5 m(2 all-blue or blue-black-blue cloth targets, and to landings on all-blue plastic 0.32-0.47 m(2 leg panels painted in phthalogen blue. These smaller targets and leg panels captured equivalent numbers of G. swynnertoni per unit area as bigger targets. CONCLUSIONS: Leg panels and 0.5 m(2 cloth targets show promise as cost effective devices for management of G. swynnertoni as they can be used for both control (insecticide-impregnated cloth and for sampling (rigid plastic with insect glue or adhesive film of

  10. Standardising Visual Control Devices for Tsetse Flies: Central and West African Species Glossina palpalis palpalis

    Science.gov (United States)

    Kaba, Dramane; Zacarie, Tusevo; M'Pondi, Alexis Makumyaviri; Njiokou, Flobert; Bosson-Vanga, Henriette; Kröber, Thomas; McMullin, Andrew; Mihok, Steve; Guerin, Patrick M.

    2014-01-01

    Background Glossina palpalis palpalis (G. p. palpalis) is one of the principal vectors of sleeping sickness and nagana in Africa with a geographical range stretching from Liberia in West Africa to Angola in Central Africa. It inhabits tropical rain forest but has also adapted to urban settlements. We set out to standardize a long-lasting, practical and cost-effective visually attractive device that would induce the strongest landing response by G. p. palpalis for future use as an insecticide-impregnated tool in area-wide population suppression of this fly across its range. Methodology/Principal Findings Trials were conducted in wet and dry seasons in the Ivory Coast, Cameroon, the Democratic Republic of Congo and Angola to measure the performance of traps (biconical, monoconical and pyramidal) and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a practical enumerator at these remote locations to compare landing efficiencies of devices. Independent of season and country, both phthalogen blue-black and blue-black-blue 1 m2 targets covered with adhesive film proved to be as good as traps in phthalogen blue or turquoise blue for capturing G. p. palpalis. Trap efficiency varied (8–51%). There was no difference between the performance of blue-black and blue-black-blue 1 m2 targets. Baiting with chemicals augmented the overall performance of targets relative to traps. Landings on smaller phthalogen blue-black 0.25 m2 square targets were not significantly different from either 1 m2 blue-black-blue or blue-black square targets. Three times more flies were captured per unit area on the smaller device. Conclusions/Significance Blue-black 0.25 m2 cloth targets show promise as simple cost effective devices for management of G. p. palpalis as they can be used for both control when impregnated with insecticide and for population sampling when

  11. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kandlikar, Satish G. [Rochester Inst. of Technology, Rochester, NY (United States); Lu, Zijie [Rochester Inst. of Technology, Rochester, NY (United States); Rao, Navalgund [Rochester Inst. of Technology, Rochester, NY (United States); Sergi, Jacqueline [Rochester Inst. of Technology, Rochester, NY (United States); Rath, Cody [Rochester Inst. of Technology, Rochester, NY (United States); McDade, Christopher [Rochester Inst. of Technology, Rochester, NY (United States); Trabold, Thomas [General Motors, Honeoye Falls, NY (United States); Owejan, Jon [General Motors, Honeoye Falls, NY (United States); Gagliardo, Jeffrey [General Motors, Honeoye Falls, NY (United States); Allen, Jeffrey [Michigan Technological Univ., Houghton, MI (United States); Yassar, Reza S. [Michigan Technological Univ., Houghton, MI (United States); Medici, Ezequiel [Michigan Technological Univ., Houghton, MI (United States); Herescu, Alexandru [Michigan Technological Univ., Houghton, MI (United States)

    2010-05-30

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions.

  12. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways.

  13. An indirect adaptive neural control of a visual-based quadrotor robot for pursuing a moving target.

    Science.gov (United States)

    Shirzadeh, Masoud; Amirkhani, Abdollah; Jalali, Aliakbar; Mosavi, Mohammad R

    2015-11-01

    This paper aims to use a visual-based control mechanism to control a quadrotor type aerial robot which is in pursuit of a moving target. The nonlinear nature of a quadrotor, on the one hand, and the difficulty of obtaining an exact model for it, on the other hand, constitute two serious challenges in designing a controller for this UAV. A potential solution for such problems is the use of intelligent control methods such as those that rely on artificial neural networks and other similar approaches. In addition to the two mentioned problems, another problem that emerges due to the moving nature of a target is the uncertainty that exists in the target image. By employing an artificial neural network with a Radial Basis Function (RBF) an indirect adaptive neural controller has been designed for a quadrotor robot in search of a moving target. The results of the simulation for different paths show that the quadrotor has efficiently tracked the moving target.

  14. Feed-forward and visual feedback control of head roll orientation in wasps (Polistes humilis, Vespidae, Hymenoptera).

    Science.gov (United States)

    Viollet, Stéphane; Zeil, Jochen

    2013-04-01

    Flying insects keep their visual system horizontally aligned, suggesting that gaze stabilization is a crucial first step in flight control. Unlike flies, hymenopteran insects such as bees and wasps do not have halteres that provide fast, feed-forward angular rate information to stabilize head orientation in the presence of body rotations. We tested whether hymenopteran insects use inertial (mechanosensory) information to control head orientation from other sources, such as the wings, by applying periodic roll perturbations to male Polistes humilis wasps flying in tether under different visual conditions indoors and in natural outdoor conditions. We oscillated the thorax of the insects with frequency-modulated sinusoids (chirps) with frequencies increasing from 0.2 to 2 Hz at a maximal amplitude of 50 deg peak-to-peak and maximal angular velocity of ±245 deg s(-1). We found that head roll stabilization is best outdoors, but completely absent in uniform visual conditions and in darkness. Step responses confirm that compensatory head roll movements are purely visually driven. Modelling step responses indicates that head roll stabilization is achieved by merging information on head angular velocity, presumably provided by motion-sensitive neurons and information on head orientation, presumably provided by light level integration across the compound eyes and/or ocelli (dorsal light response). Body roll in free flight reaches amplitudes of ±40 deg and angular velocities greater than 1000 deg s(-1), while head orientation remains horizontal for most of the time to within ±10 deg. In free flight, we did not find a delay between spontaneous body roll and compensatory head movements, and suggest that this is evidence for the contribution of a feed-forward control to head stabilization.

  15. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    Science.gov (United States)

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices.

  16. In vivo visualizing the dynamics of bone marrow stem cells in mouse retina and choroidal-retinal circulation

    Science.gov (United States)

    Wang, Heuy-Ching H.; Zwick, Harry; Edsall, Peter R.; Cheramie, Rachel D.; Lund, David J.; Stuck, Bruce

    2007-02-01

    It has recently been shown that bone marrow cells can differentiate into various lineage cells including neural cells in vitro and in vivo. Therefore it is an attractive therapeutic intervention to apply autologous bone marrow-derived stem cells that may offer neuroprotection to laser-induced retinal injuries. The purpose of this study is to develop a method with which to visualize bone marrow stem cells dynamics in mouse retinal circulation. We have used a physiological method, confocal scanning laser ophthalmoscope (SLO), to track the highly enriched stem/progenitor cells circulating in the retina. Stem cells were enriched by immunomagnetic depletion of cells committed to the T- and B lymphocytic, myeloid and erythorid lineages. CellTracker TM Green-labeled stem cells were injected into the tail veins of mice with laser-induced focal retinal injuries. Bone marrow stem cells labeled with CellTracker TM Green were visible in the retinal circulation for as long as 1 hour and 30 minutes. These studies suggest that stem cell-enriched bone marrow cells may have the ability to mobilize into laser-induced retinal injuries and possibly further proliferate, differentiate and functionally integrate into the retina.

  17. Simplified Load-Following Control for a Fuel Cell System

    Science.gov (United States)

    Vasquez, Arturo

    2010-01-01

    A simplified load-following control scheme has been proposed for a fuel cell power system. The scheme could be used to control devices that are important parts of a fuel cell system but are sometimes characterized as parasitic because they consume some of the power generated by the fuel cells.

  18. The nucleus of the optic tract. Its function in gaze stabilization and control of visual-vestibular interaction

    Science.gov (United States)

    Cohen, B.; Reisine, H.; Yokota, J. I.; Raphan, T.

    1992-01-01

    1. Electrical stimulation of the nucleus of the optic tract (NOT) induced nystagmus and after-nystagmus with ipsilateral slow phases. The velocity characteristics of the nystagmus were similar to those of the slow component of optokinetic nystagmus (OKN) and to optokinetic after-nystagmus (OKAN), both of which are produced by velocity storage in the vestibular system. When NOT was destroyed, these components disappeared. This indicates that velocity storage is activated from the visual system through NOT. 2. Velocity storage produces compensatory eye-in-head and head-on-body movements through the vestibular system. The association of NOT with velocity storage implies that NOT helps stabilize gaze in space during both passive motion and active locomotion in light with an angular component. It has been suggested that "vestibular-only" neurons in the vestibular nuclei play an important role in generation of velocity storage. Similarities between the rise and fall times of eye velocity during OKN and OKAN to firing rates of vestibular-only neurons suggest that these cells may receive their visual input through NOT. 3. One NOT was injected with muscimol, a GABAA agonist. Ipsilateral OKN and OKAN were lost, suggesting that GABA, which is an inhibitory transmitter in NOT, acts on projection pathways to the brain stem. A striking finding was that visual suppression and habituation of contralateral slow phases of vestibular nystagmus were also abolished after muscimol injection. The latter implies that NOT plays an important role in producing visual suppression of the VOR and habituating its time constant. 4. Habituation is lost after nodulus and uvula lesions and visual suppression after lesions of the flocculus and paraflocculus. We postulate that the disappearance of vestibular habituation and of visual suppression of vestibular responses after muscimol injections was due to dysfacilitation of the prominent NOT-inferior olive pathway, inactivating climbing fibers from

  19. Kinetics of linear rouleaux formation studied by visual monitoring of red cell dynamic organization.

    Science.gov (United States)

    Barshtein, G; Wajnblum, D; Yedgar, S

    2000-05-01

    Red blood cells (RBCs) in the presence of plasma proteins or other macromolecules may form aggregates, normally in rouleaux formations, which are dispersed with increasing blood flow. Experimental observations have suggested that the spontaneous aggregation process involves the formation of linear rouleaux (FLR) followed by formation of branched rouleaux networks. Theoretical models for the spontaneous rouleaux formation were formulated, taking into consideration that FLR may involve both "polymerization," i.e., interaction between two single RBCs (e + e) and the addition of a single RBC to the end of an existing rouleau (e + r), as well as "condensation" between two rouleaux by end-to-end addition (r + r). The present study was undertaken to experimentally examine the theoretical models and their assumptions, by visual monitoring of the spontaneous FLR (from singly dispersed RBC) in plasma, in a narrow gap flow chamber. The results validate the theoretical model, showing that FLR involves both polymerization and condensation, and that the kinetic constants for the above three types of intercellular interactions are the same, i.e., k(ee) = k(er) = k(rr) = k, and for all tested hematocrits (0.625-6%) k < 0.13 +/- 0.03 s(-1).

  20. Visual function and fine-motor control in small-for-gestational age infants Função visual e controle motor apendicular em lactentes pequenos para a idade gestacional

    Directory of Open Access Journals (Sweden)

    Heloisa G.R.G. Gagliardo

    2004-12-01

    Full Text Available OBJECTIVE: To compare visual function and fine-motor control of full-term infants small-for-gestational age (SGA and appropriate for gestational age (AGA, in the first three months. METHOD: We evaluated prospectively 31 infants in the 1st month; 33 in the 2nd and 34 infants in the 3rd month, categorized as full-term; birth weight less than 10th percentile for SGA and 25th to 90th percentile for the AGA group. Genetic syndromes, infections, multiple congenital malformations were excluded. The Bayley Scales of Infant Development-II were used, especially items related to visual function and to fine-motor control outcomes. RESULTS: The Motor Index Score (IS was significantly lower in the SGA group in the 2nd month. The items "attempts to bring hands to mouth", in the 1st month and "reaches for suspended ring", in the 3rd month showed higher frequency in the SGA group. CONCLUSION: The Motor IS was lower in the 2nd month and items of fine-motor control in the 1st month and in the 3rd month showed higher frequency in the SGA group.OBJETIVO: Comparar a função visual e o controle motor apendicular de lactentes nascidos a termo pequenos para a idade gestacional (PIG com lactentes adequados para a idade gestacional (AIG, no primeiro trimestre. MÉTODO: Amostra de 31 lactentes no 1º mês, 33 no 2º e 34 lactentes no 3º mês, nascidos a termo; peso de nascimento < percentil 10 para o grupo PIG e percentil 25 a 90 para o grupo AIG. Síndromes genéticas, infecções ou malformações congênitas múltiplas foram excluídas. Foram utilizadas as Bayley Scales of Infant Development-II, especialmente itens relacionados com a evolução da função visual e controle motor apendicular. RESULTADOS: Houve diferença significativa no Index Score (IS Motor no 2º mês, havendo pontuação menor no grupo PIG. Os itens "tenta trazer mão à boca", no 1º mês e "alcança aro suspenso" no 3º mês foram mais freqüentes no grupo PIG. CONCLUSÃO: No grupo PIG, o IS

  1. Cell density monitoring and control of microencapsulated CHO cell cultures

    OpenAIRE

    Cole, Harriet Emma

    2015-01-01

    Though mammalian cells play a key role in the manufacturing of recombinant glycosylated proteins, cell cultures and productivity are limited by the lack of suitable systems to enable stable perfusion culture. Microencapsulation, or entrapping cells within a semi-permeable membrane, offers the potential to generate high cell density cultures and improve the productivity by mimicking the cells natural environment. However, the cells being secluded by the microcapsules membrane are difficult to ...

  2. Temporal control of glial cell migration in the Drosophila eye requires gilgamesh, hedgehog, and eye specification genes.

    Science.gov (United States)

    Hummel, Thomas; Attix, Suzanne; Gunning, Dorian; Zipursky, S Lawrence

    2002-01-17

    In the Drosophila visual system, photoreceptor neurons (R cells) extend axons towards glial cells located at the posterior edge of the eye disc. In gilgamesh (gish) mutants, glial cells invade anterior regions of the eye disc prior to R cell differentiation and R cell axons extend anteriorly along these cells. gish encodes casein kinase Igamma. gish, sine oculis, eyeless, and hedgehog (hh) act in the posterior region of the eye disc to prevent precocious glial cell migration. Targeted expression of Hh in this region rescues the gish phenotype, though the glial cells do not require the canonical Hh signaling pathway to respond. We propose that the spatiotemporal control of glial cell migration plays a critical role in determining the directionality of R cell axon outgrowth.

  3. Lithium-Ion Cell Charge-Control Unit Developed

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Buton, Robert M.; Gemeiner, Russel

    2005-01-01

    A lithium-ion (Li-ion) cell charge-control unit was developed as part of a Li-ion cell verification program. This unit manages the complex charging scheme that is required when Li-ion cells are charged in series. It enables researchers to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and reduces test costs substantially in comparison to individual cell testing.

  4. Visual inspections of the neutron absorber control rods of the IEA-R1 reactor; Inspecoes visuais nas barras absorvedoras de neutrons do reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose Eduardo R. da; Terremoto, Luis A.A.; Castanheira, Myrthes; Zeituni, Carlos A.; Damy, Margaret de A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear]. E-mail: jersilva@net.ipen.br

    2002-07-01

    The Fuel Engineering Division at IPEN/CNEN-SP developed facilities for visual inspection of the IEA-R1 fuel elements and neutron absorbing control rod assemblies inside the research reactor pool. This work presents the method of visual inspection performed at IEA-R1 research reactor. These inspections were adopted to evaluate and to follow the state of the Ag-In-Cd control assemblies fabricated at CERCA in 1972 that remain in use at the reactor core. In 1998, 2000 and 20001, visual inspections were performed in these control rod assemblies, which the general conditions were evaluated. (author)

  5. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA.

    Directory of Open Access Journals (Sweden)

    Tomomi Ando

    Full Text Available Adenosine 5'-triphosphate (ATP is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV, a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome.

  6. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiaofei [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036 (China); Deng, Ping; Cui, Hongguang [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); Wang, Aiming, E-mail: aiming.wang@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada)

    2015-11-15

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  7. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus.

    Science.gov (United States)

    Gale, Samuel D; Murphy, Gabe J

    2014-10-01

    The superficial superior colliculus (sSC) occupies a critical node in the mammalian visual system; it is one of two major retinorecipient areas, receives visual cortical input, and innervates visual thalamocortical circuits. Nonetheless, the contribution of sSC neurons to downstream neural activity and visually guided behavior is unknown and frequently neglected. Here we identified the visual stimuli to which specific classes of sSC neurons respond, the downstream regions they target, and transgenic mice enabling class-specific manipulations. One class responds to small, slowly moving stimuli and projects exclusively to lateral posterior thalamus; another, comprising GABAergic neurons, responds to the sudden appearance or rapid movement of large stimuli and projects to multiple areas, including the lateral geniculate nucleus. A third class exhibits direction-selective responses and targets deeper SC layers. Together, our results show how specific sSC neurons represent and distribute diverse information and enable direct tests of their functional role.

  8. Illuminating traffic control for cell-division planes.

    Science.gov (United States)

    Robatzek, Silke

    2014-01-01

    When a plant cell divides, four related proteins control the trafficking of vesicles and ensure that cargo that is normally recycled to the plasma membrane is instead re-routed to the plane of cell division.

  9. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond.

    Science.gov (United States)

    Liu, Kuang-Kai; Chen, Mei-Fang; Chen, Po-Yi; Lee, Tony J F; Cheng, Chia-Liang; Chang, Chia-Ching; Ho, Yen-Peng; Chao, Jui-I

    2008-05-21

    Biological molecules conjugating with nanoparticles are valuable for applications including bio-imaging, bio-detection, and bio-sensing. Nanometer-sized diamond particles have excellent electronic and chemical properties for bio-conjugation. In this study, we manipulated the carboxyl group produced on the surface of nanodiamond (carboxylated nanodiamond, cND) for conjugating with alpha-bungarotoxin (α-BTX), a neurotoxin derived from Bungarus multicinctus with specific blockade of alpha7-nicotinic acetylcholine receptor (α7-nAChR). The electrostatic binding of cND-α-BTX was mediated by the negative charge of the cND and the positive charge of the α-BTX in physiological pH conditions. Sodium dodecyl sulfate-polyacrylamide gel analysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF-MS) spectra displayed that α-BTX proteins were conjugated with cND particles via non-covalent bindings. The green fluorescence of the cND particles combining with the red fluorescence of tetramethylrhodamine-labeled α-BTX presented a yellow color at the same location, which indicated that α-BTX proteins were conjugated with cND particles. Xenopus laevis's oocytes expressed the human α7-nAChR proteins by microinjection with α7-nAChR mRNA. The cND-α-BTX complexes were bound to α7-nAChR locating on the cell membrane of oocytes and human lung A549 cancer cells analyzed by laser scanning confocal microscopy. The choline-evoked α7-nAChR-mediated inward currents of the oocytes were blocked by cND-α-BTX complexes in a concentration-dependent manner using two-electrode voltage-clamp recording. Furthermore, the fluorescence intensity of cND-α-BTX binding on A549 cells could be quantified by flow cytometry. These results indicate that cND-conjugated α-BTX still preserves its biological activity in blocking the function of α7-nAChR, and provide a visual system showing the binding of α-BTX to α7-nAChR.

  10. Relationship between Reaction Time, Fine Motor Control, and Visual-Spatial Perception on Vigilance and Visual-Motor Tasks in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Howley, Sarah A.; Prasad, Sarah E.; Pender, Niall P.; Murphy, Kieran C.

    2012-01-01

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and…

  11. Epigenetic control of embryonic stem cell fate

    DEFF Research Database (Denmark)

    Christophersen, Nicolaj Strøyer; Helin, Kristian

    2010-01-01

    Embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and are pluripotent, as they are able to differentiate into all cell types of the adult organism. Once established, the pluripotent ES cells can be maintained under defined culture conditions, but can also...... be induced rapidly to differentiate. Maintaining this balance of stability versus plasticity is a challenge, and extensive studies in recent years have focused on understanding the contributions of transcription factors and epigenetic enzymes to the "stemness" properties of these cells. Identifying...... the molecular switches that regulate ES cell self-renewal versus differentiation can provide insights into the nature of the pluripotent state and enhance the potential use of these cells in therapeutic applications. Here, we review the latest models for how changes in chromatin methylation can modulate ES cell...

  12. Visual misperceptions and hallucinations in Parkinson's disease: dysfunction of attentional control networks?

    Science.gov (United States)

    Shine, James M; Halliday, Glenda M; Naismith, Sharon L; Lewis, Simon J G

    2011-10-01

    Visual misperceptions and hallucinations are a major cause of distress in patients with Parkinson's disease (PD), particularly in the advanced stages of the condition. Recent work has provided a framework for understanding the pathogenesis of these symptoms, implicating impairments from the retina to the integration of external information with preformed internal images. In this article, we propose a novel hypothesis that attempts to explain the presence of visual misperceptions and hallucinations in PD through the aberrant coordination of complimentary yet competing neural networks. We propose that hallucinations in PD reflect the relative inability to recruit activation in the dorsal attention network in the presence of an ambiguous percept, leading to overreliance on default mode network processing and salience arising from the ventral attention network. This inability is proposed to stem from improper function across cortical and subcortical structures secondary to the presence of Lewy body pathology. This hypothesis may be empirically tested by the use of targeted cognitive paradigms. In turn, this may assist our understanding of the pathophysiological mechanisms and cognitive processes contributing to visual misperceptions and hallucinations and ultimately may inform more effective treatment strategies for this troubling symptom.

  13. ENIQ-qualified visual examinations by means of a remote controlled submarine

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Elenko; Heinsius, Jan [AREVA GmbH, Erlangen (Germany)

    2015-07-15

    Remote visual examination is one of the most important methods for non- destructive in-service inspections of primary components in nuclear power plants. It features two main advantages: the short examination duration and the fast interpretation of results. AREVA offers operators of nuclear power plants the ''SUSI 420 HD'' SUbmarine System for Inspections to perform ENIQ-qualified visual examinations during outages without working on the critical path and causing any delay in the time schedule. The system is a remotely operated manipulator equipped with a high definition camera. With a weight of only 25 kg, there is no need for a crane to put the submarine into water. More-over, nor the use of the refueling machine neither the auxiliary bridge is required. In this way the visual examination can be performed in parallel to other activities which are on the critical path. The article takes a closer look at the essential parameters: illumination, examination distance, viewing angle, scanning speed, positioning accuracy and sizing of indications. It describes how the system can fulfill these parameters through some adaptations.

  14. Visualizing pancreatic {beta}-cell mass with [{sup 11}C]DTBZ

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Norman Ray [Department of Radiology, Columbia University Medical School, New York, NY 10032 (United States); Souza, Fabiola [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States); Witkowski, Piotr [Department of Medicine, Columbia University Medical School, New York, NY 10032 (United States); Maffei, Antonella [Institute of Genetics and Biophysics ' Adriano Buzzati-Traverso' , CNR, Naples 80131 (Italy); Raffo, Anthony [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States); Herron, Alan [Center for Comparative Medicine and The Department of Pathology, Baylor College of Medicine, Houston, TX 77030 (United States); Kilbourn, Michael [Department of Radiology, University of Michigan, Ann Arbor, MI 48109-0638 (United States); Jurewicz, Agata [Department of Radiology, Columbia University Medical School, New York, NY 10032 (United States); Herold, Kevan [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States); Liu, Eric [Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, MD 20854 (United States); Hardy, Mark Adam [Department of Medicine, Columbia University Medical School, New York, NY 10032 (United States); Van Heertum, Ronald [Department of Radiology, Columbia University Medical School, New York, NY 10032 (United States); Harris, Paul Emerson [Department of Surgery, Columbia University Medical School, New York, NY 10032 (United States)]. E-mail: peh1@columbia.edu

    2006-10-15

    {beta}-Cell mass (BCM) influences the total amount of insulin secreted, varies by individual and by the degree of insulin resistance, and is affected by physiologic and pathologic conditions. The islets of Langerhans, however, appear to have a reserve capacity of insulin secretion and, overall, assessments of insulin and blood glucose levels remain poor measures of BCM, {beta}-cell function and progression of diabetes. Thus, novel noninvasive determinations of BCM are needed to provide a quantitative endpoint for novel therapies of diabetes, islet regeneration and transplantation. Built on previous gene expression studies, we tested the hypothesis that the targeting of vesicular monoamine transporter 2 (VMAT2), which is expressed by {beta} cells, with [{sup 11}C]dihydrotetrabenazine ([{sup 11}C]DTBZ), a radioligand specific for VMAT2, and the use of positron emission tomography (PET) can provide a measure of BCM. In this report, we demonstrate decreased radioligand uptake within the pancreas of Lewis rats with streptozotocin-induced diabetes relative to their euglycemic historical controls. These studies suggest that quantitation of VMAT2 expression in {beta} cells with the use of [{sup 11}C]DTBZ and PET represents a method for noninvasive longitudinal estimates of changes in BCM that may be useful in the study and treatment of diabetes.

  15. Behavior of a metabolic cycling population at the single cell level as visualized by fluorescent gene expression reporters.

    Directory of Open Access Journals (Sweden)

    Sunil Laxman

    Full Text Available BACKGROUND: During continuous growth in specific chemostat cultures, budding yeast undergo robust oscillations in oxygen consumption that are accompanied by highly periodic changes in transcript abundance of a majority of genes, in a phenomenon called the Yeast Metabolic Cycle (YMC. This study uses fluorescent reporters of genes specific to different YMC phases in order to visualize this phenomenon and understand the temporal regulation of gene expression at the level of individual cells within the cycling population. METHODOLOGY: Fluorescent gene expression reporters for different phases of the YMC were constructed and stably integrated into the yeast genome. Subsequently, these reporter-expressing yeast were used to visualize YMC dynamics at the individual cell level in cultures grown in a chemostat or in a microfluidics platform under varying glucose concentrations, using fluorescence microscopy and quantitative Western blots. CONCLUSIONS: The behavior of single cells within a metabolic cycling population was visualized using phase-specific fluorescent reporters. The reporters largely recapitulated genome-specified mRNA expression profiles. A significant fraction of the cell population appeared to exhibit basal expression of the reporters, supporting the hypothesis that there are at least two distinct subpopulations of cells within the cycling population. Although approximately half of the cycling population initiated cell division in each permissive window of the YMC, metabolic synchrony of the population was maintained. Using a microfluidics platform we observed that low glucose concentrations appear to be necessary for metabolic cycling. Lastly, we propose that there is a temporal window in the oxidative growth phase of the YMC where the cycling population segregates into at least two subpopulations, one which will enter the cell cycle and one which does not.

  16. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells.

    Science.gov (United States)

    Deng, Ruijie; Tang, Longhua; Tian, Qianqian; Wang, Ying; Lin, Lei; Li, Jinghong

    2014-02-24

    The ability to quantitate and visualize microRNAs (miRNAs) in situ in single cells would greatly facilitate the elucidation of miRNA-mediated regulatory circuits and their disease associations. A toehold-initiated strand-displacement process was used to initiate rolling circle amplification of specific miRNAs, an approach that achieves both stringent recognition and in situ amplification of the target miRNA. This assay, termed toehold-initiated rolling circle amplification (TIRCA), can be utilized to identify miRNAs at physiological temperature with high specificity and to visualize individual miRNAs in situ in single cells within 3 h. TIRCA is a competitive candidate technique for in situ miRNA imaging and may help us to understand the role of miRNAs in cellular processes and human diseases in more detail.

  17. Spatiotemporal control of cell-cell reversible interactions using molecular engineering

    Science.gov (United States)

    Shi, Peng; Ju, Enguo; Yan, Zhengqing; Gao, Nan; Wang, Jiasi; Hou, Jianwen; Zhang, Yan; Ren, Jinsong; Qu, Xiaogang

    2016-10-01

    Manipulation of cell-cell interactions has potential applications in basic research and cell-based therapy. Herein, using a combination of metabolic glycan labelling and bio-orthogonal click reaction, we engineer cell membranes with β-cyclodextrin and subsequently manipulate cell behaviours via photo-responsive host-guest recognition. With this methodology, we demonstrate reversible manipulation of cell assembly and disassembly. The method enables light-controllable reversible assembly of cell-cell adhesion, in contrast with previously reported irreversible effects, in which altered structure could not be reused. We also illustrate the utility of the method by designing a cell-based therapy. Peripheral blood mononuclear cells modified with aptamer are effectively redirected towards target cells, resulting in enhanced cell apoptosis. Our approach allows precise control of reversible cell-cell interactions and we expect that it will promote further developments of cell-based therapy.

  18. Control of transcription by cell size.

    Directory of Open Access Journals (Sweden)

    Chia-Yung Wu

    Full Text Available Cell size increases significantly with increasing ploidy. Differences in cell size and ploidy are associated with alterations in gene expression, although no direct connection has been made between cell size and transcription. Here we show that ploidy-associated changes in gene expression reflect transcriptional adjustment to a larger cell size, implicating cellular geometry as a key parameter in gene regulation. Using RNA-seq, we identified genes whose expression was altered in a tetraploid as compared with the isogenic haploid. A significant fraction of these genes encode cell surface proteins, suggesting an effect of the enlarged cell size on the differential regulation of these genes. To test this hypothesis, we examined expression of these genes in haploid mutants that also produce enlarged size. Surprisingly, many genes differentially regulated in the tetraploid are identically regulated in the enlarged haploids, and the magnitude of change in gene expression correlates with the degree of size enlargement. These results indicate a causal relationship between cell size and transcription, with a size-sensing mechanism that alters transcription in response to size. The genes responding to cell size are enriched for those regulated by two mitogen-activated protein kinase pathways, and components in those pathways were found to mediate size-dependent gene regulation. Transcriptional adjustment to enlarged cell size could underlie other cellular changes associated with polyploidy. The causal relationship between cell size and transcription suggests that cell size homeostasis serves a regulatory role in transcriptome maintenance.

  19. An immunosurveillance mechanism controls cancer cell ploidy.

    Science.gov (United States)

    Senovilla, Laura; Vitale, Ilio; Martins, Isabelle; Tailler, Maximilien; Pailleret, Claire; Michaud, Mickaël; Galluzzi, Lorenzo; Adjemian, Sandy; Kepp, Oliver; Niso-Santano, Mireia; Shen, Shensi; Mariño, Guillermo; Criollo, Alfredo; Boilève, Alice; Job, Bastien; Ladoire, Sylvain; Ghiringhelli, François; Sistigu, Antonella; Yamazaki, Takahiro; Rello-Varona, Santiago; Locher, Clara; Poirier-Colame, Vichnou; Talbot, Monique; Valent, Alexander; Berardinelli, Francesco; Antoccia, Antonio; Ciccosanti, Fabiola; Fimia, Gian Maria; Piacentini, Mauro; Fueyo, Antonio; Messina, Nicole L; Li, Ming; Chan, Christopher J; Sigl, Verena; Pourcher, Guillaume; Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Lazar, Vladimir; Penninger, Josef M; Madeo, Frank; López-Otín, Carlos; Smyth, Mark J; Zitvogel, Laurence; Castedo, Maria; Kroemer, Guido

    2012-09-28

    Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.

  20. Balance control enhancement using sub-sensory stimulation and visual-auditory biofeedback strategies for amputee subjects.

    Science.gov (United States)

    Lee, Ming-Yih; Lin, Chih-Feng; Soon, Kok-Soon

    2007-12-01

    Sub-sensory electrical or mechanical stimulation can enhance the sensitivity of the human somatosensory system to improve the balance control capabilities of elderly. In addition, clinical studies suggest that visual-auditory biofeedback can improve sensory compensation for the elderly. This study hypothesizes that the static balance and gait performance of single leg quiet standing and treadmill walking could be improved for providing proprioceptive neuromuscular facilitation using sub-sensory stimulation and visual-auditory biofeedback in amputee subjects. To test this, a computerized foot pressure biofeedback sensory compensation system using sub-threshold low-level electrical stimulation combined with visual-auditory biofeedback was developed. Seven unilateral trans-tibial amputees who wore prostheses over 2 years were recruited. The subjects performed multiple single leg quiet standing trials with sub-sensory electrical stimulation applied at the quadriceps muscle during half of the trials. Static balance performance was characterized by using a Zebris motion analysis system to measure the sway distance and duration of the centre of mass on the second sacral (S2) of the subjects. In addition, multiple treadmill ambulatory trials with or without visual-auditory biofeedback was performed. Dynamic gait performance was characterized with a Zebris instrumented insole to measure the temporal responses of foot pressure sensors. Experimental results showed an improvement in three balance performance indices (Holding Time Index, HTI, Maximum Sway Distance Index, MSDI, and Average Sway Distance Index, ASDI) during single leg quiet standing by applying sub-sensory stimulation. The improvement ratio of these balance performance indices across subjects for single leg quiet standing tests resulted in 132.34% in HTI, 44.61% in MSDI, and 61.45% in ASDI. With visual-auditory biofeedback as a cue for heel contact and toe push-off condition during treadmill ambulation, the

  1. Laser Ultrasonic System for Surface Crack Visualization in Dissimilar Welds of Control Rod Drive Mechanism Assembly of Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Yun-Shil Choi

    2014-01-01

    Full Text Available In this paper, we propose a J-groove dissimilar weld crack visualization system based on ultrasonic propagation imaging (UPI technology. A full-scale control rod drive mechanism (CRDM assembly specimen was fabricated to verify the proposed system. An ultrasonic sensor was contacted at one point of the inner surface of the reactor vessel head part of the CRDM assembly. Q-switched laser beams were scanned to generate ultrasonic waves around the weld bead. The localization and sizing of the crack were possible by ultrasonic wave propagation imaging. Furthermore, ultrasonic spectral imaging unveiled frequency components of damage-induced waves, while wavelet-transformed ultrasonic propagation imaging enhanced damage visibility by generating a wave propagation video focused on the frequency component of the damage-induced waves. Dual-directional anomalous wave propagation imaging with adjacent wave subtraction was also developed to enhance the crack visibility regardless of crack orientation and wave propagation direction. In conclusion, the full-scale specimen test demonstrated that the multiple damage visualization tools are very effective in the visualization of J-groove dissimilar weld cracks.

  2. Simulator of the punctual kinetics of a TRIGA Mark III reactor with power diffuse control in a visual environment; Simulador de la cinetica puntual de un reactor nuclear TRIGA Mark III con control difuso de potencia en un ambiente visual

    Energy Technology Data Exchange (ETDEWEB)

    Perez M, C

    2004-07-01

    The development of a software is presented that simulates the punctual kinetics of a nuclear reactor of investigation model TRIGA Mark III, generating the answers of the reactor low different algorithms of control of power. The user requires a graphic interface that allows him easily interacting with the simulator. To achieve the proposed objective, first the system was modeled in open loop, not using a mathematical model of the consistent reactor in a system of linear ordinary differential equations. For their solution in real time the numeric method of Runge-Kutta-Fehlberg was used. As second phase, it was modeled to the system in closed loop, using for it an algorithm of control of the power based on fuzzy logic. This software has as purpose to help the investigator in the control area who will be able to prove different algorithms for the control of the power of the reactor. This is achieved using the code source in language C, C++, Visual Basic, with which a file is generated. DLL and it is inserted in the simulator. Then they will be able to visualize the results as if their controller had installed in the reactor, analyzing the behavior of all his variables that will be stored in files, for his later study. The easiness of proving these control algorithms in the reactor without necessity to make it physically has important consequences as the saving in the expense of fuel, the not generation of radioactive waste and the most important thing, one doesn't run any risk. The simulator can be used how many times it is necessary until the total purification of the algorithm. This program is the base for following investigation processes, enlarging the capacities and options of the same one. The program fulfills the time of execution satisfactorily, assisting to the necessity of visualizing the behavior in real time of the reactor, and it responds from an effective way to the petitions of changes of power on the part of the user. (Author)

  3. In-situ visualization of N2 evolution in operating direct hydrazine hydrate fuel cell by soft X-ray radiography

    Science.gov (United States)

    Sakamoto, Tomokazu; Deevanhxay, Phengxay; Asazawa, Koichiro; Tsushima, Shohji; Hirai, Shuichiro; Tanaka, Hirohisa

    2014-04-01

    Soft X-ray radiography technique was firstly applied to operating direct hydrazine hydrate fuel cell (DHFCs) in order to visualize N2 gas behaviors with high spatial and temporal resolution. Two different cells for in-situ visualization of N2 gas in the DHFCs in in-plane and through-plane direction were designed and fabricated. The utilization of soft X-ray made the visualization of generated N2 behavior in the DHFC possible with the spatial resolution of 1.5 μm and the temporal resolution of 2.0 s frame-1. In the in-plane visualization, the inhomogeneous N2 gas distribution, suggesting non-uniform reaction distribution in the anode of DHFC, was observed. In the through-plane visualization, N2 gas accumulation under the rib of anode and discharge to the channel was clearly observed, which are related with cell performance instability.

  4. The effect of visual therapy on the ocular motor control of seven- to eight-year-old children with developmental coordination disorder (DCD).

    Science.gov (United States)

    Coetzee, Dané; Pienaar, Anita E

    2013-11-01

    The aims of this study were to determine the extent of ocular, motor control problems and the effect of visual therapy on such problems, among seven- to eight-year-old children diagnosed with DCD. Thirty-two, children with a mean age of 95.66 months (SD ± 3.54) participated in the study. The MABC was used to classify children into DCD categories (motor control. A two-group pre-test-post-test, cross-over design was followed with a retention test two years, thereafter to determine the lasting effect of the visual therapy, intervention. The 18-week visual therapy programme was executed once a week, for 40 min during school hours, after which the two groups were, crossed over. Percentages of ocular motor control problems ranging, between 6.25% and 93.75% were found in both the groups before participating, in the visual therapy programme, with the highest percentage problems found, in visual pursuit with the left eye. Visual therapy contributed to a, significant improvement of 75-100% in visual pursuit, fixation, ocular, alignment and convergence, with significant lasting effects (pmotor control.

  5. Aplicações de Controle Servo Visual 2D a Veículos Robóticos

    OpenAIRE

    Silveira, Geraldo; CARVALHO, José R. H.; Rives, Patrick; AZINHEIRA, José R.; BUENO, Samuel Siqueira; MADRID, Marconi K.

    2002-01-01

    Dentre as inúmeras aplicações de visão computacional em robótica, o presente trabalho aborda aplicações de controle servo visual: em tarefas de posicionamento, utilizando um robô móvel terrestre (Nomad 200); de rastreamento de trajetórias; e de fixação sobre marcações no solo, ambas utilizando o dirigível robótico AS-800 para ambientes externos do projeto AURORA.

  6. Severe visual Impairment and blindness in infants: Causes and opportunities for control

    Directory of Open Access Journals (Sweden)

    Parikshit Gogate

    2011-01-01

    Full Text Available Childhood blindness has an adverse effect on growth, development, social, and economic opportunities. Severe visual impairment (SVI and blindness in infants must be detected as early as possible to initiate immediate treatment to prevent deep amblyopia. Although difficult, measurement of visual acuity of an infant is possible. The causes of SVI and blindness may be prenatal, perinatal, and postnatal. Congenital anomalies such as anophthalmos, microphthalmos, coloboma, congenital cataract, infantile glaucoma, and neuro-ophthalmic lesions are causes of impairment present at birth. Ophthalmia neonatorum, retinopathy of prematurity, and cortical visual impairment are acquired during the perinatal period. Leukocoria or white pupillary reflex can be cause by congenital cataract, persistent hyperplastic primary vitreous, or retinoblastoma. While few medical or surgical options are available for congenital anomalies or neuro-ophthalmic disorders, many affected infants can still benefit from low vision aids and rehabilitation. Ideally, surgery for congenital cataracts should occur within the first 4 months of life. Anterior vitrectomy and primary posterior capsulotomy are required, followed by aphakic glasses with secondary intraocular lens implantation at a later date. The treatment of infantile glaucoma is surgery followed by anti-glaucoma medication. Retinopathy of prematurity is a proliferation of the retinal vasculature in response to relative hypoxia in a premature infant. Screening in the first few weeks of life can prevent blindness. Retinoblastoma can be debulked with chemotherapy; however, enucleation may still be required. Neonatologists, pediatricians, traditional birth attendants, nurses, and ophthalmologists should be sensitive to a parent′s complaints of poor vision in an infant and ensure adequate follow-up to determine the cause. If required, evaluation under anesthesia should be performed, which includes funduscopy, refraction

  7. Visiting Richard Serra's "Promenade" sculpture improves postural control and judgment of subjective visual vertical.

    Science.gov (United States)

    Kapoula, Zoï; Lang, Alexandre; Lê, Thanh-Thuan; Adenis, Marie-Sarah; Yang, Qing; Lipede, Gabi; Vernet, Marine

    2014-01-01

    Body sway while maintaining an upright quiet stance reflects an active process of balance based on the integration of visual, vestibular, somatosensory, and proprioceptive inputs. Richard Serra's Promenade sculpture featured in the 2008 Monumenta exhibition at the Grand Palais in Paris, France is herein hypothesized to have stimulated the body's vertical and longitudinal axes as it showcased five monumental rectangular solids pitched at a 1.69(°) angle. Using computerized dynamic posturography we measured the body sway of 23 visitors when fixating a cross, or when observing the artwork (fixating it or actively exploring it with eye movements) before and after walking around and alongside the sculpture (i.e., before and after a promenade). A first fixation at the sculpture increased medio-lateral stability (in terms of spectral power of body sway). Eye movement exploration in the depth of the sculpture increased antero-posterior stability [in terms of spectral power and canceling time (CT) of body sway] at the expense of medio-lateral stability (in terms of CT). Moreover, a medio-lateral instability associated with eye movement exploration before the promenade (in terms of body sway sensu stricto) was canceled after the promenade. Finally, the overall medio-lateral stability (in terms of spectral power) increased after the promenade. Fourteen additional visitors were asked to stand in a dark room and adjust a luminous line to what they considered to be the earth-vertical axis. The promenade executed within the sculpted environment afforded by Serra's monumental statuary works resulted in significantly improved performances on the subjective visual vertical test. We attribute these effects to the sculpted environment provided by the exhibition which may have acted as a kind of physiologic "training ground" thereby improving the visitors' overall sense of visual perspective, equilibrium, and gravity.

  8. Visiting Richard Serra’s Promenade sculpture improves postural control and judgment of subjective visual vertical.

    Directory of Open Access Journals (Sweden)

    Zoï eKapoula

    2014-12-01

    Full Text Available Body sway while maintaining an upright quiet stance reflects an active process of balance based on the integration of visual, vestibular, somatosensory and proprioceptive inputs. Richard Serra’s Promenade sculpture featured in the 2008 Monumenta exhibition at the Grand Palais in Paris, France is herein hypothesised to have stimulated the body’s vertical and longitudinal axes as it showcased 5 monumental rectangular solids pitched at a 1.69° angle.Using computerised dynamic posturography we measured the body sway of 23 visitors when fixating a cross, or when observing the artwork (fixating it or actively exploring it with eye movements before and after walking around and alongside the sculpture (i.e., before and after a promenade. A first fixation at the sculpture increased medio-lateral stability (in terms of spectral power of body sway. Eye movement exploration in the depth of the sculpture increased antero-posterior stability (in terms of spectral power and cancelling time of body sway at the expense of medio-lateral stability (in terms of cancelling time. Moreover, a medio-lateral instability associated with eye movement exploration before the promenade (in terms of body sway sensu stricto was cancelled after the promenade. Finally, the overall medio-lateral stability (in terms of spectral power increased after the promenade.Fourteen additional visitors were asked to sit in a dark room and adjust a luminous line to what they considered to be the earth-vertical axis. The promenade executed within the sculpted environment afforded by Serra’s monumental statuary works resulted in significantly improved performances on the subjective visual vertical test.We attribute these effects to the sculpted environment provided by the exhibition which may have acted as a kind of physiologic training ground thereby improving the visitors’ overall sense of visual perspective, equilibrium and gravity.

  9. Can visual aides influence rehabilitation and length of stay following knee replacement? A randomized controlled study

    Directory of Open Access Journals (Sweden)

    Simon Abson

    2015-03-01

    Full Text Available Arthroplasty is increasingly performed within Australia, with a 2.7% rate increase of total knee arthroplasty (TKR over the last year. With an increasing burden on the public health system and increasing waiting lists, all efforts are being made to decrease length of stay and improve the post operative rehabilitation process. There is currently insufficient evidence to make a conclusive statement about visual aids and improved goal attainment post TKR. The purpose of this study is to evaluate one such visual aid clinical photographs of patients knee range of motion (ROM pre- and post-operatively and their effect on length of stay. Photographs of knee range of motion were obtained pre and post-operatively while the patient was anesthetized. In this study, a randomized, single blinded design allocated patients to either be shown or not shown their photographs on day 1 post operatively. Primary outcome measures were the number of days the patient remained in hospital. Secondary measures were Western Ontario and McMaster Universities Arthritis Index scores, Oxford Knee Scores, American Society of Anesthesiologists Score and knee ROM. Thirty-two patients (3 exclusions were randomized to the photo group and 27 patients (4 exclusions were randomized to the no photo group. The median length of stay between groups was not significantly different. Currently there is not enough evidence to conclude that visual aids effect length of stay or rehabilitation pathways. Further assessment with larger cohort groups is needed. Preoperative targeting and rehabilitation for patients with lower functional status may shorten post operative length of patient stay in our institution.

  10. Direct visualization of endogenous Salmonella-specific B cells reveals a marked delay in clonal expansion and germinal center development.

    Science.gov (United States)

    Nanton, Minelva R; Lee, Seung-Joo; Atif, Shaikh M; Nuccio, Sean-Paul; Taylor, Justin J; Bäumler, Andreas J; Way, Sing Sing; McSorley, Stephen J

    2015-02-01

    CD4(+) T cells and B cells are both essential for acquired immunity to Salmonella infection. It is well established that Salmonella inhibit host CD4(+) T-cell responses, but a corresponding inhibitory effect on B cells is less well defined. Here, we utilize an Ag tetramer and pull-down enrichment strategy to directly visualize OVA-specific B cells in mice, as they respond to infection with Salmonella-OVA. Surprisingly, OVA-specific B-cell expansion and germinal center formation was not detected until bacteria were cleared from the host. Furthermore, Salmonella infection also actively inhibited both B- and T-cell responses to the same coinjected Ag but this did not require the presence of iNOS. The Salmonella Pathogenicity Island 2 (SPI2) locus has been shown to be responsible for inhibition of Salmonella-specific CD4(+) T-cell responses, and an examination of SPI2-deficient bacteria demonstrated a recovery in B-cell expansion in infected mice. Together, these data suggest that Salmonella can simultaneously inhibit host B- and T-cell responses using SPI2-dependent mechanisms.

  11. Visualization and quantitative analysis of extrachromosomal telomere-repeat DNA in individual human cells by Halo-FISH.

    Science.gov (United States)

    Komosa, Martin; Root, Heather; Meyn, M Stephen

    2015-02-27

    Current methods for characterizing extrachromosomal nuclear DNA in mammalian cells do not permit single-cell analysis, are often semi-quantitative and frequently biased toward the detection of circular species. To overcome these limitations, we developed Halo-FISH to visualize and quantitatively analyze extrachromosomal DNA in single cells. We demonstrate Halo-FISH by using it to analyze extrachromosomal telomere-repeat (ECTR) in human cells that use the Alternative Lengthening of Telomeres (ALT) pathway(s) to maintain telomere lengths. We find that GM847 and VA13 ALT cells average ∼80 detectable G/C-strand ECTR DNA molecules/nucleus, while U2OS ALT cells average ∼18 molecules/nucleus. In comparison, human primary and telomerase-positive cells contain 300), range widely in length (200 kb) and are composed of primarily G- or C-strand telomere-repeat DNA. Halo-FISH enables, for the first time, the simultaneous analysis of ECTR DNA and chromosomal telomeres in a single cell. We find that ECTR DNA comprises ∼15% of telomere-repeat DNA in GM847 and VA13 cells, but FISH can facilitate the study of a wide variety of extrachromosomal DNA in mammalian cells.

  12. Adiponectinemia controls pro-angiogenic cell therapy.

    Science.gov (United States)

    Eren, Philippe; Camus, Stéphane; Matrone, Gianfranco; Ebrahimian, Téni G; François, Delphine; Tedgui, Alain; Sébastien Silvestre, Jean; Blanc-Brude, Olivier P

    2009-11-01

    Angiogenic cell therapy with the transplantation of endothelial progenitor cells (EPC) or bone marrow mononuclear cells (BM-MNC) receives considerable attention as an approach to revascularize ischemic tissues. Adiponectin is a circulating hormone produced by the apM1 gene in adipocytes. Adiponectin modulates lipid metabolism and obesity, and it was recently found to promote physiological angiogenesis in response to ischemia. Patients with multiple cardiovascular disease risk factors or myocardial infarction may benefit from progenitor cell therapy, but they display depressed adiponectinemia. We hypothesized that adiponectin stimulation of transplanted cells is critical for their pro-angiogenic function. We aimed to establish whether adiponectinemia in the cell donor or in the cell recipient determines the success of pro-angiogenic cell therapy. In vitro, we found that conditioned media derived from wild-type adipocytes (adipo-CM) or purified adiponectin strongly enhanced BM-MNC survival and proliferation and stimulated EPC differentiation, whereas adipo-CM from apM1-/- adipocytes was one-half less effective. On the other hand, wild-type and apM1-/- BM-MNC displayed similar resistance to apoptosis and proliferation rates. In vivo, wild-type, and apM1-/- BM-MNC induced similar angiogenic reactions in wild-type ischemic hindlimbs. In contrast, wild-type BM-MNC had much diminished effects in apM1-/- ischemic hindlimbs. We concluded that adiponectin enhances BM-MNC survival and proliferation, and adiponectinemia in the cell therapy recipient is essential for the pro-angiogenic benefits of cell therapy. These observations imply that progenitor cell transplantation might only induce angiogenesis in patients with high adiponectinemia.

  13. The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential

    Science.gov (United States)

    Ma, Teng; Li, Hui; Deng, Lili; Yang, Hao; Lv, Xulin; Li, Peiyang; Li, Fali; Zhang, Rui; Liu, Tiejun; Yao, Dezhong; Xu, Peng

    2017-04-01

    Objective. Movement control is an important application for EEG-BCI (EEG-based brain–computer interface) systems. A single-modality BCI cannot provide an efficient and natural control strategy, but a hybrid BCI system that combines two or more different tasks can effectively overcome the drawbacks encountered in single-modality BCI control. Approach. In the current paper, we developed a new hybrid BCI system by combining MI (motor imagery) and mVEP (motion-onset visual evoked potential), aiming to realize the more efficient 2D movement control of a cursor. Main result. The offline analysis demonstrates that the hybrid BCI system proposed in this paper could evoke the desired MI and mVEP signal features simultaneously, and both are very close to those evoked in the single-modality BCI task. Furthermore, the online 2D movement control experiment reveals that the proposed hybrid BCI system could provide more efficient and natural control commands. Significance. The proposed hybrid BCI system is compensative to realize efficient 2D movement control for a practical online system, especially for those situations in which P300 stimuli are not suitable to be applied.

  14. Assessment of Visual Reliance in Balance Control: An Inexpensive Extension of the Static Posturography

    Directory of Open Access Journals (Sweden)

    Jozef Púčik

    2014-01-01

    Full Text Available Ability of humans to maintain balance in an upright stance and during movement activities is one of the most natural skills affecting everyday life. This ability progressively deteriorates with increasing age, and balance impairment, often aggravated by age-related diseases, can result in falls that adversely impact the quality of life. Falls represent serious problems of health concern associated with aging. Many investigators, involved in different science disciplines such as medicine, engineering, psychology, and sport, have been attracted by a research of the human upright stance. In a clinical practice, stabilometry based on the force plate is the most widely available procedure used to evaluate the balance. In this paper, we have proposed a low-cost extension of the conventional stabilometry by the multimedia technology that allows identifying potentially disturbing effects of visual sensory information. Due to the proposed extension, a stabilometric assessment in terms of line integral of center of pressure (COP during moving scene stimuli shows higher discrimination power between young healthy and elderly subjects with supposed stronger visual reliance.

  15. Controling stem cell proliferation - CKIs at work

    NARCIS (Netherlands)

    Bruggeman, SWM; van Lohuizen, M

    2006-01-01

    The cyclin-dependent kinase inhibitors or CKIs are well recognized as intrinsic regulators of the cell cycle. Here, we discuss recent data implicating their activity in restraining adult stem cell self-renewal, and the role that proteins regulating CKI expression play in this process.

  16. Control of cell proliferation by Myc

    DEFF Research Database (Denmark)

    Bouchard, C; Staller, P; Eilers, M

    1998-01-01

    Myc proteins are key regulators of mammalian cell proliferation. They are transcription factors that activate genes as part of a heterodimeric complex with the protein Max. This review summarizes recent progress in understanding how Myc stimulates cell proliferation and how this might contribute...

  17. Electrolytic valving isolation of cell co-culture microenvironment with controlled cell pairing ratios.

    Science.gov (United States)

    Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik

    2014-12-21

    Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial-temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we have presented a cell-cell interaction microfluidic platform that can accurately control the co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We have verified that the electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we have performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays were successfully performed which showed that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells.

  18. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...

  19. Control of cell cycle and cell growth by molecular chaperones.

    Science.gov (United States)

    Aldea, Martí; Garí, Eloi; Colomina, Neus

    2007-11-01

    Cells adapt their size to both intrinsic and extrinsic demands and, among them, those that stem from growth and proliferation rates are crucial for cell size homeostasis. Here we revisit mechanisms that regulate cell cycle and cell growth in budding yeast. Cyclin Cln3, the most upstream activator of Start, is retained at the endoplasmic reticulum in early G(1) and released by specific chaperones in late G(1) to initiate the cell cycle. On one hand, these chaperones are rate-limiting for release of Cln3 and cell cycle entry and, on the other hand, they are required for key biosynthetic processes. We propose a model whereby the competition for specialized chaperones between growth and cycle machineries could gauge biosynthetic rates and set a critical size threshold at Start.

  20. Nanotopographical Control of Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Laura E. McNamara

    2010-01-01

    Full Text Available Stem cells have the capacity to differentiate into various lineages, and the ability to reliably direct stem cell fate determination would have tremendous potential for basic research and clinical therapy. Nanotopography provides a useful tool for guiding differentiation, as the features are more durable than surface chemistry and can be modified in size and shape to suit the desired application. In this paper, nanotopography is examined as a means to guide differentiation, and its application is described in the context of different subsets of stem cells, with a particular focus on skeletal (mesenchymal stem cells. To address the mechanistic basis underlying the topographical effects on stem cells, the likely contributions of indirect (biochemical signal-mediated and direct (force-mediated mechanotransduction are discussed. Data from proteomic research is also outlined in relation to topography-mediated fate determination, as this approach provides insight into the global molecular changes at the level of the functional effectors.

  1. Energy, control and DNA structure in the living cell

    DEFF Research Database (Denmark)

    Wijker, J.E.; Jensen, Peter Ruhdal; Gomes, A. Vaz;

    1995-01-01

    control cell physiology. Indeed, in the living cell homeostatic control mechanisms might exist for the free-energy transduction pathways so as to prevent perturbation of cellular function when the Gibbs energy supply is compromised. This presentation addresses the extent to which the intracellular ATP...... level is involved in the control of cell physiology, how the elaborate control of cell function may be analyzed theoretically and quantitatively, and if this can be utilized selectively to affect certain cell types.......Maintenance (let alone growth) of the highly ordered living cell is only possible through the continuous input of free energy. Coupling of energetically downhill processes (such as catabolic reactions) to uphill processes is essential to provide this free energy and is catalyzed by enzymes either...

  2. Engineering models and methods for industrial cell control

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1997-01-01

    control and monitor-ing systems for production cells. The project participants are The Danish Academy of Technical Sciences, the Institute of Manufacturing Engineering at the Technical University of Denmark and ODENSE STEEL SHIPYARD Ltd.The manufacturing environment and the current practice......This paper is concerned with the engineering, i.e. the designing and making, of industrial cell control systems. The focus is on automated robot welding cells in the shipbuilding industry. The industrial research project defines models and methods for design and implemen-tation of computer based....... Further, an engineering methodology is defined. The three elements enablers, architecture and methodology constitutes the Cell Control Engineering concept which has been defined and evaluated through the implementation of two cell control systems for robot welding cells in production at ODENSE STEEL...

  3. Applications of visual evoked potentials and Fourier-domain optical coherence tomography in Parkinson's disease: a controlled study

    Directory of Open Access Journals (Sweden)

    Lucas Barasnevicius Quagliato

    2014-08-01

    Full Text Available Purpose: The goal of this cross-sectional observational study was to quantify the pattern-shift visual evoked potentials (VEP and the thickness as well as the volume of retinal layers using optical coherence tomography (OCT across a cohort of Parkinson's disease (PD patients and age-matched controls. Methods: Forty-three PD patients and 38 controls were enrolled. All participants underwent a detailed neurological and ophthalmologic evaluation. Idiopathic PD cases were included. Cases with glaucoma or increased intra-ocular pressure were excluded. Patients were assessed by VEP and high-resolution Fourier-domain OCT, which quantified the inner and outer thicknesses of the retinal layers. VEP latencies and the thicknesses of the retinal layers were the main outcome measures. Results: The mean age, with standard deviation (SD, of the PD patients and controls were 63.1 (7.5 and 62.4 (7.2 years, respectively. The patients were predominantly in the initial Hoehn-Yahr (HY disease stages (34.8% in stage 1 or 1.5, and 55.8 % in stage 2. The VEP latencies and the thicknesses as well as the volumes of the retinal inner and outer layers of the groups were similar. A negative correlation between the retinal thickness and the age was noted in both groups. The thickness of the retinal nerve fibre layer (RNFL was 102.7 μm in PD patients vs. 104.2 μm in controls. Conclusions: The thicknesses of retinal layers, VEP, and RNFL of PD patients were similar to those of the controls. Despite the use of a representative cohort of PD patients and high-resolution OCT in this study, further studies are required to establish the validity of using OCT and VEP measurements as the anatomic and functional biomarkers for the evaluation of retinal and visual pathways in PD patients.

  4. Direct visualization of secretion from single bovine adrenal chromaffin cells by laser-induced native fluorescence imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong, W.; Yeung, E.S. [Ames Laboratory---USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

    1998-03-01

    Direct visualization of the secretion process of individual bovine adrenal chromaffin cells was achieved with laser-induced native fluorescence imaging microscopy. By monitoring the native fluorescence of catecholamines excited by the 275 nm laser line with an intensified charge-coupled-device (CCD) camera, we obtained good temporal and spatial resolution simultaneously without using additional fluorescent probes. Large variations were found among individual cells in terms of the amounts of catecholamines secreted and the rates of secretion. Different regions of a cell also behave differently during the secretion process. However, the degree of this local heterogeneity is smaller than in neurons and neuralgia. The influence of deep-ultraviolet (UV) laser excitation on cells is also discussed. This quantitative imaging technique provides a useful noninvasive approach for the study of dynamic cellular changes and the understanding of the molecular mechanisms of secretory processes. {copyright} {ital 1998} {ital Society for Applied Spectroscopy}

  5. CAD Model and Visual Assisted Control System for NIF Target Area Positioners

    Energy Technology Data Exchange (ETDEWEB)

    Tekle, E A; Wilson, E F; Paik, T S

    2007-10-03

    The National Ignition Facility (NIF) target chamber contains precision motion control systems that reach up to 6 meters into the target chamber for handling targets and diagnostics. Systems include the target positioner, an alignment sensor, and diagnostic manipulators (collectively called positioners). Target chamber shot experiments require a variety of positioner arrangements near the chamber center to be aligned to an accuracy of 10 micrometers. Positioners are some of the largest devices in NIF, and they require careful monitoring and control in 3 dimensions to prevent interferences. The Integrated Computer Control System provides efficient and flexible multi-positioner controls. This is accomplished through advanced video-control integration incorporating remote position sensing and realtime analysis of a CAD model of target chamber devices. The control system design, the method used to integrate existing mechanical CAD models, and the offline test laboratory used to verify proper operation of the control system are described.

  6. Visual input controls the functional activity of goldfish Mauthner neuron through the reciprocal synaptic mechanism.

    Science.gov (United States)

    Moshkov, Dmitry A; Shtanchaev, Rashid S; Mikheeva, Irina B; Bezgina, Elena N; Kokanova, Nadezhda A; Mikhailova, Gulnara Z; Tiras, Nadezhda R; Pavlik, Lyubov' L

    2013-03-01

    Goldfish are known to exhibit motor asymmetry due to functional asymmetry of their Mauthner neurons that induce the turns to the right or left during free swimming. It has been previously found that if the less active neuron is subjected to prolonged aimed visual stimulation via its ventral dendrite, the motor asymmetry of goldfish is inverted, testifying that this neuron becomes functionally dominant, while the size of the ventral dendrite under these conditions is reduced 2-3 times compared to its counterpart in mirror neuron. Earlier it has been also revealed that training optokinetic stimulation induces adaptation, a substantial resistance of both fish motor asymmetry and morphofunctional state of Mauthner neurons against prolonged optokinetic stimulation. The aim of this work was to study the cellular mechanisms of the effect of an unusual visual afferent input on goldfish motor asymmetry and Mauthner neuron function in norm and under adaptation. It was shown that serotonin applied onto Mauthner neurons greatly reduces their activity whereas its antagonist ondansetron increases it. Against the background of visual stimulation, serotonin strengthens functional asymmetry between neurons whereas ondansetron smoothes it. Taken together these data suggest the involvement of serotonergic excitatory synaptic transmission in the regulation of Mauthner neurons by vision. Ultrastructural study of the ventral dendrites after prolonged optokinetic stimulation has revealed depletions of numeral axo-axonal synapses with specific morphology, identified by means of immunogold label as serotonergic ones. These latter in turn are situated mainly on shaft boutons, which according to specific ultrastructural features are assigned to axo-dendritic inhibitory synapses. Thus, the excitatory serotonergic synapses seem to affect Mauthner neuron indirectly through inhibitory synapses. Further, it was morphometrically established that adaptation is accompanied by the significant

  7. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.

    Science.gov (United States)

    Veras, Eduardo J; De Laurentis, Kathryn J; Dubey, Rajiv

    2008-01-01

    This paper describes the design and implementation of a control system that integrates visual and haptic information to give assistive force feedback through a haptic controller (Omni Phantom) to the user. A sensor-based assistive function and velocity scaling program provides force feedback that helps the user complete trajectory following exercises for rehabilitation purposes. This system also incorporates a PUMA robot for teleoperation, which implements a camera and a laser range finder, controlled in real time by a PC, were implemented into the system to help the user to define the intended path to the selected target. The real-time force feedback from the remote robot to the haptic controller is made possible by using effective multithreading programming strategies in the control system design and by novel sensor integration. The sensor-based assistant function concept applied to teleoperation as well as shared control enhances the motion range and manipulation capabilities of the users executing rehabilitation exercises such as trajectory following along a sensor-based defined path. The system is modularly designed to allow for integration of different master devices and sensors. Furthermore, because this real-time system is versatile the haptic component can be used separately from the telerobotic component; in other words, one can use the haptic device for rehabilitation purposes for cases in which assistance is needed to perform tasks (e.g., stroke rehab) and also for teleoperation with force feedback and sensor assistance in either supervisory or automatic modes.

  8. Somatostatin Interneurons Control a Key Component of Mismatch Negativity in Mouse Visual Cortex.

    Science.gov (United States)

    Hamm, Jordan P; Yuste, Rafael

    2016-07-19

    Patients with schizophrenia have deficient sensory processing, undermining how they perceive and relate to a changing environment. This impairment can be captured by the reduced mismatch negativity (MMN) index, an electroencephalographic biomarker of psychosis. The biological factors contributing to MMN are unclear, though mouse research, in which genetic and optical methods could be applied, has given some insight. Using fast two-photon calcium imaging and multielectrode recordings in awake mice, we find that visual cortical circuits display adapted (decreased) responses to repeated stimuli and amplified responses to a deviant stimulus, the key component of human MMN. Moreover, pharmacogenetic silencing of somatostatin-containing interneurons specifically eliminated this amplification, along with its associated theta/alpha-band response, leaving stimulus-specific adaption and related gamma-band modulations intact. Our results validate a mouse model of MMN and suggest that abnormalities in somatostatin-containing interneurons cause sensory deficits underlying MMN and schizophrenia.

  9. Somatostatin Interneurons Control a Key Component of Mismatch Negativity in Mouse Visual Cortex

    Directory of Open Access Journals (Sweden)

    Jordan P. Hamm

    2016-07-01

    Full Text Available Patients with schizophrenia have deficient sensory processing, undermining how they perceive and relate to a changing environment. This impairment can be captured by the reduced mismatch negativity (MMN index, an electroencephalographic biomarker of psychosis. The biological factors contributing to MMN are unclear, though mouse research, in which genetic and optical methods could be applied, has given some insight. Using fast two-photon calcium imaging and multielectrode recordings in awake mice, we find that visual cortical circuits display adapted (decreased responses to repeated stimuli and amplified responses to a deviant stimulus, the key component of human MMN. Moreover, pharmacogenetic silencing of somatostatin-containing interneurons specifically eliminated this amplification, along with its associated theta/alpha-band response, leaving stimulus-specific adaption and related gamma-band modulations intact. Our results validate a mouse model of MMN and suggest that abnormalities in somatostatin-containing interneurons cause sensory deficits underlying MMN and schizophrenia.

  10. The Future of Visual BASIC.NET Based Simulation for Industrial Automation: Distributed Control Systems

    Science.gov (United States)

    Tun, Hla Myo

    2008-10-01

    Visual Basic.net (VB.net) based simulation presents a unique opportunity for revolutionary changes in the process of developing simulation models and in the mission of the simulation software firms that provide tools to support the model development process. VB.net enables a new version of a simulation industry populated by application-specific simulation specialists who generate compatible and reusable simulation component. These object-oriented components can be developed using inexpensive and professional quality VB.net development environments. This discussion is an overview of the features and future benefits of VB.net based simulation. It is targeted at experienced simulation practitioners who understand the limitations of existing tools and the need for object-oriented, standardized and reusable modeling software.

  11. An Enhanced Intelligent Handheld Instrument with Visual Servo Control for 2-DOF Hand Motion Error Compensation

    Directory of Open Access Journals (Sweden)

    Yan Naing Aye

    2013-10-01

    Full Text Available The intelligent handheld instrument, ITrem2, enhances manual positioning accuracy by cancelling erroneous hand movements and, at the same time, provides automatic micromanipulation functions. Visual data is acquired from a high speed monovision camera attached to the optical surgical microscope and acceleration measurements are acquired from the inertial measurement unit (IMU on board ITrem2. Tremor estimation and canceling is implemented via Band-limited Multiple Fourier Linear Combiner (BMFLC filter. The piezoelectric actuated micromanipulator in ITrem2 generates the 3D motion to compensate erroneous hand motion. Preliminary bench-top 2-DOF experiments have been conducted. The error motions simulated by a motion stage is reduced by 67% for multiple frequency oscillatory motions and 56.16% for pre-conditioned recorded physiological tremor.

  12. The dynamics of individual nucleosomes controls the chromatin condensation pathway: direct AFM visualization of variant chromatin

    CERN Document Server

    Montel, Fabien; Castelnovo, Martin; Bednar, Jan; Dimitrov, Stefan; Angelov, Dimitar; Faivre-Moskalenko, Cendrine

    2009-01-01

    Chromatin organization and dynamics is studied in this work at scales ranging from single nucleosome to nucleosomal array by using a unique combination of biochemical assays, single molecule imaging technique and numerical modeling. We demonstrate that a subtle modification in the nucleosome structure induced by the histone variant H2A.Bbd drastically modifies the higher order organization of the nucleosomal arrays. Importantly, as directly visualized by AFM, conventional H2A nucleosomal arrays exhibit specific local organization, in contrast to H2A.Bbd arrays, which show ?beads on a string? structure. The combination of systematic image analysis and theoretical modeling allows a quantitative description relating the observed gross structural changes of the arrays to their local organization. Our results strongly suggest that higher-order organization of H1-free nucleosomal arrays is mainly determined by the fluctuation properties of individual nucleosomes. Moreover, numerical simulations suggest the existenc...

  13. Electrically controlled dispersion in a nematic cell

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Carlos I. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-360, 04510 Mexico, D.F. (Mexico)]. E-mail: cmendoza@iim.unam.mx; Olivares, J.A. [Centro de Investigacion en Polimeros, COMEX, Blvd. M. Avila Camacho 138, PH1 y 2, Lomas de Chapultepec 11560, Mexico, D.F. (Mexico); Reyes, J.A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, 01000 Mexico, D.F. (Mexico)

    2007-01-01

    In this work, we show theoretically how the trajectories of a propagating optical beam traveling in a planar-homeotropic hybrid nematic crystal cell depend on the wavelength of the optical beam. We apply a uniform electric field perpendicular to the cell to modify these trajectories. The influence of both, the electric field intensity and the refraction index dependence on the wavelength, give rise to an electrically tuned dispersion that may be useful for practical applications.

  14. Calibration plot for proteomics: A graphical tool to visually check the assumptions underlying FDR control in quantitative experiments.

    Science.gov (United States)

    Giai Gianetto, Quentin; Combes, Florence; Ramus, Claire; Bruley, Christophe; Couté, Yohann; Burger, Thomas

    2016-01-01

    In MS-based quantitative proteomics, the FDR control (i.e. the limitation of the number of proteins that are wrongly claimed as differentially abundant between several conditions) is a major postanalysis step. It is classically achieved thanks to a specific statistical procedure that computes the adjusted p-values of the putative differentially abundant proteins. Unfortunately, such adjustment is conservative only if the p-values are well-calibrated; the false discovery control being spuriously underestimated otherwise. However, well-calibration is a property that can be violated in some practical cases. To overcome this limitation, we propose a graphical method to straightforwardly and visually assess the p-value well-calibration, as well as the R codes to embed it in any pipeline. All MS data have been deposited in the ProteomeXchange with identifier PXD002370 (http://proteomecentral.proteomexchange.org/dataset/PXD002370).

  15. Cell-cycle times and the tumour control probability.

    Science.gov (United States)

    Maler, Adrian; Lutscher, Frithjof

    2010-12-01

    Mechanistic dynamic cell population models for the tumour control probability (TCP) to date have used a simplistic representation of the cell cycle: either an exponential cell-cycle time distribution (Zaider & Minerbo, 2000, Tumour control probability: a formulation applicable to any temporal protocol of dose delivery. Phys. Med. Biol., 45, 279-293) or a two-compartment model (Dawson & Hillen, 2006, Derivation of the tumour control probability (TCP) from a cell cycle model. Comput. Math. Methods Med., 7, 121-142; Hillen, de Vries, Gong & Yurtseven, 2009, From cell population models to tumour control probability: including cell cycle effects. Acta Oncol. (submitted)). Neither of these simplifications captures realistic cell-cycle time distributions, which are rather narrowly peaked around the mean. We investigate how including such distributions affects predictions of the TCP. At first, we revisit the so-called 'active-quiescent' model that splits the cell cycle into two compartments and explore how an assumption of compartmental independence influences the predicted TCP. Then, we formulate a deterministic age-structured model and a corresponding branching process. We find that under realistic cell-cycle time distributions, lower treatment intensities are sufficient to obtain the same TCP as in the aforementioned models with simplified cell cycles, as long as the treatment is constant in time. For fractionated treatment, the situation reverses such that under realistic cell-cycle time distributions, the model requires more intense treatment to obtain the same TCP.

  16. A High-Speed, Real-Time Visualization and State Estimation Platform for Monitoring and Control of Electric Distribution Systems: Implementation and Field Results

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, Blake; Gotseff, Peter; Giraldez, Julieta; Coddington, Michael

    2015-10-05

    Continued deployment of renewable and distributed energy resources is fundamentally changing the way that electric distribution systems are controlled and operated; more sophisticated active system control and greater situational awareness are needed. Real-time measurements and distribution system state estimation (DSSE) techniques enable more sophisticated system control and, when combined with visualization applications, greater situational awareness. This paper presents a novel demonstration of a high-speed, real-time DSSE platform and related control and visualization functionalities, implemented using existing open-source software and distribution system monitoring hardware. Live scrolling strip charts of meter data and intuitive annotated map visualizations of the entire state (obtained via DSSE) of a real-world distribution circuit are shown. The DSSE implementation is validated to demonstrate provision of accurate voltage data. This platform allows for enhanced control and situational awareness using only a minimum quantity of distribution system measurement units and modest data and software infrastructure.

  17. Visualization of molecular composition and functionality of cancer cells using nanoparticle-augmented ultrasound-guided photoacoustics

    Science.gov (United States)

    Mallidi, Srivalleesha; Kim, Seungsoo; Karpiouk, Andrei; Joshi, Pratixa P.; Sokolov, Konstantin; Emelianov, Stanislav

    2015-01-01

    Assessment of molecular signatures of tumors in addition to their anatomy and morphology is desired for effective diagnostic and therapeutic procedures. Development of in vivo imaging techniques that can identify and monitor molecular composition of tumors remains an important challenge in pre-clinical research and medical practice. Here we present a molecular photoacoustic imaging technique that can visualize the presence and activity of an important cancer biomarker – epidermal growth factor receptor (EGFR), utilizing the effect of plasmon resonance coupling between molecular targeted gold nanoparticles. Specifically, spectral analysis of photoacoustic images revealed profound changes in the optical absorption of systemically delivered EGFR-targeted gold nanospheres due to their molecular interactions with tumor cells overexpressing EGFR. In contrast, no changes in optical properties and, therefore, photoacoustic signal, were observed after systemic delivery of non-targeted gold nanoparticles to the tumors. The results indicate that multi-wavelength photoacoustic imaging augmented with molecularly targeted gold nanoparticles has the ability to monitor molecular specific interactions between nanoparticles and cell-surface receptors, allowing visualization of the presence and functional activity of tumor cells. Furthermore, the approach can be used for other cancer cell-surface receptors such as human epidermal growth factor receptor 2 (HER2). Therefore, ultrasound-guided molecular photoacoustic imaging can potentially aid in tumor diagnosis, selection of customized patient-specific treatment, and monitor the therapeutic progression and outcome in vivo. PMID:25893171

  18. Visual selection and maintenance of the cell lines with high plant regeneration ability and low ploidy level in Dianthus acicularis by monitoring with flow cytometry analysis.

    Science.gov (United States)

    Shiba, Tomonori; Mii, Masahiro

    2005-12-01

    Efficient plant regeneration system from cell suspension cultures was established in D. acicularis (2n=90) by monitoring ploidy level and visual selection of the cultures. The ploidy level of the cell cultures closely related to the shoot regeneration ability. The cell lines comprising original ploidy levels (2C+4C cells corresponding to DNA contents of G1 and G2 cells of diploid plant, respectively) showed high regeneration ability, whereas those containing the cells with 8C or higher DNA C-values showed low or no regeneration ability. The highly regenerable cell lines thus selected consisted of compact cell clumps with yellowish color and relatively moderate growth, suggesting that it is possible to select visually the highly regenerable cell lines with the original ploidy level. All the regenerated plantlets from the highly regenerable cell cultures exhibited normal phenotypes and no variations in ploidy level were observed by flow cytometry (FCM) analysis.

  19. STATIC AND DYNAMIC POSTURE CONTROL IN POSTLINGUAL COCHLEAR IMPLANTED PATIENTS: Effects of dual-tasking, visual and auditory inputs suppression

    Directory of Open Access Journals (Sweden)

    BERNARD DEMANZE eLaurence

    2014-01-01

    Full Text Available Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body’s position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of post-lingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static and dynamic conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO and eyes closed (EC conditions, with the cochlear implant activated (ON or not (OFF. Results showed that the CI patients significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk while the controls showed a whole body rigidification strategy. Hearing (prosthesis on as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions.

  20. NF-Protocadherin Regulates Retinal Ganglion Cell Axon Behaviour in the Developing Visual System.

    Directory of Open Access Journals (Sweden)

    Louis C Leung

    Full Text Available Cell adhesion molecules play a central role in mediating axonal tract development within the nascent nervous system. NF-protocadherin (NFPC, a member of the non-clustered protocadherin family, has been shown to regulate retinal ganglion cell (RGC axon and dendrite initiation, as well as influencing axonal navigation within the mid-optic tract. However, whether NFPC mediates RGC axonal behaviour at other positions within the optic pathway remains unclear. Here we report that NFPC plays an important role in RGC axonogenesis, but not in intraretinal guidance. Moreover, axons with reduced NFPC levels exhibit insensitivity to Netrin-1, an attractive guidance cue expressed at the optic nerve head. Netrin-1 induces rapid turnover of NFPC localized to RGC growth cones, suggesting that the regulation of NFPC protein levels may underlie Netrin-1-mediated entry of RGC axons into the optic nerve head. At the tectum, we further reveal a function for NFPC in controlling RGC axonal entry into the final target area. Collectively, our results expand our understanding of the role of NFPC in RGC guidance and illustrate that this adhesion molecule contributes to axon behaviour at multiple points in the optic pathway.

  1. Computer control of a microgravity mammalian cell bioreactor

    Science.gov (United States)

    Hall, William A.

    1987-01-01

    The initial steps taken in developing a completely menu driven and totally automated computer control system for a bioreactor are discussed. This bioreactor is an electro-mechanical cell growth system cell requiring vigorous control of slowly changing parameters, many of which are so dynamically interactive that computer control is a necessity. The process computer will have two main functions. First, it will provide continuous environmental control utilizing low signal level transducers as inputs and high powered control devices such as solenoids and motors as outputs. Secondly, it will provide continuous environmental monitoring, including mass data storage and periodic data dumps to a supervisory computer.

  2. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Spray David C

    2011-02-01

    Full Text Available Abstract Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs have been used to label and visualize various cell types with magnetic resonance imaging (MRI. In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide alone or with poly-L-lysine (PLL or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol

  3. Three dimensional visualization and fractal analysis of mosaic patches in rat chimeras: cell assortment in liver, adrenal cortex and cornea.

    Science.gov (United States)

    Iannaccone, Stephen; Zhou, Yue; Walterhouse, David; Taborn, Greg; Landini, Gabriel; Iannaccone, Philip

    2012-01-01

    The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division) switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations.

  4. Three dimensional visualization and fractal analysis of mosaic patches in rat chimeras: cell assortment in liver, adrenal cortex and cornea.

    Directory of Open Access Journals (Sweden)

    Stephen Iannaccone

    Full Text Available The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations.

  5. Avaliação visual como um programa de controle de qualidade em radiologia odontológica = Visual evaluation as a quality control program in dental radiology

    Directory of Open Access Journals (Sweden)

    Damian, Melissa Feres

    2008-01-01

    Full Text Available Objetivo: Este estudo teve por objetivo avaliar se alterações de densidade e contraste em radiografias, causadas pela degradação das soluções processadoras, podem ser visualmente identificadas. Metodologia: Foram obtidas 60 radiografias periapicais utilizado uma escala de densidades ou um phantom, processadas em uma caixa portátil com líquidos revelador e fixador em progressiva degradação ao longo de 30 dias do experimento. Os filmes da escala de densidades foram usados para avaliar a diminuição percentual de densidade e contraste, e os expostos com o phantom, para a avaliação visual. Nesta última, 18 cirurgiões-dentistas atribuíram notas às radiografias de acordo com a possibilidade de interpretação das imagens. Resultados: Constatou-se que só foram consideradas impróprias para diagnóstico as radiografias que apresentaram perdas médias de 45% de densidade e 62% de contraste. Conclusão: Concluiu-se que a avaliação clínica visual é inadequada para ser executada como um programa único de controle de qualidade de radiografias dentais

  6. Ad-hoc and context-dependent adjustments of selective attention in conflict control: an ERP study with visual probes.

    Science.gov (United States)

    Nigbur, R; Schneider, J; Sommer, W; Dimigen, O; Stürmer, B

    2015-02-15

    Cognitive conflict control in flanker tasks has often been described using the zoom-lens metaphor of selective attention. However, whether and how selective attention - in terms of suppression and enhancement - operates in this context has remained unclear. To examine the dynamic interplay of selective attention and cognitive control we used electrophysiological measures and presented task-irrelevant visual probe stimuli at foveal, parafoveal, and peripheral display positions. Target-flanker congruency varied either randomly from trial to trial (mixed-block) or block-wise (fixed-block) in order to induce reactive versus proactive control modes, respectively. Three EEG measures were used to capture ad-hoc adjustments within trials as well as effects of context-based predictions: the N1 component of the visual evoked potential (VEP) to probes, the VEP to targets, and the conflict-related midfrontal N2 component. Results from probe-VEPs indicate that enhanced processing of the foveal target rather than suppression of the peripheral flankers supports interference control. In incongruent mixed-block trials VEPs were larger to probes near the targets. In the fixed-blocks probe-VEPs were not modulated, but contrary to the mixed-block the preceding target-related VEP was affected by congruency. Results of the control-related N2 reveal largest amplitudes in the unpredictable context, which did not differentiate for stimulus and response incongruency. In contrast, in the predictable context, N2 amplitudes were reduced overall and differentiated between stimulus and response incongruency. Taken together these results imply that predictability alters interference control by a reconfiguration of stimulus processing. During unpredictable sequences participants adjust their attentional focus dynamically on a trial-by-trial basis as reflected in congruency-dependent probe-VEP-modulation. This reactive control mode also elicits larger N2 amplitudes. In contrast, when task demands

  7. Analysis of stochastic stem cell models with control.

    Science.gov (United States)

    Yang, Jienian; Sun, Zheng; Komarova, Natalia L

    2015-08-01

    Understanding the dynamics of stem cell lineages is of central importance both for healthy and cancerous tissues. We study stochastic population dynamics of stem cells and differentiated cells, where cell decisions, such as proliferation vs. differentiation decisions, or division and death decisions, are under regulation from surrounding cells. The goal is to understand how different types of control mechanisms affect the means and variances of cell numbers. We use the assumption of weak dependencies of the regulatory functions (the controls) on the cell populations near the equilibrium to formulate moment equations. We then study three different methods of closure, showing that they all lead to the same results for the highest order terms in the expressions for the moments. We derive simple explicit expressions for the means and the variances of stem cell and differentiated cell numbers. It turns out that the variance is expressed as an algebraic function of partial derivatives of the controls with respect to the population sizes at the equilibrium. We demonstrate that these findings are consistent with the results previously obtained in the context of particular systems, and also present two novel examples with negative and positive control of division and differentiation decisions. This methodology is formulated without any specific assumptions on the functional form of the controls, and thus can be used for any biological system.

  8. Analogue mouse pointer control via an online steady state visual evoked potential (SSVEP) brain-computer interface

    Science.gov (United States)

    Wilson, John J.; Palaniappan, Ramaswamy

    2011-04-01

    The steady state visual evoked protocol has recently become a popular paradigm in brain-computer interface (BCI) applications. Typically (regardless of function) these applications offer the user a binary selection of targets that perform correspondingly discrete actions. Such discrete control systems are appropriate for applications that are inherently isolated in nature, such as selecting numbers from a keypad to be dialled or letters from an alphabet to be spelled. However motivation exists for users to employ proportional control methods in intrinsically analogue tasks such as the movement of a mouse pointer. This paper introduces an online BCI in which control of a mouse pointer is directly proportional to a user's intent. Performance is measured over a series of pointer movement tasks and compared to the traditional discrete output approach. Analogue control allowed subjects to move the pointer faster to the cued target location compared to discrete output but suffers more undesired movements overall. Best performance is achieved when combining the threshold to movement of traditional discrete techniques with the range of movement offered by proportional control.

  9. P2-11: Attentional Control Setting Did Not Alter the Interference from Global Collinear Distractor in Visual Search

    Directory of Open Access Journals (Sweden)

    Wan-Chen Chang

    2012-10-01

    Full Text Available A salient item usually captures our attention in visual search. When a distractor is salient, it should help observers to find a target that was overlapping it. However, in Jingling and Tseng (in press Journal of Experimental Psychology: Human Perception and Performance doi: 10.1037/a0027325, a target overlapping with a salient distractor took longer to discriminate than that which was non-overlapped, if the salient distractor was grouped by collinearity. One of the reasons for prolonged responses in overlapping targets is that the collinear distractor was not contingent on the attentional control setting of task requirements. More specifically, the target was a broken bar, which might induce an attentional control setting on searching for discontinuity. Meanwhile, the distractor was grouped continuously, which was against the attentional control setting and generated interference to the overlapping target. In this study, we modified the definition of the target and tested whether the interference was preserved when the attentional control setting was not on discontinuity. The target was either a diamond or a square, and was either overlapping or not with the collinear salient distractor. Participants discriminated the shape of the target. The results replicated our previous study in that overlapping targets were harder to find. Our result argued against the possibility that the interference was induced by conflicts between the collinear distractor and the attentional control setting, implying that the interference might have been generated from earlier perceptual processing.

  10. Nanometer thickness laser ablation for spatial control of cell attachment

    Science.gov (United States)

    Thissen, H.; Hayes, J. P.; Kingshott, P.; Johnson, G.; Harvey, E. C.; Griesser, H. J.

    2002-10-01

    We demonstrate here a new method to control the location of cells on surfaces in two dimensions, which can be applied to a number of biomedical applications including diagnostic tests and tissue engineered medical devices. Two-dimensional control over cell attachment is achieved by generation of a spatially controlled surface chemistry that allows control over protein adsorption, a process which mediates cell attachment. Here, we describe the deposition of thin allylamine plasma polymer coatings on silicon wafer and perfluorinated poly(ethylene-co-propylene) substrates, followed by grafting of a protein resistant layer of poly(ethylene oxide). Spatially controlled patterning of the surface chemistry was achieved in a fast, one-step procedure by nanometer thickness controlled laser ablation using a 248 nm excimer laser. X-ray photoelectron spectroscopy and atomic force microscopy were used to confirm the production of surface chemistry patterns with a resolution of approximately 1 µm, which is significantly below the dimensions of a single mammalian cell. Subsequent adsorption of the extracellular matrix proteins collagen I and fibronectin followed by cell culture experiments using bovine corneal epithelial cells confirmed that cell attachment is controlled by the surface chemistry pattern. The method is an effective tool for use in a number of in vitro and in vivo applications.

  11. Peptides whose uptake by cells is controllable

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao; Tsien, Roger Y

    2014-02-04

    A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. Cleavage of X allows separation of A from B, unmasking the normal ability of the basic amino acids in B to drag cargo C into cells near the cleavage event. X is cleaved extracellularly, preferably under physiological conditions. D-amino acids are preferred for the A and B portions, to minimize immunogenicity and nonspecific cleavage by background peptidases or proteases.

  12. Peptides whose uptake by cells is controllable

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao [San Diego, CA; Tsien, Roger Y [La Jolla, CA

    2012-02-07

    A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. Cleavage of X allows separation of A from B, unmasking the normal ability of the basic amino acids in B to drag cargo C into cells near the cleavage event. X is cleaved extracellularly, preferably under physiological conditions. D-amino acids are preferred for the A and B portions, to minimize immunogenicity and nonspecific cleavage by background peptidases or proteases.

  13. Peptides whose uptake by cells is controllable

    Science.gov (United States)

    Jiang, Tao; Tsien, Roger Y.

    2008-10-07

    A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. Cleavage of X allows separation of A from B, unmasking the normal ability of the basic amino acids in B to drag cargo C into cells near the cleavage event. X is cleaved extracellularly, preferably under physiological conditions. D-amino acids are preferred for the A and B portions, to minimize immunogenicity and nonspecific cleavage by background peptidases or proteases.

  14. Control of Fuel Cell Power System

    OpenAIRE

    KOCALMIŞ BİLHAN, Ayşe; Wang, Caisheng

    2017-01-01

    In recent years, it is gettingattention for renewable energy sources such as Fuel Cell (FC), batteries,ultracapacitors or photovoltaic panels (PV) for distributed power generationsystems (DG) or electrical vehicles. This paper proposes a DC/DC converter andDC/AC inverter scheme to combine the Fuel Cell Stack (FC). The power systemconsist of a FC stack, a DC/DC converter, inverter and load. A FC mostly couldnot produce necessary output voltage, the DC/DC boost converter is used forobtaining th...

  15. Agudeza visual baja según residir en una ciudad rural del norte del Perú: estudio de casos y controles

    OpenAIRE

    Vilela Estrada, Martín A.; Mary M Araujo Chumacero; Solano Zapata, Fiorela E.; Dávila Adrianzén, Aarón; Mejia, Christian R.

    2016-01-01

    Introducción En Perú, los estudios que demuestran que escolares de zonas rurales pueden ser distintos a los de zonas no rurales son escasos, lo cual es necesario debido a que se ha demostrado que el lugar de residencia es un factor exógeno influyente en la aparición de agudeza visual baja, así mismo se ha demostrado la influencia del ambiente en el desarrollo de errores visuales y por tanto agudeza visual baja. Metodología Estudio de casos y controles, entre poblaciones urbanas y ...

  16. Human Embryonic and Hepatic Stem Cell Differentiation Visualized in Two and Three Dimensions Based on Serial Sections

    DEFF Research Database (Denmark)

    Vestentoft, Peter S.; Brøchner, Christian B; Lynnerup, Niels;

    2015-01-01

    ESC colony, and prepare 3-5 μm thick serial sections. Immunohistochemistry applied to individual sections produces a 2-dimensional survey of the developing hESC colony. Based on serial paraffin sections of the 2D-expression pattern, a new and useful 3D-visualization can be modeled. The actual 3D rendering......Pluripotent human embryonic stem cells (hESCs) are characterized by two defining properties, self-renewal and differentiation. Self-renewing hESCs express transcription factors OCT4, SOX2, and NANOG, and surface markers SSEA-4 and TRA-1-60 and TRA-1-81 and their ability to differentiate...... into derivatives of the three germ layers show the differentiating potential. Studies suggest a certain microheterogeneity of the hESC colonies, in which not all cells in one colony of apparently undifferentiated cells express all the expected markers. We describe a technique to paraffin embed an entire h...

  17. CDy6, a photostable probe for long-term real-time visualization of mitosis and proliferating cells.

    Science.gov (United States)

    Jeong, Yun-Mi; Duanting, Zhai; Hennig, Holger; Samanta, Animesh; Agrawalla, Bikram Keshari; Bray, Mark-Anthony; Carpenter, Anne E; Chang, Young-Tae

    2015-02-19

    Long-term real-time visualization of lysosomal dynamics has been challenging at the onset of mitosis due to the lack of fluorescent probes enabling convenient imaging of dividing cells. We developed a long-term real-time photostable mitotic or proliferating marker, CDy6, a BODIPY-derived compound of designation yellow 6, which labels lysosome. In long-term real-time, CDy6 displayed a sharp increase in intensity and change in localization in mitosis, improved photostability, and decreased toxicity compared with other widely used lysosomal and DNA markers, and the ability to label cells in mouse xenograft models. Therefore, CDy6 may open new possibilities to target and trace lysosomal contents during mitosis and to monitor cell proliferation, which can further our knowledge of the basic underlying biological mechanisms in the management of cancer.

  18. Independent controls for neocortical neuron production and histogenetic cell death

    Science.gov (United States)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  19. Intelligent Control for Improvements in PEM Fuel Cell Flow Performance

    Institute of Scientific and Technical Information of China (English)

    Jonathan G Williams; Guoping Liu; Senchun Chai; David Rees

    2008-01-01

    The performance of fuel cells and the vehicle applications they are embedded into depends on a delicate balance of the correct temperature, humidity, reactant pressure, purity and flow rate. This paper successfully investigates the problem related to flow control with implementation on a single cell membrane electrode assembly (MEA). This paper presents a systematic approach for performing system identification using recursive least squares identification to account for the non-linear parameters of the fuel cell. Then, it presents a fuzzy controller with a simplified rule base validated against real time results with the existing flow controller which calculates the flow required from the stoichiometry value.

  20. Uncalibrated Visual Servo Control of Magnetically Actuated Microrobots in a Fluid Environment

    Directory of Open Access Journals (Sweden)

    Jenelle Armstrong Piepmeier

    2014-09-01

    Full Text Available Microrobots have a number of potential applications for micromanipulation and assembly, but also offer challenges in power and control. This paper describes an uncalibrated vision-based control system for magnetically actuated microrobots operating untethered at the interface between two immiscible fluids. The microrobots are 20 μm thick and approximately 100–200 μm in lateral dimension. Several different robot shapes are investigated. The robots and fluid are in a 20 × 20 × 15 mm vial placed at the center of four electromagnets. Pulse width modulation of the electromagnet currents is used to control robot speed and direction. Given a desired position, a controller based on recursive least square estimation drives the microrobot to the goal without a priori knowledge of system parameters such as drag coefficients or intrinsic and extrinsic camera parameters. Results are verified experimentally using a variety of microrobot shapes and system configurations.

  1. Three-dimensional position control of a parallel micromanipulator using visual servoing

    Science.gov (United States)

    Kallio, Pasi; Zhou, Quan; Korpinen, Juha; Koivo, Heikki N.

    2000-10-01

    This paper presents a computer-vision based position controller for a highly non-linear parallel piezohydraulic micromanipulator: in addition to its non-linear kinematics the micromanipulator experiences hysteresis and drive induced by piezoelectric actuators. The controller consists of a decoupling matrix that provides the decoupled translations (xyz) in the task frame and three Single Input Single Output (SISO) PI controllers for the translations. Position measurement is performed by a vision system that determines the x and y coordinates of the end- effector using a modified Hierarchical Chamfer Matching Algoritm (HCMA) and the z position using a depth-from-defocus method. Experiments show that the proposed controller is capable of serving the parallel micromanipulator with a sub-micron accuracy at a sampling rate of 18 Hz.

  2. Clathrin-mediated endocytosis in living host cells visualized through quantum dot labeling of infectious hematopoietic necrosis virus.

    Science.gov (United States)

    Liu, Haibin; Liu, Yi; Liu, Shulin; Pang, Dai-Wen; Xiao, Gengfu

    2011-07-01

    Infectious hematopoietic necrosis virus (IHNV) is an important fish pathogen that infects both wild and cultured salmonids. As a species of the genus Novirhabdovirus, IHNV is a valuable model system for exploring the host entry mechanisms of rhabdoviruses. In this study, quantum dots (QDs) were used as fluorescent labels for sensitive, long-term tracking of IHNV entry. Using live-cell fluorescence microscopy, we found that IHNV is internalized through clathrin-coated pits after the virus binds to host cell membranes. Pretreatment of host cells with chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and clathrin light chain (LCa) depletion using RNA interference both resulted in a marked reduction in viral entry. We also visualized transport of the virus via the cytoskeleton (i.e., actin filaments and microtubules) in real time. Actin polymerization is involved in the transport of endocytic vesicles into the cytosol, whereas microtubules are required for the trafficking of clathrin-coated vesicles to early endosomes, late endosomes, and lysosomes. Disrupting the host cell cytoskeleton with cytochalasin D or nocodazole significantly impaired IHNV infectivity. Furthermore, infection was significantly affected by pretreating the host cells with bafilomycin A1, a compound that inhibits the acidification of endosomes and lysosomes. Strong colocalizations of IHNV with endosomes indicated that the virus is internalized into these membrane-bound compartments. This is the first report in which QD labeling is used to visualize the dynamic interactions between viruses and endocytic structures; the results presented demonstrate that IHNV enters host cells via clathrin-mediated endocytic, cytoskeleton-dependent, and low-pH-dependent pathways.

  3. Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study

    Science.gov (United States)

    Limoli, Paolo Giuseppe; Limoli, Celeste; Vingolo, Enzo Maria; Scalinci, Sergio Zaccaria; Nebbioso, Marcella

    2016-01-01

    Background The aim of this research was to study the overall restoration effect on residual retinal cells through surgically grafted autologous cells onto the surrounding tissue, choroid and retina in order to produce a constant secretion of growth factors (GFs) in dry age-related macular degeneration (AMD) patients. Results 6 months after surgery, several values were statistically significant in the group with higher RTA. Also patient compliance analysis (PCA) in relation to functional change perception appeared to be very good. Methods Thirty-six eyes of 25 patients (range 64-84 years of age) affected by dry AMD were included in study, and divided in two groups by spectral domain-optical coherence tomography (SD-OCT): group A with retinal thickness average (RTA) less than 250 microns (μm) and group B with RTA equal to or more than 250 μm. Adipocytes, adipose-derived stem cells from the stromal-vascular fraction, and platelets from platelet-rich plasma were implanted in the suprachoroidal space. Particularly, the following parameters were evaluated: best corrected visual acuity (BCVA) for far and near distance, retinal thickness maps, scotopic and photopic electroretinogram (ERG), and microperimetry (MY). All statistical analyses were performed with STATA 14.0 (Collage Station, Texas, USA). Conclusions The available set of GFs allowed biological retinal neuroenhancement. After 6 months it improved visual performance (VP), but the increase was better if RTA recorded by OCT was higher, probably in relation to the presence of areas with greater cellularity. PMID:27391437

  4. Arsenic removal from contaminated groundwater by membrane-integrated hybrid plant: optimization and control using Visual Basic platform.

    Science.gov (United States)

    Chakrabortty, S; Sen, M; Pal, P

    2014-03-01

    A simulation software (ARRPA) has been developed in Microsoft Visual Basic platform for optimization and control of a novel membrane-integrated arsenic separation plant in the backdrop of absence of such software. The user-friendly, menu-driven software is based on a dynamic linearized mathematical model, developed for the hybrid treatment scheme. The model captures the chemical kinetics in the pre-treating chemical reactor and the separation and transport phenomena involved in nanofiltration. The software has been validated through extensive experimental investigations. The agreement between the outputs from computer simulation program and the experimental findings are excellent and consistent under varying operating conditions reflecting high degree of accuracy and reliability of the software. High values of the overall correlation coefficient (R (2) = 0.989) and Willmott d-index (0.989) are indicators of the capability of the software in analyzing performance of the plant. The software permits pre-analysis, manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. Performance analysis of the whole system as well as the individual units is possible using the tool. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for removal of arsenic from contaminated groundwater.

  5. Visualization of magnetic microcapsules in liquid by optical coherent tomography and control of their arrangement via external magnetic field

    Science.gov (United States)

    Kolesnikova, T. A.; Akchurin, Ga G.; Portnov, S. A.; Khomutov, G. B.; Akchurin, Ge G.; Naumova, O. G.; Sukhorukov, G. B.; Gorin, D. A.

    2012-09-01

    Optical coherence tomography (OCT) is a new, non-invasive, noncontact in vivo imaging technology. We demonstrated that the OCT can be used as a sufficient technique for nanocomposite microcapsule visualization in a liquid medium. As a model system we choose a water/glycerol mixture with viscosity in a variable range from 1.01 to 1.41×103 mPa s, including viscosity of a blood plasma. We have found that tomography spatial resolution is enough to visualize capsules and their aggregates in liquids and to estimate their concentration via two-dimensional (2D) tomography scan analysis. In our experimental conditions microcapsule concentration measured by OCT was 3.9×107 cm-3 and this value correlated well with the concentration measured in a counting chamber (1.9×107 cm-3). We also demonstrated the possibility to control capsule spatial distribution in glycerol solutions by external magnetic field and determined the dependence of capsule sedimentation time on the liquid medium viscosity.

  6. Coding for stimulus velocity by temporal patterning of spike discharges in visual cells of cat superior colliculus.

    Science.gov (United States)

    Mandl, G

    1993-07-01

    Statistical analyses, performed on extracellularly recorded spike trains generated by 69 single motion sensitive visual cells in the intermediate layers of superior colliculi of pretrigeminal cat preparations, revealed that--even in the unstimulated condition (38/69)--most neuronal spike discharge patterns tended to switch between two stochastically distinct states, in the form of rapidly alternating "bursting" (high frequency) and "resting" (low frequency) episodes. The numbers of consecutive interspike intervals within a given state were, as a rule, independent integer-valued random variables with discrete probability distributions, in essential agreement with the semi-Markov model proposed by Ekholm and Hyvärinen [(1970) Biophysical Journal, 10, 773-796]. The introduction of visual stimuli (47/69) moving with velocities of 2-160 deg/sec caused systematic and reproducible changes in the ratio of bursting to resting activities, decreases in overall discharge variability, and increases in signal transinformation flow. Moreover, with one group of stimulated cells (28/47), increasing stimulus velocity caused increasingly precise ("stimulus-forced") synchronization of bursting episodes with specific phases of stimulus movement; while for a smaller group (12/47), stimulus-related alternations between bursting and resting states assumed the form of semi-rhythmical burst discharges within the characteristic 60-80 Hz "gamma oscillation" range ("stimulus-induced" synchronization). For a minority of cells (7/47), switching between bursting and resting states--although characteristically modified by stimulus velocity--remained largely desynchronized with all phases of stimulus transit. It was argued that such temporal patterns of discharge may constitute elements of a candidate "distribution" code for movement detection by the cat visual system.

  7. Adult stem cells in mice : visualization and characterization using genetic mouse models

    NARCIS (Netherlands)

    Snippert, H.J.G.

    2011-01-01

    The onset of each living organism starts with pluripotent stem cells that have the ability to differentiate into all the different cell types of an organism. However, during the earliest stages of development, the pluripotent stem cells will stepwise lose their developmental potential. The cells tha

  8. Peptides whose uptake by cells is controllable

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao; Olson, Emilia S.; Whitney, Michael; Tsien, Roger

    2015-07-07

    A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. X may be cleaved extracellularly or intracellularly. The molecules of the present invention may be linear, cyclic, branched, or have a mixed structure.

  9. Peptides whose uptake by cells is controllable

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao (San Diego, CA); Olson, Emilia S. (La Jolla, CA); Whitney, Michael (San Diego, CA); Tsien, Roger (La Jolla, CA)

    2011-07-26

    A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. X may be cleaved extracellularly or intracellularly. The molecules of the present invention may be linear, cyclic, branched, or have a mixed structure.

  10. How a (subcellular coincidence detection mechanism featuring layer-5 pyramidal cells may help produce various visual phenomena

    Directory of Open Access Journals (Sweden)

    Talis eBachmann

    2015-12-01

    Full Text Available Perceptual phenomena such as spatio-temporal illusions and masking are typically explained by psychological (cognitive processing theories or large-scale neural theories involving inter-areal connectivity and neural circuits comprising of hundreds or more interconnected single cells. Subcellular mechanisms are hardly used for such purpose. Here a mechanistic theoretical view is presented on how a subcellular brain mechanism of integration of presynaptic signals that arrive at different compartments of layer-5 pyramidal neurons could explain a couple of spatiotemporal visual-phenomenal effects unfolding along very brief time intervals within the range of sub-second temporal scale.

  11. Control of stem cell fate by engineering their micro andnanoenvironment

    Institute of Scientific and Technical Information of China (English)

    Michelle F Griffin; Peter E Butler; Alexander M Seifalian; Deepak M Kalaskar

    2015-01-01

    Stem cells are capable of long-term self-renewal anddifferentiation into specialised cell types, making theman ideal candidate for a cell source for regenerativemedicine. The control of stem cell fate has become amajor area of interest in the field of regenerative medicineand therapeutic intervention. Conventional methodsof chemically inducing stem cells into specific lineagesis being challenged by the advances in biomaterialtechnology, with evidence highlighting that materialproperties are capable of driving stem cell fate. Materialsare being designed to mimic the clues stem cells receivein their in vivo stem cell niche including topographicaland chemical instructions. Nanotopographical clues thatmimic the extracellular matrix (ECM) in vivo have shownto regulate stem cell differentiation. The delivery of ECMcomponents on biomaterials in the form of short peptidessequences has also proved successful in directing stem celllineage. Growth factors responsible for controlling stemcell fate in vivo have also been delivered via biomaterialsto provide clues to determine stem cell differentiation. Analternative approach to guide stem cells fate is to providegenetic clues including delivering DNA plasmids andsmall interfering RNAs via scaffolds. This review, aims toprovide an overview of the topographical, chemical andmolecular clues that biomaterials can provide to guidestem cell fate. The promising features and challenges ofsuch approaches will be highlighted, to provide directionsfor future advancements in this exciting area of stem celltranslation for regenerative medicine.

  12. Rac and Rho GTPases in cancer cell motility control

    Directory of Open Access Journals (Sweden)

    Parri Matteo

    2010-09-01

    Full Text Available Abstract Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination.

  13. Indirect iterative learning control for a discrete visual servo without a camera-robot model.

    Science.gov (United States)

    Jiang, Ping; Bamforth, Leon C A; Feng, Zuren; Baruch, John E F; Chen, YangQuan

    2007-08-01

    This paper presents a discrete learning controller for vision-guided robot trajectory imitation with no prior knowledge of the camera-robot model. A teacher demonstrates a desired movement in front of a camera, and then, the robot is tasked to replay it by repetitive tracking. The imitation procedure is considered as a discrete tracking control problem in the image plane, with an unknown and time-varying image Jacobian matrix. Instead of updating the control signal directly, as is usually done in iterative learning control (ILC), a series of neural networks are used to approximate the unknown Jacobian matrix around every sample point in the demonstrated trajectory, and the time-varying weights of local neural networks are identified through repetitive tracking, i.e., indirect ILC. This makes repetitive segmented training possible, and a segmented training strategy is presented to retain the training trajectories solely within the effective region for neural network approximation. However, a singularity problem may occur if an unmodified neural-network-based Jacobian estimation is used to calculate the robot end-effector velocity. A new weight modification algorithm is proposed which ensures invertibility of the estimation, thus circumventing the problem. Stability is further discussed, and the relationship between the approximation capability of the neural network and the tracking accuracy is obtained. Simulations and experiments are carried out to illustrate the validity of the proposed controller for trajectory imitation of robot manipulators with unknown time-varying Jacobian matrices.

  14. Visual Impairment

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Visual Impairment KidsHealth > For Teens > Visual Impairment Print A ... with the brain, making vision impossible. What Is Visual Impairment? Many people have some type of visual ...

  15. Visual field

    Science.gov (United States)

    Perimetry; Tangent screen exam; Automated perimetry exam; Goldmann visual field exam; Humphrey visual field exam ... Confrontation visual field exam : This is a quick and basic check of the visual field. The health care provider ...

  16. TOR and paradigm change: cell growth is controlled.

    Science.gov (United States)

    Hall, Michael N

    2016-09-15

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients.

  17. Visual Illusions and the Control of Ball Placement in Goal-Directed Hitting

    Science.gov (United States)

    Caljouw, Simone R.; Van der Kamp, John; Savelsbergh, Geert J. P.

    2010-01-01

    When hitting, kicking, or throwing balls at targets, online control in the target area is impossible. We assumed this lack of late corrections in the target area would induce an effect of a single-winged Muller-Lyer illusion on ball placement. After extensive practice in hitting balls to different landing locations, participants (N = 9) had to hit…

  18. Visual Illusions and the Control of Ball Placement in Goal-Directed Hitting

    NARCIS (Netherlands)

    Caljouw, Simone R.; Van der Kamp, John; Savelsbergh, Geert J. P.

    2010-01-01

    When hitting, kicking, or throwing balls at targets, online control in the target area is impossible We assumed this lack of late corrections in the target area would induce an effect of a single-winged Muller-Lyer illusion on ball placement After extensive practice in hitting balls to different lan

  19. Postural Control and Automaticity in Dyslexic Children: The Relationship between Visual Information and Body Sway

    Science.gov (United States)

    Barela, Jose A.; Dias, Josenaldo L.; Godoi, Daniela; Viana, Andre R.; de Freitas, Paulo B.

    2011-01-01

    Difficulty with literacy acquisition is only one of the symptoms of developmental dyslexia. Dyslexic children also show poor motor coordination and postural control. Those problems could be associated with automaticity, i.e., difficulty in performing a task without dispending a fair amount of conscious efforts. If this is the case, dyslexic…

  20. PyMOL mControl: Manipulating molecular visualization with mobile devices.

    Science.gov (United States)

    Lam, Wendy W T; Siu, Shirley W I

    2017-01-02

    Viewing and manipulating three-dimensional (3D) structures in molecular graphics software are essential tasks for researchers and students to understand the functions of molecules. Currently, the way to manipulate a 3D molecular object is mainly based on mouse-and-keyboard control that is usually difficult and tedious to learn. While gesture-based and touch-based interactions are increasingly popular in interactive software systems, their suitability in handling molecular graphics has not yet been sufficiently explored. Here, we designed the gesture-based and touch-based interaction methods to manipulate virtual objects in PyMOL utilizing the motion and touch sensors in a mobile device. Three fundamental viewing controls-zooming, translation and rotation-and frequently used functions were implemented. Results from a pilot user study reveal that task performances on viewing controls using a mobile device are slightly reduced as compared to mouse-and-keyboard method. However, it is considered to be more suitable for oral presentations and equally suitable for education scenarios such as school classes. Overall, PyMOL mControl provides an alternative way to manipulate objects in molecular graphic software with new user experiences. The software is freely available at http://cbbio.cis.umac.mo/mcontrol.html. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):76-83, 2017.

  1. PyMOL mControl: Manipulating Molecular Visualization with Mobile Devices

    Science.gov (United States)

    Lam, Wendy W. T.; Siu, Shirley W. I.

    2017-01-01

    Viewing and manipulating three-dimensional (3D) structures in molecular graphics software are essential tasks for researchers and students to understand the functions of molecules. Currently, the way to manipulate a 3D molecular object is mainly based on mouse-and-keyboard control that is usually difficult and tedious to learn. While gesture-based…

  2. The Flatworld Simulation Control Architecture (FSCA): A Framework for Scalable Immersive Visualization Systems

    Science.gov (United States)

    2004-12-01

    handling using the X10 home automation protocol. Each 3D graphics client renders its scene according to an assigned virtual camera position. By having...control protocol. DMX is a versatile and robust framework which overcomes limitations of the X10 home automation protocol which we are currently using

  3. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception

    Science.gov (United States)

    Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou

    2017-01-01

    The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs. PMID:28348530

  4. Effect of visual attention on postural control in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Bucci, Maria Pia; Seassau, Magali; Larger, Sandrine; Bui-Quoc, Emmanuel; Gerard, Christophe-Loic

    2014-06-01

    We compared the effect of oculomotor tasks on postural sway in two groups of ADHD children with and without methylphenidate (MPH) treatment against a group of control age-matched children. Fourteen MPH-untreated ADHD children, fourteen MPH-treated ADHD children and a group of control children participated to the study. Eye movements were recorded using a video-oculography system and postural sway measured with a force platform simultaneously. Children performed fixation, pursuits, pro- and anti-saccades. We analyzed the number of saccades during fixation, the number of catch-up saccades during pursuits, the latency of pro- and anti-saccades; the occurrence of errors in the anti-saccade task and the surface and mean velocity of the center of pressure (CoP). During the postural task, the quality of fixation was significantly worse in both groups of ADHD children with respect to control children; in contrast, the number of catch-up saccades during pursuits, the latency of pro-/anti-saccades and the rate of errors in the anti-saccade task did not differ in the three groups of children. The surface of the CoP in MPH-treated children was similar to that of control children, while MPH-untreated children showed larger postural sway. When performing any saccades, the surface of the CoP improved with respect to fixation or pursuits tasks. This study provides evidence of poor postural control in ADHD children, probably due to cerebellar deficiencies. Our study is also the first to show an improvement on postural sway in ADHD children performing saccadic eye movements.

  5. A randomized controlled trial of cognitive training using a visual speed of processing intervention in middle aged and older adults.

    Directory of Open Access Journals (Sweden)

    Fredric D Wolinsky

    Full Text Available Age-related cognitive decline is common and may lead to substantial difficulties and disabilities in everyday life. We hypothesized that 10 hours of visual speed of processing training would prevent age-related declines and potentially improve cognitive processing speed.Within two age bands (50-64 and ≥ 65 681 patients were randomized to (a three computerized visual speed of processing training arms (10 hours on-site, 14 hours on-site, or 10 hours at-home or (b an on-site attention control group using computerized crossword puzzles for 10 hours. The primary outcome was the Useful Field of View (UFOV test, and the secondary outcomes were the Trail Making (Trails A and B Tests, Symbol Digit Modalities Test (SDMT, Stroop Color and Word Tests, Controlled Oral Word Association Test (COWAT, and the Digit Vigilance Test (DVT, which were assessed at baseline and at one year. 620 participants (91% completed the study and were included in the analyses. Linear mixed models were used with Blom rank transformations within age bands.All intervention groups had (p<0.05 small to medium standardized effect size improvements on UFOV (Cohen's d = -0.322 to -0.579, depending on intervention arm, Trails A (d = -0.204 to -0.265, Trails B (d = -0.225 to -0.320, SDMT (d = 0.263 to 0.351, and Stroop Word (d = 0.240 to 0.271. Converted to years of protection against age-related cognitive declines, these effects reflect 3.0 to 4.1 years on UFOV, 2.2 to 3.5 years on Trails A, 1.5 to 2.0 years on Trails B, 5.4 to 6.6 years on SDMT, and 2.3 to 2.7 years on Stroop Word.Visual speed of processing training delivered on-site or at-home to middle-aged or older adults using standard home computers resulted in stabilization or improvement in several cognitive function tests. Widespread implementation of this intervention is feasible.ClinicalTrials.gov NCT-01165463.

  6. Spatially controlled cell adhesion on three-dimensional substrates

    NARCIS (Netherlands)

    Richter, Christine; Reinhardt, Martina; Giselbrecht, Stefan; Leisen, Daniel; Trouillet, Vanessa; Truckenmüller, Roman; Blau, Axel; Ziegler, Christiane; Welle, Alexander

    2010-01-01

    The microenvironment of cells in vivo is defined by spatiotemporal patterns of chemical and biophysical cues. Therefore, one important goal of tissue engineering is the generation of scaffolds with defined biofunctionalization in order to control processes like cell adhesion and differentiation. Mim

  7. Control de redundancia visual documental en archivos de televisión: personas y temas

    Directory of Open Access Journals (Sweden)

    Jorge Caldera-Serrano

    2014-12-01

    Full Text Available Se describe el método para desarrollar el control documental de la redundancia informativa audiovisual en el tratamiento, descripción y recuperación de elementos audiovisuales onomásticos y temáticos. Para ello se analiza tanto las características y peculiaridades que representan a la información audiovisual onomástica y temática, así como se presenta una herramienta informática para el control de dichos datos. Esta información deberá estar interconectada, por medio de base de datos relacionales, con la base de datos general de la empresa audiovisual.

  8. Using visual reinforcement to establish stimulus control of responding of Siamese fighting fish (Betta splendens).

    Science.gov (United States)

    Wirth, Oliver; Lattal, Kennon A; Hopko, Sandra

    2003-03-01

    Stimulus control of ring swimming was studied with male Siamese fighting fish (Betta splendens) using 2-component multiple schedules in which the components were correlated with the presence or absence of air bubbles in the water. In Experiment 1, either response-independent mirror presentations or extinction was juxtaposed with immediate response-dependent mirror presentations. Rates of ring swimming generally were higher with immediate reinforcement than with either response-independent mirror presentations or extinction. In Experiment 2, different durations of response-dependent mirror presentations were juxtaposed. Generally, higher rates of ring swimming occurred with 15-s than with 0-, 1-, or 3-s durations. Results demonstrate that stimulus control of responding can be established with these fish under several conditions of differential reinforcement.

  9. Single cell adhesion assay using computer controlled micropipette.

    Directory of Open Access Journals (Sweden)

    Rita Salánki

    Full Text Available Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day. Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min. We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a

  10. Appearance of actin microfilament 'twin peaks' in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP-fimbrin.

    Science.gov (United States)

    Sano, Toshio; Higaki, Takumi; Oda, Yoshihisa; Hayashi, Tomomi; Hasezawa, Seiichiro

    2005-11-01

    The actin cytoskeleton of higher plants plays an essential role in plant morphogenesis and in maintaining various cellular activities. In this study we established a tobacco BY-2 cell line, stably transformed with a GFP-fimbrin actin-binding domain (ABD) 2 construct, that allows visualization of actin microfilaments (MFs) in living cells. Using this cell line, designated BY-GF11, we performed time-sequential observations of MF dynamics during cell-cycle progression. Detailed analyses revealed the appearance of a broad MF band in the late G2 phase that separated to form a structure corresponding to the so-called actin-depleted zone (ADZ) in mitosis. In BY-GF11, the MF structure at the cell cortex in mitosis appeared to form two bands rather than the ADZ. Measurements of fluorescent intensities of the cell cortex indicated an MF distribution that resembled two peaks, and we therefore named the structure MF 'twin peaks' (MFTP). The cell plate formed exactly within the valley between the MFTP at cytokinesis, and this cell-plate guidance was distorted by disruption of the MFTP by an inhibitor of actin polymerization. These results suggest that the MFTP originates from the broad MF band in the G2 phase and functions as a marker of cytokinesis.

  11. T Cell Receptor Activation of NF-κB in Effector T Cells: Visualizing Signaling Events Within and Beyond the Cytoplasmic Domain of the Immunological Synapse.

    Science.gov (United States)

    Traver, Maria K; Paul, Suman; Schaefer, Brian C

    2017-01-01

    The T cell receptor (TCR) to NF-κB signaling pathway plays a critical role in regulation of proliferation and effector T cell differentiation and function. In naïve T cells, data suggest that most or all key cytoplasmic NF-κB signaling occurs in a TCR-proximal manner at the immunological synapse (IS). However, the subcellular organization of cytoplasmic NF-κB-activating complexes in effector T cells is more complex, involving signaling molecules and regulatory mechanisms beyond those operative in naïve cells. Additionally, in effector T cells, much signaling occurs at cytoplasmic locations distant from the IS. Visualization of these cytoplasmic signaling complexes has provided key insights into the complex and dynamic regulation of NF-κB signal transduction in effector T cells. In this chapter, we provide in-depth protocols for activating and preparing effector T cells for fluorescence imaging, as well as a discussion of the effective application of distinct imaging methodologies, including confocal and super-resolution microscopy and imaging flow cytometry.

  12. Visualization-aided classification ensembles discriminate lung adenocarcinoma and squamous cell carcinoma samples using their gene expression profiles.

    Directory of Open Access Journals (Sweden)

    Ao Zhang

    Full Text Available INTRODUCTION: The widespread application of microarray experiments to cancer research is astounding including lung cancer, one of the most common fatal human tumors. Among non-small cell lung carcinoma (NSCLC, there are two major histological types of NSCLC, adenocarcinoma (AC and squamous cell carcinoma (SCC. RESULTS: In this paper, we proposed to integrate a visualization method called Radial Coordinate Visualization (Radviz with a suitable classifier, aiming at discriminating two NSCLC subtypes using patients' gene expression profiles. Our analyses on simulated data and a real microarray dataset show that combining with a classification method, Radviz may play a role in selecting relevant features and ameliorating parsimony, while the final model suffers no or least loss of accuracy. Most importantly, a graphic representation is more easily understandable and implementable for a clinician than statistical methods and/or mathematic equations. CONCLUSION: To conclude, using the NSCLC microarray data presented here as a benchmark, the comprehensive understanding of the underlying mechanism associated with NSCLC and of the mechanisms with its subtypes and respective stages will become reality in the near future.

  13. FPGA based Control of a Production Cell System

    NARCIS (Netherlands)

    Groothuis, Marcel A.; Zuijlen, van Jasper J.P.; Broenink, Jan F.

    2008-01-01

    Most motion control systems for mechatronic systems are implemented on digital computers. In this paper we present an FPGA based solution implemented on a low cost Xilinx Spartan III FPGA. A Production Cell setup with multiple parallel operating units is chosen as a test case. The embedded control s

  14. Influence of the metabolic control on latency values of visual evoked potentials (VEP) in patients with diabetes mellitus type 1.

    Science.gov (United States)

    Matanovic, Dragana; Popovic, Srdjan; Parapid, Biljana; Petronic, Ivana; Cirovic, Dragana; Nikolic, Dejan

    2012-12-01

    The aim of our study was to investigate the relationship between the metabolic control parameters of diabetes mellitus (glycemia and HbA1c) and visual evoked potentials (VEP) latency values. The study included 61 patients with diabetes mellitus type 1 that were hospitalized at the Clinic for Endocrinology, Diabetes and Metabolic Diseases due to the poor metabolic control. All patients were divided into 3 groups. Group 1 consisted of patients on conventional insulin therapy (CT); Group 2 included patients on CT at the moment of hospitalization, with a change towards intensified insulin therapy (IIT); and Group 3 consisted of patients on IIT. Patients with diabetic retinopathy (DR) were excluded from the study. Metabolic control (glycemia and HbA1c) and VEP parameters were compared at the beginning of the study and six months later. After six months of strict glycoregulation, significant improvement in VEP parameters was followed by significant improvement of evaluated parameters of metabolic control. We found statistically significant reduction in frequency of pathological VEP findings, prolonged P100 latency and low amplitude potentials in Group 2, while in Groups 1 and 3 we found that these parameters did not significantly changed but the frequencies were lower. The VEP testing is a noninvasive diagnostic procedure which may help in early diagnosis of DR, prognosis during the metabolic control and treatment. If changes in the retina could be detected before DR is noticed using this noninvasive diagnostic procedure and include patients in a strict glycoregulation, we could be in the position to prevent serious complications that may cause blindness.

  15. The control and execution of programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    Begum, R.; Pathak, N.; Hasnain, S.E.; Sah, N.K. [National Inst. of Immunology, New Delhi (India). Eukaryotic Gene Expression Lab.; Taneja, T.K.; Mohan, M. [National Inst. of Immunology, New Delhi (India). Eukaryotic Gene Expression Lab.]|[Dept. of Medical Elementology and Toxicology, New Delhi (India); Athar, M. [Dept. of Medical Elementology and Toxicology, New Delhi (India)

    1999-07-01

    Apoptosis or programmed cell death is a highly conserved genetically controlled response of metazoan cells to commit suicide. Non apoptotic programmed cell death seems to operate in single celled eukaryotes implying that evolution of PCD has preceded the evolution of multicellularity. PCD plays a crucial role in the regulation of cellular and tissue homeostasis and any aberrations in apoptosis leads to several diseases including cancer, neurodegenerative disorders and AIDS. The mechanisms by which apoptosis is controlled are varied. In some cells, members of bcl-2 family or p53 are crucial for regulating the apoptosis programme, whereas in other cells Fas ligand is more important. bcl-2 family members have a prime role in the regulation of cell death at all stages including development, whereas cell death during development is independent of p53. bcl-2 family members being localized on the outer mitochondrial membrane, control the mitochondrial homeostasis and cytochrome c redistribution and thereby regulate the cell death process. p53 promotes DNA damage mediated cell death after growth arrest and failed DNA repair. Caspases play a key role in the execution of cell death by mediating highly specific cleavages of crucial cellular proteins collectivley manifesting the apoptotic phenotype. Protein inhibitors like crm A, p35 and IAPs could prevent/control apoptosis induced by a broad array of cell death stimuli by several mechanisms specially interfering in caspase activation or caspase activity. Among endonucleases, caspase activated DNase (CAD) plays a crucial role in DNA fragmentation, a biochemical hallmark of apoptosis. As regulation of cell death seems to be as complex as regulation of cell proliferation, multiple kinase mediated regulatory mechanisms might control the apoptotic process. Thus, in spite of intensive research over the past few years, the field of apoptosis still remains fertile to unravel among others, the molecular mechanisms of cytochrome c

  16. Controlled shear filtration: A novel technique for animal cell separation.

    Science.gov (United States)

    Vogel, J H; Kroner, K H

    1999-06-20

    A novel rotary microfiltration technique specifically suited for the separation of animal cells has been developed. The concept allows the independent adjustment of wall shear stress, transmembrane pressure, and residence time, allowing straightforward optimization of the microfiltration process. By using a smooth, conically shaped rotor, it is possible to establish a controlled shear field in which animal cells experience a significant hydrodynamic lift away from the membrane surface. It is shown in preliminary experiments that shear-induced cell-rupture speeds up membrane clogging and that cell debris poses the most significant problem in harvesting of BHK cell cultures by dynamic microfiltration. However, a threshold value of shear stability exists which depends on the frequency of passing the shear field, the residence time in the shear field, as well as on cell status. By operating close to this threshold value, cell viability can be maintained while concentration polarization is efficiently minimized. By applying this concept, it is possible to attain flux rates several times higher compared to conventional crossflow filtration. Controlled shear filtration (CSF) can be used for batch harvesting as well as for cell retention in high cell density systems. In batch harvesting of hIL-2 from rBHK cell culture, a constant flux rate of 290 L h-1 m-2 has been adjusted without indication of membrane clogging or fouling.

  17. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  18. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Ziomkiewicz, Iwona; Schulz, Alexander

    2013-01-01

    present the first super-resolution images of cellulose bundles in the plant cell wall produced by direct stochastic optical reconstruction microscopy (dSTORM) in combination with total internal reflection fluorescence (TIRF) microscopy. Since TIRF limits observation to the cell surface, we tested...... microscopy of some 200 nm in xy and 550 nm in z for green light, restricts the direct visualization of cellulose to relatively large bundles, whereas the structure of cellulose microfibrils with their diameter below 10 nm remains unresolved. Over the last decade, several so-called super-resolution microscopy...... confocal microscopy and the approach could be used to demonstrate differences in fibril orientation in different layers of the cell wall as well as particular cellulose fortifications around plasmodesmata. Conclusions Super-resolution light microscopy of PFS-stained cellulose fibrils is possible...

  19. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Ziomkiewicz, Iwona; Schulz, Alexander

    2013-01-01

    of cellulose fibril orientation and growth. The fluorescent dye Pontamine Fast Scarlet 4BS (PFS) was shown to stain cellulose with high specificity and could be used to visualize cellulose bundles in cell walls of Arabidopsis root epidermal cells with confocal microscopy. The resolution limit of confocal...... as alternatives 3D-structured illumination microscopy (3D-SIM) and confocal microscopy, combined with image deconvolution. Both methods offer lower resolution than STORM, but enable 3D imaging. While 3D-SIM produced strong artifacts, deconvolution gave good results. The resolution was improved over conventional...... confocal microscopy and the approach could be used to demonstrate differences in fibril orientation in different layers of the cell wall as well as particular cellulose fortifications around plasmodesmata. Conclusions Super-resolution light microscopy of PFS-stained cellulose fibrils is possible...

  20. Visualization of Cell Cycle Variations and Determination of Nucleation in Postnatal Cardiomyocytes.

    Science.gov (United States)

    Raulf, Alexandra; Voeltz, Nadine; Korzus, Daniel; Fleischmann, Bernd K; Hesse, Michael

    2017-02-24

    Cardiomyocytes are prone to variations of the cell cycle, such as endoreduplication (continuing rounds of DNA synthesis without karyokinesis and cytokinesis) and acytokinetic mitosis (karyokinesis but no cytokinesis). Such atypical cell cycle variations result in polyploid and multinucleated cells rather than in cell division. Therefore, to determine cardiac turnover and regeneration, it is of crucial importance to correctly identify cardiomyocyte nuclei, the number of nuclei per cell, and their cell cycle status. This is especially true for the use of nuclear markers for identifying cell cycle activity, such as thymidine analogues Ki-67, PCNA, or pHH3. Here, we present methods for recognizing cardiomyocytes and their nuclearity and for determining their cell cycle activity. We use two published transgenic systems: the Myh6-H2B-mCh transgenic mouse line, for the unequivocal identification of cardiomyocyte nuclei, and the CAG-eGFP-anillin mouse line, for distinguishing cell division from cell cycle variations. Combined together, these two systems ease the study of cardiac regeneration and plasticity.

  1. Chaos in balance: non-linear measures of postural control predict individual variations in visual illusions of motion.

    Science.gov (United States)

    Apthorp, Deborah; Nagle, Fintan; Palmisano, Stephen

    2014-01-01

    Visually-induced illusions of self-motion (vection) can be compelling for some people, but they are subject to large individual variations in strength. Do these variations depend, at least in part, on the extent to which people rely on vision to maintain their postural stability? We investigated by comparing physical posture measures to subjective vection ratings. Using a Bertec balance plate in a brightly-lit room, we measured 13 participants' excursions of the centre of foot pressure (CoP) over a 60-second period with eyes open and with eyes closed during quiet stance. Subsequently, we collected vection strength ratings for large optic flow displays while seated, using both verbal ratings and online throttle measures. We also collected measures of postural sway (changes in anterior-posterior CoP) in response to the same visual motion stimuli while standing on the plate. The magnitude of standing sway in response to expanding optic flow (in comparison to blank fixation periods) was predictive of both verbal and throttle measures for seated vection. In addition, the ratio between eyes-open and eyes-closed CoP excursions during quiet stance (using the area of postural sway) significantly predicted seated vection for both measures. Interestingly, these relationships were weaker for contracting optic flow displays, though these produced both stronger vection and more sway. Next we used a non-linear analysis (recurrence quantification analysis, RQA) of the fluctuations in anterior-posterior position during quiet stance (both with eyes closed and eyes open); this was a much stronger predictor of seated vection for both expanding and contracting stimuli. Given the complex multisensory integration involved in postural control, our study adds to the growing evidence that non-linear measures drawn from complexity theory may provide a more informative measure of postural sway than the conventional linear measures.

  2. Frequency-doubling technology perimetry and multifocal visual evoked potential in glaucoma, suspected glaucoma, and control patients

    Directory of Open Access Journals (Sweden)

    Kanadani FN

    2014-07-01

    Full Text Available Fabio N Kanadani,1 Paulo AA Mello,1 Syril K Dorairaj,2 Tereza CM Kanadani31Federal University of Sao Paulo, Sao Paulo, Brazil; 2Mayo Clinic, Department of Ophthalmology, Jacksonville, Florida, USA; 3Sao Jose University Hospital, Belo Horizonte, BrazilIntroduction: The gold standard in functional glaucoma evaluation is standard automated perimetry (SAP. However, SAP depends on the reliability of the patients’ responses and other external factors; therefore, other technologies have been developed for earlier detection of visual field changes in glaucoma patients. The frequency-doubling perimetry (FDT is believed to detect glaucoma earlier than SAP. The multifocal visual evoked potential (mfVEP is an objective test for functional evaluation.Objective: To evaluate the sensitivity and specificity of FDT and mfVEP tests in normal, suspect, and glaucomatous eyes and compare the monocular and interocuar mf VEP.Methods: Ninety-five eyes from 95 individuals (23 controls, 33 glaucoma suspects, 39 glaucomatous were enrolled. All participants underwent a full ophthalmic examination, followed by SAP, FDT, and mfVEP tests. Results: The area under the curve for mean deviation and pattern standard deviation were 0.756 and 0.761, respectively, for FDT, 0.564 and 0.512 for signal and alpha for interocular mfVEP, and 0.568 and 0.538 for signal and alpha for monocular mfVEP. This difference between monocular and interocular mfVEP was not significant. Conclusion: The FDT matrix was superior to mfVEP in glaucoma detection. The difference between monocular and interocular mfVEP in the diagnosis of glaucoma was not significant. Keywords: standard automated perimetry, electrophysiology, glaucomatous eyes

  3. Chaos in balance: non-linear measures of postural control predict individual variations in visual illusions of motion.

    Directory of Open Access Journals (Sweden)

    Deborah Apthorp

    Full Text Available Visually-induced illusions of self-motion (vection can be compelling for some people, but they are subject to large individual variations in strength. Do these variations depend, at least in part, on the extent to which people rely on vision to maintain their postural stability? We investigated by comparing physical posture measures to subjective vection ratings. Using a Bertec balance plate in a brightly-lit room, we measured 13 participants' excursions of the centre of foot pressure (CoP over a 60-second period with eyes open and with eyes closed during quiet stance. Subsequently, we collected vection strength ratings for large optic flow displays while seated, using both verbal ratings and online throttle measures. We also collected measures of postural sway (changes in anterior-posterior CoP in response to the same visual motion stimuli while standing on the plate. The magnitude of standing sway in response to expanding optic flow (in comparison to blank fixation periods was predictive of both verbal and throttle measures for seated vection. In addition, the ratio between eyes-open and eyes-closed CoP excursions during quiet stance (using the area of postural sway significantly predicted seated vection for both measures. Interestingly, these relationships were weaker for contracting optic flow displays, though these produced both stronger vection and more sway. Next we used a non-linear analysis (recurrence quantification analysis, RQA of the fluctuations in anterior-posterior position during quiet stance (both with eyes closed and eyes open; this was a much stronger predictor of seated vection for both expanding and contracting stimuli. Given the complex multisensory integration involved in postural control, our study adds to the growing evidence that non-linear measures drawn from complexity theory may provide a more informative measure of postural sway than the conventional linear measures.

  4. Visual Analysis of Tumor Control Models for Prediction of Radiotherapy Response

    DEFF Research Database (Denmark)

    Raidou, Renata G.; Casares Magaz, Oscar; Muren, Ludvig;

    2016-01-01

    In radiotherapy, tumors are irradiated with a high dose, while surrounding healthy tissues are spared. To quantify the probability that a tumor is effectively treated with a given dose, statistical models were built and employed in clinical research. These are called tumor control probability (TCP......) models. Recently, TCP models started incor- porating additional information from imaging modalities. In this way, patient-specific properties of tumor tissues are included, improving the radiobiological accuracy of models. Yet, the employed imaging modalities are subject to uncertainties with significant...... on TCP modeling, to explore the information provided by their models, to discover new knowledge and to confirm or generate hypotheses within their data. Our approach incorporates the following four main components: (1) It supports the exploration of uncertainty and its effect on TCP models; (2...

  5. Comparison of postural control between healthy subjects and individuals with nonspecific low back pain during exposure to visual stimulus

    Institute of Scientific and Technical Information of China (English)

    Li Rui; Wang Ninghua; Yan Xiang; Wei Kunlin

    2014-01-01

    Background Low back pain (LBP) is a common clinical problem.Many researchers have demonstrated that LBP disorders have difference in sensory strategies for postural control.Optokinetic stimulation (OKS) of optic flow has been widely applied to study its effect on vision,but has not been applied to LBP.Here we used OKS on different surfaces to investigate the characteristics of chronic nonspecific LBP (CNLBP) posture control,so as to provide new theoretical and experimental data for further recognizing CNLBP and enriching its treatment.Methods Fifteen individuals with CNLBP (age range 25-40 years) and 15 age and gender-matched control subjects were recruited.Each subject,while standing on a stable or soft surface,was exposed to random-dot patterns projected on a large screen,with the dots displaying expansion (+) and contraction (-) and velocities including 80°,40°,and 20° per second.The visual stimulus used a "stimuli-interval" pattern.The peak velocity,different phases' standard deviation (SD) of the anterior-posterior centre of pressure (COP) displacements and the total length of the medial-lateral COP sway (LML) for stable surface and soft surface were recorded by force platform.Results The main effect of surface on all parameters was significant,while the main effect of group and OKS showed no significance with the exception of peak velocity (F(3,95)=3.6,P=0.01) and A2 (F(5,140)=9.34,P <0.01) for which the effect of OKS was significant.The interactions of group by OKS of A2 (F(5,140)=3.65,P <0.01) and group by surface by OKS (F(5,140)=2.83,P=-0.02),and surface by OKS of A1 and A3 (P <0.05) were significant.It was reported that significantly more SD in amplitude in the T2 phase was seen in persons with CNLBP when confronting the + 40 stimuli on the soft surface (P <0.05) compared to healthy individuals.Conclusions There was no significance between persons with CNLBP and healthy people when using the stable surface.Subjects with LBP showed decreased

  6. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  7. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors.

    Science.gov (United States)

    Wyckoff, Jeffrey B; Wang, Yarong; Lin, Elaine Y; Li, Jiu-feng; Goswami, Sumanta; Stanley, E Richard; Segall, Jeffrey E; Pollard, Jeffrey W; Condeelis, John

    2007-03-15

    Although the presence of macrophages in tumors has been correlated with poor prognosis, until now there was no direct observation of how macrophages are involved in hematogenous metastasis. In this study, we use multiphoton microscopy to show, for the first time, that tumor cell intravasation occurs in association with perivascular macrophages in mammary tumors. Furthermore, we show that perivascular macrophages of the mammary tumor are associated with tumor cell intravasation in the absence of local angiogenesis. These results show that the interaction between macrophages and tumor cells lying in close proximity defines a microenvironment that is directly involved in the intravasation of cancer cells in mammary tumors.

  8. Gender-Specificity of Initial and Controlled Visual Attention to Sexual Stimuli in Androphilic Women and Gynephilic Men.

    Directory of Open Access Journals (Sweden)

    Samantha J Dawson

    Full Text Available Research across groups and methods consistently finds a gender difference in patterns of specificity of genital response; however, empirically supported mechanisms to explain this difference are lacking. The information-processing model of sexual arousal posits that automatic and controlled cognitive processes are requisite for the generation of sexual responses. Androphilic women's gender-nonspecific response patterns may be the result of sexually-relevant cues that are common to both preferred and nonpreferred genders capturing attention and initiating an automatic sexual response, whereas men's attentional system may be biased towards the detection and response to sexually-preferred cues only. In the present study, we used eye tracking to assess visual attention to sexually-preferred and nonpreferred cues in a sample of androphilic women and gynephilic men. Results support predictions from the information-processing model regarding gendered processing of sexual stimuli in men and women. Men's initial attention patterns were gender-specific, whereas women's were nonspecific. In contrast, both men and women exhibited gender-specific patterns of controlled attention, although this effect was stronger among men. Finally, measures of attention and self-reported attraction were positively related in both men and women. These findings are discussed in the context of the information-processing model and evolutionary mechanisms that may have evolved to promote gendered attentional systems.

  9. Online visual search attentional bias modification for adolescents with heightened anxiety and depressive symptoms: A randomized controlled trial.

    Science.gov (United States)

    De Voogd, E L; Wiers, R W; Salemink, E

    2017-05-01

    Anxiety and depression, which are highly prevalent in adolescence, are both characterized by a negative attentional bias. As Attentional Bias Modification (ABM) can reduce such a bias, and might also affect emotional reactivity, it could be a promising early intervention. However, a growing number of studies also report comparable improvements in both active and placebo groups. The current study investigated the effects of eight online sessions of visual search (VS) ABM compared to both a VS placebo-training and a no-training control group in adolescents with heightened symptoms of anxiety and/or depression (n = 108). Attention bias, interpretation bias, and stress-reactivity were assessed pre- and post-training. Primary outcomes of anxiety and depressive symptoms, and secondary measures of emotional resilience were assessed pre- and post-training and at three and six months follow-up. Results revealed that VS training reduced attentional bias compared to both control groups, with stronger effects for participants who completed more training sessions. Irrespective of training condition, an overall reduction in symptoms of anxiety and depression and an increase in emotional resilience were observed up to six months later. The training was evaluated relatively negatively. Results suggest that online ABM as employed in the current study has no added value as an early intervention in adolescents with heightened symptoms.

  10. Computational analysis of mammalian cell division gated by a circadian clock: quantized cell cycles and cell size control.

    Science.gov (United States)

    Zámborszky, Judit; Hong, Christian I; Csikász Nagy, Attila

    2007-12-01

    Cell cycle and circadian rhythms are conserved from cyanobacteria to humans with robust cyclic features. Recently, molecular links between these two cyclic processes have been discovered. Core clock transcription factors, Bmal1 and Clock (Clk), directly regulate Wee1 kinase, which inhibits entry into the mitosis. We investigate the effect of this connection on the timing of mammalian cell cycle processes with computational modeling tools. We connect a minimal model of circadian rhythms, which consists of transcription-translation feedback loops, with a modified mammalian cell cycle model from Novak and Tyson (2004). As we vary the mass doubling time (MDT) of the cell cycle, stochastic simulations reveal quantized cell cycles when the activity of Wee1 is influenced by clock components. The quantized cell cycles disappear in the absence of coupling or when the strength of this link is reduced. More intriguingly, our simulations indicate that the circadian clock triggers critical size control in the mammalian cell cycle. A periodic brake on the cell cycle progress via Wee1 enforces size control when the MDT is quite different from the circadian period. No size control is observed in the absence of coupling. The issue of size control in the mammalian system is debatable, whereas it is well established in yeast. It is possible that the size control is more readily observed in cell lines that contain circadian rhythms, since not all cell types have a circadian clock. This would be analogous to an ultradian clock intertwined with quantized cell cycles (and possibly cell size control) in yeast. We present the first coupled model between the mammalian cell cycle and circadian rhythms that reveals quantized cell cycles and cell size control influenced by the clock.

  11. Spatially controlled cell adhesion on three-dimensional substrates.

    Science.gov (United States)

    Richter, Christine; Reinhardt, Martina; Giselbrecht, Stefan; Leisen, Daniel; Trouillet, Vanessa; Truckenmüller, Roman; Blau, Axel; Ziegler, Christiane; Welle, Alexander

    2010-10-01

    The microenvironment of cells in vivo is defined by spatiotemporal patterns of chemical and biophysical cues. Therefore, one important goal of tissue engineering is the generation of scaffolds with defined biofunctionalization in order to control processes like cell adhesion and differentiation. Mimicking extrinsic factors like integrin ligands presented by the extracellular matrix is one of the key elements to study cellular adhesion on biocompatible scaffolds. By using special thermoformable polymer films with anchored biomolecules micro structured scaffolds, e.g. curved and micro-patterned substrates, can be fabricated. Here, we present a novel strategy for the fabrication of micro-patterned scaffolds based on the "Substrate Modification and Replication by Thermoforming" (SMART) technology: The surface of a poly lactic acid membrane, having a low forming temperature of 60 degrees C and being initially very cell attractive, was coated with a photopatterned layer of poly(L-lysine) (PLL) and hyaluronic acid (VAHyal) to gain spatial control over cell adhesion. Subsequently, this modified polymer membrane was thermoformed to create an array of spherical microcavities with diameters of 300 microm for 3D cell culture. Human hepatoma cells (HepG2) and mouse fibroblasts (L929) were used to demonstrate guided cell adhesion. HepG2 cells adhered and aggregated exclusively within these cavities without attaching to the passivated surfaces between the cavities. Also L929 cells adhering very strongly on the pristine substrate polymer were effectively patterned by the cell repellent properties of the hyaluronic acid based hydrogel. This is the first time cell adhesion was controlled by patterned functionalization of a polymeric substrate with UV curable PLL-VAHyal in thermoformed 3D microstructures.

  12. Optical Experiments Simulations and Visualizations Based on MATLAB Visual Control Interface%基于MATLAB的多光学现象仿真可视化设计

    Institute of Scientific and Technical Information of China (English)

    徐春芳; 王浩然; 王建岗; 丁益民

    2016-01-01

    利用MATLAB自带GUI,对光学单色光杨氏双缝干涉、牛顿环、夫琅禾费衍射以及迈克尔逊干涉仪等光学实验进行可视化模拟。%Taking advantage of MATLAB's own component-GUI,implement the simulations and visualizations of the optical experiments,such as Monochromatic light,young's double-slit,Newton's rings,Fraunhofer diffrac-tion and Michelson interference.

  13. MSchart图表控件在Visual Studio 2008中的应用%MSchart Chart Control in Visual Studio 2008 Application

    Institute of Scientific and Technical Information of China (English)

    李伟

    2010-01-01

    在实际的软件项目工程开发中,经常会遇到复杂的数据,用直观的图表方式表达的情况,所以为了方便而直观的表示数据,引入了Mschart控件.该控件可以加栽到visual studio 2008中使用,可以方便的生成各种2D、3D的图表.

  14. Brain-Computer Interfaces for 1-D and 2-D Cursor Control: Designs Using Volitional Control of the EEG Spectrum or Steady-State Visual Evoked Potentials

    Science.gov (United States)

    Trejo, Leonard J.; Matthews, Bryan; Rosipal, Roman

    2005-01-01

    We have developed and tested two EEG-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KF LS classifier to map power spectra of 30-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject s average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: a) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal EOG signals, b) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band. The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from eight electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle

  15. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere

    DEFF Research Database (Denmark)

    Steidle, A.; Sigl, K.; Schuhegger, R.

    2001-01-01

    -negative derivatives of Pseudomonas putida IsoF and Serratia liquefaciens MG1, two strains that are capable of colonizing tomato roots. These AHL monitor strains were used to visualize communication between defined bacterial populations in the rhizosphere of axenically grown tomato plants. Furthermore, we integrated...... into the chromosome of AHL-negative P. putida strain F117 an AHL sensor cassette that responds to the presence of long-chain AHLs with the expression of Gfp. This monitor strain was used to demonstrate that the indigenous bacterial community colonizing the roots of tomato plants growing in nonsterile soil produces...

  16. Visualization of immediate immune responses to pioneer metastatic cells in the lung.

    Science.gov (United States)

    Headley, Mark B; Bins, Adriaan; Nip, Alyssa; Roberts, Edward W; Looney, Mark R; Gerard, Audrey; Krummel, Matthew F

    2016-03-24

    Lung metastasis is the lethal determinant in many cancers and a number of lines of evidence point to monocytes and macrophages having key roles in its development. Yet little is known about the immediate fate of incoming tumour cells as they colonize this tissue, and even less known about how they make first contact with the immune system. Primary tumours liberate circulating tumour cells (CTCs) into the blood and we have developed a stable intravital two-photon lung imaging model in mice for direct observation of the arrival of CTCs and subsequent host interaction. Here we show dynamic generation of tumour microparticles in shear flow in the capillaries within minutes of CTC entry. Rather than dispersing under flow, many of these microparticles remain attached to the lung vasculature or independently migrate along the inner walls of vessels. Using fluorescent lineage reporters and flow cytometry, we observed 'waves' of distinct myeloid cell subsets that load differentially and sequentially with this CTC-derived material. Many of these tumour-ingesting myeloid cells collectively accumulated in the lung interstitium along with the successful metastatic cells and, as previously understood, promote the development of successful metastases from surviving tumour cells. Although the numbers of these cells rise globally in the lung with metastatic exposure and ingesting myeloid cells undergo phenotypic changes associated with microparticle ingestion, a consistently sparse population of resident conventional dendritic cells, among the last cells to interact with CTCs, confer anti-metastatic protection. This work reveals that CTC fragmentation generates immune-interacting intermediates, and defines a competitive relationship between phagocyte populations for tumour loading during metastatic cell seeding.

  17. Visualization and quantification of deformation processes controlling the mechanical response of alloys in aggressive environments

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Ian M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Materials Science and Engineering; Univ. of Illinois, Champaign, IL (United States)

    2017-01-05

    The overall objective of this program was to develop the technique of electron tomography for studies of defects and to couple it with real time dynamic experiments such that four-dimensional (time and three spatial dimensions) characterization of dislocation interactions with defects is feasible and apply it to discovery of the fundamental unit processes of dislocation-defect interactions in metallic systems. Strategies to overcome the restrictions normally associated with electron tomography and to make it practical within the constraints of conducting a dynamic experiment in the transmission electron microscope were developed. These methods were used to determine the mechanism controlling the transfer of slip across grain boundaries in FCC and HCP metals, dislocation precipitate interactions in Al alloys, and dislocation-dislocation interactions in HCP Ti. In addition, preliminary investigations of slip transfer across cube-on-cube and incoherent twin interfaces in a multi-layered system, thermal stability of grains in nanongrained Ni and Fe, and on corrosion of Fe films were conducted.

  18. Visualized intravesical floating hydrogel encapsulating vaporized perfluoropentane for controlled drug release.

    Science.gov (United States)

    Zhu, Guanchen; Zhang, Yifan; Wang, Kaikai; Zhao, Xiaozhi; Lian, Huibo; Wang, Wei; Wang, Haoran; Wu, Jinhui; Hu, Yiqiao; Guo, Hongqian

    2016-10-01

    Intravesical drug delivery is the main strategy for the treatment of bladder disorders. To reduce the relief arising from frequent intravesical instillation, mucoadhesive hydrogel was used for the controlled release of the drug. However, the viscosity of mucoadhesive gel might cause severe urinary obstruction and bladder irritation. To solve all these problems, a floating hydrogel delivery system was developed using perfluoropentane (PFP) as the floating agent. After intravesical instillation of the floating hydrogel, the increased temperature in bladder vaporized PFP, resulting in the generation of microbubbles in the hydrogel. Then, it can float in urine to avoid the urinary obstruction and bladder irritation. In this study, systematic experiments were conducted to investigate the influences of PFP vaporization on the morphology and floating ability of hydrogels. The floating process is much milder and safer than other floating methods published before. In addition, PFP had been used as contrast agent, which affiliated the monitoring of gels during the operation. Therefore, this new drug delivery system addresses the problems of conventional intravesical instillation and is promising for clinic use.

  19. Visual Feedback of Bilateral Bite Force to Assess Motor Control of the Mandible in Isometric Condition.

    Science.gov (United States)

    Testa, Marco; Geri, Tommaso; Signori, Alessio; Roatta, Silvestro

    2015-10-01

    The assessment of the individual ability of modulating and coordinating the right and left bite force is poorly investigated. The present study describes a methodology for the assessment of the bilateral control of the biting force and evaluates the test-retest reliability in a sample of 13 healthy subjects. By modulating the intensity and the left/right balance of the biting force, the subject was able to drive a cursor on the screen to "reach and hold" targets, randomly generated within the physiological "range of force" of the subject. The average motor performance was evaluated by the mean cursor-target distance = 13 ± 5%, the Offset Error = 9 ± 5% and the standard deviation of the force vector = 17.7 ± 6.1% (expressed as % of the target). Mean distance and standard deviation indices had acceptable reliability. This technique improves the characterization of the mandibular motor function and it may have a relevant role for the assessment and rehabilitation of the neuromusculoskeletal disorders affecting the orofacial system.

  20. Construct hepatic analog by cell-matrix controlled assembly technology

    Institute of Scientific and Technical Information of China (English)

    LIU Haixia; YAN Yongnian; WANG Xiaohong; CHENG Jie; LIN Feng; XIONG Zhuo; Wu Rendong

    2006-01-01

    A mixture of hepatic cells and chitosan/gelatin solution was deposited to construct a hepatic analog by way of layer-by-layer deposition technique using a home-made devise. The size and cell concentration of the analogs can be controlled freely. Approximately 90% of the hepatic cells remained viable under 0.2 Mpa extrusion pressure. Cultured in vitro 8 weeks before animal test, hepatic cells in structure maintained their phenotype and kept proliferating, and albumin and other secretion of the cells increased. Cords and hepaton-like structures were observed after culture for 20 d. These results indicate that hepatic cells could be assembled directly into a 3D viable structure and expanded to form a hepatic organoid. This accomplishment is considered to be an interesting means for the fabrication of liver replacements.

  1. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rui-ping Zhang

    2015-01-01

    Full Text Available An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  2. visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7–8. Superparamagnet-ic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cordvia the subarachnoid space. An outer magnetic ifeld was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesen-chymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunolfuorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guid-ance. Our data conifrm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic ifeld guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively trackedin vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  3. PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by (19)F MRI

    NARCIS (Netherlands)

    Srinivas, M.; Tel, J.; Schreibelt, G.; Bonetto, F.J.; Cruz, L.J.; Amiri, H.; Heerschap, A.; Figdor, C.G.; Vries, I.J.M. de

    2015-01-01

    AIM: In vivo imaging using (19)F MRI is advantageous, due to its ability to quantify cell numbers, but is limited for a lack of suitable labels. Here, we formulate two stable and clinically applicable labels for tracking two populations of primary human dendritic cells (DCs) simultaneously. MATERIAL

  4. Visualization of the specific interaction of sulfonylurea-incorporated polymer with insulinoma cell line MIN6.

    Science.gov (United States)

    Park, Keun-Hong; Akaike, Toshihiro

    2004-02-01

    A derivative of sulfonylurea (SU) that mimics glibenclamide in chemical structure was synthesized and incorporated into a water-soluble polymeric backbone as a biospecific polymer for stimulating insulin secretion. In this study, a backbone polymer fluorescence-labeled with rodamine-B isothiocyanate was found to be strongly adsorbed onto MIN6 cells, probably due to its specific interaction mediated by SU receptors on the cell membrane. The intensity of fluorescence on the cells was significantly increased by increasing the incubation time and polymer concentration. To verify the specific interaction between the SU (K(+) channel closer)-incorporated copolymer and MIN6 cells, the cells were pretreated with diazoxide, an agonist of the ATP-sensitive K(+) channel (K(+) channel opener), before adding the polymer to the cell culture medium. This treatment suppressed the interaction between SU and MIN6 cells. A confocal laser microscopic study confirmed this effect. The results of this study provide evidence that SU-incorporated copolymer stimulates insulin secretion through the specific interactions of SU moieties in the polymer with MIN6 cells.

  5. Human intestinal dendritic cells as controllers of mucosal immunity.

    Science.gov (United States)

    Bernardo, David

    2013-01-01

    Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory) of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  6. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  7. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  8. Visually guided whole cell patch clamp of mouse supraoptic nucleus neurons in cultured and acute conditions.

    Science.gov (United States)

    Stachniak, Tevye J E; Bourque, Charles W

    2006-07-01

    Recent advances in neuronal culturing techniques have supplied a new set of tools for studying neural tissue, providing effective means to study molecular aspects of regulatory elements in the supraoptic nucleus of the hypothalamus (SON). To combine molecular biology techniques with electrophysiological recording, we modified an organotypic culture protocol to permit transfection and whole cell patch-clamp recordings from SON cells. Neonatal mouse brain coronal sections containing the SON were dissected out, placed on a filter insert in culture medium, and incubated for at least 4 days to allow attachment to the insert. The SON was identifiable using gross anatomical landmarks, which remained intact throughout the culturing period. Immunohistochemical staining identified both vasopressinergic and oxytocinergic cells present in the cultures, typically appearing in well-defined clusters. Whole cell recordings from these cultures demonstrated that certain properties of the neonatal mouse SON were comparable to adult mouse magnocellular neurons. SON neurons in both neonatal cultures and acute adult slices showed similar sustained outward rectification above -60 mV and action potential broadening during evoked activity. Membrane potential, input resistance, and rapidly inactivating potassium current density (IA) were reduced in the cultures, whereas whole cell capacitance and spontaneous synaptic excitation were increased, perhaps reflecting developmental changes in cell physiology that warrant further study. The use of the outlined organotypic culturing procedures will allow the study of such electrophysiological properties of mouse SON using whole cell patch-clamp, in addition to various molecular, techniques that require longer incubation times.

  9. Patterning processes in aggregates of Hydra cells visualized with the monoclonal antibody, TS19.

    Science.gov (United States)

    Sato, M; Bode, H R; Sawada, Y

    1990-10-01

    The monoclonal antibody, TS19, (Heimfeld et al., 1985), labels the apical surface of ectodermal epithelial cells of tentacles and lower peduncles in Hydra. To investigate the patterning process in a tissue whose original pattern was completely destroyed, the TS19 staining pattern was examined in developing aggregates of Hydra cells. Two types of aggregates were prepared. G-aggregates were made from tissue of the gastric portion of animals and RG-aggregates from gastric tissue allowed to regenerate for 24 hr before making aggregates. G-aggregates were initially TS19-negative, and later dim and uniformly TS19-positive. Thereafter, TS19 staining broke up into brightly stained and unstained regions. The brightly staining regions developed into head or foot structures. The TS19 pattern in RG-aggregates developed differently. Since the initial aggregates contained cells of regenerating tips, they started with TS19-positive cells as well as TS19-negative cells. The numbers of brightly staining TS19-positive cells increased with time. Some patches of these cells developed into head or foot structures, while others did not. These results and a simulation using a reaction-diffusion model suggest that the changes in activation levels affected the temporal changes in the pattern of TS19 staining, and that the de novo pattern formation in hydra can be explained in terms of a process involving activation and inhibition properties.

  10. Mechanical control of mitotic progression in single animal cells.

    Science.gov (United States)

    Cattin, Cedric J; Düggelin, Marcel; Martinez-Martin, David; Gerber, Christoph; Müller, Daniel J; Stewart, Martin P

    2015-09-08

    Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback-controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50-100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement.

  11. Fundamentals of microfluidic cell culture in controlled microenvironments.

    Science.gov (United States)

    Young, Edmond W K; Beebe, David J

    2010-03-01

    Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology.

  12. Comparison of Narrowband Imaging with Autofluorescence Imaging for Endoscopic Visualization of Superficial Squamous Cell Carcinoma Lesions of the Esophagus

    Directory of Open Access Journals (Sweden)

    Haruhisa Suzuki

    2012-01-01

    Full Text Available Aim. To compare narrowband imaging (NBI and autofluorescence imaging (AFI endoscopic visualization for identifying superficial esophageal squamous cell carcinoma (SCC. Methods. Twenty-four patients with superficial esophageal carcinomas diagnosed at previous hospitals were enrolled in this study. Lesions were initially detected using white-light endoscopy and then observed with both NBI and AFI. Endoscopic images documented each method, and three endoscopists experienced in esophageal imaging retrospectively reviewed respective images of histologically confirmed esophageal SCCs. Images were assessed for quality in identifying superficial SCCs and rated as excellent, fair, or poor by the three reviewers with interobserver agreement calculated using kappa (κ statistics. Results. Thirty-one lesions histologically confirmed as superficial esophageal SCCs were detected in 24 patients. NBI images of 27 lesions (87% were rated as excellent, three as fair, and one as poor compared to AFI images of 19 lesions (61% rated as excellent, 10 as fair and two as poor (P<0.05. Moderate interobserver agreement (κ=0.42, 95% CI 0.24–0.60 resulted in NBI while fair agreement (κ=0.35, 95% CI 0.18–0.51 was achieved using AFI. Conclusion. NBI may be more effective than AFI for visualization of esophageal SCC.

  13. Online control of reaching and pointing to visual, auditory, and multimodal targets: Effects of target modality and method of determining correction latency.

    Science.gov (United States)

    Holmes, Nicholas P; Dakwar, Azar R

    2015-12-01

    Movements aimed towards objects occasionally have to be adjusted when the object moves. These online adjustments can be very rapid, occurring in as little as 100ms. More is known about the latency and neural basis of online control of movements to visual than to auditory target objects. We examined the latency of online corrections in reaching-to-point movements to visual and auditory targets that could change side and/or modality at movement onset. Visual or auditory targets were presented on the left or right sides, and participants were instructed to reach and point to them as quickly and as accurately as possible. On half of the trials, the targets changed side at movement onset, and participants had to correct their movements to point to the new target location as quickly as possible. Given different published approaches to measuring the latency for initiating movement corrections, we examined several different methods systematically. What we describe here as the optimal methods involved fitting a straight-line model to the velocity of the correction movement, rather than using a statistical criterion to determine correction onset. In the multimodal experiment, these model-fitting methods produced significantly lower latencies for correcting movements away from the auditory targets than away from the visual targets. Our results confirm that rapid online correction is possible for auditory targets, but further work is required to determine whether the underlying control system for reaching and pointing movements is the same for auditory and visual targets.

  14. The contribution of exproprioceptive visual information and seat height to the control of the stand-to-sit movement in young and older individuals

    Directory of Open Access Journals (Sweden)

    R. Moraes

    2011-01-01

    Full Text Available The purpose of the present study was to analyze the contribution of both exproprioceptive visual information and seat height in the control of stand-to-sit movement in young and older adults. Twelve older and 11 young individuals were invited to sit down on a chair under two seat heights (100% and 80% of the knee-ground distance and under two visual conditions (with and without the availability of exproprioceptive visual information. Participants wore special goggles that reduced the size of the lower visual field. Participants performed the stand-to-sit movement with their feet positioned on a forceplate. The results allowed for the conclusion that the exproprioceptive visual information availability affected differently the way young and older adults control the stand-to-sit movement. On the other hand, seat height manipulation resulted in similar strategies by young and older individuals. Yet, older individuals exhibited a more conservative behavior than young adults while performing the stand-to-sit movement.

  15. Comparative Study of Motor Performance of Deaf and Hard of Hearing Students in Reaction Time, Visual-Motor Control and Upper Limb Speed and Dexterity Abilities

    Science.gov (United States)

    Gkouvatzi, Anastasia N.; Mantis, Konstantinos; Kambas, Antonis

    2010-01-01

    Using the Bruininks-Oseretsky Test the motor performance of 34 deaf--hard-of-hearing pupils, 6-14 year, was evaluated in reaction time, visual-motor control and upper limb speed and dexterity. The two-way ANOVA variance analysis for two independent variables, group, age, and the Post Hoc (Scheffe test) for multiple comparisons were used. The…

  16. Children with spastic hemiplegia are equally able as controls in maintaining a precise percentage of maximum force without visually monitoring their performance.

    NARCIS (Netherlands)

    Rameckers, E.A.A.; Smits-Engelsman, B.C.M.; Duysens, J.E.J.

    2005-01-01

    In this study the hypothesis was tested that children with spastic hemiplegia rely more on externally guided visual feedback when trying to keep force constant with their affected hand (AH) as compared to their non-affected hand (NAH) and as compared to controls. An isometric force task in which a c

  17. Exercising Spatiotemporal Control of Cell Attachment with Optically Transparent Microelectrodes

    OpenAIRE

    Shah, Sunny S.; Lee, Ji Youn; Verkhoturov, Stanislav; Tuleuova, Nazgul; Schweikert, Emile A.; Ramanculov, Erlan; Revzin, Alexander

    2008-01-01

    This paper describes a novel approach of controlling cell-surface interactions through an electrochemical “switching” of biointerfacial properties of optically transparent microelectrodes. The indium tin oxide (ITO) microelectrodes, fabricated on glass substrates, were modified with poly(ethylene glycol) (PEG) silane to make glass and ITO regions resistant to protein and cell adhesion. Cyclic voltammetry, with potassium ferricyanide serving as a redox reporter molecule, was used to monitor el...

  18. Compass Cells in the Brain of an Insect Are Sensitive to Novel Events in the Visual World.

    Directory of Open Access Journals (Sweden)

    Tobias Bockhorst

    Full Text Available The central complex of the insect brain comprises a group of neuropils involved in spatial orientation and memory. In fruit flies it mediates place learning based on visual landmarks and houses neurons that encode the orientation for goal-directed locomotion, based on landmarks and self-motion cues for angular path-integration. In desert locusts, the central complex holds a compass-like representation of head directions, based on the polarization pattern of skylight. Through intracellular recordings from immobilized locusts, we investigated whether sky compass neurons of the central complex also represent the position or any salient feature of possible landmarks, in analogy to the observations in flies. Neurons showed strongest responses to the novel appearance of a small moving square, but we found no evidence for a topographic representation of object positions. Responses to an individual square were independent of direction of motion and trajectory, but showed rapid adaptation to successive stimulation, unaffected by changing the direction of motion. Responses reappeared, however, if the moving object changed its trajectory or if it suddenly reversed moving direction against the movement of similar objects that make up a coherent background-flow as induced by ego-motion. Response amplitudes co-varied with the precedent state of dynamic background activity, a phenomenon that has been related to attention-dependent saliency coding in neurons of the mammalian primary visual cortex. The data show that neurons of the central complex of the locust brain are visually bimodal, signaling sky compass direction and the novelty character of moving objects. These response properties might serve to attune compass-aided locomotor control to unexpected events in the environment. The difference to data obtained in fruit flies might relate to differences in the lifestyle of landmark learners (fly and compass navigators (locust, point to the existence of

  19. Visual detection of Akt mRNA in living cell using gold nanoparticle beacon

    Science.gov (United States)

    Ma, Yi; Tian, Caiping; Li, Siwen; Wang, Zhaohui; Gu, Yueqing

    2014-09-01

    PI3K-Akt signaling pathway plays the key role in cell apoptosis and survival, and the components of PI3K /Akt signaling pathway are often abnormally expressed in human tumors. Therefore, determination of the Akt (protein kinase B, PKB) messenger ribonucleic acid (mRNA) expression is significantly important in understanding the mechanism of tumor progression. In this study, we designed a special hairpin deoxyribonucleic acid (DNA) functionalized with gold nanoparticles and fluorescein isothiocyanate(FITC) as a beacon for detecting human Akt mRNA. Spectrofluorometer was used to detect the fluorescence quenching and recovery of the beacons, and laser confocal scanning microscopy was adopted to image Akt mRNA in cells. The results showed that this beacon could sensitively and quantitatively measure the Akt mRNA in living cells . This strategy is potentially useful for the cellular imaging of RNA or protein expression in living cells.

  20. Visualization and identification of IL-7 producing cells in reporter mice.

    Directory of Open Access Journals (Sweden)

    Renata I Mazzucchelli

    Full Text Available Interleukin-7 (IL-7 is required for lymphocyte development and homeostasis although the actual sites of IL-7 production have never been clearly identified. We produced a bacterial artificial chromosome (BAC transgenic mouse expressing ECFP in the Il7 locus. The construct lacked a signal peptide and ECFP (enhanced cyan fluorescent protein accumulated inside IL-7-producing stromal cells in thoracic thymus, cervical thymus and bone marrow. In thymus, an extensive reticular network of IL-7-containing processes extended from cortical and medullary epithelial cells, closely contacting thymocytes. Central memory CD8 T cells, which require IL-7 and home to bone marrow, physically associated with IL-7-producing cells as we demonstrate by intravital imaging.

  1. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  2. Magnetically levitated nano-robots: an application to visualization of nerve cells injuries.

    Science.gov (United States)

    Lou, Mingji; Jonckheere, Edmond

    2007-01-01

    This paper proposes a swarm of magnetically levitated nano-robots with high sensitivity nano-sensors as a mean to detect chemical sources, specifically the chemical signals released by injured nervous cells. In the aftermath of the process, further observation by these nano-robots would be used to monitor the healing process and assess the amount of regeneration, if any, or even the repair, of the injured nervous cells.

  3. Construction of an electrochemical cell to visualize samples in situ in stereomicroscope

    OpenAIRE

    Mônica Alessandra Silva Alencar; Assis Vicente Benedetti; Cecílio Sadao Fugivara; Younès Messaddeq

    2010-01-01

    The electrochemical study of glass like tungsten oxide derivatives requires the construction of special electrodes due to the fact that these glasses are not conductive. Electrodes modified with WO3 change their color when submitted to some potential perturbation. The color change of the electrochromic materials was observed in situ by coupling an electrochemical cell to a stereomicroscope. The constructed cell is versatile and may represent a great contribution to the electrochemical studies...

  4. A case-control study to assess the relationship between poverty and visual impairment from cataract in Kenya, the Philippines, and Bangladesh.

    Directory of Open Access Journals (Sweden)

    Hannah Kuper

    2008-12-01

    Full Text Available BACKGROUND: The link between poverty and health is central to the Millennium Development Goals (MDGs. Poverty can be both a cause and consequence of poor health, but there are few epidemiological studies exploring this complex relationship. The aim of this study was to examine the association between visual impairment from cataract and poverty in adults in Kenya, Bangladesh, and the Philippines. METHODS AND FINDINGS: A population-based case-control study was conducted in three countries during 2005-2006. Cases were persons aged 50 y or older and visually impaired due to cataract (visual acuity < 6/24 in the better eye. Controls were persons age- and sex-matched to the case participants with normal vision selected from the same cluster. Household expenditure was assessed through the collection of detailed consumption data, and asset ownership and self-rated wealth were also measured. In total, 596 cases and 535 controls were included in these analyses (Kenya 142 cases, 75 controls; Bangladesh 216 cases, 279 controls; Philippines 238 cases, 180 controls. Case participants were more likely to be in the lowest quartile of per capita expenditure (PCE compared to controls in Kenya (odds ratio = 2.3, 95% confidence interval 0.9-5.5, Bangladesh (1.9, 1.1-3.2, and the Philippines (3.1, 1.7-5.7, and there was significant dose-response relationship across quartiles of PCE. These associations persisted after adjustment for self-rated health and social support indicators. A similar pattern was observed for the relationship between cataract visual impairment with asset ownership and self-rated wealth. There was no consistent pattern of association between PCE and level of visual impairment due to cataract, sex, or age among the three countries. CONCLUSIONS: Our data show that people with visual impairment due to cataract were poorer than those with normal sight in all three low-income countries studied. The MDGs are committed to the eradication of extreme

  5. Controlling the switches: Rho GTPase regulation during animal cell mitosis.

    Science.gov (United States)

    Zuo, Yan; Oh, Wonkyung; Frost, Jeffrey A

    2014-12-01

    Animal cell division is a fundamental process that requires complex changes in cytoskeletal organization and function. Aberrant cell division often has disastrous consequences for the cell and can lead to cell senescence, neoplastic transformation or death. As important regulators of the actin cytoskeleton, Rho GTPases play major roles in regulating many aspects of mitosis and cytokinesis. These include centrosome duplication and separation, generation of cortical rigidity, microtubule-kinetochore stabilization, cleavage furrow formation, contractile ring formation and constriction, and abscission. The ability of Rho proteins to function as regulators of cell division depends on their ability to cycle between their active, GTP-bound and inactive, GDP-bound states. However, Rho proteins are inherently inefficient at fulfilling this cycle and require the actions of regulatory proteins that enhance GTP binding (RhoGEFs), stimulate GTPase activity (RhoGAPs), and sequester inactive Rho proteins in the cytosol (RhoGDIs). The roles of these regulatory proteins in controlling cell division are an area of active investigation. In this review we will delineate the current state of knowledge of how specific RhoGEFs, RhoGAPs and RhoGDIs control mitosis and cytokinesis, and highlight the mechanisms by which their functions are controlled.

  6. Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex.

    Science.gov (United States)

    Klein, Carsten; Evrard, Henry C; Shapcott, Katharine A; Haverkamp, Silke; Logothetis, Nikos K; Schmid, Michael C

    2016-04-01

    Electrical microstimulation and more recently optogenetics are widely used to map large-scale brain circuits. However, the neuronal specificity achieved with both methods is not well understood. Here we compare cell-targeted optogenetics and electrical microstimulation in the macaque monkey brain to functionally map the koniocellular lateral geniculate nucleus (LGN) projection to primary visual cortex (V1). Selective activation of the LGN konio neurons with CamK-specific optogenetics caused selective electrical current inflow in the supra-granular layers of V1. Electrical microstimulation targeted at LGN konio layers revealed the same supra-granular V1 activation pattern as the one elicited by optogenetics. Taken together, these findings establish a selective koniocellular LGN influence on V1 supra-granular layers, and they indicate comparable capacities of both stimulation methods to isolate thalamo-cortical circuits in the primate brain.

  7. Visualization of proteolytic activity associated with the apoptotic response in cancer cells

    Science.gov (United States)

    Tice, Brian George

    Caspases execute programmed cell death, where low levels of caspase activity are linked to cancer. Chemotherapies utilize induction of apoptosis as a key mechanism for cancer treatment, where caspase-3 is a major player involved in dismantling these aberrant cells. The ability to sensitively measure the initial caspase-3 cleavage events during apoptosis is important for understanding the initiation of this complex cellular process, however, current ensemble methods are not sensitive enough to measure single cleavage events in cells. By utilizing the optical properties of plasmon coupling, peptide-linked gold nanoparticles were developed to enable single molecule imaging of caspase-3 activity in two different cancer systems. Au crown nanoparticles were assembled in a multimeric fashion to overcome the high and heterogeneous background scattering of live cells. In a colon cancer (SW620) cell line challenged with tumor necrosis factor-alpha (TNF-alpha), single molecule trajectories show early stage caspase-3 activation within minutes, which was not detectable by ensemble assays until 23 hours. Variability in caspase-3 activation among the population of cells was identified and likely a result of each cell's specific resistance to death receptor-induced apoptosis. Following these studies, improvements by way of sensitivity and selectivity were tailored into an improved nanosensor construct. Au nanoshell dimers were prepared as a comparably bright construct with 1) reduced heterogeneity compared to the synthesis of the crown nanoparticles and 2) a peptide sequence highly selective for caspase-3. Chronic myeloid leukemia (CML) K562 cells were assessed for their early apoptotic response upon treatment with dasatinib, a clinically approved tyrosine kinase inhibitor that specifically targets BCR-ABL. It has been demonstrated that inhibition of BCR-ABL by dasatinib commits K562 cells to apoptosis. Single molecule experiments with Au nanoshell dimers show caspase-3 activation

  8. Gene pair signatures in cell type transcriptomes reveal lineage control

    Science.gov (United States)

    Heinäniemi, Merja; Nykter, Matti; Kramer, Roger; Wienecke-Baldacchino, Anke; Sinkkonen, Lasse; Zhou, Joseph Xu; Kreisberg, Richard; Kauffman, Stuart A.; Huang, Sui; Shmulevich, Ilya

    2013-01-01

    The distinct cell types of multicellular organisms arise due to constraints imposed by gene regulatory networks on the collective change of gene expression across the genome, creating self-stabilizing expression states, or attractors. We compiled a resource of curated human expression data comprising 166 cell types and 2,602 transcription regulating genes and developed a data driven method built around the concept of expression reversal defined at the level of gene pairs, such as those participating in toggle switch circuits. This approach allows us to organize the cell types into their ontogenetic lineage-relationships and to reflect regulatory relationships among genes that explain their ability to function as determinants of cell fate. We show that this method identifies genes belonging to regulatory circuits that control neuronal fate, pluripotency and blood cell differentiation, thus offering a novel large-scale perspective on lineage specification. PMID:23603899

  9. Control of experimental inflammatory bowel disease by regulatory T cells.

    Science.gov (United States)

    Asseman, C; Fowler, S; Powrie, F

    2000-10-01

    A helper T cell type 1-mediated colitis driven by enteric bacteria develops in severe combined immunodeficient mice after transfer of CD45RB(high)CD4(+) T cells. Development of disease can be prevented by cotransfer of the reciprocal CD45RB(low) subset. Analysis of the mechanism of immune suppression transferred by CD45RB(low)CD4(+) cells revealed essential roles for both IL-10 and TGF-beta. These data indicate that a functionally specialized population of regulatory T (Treg) cells exists in normal mice and that these can prevent the development of pathogenic responses toward commensal bacteria. The role of Treg cells in the control of the immune response is discussed.

  10. Visual dependence and BPPV.

    Science.gov (United States)

    Agarwal, K; Bronstein, A M; Faldon, M E; Mandalà, M; Murray, K; Silove, Y

    2012-06-01

    The increased visual dependence noted in some vestibular patients may be secondary to their vertigo. We examine whether a single, brief vertigo attack, such as in benign paroxysmal positional vertigo (BPPV), modifies visual dependency. Visual dependency was measured before and after the Hallpike manoeuvre with (a) the Rod and Frame and the Rod and Disc techniques whilst seated and (b) the postural sway induced by visual roll-motion stimulation. Three subject groups were studied: 20 patients with BPPV (history and positive Hallpike manoeuvre; PosH group), 20 control patients (history of BPPV but negative Hallpike manoeuvre; NegH group) and 20 normal controls. Our findings show that while both patient groups showed enhanced visual dependency, the PosH and the normal control group decreased visual dependency on repetition of the visual tasks after the Hallpike manoeuvre. NegH patients differed from PosH patients in that their high visual dependency did not diminish on repetition of the visual stimuli; they scored higher on the situational characteristic questionnaire ('visual vertigo' symptoms) and showed higher incidence of migraine. We conclude that long term vestibular symptoms increase visual dependence but a single BPPV attack does not increase it further. Repetitive visual motion stimulation induces adaptation in visual dependence in peripheral vestibular disorders such as BPPV. A positional form of vestibular migraine may underlie the symptoms of some patients with a history of BPPV but negative Hallpike manoeuvre. The finding that they have non adaptable increased visual dependency may explain visuo-vestibular symptoms in this group and, perhaps more widely, in patients with migraine.

  11. TCR down-regulation controls T cell homeostasis

    DEFF Research Database (Denmark)

    Boding, Lasse; Bonefeld, Charlotte Menné; Nielsen, Bodil L

    2009-01-01

    TCR and cytokine receptor signaling play key roles in the complex homeostatic mechanisms that maintain a relative stable number of T cells throughout life. Despite the homeostatic mechanisms, a slow decline in naive T cells is typically observed with age. The CD3gamma di-leucine-based motif...... controls TCR down-regulation and plays a central role in fine-tuning TCR expression and signaling in T cells. In this study, we show that the age-associated decline of naive T cells is strongly accelerated in CD3gammaLLAA knock-in mice homozygous for a double leucine to alanine mutation in the CD3gamma di......-leucine-based motif, whereas the number of memory T cells is unaffected by the mutation. This results in premature T cell population senescence with a severe dominance of memory T cells and very few naive T cells in middle-aged to old CD3gamma mutant mice. The reduced number of naive T cells in CD3gamma mutant mice...

  12. SIRT1 controls cell proliferation by regulating contact inhibition.

    Science.gov (United States)

    Cho, Elizabeth H; Dai, Yan

    2016-09-16

    Contact inhibition keeps cell proliferation in check and serves as a built-in protection against cancer development by arresting cell division upon cell-cell contact. Yet the complete mechanism behind this anti-cancer process remains largely unclear. Here we present SIRT1 as a novel regulator of contact inhibition. SIRT1 performs a wide variety of functions in biological processes, but its involvement in contact inhibition has not been explored to date. We used NIH3T3 cells, which are sensitive to contact inhibition, and H460 and DU145 cancer cells, which lack contact inhibition, to investigate the relationship between SIRT1 and contact inhibition. We show that SIRT1 overexpression in NIH3T3 cells overcomes contact inhibition while SIRT1 knockdown in cancer cells restores their lost contact inhibition. Moreover, we demonstrate that p27 protein expression is controlled by SIRT1 in contact inhibition. Overall, our findings underline the critical role of SIRT1 in contact inhibition and suggest SIRT1 inhibition as a potential strategy to suppress cancer cell growth by re