WorldWideScience

Sample records for cells affects vegf

  1. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  2. Relationship of VEGF/VEGFR with immune and cancer cells:staggering or forward?

    Institute of Scientific and Technical Information of China (English)

    Yu-Ling Li; Hua Zhao; Xiu-Bao Ren

    2016-01-01

    Vascular endothelial growth factor (VEGF) is primarily known as a proangiogenic factor and is one of the most important growth and survival factors affecting the vascular endothelium. However, recent studies have shown that VEGF also plays a vital role in the immune environment. In addition to the traditional growth factor role of VEGF and VEGF receptors (VEGFRs), they have a complicated relationship with various immune cells. VEGF also reportedly inhibits the differentiation and function of immune cells during hematopoiesis. Dendritic cells (DCs), macrophages, and lymphocytes further express certain types of VEGF receptors. VEGF can be secreted as well by tumor cells through the autocrine pathway and can stimulate the function of cancer stemness. This review will provide a paradigm shift in our understanding of the role of VEGF/VEGFR signaling in the immune and cancer environment.

  3. Gene Expression of VEGF-A and VEGF-C in Peripheral Blood Mononuclear Cells of Iranian Patients with Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Aliparasti

    2013-06-01

    Full Text Available OBJECTIVE: The crucial role of angiogenesis in the pathophysiology of acute myeloid leukemia (AML has been proposed. One of the key regulators of angiogenesis is the vascular endothelial growth factor (VEGF. Among the VEGF family, it has been observed that VEGF-A and VEGF-C are expressed by AML cells and mediate leukemic cell proliferation, survival, and resistance to chemotherapy. Emerging evidence, however, suggests that elevated levels of VEGF or a proangiogenic phenotype may impede, rather than promote, early tumor development and progression. As the significance of VEGF-A and VEGF-C levels in the pathogenesis of AML has not been clarified well, the aim of this study is to evaluate gene expression of these angiogenesis promoters and its possible prognostic value in peripheral blood mononuclear cells of Iranian patients with AML. METHODS: We investigated the mRNA expression of VEGF-A and VEGF-C in peripheral blood mononuclear cells of 27 patients with newly diagnosed AML and 28 healthy controls by quantitative real-time PCR. RESULTS: Expression of VEGF-C mRNA was significantly lower in AML patients than in healthy controls (p<0.001. However, there was no significant decrement in expression of VEGF-A mRNA of AML patients compared to the control group (p=0.861. VEGF-A and VEGF-C expression were not able to predict clinical outcome. CONCLUSION: Our data showed that AML is associated with a decreased expression of VEGF-C mRNA. However, expression levels did not influence the clinical outcome in our study. It seems that angiogenesis is affected by different cytokines other than VEGF-C or VEGF-A, and VEGF is also affected by different cytokines. Taken together, these findings help to provide new insights into the investigation of other angiogenic factors and cytokines that may play roles in the pathogenesis of AML.

  4. Response to anti-VEGF-A treatment of endothelial cells in vitro.

    Science.gov (United States)

    Puddu, Alessandra; Sanguineti, Roberta; Traverso, Carlo Enrico; Viviani, Giorgio L; Nicolò, Massimo

    2016-05-01

    This study was conducted to compare the effects of two anti-VEGF-A drugs, Ranibizumab and Aflibercept, on the expression and secretion of VEGFs family members, and on their influence in proliferation and migration of endothelial cells (HECV) in vitro. HECV cells were exposed 24 h (T1), 4 days (T2) and 6 days (T3) to Ranibizumab or Aflibercept at pharmacodynamically relevant concentrations (Ranibizumab: 12.5 μg/ml and 125 μg/ml; Aflibercept: 50 μg/ml and 500 μg/ml). Cell viability and then expression and secretion of VEGF-A, VEGF-B, VEGF-C and PlGF were evaluated respectively by Real Time-PCR and ELISA. Intracellular signaling activated by VEGF-A and VEGF-C was investigated evaluating phosphorylation of VEGFR2. Influence in would healing was evaluated through scratch assay. In general no differences were observed among the tested concentrations of anti-vegf drugs. Ranibizumab and Aflibercept did not affect HECV cell viability in all experimental times. At T1, Ranibizumab decreased mRNA levels of VEGF-A, induced VEGF-C secretion, abrogated phosphorylation of VEGFR2 stimulated by VEGF-A, and impaired ability of HECV cells to repair wound healing. Aflibercept decreased mRNA levels of VEGF-A, -B and PlGF; slightly increased basal level of phVEGFR2, and completely abrogated phosphorylation stimulated by VEGF-A and VEGF-C. No effects on secretion of VEGF-B and on would healing were observed after exposure to Aflibercept. Prolonged exposure to anti-VEGFs decreased expression and secretion of VEGF-A and VEGF-B, up-regulated VEGF-C mRNA levels and its secretion, and increased basal phosphorylation of VEGFR2. Acute treatment with Ranibizumab or Aflibercept evoked different responses on endothelial cells, however these differences were lost after prolonged exposure. Scratch test results suggest that treatment with Ranibizumab may be more effective than Aflibercept in reducing angiogenic potential of endothelial cells in vitro.

  5. Hypoxia promotes adipose-derived stem cell proliferation via VEGF

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2 and normal oxygen (21% O2. The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production. [Biomed Res Ther 2016; 3(1.000: 476-482

  6. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  7. Aberrant, ectopic expression of VEGF and VEGF receptors 1 and 2 in malignant colonic epithelial cells. Implications for these cells growth via an autocrine mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, Amrita [Veterans Affairs Long Beach Healthcare System, Long Beach, CA (United States); Jones, Michael K. [Veterans Affairs Long Beach Healthcare System, Long Beach, CA (United States); Department of Medicine, University of California, Irvine, CA (United States); Szabo, Sandor [Veterans Affairs Long Beach Healthcare System, Long Beach, CA (United States); Department of Pathology, University of California, Irvine, CA (United States); Tarnawski, Andrzej S., E-mail: amrita.ahluwalia@va.gov [Veterans Affairs Long Beach Healthcare System, Long Beach, CA (United States); Department of Medicine, University of California, Irvine, CA (United States)

    2013-08-09

    Highlights: •Malignant colonic epithelial cells express VEGF and its receptors. •Cultured colon cancer cells secrete VEGF into the medium. •Inhibition of VEGF receptor significantly decreases colon cancer cell proliferation. •VEGF is critical for colon cancer cell growth. -- Abstract: Vascular endothelial growth factor A (referred to as VEGF) is implicated in colon cancer growth. Currently, the main accepted mechanism by which VEGF promotes colon cancer growth is via the stimulation of angiogenesis, which was originally postulated by late Judah Folkman. However, the cellular source of VEGF in colon cancer tissue; and, the expression of VEGF and its receptors VEGF-R1 and VEGF-R2 in colon cancer cells are not fully known and are subjects of controversy. Material and methods: We examined and quantified expression of VEGF, VEGF-R1 and VEGF-R2 in three different human colonic tissue arrays containing sections of adenocarcinoma (n = 43) and normal mucosa (n = 41). In human colon cancer cell lines HCT116 and HT29 and normal colon cell lines NCM356 and NCM460, we examined expression of VEGF, VEGF-R1 and VEGF-R2 mRNA and protein, VEGF production and secretion into the culture medium; and, the effect of a potent, selective inhibitor of VEGF receptors, AL-993, on cell proliferation. Results: Human colorectal cancer specimens had strong expression of VEGF in cancer cells and also expressed VEGF-R1 and VEGF-R2.In vitro studies showed that human colon cancer cell lines, HCT116 and HT29, but not normal colonic cell lines, express VEGF, VEGF-R1 and VEGF-R2 and secrete VEGF into the medium up to a concentration 2000 pg/ml within 48 h. Furthermore, we showed that inhibition of VEGF receptors using a specific VEGF-R inhibitor significantly reduced proliferation (by >50%) of cultured colon cancer cell lines. Conclusions: Our findings support the contention that VEGF generated by colon cancer cells stimulates their growth directly through an autocrine mechanism that is

  8. An Antagonistic Vascular Endothelial Growth Factor (VEGF) Variant Inhibits VEGF-Stimulated Receptor Autophosphorylation and Proliferation of Human Endothelial Cells

    Science.gov (United States)

    Siemeister, Gerhard; Schirner, Michael; Reusch, Petra; Barleon, Bernhard; Marme, Dieter; Martiny-Baron, Georg

    1998-04-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

  9. Investigation of Antiangiogenic Tumor Therapy Potential of Microencapsulated HEK293 VEGF165b Producing Cells

    Directory of Open Access Journals (Sweden)

    Fatemeh Afkhami

    2010-01-01

    encapsulated and non-encapsulated cells was similar. The effect of VEGF165b harvested from encapsulated cells on Human Umbilical Vein Endothelial cells (HUVECs proliferation were also examined.The same inhibitory effects on HUVECs proliferation was seen when the cells were incubated with a mixture of VEGF165b and a 2-fold VEGF165b or with VEGF165b and 2-fold excess VEGF165b released from encapsulated cells. Subcutaneous injection of microencapsulated VEGF165b producing cells in tumor site of nude mice resulted in the reduction of the number of vessels around the tumors.

  10. Radiation-induced VEGF-C expression and endothelial cell proliferation in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Hsuan [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Pan, Shiow-Lin; Wang, Jing-Chi; Teng, Che-Ming [National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Kuo, Sung-Hsin [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Department of Internal Medicine, Taipei (China); Cheng, Jason Chia-Hsien [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Graduate Institute of Clinical Medicine, Taipei (China)

    2014-12-15

    The present study was undertaken to investigate whether radiation induces the expression of vascular endothelial growth factor C (VEGF-C) through activation of the PI3K/Akt/mTOR pathway,subsequently affecting endothelial cells. Radiotherapy-induced tumor micro-lymphatic vessel density (MLVD) was determined in a lung cancer xenograft model established in SCID mice. The protein expression and phosphorylation of members of the PI3K/Akt/mTOR pathway and VEGF-C secretion and mRNA expression in irradiated lung cancer cells were assessed by Western blot analysis, enzyme-linked immunosorbent assays (ELISAs), and reverse transcriptase-polymerase chain reaction (RT-PCR). Moreover, specific chemical inhibitors were used to evaluate the role of the PI3K/Akt/mTOR signaling pathway. Conditioned medium (CM) from irradiated control-siRNA or VEGF-C-siRNA-expressing A549 cells was used to evaluate the proliferation of endothelial cells by the MTT assay. Radiation increased VEGF-C expression in a dose-dependent manner over time at the protein but not at the mRNA level. Radiation also up-regulated the phosphorylation of Akt, mTOR, 4EBP, and eIF4E, but not of p70S6K. Radiation-induced VEGF-C expression was down-regulated by LY294002 and rapamycin (both p < 0.05). Furthermore, CM from irradiated A549 cells enhanced human umbilical vein endothelial cell (HUVEC) and lymphatic endothelial cell (LEC) proliferation, which was not observed with CM from irradiated VEGF-C-siRNA-expressing A549 cells. Radiation-induced activation of the PI3K/Akt/mTOR signaling pathway increases VEGF-C expression in lung cancer cells, thereby promoting endothelial cell proliferation. (orig.) [German] Die vorliegende Studie untersucht, ob die Strahlung die Expression von VEGF-C (vascular endothelial growth factor C) mittels Aktivierung des PI3K/Akt/mTOR-Signalwegs induziert und anschliessend die endothelialen Zellen beeinflusst. Die durch Strahlentherapie induzierte Mikrolymphgefaessdichte (MLVD) im Tumor wurde in

  11. R-Ras Inhibits VEGF-Induced p38MAPK Activation and HSP27 Phosphorylation in Endothelial Cells.

    Science.gov (United States)

    Sawada, Junko; Li, Fangfei; Komatsu, Masanobu

    2015-01-01

    R-Ras is a Ras family small GTPase that is highly expressed in mature functional blood vessels in normal tissues. It inhibits pathological angiogenesis and promotes vessel maturation and stabilization. Previous studies suggest that R-Ras affects cellular signaling in endothelial cells, pericytes and smooth-muscle cells to regulate vessel formation and remodeling in adult tissues. R-Ras suppresses VEGF-induced endothelial permeability and vessel sprouting while promoting normalization of pathologically developing vessels in mice. It attenuates VEGF receptor-2 (VEGFR2) activation by inhibiting internalization of the receptor upon VEGF ligand binding, leading to significant reduction of VEGFR2 autophosphorylation. Here, we show that R-Ras strongly suppresses the VEGF-dependent activation of stress-activated protein kinase-2/p38 mitogen-activated protein kinase (SAPK2/p38MAPK) and the phosphorylation of downstream heat-shock protein 27 (HSP27), a regulator of actin cytoskeleton organization, in endothelial cells. The suppression of p38MAPK activation and HSP27 phosphorylation by R-Ras concurred with altered actin cytoskeleton architecture, reduced membrane protrusion and inhibition of endothelial cell migration toward VEGF. Silencing of endogenous R-Ras by RNA interference increased membrane protrusion and cell migration stimulated by VEGF, and these effects were offset by p38MAPK inhibitor SB203580. These results suggest that R-Ras regulates angiogenic activities of endothelial cells in part via inhibition of the p38MAPK-HSP27 axis of VEGF signaling. PMID:27029009

  12. Extracellular Matrix Stiffness Controls VEGF Signaling and Processing in Endothelial Cells.

    Science.gov (United States)

    Sack, Kelsey D; Teran, Madelane; Nugent, Matthew A

    2016-09-01

    Vascular endothelial growth factor A (VEGF) drives endothelial cell maintenance and angiogenesis. Endothelial cell behavior is altered by the stiffness of the substrate the cells are attached to suggesting that VEGF activity might be influenced by the mechanical cellular environment. We hypothesized that extracellular matrix (ECM) stiffness modifies VEGF-cell-matrix tethering leading to altered VEGF processing and signaling. We analyzed VEGF binding, internalization, and signaling as a function of substrate stiffness in endothelial cells cultured on fibronectin (Fn) linked polyacrylamide gels. Cell produced extracellular matrices on the softest substrates were least capable of binding VEGF, but the cells exhibited enhanced VEGF internalization and signaling compared to cells on all other substrates. Inhibiting VEGF-matrix binding with sucrose octasulfate decreased cell-internalization of VEGF and, inversely, heparin pre-treatment to enhance Fn-matrix binding of VEGF increased cell-internalization of VEGF regardless of matrix stiffness. β1 integrins, which connect cells to Fn, modulated VEGF uptake in a stiffness dependent fashion. Cells on hard surfaces showed decreased levels of activated β1 and inhibition of β1 integrin resulted in a greater proportional decrease in VEGF internalization than in cells on softer matrices. Extracellular matrix binding is necessary for VEGF internalization. Stiffness modifies the coordinated actions of VEGF-matrix binding and β1 integrin binding/activation, which together are critical for VEGF internalization. This study provides insight into how the microenvironment may influence tissue regeneration and response to injury and disease. J. Cell. Physiol. 231: 2026-2039, 2016. © 2016 Wiley Periodicals, Inc.

  13. VEGFR2-Mediated Vascular Dilation as a Mechanism of VEGF-Induced Anemia and Bone Marrow Cell Mobilization

    Directory of Open Access Journals (Sweden)

    Sharon Lim

    2014-10-01

    Full Text Available Molecular mechanisms underlying tumor VEGF-induced host anemia and bone marrow cell (BMC mobilization remain unknown. Here, we report that tumor VEGF markedly induced sinusoidal vasculature dilation in bone marrow (BM and BMC mobilization to tumors and peripheral tissues in mouse and human tumor models. Unexpectedly, anti-VEGFR2, but not anti-VEGFR1, treatment completely blocked VEGF-induced anemia and BMC mobilization. Genetic deletion of Vegfr2 in endothelial cells markedly ablated VEGF-stimulated BMC mobilization. Conversely, deletion of the tyrosine kinase domain from Vegfr1 gene (Vegfr1TK−/− did not affect VEGF-induced BMC mobilization. Analysis of VEGFR1+/VEGFR2+ populations in peripheral blood and BM showed no significant ratio difference between VEGF- and control tumor-bearing animals. These findings demonstrate that vascular dilation through the VEGFR2 signaling is the mechanism underlying VEGF-induced BM mobilization and anemia. Thus, our data provide mechanistic insights on VEGF-induced BMC mobilization in tumors and have therapeutic implications by targeting VEGFR2 for cancer therapy.

  14. The biophysical property of A549 cells transferred by VEGF-D.

    Science.gov (United States)

    Wang, Zhen; Wu, Xiu-Li; Wang, Xu; Tian, Hong-Xia; Chen, Zhi-Hong; Li, Yang-Qiu

    2014-01-01

    Vascular endothelial growth factor-D (VEGF-D) together with VEGF-C is considered to be associated with lymphangiogenesis and angiogenesis and involve in tumorization. This study aims to investigate the influence of exogenous VEGF-D gene on the biophysical property of cell surface of lung adenocarcinoma cell line. A panel of lung adenocarcinoma cell lines were examined the expression of VEGF-D and VEGF-C by real-time PCR. The VEGF-D recombinant plasmid containing enhanced green fluorescence protein (EGFP) was constructed and transfected to the cell line with no expression of VEGF-D and confirmed by real-time PCR and Western blot analysis. Topographic images of cells were obtained by using atomic force microscope (AFM) in contact mode. Unlike VEGF-C, VEGF-D was found to have a very low expression or undetectable expression in lung adenocarcinoma cell lines. The VEGF-D recombinant plasmid had been constructed successfully and was transferred into the human lung adenocarcinoma cell line A549 cells which had no endogenous expression of VEGF-D, and exogenous VEGF-D could be detected in mRNA and protein expression levels in the gene modified cells, while the VEGF-C gene expression had no change after VEGF-D transfection. After transfection, the irregular microspikes or nano clusters could observe on the surface of A549 cells, and VEGF-D transfected A549 cells became more rigid. The exogenous VEGF-D gene might cause the remarkable biophysical architectural changes in the A549 cells, which might as a novel biomarker for evaluation of its biological function. PMID:23526563

  15. Intracellular autocrine VEGF signaling promotes EBDC cell proliferation, which can be inhibited by Apatinib.

    Science.gov (United States)

    Peng, Sui; Zhang, Yanyan; Peng, Hong; Ke, Zunfu; Xu, Lixia; Su, Tianhong; Tsung, Allan; Tohme, Samer; Huang, Hai; Zhang, Qiuyang; Lencioni, Riccardo; Zeng, Zhirong; Peng, Baogang; Chen, Minhu; Kuang, Ming

    2016-04-10

    Tumor cells produce vascular endothelial growth factor (VEGF) which can interact with membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth. We aimed to investigate the role of extracellular/intracellular autocrine VEGF signaling and Apatinib, a highly selective VEGFR2 inhibitor, in extrahepatic bile duct cancer (EBDC). We found conditioned medium or recombinant human VEGF treatment promoted EBDC cell proliferation through a phospholipase C-γ1-dependent pathway. This pro-proliferative effect was diminished by VEGF, VEGFR1 or VEGFR2 neutralizing antibodies, but more significantly suppressed by intracellular VEGFR inhibitor. The rhVEGF induced intracellular VEGF signaling by promoting nuclear accumulation of pVEGFR1/2 and enhancing VEGF promoter activity, mRNA and protein expression. Internal VEGFR2 inhibitor Apatinib significantly inhibited intracellular VEGF signaling, suppressed cell proliferation in vitro and delayed xenograft tumor growth in vivo, while anti-VEGF antibody Bevacizumab showed no effect. Clinically, overexpression of pVEGFR1 and pVEGFR2 was significantly correlated with poorer overall survival (P = .007 and P = .020, respectively). In conclusion, the intracellular autocrine VEGF loop plays a predominant role in VEGF-induced cell proliferation. Apatinib is an effective intracellular VEGF pathway blocker that presents a great therapeutic potential in EBDC. PMID:26805764

  16. VEGF-A/NRP1 stimulates GIPC1 and Syx complex formation to promote RhoA activation and proliferation in skin cancer cells

    Directory of Open Access Journals (Sweden)

    Ayumi Yoshida

    2015-09-01

    Full Text Available Neuropilin-1 (NRP1 has been identified as a VEGF-A receptor. DJM-1, a human skin cancer cell line, expresses endogenous VEGF-A and NRP1. In the present study, the RNA interference of VEGF-A or NRP1 suppressed DJM-1 cell proliferation. Furthermore, the overexpression of the NRP1 wild type restored shNRP1-treated DJM-1 cell proliferation, whereas NRP1 cytoplasmic deletion mutants did not. A co-immunoprecipitation analysis revealed that VEGF-A induced interactions between NRP1 and GIPC1, a scaffold protein, and complex formation between GIPC1 and Syx, a RhoGEF. The knockdown of GIPC1 or Syx reduced active RhoA and DJM-1 cell proliferation without affecting the MAPK or Akt pathway. C3 exoenzyme or Y27632 inhibited the VEGF-A-induced proliferation of DJM-1 cells. Conversely, the overexpression of the constitutively active form of RhoA restored the proliferation of siVEGF-A-treated DJM-1 cells. Furthermore, the inhibition of VEGF-A/NRP1 signaling upregulated p27, a CDK inhibitor. A cell-penetrating oligopeptide that targeted GIPC1/Syx complex formation inhibited the VEGF-A-induced activation of RhoA and suppressed DJM-1 cell proliferation. In conclusion, this new signaling pathway of VEGF-A/NRP1 induced cancer cell proliferation by forming a GIPC1/Syx complex that activated RhoA to degrade the p27 protein.

  17. CXCL7-Mediated Stimulation of Lymphangiogenic Factors VEGF-C, VEGF-D in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minghuan Yu

    2010-01-01

    Full Text Available Increased expression of lymphangiogenesis factors VEGF-C/D and heparanase has been correlated with the invasion of cancer. Furthermore, chemokines may modify matrix to facilitate metastasis, and they are associated with VEGF-C and heparanase. The chemokine CXCL7 binds heparin and the G-protein-linked receptor CXCR2. We investigated the effect of CXCR2 blockade on the expression of VEGF-C/D, heparanase, and on invasion. CXCL7 siRNA and a specific antagonist of CXCR2 (SB225002 were used to treat CXCL7 stably transfected MCF10AT cells. Matrigel invasion assays were performed. VEGF-C/D expression and secretion were determined by real-time PCR and ELISA assay, and heparanase activity was quantified by ELISA. SB225002 blocked VEGF-C/D expression and secretion (P<.01. CXCL7 siRNA knockdown decreased heparanase (P<.01. Both SB225002 and CXCL7 siRNA reduced the Matrigel invasion (P<.01. The MAP kinase signaling pathway was not involved. The CXCL7/CXCR2 axis is important for cell invasion and the expression of VEGF-C/D and heparanase, all linked to invasion.

  18. Semaphorin SEMA3F and VEGF Have Opposing Effects on Cell Attachment and Spreading

    Directory of Open Access Journals (Sweden)

    Patrick Nasarre

    2003-01-01

    Full Text Available SEMA3F, isolated from a 3p21.3 deletion, has antitumor activity in transfected cells, and protein expression correlates with tumor stage and histology. In primary tumors, SEMA3F and VEGF surface staining is inversely correlated. Coupled with SEMA3F at the leading edge of motile cells, we previously suggested that both proteins competitively regulate cell motility and adhesion. We have investigated this using the breast cancer cell line, MCF7. SEMA3F inhibited cell attachment and spreading as evidenced by loss of lamellipodia extensions, membrane ruffling, and cell-cell contacts, with cells eventually rounding-up and detaching. In contrast, VEGF had opposite effects. Although SEMA3F binds NRP2 with 10-fold greater affinity than NRP1, the effects in MCF7 were mediated by NRP1. This was determined by receptor expression and blocking of anti-NRP1 antibodies. Similar effects, but through NRP2, were observed in the C100 breast cancer cell line. Although we were unable to demonstrate changes in total GTPbound Rac1 or RhoA, we did observe changes in the localization of Rac1-GFP using time lapse microscopy. Following SEMA3F, Rac1 moved to the base of lamellipodia and — with their collapse — to the membrane. These results support the concept that SEMA3F and VEGF have antagonistic actions affecting motility in primary tumor cell.

  19. PEA3 activates VEGF transcription in T47D and SKBR3 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Dong Hua; Bobin Chen; Mei Bai; Hao Yu; Xiaohong Wu; Wei Jin

    2009-01-01

    Vascular endothelial growth factor(VEGF)is a potent stimulator of angiogenesis and a prognostic factor for many tumors,including those of endocrine-responsive tissues such as the breast and uterus.In this study,we found that overexpression of PEA3 could increase VEGF mRNA levels and VEGF promoter activity in human T47D and SKBR3 breast cancer cells.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the VEGF promoter in the cells transfected with PEA3 expression vector.PEA3 small interfering RNA attenuated VEGF promoter activity and the binding of PEA3 to the VEGF promoter in T47D and SKBR3 cells.These results indicated that PEA3 could activate VEGF promoter transcription.

  20. Effect of antisence VEGF on the radiosensitivity of esophageal cancer cells in vitro

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of' antisense VEGF on the cell proliferation, VEGF protein expression and radiosensitivity of esophageal cancer cells in vitro. Methods: Fragments of antisense cDNA, empty vector plasmid DNA and antisense oligodeoxynucleotide of VEGF were transfected into esophageal cancer (TE-1) cells mediated with lipofectamine, respectively. Cell proliferating rate and apoptotic rate of these groups were edetected by MIT and FCM methods, respectively. After irradiation, the expression of VEGF in transfected cells were detected by using RT-PCR and Western blotting. The radiosensitivity of transfected cells were analyzed with colony forming assay. Results: After antisense cDNA plasmid and antisense oligodeoxynucleotide of VEGF were transfected successfully into TE-1 cells, expressions of VEGF protein decreased, however, the changes in cell growth rate and distribution of cell cycle, and the apoptotic rate were not observed in these transfected cells. After irradiation, the radiosensitivity of transfected TE-1 cells were increased, but there was no significant difference in cell growth rate among groups. The apoptotic rates in antisense groups increased slightly compared to TE-1 and TE-1-E groups. Conclusions: Expression of VEGF mRNA and VEGF protein were significantly suppressed in TE-1 cells transfected by antisense cDNA and antisense oligodeoxynucleotide of VEGF. After irradiation, the radiosensitivity of the transfected TE-1 cells was increased. (authors)

  1. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    International Nuclear Information System (INIS)

    Research highlights: → Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. → CoCl2-induced VEGF secretion in mast cells occurs by a Ca2+-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. → Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits FcεRI-dependent anaphylactic degranulation in mast cells. → Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl2) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl2-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl2-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.

  2. Neutralization of schwann cell-secreted VEGF is protective to in vitro and in vivo experimental diabetic neuropathy.

    Directory of Open Access Journals (Sweden)

    Michela M Taiana

    Full Text Available The pathogenetic role of vascular endothelial growth factor (VEGF in long-term retinal and kidney complications of diabetes has been demonstrated. Conversely, little is known in diabetic neuropathy. We examined the modulation of VEGF pathway at mRNA and protein level on dorsal root ganglion (DRG neurons and Schwann cells (SC induced by hyperglycaemia. Moreover, we studied the effects of VEGF neutralization on hyperglycemic DRG neurons and streptozotocin-induced diabetic neuropathy. Our findings demonstrated that DRG neurons were not affected by the direct exposition to hyperglycaemia, whereas showed an impairment of neurite outgrowth ability when exposed to the medium of SC cultured in hyperglycaemia. This was mediated by an altered regulation of VEGF and FLT-1 receptors. Hyperglycaemia increased VEGF and FLT-1 mRNA without changing their intracellular protein levels in DRG neurons, decreased intracellular and secreted protein levels without changing mRNA level in SC, while reduced the expression of the soluble receptor sFLT-1 both in DRG neurons and SC. Bevacizumab, a molecule that inhibits VEGF activity preventing the interaction with its receptors, restored neurite outgrowth and normalized FLT-1 mRNA and protein levels in co-cultures. In diabetic rats, it both prevented and restored nerve conduction velocity and nociceptive thresholds. We demonstrated that hyperglycaemia early affected neurite outgrowth through the impairment of SC-derived VEGF/FLT-1 signaling and that the neutralization of SC-secreted VEGF was protective both in vitro and in vivo models of diabetic neuropathy.

  3. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin;

    2010-01-01

    The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...... and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent....

  4. Extracellular matrix stiffness modulates VEGF calcium signaling in endothelial cells: individual cell and population analysis.

    Science.gov (United States)

    Derricks, Kelsey E; Trinkaus-Randall, Vickery; Nugent, Matthew A

    2015-09-01

    Vascular disease and its associated complications are the number one cause of death in the Western world. Both extracellular matrix stiffening and dysfunctional endothelial cells contribute to vascular disease. We examined endothelial cell calcium signaling in response to VEGF as a function of extracellular matrix stiffness. We developed a new analytical tool to analyze both population based and individual cell responses. Endothelial cells on soft substrates, 4 kPa, were the most responsive to VEGF, whereas cells on the 125 kPa substrates exhibited an attenuated response. Magnitude of activation, not the quantity of cells responding or the number of local maximums each cell experienced distinguished the responses. Individual cell analysis, across all treatments, identified two unique cell clusters. One cluster, containing most of the cells, exhibited minimal or slow calcium release. The remaining cell cluster had a rapid, high magnitude VEGF activation that ultimately defined the population based average calcium response. Interestingly, at low doses of VEGF, the high responding cell cluster contained smaller cells on average, suggesting that cell shape and size may be indicative of VEGF-sensitive endothelial cells. This study provides a new analytical tool to quantitatively analyze individual cell signaling response kinetics, that we have used to help uncover outcomes that are hidden within the average. The ability to selectively identify highly VEGF responsive cells within a population may lead to a better understanding of the specific phenotypic characteristics that define cell responsiveness, which could provide new insight for the development of targeted anti- and pro-angiogenic therapies.

  5. RNA interference inhibits expression of vascular endothelial growth factor (VEGF) in human retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    CAI Chun-mei; SUN Bao-chen; LIU Xu-yang; WANG Jin-jin; LI Jun-fa; HAN Song; WANG Ning-li; LU Qing-jun

    2005-01-01

    @@ Choroidal neovascularization (CNV), a major cause of vision loss, is the result of the increased vascular endothelial growth factor (VEGF) expression in human retinal pigment epithelial (RPE) cells. It is important to inhibit the expression of VEGF protein in RPE cells.

  6. Zeaxanthin Inhibits Hypoxia-Induced VEGF Secretion by RPE Cells through Decreased Protein Levels of Hypoxia-Inducible Factors-1α

    Directory of Open Access Journals (Sweden)

    Richard Rosen

    2015-01-01

    Full Text Available Hypoxia is the most important stimulus leading to upregulation of VEGF in the retina and this is caused by accumulation of hypoxia-inducible factors-1α (HIF-1α protein. The effects of zeaxanthin, a natural phytochemical, on the VEGF and HIF-1α expression in the primary culture of human retinal pigment epithelial (RPE cells were studied. An in vitro RPE cell hypoxia model was established by placing cells under 1% oxygen pressure or by adding cobalt chloride (CoCl2 to the culture medium. RPE cells and conditioned media were collected from cultures treated with and without zeaxanthin under normoxic and hypoxic conditions. VEGF and HIF-1α protein and RNA levels were measured by ELISA kits and RT-PCR, respectively. Hypoxia caused a significant increase of VEGF expression and accumulation of HIF-1α in RPE cells. Zeaxanthin at 50–150 μM significantly inhibited the expression of VEGF and accumulation of HIF-1α protein caused by hypoxia but did not affect expression of VEGF and HIF-1α under normoxic conditions. This is the first report on the effect of zeaxanthin on VEGF and HIF-1α levels in cultured RPE cells and suggests that zeaxanthin may have potential value in the prevention and treatment of various retinal diseases associated with vascular leakage and neovascularization.

  7. Up-regulation of VEGF-C secreted by cancer cells and not VEGF-A correlates with clinical evaluation of lymph node metastasis in esophageal squamous cell carcinoma (ESCC).

    Science.gov (United States)

    Krzystek-Korpacka, Malgorzata; Matusiewicz, Malgorzata; Diakowska, Dorota; Grabowski, Krzysztof; Blachut, Katarzyna; Banas, Teresa

    2007-05-01

    Tissue expression of VEGF-C correlates with lymph node involvement (LNI) in ESCC and serum VEGF-C (sVEGF-C) in a non-small cell lung cancer has been more accurate marker of LNI than chest CT. Despite LNI importance in ESCC, the usefulness of serum VEGF-C (sVEGF-C) as a disease and LNI marker in ESCC has not been investigated yet. We found elevated sVEGF-C in ESCC (17.40 vs. 10.57 ng/ml in controls, pmarker than described elsewhere: CEA, CA19-9 and SCC-Ag, with: sensitivity--70%, specificity--81%, accuracy--83.7%. Analysis of sVEGF-C correlation with clinico-pathological cancer features revealed relation to LNI (N0: 15.77 vs. N1: 21.78 ng/ml, p=0.02), especially in advanced cancers. Serum VEGF-C as a marker of LNI was characterized by: sensitivity--76%, specificity--58%, accuracy--64.4%. No relation was observed between LNI and sVEGF-A or sVEGF-A/platelets (PLT). Because sVEGF-C was higher in N0 cancers (ptumor presence also up-regulates sVEGF-C. We found sVEGF-C correlation with PLT and WBC: R=0.36 and R=0.32 (pcancer features implies that elevation of sVEGF-C in N1 cancers is not related to them.

  8. Pulmonary Large Cell Carcinoma Displays High Expression of EMMPRIN and VEGF

    Institute of Scientific and Technical Information of China (English)

    Yushuang Zheng; Miao Yu; Huachuan Zheng; Yifu Guan; Yasuo Takano

    2008-01-01

    OBJECTIVE To investigate the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and vascular endothelial growth factor (VEGF) in lung carcinomas,and to clarify their roles in carcinoma progression.METHODS Expression of EMMPRIN and VEGF was examined with tissue microarrays (TMAs) of lung carcinomas (n = 181),and their suppression in adjacent normal lung samples (n = 40) were determined by immunohistochemistry.The results were compared with clinicopathological findings for the same tumors.RESULTS Both EMMPRIN and VEGF were occasionally expressed in pseudostratified columnar epithelium and frequently in lung carcinomas.Histologically,EMMPRIN and VEGF displayed higher levels in large (LCC) cell carcinomas than adenocarcinoma (AD),squamous (SQ) and small cell carcinomas (SCC) (P < 0.05).EMMPRIN was more highly expressed in SQ as compared with AD (P < 0.05),while the converse was true for VEGF (P < 0.05).Binding was generally more intense for EMMPRIN in samples from male compared to female patients (P < 0.05),whereas the latter tended to exhibit more VEGF expression (P < 0.05).Positive associations of VEGF expression with the TNM stage and amounts of EMMPRIN were noted in the lung carcinomas (P < 0.05).CONCLUSION EMMPRIN and VEGF possibly contribute to physiological repair of normal lung and histogenesis of lung carcinoma.Both proteins might be involved in the molecular basis for differences in the incidence of lung carcinoma between men and women.

  9. TFF3 mediated induction of VEGF via hypoxia in human gastric cancer SGC-7901 cells.

    Science.gov (United States)

    Guleng, Bayasi; Han, Jia; Yang, Jin-Qiu; Huang, Qing-Wen; Huang, Jian-Kun; Yang, Xiao-Ning; Liu, Jing-Jing; Ren, Jian-Lin

    2012-04-01

    Increasing evidence indicates that in gastric epithelial cells, induction of TFF3 by hypoxia is mediated by HIF-1. Since VEGF is one of the most important angiogenic factors on cancer progression, we have started to investigate the possible link among HIF-1α, VEGF, and TFF3 in gastric cancer cells. We induced the hypoxic condition in SGC-7901cells using hypoxia-mimetic agent of CoCI2. SGC7901 cells were transfected with pcPUR + U6 plasmid carrying RNAi targeted to human TFF3 and selected puromycin-resistant pools to establish the stable knockdown of TFF3 cells. Our results showed the induction of HIF-1a via hypoxia and consequences of increased expressions of the TFF3 and VEGF in gastric cancer SGC-7901 cells. Overexpression of TFF3 upregulated the mRNA expressions of VEGF and HIF-1a induced by hypoxia, and stable knockdown of TFF3 impaired the mRNA upregulations of VEGF and HIF-1a induced by hypoxia. Furthermore, knockdown of TFF3 reduced the VEGF protein secretion: as VEGF secretion was increased time dependent manner in response to the hypoxia induction in TFF3-WT cells; however, VEGF production was significantly decreased in TFF3-KD cells (621 ± 89 vs. 264 ± 73 at 6 h and 969 ± 97 vs. 508 ± 69 at 12 h, P TFF3 mediated regulation of VEGF expression induced by hypoxia, and implicated that TFF3 might be applied as a potential anti-angiogenic target for treatment of gastric cancer.

  10. Antiangiogenic VEGF Isoform in Inflammatory Myopathies

    Directory of Open Access Journals (Sweden)

    Nila Volpi

    2013-01-01

    Full Text Available Objective. To investigate expression of vascular endothelial growth factor (VEGF antiangiogenic isoform A-165b on human muscle in idiopathic inflammatory myopathies (IIM and to compare distribution of angiogenic/antiangiogenic VEGFs, as isoforms shifts are described in other autoimmune disorders. Subjects and Methods. We analyzed VEGF-A165b and VEGF-A by western blot and immunohistochemistry on skeletal muscle biopsies from 21 patients affected with IIM (polymyositis, dermatomyositis, and inclusion body myositis and 6 control muscle samples. TGF-β, a prominent VEGF inductor, was analogously evaluated. Intergroup differences of western blot bands density were statistically examined. Endomysial vascularization, inflammatory score, and muscle regeneration, as pathological parameters of IIM, were quantitatively determined and their levels were confronted with VEGF expression. Results. VEGF-A165b was significantly upregulated in IIM, as well as TGF-β. VEGF-A was diffusely expressed on unaffected myofibers, whereas regenerating/atrophic myofibres strongly reacted for both VEGF-A isoforms. Most inflammatory cells and endomysial vessels expressed both isoforms. VEGF-A165b levels were in positive correlation to inflammatory score, endomysial vascularization, and TGF-β. Conclusions. Our findings indicate skeletal muscle expression of antiangiogenic VEGF-A165b and preferential upregulation in IIM, suggesting that modulation of VEGF-A isoforms may occur in myositides.

  11. VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson's disease.

    Science.gov (United States)

    Xiong, N; Zhang, Z; Huang, J; Chen, C; Zhang, Z; Jia, M; Xiong, J; Liu, X; Wang, F; Cao, X; Liang, Z; Sun, S; Lin, Z; Wang, T

    2011-04-01

    The umbilical cord provides a rich source of primitive mesenchymal stem cells (human umbilical cord mesenchymal stem cells (HUMSCs)), which have the potential for transplantation-based treatments of Parkinson's Disease (PD). Our pervious study indicated that adenovirus-associated virus-mediated intrastriatal delivery of human vascular endothelial growth factor 165 (VEGF 165) conferred molecular protection to the dopaminergic system. As both VEGF and HUMSCs displayed limited neuroprotection, in this study we investigated whether HUMSCs combined with VEGF expression could offer enhanced neuroprotection. HUMSCs were modified by adenovirus-mediated VEGF gene transfer, and subsequently transplanted into rotenone-lesioned striatum of hemiparkinsonian rats. As a result, HUMSCs differentiated into dopaminergic neuron-like cells on the basis of neuron-specific enolase (NSE) (neuronal marker), glial fibrillary acidic protein (GFAP) (astrocyte marker), nestin (neural stem cell marker) and tyrosine hydroxylase (TH) (dopaminergic marker) expression. Further, VEGF expression significantly enhanced the dopaminergic differentiation of HUMSCs in vivo. HUMSC transplantation ameliorated apomorphine-evoked rotations and reduced the loss of dopaminergic neurons in the lesioned substantia nigra (SNc), which was enhanced significantly by VEGF expression in HUMSCs. These findings present the suitability of HUMSC as a vector for gene therapy and suggest that stem cell engineering with VEGF may improve the transplantation strategy for the treatment of PD.

  12. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jinqiao, E-mail: jinqiao1977@163.com [Institute of Pediatrics, Children' s Hospital of Fudan University (China); Sha, Bin [Department of Neonatology, Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Zhou, Wenhao, E-mail: zhou_wenhao@yahoo.com.cn [Department of Neonatology, Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Yang, Yi [Institute of Pediatrics, Children' s Hospital of Fudan University (China)

    2010-03-26

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  13. Effect of shRNA targeting VEGF on human skin squamous carcinoma cell line A431%靶向VEGF的shRNA对皮肤鳞癌A431细胞的作用

    Institute of Scientific and Technical Information of China (English)

    曹一鑫; 冯新; 王建力; 陈莉

    2012-01-01

    Objective To inhibit the expression of VEGF mRNA and VEGF protein in the human skin squamous carcinoma A431 cell to observe potential affect on proliferation, migration and adhesion. Methods The eukaryotic expression plasmids targeting VEGF ( psilencer-VEGF1-shRNA, VEGF-s1; psilencer-VEGF2-shRNA, VEGF-s2 ) and random target sequence of the negative control plasmid were simultaneously constructed and then transfected these plasmids to A431 cells. The expression of VEGF mRNA and VEGF protein were detected by RT-QPCR, Western blot and ELISA; the vitality of A431 cells was examined by CCK-8 assay; the percentage of cell prolifera-tive cycle and apoptosis of A431 cells were tested by flow cytometry; the migration capacity of A431 cells in two-dimensional or three-dimensional space were inspected by wound healing effect and transwell assay, respectively; the adhesion potential of A431 cells was detected by FN adhesion test. Results After VEGF-s1 or VEGF-s2 treatment, cytoactivity declined, cell cycle arrested, cell proportion increased sharply in G1 stage and decreased obviously in S stage with apoptosis increased. The expression of VEGF mRNA and VEGF protein and the migration as well as adhesion of A431 cells were all suppressed significantly, as compared with the control group (P < 0. 05 ) . Conclusions VEGF is an important growth-related gene of human skin squamous cell carcinoma, silencing VEGF may effectively inhibit the proliferation, migration and adhesion of A431 cells.%目的 在皮肤鳞癌细胞(A431)中下调VEGF mRNA和VEGF蛋白的表达,观察其对A431细胞增殖、迁移和黏附的影响.方法 构建psVEGF-shRNA真核表达质粒(psilencer-VEGF1-shRNA,VEGF-s1;psilencer-VEGF2-shR-NA,VEGF-s2)干预A431细胞,同时构建含随机靶序列的阴性对照表达质粒(psilencer-Target-off-shRNA,T-off).RT-QPCR,Western blot和ELISA检测细胞内VEGFmRNA和蛋白表达;CCK-8法检测细胞活性;流式细胞仪检测细胞周期百分比与细胞凋亡;划

  14. Joint Effect of Urinary Total Arsenic Level and VEGF-A Genetic Polymorphisms on the Recurrence of Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Shu-Mei Yang

    Full Text Available The results of our previous study suggested that high urinary total arsenic levels were associated with an increased risk of renal cell carcinoma (RCC. Germline genetic polymorphisms might also affect cancer risk and clinical outcomes. Vascular endothelial growth factor (VEGF plays an important role in vasculogenesis and angiogenesis, but the combined effect of these factors on RCC remains unclear. In this study, we explored the association between the VEGF-A -2578C>A, -1498T>C, -1154G>A, -634G>C, and +936C>T gene polymorphisms and RCC. We also evaluated the combined effects of the VEGF-A haplotypes and urinary total arsenic levels on the prognosis of RCC. This case-control study was conducted with 191 RCC patients who were diagnosed with renal tumors on the basis of image-guided biopsy or surgical resections. An additional 376 age- and gender-matched controls were recruited. Concentrations of urinary arsenic species were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Genotyping was investigated using fluorescent-based TaqMan allelic discrimination. We observed no significant associations between VEGF-A haplotypes and RCC risk. However, the VEGF-A ACGG haplotype from VEGF-A -2578, -1498, -1154, and -634 was significantly associated with an increased recurrence of RCC (OR = 3.34, 95% CI = 1.03-10.91. Urinary total arsenic level was significantly associated with the risk of RCC in a dose-response manner, but it was not related to the recurrence of RCC. The combination of high urinary total arsenic level and VEGF-A risk haplotypes affected the OR of RCC recurrence in a dose-response manner. This is the first study to show that joint effect of high urinary total arsenic and VEGF-A risk haplotypes may influence the risk of RCC recurrence in humans who live in an area without obvious arsenic exposure.

  15. Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development

    Science.gov (United States)

    Holoyda, Kathleen A.; Hou, Xiaogang; Fowler, Kathryn L.; Grikscheit, Tracy C.

    2016-01-01

    Background Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. Methods VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Results Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Conclusions Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future

  16. Inhibition Effect of shRNA on VEGF-C in Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Xi-ling Gu; You-de Cao

    2009-01-01

    Objective: To investigate the effect of RNA interfering on VEGF-C in MDA-MB-231 cells.Methods: Three small interfering RNAs (siRNAa, siRNAb, siRNAc) were prepared. The most efficient one was screened and short hairpin (shRNA) was designed, the recombinant plasmid pGenesil-1/VEGF-C was constructed, and transfected into MDA-MB-231 cells by Lipofectamine TM 2000. RT-PCR, Western-blot an immunohistochemical methods were performed to detect the expression of VEGF-C.Results: RT-PCR results showed that siRNAa, siRNAb, siRNAc could inhibit the growth of MDA-MB-231 cells, among which, siRNAa was the most significant, with an inhibition rate of 72.1%. The recombinant plasmid pGenesil-1/VEGF-C was successfully constructed using shRNA and pGenesil-1. VEGF-C expression was significantly inhibited as determined by RT-PCR,immunocytochemistry staining and Western blot (P<0.05).Conclusion: shRNA RNAi technology could silence the expression of VEGF-C in MDA-MB-231 cells, which suggested that the technology may be one of the effective methods for inhibiting lymphangiogenesis in breast cancer.

  17. Thymosin beta 10 Prompted the VEGF-C Expression in Lung Cancer Cell

    Directory of Open Access Journals (Sweden)

    Zixuan LI

    2014-05-01

    Full Text Available Background and objective Our previous study found that thymosin β10 overexpressed in lung cancer and positively correlated with differentiation, lymph node metastasis and stage of lung cancer. In this reasearch we aim to study the effects and mechanism of exogenous human recombinant Tβ10 on the expression of VEGF-C on non-small cell lung cancer. Methods After SPC, A549 and LK2 cells were treated with 100 ng/mL recombinant human Tβ10, the mRNA level of VEGF-C were detected by RT-PCR. The mean while the protein expression of VEGF-C, P-AKT and AKT were determined by Western blot assay. Results Exogenous recombinant human Tβ10 were significantly promote the expression levels of VEGF-C mRNA and protein while promoting the phosphorylation of AKT. Exogenous Tβ10 can promote the expression of VEGF-C mRNA and protein in lung cancer cell lines A549 and LK2 (P<0.05, and this effect can be inhibited by use AKT inhibitor LY294002 (P<0.05. Conclusion Tβ10 human recombinant proteins can promote the expression of VEGF-C by activating AKT phosphorylation in lung cancer cell lines.

  18. Proteomic analysis of Vascular Endothelial Growth Factor (VEGF) signalling: studies of the mechanism of VEGF-induced Heat Shock Protein 27 phosphorylation and its role in endothelial cell signalling and function

    OpenAIRE

    Britton, G.

    2010-01-01

    Vascular Endothelial Growth Factor (VEGF) is essential for angiogenesis and endothelial function. Proteomic analysis of Human Umbilical Vein Endothelial Cells (HUVEC) identified Heat Shock Protein 27 (Hsp27) as a major VEGF-regulated protein. Hsp27 is implicated in actin organization, cell survival and migration, and is a potential mediator of these VEGF functions in the endothelium. Studies of pharmacological inhibitors indicated that VEGF-stimulated Hsp27 serine 82 (S82) phos...

  19. VEGF EXPRESSION IS INHIBITED BY APIGENIN IN HUMAN BREAST CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    JIN Xue-ying; REN Chang-shan

    2006-01-01

    Objective: To study the effects of apigenin on vascular endothelial growth factor (VEGF) in human breast cancer cells(MDA-MB-231. Methods: MTT assay was used to detect the cell proliferation inhibitory effect of apigenin on MDA-MB-231 cell. ELISA was used to determine the protein level of VEGF secreted by MDA-MB-231 cells. RT-PCR was used to detect mRNA levels of VEGF in MDA-MB-231 cells. The protein levels of HIF-1α,p-AKT,p-ERK1/2,and p53 were detected by Western Blotting. Results: Apigenin did not inhibit the cell viability of MDA-MB-231 cell. Apigenin reduced the secretion and mRNA levels of VEGF in MDA-MB-231 cells. Additionally, apigenin decreased the expressions of HIF-1α,p-AKT and p-ERK1/2, but induced the expression of p53. Conclusion: Apigenin can inhibit VEGF expression in human breast cancer cells, and this may be achieved through decreasing HIF-1α.

  20. VEGF-expressing Bone Marrow Mesenchymal Stem Cells Transplantation Improved Heart Function of Myocardial Infarct Rabbits

    Institute of Scientific and Technical Information of China (English)

    Sheng Xiaogang; Song Hui; Feng Jianzhang; Chen Qiuxiong; Wu Shulin

    2006-01-01

    Objectives To treat myocardial infarction with MSCs transplantation combined with VEGF gene therapy in rabbits and to study its mechanisms. Methods Forty-eight rabbits were randomly divided into MI group (n=12), MSCs group (n=12), VEGF group (n=12), MSCs+VEGF group (M+V group, n=12). Rabbit myocardial infarction models were founded by the ligation of left anterior descending artery. 107 MSCs were injected into the infarct-zone in four sites 2 weeks later in MSCs and M+V group. phVEGF gene were injected in infarct-zone in VEGF group and MSCs transfected with phVEGF gene were injected in M+V group. Heart function including LVEDP, LVSP, LVDP, -dp/dtmax, +dp/dtmax, were measured in vivo. The hearts were harvested at 4 weeks after transplantation and sectioned for HE stain,immunohistochemical stain of BrdU and Ⅷ factor antigen. Results The left ventricular hemodynamics parameters showed that heart function were improved more in M+V group than MSCs group, MI group and VEGF group. The numbers of BrdU positive cells in M+V group(61±8)were more than in MSCs group (44±8,P<0.01). The numbers of vessels in infarcted zone were more in M+V group (49±8) than in MSCs group (33±6, P<0.01)、VEGF group(30±8,P<0.01)and MI group (18±4,P<0.01). Conclusions VEGF-expressing MSCs transplantation could improve heart function after myocardial infarction, and they were more effective than sole MSCs transplantation. Keeping more MSCs survival and ameliorating the blood supply of infarct-zone might be involved in the mechanisms.

  1. Binding of VEGF-A to canine cancer cells with preferential expression of VEGFR1

    Directory of Open Access Journals (Sweden)

    Antonella Borgatti,

    2014-01-01

    Full Text Available Aim: Despite encouraging results in syngeneic and xenografts cancer models with various inhibitors of vascular endothelial growth factor (VEGF or its receptors (VEGFRs, beneficial effects have not been consistently translated to the clinic, underscoring the need to develop strategies that go beyond the inhibition of these targets. The purpose of this study was to generate data to support the hypothesis that VEGF may be used as “bait” to selectively deliver therapeutics to VEGFR-expressing cancer cells. Materials and Methods: VEGFR1 and VEGFR2 expression was characterized using real time quantitative reverse transcriptase polymerase chain reaction (RT-qPCR in canine hemangiosarcoma (Grace-HSA, Emma-HSA, melanoma (TLM-1, and thyroid adenocarcinoma (CTAC cell lines. TLM-1 and Grace-HSA were identified as representative cell lines that selectively expressed high levels of VEGFR1. Flow cytometry was performed to examine binding of a single VEGF molecule (biotinylated VEGFA and avidin conjugated to fluorescein isothiocyanate (FITC by these chemoresistant cell lines. Results: RT-qPCR showed that canine tumor cells can preferentially express VEGFR1 over VEGFR2. Both TLM-1 and Grace-HSA cell lines, which represent VEGFR1-expressing tumors, showed specific binding to VEGF-A and this binding was competitively inhibited by anti-VEGF antibody. Conclusions: Cells preferentially expressing VEGFR1 can be targeted with a single VEGF molecule and these ligand-receptor pairs are well suited for targeting cytotoxic molecules in various canine tumor cells. Further studies are needed to develop strategies to selectively deliver therapeutics through VEGF-VEGFRs binding into VEGFR-expressing tumors.

  2. Hypertonic stress induces VEGF production in human colon cancer cell line Caco-2: inhibitory role of autocrine PGE₂.

    Directory of Open Access Journals (Sweden)

    Luciana B Gentile

    Full Text Available Vascular Endothelial Growth Factor (VEGF is a major regulator of angiogenesis. VEGF expression is up regulated in response to micro-environmental cues related to poor blood supply such as hypoxia. However, regulation of VEGF expression in cancer cells is not limited to the stress response due to increased volume of the tumor mass. Lipid mediators in particular arachidonic acid-derived prostaglandin (PGE₂ are regulators of VEGF expression and angiogenesis in colon cancer. In addition, increased osmolarity that is generated during colonic water absorption and feces consolidation seems to activate colon cancer cells and promote PGE₂ generation. Such physiological stimulation may provide signaling for cancer promotion. Here we investigated the effect of exposure to a hypertonic medium, to emulate colonic environment, on VEGF production by colon cancer cells. The role of concomitant PGE₂ generation and MAPK activation was addressed by specific pharmacological inhibition. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked VEGF and PGE₂ production. VEGF production was inhibited by selective inhibitors of ERK 1/2 and p38 MAPK pathways. To address the regulatory role of PGE₂ on VEGF production, Caco-2 cells were treated with cPLA₂ (ATK and COX-2 (NS-398 inhibitors, that completely block PGE₂ generation. The Caco-2 cells were also treated with a non selective PGE₂ receptor antagonist. Each treatment significantly increased the hypertonic stress-induced VEGF production. Moreover, addition of PGE₂ or selective EP₂ receptor agonist to activated Caco-2 cells inhibited VEGF production. The autocrine inhibitory role for PGE₂ appears to be selective to hypertonic environment since VEGF production induced by exposure to CoCl₂ was decreased by inhibition of concomitant PGE₂ generation. Our results indicated that hypertonicity stimulates VEGF production in colon cancer cell lines. Also PGE

  3. Homoharringtonine induces apoptosis of endothelium and down-regulates VEGF expression of K562 cells

    Institute of Scientific and Technical Information of China (English)

    叶琇锦; 林茂芳

    2004-01-01

    Homoharringtonine (HHT) has currently been used successfully in the treatment of acute and chronic myeloid leukemias and has been shown to induce apoptosis of different types of leukemic cells in vitro. Emerging evidence suggests that angiogenesis may play an important role in hematological malignancies, such as leukemia. However, whether HHT can relieve leukemia by anti-angiogenesis is still unknown. We investigated the anti-angiogenesis potential of HHT with the human umbilical vein endothelial cell line (ECV304) and leukemic cell line (K562) in vitro. Cellular proliferation was determined by MTT assay and apoptosis was analyzed by flow cytometry, The mRNA expression of vascular endothelial growth factor (VEGF) was assessed by RT-PCR and VEGF protein production was detected by Western blot. Inhibition of cell proliferation and induction of apoptosis by HHT were discovered in ECV304 cells, and appeared in a dose- and time-dependent manner, Also, treatment with HHT caused down-regulation of VEGF mRNA expression in K562 cells in similar dose- and time-dependent manner and inhibition of VEGF protein production in K562 cells in response to the enhancing concentration of HHT. The results demonstrated that HHT could also induce apoptosis in endothelium and down-regulate VEGF expression in K562 cells. In conclusion, we believe HHT has anti-angiogenesis potential and speculate that HHT might exert its anti-leukemia effects via reduction of angiogenesis.

  4. Elevated SP-1 Transcription Factor Expression and Activity Drives Basal and Hypoxia-induced Vascular Endothelial Growth Factor (VEGF) Expression in Non-Small Cell Lung Cancer

    OpenAIRE

    Deacon, Karl; Onion, David; Kumari, Rajendra; Watson, Susan A.; Knox, Alan J

    2012-01-01

    VEGF plays a central role in angiogenesis in cancer. Non-small cell lung cancer (NSCLC) tumors have increased microvascular density, localized hypoxia, and high VEGF expression levels; however, there is a lack of understanding of how oncogenic and tumor microenvironment changes such as hypoxia lead to greater VEGF expression in lung and other cancers. We show that NSCLC cells secreted higher levels of VEGF than normal airway epithelial cells. Actinomycin D inhibited all NSCLC VEGF secretion, ...

  5. Expression profiling of ETS and MMP factors in VEGF-activated endothelial cells: role of MMP-10 in VEGF-induced angiogenesis.

    Science.gov (United States)

    Heo, Sun-Hee; Choi, Young-Jin; Ryoo, Hyun-Mo; Cho, Je-Yoel

    2010-09-01

    In the process of angiogenesis, working of many transcription factors at the proper time is important to activate angiogenesis-related genes such as cytokine, matrix protease and adhesion molecules. In this study, we searched for Ets transcription factors and matrix metalloproteinases (MMPs) that respond to VEGF in endothelial cells. We first analyzed the expression of 27 human Ets factors and 15 human MMPs in VEGF-treated human umbilical vein endothelial cells (HUVEC) using quantitative RT-PCR. The most abundant Ets factors in HUVEC were ETS-1, Fli-1, ERP/NET/ELK3, and ERG. MMP-1, -2, -10, -11, -14, -15, and -16 were also detected in HUVEC. We also found that ETV-1, Fli-1, ERG, MMP-1, -3, -7, -8, -9, -10, -13, and -19 expression is up-regulated more than 1.5-fold in HUVEC after 2 h of VEGF treatment. In addition, the expression of MMP-10 induced by VEGF remained twofold higher for 24 h compared to non-treated control. The elevation of MMP10 mRNA and protein levels was confirmed to be both time- and dosage-dependent. In addition, MMP-10 transcription was mediated by Ets-1 but not ERP/NET/ELK3. The inhibition of PI3K and MAPK inhibited VEGF-induced MMP-10 expression. Furthermore, transfection of MMP-10 siRNA inhibited VEGF-induced migration and tube formation in HUVEC, and it also inhibited vessel formation in matrigel plugs in vivo. In conclusion, our study demonstrated induction of MMP-10 by VEGF in HUVEC and supports an angiogenic role for MMP-10 in response to VEGF stimulation in vitro and in vivo. PMID:20432469

  6. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.

    Science.gov (United States)

    Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C

    2016-05-01

    High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. PMID:27133169

  7. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi; Shiraishi, Ken; Shirakata, Yuji; Dai, Xiuju; Yang, Lijun; Tohyama, Mikiko; Hashimoto, Koji [Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Sayama, Koji, E-mail: sayama@m.ehime-u.ac.jp [Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan)

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube length by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.

  8. VEGF Silencing Inhibits Human Osteosarcoma Angiogenesis and Promotes Cell Apoptosis via PI3K/AKT Signaling Pathway.

    Science.gov (United States)

    Zhao, Jian; Zhang, Zi-Ru; Zhao, Na; Ma, Bao-An; Fan, Qing-Yu

    2015-11-01

    Vascular endothelial growth factor (VEGF) is one of the most effective angiogenic factors that promote generation of tumor vasculature. VEGF is usually up-regulated in multiple cancers including osteosarcoma and glioma. To further explore the potential molecular mechanism that inhibits tumor growth induced by interference of VEGF expression, we constructed a Lv-shVEGF vector and assessed the efficiency of VEGF silencing and its influence in U2OS cells. The data demonstrate that Lv-shVEGF has high inhibition efficiency on VEGF expression, which inhibits proliferation and promotes apoptosis of U2OS cells in vitro. Our results also indicate that inhibition of VEGF expression suppresses osteosarcoma tumor growth in vivo and reduces osteosarcoma angiogenesis. We also found that the activations of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) were considerably reduced after osteosarcoma cells were treated with Lv-shVEGF. Taken together, our data demonstrate that VEGF silencing suppresses cell proliferation, promotes cell apoptosis, and reduces osteosarcoma angiogenesis through inactivation of PI3K/AKT signaling pathway. PMID:27352347

  9. Association of mast cell-derived VEGF and proteases in Dengue shock syndrome.

    Directory of Open Access Journals (Sweden)

    Takahisa Furuta

    Full Text Available BACKGROUND: Recent in-vitro studies have suggested that mast cells are involved in Dengue virus infection. To clarify the role of mast cells in the development of clinical Dengue fever, we compared the plasma levels of several mast cell-derived mediators (vascular endothelial cell growth factor [VEGF], soluble VEGF receptors [sVEGFRs], tryptase, and chymase and -related cytokines (IL-4, -9, and -17 between patients with differing severity of Dengue fever and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: The study was performed at Children's Hospital No. 2, Ho Chi Minh City, and Vinh Long Province Hospital, Vietnam from 2002 to 2005. Study patients included 103 with Dengue fever (DF, Dengue hemorrhagic fever (DHF, and Dengue shock syndrome (DSS, as diagnosed by the World Health Organization criteria. There were 189 healthy subjects, and 19 febrile illness patients of the same Kinh ethnicity. The levels of mast cell-derived mediators and -related cytokines in plasma were measured by ELISA. VEGF and sVEGFR-1 levels were significantly increased in DHF and DSS compared with those of DF and controls, whereas sVEGFR-2 levels were significantly decreased in DHF and DSS. Significant increases in tryptase and chymase levels, which were accompanied by high IL-9 and -17 concentrations, were detected in DHF and DSS patients. By day 4 of admission, VEGF, sVEGFRs, and proteases levels had returned to similar levels as DF and controls. In-vitro VEGF production by mast cells was examined in KU812 and HMC-1 cells, and was found to be highest when the cells were inoculated with Dengue virus and human Dengue virus-immune serum in the presence of IL-9. CONCLUSIONS: As mast cells are an important source of VEGF, tryptase, and chymase, our findings suggest that mast cell activation and mast cell-derived mediators participate in the development of DHF. The two proteases, particularly chymase, might serve as good predictive markers of Dengue disease severity.

  10. Comparative analysis of metastasis variants derived from human prostate carcinoma cells: roles in intravasation of VEGF-mediated angiogenesis and uPA-mediated invasion

    DEFF Research Database (Denmark)

    Conn, Erin M; Bøtkjær, Kenneth Alrø; Kupriyanova, Tatyana A;

    2009-01-01

    To analyze the process of tumor cell intravasation, we used the human tumor-chick embryo spontaneous metastasis model to select in vivo high (PC-hi/diss) and low (PC-lo/diss) disseminating variants from the human PC-3 prostate carcinoma cell line. These variants dramatically differed...... of vascular endothelial growth factor (VEGF), since treating developing tumors with a function-blocking anti-VEGF antibody simultaneously inhibited both processes without affecting primary tumor growth. PC-hi/diss cells were also more migratory and invasive, suggestive of heightened ability to escape from...

  11. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor (VEGF) is one of the strongest regulators of physiological and pathological angiogenesis. VEGF receptor 2 (VEGFR-2), the primary receptor for VEGF, is thought to mediate major functional effects of VEGF. Previously, we have localized both VEGF and VEGFR-2 in human hair follicles. In this study, we further defined the expression and roles of VEGFR-2 on human hair follicle dermal papilla (DP) cells. The expression of VEGFR-2 on DP cells was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis separately, and localization of VEGFR-2 was defined by immunofluorescence. The effect of VEGF on DP cells was analyzed by MTT assays and specific inhibitors. Finally, the role of VEGF involved in the signaling pathways was investigated by Western blot. RT-PCR and Western blot analysis demonstrated the expression of VEGFR-2 on DP cells. Immunostaining for VEGFR-2 showed strong signal on cultured human DP cells in vitro. Exogenous VEGF165 stimulated proliferation of DP cells in a dose-dependent manner. Furthermore, this stimulation was blocked by a VEGFR-2 neutralizing antibody (MAB3571) and an ERK inhibitor (PD98059). VEGF165-induced phosphorylation of ERK1/2 was abolished by MAB3571 and PD98059, while the phosphorylation of p38, JNK and AKT were not changed by VEGF165. Taken together, VEGFR-2 is expressed on primary human hair follicle DP cells and VEGF induces proliferation of DP cells through VEGFR-2/ERK pathway, but not p38, JNK or AKT signaling. -- Highlights: ► We examine the expression of VEGFR-2 on cultured human dermal papilla (DP) cells. ► VEGF165 stimulated proliferation of human DP cells in a dose-dependent manner. ► This stimulation was through VEGFR-2-mediated activation of ERK.

  12. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  13. 肾细胞癌组织中 VEGF 和 PDGF 的表达%Expressions of VEGF and PDGF in the Renal Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    姜春霞

    2015-01-01

    Objective To investigate the expressions and clinical significance of vascular endothelial growth fac-tor(VEGF)and platelet-derived growth factor(PDGF)in the renal cell carcinoma. Methods Immunohistochemistry S-P method was used to detect the expressions of VEGF and PDGF in the 50 cases of renal cell carcinoma and the 25 cases of paraneoplastic normal renal tissue. The relationship between clinicopathological features and VEGF and PDGF were analyzed. Results The positive rate of VEGF and PDGF were 76. 00% and 78. 00% in the renal cell carcinoma,and were 8. 00% and 4. 00% in the paraneoplastic normal renal tissue(P ﹤ 0. 05). The expressions of VEGF and PDGF in the renal cell carcinoma were related with the lymph node metastasis,pathological cell differen-tiation degree and clinical stage(P ﹤ 0. 05). The expressions of VEGF was positively related with PDGF in the renal cell carcinoma(r = 0. 606,P ﹤ 0. 05). Conclusion The high expressions of VEGF and PDGF are related to the progression of renal cell carcinoma,detection of them can be used to guide the targeted therapy and prognosis of re-nal cell carcinoma.%目的:探讨肾细胞癌组织中血管内皮生长因子( VEGF)和血小板衍生生长因子(PDGF)的表达及临床意义。方法采用免疫组化 S-P 法检测50例肾细胞癌和25例癌旁正常肾脏组织中 VEGF 和 PDGF 的表达,并分析两者与肾细胞癌临床病理参数的关系。结果肾细胞癌组织中 VEGF 和 PDGF 的阳性表达率分别为76.00%、78.00%,均高于癌旁正常膀胱组织的8.00%、4.00%(P 均﹤0.05)。肾细胞癌组织中VEGF 和 PDGF 的表达与其淋巴结转移、病理分化程度和临床分期有关(P 均﹤0.05)。肾细胞癌组织中VEGF 和 PDGF 的表达呈正相关关系(r =0.606,P ﹤0.05)。结论肾细胞癌组织中 VEGF 和 PDGF 存在高表达,对其疾病进展具有促进作用,且两者的检测可用于肾细胞癌的预后评估和靶向治疗药物疗效的监测指标。

  14. Soluble forms of VEGF receptor-1 and -2 promote vascular maturation via mural cell recruitment.

    Science.gov (United States)

    Lorquet, Sophie; Berndt, Sarah; Blacher, Silvia; Gengoux, Emily; Peulen, Olivier; Maquoi, Erik; Noël, Agnès; Foidart, Jean-Michel; Munaut, Carine; Péqueux, Christel

    2010-10-01

    Two soluble forms of vascular endothelial growth factor (VEGF) receptors, sVEGFR-1 and sVEGFR-2, are physiologically released and overproduced in some pathologies. They are known to act as anti-VEGF agents. Here we report that these soluble receptors contribute to vessel maturation by mediating a dialogue between endothelial cells (ECs) and mural cells that leads to blood vessel stabilization. Through a multidisciplinary approach, we provide evidence that these soluble VEGF receptors promote mural cell migration through a paracrine mechanism involving interplay in ECs between VEGF/VEGFR-2 and sphingosine-1-phosphate type-1 (S1P)/S1P1 pathways that leads to endothelial nitric oxyde synthase (eNOS) activation. This new paradigm is supported by the finding that sVEGFR-1 and -2 perform the following actions: 1) induce an eNOS-dependent outgrowth of a mural cell network in an ex vivo model of angiogenesis, 2) increase the mural cell coverage of neovessels in vitro and in vivo, 3) promote mural cell migration toward ECs, and 4) stimulate endothelial S1P1 overproduction and eNOS activation that promote the migration and the recruitment of neighboring mural cells. These findings provide new insights into mechanisms regulating physiological and pathological angiogenesis and vessel stabilization.

  15. Clinical significance of co-expression of VEGF-C and VEGFR-3 in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    李庆昌; 董昕; 顾伟; 邱雪杉; 王恩华

    2003-01-01

    Objective To investigate the relationship between vascular endothelial growth factor C (VEGF-C) expression, VEGFR-3 expression, lymphangiogenesis and angiogenesis in human non-small cell lung cancer (NSCLC).Methods Seventy-six NSCLC samples were stained for VEGF-C, VEGFR-3 and CD34 with immunohistochemical methods. Assessment of lymphatic vessel density (LVD) and microvessel density (MVD) was performed. The expressions of VEGF-C in 24 fresh NSCLC samples were determined with Western blot assay.Results Of the 76 NSCLC cases, 55 were VEGF-C positive and 40 were VEGFR-3 positive in cancer cells. A significant positive correlation was found between VEGF-C expression and VEGFR-3 expression in cancer cells (P<0.05). VEGF-C expression was negatively associated with differentiation of tumor cells (P<0.05). VEGF-C expression and VEGFR-3 expression were positively associated with lymph node metastasis and lymphatic invasion (P<0.05). LVD was positively related to VEGF-C expression, lymph node metastasis, lymphatic invasion and clinical stage (P<0.05). There was a significant correlation between LVD and MVD (R=0.732, P<0.05). Patients with positive VEGF-C expression had worse outcomes than those with negative VEGF-C expression (P<0.001).Conclusions In NSCLC, VEGF-C and VEGFR-3 are related to the lymphangiogenesis, angiogenesis, and occurrence and development of lung cancers. VEGF-C expression could be a useful predictor of poor prognosis in NSCLC.

  16. VEGF-specific siRNAs modified with 2′-deoxy effectively suppress VEGF expression and inhibit growth of nasopharyngeal carcinoma xenograft in a mouse model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Vascular endothelial growth factor (VEGF) is up-regulated in the vast majority of human tumors. The up-regulation of VEGF not only plays important roles in tumor angiogenesis, but also provides a target for tumor treatment with small interfering RNA (siRNA) that targets VEGF; however, it is unclear whether a quite high up-regulation of VEGF will affect the efficiency of RNA interference strategies targeting VEGF. A high level expression of VEGF was found in CNE cells from a nasopharyngeal carcinoma cell line. In this study, we investigate whether VEGF-specific siRNAs can effectively suppress VEGF expression in CNE cells, and study the methods for the use of VEGF-specific siRNAs as potential therapeutic agents. CNE cells with high VEGF expression induced by hypoxia were transfected with VEGF-specific siRNAs. The expression of VEGF was effectively suppressed by VEGF-specific siRNAs, measured by ELISA, Western blot analysis and RT-PCR. Furthermore, experiments in nude mice bearing nasopharyngeal carcinoma xenograft were initiated 5 d after injection of CNE cells. VEGF-specific siRNAs were modified with 2′-deoxy, then injected into the tumors, and a liposome-mediated siRNA transfection system and ultrasound exposure were used to help delivery of the siRNAs. Tumor growth was reduced significantly after 3 weeks’ treatment. These studies suggest that VEGF-specific siRNAs still can effectively suppress VEGF expression even in tumor cell lines with a relatively high level of VEGF expression, such as CNE, and VEGF-specific siRNAs modified with 2′-deoxy can be used as potential agents for tumor therapy.

  17. Proteasome inhibitor MG-132 regulates the expression of VEGF in human bronchial epithelial cell line, BEAS-2B

    Institute of Scientific and Technical Information of China (English)

    Xuefan Cui; Kaisheng Yin; Mao Huang; Linfu Zhou

    2005-01-01

    Objective: To explore the effects of MG-132 on the expression of VEGF in bronchial epithelial cell line, BEAS2B. Methods: Semi-quantitive RT-PCR for VEGF mRNA and enzyme-linked immunosorbent assay (ELISA) for VEGF protein were performed. Results: MG-132 increased the expression of VEGF mRNA and protein BEAS-2B cells in time-and concentration-dependent manners. After 24-h stimulation, 25 μmol/L MG-132 increased the maximal levels of VEGF protein in cell-conditioned medium. When the cells were stimulated with cycloheximide(CHX) before treatment with MG-132, the MG-132-induced production of VEGF protein was inhibited compared to the unstimulated cells. Supernatant of condition-medium treatment with MG-132 enhanced the growth of HUVEC.Conclusion: MG-132 induces VEGF gene expression in human bronchial epithelial cells line, BEAS-2B, and the MG-132-induced expression of VEGF may modulate lung tissue injury due to airway inflammation.

  18. Inhibitory effect of extracts of Ginkgo biloba leaves on VEGF-induced hyperpermeability of bovine coronary endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Yan QIU; Yao-cheng RUI; Tie-jun LI; Li ZHANG; Peng-yuan YANG

    2004-01-01

    AIM: To study whether extract of Ginkgo biloba (EGb) can protect against atherosclerosis. METHODS: Confluent monolayers of bovine coronary endothelial cells (BCECs), bovine coronary smooth muscle cells (BCSMCs), and cocultures of the two were incubated with medium containing VEGF and/or EGb, and flux of 125Ⅰ-labeled oxidized low density lipoprotein (ox-LDL) across the monolayers was measured. RESULTS: Incubation with VEGF significantly increased the permeability of BCEC monolayers to 125Ⅰ-ox-LDL in a time- and concentration-dependent manner, but had no effect on permeability of BCSMCs or endothelial cells-smooth muscle cells cocultures. EGb significantly inhibited the VEGF-induced hyperpermeability of BCECs. CONCLUSION: VEGF was important in the formation and development of atherosclerosis. The inhibition of VEGF-induced permeability by EGb suggests that extracts of Ginkgo biloba leaves may have important clinical applications in the treatment of cardiovascular diseases.

  19. Over-expression of VEGF165 in the adipose tissue-derived stem cells via the lentiviral vector

    Institute of Scientific and Technical Information of China (English)

    SUN Xiang-zhou; LIU Gui-hua; WANG Zhuo-qing; ZHENG Fu-fu; BIAN Jun; HUANG Yan-ping; GAO Yong; ZHANG Ya-dong; DENG Chun-hua

    2011-01-01

    Background Many researchers studied the possibility of using stem cells as gene therapeutic vector. But few related reports on the adipose tissue-derived stem cells (ADSCs) are available. Therefore we intended to construct a lentiviral VEGF165 expression vector and then infect the ADSCs to produce therapeutic seed cells.Methods EHS1001-68950485313912 clone was mutated by PCR method to produce consensus fragment of VEGF165 transcript (NM_001025368). Lentivirus was enveloped with pGC-FU, pHelper 1.0 and pHelper 2.0 plasmids in 293T cells.And then the ADSCs (multiplicity of infection=20) were transfected with the vectors after titer determination. Stable expression of VEGF165 in ADSCs was confirmed by immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and Western blotting analysis.Results DNA sequencing and 293T transfection verified VEGF165 was linked to the GFP fused vector. The virus titer is up to 2x10a determined by quantitative PCR. VEGF165 transduced cells could show green fluorescence confirmed by immunofluorescence staining (almost 95%). ELISA analyses could detect out the density of VEGF was 850.86-1202.13pg/ml (mean (923.00±31.22) pg/ml) in the supernatant of VEGF16s-transduced cells but not detected in the GFP-transduced cells (P <0.001) and the Western blotting analyses also confirmed VEGF165 expression in VEGF165-transduced cells.Conclusions The VEGF165 over-expression ADSCs were obtained and may be used as a cell therapeutic tool and may be applied for vascular regeneration, especially in the treatment of erectile dysfunction.

  20. Matrix-Bound VEGF Mimetic Peptides: Design and Endothelial Cell Activation in Collagen Scaffolds

    OpenAIRE

    Chan, Tania R.; Stahl, Patrick J.; Yu, S. Michael

    2011-01-01

    Long term survival and success of artificial tissue constructs depend greatly on vascularization. Endothelial cell (EC) differentiation and vasculature formation are dependent on spatio-temporal cues in the extracellular matrix that dynamically interact with cells, a process difficult to reproduce in artificial systems. Here we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF) and can be used to encode spatially controlled angiogenic signa...

  1. 重组人VEGF165的表达纯化及单抗的初步筛选%Prokaryotic Expression of VEGF165 and Preliminary Screening of Anti-VEGF Hybridoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    包欣晨; 李孜; 高向东; 陆小冬; 徐晨

    2011-01-01

    Vascular endothelial growth factor (VEGF) plays a key role in physiological and pathological angiogenesis and is a potent and critical target as blocking tumor growth and metastasis. The process described in this report involves a complex auto-induced expression in Escherichia coli and a downstream purification process consisting of protein refolding and three chromatography steps in order to obtain the functional rhVEGF165. Biological activity of the purified 38kDa homodimer was verified by the induction of the proliferation of human umbilical vein endothelial cells (HUVECs). The EC50 for this effect was 2. 4ng/ml. Finally, three Anti-VEGF hybridoma cell lines were obtained after immunization, fusion and preliminary screening.%血管内皮细胞生长因子(vascular endothelial growth factor,VEGF)是抑制肿瘤生长和转移的重要靶点.为获得抗VEGF单抗细胞株,构建了rhVEGFt165工程菌,并利用复合自动诱导获得高效表达.经纯化获得高纯度rhVEGF165蛋白,经检测具有促人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)增殖活性,其EC50为2.4ng/ml.免疫小鼠,获得了3株能稳定分泌抗VEGF单抗的杂交瘤细胞株,为开发VEGF治疗性单抗提供了重要基础.

  2. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Izuagie Attairu Ikhapoh

    2015-01-01

    Full Text Available Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs differentiate into endothelial cells (ECs in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II on EC differentiation and function. MSCs (CD44+, CD73+, CD90+, CD14−, and CD45− were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin, VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention.

  3. Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis

    Directory of Open Access Journals (Sweden)

    Mac Gabhann Feilim

    2011-05-01

    Full Text Available Abstract Background The spatial distribution of vascular endothelial growth factor A (VEGF is an important mediator of vascular patterning. Previous experimental studies in the mouse hindbrain and retina have suggested that VEGF alternative splicing, which controls the ability of VEGF to bind to heparan sulfate proteoglycans (HSPGs in the extracellular matrix (ECM, plays a key role in controlling VEGF diffusion and gradients in tissues. Conversely, proteolysis notably by matrix metalloproteinases (MMPs, plays a critical role in pathological situations by releasing matrix-sequestered VEGF and modulating angiogenesis. However, computational models have predicted that HSPG binding alone does not affect VEGF localization or gradients at steady state. Results Using a 3D molecular-detailed reaction-diffusion model of VEGF ligand-receptor kinetics and transport, we test alternate models of VEGF transport in the extracellular environment surrounding an endothelial sprout. We show that differences in localization between VEGF isoforms, as observed experimentally in the mouse hindbrain, as well as the ability of proteases to redistribute VEGF in pathological situations, are consistent with a model where VEGF is endogenously cleared or degraded in an isoform-specific manner. We use our predictions of the VEGF distribution to quantify a tip cell's receptor binding and gradient sensing capacity. A novel prediction is that neuropilin-1, despite functioning as a coreceptor to VEGF165-VEGFR2 binding, reduces the ability of a cell to gauge the relative steepness of the VEGF distribution. Comparing our model to available in vivo vascular patterning data suggests that vascular phenotypes are most consistently predicted at short range by the soluble fraction of the VEGF distributions, or at longer range by matrix-bound VEGF detected in a filopodia-dependent manner. Conclusions Isoform-specific VEGF degradation provides a possible explanation for numerous examples

  4. Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer.

    Directory of Open Access Journals (Sweden)

    Christina L Roland

    Full Text Available The effect of blocking VEGF activity in solid tumors extends beyond inhibition of angiogenesis. However, no studies have compared the effectiveness of mechanistically different anti-VEGF inhibitors with respect to changes in tumor growth and alterations in the tumor microenvironment. In this study we use three distinct breast cancer models, a MDA-MB-231 xenograft model, a 4T1 syngenic model, and a transgenic model using MMTV-PyMT mice, to explore the effects of various anti-VEGF therapies on tumor vasculature, immune cell infiltration, and cytokine levels. Tumor vasculature and immune cell infiltration were evaluated using immunohistochemistry. Cytokine levels were evaluated using ELISA and electrochemiluminescence. We found that blocking the activation of VEGF receptor resulted in changes in intra-tumoral cytokine levels, specifically IL-1beta, IL-6 and CXCL1. Modulation of the level these cytokines is important for controlling immune cell infiltration and ultimately tumor growth. Furthermore, we demonstrate that selective inhibition of VEGF binding to VEGFR2 with r84 is more effective at controlling tumor growth and inhibiting the infiltration of suppressive immune cells (MDSC, Treg, macrophages while increasing the mature dendritic cell fraction than other anti-VEGF strategies. In addition, we found that changes in serum IL-1beta and IL-6 levels correlated with response to therapy, identifying two possible biomarkers for assessing the effectiveness of anti-VEGF therapy in breast cancer patients.

  5. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Caiwen; Zhou Huifang; Fu Yao; Gu Ping; Fan Xianqun [Department of Ophthalmology, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China); Liu Guangpeng [Key Laboratory of Tissue Engineering, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China); Zhang Peng [Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science (China); Hou Hongliang; Tang Tingting, E-mail: drfanxianqun@126.com [Department of Orthopedics, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China)

    2011-02-15

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  6. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    International Nuclear Information System (INIS)

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  7. Poor prognostic clinicopathologic features correlate with VEGF expression but not with PTEN expression in squamous cell carcinoma of the larynx

    Directory of Open Access Journals (Sweden)

    Karagoz Filiz

    2010-06-01

    Full Text Available Abstract Background The aim of this study was to assess the relationship between expression of vascular endothelial growth factor (VEGF and phosphatase and tensin homolog deleted in chromosome ten (PTEN, angiogenesis and clinicopathological parameters of squamous cell carcinoma of the larynx. Methods We examined immunohistochemical expression of VEGF and PTEN and CD34 for microvessel density (MVD in sections of formalin-fixed, paraffin embedded tissue blocks of 140 patients with squamous cell carcinoma of the larynx. The intensity of VEGF and PTEN staining and the proportion of cells staining were scored. Results The tumor grade was not significantly related to PTEN expression, but it was to VEGF expression (p = 0.400; p = 0.015, respectively. While there was no significant relationship between PTEN expression and tumor size and cartilage invasion (p = 0.311, p = 0.128, there was a significant relationship between the severity of VEGF expression and tumor size (p = 0.006 and lymph node metastasis (p = 0.048 but not cartilage invasion (p = 0.129. MVD was significantly higher in high-grade tumors (p = 0.003 but had no significant relationship between MVD, lymph node metastasis, and cartilage invasion (p = 0.815, p = 0.204. There was also no significant relationship between PTEN and VEGF expression (p = 0.161 and between PTEN and VEGF expression and the MVD (p = 0.120 and p = 0.175, respectively. Conclusions Increased VEGF expression may play an important role in the outcome of squamous cell carcinoma of the larynx. PTEN expression was not related to VEGF expression and clinicopathological features of squamous cell carcinoma of the larynx.

  8. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells.

    Science.gov (United States)

    Rigiracciolo, Damiano Cosimo; Scarpelli, Andrea; Lappano, Rosamaria; Pisano, Assunta; Santolla, Maria Francesca; De Marco, Paola; Cirillo, Francesca; Cappello, Anna Rita; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; De Francesco, Ernestina Marianna

    2015-10-27

    Copper promotes tumor angiogenesis, nevertheless the mechanisms involved remain to be fully understood. We have recently demonstrated that the G-protein estrogen receptor (GPER) cooperates with hypoxia inducible factor-1α (HIF-1α) toward the regulation of the pro-angiogenic factor VEGF. Here, we show that copper sulfate (CuSO4) induces the expression of HIF-1α as well as GPER and VEGF in breast and hepatic cancer cells through the activation of the EGFR/ERK/c-fos transduction pathway. Worthy, the copper chelating agent TEPA and the ROS scavenger NAC prevented the aforementioned stimulatory effects. We also ascertained that HIF-1α and GPER are required for the transcriptional activation of VEGF induced by CuSO4. In addition, in human endothelial cells, the conditioned medium from breast cancer cells treated with CuSO4 promoted cell migration and tube formation through HIF-1α and GPER. The present results provide novel insights into the molecular mechanisms involved by copper in triggering angiogenesis and tumor progression. Our data broaden the therapeutic potential of copper chelating agents against tumor angiogenesis and progression.

  9. Elevated SP-1 transcription factor expression and activity drives basal and hypoxia-induced vascular endothelial growth factor (VEGF) expression in non-small cell lung cancer.

    Science.gov (United States)

    Deacon, Karl; Onion, David; Kumari, Rajendra; Watson, Susan A; Knox, Alan J

    2012-11-16

    VEGF plays a central role in angiogenesis in cancer. Non-small cell lung cancer (NSCLC) tumors have increased microvascular density, localized hypoxia, and high VEGF expression levels; however, there is a lack of understanding of how oncogenic and tumor microenvironment changes such as hypoxia lead to greater VEGF expression in lung and other cancers. We show that NSCLC cells secreted higher levels of VEGF than normal airway epithelial cells. Actinomycin D inhibited all NSCLC VEGF secretion, and VEGF minimal promoter-luciferase reporter constructs were constitutively active until the last 85 base pairs before the transcription start site containing three SP-1 transcription factor-binding sites; mutation of these VEGF promoter SP-1-binding sites eliminated VEGF promoter activity. Furthermore, dominant negative SP-1, mithramycin A, and SP-1 shRNA decreased VEGF promoter activity, whereas overexpression of SP-1 increased VEGF promoter activity. Chromatin immunoprecipitation assays demonstrated SP-1, p300, and PCA/F histone acetyltransferase binding and histone H4 hyperacetylation at the VEGF promoter in NSCLC cells. Cultured NSCLC cells expressed higher levels of SP-1 protein than normal airway epithelial cells, and double-fluorescence immunohistochemistry showed a strong correlation between SP-1 and VEGF in human NSCLC tumors. In addition, hypoxia-driven VEGF expression in NSCLC cells was SP-1-dependent, with hypoxia increasing SP-1 activity and binding to the VEGF promoter. These studies are the first to demonstrate that overexpression of SP-1 plays a central role in hypoxia-induced VEGF secretion. PMID:22992725

  10. VEGF 165 Gene Therapy for Patients with Refractory Angina: Mobilization of Endothelial Progenitor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Clarissa G. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Duke University Medical Center, Durham, North Carolina (United States); Plentz, Rodrigo D.M. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Dipp, Thiago [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Salles, Felipe B. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Giusti, Imarilde I.; Sant' Anna, Roberto T.; Eibel, Bruna; Nesralla, Ivo A.; Markoski, Melissa [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Beyer, Nance N. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Kalil, Renato A. K., E-mail: kalil.pesquisa@gmail.com [Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil)

    2013-08-15

    Vascular endothelial growth factor (VEGF) induces mobilization of endothelial progenitor cells (EPCs) with the capacity for proliferation and differentiation into mature endothelial cells, thus contributing to the angiogenic process. We sought to assess the behavior of EPCs in patients with ischemic heart disease and refractory angina who received an intramyocardial injections of 2000 µg of VEGF 165 as the sole therapy. The study was a subanalysis of a clinical trial. Patients with advanced ischemic heart disease and refractory angina were assessed for eligibility. Inclusion criteria were as follows: signs and symptoms of angina and/or heart failure despite maximum medical treatment and a myocardial ischemic area of at least 5% as assessed by single-photon emission computed tomography (SPECT). Exclusion criteria were as follows: age > 65 years, left ventricular ejection fraction < 25%, and a diagnosis of cancer. Patients whose EPC levels were assessed were included. The intervention was 2000 µg of VEGF 165 plasmid injected into the ischemic myocardium. The frequency of CD34+/KDR+ cells was analyzed by flow cytometry before and 3, 9, and 27 days after the intervention. A total of 9 patients were included, 8 males, mean age 59.4 years, mean left ventricular ejection fraction of 59.3% and predominant class III angina. The number of EPCs on day 3 was significantly higher than that at baseline (p = 0.03); however, that on days 9{sup th} and 27{sup th} was comparable to that at baseline. We identified a transient mobilization of EPCs, which peaked on the 3th day after VEGF 165 gene therapy in patients with refractory angina and returned to near baseline levels on 9{sup th} and 27{sup th}days.

  11. VEGF 165 Gene Therapy for Patients with Refractory Angina: Mobilization of Endothelial Progenitor Cells

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor (VEGF) induces mobilization of endothelial progenitor cells (EPCs) with the capacity for proliferation and differentiation into mature endothelial cells, thus contributing to the angiogenic process. We sought to assess the behavior of EPCs in patients with ischemic heart disease and refractory angina who received an intramyocardial injections of 2000 µg of VEGF 165 as the sole therapy. The study was a subanalysis of a clinical trial. Patients with advanced ischemic heart disease and refractory angina were assessed for eligibility. Inclusion criteria were as follows: signs and symptoms of angina and/or heart failure despite maximum medical treatment and a myocardial ischemic area of at least 5% as assessed by single-photon emission computed tomography (SPECT). Exclusion criteria were as follows: age > 65 years, left ventricular ejection fraction < 25%, and a diagnosis of cancer. Patients whose EPC levels were assessed were included. The intervention was 2000 µg of VEGF 165 plasmid injected into the ischemic myocardium. The frequency of CD34+/KDR+ cells was analyzed by flow cytometry before and 3, 9, and 27 days after the intervention. A total of 9 patients were included, 8 males, mean age 59.4 years, mean left ventricular ejection fraction of 59.3% and predominant class III angina. The number of EPCs on day 3 was significantly higher than that at baseline (p = 0.03); however, that on days 9th and 27th was comparable to that at baseline. We identified a transient mobilization of EPCs, which peaked on the 3th day after VEGF 165 gene therapy in patients with refractory angina and returned to near baseline levels on 9th and 27thdays

  12. Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model.

    Directory of Open Access Journals (Sweden)

    Hong J Lee

    Full Text Available BACKGROUND: Intracerebral hemorrhage (ICH is a lethal stroke type. As mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs selectively migrate to the brain and induce behavioral recovery in rat ICH model, and that combined administration of NSCs and vascular endothelial growth factor (VEGF results in improved structural and functional outcome from cerebral ischemia. METHODS AND FINDINGS: We postulated that human NSCs overexpressing VEGF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs, increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by unilateral injection of bacterial collagenase into striatum. HB1.F3.VEGF human NSC line produced an amount of VEGF four times higher than parental F3 cell line in vitro, and induced behavioral improvement and 2-3 fold increase in cell survival at two weeks and eight weeks post-transplantation. CONCLUSIONS: Brain transplantation of F3 human NSCs over-expressing VEGF near ICH lesion sites provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results suggest a possible application of the human neural stem cell line, which is genetically modified to over-express VEGF, as a therapeutic agent for ICH-stroke.

  13. Quantitative assessment of first-pass perfusion using a low-dose method at multidetector CT in oesophageal squamous cell carcinoma: Correlation with VEGF expression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.-W. [Department of Radiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 (China) and Sichuan Province Key Laboratory of Medical Imaging and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wen Hua Lu, Nanchong, Sichuan 637000 (China); Yang, Z.-G., E-mail: yangzg1117@yahoo.com.cn [Department of Radiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 (China); State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Chen, H.-J. [Department of Pathology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 (China); Li, Y.; Tang, S.-S.; Yao, J.; Dong, Z.-H. [Department of Radiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 (China); He, D. [Department of Pathology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 (China)

    2012-08-15

    Aim: To investigate the correlation between vascular endothelial cell growth factor (VEGF) expression and first-pass perfusion parameters at multidetector computed tomography (MDCT) using a low-dose technique, and to determine how to discriminate VEGF positivity from VEGF negativity by perfusion CT in oesophageal squamous cell carcinomas. Materials and methods: Thirty-two patients with oesophageal squamous cell carcinomas underwent first-pass perfusion with 64-section MDCT at 50 mAs. Perfusion parameters, including perfusion, peak enhanced density (PED), time to peak (TTP), and blood volume (BV), were measured. Postoperative specimens were assessed for VEGF expression. Correlation tests were performed to determine the associations between each CT perfusion parameter and VEGF expression. The cut-off values of perfusion parameters were obtained statistically to discriminate VEGF positivity from VEGF negativity. Results: Mean perfusion, PED, TTP, and BV were 38.47 {+-} 30.26 ml/min/ml, 24.68 {+-} 9.65 HU, 28.35 {+-} 9.03 s, and 11.82 {+-} 6.06 ml/100 g, respectively. PED or BV were significantly higher in the VEGF-positive group than in the VEGF-negative group (all p < 0.05), but no significant difference in perfusion or TTP was found between the VEGF-positive and VEGF-negative groups (all p > 0.05). In VEGF positivity, PED and BV were correlated with VEGF expression (r = 0.576 and 0.765, respectively; all p < 0.05), whereas perfusion and TTP were not (r = 0.361 and 0.239, respectively; all p > 0.05). A threshold of BV (10.23 ml/100 g) achieved a sensitivity of 94.4%, and a specificity of 92.9% for discriminating VEGF positivity from VEGF negativity. Conclusion: BV could reflect tumour VEGF expression, and could be an indicator for evaluating angiogenesis in oesophageal tumours.

  14. Inhibition of K562 cell growth and tumor angiogenesis in nude mice by transfection of anti-VEGF hairpin ribozyme gene into the cells

    Institute of Scientific and Technical Information of China (English)

    许文林

    2006-01-01

    Objective To explore the effect of anti-VEGF hairpin ribozyme gene on the tumor cell growth and tumor angiogenesis in nude mice. Methods The recombinant eukaryotic expression plasmid pcDNA-RZ containing anti-VEGF hairpin ribozyme gene and the empty vector plasmid pcDNA were introduced separately into K562 cells

  15. VEGF involvement in psoriasis.

    Science.gov (United States)

    Marina, Mihaela Elena; Roman, Iulia Ioana; Constantin, Anne-Marie; Mihu, Carmen Mihaela; Tătaru, Alexandru Dumitru

    2015-01-01

    Vascular endothelial growth factor (VEGF) is a key growth factor, regulating the neovascularization, during embryogenesis, skeletal growth, reproductive functions and pathological processes. The VEGF receptors (VEGFR) are present in endothelial cells and other cell types, such as vascular smooth muscle cells, hematopoietic stem cells, monocytes, neurons, macrophages, and platelets. Angiogenesis is initiated by the activation of vascular endothelial cells through several factors. The excess dermal vascularity and VEGF production are markers of psoriasis. The pathological role of VEGF/VEGFR signaling during the psoriasis onset and evolution makes it a promising target for the treatment of psoriasis. Antibodies and other types of molecules targeting the VEGF pathway are currently evaluated in arresting the evolution of psoriasis. PMID:26609252

  16. Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/Flk-1 of endothelial cells

    International Nuclear Information System (INIS)

    Endostar, a novel recombinant human endostatin expressed and purified in Escherichia coli with an additional nine-amino acid sequence and forming another his-tag structure, was approved by the SFDA in 2005 for the treatment of non-small-cell lung cancer. But its mechanism of action has not been illustrated before. In this study, we examined the antiangiogenic activities of endostar in vitro and in vivo. The results showed that endostar suppressed the VEGF-stimulated proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Endostar blocked microvessel sprouting from rat aortic rings in vitro. Moreover, it could inhibit the formation of new capillaries from pre-existing vessels in the chicken chorioallantoic membrane (CAM) assay and affect the growth of vessels in tumor. We further found the antiangiogenic effects of endostar were correlated with the VEGF-triggered signaling. Endostar suppressed the VEGF-induced tyrosine phosphorylation of KDR/Flk-1(VEGFR-2) as well as the overall VEGFR-2 expression and the activation of ERK, p38 MAPK, and AKT in HUVECs. Collectively, these data indicated the relationship between endostar and VEGF signal pathways and provided a molecular basis for the antiangiogenic effects of endostar

  17. Delphinidin Inhibits Tumor Growth by Acting on VEGF Signalling in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Thérèse Keravis

    Full Text Available The vasculoprotective properties of delphinidin are driven mainly by its action on endothelial cells. Moreover, delphinidin displays anti-angiogenic properties in both in vitro and in vivo angiogenesis models and thereby might prevent the development of tumors associated with excessive vascularization. This study was aimed to test the effect of delphinidin on melanoma-induced tumor growth with emphasis on its molecular mechanism on endothelial cells. Delphinidin treatment significantly decreased in vivo tumor growth induced by B16-F10 melanoma cell xenograft in mice. In vitro, delphinidin was not able to inhibit VEGFR2-mediated B16-F10 melanoma cell proliferation but it specifically reduced basal and VEGFR2-mediated endothelial cell proliferation. The anti-proliferative effect of delphinidin was reversed either by the MEK1/2 MAP kinase inhibitor, U-0126, or the PI3K inhibitor, LY-294002. VEGF-induced proliferation was reduced either by U-0126 or LY-294002. Under these conditions, delphinidin failed to decrease further endothelial cell proliferation. Delphinidin prevented VEGF-induced phosphorylation of ERK1/2 and p38 MAPK and decreased the expression of the transcription factors, CREB and ATF1. Finally, delphinidin was more potent in inhibiting in vitro cyclic nucleotide phosphodiesterases (PDEs, PDE1 and PDE2, compared to PDE3-PDE5. Altogether delphinidin reduced tumor growth of melanoma cell in vivo by acting specifically on endothelial cell proliferation. The mechanism implies an association between inhibition of VEGF-induced proliferation via VEGFR2 signalling, MAPK, PI3K and at transcription level on CREB/ATF1 factors, and the inhibition of PDE2. In conjunction with our previous studies, we demonstrate that delphinidin is a promising compound to prevent pathologies associated with generation of vascular network in tumorigenesis.

  18. Mast cells facilitate local VEGF release as an early event in the pathogenesis of postoperative peritoneal adhesions.

    LENUS (Irish Health Repository)

    Cahill, Ronan A

    2012-02-03

    BACKGROUND: Peritoneal injury sustained at laparotomy may evoke local inflammatory responses that result in adhesion formation. Peritoneal mast cells are likely to initiate this process, whereas vascular permeability\\/endothelial growth factor (VEGF) may facilitate the degree to which subsequent adhesion formation occurs. METHODS: Mast cell deficient mice (WBB6F1-\\/-), along with their mast cell sufficient counterparts (WBB6F1+\\/+), underwent a standardized adhesion-inducing operation (AIS) with subsequent sacrifice and adhesion assessment 14 days later in a blinded fashion. Additional CD-1 and WBB6F1+\\/+, and WBB6F1-\\/- mice were killed 2, 6, 12, and 24 hours after operation for measurement of VEGF by ELISA in systemic serum and peritoneal lavage fluid. Two further groups of CD-1 mice underwent AIS and received either a single perioperative dose of anti-VEGF monoclonal antibody (10 mug\\/mouse) or a similar volume of IgG isotypic antibody and adhesion formation 2 weeks later was evaluated. RESULTS: WBB6F1-\\/- mice had less adhesions then did their WBB6F1+\\/+ counterparts (median [interquartile range] adhesion score 3[3-3] vs 1.5[1-2] respectively; P < .003). Local VEGF release peaked 6 hours after AIS in both WBB6F1+\\/+ and CD-1 mice whereas levels remained at baseline in WBB6F1-\\/- mice. CD-1 mice treated with a single dose of anti-VEGF therapy during operation had less adhesions than controls (2[1.25-2] vs 3[2.25-3], P = .0002). CONCLUSIONS: Mast cells and VEGF are central to the formation of postoperative intra-abdominal adhesions with mast cells being responsible, either directly or indirectly, for VEGF release into the peritoneal cavity after operation. In tandem with the recent clinical success of anti-VEGF monoclonal antibodies in oncologic practice, our observations suggest an intriguing avenue for research and development of anti-adhesion strategy.

  19. Transfection of bone marrow mesenchymal stem cells using green fluorescence protein labeled hVEGF165 recombinant plasmid mediated by liposome

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Tian-An Liao; Shao-Bo Zhong

    2013-01-01

    Objective:To study the role of bone marrow mesenchymal stem cells (BMSCs) in construction of vascularized engineered tissue. Methods: hVEGF165 was amplified via RT-PCR before recombinant with pShuttle-green fluorescence protein;green fluorescent protein (GFP)-CMV. Then the recombinant shuttle plasmid was transfected into BMSCs with LipofectamineTM 2000 for packaging and amplifying. hVEGF165 mRNA expression in BMSCs cells was tested. Results:The sequence of hVEGF165 in pShuttle-GFP-hVEGF165 plasmid was confirmed by double-enzyme cleavage method and sequencing. hVEGF165 was highly expressed in BMSCs. Conclusions:The GFP/hVEGF165 recombinant plasmid vector was constructed successfully and expressed effectively in host cells, which may be helpful for discussing the possibility of the application of VEGF165-BMSCs in tissue engineering and ischemic disease cure.

  20. Comparative Phosphoproteomics Analysis of VEGF and Angiopoietin-1 Signaling Reveals ZO-1 as a Critical Regulator of Endothelial Cell Proliferation.

    Science.gov (United States)

    Chidiac, Rony; Zhang, Ying; Tessier, Sylvain; Faubert, Denis; Delisle, Chantal; Gratton, Jean-Philippe

    2016-05-01

    VEGF and angiopoietin-1 (Ang-1) are essential factors to promote angiogenesis through regulation of a plethora of signaling events in endothelial cells (ECs). Although pathways activated by VEGF and Ang-1 are being established, the unique signaling nodes conferring specific responses to each factor remain poorly defined. Thus, we conducted a large-scale comparative phosphoproteomic analysis of signaling pathways activated by VEGF and Ang-1 in ECs using mass spectrometry. Analysis of VEGF and Ang-1 networks of regulated phosphoproteins revealed that the junctional proteins ZO-1, ZO-2, JUP and p120-catenin are part of a cluster of proteins phosphorylated following VEGF stimulation that are linked to MAPK1 activation. Down-regulation of these junctional proteins led to MAPK1 activation and accordingly, increased proliferation of ECs stimulated specifically by VEGF, but not by Ang-1. We identified ZO-1 as the central regulator of this effect and showed that modulation of cellular ZO-1 levels is necessary for EC proliferation during vascular development of the mouse postnatal retina. In conclusion, we uncovered ZO-1 as part of a signaling node activated by VEGF, but not Ang-1, that specifically modulates EC proliferation during angiogenesis. PMID:26846344

  1. Nemo-like kinase regulates the expression of vascular endothelial growth factor (VEGF) in alveolar epithelial cells.

    Science.gov (United States)

    Ke, Hengning; Masoumi, Katarzyna Chmielarska; Ahlqvist, Kristofer; Seckl, Michael J; Rydell-Törmänen, Kristina; Massoumi, Ramin

    2016-01-01

    The canonical Wnt signaling can be silenced either through β-catenin-mediated ubiquitination and degradation or through phosphorylation of Tcf and Lef by nemo-like kinase (NLK). In the present study, we generated NLK deficient animals and found that these mice become cyanotic shortly before death because of lung maturation defects. NLK-/- lungs exhibited smaller and compressed alveoli and the mesenchyme remained thick and hyperplastic. This phenotype was caused by epithelial activation of vascular endothelial growth factor (VEGF) via recruitment of Lef1 to the promoter of VEGF. Elevated expression of VEGF and activation of the VEGF receptor through phosphorylation promoted an increase in the proliferation rate of epithelial and endothelial cells. In summary, our study identifies NLK as a novel signaling molecule for proper lung development through the interconnection between epithelial and endothelial cells during lung morphogenesis. PMID:27035511

  2. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    International Nuclear Information System (INIS)

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis

  3. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Mikami, Daisuke; Kamiyama, Kazuko [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Sugimoto, Hidehiro [Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Kasuno, Kenji; Takahashi, Naoki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yoshida, Haruyoshi [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Division of Nephrology, Obama Municipal Hospital, Obama, Fukui (Japan); Iwano, Masayuki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)

    2014-11-14

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  4. Src Kinase becomes preferentially associated with the VEGFR, KDR/Flk-1, following VEGF stimulation of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Wang Jing

    2002-12-01

    Full Text Available Abstract Background The cytoplasmic tyrosine kinase, Src, has been found to play a crucial role in VEGF (vascular endothelial growth factor – dependent vascular permeability involved in angiogenesis. The two main VEGFRs present on vascular endothelial cells are KDR/Flk-1 (kinase insert domain-containing receptor/fetal liver kinase-1 and Flt-1 (Fms-like tyrosine kinase-1. However, to date, it has not been determined which VEGF receptor (VEGFR is involved in binding to and activating Src kinase following VEGF stimulation of the receptors. Results In this report, we demonstrate that Src preferentially associates with KDR/Flk-1 rather than Flt-1 in human umbilical vein endothelial cells (HUVECs, and that VEGF stimulation resulted in an increase of Src activity associated with activated KDR/Flk-1. These findings were determined through immunoprecipitation-kinase experiments and coimmunoprecipitation studies, and were further confirmed by GST-pull-down assays and Far Western studies. However, Fyn and Yes, unlike Src, were found to associate preferentially with Flt-1. Conclusions Thus, Src preferentially associates with KDR/Flk-1, rather than with Flt-1, upon VEGF stimulation in endothelial cells. Our findings further highlight the potential significance of upregulated KDR/Flk-1-associated Src activity in the process of angiogenesis, and help to elucidate more clearly the specific roles and mechanisms involving Src family tyrosine kinase in VEGF-stimulated signal transduction events.

  5. Effects of TNF-α and curcumin on the expression of VEGF in Raji and U937 cells and on angiogenesis in ECV304 cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei-hua; CHEN Yan; CUI Guo-hui

    2005-01-01

    Background To better understand the possibilities of antiangiogenic tumor therapy and to assess possible side effects, we investigated the effect of tumour necrosis factor (TNF)-α and curcumin on the expression of vascular endothelial growth factor (VEGF) in U937 and Raji cell lines and their effect on angiogenesis in a human umbilical vein endothelial cell (HUVECs)-derived cell line (ECV304), and also the relationship between Notch1 and VEGF. The aim of this study was to elucidate potential mechanisms controlling tumor neovascularization. Methods VEGF secreted by U937 and Raji cell lines was determined by ELISA. Angiogenesis was tested by network formation of endothelial cells on Matrigel. Levels of VEGF mRNA in U937 and Raji cells and Notch1 mRNA levels in EV304 cells were determined by RT-PCR. Results Secretion of VEGF by U937 and Raji cells was increased by TNF-α treatment and suppressed by curcumin (P0.05).Conclusions Expressions of VEGF mRNA in U937 and Raji cells were increased by TNF-α and suppressed by curcumin. VEGF and TNF-α can induce angiogenesis, and curcumin can inhibit angiogenesis in ECV304 cells.

  6. Cancer-derived VEGF plays no role in malignant ascites formation in the mouse

    Institute of Scientific and Technical Information of China (English)

    Bayasi Guleng; Tsuneo Ikenoue; Yasushi Fukushima; Keita Morikane; Makoto Miyagishi; Kazunari Taira; Takao Kawabe; Masao Omata; Keisuke Tateishi; Fumihiko Kanai; Amarsanaa Jazag; Miki Ohta; Yoshinari Asaoka; Hideaki Ijichi; Yasuo Tanaka; Jun Imamura

    2005-01-01

    AIM: Vascular endothelial growth factor (VEGF) is a potent mediator of peritoneal fluid accumulation following tumor progression. This study investigated the role of VEGF secreted by cancerous cells in the formation of malignant ascites.METHODS: VEGF expression was eliminated byknockdown in the pancreas cancer cell-line PancO2 using vector-based short-hairpin type RNA interference (RNAi).Malignant ascites formation in the mouse was analyzed by intraperitoneal injection of PancO2 cells expressing VEGF or with expression knockdown.RESULTS: The VEGF knockdown PancO2 cell was successfully established. Knockdown of VEGF did not affect cancer cell proliferation in vitro or in vivo. The volume of ascites following peritoneal expansion of the tumor in VEGF knockdown cells and control cells did not differ statistically in this in vivo study. Moreover, the VEGF concentration in the ascites did not differ statistically.CONCLUSION: Malignant ascites formation might be mediated by VEGF production in noncancerous tissues,such as stromal compartments. An anti-VEGF strategy against malignant ascites could be applied to various tumors regardless of whether they secrete VEGF.

  7. VEGF involvement in psoriasis

    OpenAIRE

    MARINA, MIHAELA ELENA; ROMAN, IULIA IOANA; CONSTANTIN, ANNE-MARIE; Carmen Mihaela MIHU; TĂTARU, ALEXANDRU DUMITRU

    2015-01-01

    Vascular endothelial growth factor (VEGF) is a key growth factor, regulating the neovascularization, during embryogenesis, skeletal growth, reproductive functions and pathological processes. The VEGF receptors (VEGFR) are present in endothelial cells and other cell types, such as vascular smooth muscle cells, hematopoietic stem cells, monocytes, neurons, macrophages, and platelets. Angiogenesis is initiated by the activation of vascular endothelial cells through several factors. The excess de...

  8. Scutellarein inhibits hypoxia- and moderately-high glucose-induced proliferation and VEGF expression in human retinal endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Rong GAO; Bang-hao ZHU; Shi-bo TANG; Jiang-feng WANG; Jun REN

    2008-01-01

    Aim: This study was designed to examine the effect of scutellarein on high glu-cose- and hypoxia-stimulated proliferation of human retinal endothelial cells (HREC). Methods: HREC were cultured under normal glucose (NG), moderate, and high glucose (NG supplemented with 10 or 25 mmol/L D-glucose) and/or hypoxic (cobalt chloride treated) conditions. Cell proliferation was evaluated by a cell counting kit. The expression of vascular endothelial growth factor (VEGF) was assessed by Western blot analysis. Results: The proliferation of HREC was significantly elevated in response to moderately-high glucose and hypoxic conditions. The combination of high glucose and hypoxia did not have any additive effects on cell proliferation. Consistent with the proliferation data, the expression of VEGF was also upregulated under both moderately-high glucose and hypoxic conditions. The treatment with scutellarein (1 × 10-11-1 × 10-5 mol/L) significantly inhibited high glucose- or hypoxia-induced cell proliferation and VEGF expression. Conclusion: Both hypoxia and moderately-high glucose were potent stimuli for cell proliferation and VEGF expression in HREC without any significant additive effects. Scutellarein is capable of inhibiting the proliferation of HREC, which is possibly related to its ability to suppress the VEGF expression.

  9. Rapid Construction of EGFP Labled Recombinant Adenovirus Containing hVEGF165 and Its Expression in Haematopoietic Cells

    Institute of Scientific and Technical Information of China (English)

    仲照东; 邹萍; 黄士昂; 胡中波; 刘凌波; 卢运萍

    2003-01-01

    By using AdEasy system, which is based on the homologous recombination in bacteria, an EGFP labeled recombinant adenovirus vector containing hVEGF165 was constructed quickly and efficiently expressed in mouse haematopoietic cells. First, hVEGF165 coding sequence was subcloned into shuttle plasmid pAdTrack-CMV, then cotransformed with adenoviral backbone vector pAdEasy-1 into E. coli strain BJ5183. The recombinant adenoviral plasmid was transfected into HEK293 cells to assembly replication-defective adenovirus Ad-EGFP/hVEGF165. The expression of EGFP could be easily detected. The rate of EGFP positive mouse bone marrow mononuclear cells by flow cytometric analysis was 27.3 % (MOI= 100), and the expression of hVEGF165 protein in the supernatant was (1385+332) pg/106 cells. These results suggest that the construction of adenovirus vector by homologous recombination in bacteria features high efficiency and simplicity. The prepared high titer AdEGFP/hVEGF165 can be used an efficient helpful vector to infect hematopoietic cells.

  10. The effect of Heparin-VEGF multilayer on the biocompatibility of decellularized aortic valve with platelet and endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ye

    Full Text Available The application of polyelectrolyte multilayer films is a new, versatile approach to surface modification of decellularized tissue, which has the potential to greatly enhance the functionality of engineered tissue constructs derived from decellularized organs. In the present study, we test the hypothesis that Heparin- vascular endothelial growth factor (VEGF multilayer film can not only act as an antithrombotic coating reagent, but also induce proliferation of endothelial progenitor cells (EPCs on the decellularized aortic heart valve. SEM demonstrated the adhesion and geometric deformation of platelets. The quantitative assay of platelet activation was determined by measuring the production of soluble P-selectin. Binding and subsequent release of heparin and VEGF from valve leaflets were assessed qualitatively by laser confocal scanning microscopy and quantitatively by ELISA methods. Human blood derived EPCs were cultured and the adhesion and growth of EPCs on the surface modified valvular scaffolds were assessed. The results showed that Heparin-VEGF multilayer film improved decellularized valve haemocompatibility with respect to a substantial reduction of platelet adhesion. Release of VEGF from the decellularized heart valve leaflets at physiological conditions was sustained over 5 days. In vitro biological tests demonstrated that EPCs achieved better adhesion, proliferation and migration on the coatings with Heparin-VEGF multilayer film. Combined, these results indicate that Heparin-VEGF multilayer film could be used to cover the decellularized porcine aortic valve to decrease platelet adhesion while exhibiting excellent EPCs biocompatibility.

  11. Vascular endothelial growth factor A (VEGF-A) decreases expression and secretion of pleiotrophin in a VEGF receptor-independent manner.

    Science.gov (United States)

    Poimenidi, Evangelia; Theodoropoulou, Christina; Koutsioumpa, Marina; Skondra, Lamprini; Droggiti, Eirini; van den Broek, Marloes; Koolwijk, Pieter; Papadimitriou, Evangelia

    2016-05-01

    Vascular endothelial growth factor A (VEGF-A) is a key molecule in angiogenesis acting through VEGF receptors (VEGFRs), ανβ3 integrin, receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and cell surface nucleolin (NCL). Pleiotrophin (PTN) stimulates endothelial cell migration and limits the angiogenic effects of VEGF-A165 to the levels of its own effect, possibly acting as a VEGF-A165 modifier. Since PTN and VEGF-A165 share receptors and actions on endothelial cells, in the present work we studied whether and how VEGF-A165 affects PTN expression or secretion. VEGF-A165 decreased PTN mRNA and protein levels acting at the transcriptional level. Bevacizumab, a selective VEGFR2 tyrosine kinase inhibitor and down-regulation of VEGFR2 expression by siRNA did not affect this decrease, suggesting that it is VEGFR-independent. VEGF-A121 also decreased PTN mRNA and protein levels, suggesting that heparin binding of VEGF-A165 is not involved. Blockage of cell surface NCL, lack of expression or mutation of β3 integrin and down-regulation of RPTPβ/ζ abolished the inhibitory effect of VEGF-A165 on PTN expression and secretion. Down-regulation of endogenous PTN in endothelial cells enhanced VEGF-A165-induced increase in migration and tube formation on matrigel. Collectively, these data suggest that VEGF-A down-regulates PTN expression and secretion through the RPTPβ/ζ-ανβ3-NCL axis to enhance its own effect on cell migration and further highlight the role of RPTPβ/ζ in VEGF-A actions. PMID:26924457

  12. Platelet VEGF and serum TGF-β1 levels predict chemotherapy response in non-small cell lung cancer patients.

    Science.gov (United States)

    Fu, Bao-Hong; Fu, Zhan-Zhao; Meng, Wei; Gu, Tao; Sun, Xiao-Dong; Zhang, Zhi

    2015-08-01

    We examined the levels of platelet vascular endothelial growth factor (VEGF(PLT)) and serum level of transforming growth factor beta 1 (TGF-β1) in non-small cell lung cancer (NSCLC) patients before and after chemotherapy to assess their clinical value as biomarkers. A total of 115 subjects were recruited at the First Hospital of Qinhuangdao between July 2012 and October 2013, including 65 NSCLC patients receiving chemotherapy (NSCLC group) and 50 healthy controls (control group). All NSCLC patients received gemcitabine plus cisplatin (GP regimen) for a total of two courses. VEGF(PLT) and serum TGF-β1 levels were measured before and after chemotherapy using enzyme-linked immunosorbent assay (ELISA). Platelet count was obtained using the Abbott CD-1600 auto blood analyzer. NSCLC group was categorized into complete response (CR) plus partial response (PR) group and stable disease (SD) plus progressive disease (PD) group based on the results of CT scans obtained 1 week after chemotherapy. Our results revealed that VEGF(PLT) and serum TGF-β1 levels were significantly higher in NSCLC group before chemotherapy, compared to the control group (VEGF(PLT), 0.813 ± 0.072 vs. 0.547 ± 0.024; t = 26.48; P VEGF(PLT) and serum TGF-β1 levels decreased significantly after chemotherapy in CR + PR group in comparison with before chemotherapy (VEGF(PLT), 0.453 ± 0.078 vs. 0.814 ± 0.127; t = 15.51; P VEGF(PLT) and serum TGF-β1 levels were markedly higher after chemotherapy in the SD + PD group in comparison with before chemotherapy (VEGF(PLT), 0.816 ± 0.043 vs. 1.065 ± 0.016; t = 22.38; P VEGF(PLT) and serum TGF-β1 levels, and VEGF(PLT) and TGF-β1 levels correlate with chemotherapy response to GP regimen. Therefore, VEGF(PLT) and serum TGF-β1 levels are valuable biomarkers in clinical monitoring of NSCLC patients. PMID:25820820

  13. Mammalian Target of Rapamycin Inhibitors Induce Tumor Cell Apoptosis In Vivo Primarily by Inhibiting VEGF Expression and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Patrick Frost

    2013-01-01

    Full Text Available We found that rapalog mTOR inhibitors induce G1 arrest in the PTEN-null HS Sultan B-cell lymphoma line in vitro, but that administration of rapalogs in a HS Sultan xenograft model resulted in significant apoptosis, and that this correlated with induction of hypoxia and inhibition of neoangiogenesis and VEGF expression. Mechanistically, rapalogs prevent cap-dependent translation, but studies have shown that cap-independent, internal ribosome entry site (IRES-mediated translation of genes, such as c-myc and cyclin D, can provide a fail-safe mechanism that regulates tumor survival. Therefore, we tested if IRES-dependent expression of VEGF could likewise regulate sensitivity of tumor cells in vivo. To achieve this, we developed isogenic HS Sultan cell lines that ectopically express the VEGF ORF fused to the p27 IRES, an IRES sequence that is insensitive to AKT-mediated inhibition of IRES activity and effective in PTEN-null tumors. Mice challenged with p27-VEGF transfected tumor cells were more resistant to the antiangiogenic and apoptotic effects of the rapalog, temsirolimus, and active site mTOR inhibitor, pp242. Our results confirm the critical role of VEGF expression in tumors during treatment with mTOR inhibitors and underscore the importance of IRES activity as a resistance mechanism to such targeted therapy.

  14. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  15. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    International Nuclear Information System (INIS)

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice

  16. VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury

    Science.gov (United States)

    Tögel, Florian; Zhang, Ping; Hu, Zhuma

    2008-01-01

    Abstract Adult stem cell treatment of complex disorders is a promising therapeutic approach and multipotent marrow stromal cells (MSCs) have been shown to be effective in various animal models of diseases. Acute kidney injury (AKI) is a common and serious problem in hospitalized patients and bone marrow derived multipotent MSCs have been shown to be effective in different models of AKI. The mechanism of action of MSCs is complex but involves paracrine actions including growth factor secretion. Knockdown of vascular enthothelial growth factor (VEGF) by siRNA reduced effectiveness of MSCs in the treatment of ischemic AKI in a rat model. Animals treated with MSCs had increased renal microvessel density compared to VEGF knockdown MSC‐treated and vehicle‐treated animals. These results show that VEGF is an important mediator of the early and late phase of renoprotective action after AKI in the context of stem cell treatment. PMID:19397783

  17. Correlation of expression of STAT3, VEGF and differentiation of Th17 cells in psoriasis vulgaris of guinea pig

    Institute of Scientific and Technical Information of China (English)

    Xiu-Fen Zheng; Yue-Dong Sun; Xue-Yan Liu

    2014-01-01

    Objective: To investigate the role of T help 17 cells (Th17) and STAT3-VEGF pathway in pathogenesis of psoriasis. Methods: A total of 50 cases of psoriasis guinea pigs and 20 normal guinea pigs were selected. The ratio of Th17/ IL-17 cell in peripheral blood were detected by flow cytometric analysis; STAT3 and VEGF concentrations were measured by immunohistochemistry and Western blot. Results: The expression of Th17 in peripheral blood were significantly increased in psoriasis [(1.76±0.88)%] compared with controls [(0.48±0.27)%] (P<0.05). Th17 related cytokine STAT3 and VEGF were significantly increased in psoriasis compared with controls (P<0.05), and were positively correlated the expression of Th17. Conclusions: The expressions of Th17, STAT3 and VEGF are elevated in psoriasis, which suggests Th17 cells have a potential role in the pathogenesis of psoriasis by STAT3-VEGF pathway.

  18. VEGF: a potential target for hydrocephalus.

    Science.gov (United States)

    Shim, Joon W; Sandlund, Johanna; Madsen, Joseph R

    2014-12-01

    Growth factors are primarily responsible for the genesis, differentiation and proliferation of cells and maintenance of tissues. Given the central role of growth factors in signaling between cells in health and in disease, it is understandable that disruption of growth factor-mediated molecular signaling can cause diverse phenotypic consequences including cancer and neurological conditions. This review will focus on the specific questions of enlarged cerebral ventricles and hydrocephalus. It is also well known that angiogenic factors, such as vascular endothelial growth factor (VEGF), affect tissue permeability through activation of receptors and adhesion molecules; hence, recent studies showing elevations of this factor in pediatric hydrocephalus led to the demonstration that VEGF can induce ventriculomegaly and altered ependyma when infused in animals. In this review, we discuss recent findings implicating the involvement of biochemical and biophysical factors that can induce a VEGF-mimicking effect in communicating hydrocephalus and pay particular attention to the role of the VEGF system as a potential pharmacological target in the treatment of some cases of hydrocephalus. The source of VEGF secretion in the cerebral ventricles, in periventricular regions and during pathologic events including hydrocephalus following hypoxia and hemorrhage is sought. The review is concluded with a summary of potential non-surgical treatments in preclinical studies suggesting several molecular targets including VEGF for hydrocephalus and related neurological disorders.

  19. C3a Increases VEGF and Decreases PEDF mRNA Levels in Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Long, Qin; Cao, Xiaoguang; Bian, Ailing

    2016-01-01

    Complement activation, specifically complement 3 (C3) activation and C3a generation, contributes to an imbalance between angiogenic stimulation by vascular endothelial growth factor (VEGF) and angiogenic inhibition by pigment epithelial derived factor (PEDF), leading to pathological angiogenesis. This study aimed to investigate the effects of C3a and small interfering RNA (siRNA) targeting C3 on the levels of VEGF and PEDF mRNAs in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were cultured in the presence of exogenous C3a at 0.1 μM and 0.3 μM C3a for 24, 48, and 72 hours. 0.1 pmol/μL duplexes of siRNA targeting C3 were applied for C3a inhibition by transfecting ARPE-19 cells for 48 hours. RT-PCR was performed to examine the level of VEGF and PEDF mRNA. A random siRNA duplex was set for control siRNA. Results demonstrated that exogenous C3a significantly upregulated VEGF and downregulated PEDF mRNA levels in cultured ARPE-19 cells, and siRNA targeting C3 transfection reversed the above changes, significantly reducing VEGF and enhancing PEDF mRNAs level in ARPE-19 cells compared to the control. The present data provided evidence that reducing C3 activation can decreases VEGF and increase PEDF mRNA level in RPE and may serve as a potential therapy in pathological angiogenesis.

  20. Abnormal expression of VEGF and its gene transcription status as diagnostic indicators in patients with non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    Yun Shi; Yang Shi; Xuli Yang; Jianrong Chen; Qi Qian; Dengfu Yao; Guangzhou Wu

    2015-01-01

    Objective Angiogenesis is known to be essential for the survival, growth, invasion, and metastasis of lung cancer cells. Vascular endothelial growth factor (VEGF) is an important factor regulating angiogenesis of non-small cell lung cancer (NSCLC); however, its pathologic features and significance are unclear. In this study, the tissue VEGF expression levels and its gene transcriptional status, as well as circulating VEGF levels, were investigated in patients with lung disease.Methods VEGF protein and mRNA expression levels in 38 lung tissue samples were analyzed by immu-nohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR), respectively. Circulating VEGF levels were detected quantitatively by an enzyme linked immuno-sorbent assay. Results The level of VEGF expression was significantly higher in lung cancer tissue than in the corre-sponding paracancerous or non-cancerous tissues. The average level of VEGF-positive staining was 76% in tissue samples from NSCLC patients; the levels were 89% in tissue samples from stage Ⅲ patients and 92% in stage Ⅳ patients. High VEGF expression was also evident in cases with lymph node metastasis (84%), distant metastasis (90%), and lower differentiation degree (89%). VEGF mRNA in cancerous tis-sues was represented predominantly by the VEGF121 and VEGF165 isoforms. Circulating VEGF levels were significantly higher in NSCLC patients [(840 ± 324) pg/mL] than in patients with benign lung diseases [(308 ± 96) pg/mL] or in healthy individuals serving as controls [(252 ± 108) pg/mL]. Conclusion The over-expression of lung VEGF and its gene transcription status should be useful mo-lecular indicators for NSCLC diagnosis.

  1. Diallyl trisulfide inhibits angiogenic features of human umbilical vein endothelial cells by causing Akt inactivation and down-regulation of VEGF and VEGF-R2.

    Science.gov (United States)

    Xiao, Dong; Li, Mengfeng; Herman-Antosiewicz, Anna; Antosiewicz, Jedrzej; Xiao, Hui; Lew, Karen L; Zeng, Yan; Marynowski, Stanley W; Singh, Shivendra V

    2006-01-01

    We have shown recently that diallyl trisulfide (DATS), a cancer-chemopreventive constituent of garlic, inactivates Akt to trigger mitochondrial translocation of proapoptotic protein BAD in human prostate cancer cells. Because Akt activation is implicated in the promotion of endothelial cell survival and angiogenesis, we hypothesized that DATS may inhibit angiogenesis. In the present study, we tested this hypothesis using human umbilical vein endothelial cells (HUVECs) as a model. Survival of HUVECs was reduced significantly in the presence of DATS in a concentration-dependent manner, with an IC50 of approximately 4 microM. The DATS-mediated suppression of HUVEC survival was associated with apoptosis induction characterized by accumulation of subdiploid cells, cytoplasmic histone-associated DNA fragmentation, and cleavage of caspase-3 and poly-(ADP-ribose)-polymerase. The DATS-induced DNA fragmentation was significantly attenuated in the presence of pan-caspase inhibitor zVAD-fmk and specific inhibitors of caspase-9 (zLEHD-fmk) and caspase-8 (zIETD-fmk). DATS treatment inhibited the formation of capillary-like tube structure and migration by HUVECs in association with suppression of vascular endothelial growth factor (VEGF) secretion and VEGF receptor-2 protein level and inactivation of Akt kinase. DATS treatment also caused activation of extracellular signal-regulated kinase 1/2 (ERK1/2) but not c-Jun NH2-terminal kinase (JNK) or p38 mitogen-activated protein kinase (p38MAPK).DATS-mediatedapoptosis induction and inhibition of HUVEC tube formation was partially but statistically significantly attenuated by pharmacologic inhibition of ERK1/2 but not JNK or p38MAPK. The present study demonstrates, for the first time, that DATS has the ability to inhibit angiogenic features of human endothelial cells. PMID:16965246

  2. Inhibition of miR-7 promotes angiogenesis in human umbilical vein endothelial cells by upregulating VEGF via KLF4.

    Science.gov (United States)

    Li, Yi-Ze; Wen, Lei; Wei, Xu; Wang, Qian-Rong; Xu, Long-Wen; Zhang, Hong-Mei; Liu, Wen-Chao

    2016-09-01

    Recent lentiviral-based microRNA (miRNA) library screening has identified miRNA-7 (miR-7) as an anti‑angiogenic miRNA in human umbilical vein endothelial cells (HUVECs). However, the underlying mechanism of miR-7 in the suppression of angiogenesis remains largely unknown. In the present study, we report that miR-7 inhibition promoted angiogenesis by upregulating vascular endothelial growth factor (VEGF) and directly targeting Krüppel-like factor 4 (KLF4). Downregulation of miR-7 promoted tube formation of HUVECs, accompanied by upregulation of mRNA and protein levels of both VEGF and KLF4. miR-7 directly targeted KLF4 as demonstrated by luciferase reporter assay and miR-7 mimics decreased KLF4. Furthermore, bioinformatic analysis revealed the presence of multiple DNA-binding elements of KLF4 in the VEGF promoter. Chromatin immunoprecipitation (ChIP) demonstrated that the KLF4 antibody specifically pulled down the VEGF promoter in the HUVECs. Furthermore, ectopic overexpression of KLF4 induced VEGF mRNA and protein levels. In addition, KLF4 silencing inhibited the angiogenesis induced by the miR-7 inhibitor in the HUVECs. Our results demonstrated that KLF4 is a direct target of miR-7 and a transcription activator of VEGF. These findings indicate that the miR-7-KLF4-VEGF signaling axis plays an important role in the regulation of angiogenesis in HUVECs, suggesting that miR-7 is a potential agent for the development of anti-angiogenic therapeutics in vascular diseases and solid tumors. PMID:27431648

  3. Expression of VEGF in urinary bladder transitional cell carcinoma in an Iraqi population subjected to depleted uranium: an immunohistochemical study.

    Science.gov (United States)

    Al-Abbasi, Dhafer S; Al-Janabi, As'ad A; Al-Toriahi, Kaswer M; Jabor, Thekra A; Yasseen, Akeel A

    2009-07-01

    The present study aimed to assess the correlation between vascular endothelial growth factor (VEGF) overexpression and the grade, size, and recurrence of transitional cell carcinoma (TCC) in the south of Iraq, which includes regions that have been exposed to high levels of depleted uranium. The study also sought to evaluate whether there is any biomarker in the expression that could be correlated with the increased incidence of this type of cancer in the exposed areas. Samples of formalin-fixed and paraffin-embedded tissue from 54 patients (41 males and 13 females) with TCC and from 32 patients with benign bladder lesions (cystitis) used as controls were included in this study. The avidin-biotin complex method was used for immunohistochemical detection of VEGF. VEGF immunoexpression was positive in 77.77% of TCC but was not found in benign bladder lesions (cystitis) (P0.05). These findings support the role of VEGF in the carcinogenesis of TCC regarding evolution, behavior, and aggressiveness. Hence, VEGF could be considered as a poor prognostic parameter in bladder cancer. No positive correlation between immunohistochemical expression and the high incidence of TCC was detected (R=depleted uranium. PMID:19151604

  4. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells.

    Science.gov (United States)

    Luo, Haitao; Rankin, Gary O; Liu, Lingzhi; Daddysman, Matthew K; Jiang, Bing-Hua; Chen, Yi Charlie

    2009-01-01

    Ovarian cancer is 1 of the most significant malignancies in the Western world, and the antiangiogenesis strategy has been postulated for prevention and treatment of ovarian cancers. Kaempferol is a natural flavonoid present in many fruits and vegetables. The antiangiogenesis potential of kaempferol and its underlying mechanisms were investigated in two ovarian cancer cell lines, OVCAR-3 and A2780/CP70. Kaempferol mildly inhibits cell viability but significantly reduces VEGF gene expression at mRNA and protein levels in both ovarian cancer cell lines. In chorioallantoic membranes of chicken embryos, kaempferol significantly inhibits OVCAR-3-induced angiogenesis and tumor growth. HIF-1alpha, a regulator of VEGF, is downregulated by kaempferol treatment in both ovarian cancer cell lines. Kaempferol also represses AKT phosphorylation dose dependently at 5 to 20 muM concentrations. ESRRA is a HIF-independent VEGF regulator, and it is also downregulated by kaempferol in a dose-dependent manner. Overall, this study demonstrated that kaempferol is low in cytotoxicity but inhibits angiogenesis and VEGF expression in human ovarian cancer cells through both HIF-dependent (Akt/HIF) and HIF-independent (ESRRA) pathways and deserves further studies for possible application in angio prevention and treatment of ovarian cancers.

  5. The interaction of heparan sulfate proteoglycans with endothelial transglutaminase-2 limits VEGF165-induced angiogenesis.

    Science.gov (United States)

    Beckouche, Nathan; Bignon, Marine; Lelarge, Virginie; Mathivet, Thomas; Pichol-Thievend, Cathy; Berndt, Sarah; Hardouin, Julie; Garand, Marion; Ardidie-Robouant, Corinne; Barret, Alain; Melino, Gerry; Lortat-Jacob, Hugues; Muller, Laurent; Monnot, Catherine; Germain, Stephane

    2015-07-14

    Sprouting angiogenesis is stimulated by vascular endothelial growth factor (VEGF165) that is localized in the extracellular matrix (ECM) and binds to heparan sulfate (HS)-bearing proteins known as heparan sulfate proteoglycans (HSPGs). VEGF165 presentation by HSPGs enhances VEGF receptor-2 (VEGFR2) signaling. We investigated the effect of TG2, which binds to HSPGs, on the interaction between VEGF165 and HS and angiogenesis. Mice with tg2 deficiency showed transiently enhanced retina vessel formation and increased vascularization of VEGF165-containing Matrigel implants. In addition, endothelial cells in which TG2 was knocked down exhibited enhanced VEGF165-induced sprouting and migration, which was associated with increased phosphorylation of VEGFR2 at Tyr(951) and its targets Src and Akt. TG2 knockdown did not affect the phosphorylation of VEGFR2 at Tyr(1175) or cell proliferation in response to VEGF165 and sprouting or signaling in response to VEGF121. Decreased phosphorylation of VEGFR2 at Tyr(951) was due to ECM-localized TG2, which reduced the binding of VEGF165 to endothelial ECM in a manner that required its ability to bind to HS but not its catalytic activity. Surface plasmon resonance assays demonstrated that TG2 impeded the interaction between VEGF165 and HS. These results show that TG2 controls the formation of VEGF165-HSPG complexes and suggest that this regulation could be pharmacologically targeted to modulate developmental and therapeutic angiogenesis. PMID:26175493

  6. MiR-182 promotes proliferation and invasion and elevates the HIF-1α-VEGF-A axis in breast cancer cells by targeting FBXW7.

    Science.gov (United States)

    Chiang, Chi-Hsiang; Chu, Pei-Yi; Hou, Ming-Feng; Hung, Wen-Chun

    2016-01-01

    The feature of imperfect complementary effect of miRNAs to mRNAs implies that miRNAs may simultaneously target different mRNAs to affect multiple aspects of tumorigenesis. In our previous results, we demonstrated that miR-182 was over-expressed in breast cancer cell lines and clinical tumor tissues and its up-regulation increased tumorigenicity and invasiveness by repressing a tumor suppressor RECK. In this study, we showed that overexpression miR-182 regulated actin distribution and filopodia formation to increase invasiveness of breast cancer cells. In addition, miR-182 enhanced cell cycle progression and proliferation. We further identified the E3 ubiquitin-protein ligase FBXW7 as a target gene of miR-182. We also demonstrated that miR-182-overexpressing cells were highly sensitive to hypoxia. Under hypoxic condition, HIF-1α and VEGF-A proteins were significantly upregulated in these cells. In addition, the conditioned medium of miR-182-overexpressing cells contained more VEGF-A than the control cells and induced angiogenesis more efficiently in vitro. All these effects could be counteracted by ectopic expression of FBXW7 in cells or neutralization of VEGF-A in the conditioned media by specific antibody. Finally, our data showed that miR-182 expression was inversely correlated with FBXW7 in breast tumor tissues. In conclusion, our study explores a novel mechanism by which miR-182 elevates HIF-1α expression to promote breast cancer progression. PMID:27648365

  7. Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone.

    Science.gov (United States)

    Detsch, Rainer; Stoor, Patricia; Grünewald, Alina; Roether, Judith A; Lindfors, Nina C; Boccaccini, Aldo R

    2014-11-01

    Bioactive glasses (BAGs) are being investigated for the repair and reconstruction of bone defects, as they exhibit osteoconductive and osteostimulatory potential. However, successful bone regeneration requires also the neovascularization of the construct which is, among other factors, guided by vascular endothelial growth factor (VEGF). In this study, BAG S53P4 (53% SiO2 , 23% Na2 O, 20% CaO, 4% P2 O5 ) is investigated in relation to VEGF-release and response of fibroblast cells. Human CD-18CO fibroblasts were cultivated in contact with different granules of different sizes (0.5-0.8 mm, 1.0-2.0 mm, and 2.0-3.15 mm) and at different concentrations (0-1 wt/vol % of BAG) for 72 h. The analysis of morphology revealed no toxic effect for all granule sizes and concentrations. Compared with the reference, lactate dehydrogenase-activity of CCD-18CO cells increased in contact with BAG samples. The VEGF release from CCD-18CO fibroblasts cultured on different granule sizes and at different concentrations after 72 h of incubation was quantified. It was found that particles of 0.5-0.8 mm and 1.0-2.0 mm in size enhanced VEGF release, whereas BAG particle sizes of 2.0-3.15 mm led to inhibition of VEGF release. The results are relevant to understand the influence of the particle size and concentration of BAG S53P4 on VEGF expression and neovascularization. PMID:24357515

  8. Osteopontin and MMP9: Associations with VEGF Expression/Secretion and Angiogenesis in PC3 Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Aditi; Zhou, Cindy Q.; Chellaiah, Meenakshi A., E-mail: mchellaiah@umaryland.edu [Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, MD 21201 (United States)

    2013-05-27

    Osteopontin and MMP9 are implicated in angiogenesis and cancer progression. The objective of this study is to gain insight into the molecular mechanisms underlying angiogenesis, and to elucidate the role of osteopontin in this process. We report here that osteopontin/αvβ3 signaling pathway which involves ERK1/2 phosphorylation regulates the expression of VEGF. An inhibitor to MEK or curcumin significantly suppressed the phosphorylation of ERK1/2 and expression of VEGF. MMP9 knockdown reduces the secretion but not the expression of VEGF. Moreover, MMP9 knockdown increases the release of angiostatin, a key protein that suppresses angiogenesis. Conditioned media from PC3 cells treated with curcumin or MEK inhibitor inhibited tube formation in vitro in human microvascular endothelial cells. Similar inhibitory effect on tube formation was found with conditioned media collected from PC3 cells expressing mutant-osteopontin at integrin-binding site and knockdown of osteopontin or MMP9. We conclude that MMP9 activation is associated with angiogenesis via regulation of secretion of VEGF and angiostatin in PC3 cells. Curcumin is thus a potential drug for cancer treatment because it demonstrated anti-angiogenic and anti-invasive properties.

  9. LoVo colon cancer cells resistant to oxaliplatin overexpress c-MET and VEGFR-1 and respond to VEGF with dephosphorylation of c-MET.

    Science.gov (United States)

    Mezquita, Belén; Pineda, Estela; Mezquita, Jovita; Mezquita, Pau; Pau, Montserrat; Codony-Servat, Jordi; Martínez-Balibrea, Eva; Mora, Conchi; Maurel, Joan; Mezquita, Cristóbal

    2016-05-01

    Oxaliplatin-resistant LoVo colon cancer cells overexpressing c-MET and VEGFR-1 were selected to study several signaling pathways involved in chemoresistance, as well as the effect of increasing amounts of VEGF in the regulation of c-MET. In comparison with chemosensitive LoVo colon cancer cells, oxaliplatin-resistant cells (LoVoR) overexpress and phosphorylate c-MET, upregulate the expression of transmembrane and soluble VEGFR-1 and, unexpectedly, downregulate VEGF. In addition, LoVoR cells activate other transduction pathways involved in chemoresistance such as Akt, β-catenin-TCF4 and E-cadherin. While c-MET is phosphorylated in LoVoR cells expressing low levels of VEGF, c-MET phosphorylation decreases when recombinant VEGF is added into the culture medium. Inhibition of c-MET by VEGF is mediated by VEGFR-1, since phosphorylation of c-MET in the presence of VEGF is restored after silencing VEGFR-1. Dephosphorylation of c-MET by VEGF suggests that tumors coexpressing VEGFR-1 and c-MET may activate c-MET as a result of anti-VEGF therapy.

  10. The Cytoprotective Effects of Human Endothelial Progenitor Cell-Conditioned Medium Against an Ischemic Insult Are Not Dependent on VEGF and IL-8.

    Science.gov (United States)

    Di Santo, Stefano; Fuchs, Anna-Lena; Periasamy, Ramesh; Seiler, Stefanie; Widmer, Hans Rudolf

    2016-01-01

    Endothelial progenitor cells (EPCs) promote revascularization and tissue repair mainly by paracrine actions. In the present study, we investigated whether EPC-secreted factors in the form of conditioned medium (EPC-CM) can protect cultured brain microvascular endothelial cells against an ischemic insult. Furthermore, we addressed the type of factors that are involved in the EPC-CM-mediated functions. For that purpose, rat brain-derived endothelial cells (rBCEC4 cell line) were exposed to EPC-CM pretreated with proteolytic digestion, heat inactivation, and lipid extraction. Moreover, the involvement of VEGF and IL-8, as canonical angiogenic factors, was investigated by means of neutralizing antibodies. We demonstrated that EPC-CM significantly protected the rBCEC4 cells against an ischemic insult mimicked by induced oxygen-glucose deprivation followed by reoxygenation. The cytoprotective effect was displayed by higher viable cell numbers and reduced caspase 3/7 activity. Heat inactivation, proteolytic digestion, and lipid extraction resulted in a significantly reduced EPC-CM-dependent increase in rBCEC4 viability, tube formation, and survival following the ischemic challenge. Notably, VEGF and IL-8 neutralization did not affect the actions of EPC-CM on rBCEC4 under both standard and ischemic conditions. In summary, our findings show that paracrine factors released by EPCs activate an angiogenic and cytoprotective response on brain microvascular cells and that the activity of EPC-CM relies on the concerted action of nonproteinaceous and proteinaceous factors but do not directly involve VEGF and IL-8. PMID:26776768

  11. Identification of a common reference gene pair for qPCR in human mesenchymal stromal cells from different tissue sources treated with VEGF

    DEFF Research Database (Denmark)

    Tratwal, Josefine; Follin, Bjarke; Ekblond, Annette;

    2014-01-01

    on reference genes (RGs) for the normalization of qPCR data. RESULTS: BMSCs and ASCs were stimulated with vascular endothelial growth factor A-165 (VEGF) for one week, and compared with un-stimulated cells from the same donor. The stability of nine RGs through VEGF treatment as well as the donor variation...

  12. Cellular fibronectin 1 promotes VEGF-C expression, lymphangiogenesis and lymph node metastasis associated with human oral squamous cell carcinoma.

    Science.gov (United States)

    Morita, Yoshihiro; Hata, Kenji; Nakanishi, Masako; Omata, Tetsuji; Morita, Nobuo; Yura, Yoshiaki; Nishimura, Riko; Yoneda, Toshiyuki

    2015-10-01

    Lymph node metastasis (LNM) is associated with poor survival in patients with oral squamous cell carcinoma (OSCC). Vascular endothelial growth factor-C (VEGF-C) is thought to be responsible for increased lymphangiogenesis and LNM. Understanding of the mechanism by which VEGF-C expression is regulated in OSCC is thus important to design logic therapeutic interventions. We showed that inoculation of the SAS human OSCC cells expressing the venus GFP (V-SAS cells) into the tongue in nude mice developed LNM. V-SAS cells in LNM were isolated by FACS and re-inoculated into the tongue. This procedure was repeated eight times, establishing V-SAS-LM8 cells. Differential metastasis PCR array between the parental V-SAS and V-SAS-LM8 was performed to identify a molecule responsible for lymphangiogenesis and LNM. Fibronectin 1 (FN1) expression was elevated in V-SAS-LM8 cells compared to V-SAS-cells. V-SAS-LM8 tongue tumor showed increased expression of FN1 and VEGF-C, and promoted lymphangiogenesis and LNM compared with V-SAS tumor. Further, phosphorylation of focal adhesion kinase (FAK), a main downstream signaling molecule of FN1, was up-regulated, and epithelial-mesenchymal transition (EMT) was promoted in V-SAS-LM8 cells. Silencing of FN1 by shRNA in V-SAS-LM8 cells decreased FAK phosphorylation, VEGF-C expression and inhibited lymphangiogenesis and LNM. EMT was also reversed. The FAK phosphorylation inhibitor PF573228 also decreased VEGF-C expression and reversed EMT in V-SAS-LM8 cells. Finally, we detected intense FN1 expression in some clinical specimens obtained from OSCC patients with LNM. These results demonstrate that elevated expression of cellular FN1 and following activation of FAK lead to increased VEGF-C expression, lymphangiogenesis and LNM and promoted EMT in SAS human OSCC cells and suggest that FN1-phosphorylated FAK signaling cascade is a potential therapeutic target in the treatment of LNM in OSCC. PMID:26319373

  13. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Directory of Open Access Journals (Sweden)

    Pio Ruben

    2010-12-01

    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  14. Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available Mesenchymal stromal cells (MSCs are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies.

  15. Bone Marrow Mesenchymal Stromal Cells Stimulate Skeletal Myoblast Proliferation through the Paracrine Release of VEGF

    Science.gov (United States)

    Chellini, Flaminia; Mazzanti, Benedetta; Nistri, Silvia; Nosi, Daniele; Saccardi, Riccardo; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2012-01-01

    Mesenchymal stromal cells (MSCs) are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF) by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM) to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies. PMID:22815682

  16. Epicardial delivery of VEGF and cardiac stem cells guided by 3-dimensional PLLA mat enhancing cardiac regeneration and angiogenesis in acute myocardial infarction.

    Science.gov (United States)

    Chung, Hye-Jin; Kim, Jong-Tae; Kim, Hee-Jung; Kyung, Hei-Won; Katila, Pramila; Lee, Jeong-Han; Yang, Tae-Hyun; Yang, Young-Il; Lee, Seung-Jin

    2015-05-10

    Congestive heart failure is mostly resulted in a consequence of the limited myocardial regeneration capacity after acute myocardial infarction. Targeted delivery of proangiogenic factors and/or stem cells to the ischemic myocardium is a promising strategy for enhancing their local and sustained therapeutic effects. Herein, we designed an epicardial delivery system of vascular endothelial growth factor (VEGF) and cardiac stem cells (CSCs) using poly(l-lactic acid) (PLLA) mat applied to the acutely infarcted myocardium. The fibrous VEGF-loaded PLLA mat was fabricated by an electrospinning method using PLLA solution emulsified VEGF. This mat not only allowed for sustained release of VEGF for 4weeks but boosted migration and proliferation of both endothelial cells and CSCs in vitro. Furthermore, sustained release of VEGF showed a positive effect on in vitro capillary-like network formation of endothelial cells compared with bolus treatment of VEGF. PLLA mat provided a permissive 3-dimensional (3D) substratum that led to spontaneous cardiomyogenic differentiation of CSCs in vitro. Notably, sustained stimulation by VEGF-loaded PLLA mat resulted in a substantial increase in the expression of proangiogenic mRNAs of CSCs in vitro. The epicardially implanted VEGF-loaded PLLA mat showed modest effects on angiogenesis and cardiomyogenesis in the acutely infarcted hearts. However, co-implantation of VEGF and CSCs using the PLLA mat showed meaningful therapeutic effects on angiogenesis and cardiomyogenesis compared with controls, leading to reduced cardiac remodeling and enhanced global cardiac function. Collectively, the PLLA mat allowed a smart cargo that enabled the sustained release of VEGF and the delivery of CSCs, thereby synergistically inducing angiogenesis and cardiomyogenesis in acute myocardial infarction.

  17. VEGF stimulates intramembranous bone formation during craniofacial skeletal development.

    Science.gov (United States)

    Duan, Xuchen; Bradbury, Seth R; Olsen, Bjorn R; Berendsen, Agnes D

    2016-01-01

    Deficiency of vascular endothelial growth factor A (VEGF) has been associated with severe craniofacial anomalies in both humans and mice. Cranial neural crest cell (NCC)-derived VEGF regulates proliferation, vascularization and ossification of cartilage and membranous bone. However, the function of VEGF derived from specific subpopulations of NCCs in controlling unique aspects of craniofacial morphogenesis is not clear. In this study a conditional knockdown strategy was used to genetically delete Vegfa expression in Osterix (Osx) and collagen II (Col2)-expressing NCC descendants. No major defects in calvaria and mandibular morphogenesis were observed upon knockdown of VEGF in the Col2(+) cell population. In contrast, loss of VEGF in Osx(+) osteoblast progenitor cells led to reduced ossification of calvarial and mandibular bones without affecting the formation of cartilage templates in newborn mice. The early stages of ossification in the developing jaw revealed decreased initial mineralization levels and a reduced thickness of the collagen I (Col1)-positive bone template upon loss of VEGF in Osx(+) precursors. Increased numbers of proliferating cells were detected within the jaw mesenchyme of mutant embryos. Explant culture assays revealed that mandibular osteogenesis occurred independently of paracrine VEGF action and vascular development. Reduced VEGF expression in mandibles coincided with increased phospho-Smad1/5 (P-Smad1/5) levels and bone morphogenetic protein 2 (Bmp2) expression in the jaw mesenchyme. We conclude that VEGF derived from Osx(+) osteoblast progenitor cells is required for optimal ossification of developing mandibular bones and modulates mechanisms controlling BMP-dependent specification and expansion of the jaw mesenchyme. PMID:26899202

  18. Characterization of neural stem/progenitor cells expressing VEGF and its receptors in the subventricular zone of newborn piglet brain.

    Science.gov (United States)

    Ara, Jahan; Fekete, Saskia; Zhu, Anli; Frank, Melissa

    2010-09-01

    Neural stem/progenitor cell (NSP) biology and neurogenesis in adult central nervous system (CNS) are important both towards potential future therapeutic applications for CNS repair, and for the fundamental function of the CNS. In the present study, we report the characterization of NSP population from subventricular zone (SVZ) of neonatal piglet brain using in vivo and in vitro systems. We show that the nestin and vimentin-positive neural progenitor cells are present in the SVZ of the lateral ventricles of neonatal piglet brain. In vitro, piglet NSPs proliferated as neurospheres, expressed the typical protein of neural progenitors, nestin and a range of well-established neurodevelopmental markers. Upon dissociation and subculture, piglet NSPs differentiated into neurons and glial cells. Clonal analysis demonstrates that piglet NSPs are multipotent and retain the capacity to generate both glia and neurons. These cells expressed VEGF, VEGFR1, VEGFR2 and Neuropilin-1 and -2 mRNAs. Real time PCR revealed that SVZ NSPs from newborn piglet expressed total VEGF and all VEGF splice variants. These findings show that piglet NSPs may be helpful to more effectively design growth factor based strategies to enhance endogenous precursor cells for cell transplantation studies potentially leading to the application of this strategy in the nervous system disease and injury.

  19. Stem cell therapy with overexpressed VEGF and PDGF genes improves cardiac function in a rat infarct model.

    Directory of Open Access Journals (Sweden)

    Hiranmoy Das

    Full Text Available BACKGROUND: Therapeutic potential was evaluated in a rat model of myocardial infarction using nanofiber-expanded human cord blood derived hematopoietic stem cells (CD133+/CD34+ genetically modified with VEGF plus PDGF genes (VIP. METHODS AND FINDINGS: Myocardial function was monitored every two weeks up to six weeks after therapy. Echocardiography revealed time dependent improvement of left ventricular function evaluated by M-mode, fractional shortening, anterior wall tissue velocity, wall motion score index, strain and strain rate in animals treated with VEGF plus PDGF overexpressed stem cells (VIP compared to nanofiber expanded cells (Exp, freshly isolated cells (FCB or media control (Media. Improvement observed was as follows: VIP>Exp> FCB>media. Similar trend was noticed in the exercise capacity of rats on a treadmill. These findings correlated with significantly increased neovascularization in ischemic tissue and markedly reduced infarct area in animals in the VIP group. Stem cells in addition to their usual homing sites such as lung, spleen, bone marrow and liver, also migrated to sites of myocardial ischemia. The improvement of cardiac function correlated with expression of heart tissue connexin 43, a gap junctional protein, and heart tissue angiogenesis related protein molecules like VEGF, pNOS3, NOS2 and GSK3. There was no evidence of upregulation in the molecules of oncogenic potential in genetically modified or other stem cell therapy groups. CONCLUSION: Regenerative therapy using nanofiber-expanded hematopoietic stem cells with overexpression of VEGF and PDGF has a favorable impact on the improvement of rat myocardial function accompanied by upregulation of tissue connexin 43 and pro-angiogenic molecules after infarction.

  20. Deleted in malignant brain tumors 1 (DMBT1) elicits increased VEGF and decreased IL-6 production in type II lung epithelial cells

    DEFF Research Database (Denmark)

    Müller, Hanna; Nagel, Christian; Weiss, Christel;

    2015-01-01

    between VEGF and IL-6 levels to DMBT1 expression in the lungs of preterm and term infants and in lung epithelial cells in vitro. METHODS: We examined by ELISA VEGF levels in 120 tracheal aspirates of 57 preterm and term infants and tested for correlation with different perinatal factors as well...... were determined via ELISA in the supernatant of the unstimulated cells and after stimulation with LPS, TNFα and Phorbol-12-myristate-13-acetate (PMA). RESULTS: The VEGF levels in the tracheal aspirates of preterm and term infants were significantly correlated with DMBT1 levels (p = 0...

  1. The Effect of Heparin-VEGF Multilayer on the Biocompatibility of Decellularized Aortic Valve with Platelet and Endothelial Progenitor Cells

    OpenAIRE

    Xiaofeng Ye; Haozhe Wang; Jingxin Zhou; Haiqing Li; Jun Liu; Zhe Wang; Anqing Chen; Qiang Zhao

    2013-01-01

    The application of polyelectrolyte multilayer films is a new, versatile approach to surface modification of decellularized tissue, which has the potential to greatly enhance the functionality of engineered tissue constructs derived from decellularized organs. In the present study, we test the hypothesis that Heparin- vascular endothelial growth factor (VEGF) multilayer film can not only act as an antithrombotic coating reagent, but also induce proliferation of endothelial progenitor cells (EP...

  2. Butyrate-induced proapoptotic and antiangiogenic pathways in EAT cells require activation of CAD and downregulation of VEGF

    International Nuclear Information System (INIS)

    Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells

  3. Prognostic significance of VEGF-C expression in correlation with COX-2, lymphatic microvessel density, and clinicopathologic characteristics in human non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    Xufeng Guo; Yongbing Chen; Zhonghua Xu; Zhonghen Xu; Yongyue Qian; Xueyan Yu

    2009-01-01

    Lung cancer is one of the most lethal cancers in China because of high incidence and high mortality. Cyclooxygenase-2 (COX-2) and vessel endothelial growth factor C (VEGF-C) were found to play an important role in lymphangiogenesis of malignant tumors. In this study, we investigated whether lymphatic microvessel density (LMVD) is related to the prognosis in non-small cell lung cancer (NSCLC) patients, and the expressions of COX-2 and VEGF-C so as to determine the possible role of COX-2 and VEGF-C in NSCLC lymphangiogenesis. Sixty-five formalin-fixed paraffin embedded tissue samples of NSCLC were evaluated for COX-2 and VEGF-C by immunohistochemical staining. To assess tumor lymphangiogenesis, LMVD was determined by immunohistochemical staining of VEGFR-3 polyclonal antibody. The relationship among COX-2 and VEGF-C expression, LMVD, and clinicopathologic parameters was analyzed. Among the 65 samples, high LMVD was significantly associated with lymph node metastasis and poor survival. Multivariate survival analysis showed that LMVD value and lymph node metastasis were independent prognostic factors. The expression level of COX-2 and VEGF-C was significantly higher than those of the adjacent tissues. COX-2 and VEGF-C expressions in NSCLC significantly correlated with lymph node metastasis, but not with patient gender, age, tumor size, or tumor, nodes, metastasis classification stage. The mean LMVD value of COX-2-or VEGF-C-positive tumors was higher than that of COX-2- or VEGF-C-negative tumors. A significant correlation was found between the expressions of COX-2 and VEGF-C. This study suggests that LMVD may be one of the important prognostic factors for NSCLC patients. VEGF-C might play an important role in the COX-2 lymphangiogenic pathway. COX-2 and VEGF-C may play an important role in tumor progression by stimulating lymphangiogenesis. The inhibition of lymphangiogenesis, COX-2, or VEGF-C activity may have an important therapeutic benefit in the control of NSCLC.

  4. Oleic Acid Increases Synthesis and Secretion of VEGF in Rat Vascular Smooth Muscle Cells: Role of Oxidative Stress and Impairment in Obesity

    Directory of Open Access Journals (Sweden)

    Mariella Trovati

    2013-09-01

    Full Text Available Obesity is characterized by poor collateral vessel formation, a process involving vascular endothelial growth factor (VEGF action on vascular smooth muscle cells (VSMC. Free fatty acids are involved in the pathogenesis of obesity vascular complications, and we have aimed to clarify whether oleic acid (OA enhances VEGF synthesis/secretion in VSMC, and whether this effect is impaired in obesity. In cultured aortic VSMC from lean and obese Zucker rats (LZR and OZR, respectively we measured the influence of OA on VEGF-A synthesis/secretion, signaling molecules and reactive oxygen species (ROS. In VSMC from LZR we found the following: (a OA increases VEGF-A synthesis/secretion by a mechanism blunted by inhibitors of Akt, mTOR, ERK-1/2, PKC-beta, NADPH-oxidase and mitochondrial electron transport chain complex; (b OA activates the above mentioned signaling pathways and increases ROS; (c OA-induced activation of PKC-beta enhances oxidative stress, which activates signaling pathways responsible for the increased VEGF synthesis/secretion. In VSMC from OZR, which present enhanced baseline oxidative stress, the above mentioned actions of OA on VEGF-A, signaling pathways and ROS are impaired: this impairment is reproduced in VSMC from LZR by incubation with hydrogen peroxide. Thus, in OZR chronically elevated oxidative stress causes a resistance to the action on VEGF that OA exerts in LZR by increasing ROS.

  5. Functions of VEGF in female reproductive system

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    As a homodimeric glycoprotein, vascular en- dothelial growth factor (VEGF) is a highly specific mitogen of vascular endothelial cells. It can induce proliferation and migration, and inhibit apoptosis of endothelial cell. VEGF is involved in many processes in the female reproductive system, such as ovulation, periodical changes of endometrium, embryo implantation and development. VEGF plays important roles in some reproductive diseases, including preeclampsia and fetal hypoevolutism in uterus. Based on our studies on angiogenesis and its relevant factors in the female reproductive system these years, the functions of VEGF in female reproductive system are reviewed, and the research prospect and application of VEGF are also discussed.

  6. Reinstate the Damaged VEGF Signaling Pathway with VEGF-activating Transcription Factor

    Institute of Scientific and Technical Information of China (English)

    Yao-guo Yang; Heng Guan; Chang-wei Liu; Yong-jun Li

    2009-01-01

    Objective To investigate the role of vascular endothelial growth factor-activating transcriptional factor(VEGF-ATF)on the VEGF signaling pathway in diabetes mellitus.Methods Totally,20 C57BL/6 mice fed with high fat diet was induced into diabetes mellitus.Ten diabetes mellitus mice received a lower limb muscle injection with VEGF-ATF plasmid,and another ten were as control.VEGF-ATF is an engineered transcription factor designed to increase VEGF expression.Three days later,mice were sacrificed and the injected gastrocnemius was used for analysis.VEGF mRNA and protein expressions were examined by real-time PCR and ELISA respectively.VEGF receptor 2 mRNA expression was tested with RT-PCR.Phosphorylated Akt,Akt,endothelial nitric oxide synthase(eNOS),and phosphorylated eNOS were assessed by western blot.Results At 3 days post-injection,in mice with diabetes mellitus,VEGF gene transfer increased VEGF mRNA copies and VEGF protein expression in injected muscles compared with control;and reinstated the impaired VEGF signaling pathway with increasing the ratios of phosphorylated Akt/Akt and phosphorylated eNOS/eNOS.However,it did not affect the expression of VEGF receptor 2 mRNA.Conclusion Gene transfer with VEGF-ATF is able to reinstate the impaired VEGF downstream pathway,and potentially promote therapeutic angiogenesis in mice with diabetes mcllitus.

  7. VEGF therapeutic gene delivery using dendrimer type bio-reducible polymer into human mesenchymal stem cells (hMSCs).

    Science.gov (United States)

    Kim, Hyojung; Nam, Kihoon; Nam, Joung-Pyo; Kim, Hyun Soo; Kim, Yong Man; Joo, Wan Seok; Kim, Sung Wan

    2015-12-28

    The therapeutic potential of mesenchymal stem cells (MSCs) has garnered great attention in the expansive diversity of biomedical research. Despite this broad interest in stem cells, limited incorporation and poor viability are major disadvantages for accomplishing therapeutic success in the field of hMSC-based cell therapy, and an optimal approach for hMSC-based cell therapy using non-viral vectors has not been established. Hence, we examined the possibility of performing gene therapy using the biodegradable polymeric non-viral vector Arginine-grafted poly (cystaminebisacrylamide-diaminohexane) (ABP)-conjugated poly (amidoamine) (PAMAM) dendrimer (PAM-ABP) in hMSCs. PAM-ABP formed compact nanosized polyplexes and showed low cytotoxicity compared to bPEI 25k and Lipofectamine® 2000 in hMSCs. Although the cellular uptake was similar, the transfection efficiency and VEGF expression of PAM-ABP using gWiz-Luc and pβ-VEGF were higher than those of the control groups. Although hMSCs were transfected, their stem cell characteristics were retained. Our results suggest that PAM-ABP has the ability to deliver a therapeutic gene in hMSCs.

  8. SLT-VEGF Reduces Lung Metastases, Decreases Tumor Recurrence, and Improves Survival in an Orthotopic Melanoma Model

    Directory of Open Access Journals (Sweden)

    Sini Skariah

    2010-08-01

    Full Text Available SLT-VEGF is a recombinant cytotoxin comprised of Shiga-like toxin (SLT subunit A fused to human vascular endothelial growth factor (VEGF. It is highly cytotoxic to tumor endothelial cells overexpressing VEGF receptor-2 (VEGFR-2/KDR/Flk1 and inhibits the growth of primary tumors in subcutaneous models of breast and prostate cancer and inhibits metastatic dissemination in orthotopic models of pancreatic cancer. We examined the efficacy of SLT-VEGF in limiting tumor growth and metastasis in an orthotopic melanoma model, using NCR athymic nude mice inoculated with highly metastatic Line IV Cl 1 cultured human melanoma cells. Twice weekly injections of SLT-VEGF were started when tumors became palpable at one week after intradermal injection of 1 × 106 cells/mouse. Despite selective depletion of VEGFR-2 overexpressing endothelial cells from the tumor vasculature, SLT-VEGF treatment did not affect tumor growth. However, after primary tumors were removed, continued SLT-VEGF treatment led to fewer tumor recurrences (p = 0.007, reduced the incidence of lung metastasis (p = 0.038, and improved survival (p = 0.002. These results suggest that SLT-VEGF is effective at the very early stages of tumor development, when selective killing of VEGFR-2 overexpressing endothelial cells can still prevent further progression. We hypothesize that SLT-VEGF could be a promising adjuvant therapy to inhibit or prevent outgrowth of metastatic foci after excision of aggressive primary melanoma lesions.

  9. Role of VEGF in the growth and metastasis of a murine bladder carcinoma

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; WU Jihong; TIAN Yuhua; CHEN Xiafang; HU Honghui; WU Wensen; LI Chuanyuan; HUANG Qian

    2003-01-01

    Bladder transitional cell carcinoma is the most common form of carcinoma in the urinary system. Although overexpression of VEGF has been identified in tissue, serum, and urine of patients with bladder cancer, the role of VEGF in transitional cell carcinoma of the bladder has not been clearly elucidated. Here, we dissected the effect of VEGF during bladder tumor growth and progression by modifying a BBN (N-butyl-N-(4-hydroxybutyl) nitrosamine) induced mouse bladder transitional cell carcinoma cell line BTT-T739 by stable transfection of antisense VEGF121 cDNA. The transfection resulted in more than 80% reduction in VEGF production. The growth of the transduced tumor cells in vitro was not affected, however, these cells formed small or no tumors in vivo. Even in the tumors formed, there were mini- mal vascularization, extensive necrosis and longer latency compared to those formed by parental cells. The permeability of tumor vasculature and metastatic tumor growth were also significantly suppressed in antisense VEGF cDNA trans- fected cells. In addition, the transfer of anti-angiogenic gene in a combination of sFlk-1 and ExTek with electroporation can suppress the tumor growth efficiently. Taken together, these results demonstrated that VEGF plays an important role in bladder tumor angiogenesis and angiogenesis plays an important role in bladder tumor growth and metastasis.

  10. Cell type-specific dependency on the PI3K/Akt signaling pathway for the endogenous Epo and VEGF induction by baicalein in neurons versus astrocytes.

    Directory of Open Access Journals (Sweden)

    Yu-Yo Sun

    Full Text Available The neuroprotective effect of baicalein is generally attributed to inhibition of 12/15-lipoxygenase (12/15-LOX and suppression of oxidative stress, but recent studies showed that baicalein also activates hypoxia-inducible factor-α (HIF1α through inhibition of prolyl hydrolase 2 (PHD2 and activation of the phosphatidylinositide-3 kinase (PI3K/Akt signaling pathway. Yet, the significance and regulation of prosurvival cytokines erythropoietin (Epo and vascular endothelial growth factor (VEGF, two transcriptional targets of HIF1α, in baicalein-mediated neuroprotection in neurons and astrocytes remains unknown. Here we investigated the causal relationship between the PI3K/Akt signaling pathway and Epo/VEGF expression in baicalein-mediated neuroprotection in primary rat cortical neurons and astrocytes. Our results show that baicalein induced Epo and VEGF expression in a HIF1α- and PI3K/Akt-dependent manner in neurons. Baicalein also protected neurons against excitotoxicity in a PI3K- and Epo/VEGF-dependent manner without affecting neuronal excitability. In contrast, at least a 10-fold higher concentration of baicalein was needed to induce Epo/VEGF production and PI3K/Akt activity in astrocytes for protection of neurons. Moreover, only baicalein-induced astrocytic VEGF, but not Epo expression requires HIF1α, while PI3K/Akt signaling had little role in baicalein-induced astrocytic Epo/VEGF expression. These results suggest distinct mechanisms of baicalein-mediated Epo/VEGF production in neurons and astrocytes for neuroprotection, and provide new insights into the mechanisms and potential of baicalein in treating brain injury in vivo.

  11. VEGF-C在宫颈癌抗凋亡分子机制中的研究%Effect of VEGF-C Gene Transfection on the Expression of VEGF-C in Human Cervical Carcinoma HeLa Cells and the Molecular Meehnisms of Its Anti-apoptosis Effect

    Institute of Scientific and Technical Information of China (English)

    陈星; 王美芬; 吴朝阳; 任虹平; 郑灵芝; 郑曙民; 熊冬生; 杨纯正; 糜若然

    2009-01-01

    目的:探讨脂质体介导VEGF-C基因转染人宫颈癌HeLa细胞及其对宫颈癌抗凋亡分子机制的研究.方法:前期构建的真核表达载体pcDNA3.1(+)/VEGF-C,用脂质体介导转染人宫颈癌HeLa细胞,并加压筛选获得转染成功的细胞株,经半定量RT-PCR检测转染后VEGF-C表达水平,ELISA检测培养上清中VEGF-C的表达.对转染成功的细胞检测NF-κB、bcl-2基因的表达.结果:在mRNA水平,转染组VEGF-C明显高于空载体组和未转染组;ELISA检测转染组(678.73±38.92ng/mL),也明显高于空载体组(129.52±50.73ng/ml),和未转染组(123.05±55.83ng/mL),成功构建了高表达VEGF-C的宫颈癌细胞株HeLa/S1;在HeLa/S1组NF-κB的表达(2.06±0.09 vs 1.35±0.02 vs 1.38±0.02P<0.05),bcl-2的表达(2.02±0.67 vs 0.41±0.06 vs 0.37±0.06 P<0.05)明显高于空载体组和未转染组.结论:脂质体介导VEGF-C基因转染人宫颈癌HeLa可显著增加VEGF-C表达,推测高表达的VEGF-C可激活NF-κB,使抗凋亡基因bcl-2高表达,从而促进肿瘤细胞的生长.%Objective: TO explore the effect of VEGF-C gene transfection on the expression of VEGF-C in human cervical carcinoma HeLa cells and the mechanisms of its anti-apoptosis effect. Methods: The con-structed pcDNA3.1(+)NEGF-C vector was transformed into human cervical cancer HeLa cells and was select-ed by G418. The changes in the expression level of VEGF-C mRNA and protein were determined by semi-quantitive RT-PCR and ELISA. HeLa cells with overexpression of VEGF-C were named as HeLa/S1. The expression level of NF-KB and bcl-2 mRNA was determined by RT-PCR in transfected cells. Results: After transfection by liposome, the VEGF-C mRNA level and the expression of VEGF-C protein in transfected cells were higher than those in the control groups. HeLa/S1 cell line was successfully established. In HeLa/S1 cells, the expression of NF-κB (2.06±0.09 vs 1.35±0.02 vs 1.38±0.02 P<0.05) and bcl-2 gene mRNA (2.02± 0.67 vs 0.41±0.06 vs 0.37±0

  12. Reduction of serum IGF-I levels in patients affected with Monoclonal Gammopathies of undetermined significance or Multiple Myeloma. Comparison with bFGF, VEGF and K-ras gene mutation

    Directory of Open Access Journals (Sweden)

    Pisani Francesco

    2009-03-01

    Full Text Available Abstract Background Serum levels of IGF-I in patients affected with multiple myeloma (MM have been scarcely studied. The present study is aimed to explore this point comparing 55 healthy subjects, 71 monoclonal gammopaties of uncertain significance (MGUS and 77 overt MM patients. In the same subjects, basic FGF and VEGF, have been detected. All three mediators were analyzed in function of K-ras mutation and melphalan response. Concerning IGF-I, two representative monitoring examples have also been added. Methods Cytokine determinations were performed by commercially available ELISA kits, while K12-ras mutation was investigated on genomic DNA isolated from bone marrow cell specimens by RFLP-PCR assay. Results Significant reductions of IGF-I levels were observed in MGUS and MM as compared with healthy controls. In addition, MM subjects showed significantly decreased serum IGF-I levels than MGUS. Conversely, increasing levels were observed for bFGF and VEGF, molecules significantly correlated. A multivariate analysis corrected for age and gender confirmed the significant difference only for IGF-I values (P = 0.01. K12-ras mutation was significantly associated with malignancy, response to therapy and with significantly increased serum bFGF levels. Conclusion IGF-I reduction in the transition: Controls→MGUS→MM and changes observed over time suggest that IGF-I should be furtherly studied in future clinical trials as a possible monitoring marker for MM.

  13. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF–VEGF complex in extracellular matrix

    Science.gov (United States)

    Li, Changjun; Zhen, Gehua; Chai, Yu; Xie, Liang; Crane, Janet L.; Farber, Emily; Farber, Charles R.; Luo, Xianghang; Gao, Peisong; Cao, Xu; Wan, Mei

    2016-01-01

    Mesenchymal stem cells (MSCs) participate in the repair/remodelling of many tissues, where MSCs commit to different lineages dependent on the cues in the local microenvironment. Here we show that TGFβ-activated RhoA/ROCK signalling functions as a molecular switch regarding the fate of MSCs in arterial repair/remodelling after injury. MSCs differentiate into myofibroblasts when RhoA/ROCK is turned on, endothelial cells when turned off. The former is pathophysiologic resulting in intimal hyperplasia, whereas the latter is physiological leading to endothelial repair. Further analysis revealed that MSC RhoA activation promotes formation of an extracellular matrix (ECM) complex consisting of connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF). Inactivation of RhoA/ROCK in MSCs induces matrix metalloproteinase-3-mediated CTGF cleavage, resulting in VEGF release and MSC endothelial differentiation. Our findings uncover a novel mechanism by which cell–ECM interactions determine stem cell lineage specificity and offer additional molecular targets to manipulate MSC-involved tissue repair/regeneration. PMID:27126736

  14. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer

    OpenAIRE

    Kut, C; Mac Gabhann, F.; Popel, A S

    2007-01-01

    Vascular endothelial growth factor (VEGF) is a major target for the inhibition of tumour vascularisation and the treatment of human cancer. Many tumours produce large quantities of VEGF, and as a result, diagnosis and prognosis of cancer may be predicted by measuring changes in VEGF concentrations in blood. In blood, the VEGF may be located in the plasma, or in the blood-borne cells and formed elements, in particular, platelets and leukocytes. In this study, we collate the measurements of VEG...

  15. Elevated VEGF-D Modulates Tumor Inflammation and Reduces the Growth of Carcinogen-Induced Skin Tumors.

    Science.gov (United States)

    Honkanen, Hanne-Kaisa; Izzi, Valerio; Petäistö, Tiina; Holopainen, Tanja; Harjunen, Vanessa; Pihlajaniemi, Taina; Alitalo, Kari; Heljasvaara, Ritva

    2016-07-01

    Vascular endothelial growth factor D (VEGF-D) promotes the lymph node metastasis of cancer by inducing the growth of lymphatic vasculature, but its specific roles in tumorigenesis have not been elucidated. We monitored the effects of VEGF-D in cutaneous squamous cell carcinoma (cSCC) by subjecting transgenic mice overexpressing VEGF-D in the skin (K14-mVEGF-D) and VEGF-D knockout mice to a chemical skin carcinogenesis protocol involving 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate treatments. In K14-mVEGF-D mice, tumor lymphangiogenesis was significantly increased and the frequency of lymph node metastasis was elevated in comparison with controls. Most notably, the papillomas regressed more often in K14-mVEGF-D mice than in littermate controls, resulting in a delay in tumor incidence and a remarkable reduction in the total tumor number. Skin tumor growth and metastasis were not obviously affected in the absence of VEGF-D; however, the knockout mice showed a trend for reduced lymphangiogenesis in skin tumors and in the untreated skin. Interestingly, K14-mVEGF-D mice showed an altered immune response in skin tumors. This consisted of the reduced accumulation of macrophages, mast cells, and CD4(+) T-cells and an increase of cytotoxic CD8(+) T-cells. Cytokine profiling by flow cytometry and quantitative real time PCR revealed that elevated VEGF-D expression results in an attenuated Th2 response and promotes M1/Th1 and Th17 polarization in the early stage of skin carcinogenesis, leading to an anti-tumoral immune environment and the regression of primary tumors. Our data suggest that VEGF-D may be beneficial in early-stage tumors since it suppresses the pro-tumorigenic inflammation, while at later stages VEGF-D-induced tumor lymphatics provide a route for metastasis. PMID:27435926

  16. Involvement of BH4 domain of bcl-2 in the regulation of HIF-1-mediated VEGF expression in hypoxic tumor cells.

    Science.gov (United States)

    Trisciuoglio, D; Gabellini, C; Desideri, M; Ragazzoni, Y; De Luca, T; Ziparo, E; Del Bufalo, D

    2011-06-01

    In addition to act as an antiapoptotic protein, B-cell lymphoma (bcl)-2 can also promote tumor angiogenesis. In this context, we have previously demonstrated that under hypoxia bcl-2 promotes hypoxia-inducible factor-1 (HIF-1)-mediated vascular endothelial growth factor (VEGF) expression in melanoma and breast carcinoma. Here, we report on the role of the BH4 domain in bcl-2 functions, by showing that removal of or mutations at the BH4 domain abrogate the ability of bcl-2 to induce VEGF protein expression and transcriptional activity under hypoxia in human melanoma cells. We have also extended this observation to other human tumor histotypes, such as colon, ovarian and lung carcinomas. The involvement of BH4 on HIF-1α protein expression, stability, ubiquitination and HIF-1 transcriptional activity was also demonstrated in melanoma experimental model. Moreover, we validated the role of the BH4 domain of bcl-2 in the regulation of HIF-1/VEGF axis, demonstrating that BH4 peptide is sufficient to increase HIF-1α protein half-life impairing HIF-1α protein ubiquitination, and to enhance VEGF secretion in melanoma cells exposed to hypoxia. Finally, we found that the mechanism by which bcl-2 regulates HIF-1-mediated VEGF expression does not require BH1 and BH2 domains, and it is independent of antiapoptotic and prosurvival function of bcl-2. PMID:21233846

  17. 2-Methoxyestradiol Exhibits a Biphasic Effect on VEGF-A in Tumor Cells and Upregulation Is Mediated Through ER-α: A Possible Signaling Pathway Associated with the Impact of 2-ME2 on Proliferative Cells

    Directory of Open Access Journals (Sweden)

    Samarendra N. Banerjee

    2003-09-01

    Full Text Available 2-Methoxyestradiol (2-ME2 was reported to elicit both stimulation and inhibition of tumor angiogenesis and growth depending on the dosage used. However, the mechanism(s of the biphasic action of 2-ME2 has been elusive. Here we describe a regulatory role of vascular endothelial growth factor-A (VEGF-A in the biphasic effects on estrogen receptor (ER+ GH3 rat pituitary tumor cells and MCF-7 human breast tumor cells depending on the dosage of 2-ME2 used. We observed that acute exposure to 2-ME2, irrespective of dosage, did not alter cellular proliferation, but enhanced the VEGF-A mRNA level. As the treatment duration increased, biphasic effect was elicited. A concentration of 1 μM 2-ME2 increased both cell proliferation and VEGF-A levels in these cells, whereas higher doses exhibited reversed impact. A low dose of 2-ME2 also increased the VEGF-A mRNA expression in ER-α-transfected human mammary epithelial cells (HMECs. The effect was reversed in ER- cells. The enhanced expression of VEGF-A mRNA could be blocked by the pure estrogen antagonist, ICI 182,780, reveal that the upregulation of VEGF-A expression by 2-ME2 is mediated through ER-α. Furthermore, the biphasic effect of 2-ME2 on cell proliferation can be modulated by administrating VEGF-A antibodies or VEGF-A proteins. Studies also demonstrate that the VEGF-A protein, induced by 2-ME2, is functionally active and upregulates the proliferation of adjacent endothelial cells.

  18. VEGF Inhibitors for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Prakash S. Sukhramani

    2010-01-01

    Full Text Available Despite significant advances in systemic therapies, radiation oncology, and surgical techniques, many patients with cancer are still incurable. A novel therapeutic approach has been to target the vascular endothelial growth factors (VEGFs which are often mutated and/or over-expressed in many tumors. The ligands and receptors of VEGF family are well established as key regulators of angiogenesis and vasculogenesis processes. VEGF is a homodimeric, basic, 45 kDa glycoprotein specific for vascular endothelial cells. Specifically, VEGF participates in regulation of the female reproductive cycle, wound healing, inflammation, vascular permeability, vascular tone, hematopoiesis and also contributes to pathological angiogenesis disorders such as cancer, rheumatoid arthritis, diabetic retinopathy and the neovascular form of macular degeneration. Thus, the role of VEGF has been extensively studied in the pathogenesis and angiogenesis of human cancers. Clinical trials have anti-VEGF therapies are effective in reducing tumor size, metastasis and blood vessel formation. Clinically, this may result in increased progression free survival, overall patient survival rate and will expand the potential for combinatorial therapies. The aim of present review is on the cellular responses of VEGF inhibitors and their implications for cancer therapy.

  19. VEGF-C and TGF-β reciprocally regulate mesenchymal stem cell commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes.

    Science.gov (United States)

    Igarashi, Yasuyuki; Chosa, Naoyuki; Sawada, Shunsuke; Kondo, Hisatomo; Yaegashi, Takashi; Ishisaki, Akira

    2016-04-01

    The direction of mesenchymal stem cell (MSC) differentiation is regulated by stimulation with various growth factors and cytokines. We recently established MSC lines, [transforming growth factor-β (TGF-β)-responsive SG‑2 cells, bone morphogenetic protein (BMP)-responsive SG‑3 cells, and TGF-β/BMP-non-responsive SG‑5 cells], derived from the bone marrow of green fluorescent protein-transgenic mice. In this study, to compare gene expression profiles in these MSC lines, we used DNA microarray analysis to characterize the specific gene expression profiles observed in the TGF-β-responsive SG‑2 cells. Among the genes that were highly expressed in the SG‑2 cells, we focused on vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), the gene product of FMS-like tyrosine kinase 4 (Flt4). We found that VEGF-C, a specific ligand of VEGFR3, significantly induced the cell proliferative activity, migratory ability (as shown by Transwell migration assay), as well as the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in the SG‑2 cells. Additionally, VEGF-C significantly increased the expression of prospero homeobox 1 (Prox1) and lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), which are lymphatic endothelial cell markers, and decreased the expression of osteogenic differentiation marker genes in these cells. By contrast, TGF-β significantly increased the expression of early-phase osteogenic differentiation marker genes in the SG‑2 cells and markedly decreased the expression of lymphatic endothelial cell markers. The findings of our study strongly suggest the following: i) that VEGF-C promotes the proliferative activity and migratory ability of MSCs; and ii) VEGF-C and TGF-β reciprocally regulate MSC commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes, respectively. Our findings provide new insight into the molecular mechanisms underlying the regenerative ability of MSCs.

  20. Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+ cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+ Arg-1(+ myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+ Arg-1(+ phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.

  1. Digoxin Downregulates NDRG1 and VEGF through the Inhibition of HIF-1α under Hypoxic Conditions in Human Lung Adenocarcinoma A549 Cells

    Directory of Open Access Journals (Sweden)

    Dong Wei

    2013-04-01

    Full Text Available Digoxin, an inhibitor of Na+/K+ ATPase, has been used in the treatment of heart-related diseases (such as congestive heart failure and atrial arrhythmia for decades. Recently, it was reported that digoxin is also an effective HIF-1α inhibitor. We investigated whether digoxin could suppress tumor cell growth through HIF-1α in non-small cell lung cancer cells (A549 cells under hypoxic conditions. An MTT assay was used to measure cell viability. RT-PCR and western blotting were performed to analyze the mRNA and protein expression of VEGF, NDRG1, and HIF-1α. HIF-1α nuclear translocation was then determined by EMSA. Digoxin was found to inhibit the proliferation of A549 cells under hypoxic conditions. Our results showed that hypoxia led to the upregulation of VEGF, NDRG1, and HIF-1α both at the mRNA and protein levels. We also found that the hypoxia-induced overexpression of VEGF, NDRG1, and HIF-1α was suppressed by digoxin in a concentration-dependent manner. As expected, our EMSA results demonstrated that under hypoxic conditions HIF-1α nuclear translocation was also markedly reduced by digoxin in a concentration-dependent manner. Our results suggest that digoxin downregulated hypoxia-induced overexpression of VEGF and NDRG1 at the transcriptional level probably through the inhibition of HIF-1α synthesis in A549 cells.

  2. Effect of Crocus sativus L. on Expression of VEGF-A and VEGFR-2 Genes (Angiogenic Biomarkers in MCF-7 Cell Line

    Directory of Open Access Journals (Sweden)

    Marzeih Mousavi

    2014-12-01

    Full Text Available Background: Both in vivo and in vitro studies focused on anticancer effects of saffron. Angiogenesis, which is required for embryonic development and many physiological events play crucial role in many pathological conditions such as tumor growth. Two principal genes which involved in this process are VEGF-A and its main receptor VEGFR-2. Effects of saffron on VEGF-A and VEGFR-2 gene expression were examined. Materials and Methods: In this experimental study, saffron aqueous extract obtained by Soxhlet and lyophilized using freeze dryer. MCF-7 cells were grown in RPMI1640 medium supplemented with 10 fetal bovine serum and incubated at 37ºC with 5% CO2. After 24 h of cell culture, their adhesion to the flasks investigated, then cells were treated by saffron extract at concentration of 100, 200, 400 and 800 µg/mL. Forty eight hours after treatment, total RNA extracted and cDNA was synthesized using sequence of target gene. Finally synthesized products analyzed by real time PCR to determine and compare expression level of VEGF-A and VEGFR-2. Results: Data analysis shows inhibitory effect of saffron extract in concentration 100, 200, 400 and 800 µg/mL on VEGF-A and VEGFR-2 gene expression in MCF-7 cell line in compare with control group. For VEGF-A, most reduction can be seen in the highest concentration of saffron extract (800 µg/mL with 17% reduction on gene expression, while critical inhibitory effects on gene expression of VEGFR-2 was 20% in 400 µg/mL concentration. Conclusion: Results indicate a decrease in the expression of VEGF-A and VEGFR-2 as specific biomarkers of angiogenesis in the treated samples compared to controls.

  3. Nicotine promotes proliferation of human nasopharyngeal carcinoma cells by regulating α7AChR, ERK, HIF-1α and VEGF/PEDF signaling.

    Directory of Open Access Journals (Sweden)

    Dingbo Shi

    Full Text Available Nicotine, the major component in cigarette smoke, can promote tumor growth and angiogenesis, but the precise mechanisms involved remain largely unknown. Here, we investigated the mechanism of action of nicotine in human nasopharyngeal carcinoma (NPC cells. Nicotine significantly promoted cell proliferation in a dose and time-dependent manner in human NPC cells. The mechanism studies showed that the observed stimulation of proliferation was accompanied by the nicotine-mediated simultaneous modulation of α7AChR, HIF-1α, ERK and VEGF/PEDF signaling. Treatment of NPC cells with nicotine markedly upregulated the expression of α7AChR and HIF-1α proteins. Transfection with a α7AChR or HIF-1α-specific siRNA or a α7AChR-selective inhibitor significantly attenuated the nicotine-mediated promotion of NPC cell proliferation. Nicotine also promoted the phosphorylation of ERK1/2 but not JNK and p38 proteins, thereby induced the activation of ERK/MAPK signaling pathway. Pretreatment with an ERK-selective inhibitor effectively reduced the nicotine-induced proliferation of NPC cells. Moreover, nicotine upregulated the expression of VEGF but suppressed the expression of PEDF at mRNA and protein levels, leading to a significant increase of the ratio of VEGF/PEDF in NPC cells. Pretreatment with a α7AChR or ERK-selective inhibitor or transfection with a HIF-1α-specific siRNA in NPC cells significantly inhibited the nicotine-induced HIF-1α expression and VEGF/PEDF ratio. These results therefore indicate that nicotine promotes proliferation of human NPC cells in vitro through simultaneous modulation of α7AChR, HIF-1α, ERK and VEGF/PEDF signaling and suggest that the related molecules such as HIF-1α might be the potential therapeutic targets for tobacco-associated diseases such as nasopharyngeal carcinomas.

  4. Wnt3a upregulates transforming growth factor-β-stimulated VEGF synthesis in osteoblasts.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Matsushima-Nishiwaki, Rie; Kato, Kenji; Yamakawa, Kengo; Otsuka, Takanobu; Kozawa, Osamu

    2011-07-01

    It is recognized that Wnt3a affects bone metabolism via the canonical Wnt/β-catenin signalling pathway. We have previously shown that transforming growth factor-β (TGF-β) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TGF-β-stimulated VEGF synthesis in these cells. Wnt3a, which alone had little effect on the VEGF levels, significantly enhanced the TGF-β-stimulated VEGF release. Lithium chloride and SB216763, inhibitors of glycogen synthase kinase 3β, markedly amplified the TGF-β-stimulated VEGF release. Wnt3a failed to affect the TGF-β-induced phosphorylation of Smad2, p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. Wnt3a and lithium chloride strengthened the VEGF mRNA expression induced by TGF-β. These results strongly suggest that Wnt3a upregulates VEGF synthesis stimulated by TGF-β via activation of the canonical pathway in osteoblasts.

  5. Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/ Akt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Jin-rong FU; Wen-li LIU; Jian-feng ZHOU; Han-ying SUN; Hui-zhen XU; Li LUO; Heng ZHANG; Yu-feng ZHOU

    2006-01-01

    Aim: To investigate the effects of Sonic hedgehog (shh) protein on bone marrowderived endothelial progenitor cells (BM-EPC) proliferation, migration and vascular endothelial growth factor (VEGF) production, and the potential signaling pathways involved in these effects. Methods: Bone marrow-derived Flk-l+ cells were enriched using the MACS system from adult Kunming mice and then BM-EPC was cultured in gelatin-coated culture dishes. The effects of shh N-terminal peptide on BM-EPC proliferation were evaluated using the MTT colorimetric assay. Cell migration was assayed using a modified Boyden chamber technique. The production of VEGF was determined by ELIS A and immunofluorescence analysis. The potential involvement of PKC and PI3K signaling pathways was explored using selective inhibitor or Western blot. Results: The proliferation, migration and VEGF production in BM-EPC could be promoted by endogenous shh Nterminal peptide at concentrations of 0.1 μg/mL to 10 ug/mL, and could be inhibited by anti-shh antibodies. Shh-mediated proliferation and migration in BM-EPC could be partly attenuated by anti-VEGF. Phospho-PI3-kinase expression in newly separated BM-EPC was low, and it increased significantly when exogenous shh N-terminal peptide was added, but could be attenuated by anti-human/mouse shh N-terminal peptide antibody. Moreover, the inhibitor of the PI3-kinase, but not the inhibitor of the PKC, significantly inhibited the shh-mediated proliferation, migration and VEGF production. Conclusion: Shh protein can stimulate bone marrow-derived BM-EPC proliferation, migration and VEGF production, which may promote neovascularization to ischemic tissues. This results also suggests that the PI3-kinase/Akt signaling pathways are involved in the angiogenic effects of shh.

  6. Adiponectin promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-27b through a CaMKII/AMPK/p38 signaling pathway in human chondrosarcoma cells.

    Science.gov (United States)

    Huang, Chun-Yin; Chang, An-Chen; Chen, Hsien-Te; Wang, Shih-Wei; Lo, Yuan-Shun; Tang, Chih-Hsin

    2016-09-01

    Chondrosarcoma is the second most frequently occurring type of bone malignancy characterized by distant metastatic propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumour lymphangiogenesis and lymphatic metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. In recent years, adiponectin has also been indicated as facilitating tumorigenesis, angiogenesis and metastasis. However, the effect of adiponectin on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has remained largely a mystery. In the present study, we have shown a clinical correlation between adiponectin and VEGF-C, as well as tumour stage, in human chondrosarcoma tissues. We further demonstrated that adiponectin promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium from adiponectin-treated cells significantly induced tube formation and migration of human lymphatic endothelial cells. In addition, adiponectin knock down inhibited lymphangiogenesis in vitro and in vivo We also found that adiponectin-induced VEGF-C is mediated by the calmodulin-dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK) and p38 signaling pathway. Furthermore, the expression of miR-27b was negatively regulated by adiponectin via the CaMKII, AMPK and p38 cascade. The present study is the first to describe the mechanism of adiponectin-promoted lymphangiogenesis by up-regulating VEGF-C expression in chondrosarcomas. Thus, adiponectin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis. PMID:27252405

  7. Adiponectin promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-27b through a CaMKII/AMPK/p38 signaling pathway in human chondrosarcoma cells.

    Science.gov (United States)

    Huang, Chun-Yin; Chang, An-Chen; Chen, Hsien-Te; Wang, Shih-Wei; Lo, Yuan-Shun; Tang, Chih-Hsin

    2016-09-01

    Chondrosarcoma is the second most frequently occurring type of bone malignancy characterized by distant metastatic propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumour lymphangiogenesis and lymphatic metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. In recent years, adiponectin has also been indicated as facilitating tumorigenesis, angiogenesis and metastasis. However, the effect of adiponectin on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has remained largely a mystery. In the present study, we have shown a clinical correlation between adiponectin and VEGF-C, as well as tumour stage, in human chondrosarcoma tissues. We further demonstrated that adiponectin promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium from adiponectin-treated cells significantly induced tube formation and migration of human lymphatic endothelial cells. In addition, adiponectin knock down inhibited lymphangiogenesis in vitro and in vivo We also found that adiponectin-induced VEGF-C is mediated by the calmodulin-dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK) and p38 signaling pathway. Furthermore, the expression of miR-27b was negatively regulated by adiponectin via the CaMKII, AMPK and p38 cascade. The present study is the first to describe the mechanism of adiponectin-promoted lymphangiogenesis by up-regulating VEGF-C expression in chondrosarcomas. Thus, adiponectin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.

  8. Relationship between the Changes of VEGF Level and Dendritic Cells in Peripheral Blood of Patients with Hepatocellular Carcinoma after Transcatheter Arterial Chemoembolization

    Institute of Scientific and Technical Information of China (English)

    LIU jinwen; YI Jilin

    2007-01-01

    In order to investigate the relationship between the VEGF level and the counts of dendritic cells (DCs) in peripheral blood of patients with hepatocellular carcinoma (HCC) before and after transcatheter arterial chemoembolization (TACE), the peripheral blood was obtained from 37 patients with HCC who treated by TACE. The blood was obtained on the day before TACE, the first day, the 7th day and the 15th day after TACE respectively. The counts of DCs were quantified by flow cytometry. The plasma VEGF level was measured by ELESA kit. It was shown after TACE, the counts of DCs in peripheral blood were decreased significantly (P<0.05), and the VEGF level in peripheral blood was increased significantly (P<0.05). The counts of DCs in peripheral blood had an inverse correlation with the plasma VEGF level (r=-0.57, P<0.05) after TACE. It was concluded that in patients with HCC after TACE, the increased plasma VEGF level appeared to have the effect to suppress the maturation of DCs, which may contribute to reduction of the body's anti-tumor immunity effect, with a consequence of recur and metastasis of tumor.

  9. Mitotic and antiapoptotic effects of nanoparticles coencapsulating human VEGF and human angiopoietin-1 on vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Khan AA

    2011-05-01

    Full Text Available Afshan Afsar Khan, Arghya Paul, Sana Abbasi, Satya PrakashBiomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering Faculty of Medicine, McGill University Montreal, Québec, CanadaBackground: Research towards the application of nanoparticles as carrier vehicles for the delivery of therapeutic agents is increasingly gaining importance. The angiogenic growth factors, human vascular endothelial growth factor (VEGF and human angiopoietin-1 are known to prevent vascular endothelial cell apoptosis and in fact to stimulate human vascular endothelial cell (HUVEC proliferation. This paper aims to study the combined effect of these bioactive proteins coencapsulated in human serum albumin nanoparticles on HUVECs and to evaluate the potential application of this delivery system towards therapeutic angiogenesis.Methods and results: The angiogenic proteins, human VEGF and human angiopoietin-1, were coencapsulated in albumin nanoparticles for better controlled delivery of the proteins. The application of a nanoparticle system enabled efficient and extended-release kinetics of the proteins. The size of the nanoparticles crosslinked with glutaraldehyde was 101.0 ± 0.9 nm and the zeta potential was found to be -18 ± 2.9 mV. An optimal concentration of glutaraldehyde for the nanoparticle coating process was determined, and this provided stable and less toxic nanoparticles as protein carriers. The results of the study indicate that nanoparticles crosslinked with glutaraldehyde produced nanoparticles with tolerable toxicity which provided efficient and controlled release of the coencapsulated proteins. The nanoparticles were incubated for two weeks to determine the release profiles of the proteins. At the end of the two-week incubation period, it was observed that 49% ± 1.3% of human angiopoietin-1 and 59% ± 2.1% of human VEGF had been released from the nanoparticles. The proliferation and percent apoptosis of the HUVECs in

  10. Overcoming inefficient secretion of recombinant VEGF-C in baculovirus expression vector system by simple purification of the protein from cell lysate.

    Science.gov (United States)

    Klaus, Tomasz; Kulesza, Małgorzata; Bzowska, Monika; Wyroba, Barbara; Kilarski, Witold W; Bereta, Joanna

    2015-06-01

    The first reports about successfully expressed recombinant proteins with the use of a baculovirus vector were published over 30years ago. Despite the long time of refining this expression system, early problems with the production of baculovirus-derived secretory proteins are still not satisfactorily solved. The high expression level driven by baculoviral promoters often does not result in the desired yield of secreted recombinant proteins, which frequently accumulate inside insect cells and are only partially processed. During our attempts to produce vascular endothelial growth factor C (VEGF-C) with the use of a baculovirus vector we also faced an inefficient secretion of the recombinant protein to culture medium. We were not able to improve the outcome and obtain an acceptable concentration of VEGF-C in the medium by changing the culture conditions or utilizing different signal peptides. However, as a significant amount of native VEGF-C was detected inside the baculovirus-infected cells, we developed a simple method to purify recombinant, glycosylated VEGF-C from a lysate of the cells. The presented results indicate that the lack of a secretory protein in the insect cell culture medium after baculovirus infection does not necessarily signify failure in the production of the protein. As demonstrated by us and contrary to generally accepted views, the lysate of baculovirus-infected cells may constitute a valuable source of the biologically active, secretory protein.

  11. The growth and aggressive behavior of human osteosarcoma is regulated by a CaMKII-controlled autocrine VEGF signaling mechanism.

    Directory of Open Access Journals (Sweden)

    Paul G Daft

    Full Text Available Osteosarcoma (OS is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50% and protein secretion (55%, while α- CaMKII overexpression increases VEGF gene expression (250% and protein secretion (1,200%. We show that aggressive OS cells (143B express high levels of VEGF receptor 2 (VEGFR-2 and respond to exogenous VEGF (100nm by increasing intracellular calcium (30%. This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease.

  12. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Rufener, Nora; Nielsen, Jens J;

    2008-01-01

    .05) in blood flow without a significant enhancement in oxygen uptake. Muscle interstitial fluid was sampled with microdialysis technique and analyzed for vascular endothelial growth factor (VEGF) protein and for the effect on endothelial cell proliferation. Biopsies obtained from the musculus vastus...... lateralis were analyzed for mRNA content of VEGF, endothelial nitric oxide synthase (eNOS), and matrix metalloproteinase-2 (MMP-2). The passive leg movement caused an increase (P < 0.05) in interstitial VEGF protein concentration above rest (73 +/- 21 vs. 344 +/- 83 pg/ml). Addition of muscle dialysate to......The present study used passive limb movement as an experimental model to study the effect of increased blood flow and passive stretch, without enhanced metabolic demand, in young healthy male subjects. The model used was 90 min of passive movement of the leg leading to a 2.8-fold increase (P < 0...

  13. Estrogen up-regulates MMP2/9 expression in endometrial epithelial cell via VEGF-ERK1/2 pathway

    Institute of Scientific and Technical Information of China (English)

    Bao Shan; Wang Li; Shu-Ying Yang; Zhuo-Ri Li

    2013-01-01

    Objective:To study the effect of estrogen on anovulatory dysfunctional uterine bleeding (ADUB).Methods:Primary endometrial epithelial cells ofHainanLizu female was cultured and hydrolytic activity of gelatinase was determined by gelatin zymography analysis.Cellular mRNA and protein synthesis was blocked respectively to determine whether the increased expression ofMMP-2/9 was induced by estrogen.The expression ofVEGF was blocked by siRNA.After treatment with various factors,MMP-9,VEGF, totalErk and phosphorylatedErk expression in primary uterine epithelial cells was detected byWestern blotting analysis.CellMMP-2/9mRNA levels was measured by real-timeRT-PCR.Results:The activity and expression ofMMP2/9 was increased in the endometrium of patients withADUB.Estrogen could up-regulate the expression ofVEGF and activateErk1/2-Elk1 signal path.After interference by siRNA,ERK1/2 pathway was blocked in cells, and the expression ofMMP-2/9 was down-regulated.ERK1/2 specific blocker U0126 blockedERK phosphorylation, and it could down-regulate the expression ofMMP-2/9. Conclusions:The results showed that the estrogen can increase the expression ofVEGF, and thus activateERK1/2 pathway to induceMMP-2/9 expression.

  14. Rho-kinase limits FGF-2-stimulated VEGF release in osteoblasts.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Adachi, Seiji; Takai, Shinji; Matsushima-Nishiwaki, Rie; Kato, Kenji; Minamitani, Chiho; Niida, Shunpei; Mizutani, Jun; Kozawa, Osamu; Otsuka, Takanobu

    2010-04-01

    We previously reported that basic fibroblast growth factor (FGF-2) stimulates the release of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells and that FGF-2-activated p38 MAP kinase negatively regulates the VEGF release in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether Rho-kinase is involved in FGF-2-stimulated VEGF release in MC3T3-E1 cells. FGF-2 induced the phosphorylation of myosin phosphatase targeting subunit (MYPT-1), a substrate of Rho-kinase. Y27632, a specific inhibitor of Rho-kinase, which attenuated the MYPT-1 phosphorylation, significantly enhanced the FGF-2-stimulated VEGF release. Fasudil, another Rho-kinase inhibitor, also amplified the VEGF release. FGF-2 significantly stimulated VEGF accumulation and fasudil enhanced FGF-2-stimulated VEGF accumulation also in whole cell lysates. Neither Y27632 nor fasudil affected the phosphorylation levels of p44/p42 MAP kinase or p38 MAP kinase. Y27632 and fasudil markedly strengthened the FGF-2-induced phosphorylation of SAPK/JNK. Y27632 as well as fasudil enhanced FGF-2-stimulated VEGF release and Y27632 enhanced the FGF-2-induced phosphorylation levels of SAPK/JNK also in human osteoblasts. These results strongly suggest that Rho-kinase negatively regulates FGF-2-stimulated VEGF release in osteoblasts.

  15. Effects of carbon dioxide and nitrogen on adhesive growth and expressions of E-cadherin and VEGF of human colon cancer cell CCL-228

    Institute of Scientific and Technical Information of China (English)

    Kai-Lin Cai; Guo-Bing Wang; Li-Juan Xiong

    2003-01-01

    AIM: To study the effects of carbon dioxide on the metastatic capability of cancer cells, and to compare them with that of nitrogen.METHODS: The colon cancer cell CCL-228 was treated with 100 % carbon dioxide or nitrogen at different time points and then cultured under normal condition. Twelve hours after the treatment, the survival rates of suspension cells and the expressions of e-cadherin and VEGF were examined.RESULTS: After 60 min of carbon dioxide and longer time of nitrogen treatment, the suspended cells increased and the expression of e-cadherin decreased while the expression of VEGF was enhanced significantly. And the effects of nitrogen were similar to, but weaker than, those of carbon dioxide.CONCLUSION: Carbon dioxide may improve the metastatic capability of cancer cells and its effects are significantly stronger than that of nitrogen. A sequential use of carbon dioxide and nitrogen in pneumoperitoneum may take the advantage of both gases.

  16. Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies

    Directory of Open Access Journals (Sweden)

    Finley Stacey D

    2011-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a potent regulator of angiogenesis, and its role in cancer biology has been widely studied. Many cancer therapies target angiogenesis, with a focus being on VEGF-mediated signaling such as antibodies to VEGF. However, it is difficult to predict the effects of VEGF-neutralizing agents. We have developed a whole-body model of VEGF kinetics and transport under pathological conditions (in the presence of breast tumor. The model includes two major VEGF isoforms VEGF121 and VEGF165, receptors VEGFR1, VEGFR2 and co-receptors Neuropilin-1 and Neuropilin-2. We have added receptors on parenchymal cells (muscle fibers and tumor cells, and incorporated experimental data for the cell surface density of receptors on the endothelial cells, myocytes, and tumor cells. The model is applied to investigate the action of VEGF-neutralizing agents (called "anti-VEGF" in the treatment of cancer. Results Through a sensitivity study, we examine how model parameters influence the level of free VEGF in the tumor, a measure of the response to VEGF-neutralizing drugs. We investigate the effects of systemic properties such as microvascular permeability and lymphatic flow, and of drug characteristics such as the clearance rate and binding affinity. We predict that increasing microvascular permeability in the tumor above 10-5 cm/s elicits the undesired effect of increasing tumor interstitial VEGF concentration beyond even the baseline level. We also examine the impact of the tumor microenvironment, including receptor expression and internalization, as well as VEGF secretion. We find that following anti-VEGF treatment, the concentration of free VEGF in the tumor can vary between 7 and 233 pM, with a dependence on both the density of VEGF receptors and co-receptors and the rate of neuropilin internalization on tumor cells. Finally, we predict that free VEGF in the tumor is reduced following anti-VEGF treatment when

  17. Cardiogenic induction of pluripotent stem cells streamlined through a conserved SDF-1/VEGF/BMP2 integrated network.

    Directory of Open Access Journals (Sweden)

    Anca Chiriac

    Full Text Available BACKGROUND: Pluripotent stem cells produce tissue-specific lineages through programmed acquisition of sequential gene expression patterns that function as a blueprint for organ formation. As embryonic stem cells respond concomitantly to diverse signaling pathways during differentiation, extraction of a pro-cardiogenic network would offer a roadmap to streamline cardiac progenitor output. METHODS AND RESULTS: To resolve gene ontology priorities within precursor transcriptomes, cardiogenic subpopulations were here generated according to either growth factor guidance or stage-specific biomarker sorting. Innate expression profiles were independently delineated through unbiased systems biology mapping, and cross-referenced to filter transcriptional noise unmasking a conserved progenitor motif (55 up- and 233 down-regulated genes. The streamlined pool of 288 genes organized into a core biological network that prioritized the "Cardiovascular Development" function. Recursive in silico deconvolution of the cardiogenic neighborhood and associated canonical signaling pathways identified a combination of integrated axes, CXCR4/SDF-1, Flk-1/VEGF and BMP2r/BMP2, predicted to synchronize cardiac specification. In vitro targeting of the resolved triad in embryoid bodies accelerated expression of Nkx2.5, Mef2C and cardiac-MHC, enhanced beating activity, and augmented cardiogenic yield. CONCLUSIONS: Transcriptome-wide dissection of a conserved progenitor profile thus revealed functional highways that coordinate cardiogenic maturation from a pluripotent ground state. Validating the bioinformatics algorithm established a strategy to rationally modulate cell fate, and optimize stem cell-derived cardiogenesis.

  18. Coregulation of glucose uptake and vascular endothelial growth factor (VEGF) in two small-cell lung cancer (SCLC) sublines in vivo and in vitro

    DEFF Research Database (Denmark)

    Pedersen, M W; Holm, S; Lund, E L;

    2001-01-01

    We examined the relationship between (18)F- labeled 2-fluro-2-deoxy-d-glucose (FDG) uptake, and expression of glucose transporters (GLUTs) in two human small-cell lung cancer (SCLC) lines CPH 54A and CPH 54B. Changes in the expression of GLUTs and vascular endothelial growth factor (VEGF) during 12......-, 18-, and 24 hours of severe hypoxia in vivo (xenografts) and in vitro (cell cultures) were recorded for both tumor lines. The two SCLC lines are subpopulations of the same patient tumor. In spite of their common genomic origin they represent consistently different metabolic and microenvironmental...... course in the two cell lines. A similar co-upregulation of GLUT and VEGF was seen in hypoxic tumors of both lines. There were no significant changes of HIF-1alpha mRNA during hypoxia in either of the cell lines. A more detailed understanding of such correlations between glucose metabolism, angiogenesis...

  19. Estimating binding free energy of a putative growth factors EGF-VEGF complex - a computational bioanalytical study.

    Science.gov (United States)

    Lin, Meng-Han; Chang, C Allen; Fischer, Wolfgang B

    2016-08-01

    Epidermal growth factor (EGF) and homodimeric vascular endothelial growth factor (VEGF) bind to cell surface receptors. They are responsible for cell growth and angiogenesis, respectively. Docking of the individual proteins as monomeric units using ZDOCK 2.3.2 reveals a partial blocking of the receptor binding site of VEGF by EGF. The receptor binding site of EGF is not affected by VEGF. The calculated binding energy is found to be intermediate between the binding energies calculated for Alzheimer's Aß42 and the barnase/barstar complex. PMID:26338536

  20. β-Adrenergic receptor antagonists inhibit vasculogenesis of embryonic stem cells by downregulation of nitric oxide generation and interference with VEGF signalling.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Saliu, Fatjon; Bekhite, Mohamed M; Wartenberg, Maria; Sauer, Heinrich

    2014-11-01

    The β-adrenoceptor antagonist Propranolol has been successfully used to treat infantile hemangioma. However, its mechanism of action is so far unknown. The hypothesis of this research was that β-adrenoceptor antagonists may interfere with endothelial cell differentiation of stem cells. Specifically, the effects of the non-specific β-adrenergic receptor (β-adrenoceptor) antagonist Propranolol, the β1-adrenoceptor-specific antagonist Atenolol and the β2-adrenoceptor-specific antagonist ICI118,551 on vasculogenesis of mouse embryonic stem (ES) cells were investigated. All three β-blockers dose-dependently downregulated formation of capillary structures in ES cell-derived embryoid bodies and decreased the expression of the vascular cell markers CD31 and VE-cadherin. Furthermore, β-blockers downregulated the expression of fibroblast growth factor-2 (FGF-2), hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor 165 (VEGF165), VEGF receptor 2 (VEGF-R2) and phospho VEGF-R2, as well as neuropilin 1 (NRP1) and plexin-B1 which are essential modulators of embryonic angiogenesis with additional roles in vessel remodelling and arteriogenesis. Under conditions of β-adrenoceptor inhibition, the endogenous generation of nitric oxide (NO) as well as the phosphorylation of endothelial nitric oxide synthase (eNOS) was decreased in embryoid bodies, whereas an increase in NO generation was observed with the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Consequently, vasculogenesis of ES cells was restored upon treatment of differentiating ES cells with β-adrenoceptor antagonists in the presence of NO donor. In summary, our data suggest that β-blockers impair vasculogenesis of ES cells by interfering with NO generation which could be the explanation for their anti-angiogenic effects in infantile hemangioma.

  1. Up-regulation of HIF-1α and VEGF Expression by Elevated Glucose Concentration and Hypoxia in Cultured Human Retinal Pigment Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    XIAO Qing; ZENG Shuiqing; LING Shiqi; LV Mingliang

    2006-01-01

    In order to explore the effect of high glucose concentration and high glucose concentration with hypoxia on the production of hypoxia-inducible factor-1 α (HIF-1α) and vascular endothelial growth factor (VEGF), human RPE cells were cultured in 5.56 mmol/L glucose (control group), 5.56 mmol/L glucose with 150 μ mol/L CoCl2 (hypoxic group), 25 mmol/L glucose (high glucose group)and 25 mmol/L glucose with 150 μ mol/L CoCl2 (combination group). RT-PCR was used to detect the expression of HIF-1α and VEGF mRNAs. Western blot analysis was used to measure the levels of HIF-1α and VEGF proteins. Although the small amount of HIF-1α protein was able to be detected in high glucose group but not in control group, there was no significant difference between the expression of HIF-1α mRNA of RPE cells in high glucose group and that of RPE cells in control group.As compared with RPE cells in control group, the mRNA expression and the protein synthesis of VEGF in high glucose group were up-regulated. As compared with RPE cells in hypoxic group, the expression of HIF-1α mRNA of RPE cells in combination group was not different, but the protein synthesis of HIF-1 α, the mRNA expression and the protein synthesis of VEGF were more obviously up-regulated. In conclusion, high concentration glucose mainly influence the protein synthesis of HIF-1α of RPE cell, and HIF-1α protein is able to be accumulated in high concentration glucose.Under hypoxia, the HIF-1α protein induced by high concentration glucose is more stable, and the expression of VEGF is obviously increased. It is suggested that high concentration glucose may play a role in retinal neovascularization, especially at ischemia stage of diabetic retinopathy.

  2. Mesenchymal stromal cells protect against caspase 3-mediated apoptosis of CD19(+) peripheral B cells through contact-dependent upregulation of VEGF.

    Science.gov (United States)

    Healy, Marc E; Bergin, Ronan; Mahon, Bernard P; English, Karen

    2015-10-15

    The immune suppressive and anti-inflammatory capabilities of bone marrow-derived mesenchymal stromal cells (MSCs) represent an innovative new tool in regenerative medicine and immune regulation. The potent immune suppressive ability of MSC over T cells, dendritic cells, and natural killer cells has been extensively characterized, however, the effect of MSC on B cell function has not yet been clarified. In this study, the direct effect of MSC on peripheral blood B cell function is defined and the mechanism utilized by MSC in enhancing B cell survival in vitro identified. Human MSC supported the activation, proliferation, and survival of purified CD19(+) B cells through a cell contact-dependent mechanism. These effects were not mediated through B cell activating factor or notch signaling. However, cell contact between MSC and B cells resulted in increased production of vascular endothelial growth factor (VEGF) by MSC facilitating AKT phosphorylation within the B cell and inhibiting caspase 3-mediated apoptosis. Blocking studies demonstrated that this cell contact-dependent effect was not dependent on signaling through CXCR4-CXCL12 or through the epidermal growth factor receptor (EGFR). These results suggest that direct cell contact between MSC and B cells supports B cell viability and function, suggesting that MSC may not represent a suitable therapy for B cell-mediated disease. PMID:26076727

  3. Naringenin exerts anti-angiogenic effects in human endothelial cells: Involvement of ERRα/VEGF/KDR signaling pathway.

    Science.gov (United States)

    Li, Qunyi; Wang, Yi; Zhang, Liudi; Chen, Lu; Du, Yongli; Ye, Ting; Shi, Xiaojin

    2016-06-01

    Naringenin (Nar), most abundant in oranges and tomatoes, are known for the hypocholesterolemic, anti-estrogenic, hypolipidemic, anti-hypertensive, and anti-inflammatory activities. Here, the present study was designed to investigate the in vitro and in vivo anti-angiogenesis of Nar. Inhibition of angiogenesis was determined in vitro by using proliferation, apoptosis, migration, and tube-formation assays in Nar-treated human endothelial cell. Finally, CAM assays were used to assess inhibitory effect of Nar on physiological angiogenesis in vivo. The data suggest that Nar should be a direct ERRα inhibitor capable of inhibiting angiogenesis in vitro and in vivo, including endothelial cell proliferation, survival, migration and capillary-like structures formation of HUVECs, as well as reduced neovascularization of the CAM. Furthermore, the effects exerted by Nar are cell cycle related and mediated by VEGF/KDR signaling pathway along with downregulation of certain proangiogenic inflammatory cytokines. Our data thus provide potential molecular mechanisms through which Nar manifests it as a promising anti-angiogenic and anti-cancer agent. PMID:27105956

  4. Anti-endothelial cell IgG from patients with chronic arsenic poisoning induces endothelial proliferation and VEGF-dependent angiogenesis.

    Science.gov (United States)

    Hong, Chien-Hui; Lee, Chih-Hung; Chang, Louis W; Chiou, Min-Hsi; Hsieh, Ming-Chu; Kao, Ying-Hsien; Yu, Hsin-Su

    2008-11-01

    An endemic peripheral vascular disorder due to chronic arsenic poisoning, named Blackfoot disease (BFD), occurs in Taiwan. BFD causes destruction of vascular endothelial cells, and an anti-endothelial cell IgG antibody was found in the sera of BFD patients. We studied the role of this IgG antibody (BFD-IgG) in modulating proliferation and angiogenesis of human umbilical vein endothelial cells (HUVECs) and found that a low concentration of BFD-IgG (200 microg/mL) stimulated endothelial cell growth and increased expressions of vascular cell adhesion molecule-1 (VCAM-1), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF). The apoptosis events appeared not altered by addition of BFD-IgG. An in vitro neoangiogenesis assay demonstrated that BFD-IgG promoted the formation of tube-like structures, which was completely abrogated by anti-VEGF neutralizing antibody and partially by NOS inhibitor, L-NAME. We conclude that BFD-IgG at 200 microg/mL results in cell proliferation and enhanced VEGF-dependent angiogenesis in vitro. Those results suggested that a low concentration of BFD-IgG plays a protective role in the pathogenesis or the progression of BFD.

  5. Melittin suppresses HIF-1α/VEGF expression through inhibition of ERK and mTOR/p70S6K pathway in human cervical carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae-Moon Shin

    Full Text Available OBJECTIVE: Melittin (MEL, a major component of bee venom, has been associated with various diseases including arthritis, rheumatism and various cancers. In this study, the anti-angiogenic effects of MEL in CaSki cells that were responsive to the epidermal growth factor (EGF were examined. METHODOLOGY/PRINCIPAL FINDINGS: MEL decreased the EGF-induced hypoxia-inducible factor-1α (HIF-1α protein and significantly regulated angiogenesis and tumor progression. We found that inhibition of the HIF-1α protein level is due to the shortened half-life by MEL. Mechanistically, MEL specifically inhibited the EGF-induced HIF-1α expression by suppressing the phosphorylation of ERK, mTOR and p70S6K. It also blocked the EGF-induced DNA binding activity of HIF-1α and the secretion of the vascular endothelial growth factor (VEGF. Furthermore, the chromatin immunoprecipitation (ChIP assay revealed that MEL reduced the binding of HIF-1α to the VEGF promoter HRE region. The anti-angiogenesis effects of MEL were confirmed through a matrigel plus assay. CONCLUSIONS: MEL specifically suppressed EGF-induced VEGF secretion and new blood vessel formation by inhibiting HIF-1α. These results suggest that MEL may inhibit human cervical cancer progression and angiogenesis by inhibiting HIF-1α and VEGF expression.

  6. Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell Growth.

    Directory of Open Access Journals (Sweden)

    Lingyi Fu

    Full Text Available Berberine (BBR, an isoquinoline derivative alkaloid isolated from Chinese herbs, has a long history of uses for the treatment of multiple diseases, including cancers. However, the precise mechanisms of actions of BBR in human lung cancer cells remain unclear. In this study, we investigated the molecular mechanisms by which BBR inhibits cell growth in human non-small-cell lung cancer (NSCLC cells. Treatment with BBR promoted cell morphology change, inhibited cell migration, proliferation and colony formation, and induced cell apoptosis. Further molecular mechanism study showed that BBR simultaneously targeted multiple cell signaling pathways to inhibit NSCLC cell growth. Treatment with BBR inhibited AP-2α and AP-2β expression and abrogated their binding on hTERT promoters, thereby inhibiting hTERT expression. Knockdown of AP-2α and AP-2β by siRNA considerably augmented the BBR-mediated inhibition of cell growth. BBR also suppressed the nuclear translocation of p50/p65 NF-κB proteins and their binding to COX-2 promoter, causing inhibition of COX-2. BBR also downregulated HIF-1α and VEGF expression and inhibited Akt and ERK phosphorylation. Knockdown of HIF-1α by siRNA considerably augmented the BBR-mediated inhibition of cell growth. Moreover, BBR treatment triggered cytochrome-c release from mitochondrial inter-membrane space into cytosol, promoted cleavage of caspase and PARP, and affected expression of BAX and Bcl-2, thereby activating apoptotic pathway. Taken together, these results demonstrated that BBR inhibited NSCLC cell growth by simultaneously targeting AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF, PI3K/AKT, Raf/MEK/ERK and cytochrome-c/caspase signaling pathways. Our findings provide new insights into understanding the anticancer mechanisms of BBR in human lung cancer therapy.

  7. THERAPEUTIC EFFECTS OF THE TRANSPLANTATION OF VEGF OVEREXPRESSING BONE MARROW MESENCHYMAL STEM CELLS IN THE HIPPOCAMPUS OF MURINE MODEL OF ALZHEIMER’S DISEASE

    Directory of Open Access Journals (Sweden)

    Karina de Oliveira Garcia

    2014-03-01

    Full Text Available Alzheimer´s disease (AD is clinically characterized by progressive memory loss, behavioural and learning dysfunction and cognitive deficits, such as alterations in social interactions. The major pathological features of AD are the formation of senile plaques and neurofibrillary tangles together with neuronal and vascular damage. The double transgenic mouse model of AD (2xTg-AD with the APPswe/PS1dE9 mutations shows characteristics that are similar to those observed in AD patients, including social memory impairment, senile plaque formation and vascular deficits. Mesenchymal stem cells (MSCs, when transplanted into the brain, produce positive effects by reducing Aβ deposition in transgenic APP/PS1 mice. Vascular endothelial growth factor (VEGF, exhibits neuroprotective effects against the excitotoxicity implicated in the AD neurodegeneration.The present study investigates the effects of MSCs overexpressing VEGF in hippocampal neovascularization, cognitive dysfunction and senile plaques present in 2xTg-AD transgenic mice. MSC were transfected with uP-VEGF vector, by electroporation and expanded at the 14th passage. 2xTg-AD animals at 6, 9 and 12 months old were transplanted with MSC-VEGF or MSC. The animals were tested for behavioral tasks to access locomotion, novelty exploration, learning and memory, and their brains were analyzed by IHC for vascularization and Aβ plaques. MSC-VEGF treatment favored the neovascularization and diminished senile plaques in hippocampal specific layers. Consequently, the treatment was able to provide behavioral benefits and reduce cognitive deficits by recovering the innate interest to novelty and counteracting memory deficits present in these AD transgenic animals. Therefore, this study has important therapeutic implications for the vascular damage in the neurodegeneration promoted by Alzheimer’s disease.

  8. SPARC overexpression combined with radiation retards angiogenesis by suppressing VEGF-A via miR‑410 in human neuroblastoma cells.

    Science.gov (United States)

    Boyineni, Jerusha; Tanpure, Smita; Gnanamony, Manu; Antony, Reuben; Fernández, Karen S; Lin, Julian; Pinson, David; Gondi, Christopher S

    2016-10-01

    Neuroblastoma (NB) is the most common extra-cranial solid tumor in children and despite aggressive therapy survival rates remain low. One of the contributing factors for low survival rates is aggressive tumor angiogenesis, which is known to increase due to radiation, one of the standard therapies for neuroblastoma. Therefore, targeting tumor angiogenesis can be a viable add-on therapy for the treatment of neuroblastomas. In the present study, we demonstrate that overexpression of secreted protein acidic and rich in cysteine (SPARC) suppresses radiation induced angiogenesis in SK-N‑BE(2) and NB1691 neuroblastoma cells. We observed that overexpression of SPARC in SK-N-BE(2) and NB1691 cells reduced radiation induced angiogenesis in an in vivo mouse dorsal skin model and an ex vivo chicken CAM (chorioallantoic-membrane) model and also reduced tumor size in subcutaneous mouse tumor models of NB. We also observed that SPARC overexpression reduces VEGF-A expression, in SK-N-BE(2) and NB1691 NB cells via miR-410, a VEGF-A targeting microRNA. SPARC overexpression alone or in combination with miR-410 and radiation was shown to be effective at reducing angiogenesis. Moreover, addition of miR-410 inhibitors reversed SPARC mediated inhibition of VEGF-A in NB1691 cells but not in SK-N-BE(2) NB cells. In conclusion, the present study demonstrates that the overexpression of SPARC in combination with radiation reduced tumor angiogenesis by downregulating VEGF-A via miR-410. PMID:27498840

  9. Acidic extracellular pH promotes prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs.

    Science.gov (United States)

    Huang, Sheng; Tang, Yubo; Peng, Xinsheng; Cai, Xingdong; Wa, Qingde; Ren, Dong; Li, Qiji; Luo, Jiaquan; Li, Liangping; Zou, Xuenong; Huang, Shuai

    2016-10-01

    Bone metastasis is a main cause of cancer-related mortality in patients with advanced prostate cancer. Emerging evidence suggests that the acidic extracellular microenvironment plays significant roles in the growth and metastasis of tumors. However, the effects of acidity on bone metastasis of PCa remain undefined. In the present study, PC-3 cells were cultured in acidic medium (AM; pH 6.5) or neutral medium (NM; pH 7.4), aiming to investigate the effects and possible mechanisms of acidic extracellular microenvironment in bone metastasis of PCa. Our results showed that AM can promote spheroid and colony formations, cell viability and expression of stem cell characteristic-related markers in PC-3 cells. Moreover, AM stimulates MMP-9 secretion and promotes invasiveness of PC-3 cells, and these effects can be inhibited by blocking of MMP-9. Furthermore, AM stimulates VEGF secretion of PC-3 and AM conditioned medium (CMAM) promotes vasculogenesis of BM-EPCs by increasing cell viability, migration, tube formation, which involved activating the phosphorylation of VEGFR-2, Akt and P38, when pH of NM conditioned medium (CMNM) was modulated the same as AM conditioned medium (CMAM). Further studies have shown that CMNM induced vasculogenesis of BM-EPCs can be inhibited by the inhibition of VEGFR2 with DMH4. These findings suggest that acidic extracellular microenvironment may have the potential to modulate prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs. Improved anticancer strategies should be designed to selectively target acidic tumor microenvironment.

  10. Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8.

    Science.gov (United States)

    Ahn, G-One; Seita, Jun; Hong, Beom-Ju; Kim, Young-Eun; Bok, Seoyeon; Lee, Chan-Ju; Kim, Kwang Soon; Lee, Jerry C; Leeper, Nicholas J; Cooke, John P; Kim, Hak Jae; Kim, Il Han; Weissman, Irving L; Brown, J Martin

    2014-02-18

    Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel-Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1-activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.

  11. Transcriptional profiling of mouse uterus at pre-implantation stage under VEGF repression.

    Directory of Open Access Journals (Sweden)

    Yan Ji

    Full Text Available Uterus development during pre-implantation stage affects implantation process and embryo growth. Aberrant uterus development is associated with many human reproductive diseases. Among the factors regulating uterus development, vascular remodeling promoters are critical for uterus function and fertility. Vascular endothelial growth factor (VEGF, as one of the major members, has been found to be important in endothelial cell growth and blood vessel development, as well as in non-endothelial cells. VEGF mediation in reproduction has been broadly studied, but VEGF-induced transcriptional machinery during implantation window has not been systematically studied. In this study, a genetically repressed VEGF mouse model was used to analyze uterus transcriptome at gestation 2.5 (G2.5 by Solexa/Illumina's digital gene expression (DGE system. A number of 831 uterus-specific and 2398 VEGF-regulated genes were identified. Gene ontology (GO analysis indicated that genes actively involved in uterus development were members of collagen biosynthesis, cell proliferation and cell apoptosis. Uterus-specific genes were enriched in activities of phosphatidyl inositol phosphate kinase, histone H3-K36 demethylation and protein acetylation. Among VEGF-regulated genes, up-regulated were associated with RNA polymerase III activity while down-regulated were strongly related with muscle development. Comparable numbers of antisense transcripts were identified. Expression levels of the antisense transcripts were found tightly correlated with their sense expression levels, an indication of possibly non-specific transcripts generated around the active promoters and enhancers. The antisense transcripts with exceptionally high or low expression levels and the antisense transcripts under VEGF regulation were also identified. These transcripts may be important candidates in regulation of uterus development. This study provides a global survey on genes and antisense transcripts

  12. Chlamydophila pneumoniae enhances secretion of VEGF, TGF-β and TIMP-1 from human bronchial epithelial cells under Th2 dominant microenvironment

    OpenAIRE

    Park, Chan-Sun; Kim, Tae-Bum; Moon, Keun Ae; Bae, Yun-Jeong; Lee, Hee Ran; Jang, Min Kyoung; Moon, Hee-Bom; Cho, You Sook

    2009-01-01

    Purpose Chlamydophila pneumoniae infection in the airways is thought to be associated with the pathogenesis of asthma, especially in non-atopic severe asthma with irreversible airway obstruction that may be related to airway remodeling. Here, we investigated whether C. pneumoniae infection enhances the secretion of critical chemical mediators for airway remodeling, such as VEGF, TGF-β, and TIMP-1, in human bronchial epithelial cells (BECs) in a Th2-dominant microenvironment. Methods Human bro...

  13. Construction and identification of recombinant adenovirus vector co-expressing VEGF121 and BMP2 genes and its expression in HEK293 cells%VEGF121和BMP2双基因共表达重组腺病毒载体的构建及其在HEK293中的表达

    Institute of Scientific and Technical Information of China (English)

    栗刚; 吴秀成; 钟声; 王巍; 李媛; 刘丹平

    2011-01-01

    目的 构建人血管内皮生长因子121(VEGF121)与人骨形态发生蛋白2(BMP2)双基因共表达腺病毒载体Adv-BMP2-IRES-VEGF121,并观察其在人胚肾细胞株(HEK293)中的表达情况.方法 对腺病毒质粒pShuttle-CMV-BMP2的目的基因BMP2进行PCR扩增.腺病毒质粒pShuttle-CMV-VEGF121-IRES-hrGFP-1经Kpn I/Xba I酶切后,将BMP2片段定向导入pShuttle-CMV-VEGF121-IRES,构建pShuttle-CMV-V EGF121-IRES-BMP2,并注入大肠杆菌DH5a中扩增,提取质粒.通过酶切分析、PCR检测和序列分析进行鉴定.将构建所得的质粒转染HEK293,采用RT-PCR法检测HEK293中的BMP2、VEGF121 mRNA,Western blot法检测其蛋白.结果 成功构建了Adv-BMP2-IRES-VEGF121.酶切分析及DNA序列测定证实重组质粒构建正确.质粒转染后的HEK293 BMP2和VEGF121表达阳性.结论 成功构建了Adv-BMP2-IRES-VEGF121,其转染HEK293后,VEGF121、BMP2在HEK293中共表达阳性.%Objective To construct and identify the adenovirus shuttle plasmid pShuttle-CMV-VEGF121-IRES-BMP2 and its express in HEK293 cells.Methods The DNA fragments of human BMP2 gene were changed restriction sites and subcloned by PCR.The human BMP2 genes and pShuttle-CMV-VEGF121-IRES were ligated into the plasmid by directional cloning method.The inserted target genes in the plasmid were verified by restriction enzyme digestion and nucleotide sequencing.The correct recombinant express plasmid was transfected to HEK293 cells.The expression of VEGF121, BMP2 mRNA were detected by RT-PCR, the VEGF121, BMP2 protein were detected by Western blotting.Results The adenovirus shuttle plasmid was constructed correctly.The VEGF121, BMP2 mRNA and protein were expressed in HEK293 cells.Conclusion The adenovirus shuttle plasmid is constructed, VEGF121, BMP2 mRNA and protein are successfully expressed in HEK293 cells.

  14. VEGF165b in the developing vasculatures of the fetal human eye

    Science.gov (United States)

    Baba, Takayuki; McLeod, D. Scott; Edwards, Malia M.; Merges, Carol; Sen, Tanusree; Sinha, Debasish; Lutty, Gerard A.

    2016-01-01

    VEGF165b is an anti-angiogenic form of VEGF165 produced by alternative splicing. The localization of pro-angiogenic VEGF165 and anti-angiogenic VEGF165b was investigated during development of the vasculatures in fetal human eyes from 7 to 21 weeks gestation (WG). The fetal vasculature of vitreous, which includes tunica vasculosa lentis (TVL), had moderate VEGF165 immunoreactivity at 7WG and very little VEGF165b. Both forms were elevated at 12WG. VEGF165 then decreased around 17WG when the TVL regresses but VEGF165b remained elevated. In choroid, VEGF165 was present in forming choriocapillaris (CC) and retinal pigment epithelium (RPE) at 7WG while VEGF165b was present in CC and mesenchymal precursors within the choroidal stroma. By 21WG, both forms were elevated in RPE and choroidal blood vessels but VEGF165b was apical and VEGF165 basal in RPE. Diffuse VEGF165 immunoreactivity was prominent in 12WG innermost retina where blood vessels will form while VEGF165b was present in most CXCR4+ progenitors in the inner neuroblastic layer and migrating angioblasts in the putative nerve fiber layer. By 21WG, VEGF165 was present in nerve fibers and VEGF165b in inner Muller cell process. The localization of VEGF165b was distinctly different from VEGF165 both spatially and temporally and it was often associated with nucleus in progenitors. PMID:22275161

  15. Bone marrow mast cell density correlates with serum levels of VEGF and CXC chemokines ENA-78 and GRO-α in multiple myeloma.

    Science.gov (United States)

    Pappa, C A; Tsirakis, G; Devetzoglou, M; Zafeiri, M; Vyzoukaki, R; Androvitsanea, A; Xekalou, A; Sfiridaki, K; Alexandrakis, M G

    2014-06-01

    Angiogenesis is a crucial process in growth and progression of multiple myeloma (MM). Mast cells (MCs) play an important role in MM angiogenesis. Various angiogenic mediators secreted by MCs regulate endothelial cell proliferation and function. Among them, ELR(+) CXC chemokines, such as growth-related oncogen-alpha (GRO-α) and epithelial neutrophil activating protein-78 (ENA-78), have been described as potential mediators in regulation of angiogenesis. The purpose of the study was to quantify MCs in bone marrow (BM) biopsies of MM patients, expressed as MC density (MCD), and correlate it with serum concentrations of vascular endothelial factor (VEGF), GRO-α, ENA-78. Fifty-four newly diagnosed MM patients and 22 healthy controls were studied. Tryptase was used for the immunohistochemical stain of MCs. VEGF, GRO-α, and ENA-78 were measured in sera by ELISA. MCD and serum levels of GRO-α, ENA-78, and VEGF were significantly higher in MM patients compared to controls (pENA-78. These findings support that MCs participate in the pathophysiology of MM and is implicated in the angiogenic process and disease progression.

  16. VEGF receptor-2 (Flk-1 overexpression in mice counteracts focal epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Litsa Nikitidou

    Full Text Available Vascular endothelial growth factor (VEGF was first described as an angiogenic agent, but has recently also been shown to exert various neurotrophic and neuroprotective effects in the nervous system. These effects of VEGF are mainly mediated by its receptor, VEGFR-2, which is also referred to as the fetal liver kinase receptor 1 (Flk-1. VEGF is up-regulated in neurons and glial cells after epileptic seizures and counteracts seizure-induced neurodegeneration. In vitro, VEGF administration suppresses ictal and interictal epileptiform activity caused by AP4 and 0 Mg(2+ via Flk-1 receptor. We therefore explored whether increased VEGF signaling through Flk-1 overexpression may regulate epileptogenesis and ictogenesis in vivo. To this extent, we used transgenic mice overexpressing Flk-1 postnatally in neurons. Intriguingly, Flk-1 overexpressing mice were characterized by an elevated threshold for seizure induction and a decreased duration of focal afterdischarges, indicating anti-ictal action. On the other hand, the kindling progression in these mice was similar to wild-type controls. No significant effects on blood vessels or glia cells, as assessed by Glut1 and GFAP immunohistochemistry, were detected. These results suggest that increased VEGF signaling via overexpression of Flk-1 receptors may directly affect seizure activity even without altering angiogenesis. Thus, Flk-1 could be considered as a novel target for developing future gene therapy strategies against ictal epileptic activity.

  17. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hofmann, Matthias [Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt (Germany); Kusachi, Shozo [Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama (Japan); Ninomiya, Yoshifumi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hirohata, Satoshi, E-mail: hirohas@cc.okayama-u.ac.jp [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); International Center, Okayama University, Okayama (Japan)

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  18. Clinicopathological Significance of MicroRNA-20b Expression in Hepatocellular Carcinoma and Regulation of HIF-1α and VEGF Effect on Cell Biological Behaviour

    Directory of Open Access Journals (Sweden)

    Tong-min Xue

    2015-01-01

    Full Text Available miRNA-20b has been shown to be aberrantly expressed in several tumor types. However, the clinical significance of miRNA-20b in the prognosis of patients with hepatocellular carcinoma (HCC is poorly understood, and the exact role of miRNA-20b in HCC remains unclear. The aim of the present study was to investigate the association of the expression of miR-20b with clinicopathological characteristics and overall survival of HCC patients analyzed by Kaplan-Meier analysis and Cox proportional hazards regression models. Meanwhile, the HIF-1α and VEGF targets of miR-20b have been confirmed. We found not only miR-20b regulation of HIF-1α and VEGF in normal but also regulation of miR-20b in hypoxia. This mechanism would help the tumor cells adapt to the different environments thus promoting the tumor invasion and development. The whole study suggests that miR-20b, HIF-1α, and VEGF serve as a potential therapeutic agent for hepatocellular carcinoma.

  19. Study of VEGF transfection on rabbit mesenchymal stem cells%VEGF基因修饰兔骨髓间充质干细胞的研究

    Institute of Scientific and Technical Information of China (English)

    徐松柏; 赵刚; 赵红光; 许侃; 于洪泉; 候宜

    2008-01-01

    BACKGROUND: Vascular endothelial growth factor (VEGF) is a very effective way to make tissue engineer bone vascularization.However, because of expensive and short half-life, VEGF cannot maintain effective concentration in blood after injection. To resolve the problem effectively, gene transfection technique is used in this experiment to transfer human VEGF into seed cells-mesenchymal stem cells (MSCs) of tissue engineer bone and to make it secrete VEGF which could vascularize bone.OBJECTIVE: To explore the possibility of human vascular endothelial growth factor 165 (VEGF165) to transfect rabbit MSCs, and establish the experimental foundation of angiogenesis tissue engineering organization and the treatment of ischemic disorders.DESIGN: Observation control trail.SETTING: First Hospital of Jilin University and Institute of Frontier Medical Sciences of Jilin University.MATERIALS: The experiment was conducted in the Key Laboratory (BSL-2) of Frontier Medical Sciences of Jilin University between June 2003 and August 2004. Health New Zealand white rabbits, 4.0-5.0 months old, weighing 2.5-3.5 kg, half male and half female, were provided by Animal Center of Jilin University. The rabbits were handled under asepsis and anesthetized condition,corresponding to the animal ethical standard. Medicine and reagents: Ham F12 culture media (Gibco, U.S), MTT (Sigma, U.S)PLXSNKDRp-VEGF165 and pcDNA 3.0 vectors were prepared in the present laboratory. ELISA detection kit (Jingmei company,Shenzhen), DH5 α, restriction endonucleases Barn H I, Xhol Ⅰ, Hind Ⅲ, EcoR Ⅰ and standard DNA molecule (Promega,U.S) were also used in this study.METHODS: Rabbits' MSCs were separated and cultivated. The pcDNA 3.0-hVEGF165 expression vector was constructed and identified, pcDNA3.0-VEGF165 eukaryotic expression vector was constructed, the vector was used directly to transfect MSCs. The cultural supernatant then was collected and the soluble protein of human VEGF gene expression was analyzed with

  20. Critical requirement of VEGF-C in transition to fetal erythropoiesis.

    Science.gov (United States)

    Fang, Shentong; Nurmi, Harri; Heinolainen, Krista; Chen, Shuo; Salminen, Essi; Saharinen, Pipsa; Mikkola, Hanna K A; Alitalo, Kari

    2016-08-01

    Vascular endothelial growth factor C (VEGF-C) is a major driver of lymphangiogenesis in embryos and adults. Vegfc gene deletion in mouse embryos results in failure of lymphangiogenesis, fluid accumulation in tissues, and lethality. The VEGF-C receptors VEGFR3 and VEGFR2 are required for embryonic blood vessel formation. The related VEGF is essential for both blood vessel formation and embryonic hematopoiesis, whereas the possible involvement of VEGF-C in hematopoiesis is unknown. Here we unveil a novel hematopoietic function of VEGF-C in fetal erythropoiesis. Deletion of Vegfc in embryonic day 7.5 (E7.5) embryos in the C57BL6 mouse genetic background led to defective fetal erythropoiesis, characterized by anemia and lack of enucleated red blood cells in blood circulation. Macrophages and erythroid cells in the fetal liver (FL) were also decreased after midgestation because of decreased cell proliferation and increased apoptosis. However, the Lin(-)Sca-1(+)c-Kit(+) stem cell compartment in E14.5 FL was not affected by Vegfc deletion. VEGF-C loss did not disrupt the generation of primitive erythroid cells or erythro-myeloid progenitors (EMPs) in the yolk sac, but it decreased the expression of α4-integrin on EMPs and compromised EMP colonization of the FL. The distribution, maturation, and enucleation of primitive erythroblasts were also impaired by Vegfc deletion. In contrast, Vegfc deletion from E10.5 onward did not compromise definitive hematopoiesis in the liver, and Vegfc deletion in adult mice did not cause anemia. These results reveal an unexpected role for VEGF-C, a major lymphangiogenic growth factor, in the transition to FL erythropoiesis. PMID:27343251

  1. HPV16 E6/E7 Negatively Affect Radiosensitivity of Lung Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Lu Lu; Qinghui Meng; Ming Cui; Xiaofei Chu; Shuyi Zhao; Huiwen Xiao; Jiali Dong

    2016-01-01

    Objective Lung cancer cells associated with radioresistance are likely to give rise to local recurrence and distant metastatic relapse,but little is known about its underlying mechanisms.In the present paper,the effects of the HPV16 E6 and HPV16 E7 oncoprotein on the radiosensitivity of lung cancer cell lines were investigated.Methods The HPV16 E6 or HPV16 E7 oncoprotein was expressed by a transient transfection with pcDNA3-HPV16 E6 or pcDNA3-HPV16 E7 expression vector.Human lung cancer H2179 cells and mouse lung cancer Lewis cells were exposed to a γ-ray radiation source,cellular survival was evaluated by using a colony formation assay.The expression of HPV16 oncoproteins E6/E7,extracellular signal-regulated kinases 1/2(ERK1/2) and AKT signaling was determined by Western blot assay.VEGF secretion was determined by ELISA.Results Both HPV16 oncoproteins E6 and E7 significantly decreased radiosensitivity of H2179 cells,associated with a promotion of the ERK1/2 and AKT phosphorylation.A decrease of reactive oxygen species(ROS) and an increase of VEGF levels were observed in the cells expressing the HPV16 oncoproteins E6 and E7.Furthermore,a similar reduction of radiosensitivity mediated by the HPV16 oncoproteins E6 and E7 was also observed in a mouse lung cancer Lewis cells.Conclusion The findings indicate that the HPV16 oncoproteins E6 and E7 negatively affects susceptibility of lung cancer cells to radiotherapy via regulation of the ERK1/2 and Akt signaling pathway and VEGF expression.

  2. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    International Nuclear Information System (INIS)

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  3. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Li, Ruisheng [Institute of Infectious Diseases, 302 Military Hospital, Beijing 100039 (China); Jia, Ying; Zhao, Yun; Xiao, Dongjie [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Dang, Ningning [Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Wang, Yunshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China)

    2014-07-15

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  4. Method development to quantify Bv8 expression in circulating CD11b+ cells in patients with neovascular age-related macular degeneration (nvAMD) exhibiting Anti-VEGF refractoriness.

    Science.gov (United States)

    Catchpole, Timothy; Daniels, Tad; Perkins, Jill; Csaky, Karl G

    2016-07-01

    A subset of neovascular age-related macular degeneration (nvAMD) subjects appears to be refractory to the effects of anti-VEGF treatment and require frequent intravitreal injections. Prokineticin-2 (Bv8) expression in CD11b(+) cells has been linked to anti-VEGF response. We have developed a reproducible method to quantify gene expression in circulating CD11b + cells. Utilizing this method we tested the hypothesis that high Bv8 expression in circulating CD11b(+) cells is associated with anti-VEGF refractoriness in nvAMD patients. Two groups of nvAMD subjects undergoing treatment with anti-VEGF agents were recruited and classified as refractory or non-refractory to anti-VEGF treatment (n = 33 for each group). Two blood draws were obtained from each subject 1-9 months apart. Peripheral blood mononuclear cells (PBMCs) were isolated and CD11b(+) cells were purified via magnetic bead separation. RNA was purified, and relative expression of Bv8 among the subjects was compared via quantitative PCR analysis. Utilizing this approach no significant difference was detected in the mean LogRQ values between the first and second blood draws (t-test, p = 0.826) indicating low intra-patient variability and demonstrating good reproducibility of the assay. There was no significant difference in Bv8 expression between nvAMD subjects classified as refractory versus non-refractory. We were unable to find a correlation between Bv8 expression in CD11b + cells and anti-VEGF refractoriness in human nvAMD subjects. Relatively high expression in Bv8 in these subjects did not correlate with clinical treatment history, as measured by the frequency of injections. Utilizing this well characterized technique, studies are underway to examine alternative gene expression profiles in various circulating cell populations that may contribute to anti-VEGF refractoriness. PMID:27256991

  5. Efficient downregulation of VEGF in retinal pigment epithelial cells by integrin ligand-labeled liposome-mediated siRNA delivery

    Directory of Open Access Journals (Sweden)

    Chen C

    2013-07-01

    Full Text Available Cheng-Wei Chen,1 Ming-Kung Yeh,2 Chia-Yang Shiau,3 Chiao-Hsi Chiang,4,* Da-Wen Lu5,*1Chengwei Biotechnology Co, Ltd, 2Bureau of Pharmaceutical Affairs, Military of National Defense Medical Affairs Bureau, 3Graduate Institute of Medical Sciences, 4School of Pharmacy, National Defense Medical Center, 5Department of Ophthalmology, Tri-Service General Hospital, Taipei, Taiwan *These authors contributed equally to this workBackground: The purpose of this study was to demonstrate the effectiveness of an integrin peptide ligand-labeled liposomal delivery system loaded with vascular endothelial growth factor (VEGF-siRNA in a model study of gene therapy for retinopathy using human retinal pigment epithelial cells.Methods: Arg(R-Gly(G-Asp(D motif peptide conjugating polyethylene glycol modified (RGD-PEGylated liposomes were prepared using a thin-film hydration method and optimized for surface charge, particle size, small interfering RNA (siRNA load, and entrapment efficiency. Reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assays were used to determine VEGF levels in retinal pigment epithelial cells. Cytotoxicity was determined using the 3-[4, 5-dimethylthiazol-2-yl]-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTS assay and flow cytometry.Results: Physicochemical properties, including particle size, zeta potential, and siRNA load, of the prepared RGD-PEGylated liposomes and their entrapment efficiency were determined to be within the following ranges: 123.8–234.1 nm, 17.31–40.09 mV, 5.27%–6.33%, and >97%, respectively. RGD-PEGylated liposome-mediated fluorescent-labeled siRNA delivery demonstrated significantly enhanced cellular uptake, and 3 mol% RGD-PEGylated liposomes (having 3β-[N-(N´, N´-dimethylaminoethane carbamoyl] cholesterol (DC-cholesterol DSPE and DSPE-PEG(2000-RGD with molar ratio of 50/47/3 were shown to have better efficacy with regard to specificity for retinal pigment epithelial

  6. 蜂毒素对人肝癌细胞中HMGB1及VEGF-C表达的影响%Effect of melittin on high mobility group box 1 and vascular endothelial growth factors C expressions in hepatocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    曹清心; 汪晨; 刘宇; 赵丹; 凌昌全

    2012-01-01

    目的 观察蜂毒素对人肝癌细胞株HepG2中高迁移率族蛋白B1(high mobility group box 1,HMGB1)及血管内皮生长因子C(vascular endothelial growth factors C,VEGF-C)表达的影响,探讨其抑制肝癌细胞的作用机制.方法 肝癌细胞HepG2体外培养,经蜂毒素处理后,采用四甲基偶氮唑蓝(MTT)法了解蜂毒素对肝癌细胞增殖的影响,用Western-blotting、qRT-PCR方法检测HMGB1、VEGF-C的表达.结果 蜂毒素在体外能够抑制肝癌细胞的增殖活性;Westem-blotting结果显示,蜂毒素可抑制 HMGB1的表达,且呈浓度依赖性,但对VEGF-C的蛋白表达无明显影响;qRT-PCR结果显示,蜂毒素在mRNA水平均具有抑制HMGB1、VEGF-C表达的作用.结论 蜂毒素可降低肝癌细胞的增殖活性,并可能通过HMGB1、VEGF-C的表达发挥抗肝癌作用.%Objective To observe the effect of melittin on the expressions of high mobility group box 1 (HMGB1) and vascular endothelial growth factors C( VEGF-C) in hepatocarcinoma cells in vitro and to study the mechanisms of melittin in hepatocarcinoma cells. Methods HepG2 cell line was treated with melittin in vitro. The inhibition of proliferation was delected by MTT assay. The expressions of HMGB1 and VEGF-C were detected by western-blotting and real-time quantitative PCR{ qRT-PCR) assay. Results Melittin inhibited cell proliferation in vitro. Western-blotting outcome showed that melitlin could down-regulate the protein of HMGB1, while VEGF-C expression did not change. qRT-PCR results showed that HMGBI and VEGF-C mRNA expressions were down-regulate by melittin. Conclusion It is suggested that melittin can inhibit hepatocarcinoma cells proliferation. The effect of melittin in inducing anti-hepatocarcinoma may be related with down-regulation of HMGBI and VEGF-C.

  7. Circulating VEGF as a biological marker in patients with rheumatoid arthritis? Preanalytical and biological variability in healthy persons and in patients

    DEFF Research Database (Denmark)

    Hetland, Merete Lund; Christensen, Ib Jarle; Lottenburger, Tine;

    2008-01-01

    and contamination of plasma with cellular elements lead to significant increases in VEGF levels, whereas storage for up to 2 years at -80 degrees C or up to 10 freeze/thaw cycles did not affect VEGF levels. Serum VEGF levels were 7-10 fold higher than plasma VEGF levels. Reference intervals for VEGF (plasma: 45 pg...

  8. SIGNIFICANCE OF INSPECTING SERUM VEGF DURING THERAPY OF TUMOR

    Institute of Scientific and Technical Information of China (English)

    薛文成; 孟冬娅; 杨婧; 罗军

    2002-01-01

    Objective: To investigate the clinical significance of the serum VEGF as amarker for monitoring the clinical course of tumor patients cured by surgery and radiotherapy. Methods: Enzyme linked immunosobent assay (ELISA) was used to detect serum levels of VEGF in the patients with carcinoma. Results: X-ray irradiation could induce the tumor cells to express and secret VEGF. Patients with elevated values of serum VEGF 60 days after radiotherapy had higher rate of tumor recurrence and metastasis. There was more chance of metastasis in lung cancer patients with higher level of VEGF after surgical resection (12/21). Less post-operation (3 months~4 years) patients without relapse or cancerometastasis showed elevated values of serum VEGF than those with relapse or cancerometastasis. There was negative correlation between the serum Hb and VEGF in the tumor patients (( =-0.289, P<0.01). In the 28 patients with normal Hb levels at pre-operation, 17 patients with decreased Hb levels had more chance getting higher VEGF after operation than the others (P<0.05). Conclusion: clinical manifestation should be considered in the application of serum VEGF as a tumor marker, a prognostic factor,and a recurrence indicator of tumor. To determine the levels of serum VEGF and Hb, correct the low level of Hb and block the effect of VEGF by special means may be helpful for tumor patients.

  9. Adenovirus-mediated transfer of VEGF into marrow stromal cells combined with PLGA/TCP scaffold increases vascularization and promotes bone repair in vivo

    OpenAIRE

    Duan, Chunguang; Liu, Jian; YUAN, ZHI; Meng, Guolin; Yang, Xiumei; Jia, Shuaijun; Zhang, Jinkang; Chen, Shi

    2012-01-01

    Introduction Large osseous defect remains a serious clinical problem due to the lack of sufficient blood supply and it has been proposed that this situation can be relieved by accelerating the formation of new vessels in the process of bone defect repair. The aim of this study was to develop a new type of artificial bone by transferring the VEGF gene into marrow stromal cells (MSCs) and seeding them into a porous scaffold. Material and methods An adenovirus vector was employed to transfer the...

  10. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Cheng-Hung, E-mail: chchuang@hk.edu.tw [Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, 1018 Sec. 6 Taiwan Boulevard, Taichung 43302, Taiwan, ROC (China); Liu, Chia-Hua [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Lu, Ta-Jung [Department of Chemistry, Institute of Technology and Innovation Management, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Hu, Miao-Lin, E-mail: mlhuhu@dragon.nchu.edu.tw [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China)

    2014-12-15

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  11. Anti-VEGF therapy in the management of retinopathy of prematurity: what we learn from representative animal models of oxygen-induced retinopathy

    Directory of Open Access Journals (Sweden)

    Wang H

    2016-05-01

    Full Text Available Haibo Wang Department of Ophthalmology, John A Moran Eye Center, The University of Utah, Salt Lake City, UT, USA Abstract: Retinopathy of prematurity (ROP remains a leading cause of childhood blindness, affecting infants born prematurely. ROP is characterized by the onset of delayed physiological retinal vascular development (PRVD and followed by pathologic neovascularization into the vitreous instead of the retina, called intravitreal neovascularization (IVNV. Therefore, the therapeutic strategy for treating ROP is to promote PRVD and inhibit or prevent IVNV. Vascular endothelial growth factor (VEGF plays an important role in the pathogenesis of ROP. There is a growing body of studies testing the use of anti-VEGF agents as a treatment for ROP. Intravitreal anti-VEGF treatment for ROP has potential advantages compared with laser photocoagulation, the gold standard for the treatment of severe ROP; however, intravitreal anti-VEGF treatment has been associated with reactivation of ROP and suppression of systemic VEGF that may affect body growth and organ development in preterm infants. Therefore, it is important to understand the role of VEGF in PRVD and IVNV. This review includes the current knowledge of anti-VEGF treatment for ROP from animal models of oxygen-induced retinopathy (OIR, highlighting the importance of VEGF inhibition by targeting retinal Müller cells, which inhibits IVNV and permits PRVD. The signaling events involved in mediating VEGF expression and promoting VEGF-mediated angiogenesis, including hypoxia-dependent signaling, erythropoietin/erythropoietin receptor-, oxidative stress-, beta-adrenergic receptor-, integrin-, Notch/Delta-like ligand 4- and exon guidance molecules-mediated signaling pathways, are also discussed. Keywords: vascular endothelial growth factor, retinopathy of prematurity, intravitreal neovascularization, oxygen-induced retinopathy model, physiological retinal vascular development

  12. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line

    Directory of Open Access Journals (Sweden)

    Jun Xie

    2015-11-01

    Full Text Available The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5−80 μmol/L for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π–π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2.

  13. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    International Nuclear Information System (INIS)

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA3.1 empty vector, pcDNA3.1-VEGF111b or pcDNA3.1-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth

  14. A peptide fusion protein in hibits angiogenesis and tumorgrowth by blocking VEGF binding to KDR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Vascular endothelial growth factor (VEGF) binding to its tyrosine kinase receptors (KDR/FLK1, Flt-1) induces angiogenesis. In search of the peptides blocking VEGF binding to its receptor KDR/FLK1 to inhibit tumor- angiogenesis and growth, we screened a phage display peptide library with KDR as target protein, and some candidate peptides were isolated. In this study, we cloned the DNA fragment coding the peptide K237 from the library, into a vector pQE42 to express fusion protein DHFR-K237 in E. coli M15. The affection of fusion protein DHFR-K237 on endothelial cell proliferation and angiogenesis was investigated. In vitro, DHFR-K237 could completely block VEGF binding to KDR and significantly inhibit the VEGF-medi- ated proliferation of the human vascular endothelial cells. In vivo, DHFR-K237 inhibited angiogenesis in chick embryo chorioa- llantoric membrane and tumor growth in nude mice. These results suggest that K237 is an effective antagonist of VEGF binding to KDR, and could be a potential agent for cancer biotherapy.

  15. VEGF、VEGFR-1在非小细胞肺癌中表达及其意义的研究%Clinical significance of co-expression of VEGF and VEGFR-1 in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    王建伟

    2013-01-01

    variables on overall survival. Results Among 40 cases of NSCLC, 33(82.5%) cases and 35(87.5%) cases were positive expressions of VEGF and VEGFR-1 in NSCLC, respectively. There was positive proportion between VEGF and VEGFR-1 expression in NSCLC(r=0.4428, P0.05). As independent risk factors, pathologic classification, clinical and pathologic staging affected postoperative survival time, while there was not statistical difference between the effects of VEGF expression, VEGFR-1 expression and other characters on postoperative survival time in this study(P>0.05). Conclusion VEGF and VEGFR-1 express in the plasma of NSCLC cells. VEGF can directly act on NSCLC cells via VEGFR-1. There was no relationship between the expression of VEGF and VEGFR-1 in NSCLC cells and biology character/prognosis in this study.

  16. Construction and Identification of Recombinant Adenovirus Vector Containing the hVEGF165 Gene

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To construct the recombinant adenovirus vector containing the cDNA for human vascular endothelial growth factor (hVEGF165), the cDNA for hVEGF165 was subcloned into pACCMV·pLpA. Subsequently, this recombinant pACCMV·hVEGF was co-transfected into 293 cells together with pJM17 to obtain the replication-deficient recombinant adenovirus containing hVEGF gene-AdCMV·hVEGF. The VEGF gene expression was detected by using RT-PCR and Western blot in rabbit aorta vascular smooth muscle cells (VSMC) infected with AdCMV·hVEGF. Cultured human umbilical vein endothelial cells (HUVEC) were incubated with the conditioned medium (CM) from above mentioned VSMC infected with AdCMV·hVEGF to observe the effect of VEGF on proliferation of HUVEC. 48 h after the infection with AdCMV·hVEGF, VSMC demonstrated VEGF expression, and the expressed VEGF could stimulate the proliferation of HUVEC in vitro. Successfully prepared AdCMV·hVEGF165 could express biologically active VEGF in infected VSMC, and stimulate proliferation of HUVEC.

  17. A role for VEGF as a negative regulator of pericyte function and vessel maturation.

    Science.gov (United States)

    Greenberg, Joshua I; Shields, David J; Barillas, Samuel G; Acevedo, Lisette M; Murphy, Eric; Huang, Jianhua; Scheppke, Lea; Stockmann, Christian; Johnson, Randall S; Angle, Niren; Cheresh, David A

    2008-12-11

    Angiogenesis does not only depend on endothelial cell invasion and proliferation: it also requires pericyte coverage of vascular sprouts for vessel stabilization. These processes are coordinated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) through their cognate receptors on endothelial cells and vascular smooth muscle cells (VSMCs), respectively. PDGF induces neovascularization by priming VSMCs/pericytes to release pro-angiogenic mediators. Although VEGF directly stimulates endothelial cell proliferation and migration, its role in pericyte biology is less clear. Here we define a role for VEGF as an inhibitor of neovascularization on the basis of its capacity to disrupt VSMC function. Specifically, under conditions of PDGF-mediated angiogenesis, VEGF ablates pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. At the molecular level, VEGF-mediated activation of VEGF-R2 suppresses PDGF-Rbeta signalling in VSMCs through the assembly of a previously undescribed receptor complex consisting of PDGF-Rbeta and VEGF-R2. Inhibition of VEGF-R2 not only prevents assembly of this receptor complex but also restores angiogenesis in tissues exposed to both VEGF and PDGF. Finally, genetic deletion of tumour cell VEGF disrupts PDGF-Rbeta/VEGF-R2 complex formation and increases tumour vessel maturation. These findings underscore the importance of VSMCs/pericytes in neovascularization and reveal a dichotomous role for VEGF and VEGF-R2 signalling as both a promoter of endothelial cell function and a negative regulator of VSMCs and vessel maturation. PMID:18997771

  18. 胃癌细胞系幽门螺杆菌感染对 HIF-1α、HIF-2α及 VEGF 表达的影响%Effect of Hellcobacter pylori on the Expression of HIF - 1α, HIF - 2α and VEGF in Gastric Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    吴海滨; 张乐鸣

    2012-01-01

    To investigate the effect of Helicobacter pylori(H. pylori) on the expression of HIF - la,HIF -2a and VEGF in human gastric cancer cell line BGC - 823 cells. Methods BGC - 823 cells were co - cultured with different concentration H. pylori for 24 hours. Cell survival rate were examined by the MTT method. The expression of HIF - la, HIF -2a and VEGF mRNA and protein were examined by the RT - PCR and Western - blot techniques. The dilution medium were put into the control group. Results Compared with the control group,H. pylori can increase BGC -823 cells proliferation (P <0. 05) and induce up - regulation of HIF - la,HIF -2a and VEGF mRNA and protein (P < 0.05) in a concentration - dependent manner. Conclusion H. pylori infection may simulate the expression of VEGF and be transported through HIF - la, HIF - 2a pathway in BGC - 823 cells. This may be one of the mechanism that the H. pylori induces gastric cancer angiogenesis and promotes invasion and metastasis.%目的 研究幽门螺杆菌对人胃癌细胞株BGC - 823中缺氧诱导因子-1α(HIF-1α)、缺氧诱导因子-2α(HIF-2α)、血管内皮生长因子(VEGF)表达的影响.方法 将不同浓度的H.pylori悬液与BGC - 823细胞共培养24h后收集细胞,应用MTT法检测细胞存活率,RT - PCR和Western blotting技术检测HIF -1α、HIF - 2α及VEGF的表达.对照组加稀释用培养液.结果 与对照组比较,H.pylori可显著促进BGC - 823细胞的增殖(P<0.05)并能显著提高细胞HIF - 1α、HIF - 2α及VEGF mRNA和蛋白的表达(P<0.05),呈浓度依赖性.结论 H.pylori感染能够刺激BGC - 823细胞VEGF的表达,其机制可能是通过HIF - 1α、HIF - 2α途径介导.这可能是其诱导胃癌血管生成和促进胃癌侵袭转移的机制之一.

  19. Downregulation of VEGF mRNA expression by triamcinolone acetonide acetate-loaded chitosan derivative nanoparticles in human retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Zhou H

    2012-08-01

    Full Text Available Huaisheng Zhou,1 Liqun Yang,2,* Huajie Li,2 Haijun Gong,1 Liangzheng Cheng,2 Haisheng Zheng,1 Li-Ming Zhang,2 Yuqing Lan1,*1Department of Ophthalmology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 2Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China*Both corresponding authors contributed equally to this workBackground: The purpose of this study was to investigate the downregulation of mRNA expression of vascular endothelial growth factor (VEGF by triamcinolone acetonide acetate (TAA-loaded chitosan nanoparticles in human retinal pigment epithelial cells.Methods: TAA-loaded deoxycholic acid-modified chitosan (TAA/DA-Chit nanoparticles were prepared via a self-assembly mechanism, and their morphology and zeta potential were examined by transmission electron microscopy and zeta potential analysis, respectively. DA-Chit and TAA/DA-Chit nanoparticle toxicity was evaluated using a Cell Counting Kit-8 assay. The efficiency of cellular uptake was determined using fluorescein isothiocyanate-labeled DA-Chit nanoparticles, in place of TAA/DA-Chit nanoparticles, assessed by both inverted fluorescence microscopy and flow cytometry. Downregulation of VEGF mRNA expression by TAA/DA-Chit nanoparticles was further investigated by real-time reverse transcription polymerase chain reaction (RT-PCR assay of the treated human retinal pigment epithelial cells.Results: TAA/DA-Chit nanoparticles were prepared with a TAA-loading capacity in the range of 12%–82%, which increased the water solubility of TAA from 0.3 mg/mL to 2.1 mg/mL. These nanoparticles showed oblate shapes 100–550 nm in size in transmission electron microscopic images and had positive zeta potentials. The Cell Counting Kit-8 assay indicated that the DA-Chit and

  20. Hypoxia in Tumor Angiogenesis and Metastasis: Evaluation of VEGF and MMP Over-expression and Down-Regulation of HIF-1alpha with RNAi in Hypoxic Tumor Cells

    Science.gov (United States)

    Shah, Shruti

    Background: As tumor mass grows beyond a few millimeters in diameter, the angiogenic "switch" is turned on leading to recruitment of blood vessels from surrounding artery and veins. However, the tumor mass is poorly perfused and there are pockets of hypoxia or lower oxygen concentrations relative to normal tissue. Hypoxia-inducing factor-1a (HIF-1a), a transcription factor, is activated when the oxygen concentration is low. Upon activation of HIF-1a, a number of other genes also turn on that allows the tumor to become more aggressive and resistant to therapy. Purpose: The main objectives of this study were to evaluate the effect of hypoxia-induced HIF-1a followed by over-expression of angiogenic and metastatic markers in tumor cells and down-regulation of HIF-1a using nanoparticle-delivered RNA interference therapy. Methods: Human ovarian (SKOV3) and breast (MDA-MB-231) adenocarcinoma cells were incubated under normoxic and hypoxic conditions. Following hypoxia treatment of the cells, HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP-2), and MMP-9 expression was analyzed qualitatively and quantitatively. For intracellular delivery of HIF-1a gene silencing small interfering RNA (siRNA), type B gelatin nanoparticles were fabricated using the solvent displacement method and the surface was modified with poly(ethylene glycol) (PEG, Mol. wt. 2kDa). Cellular uptake and distribution of the nanoparticles was observed with Cy3-siRNA loaded, FITC-conjugated gelatin nanoparticles. Cytotoxicity of the nanoparticle formulations was evaluated in both the cell lines. siRNA was transfected in the gelatin nanoparticles under hypoxic conditions. Total cellular protein and RNA were extracted for analysis of HIF1a, VEGF, MMP-2 and MMP-9 expression. Results: MDA-MB-231 and SKOV3 cells show increased expression of HIF1a under hypoxic conditions compared to baseline levels at normoxic conditions. ELISA and western blots of VEGF, MMP-2 and MMP-9 appear to

  1. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, represses angiogenesis in HUVEC cells and in zebrafish embryos via inhibiting the VEGF signal systems.

    Science.gov (United States)

    Qi, Xin; Liu, Ge; Qiu, Lin; Lin, Xiukun; Liu, Ming

    2015-10-01

    Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE) is a bromophenol compound derived from marine algae. Our previous reports have shown that BDDE possessed anticancer activity in vitro. However, its antiangiogenesis activity and possible mechanisms remain unclear. The present study demonstrated that BDDE displayed in vitro antiangiogenesis capabilities by significantly inhibiting HUVEC cells proliferation, migration, and tube formation, without any effect on the preformed vascular tube. Western blot analysis revealed that BDDE decreased the protein level of VEGF and VEGFR but not that of EGFR, FGFR, and IGFR. In addition, BDDE inactivated the VEGF downstream signaling molecules including mTOR and Src, whereas activated Akt and ERK. Moreover, BDDE blocked subintestinal vessel formation in zebrafish embryos in vivo and showed toxicity under high concentrations of BDDE. The results of this present study indicated that BDDE, which has unique chemical structure different from current antiangiogenesis agents, could be used as a potential drug candidate for cancer prevention and therapy. PMID:26463632

  2. Relationship between Expression of beta-catenin and VEGFs(VEGFA,VEGF-C),VEGF Receptors-2(VEGFR-2)in Medulloblastoma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-mei; ZHANG Xiong; LI Yu; MI Can

    2008-01-01

    Objective:To investigate the expression of beta-catenin and VEGFs(VEGF-A,VEGF-C)and VEGF receptor-2(VEGFR-2)protein in medulloblastoma.Methods:Immunohistochemical staining with SP method Was conducted to determine the expression of beta-eatenin and VEGFs(VEGF-A,VEGF-C)and VEGFR-2 in 33 cases of medulloblastoma and 10 normal cerebellar tissues. Results:The expression rate of beta-catenin,and VEGFs (VEGF-A,VEGF-C)and VEGFR-2 in medulloblastoma were significantly higher than that in normal tissue.A significant positive correlation was found between beta-catenin and VEGFs(VEGF-A,VEGF-C)and VEGFR-2 protein in medulloblastoma. Conclusion:There was a correlation between beta-catenin and VEGFs(VEGF-A,VEGF-C)and VEGFR-2 in medulloblastoma,which may play a role in the pathogenesis and development of medulloblastoma.

  3. Adipose stromal cells amplify angiogenic signaling via the VEGF/mTOR/Akt pathway in a murine hindlimb ischemia model: a 3D multimodality imaging study.

    Directory of Open Access Journals (Sweden)

    Weiwei Fan

    Full Text Available Although adipose-derived stromal cell (ADSC transplantation has been demonstrated as a promising therapeutic strategy for peripheral arterial disease (PAD, the mechanism of action behind the observed therapeutic efficacy of ADSCs remains unclear. This study was designed to investigate the long-term outcome and therapeutic behavior of engrafted ADSCs in a murine hindlimb ischemia model using multimodality molecular imaging approaches. ADSCs (1.0×10(7 were isolated from Tg(Fluc-egfp mice which constitutively express dual-reporter firefly luciferase and enhanced green fluorescent protein (Fluc(+-eGFP(+, mADSCs(Fluc+GFP+, then intramuscularly injected into the hindlimb of BALB/c-nu mice after unilateral femoral artery ligation and excision. Abbreviated survival (∼5 weeks of post-transplant mADSCs within the ischemic hindlimb was longitudinally monitored using noninvasive bioluminescence imaging (BLI, fluorescence imaging (FRI, and bioluminescence tomography with micro-computed tomography (BLT/micro-CT. Use of the BLT/micro-CT system enabled quantitative 3-dimensional (3D imaging of the cells' distribution and kinetics in vivo. Engrafted mADSCs improved blood perfusion recovery, ambulatory performance and prognosis of the ischemic hindlimb, probably by inducing angiogenesis and formation of collateral vessels, which could be visualized using laser Doppler perfusion imaging (LDPI, micro-CT angiography, vascular-cast imaging, and immunofluorescence. mADSCs augmented activation of the pro-angiogenic VEGF/mTOR/Akt pathway in vivo, even though the cells failed to incorporate into the host microvasculature as functional components. Downregulation of VEGF/mTOR/Akt signaling using small molecule inhibitors counteracted mADSC-induced angiogenesis and perfusion restoration. This study demonstrates for the first time the spatiotemporal kinetics and functional survival of transplanted mADSCs in a PAD model using in vivo 3D multimodality imaging. Our study

  4. Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells

    OpenAIRE

    Elmasri, Harun; Karaaslan, Cagatay; Teper, Yaroslav; Ghelfi, Elisa; Weng, Meiqian; Ince, Tan A.; Kozakewich, Harry; Bischoff, Joyce; Cataltepe, Sule

    2009-01-01

    Fatty acid binding protein 4 (FABP4) plays an important role in maintaining glucose and lipid homeostasis. FABP4 has been primarily regarded as an adipocyte- and macrophage-specific protein, but recent studies suggest that it may be more widely expressed. We found strong FABP4 expression in the endothelial cells (ECs) of capillaries and small veins in several mouse and human tissues, including the heart and kidney. FABP4 was also detected in the ECs of mature human placental vessels and infan...

  5. Effects of Serum Containing Clastrus orbiculatus Extracts on Proliferation and VEGF-c Expression in Hepatoma Cells of Mice%南蛇藤提取物含药血清对小鼠肝癌Hepal-6细胞的增殖能力和VEGF-c表达水平的影响

    Institute of Scientific and Technical Information of China (English)

    员林; 张华; 钱亚云; 侯莹; 朱耀东; 马慧; 郭试瑜; 久光正; 刘延庆

    2011-01-01

    Objective:Preparing rabbit serum containing Clastrus orbiculatus extracts (COE) ,to investigate preliminarily the effects on proliferation and vascular endothelial growth factor-c (VEGF-c) expression in hepatoma cells of mice (Hepa1-6).Method: The New Zealand white rabbits received COE with dose of 20 mg.kg-1 ·d-1 by gavage.The medicated rabbit serum was obtained using serum phamacological approach.Hepal-6 cells were cultured in media with different dosages of COE-containing serum (the low, medium, high dose groups containing 10%,20% ,30% medicated serum respectively).At the same time,the negative control group and 5-fluorouracil (5-Fu) positive control group were set up.The proliferation inhibition effect of medieated serum containing COE on Hepa1-6 cells was detected by microculture tetrazolium (MTT) assay and the expression level of VEGF-c of Hepal-6 cells was tested by enzyme linked immunosorbent (ELISA).Result: The typical morphological changes of apoptosis were observed after incubation with COE-containing serum of each dose.The medium and high dose COE-containing serum could significantly inhibit the proliferation of Hepal-6 cells time-dependently.The VEGF-c expression level of Hepa1-6 cells treating with medium and high dose COE-containing serum for 24 hours were significantly decreased compared with that of the negative control group (P <0.05).Conclusion: COE-containing serum can significantly inhibit proliferation and VEGF-c expression of Hepa1-6 cells in vitro.%目的:制备南蛇藤提取物(Celastrus orbiculatus extracts,COE)兔含药血清,初步研究其对小鼠肝癌Hepal-6细胞株的增殖能力及血管内皮生长因子-c(VEGF-c)表达水平的影响.方法:取新西兰白兔,以20 mg·kg-1·d-1南蛇藤提取物ig,按通法制备含药血清.设立低、中、高剂量组(分别含有10%,20%,30%的南蛇藤提取物含药血清),作用小鼠肝癌Hepal-6细胞,同时设阴性对照组及5-氟尿嘧啶(5-fluorouracil,5-Fu)阳性对照

  6. The correlated study on VEGF and the prognosis of uterine endometriai clear cell carcinoma%血管内皮生长因子与子宫内膜透明细胞癌预后相关性研究

    Institute of Scientific and Technical Information of China (English)

    丁小秋

    2009-01-01

    Objective To determine and analyze the relationship between VEGF/TP expression and ECCC patients'survival time.Mcthods 24 cases of ECCC were analyzed by immunohistechemistry.We separated the patients into high and Low expressions of VEGF group Results low or high expressions of VEGF and TP has a significant influential difference for the patients'survival time.Conclusion There is a close relationship between VEGF expression and prognosis of ECCC%目的 研究子宫内膜透明细胞癌ECCC(uterine endometrial clear cell carcinoma,ECCC)组织中血管内皮生长因子(vascular endothelial growth factor,VEGF)和血小板源性生长因子(platelet-derived endothelial cell growth factor PD-ECG/TP)的表达,从肿瘤新生血管的形成方面来探讨ECCC的预后相关因素.方法 应用免疫组化法检测24例ECCC组织中VEGF、TP的表达,根据VEGF表达情况分成高表达组和低表达组,分析两组患者的生存差异.结果 在ECCC组织中,VEGF/TP均有较高的表达,两组患者的生存差异有统计学意义.结论 低表达组患者的生存时间长于高表达组.

  7. In vitro inhibition of angiogenesis by heat and low pH stable hydroalcoholic extract of Peganum harmala seeds via inhibition of cell proliferation and suppression of VEGF secretion

    DEFF Research Database (Denmark)

    Yavari, Niloofar; Emamian, Farnoosh; Yarani, Reza;

    2015-01-01

    extract of P. harmala seeds on endothelial cells (ECs) proliferation and VEGF secretion. Materials and methods: Dried Peganum seeds were purchased from Kermanshah Traditional Bazar in 2011. Hydroalcoholic extract of dried seeds (0, 10, 20, 40, 60, 80, 100, 120, and 150 μg/ml) was used for in vitro...

  8. 抑制Src酪氨酸激酶对非小细胞肺癌细胞VEGF表达的影响%Effect of Src tyrosine kinase inhibition on VEGF expression in NSCLC cells

    Institute of Scientific and Technical Information of China (English)

    郑锐; 秦晓松; 李文洁; 吴莎

    2011-01-01

    Objective:To study the effect of Src tyrosine kinase inhibition on VEGF expression in NSCLC cells. Methods: ELISA was used to examine the level of VEGF expression in NSCLC cells and the effect of Src tyrosine kinase inhibition on VEGF expression in NSCLC cells. For the subcutaneous tumor model and lung metastasis model, NSCLC cells were inoculated into NK cell - depleted male SCID mice by subcutaneous injection and via the tail vein, respectively. Immunohistochemistry was used to test the effect of Src tyrosine kinase inhibition on VEGF expression in subcutaneous tumor and lung metastasis in mice. Results: There was VEGF expression in all 3 NSCLC cells in our experiment. 0.lμmol/L,0. 3μmol/L, 1 μmol/L and 3μmol/L Src tyrosine kinase inhibitor suppressed VEGF expression in H226 cells by 18% ,8% ,24% and 47%. 0. Lμmol/L,0. 3μmol/L,lμmo]/L and 3μmol/L Src tyrosine kinase inhibitor suppressed VEGF expression in PC - 9 cells and A549 cells by 25% ,56% ,51% ,71% and 14% , 23% ,50% , 43% , respectively. Src tyrosine kinase inhibition greatly reduced VEGF expression in subcutaneous tumors and lung metastases produced by NSCLC cells. Conclusion: Src tyrosine kinase inhibition could suppress VEGF expression in NSCLC cells in vitro and in vivo.%目的:探讨抑制Src酪氨酸激酶对非小细胞肺癌细胞VEGF表达的影响.方法:采用ELISA法检测非小细胞肺癌细胞株培养上清中VEGF表达以及抑制Src酪氨酸激酶对VEGF表达的影响;采用雄性严重联合免疫缺陷(SCID )小鼠,敲除NK细胞,建立非小细胞肺癌细胞诱导的皮下肿瘤和实验性肺转移瘤动物模型,采用免疫组化法研究抑制Src酪氨酸激酶对皮下肿瘤和肺转移瘤中VEGF表达的影响.结果:本实验采用的3种非小细胞肺癌细胞都表达VEGF.0.1μmol/L、0.3μmol/L、1μmol/L和3μmol/L Src酪氨酸激酶抑制剂对H226细胞VEGF表达的抑制率分别为18%、8%、24%和47%,对A549细胞VEGF表达的抑制率分别为14%、23%、50

  9. Elevated IGFIR expression regulating VEGF and VEGF-C predicts lymph node metastasis in human colorectal cancer

    International Nuclear Information System (INIS)

    Insulin-like growth factor-I receptor (IGFIR) has been shown to regulate the tumor development. The objective of the current study is to determine the association of IGFIR with lymph node metastasis and to explore the related mechanism in human colorectal cancer in clinic. In a random series of 98 colorectal cancer patients, the expressions of IGFIR, vascular endothelial growth factor (VEGF) and VEGF-C were investigated by immunohistochemistry, and the association of these expressions with lymph node metastasis was statistically analyzed. The expressions of VEGF and VEGF-C in colorectal cancer cells stimulated with IGF-I were also examined by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Higher rates of IGFIR (46%), VEGF (53%), and VEGF-C (46%) expression were found in colorectal cancer tissues than in normal and colorectal adenoma tissues. These expressions were significantly associated with clinicopathologic factors and lymph node status. We also found the concomitant high expressions of IGFIR/VEGF (P < 0.001) and IGFIR/VEGF-C (P = 0.001) had a stronger correlation with lymph node metastasis than did each alone or both low expressions. In addition, IGF-I could effectively induce the VEGF and VEGF-C mRNA expression and protein secretion in colorectal cancer cells expressing IGFIR molecules. Moreover, Patients who had strong staining for IGFIR, VEGF and VEGF-C showed significantly less favorable survival rates compared with patients who had low staining for these molecules (P < 0.001). The survival rates of patients who were both high expression of IGFIR/VEGF and IGFIR/VEGF-C also were significantly lower compared with patients who were negative or one of high expression of these molecules (P < 0.001). Together the findings indicated for the first time that simultaneous examination of the expressions of IGFIR, VEGF and VEGF-C will benefit the diagnosis of lymph node metastasis in order to assay the

  10. Effects of mir-21 on Cardiac Microvascular Endothelial Cells After Acute Myocardial Infarction in Rats: Role of Phosphatase and Tensin Homolog (PTEN)/Vascular Endothelial Growth Factor (VEGF) Signal Pathway

    Science.gov (United States)

    Yang, Feng; Liu, Wenwei; Yan, Xiaojuan; Zhou, Hanyun; Zhang, Hongshen; Liu, Jianfei; Yu, Ming; Zhu, Xiaoshan; Ma, Kezhong

    2016-01-01

    Background This study investigated how miR-21 expression is reflected in acute myocardial infarction and explored the role of miR-21 and the PTEN/VEGF signaling pathway in cardiac microvascular endothelial cells. Material/Methods We used an in vivo LAD rat model to simulate acute myocardial infarction. MiR-21 mimics and miR-21 inhibitors were injected and transfected into model rats in order to alter miR-21 expression. Cardiac functions were evaluated using echocardiographic measurement, ELISA, and Masson staining. In addition, lenti-PTEN and VEGF siRNA were transfected into CMEC cells using standard procedures for assessing the effect of PTEN and VEGE on cell proliferation, apoptosis, and angiogenesis. MiR-21, PTEN, and VEGF expressions were examined by RT-PCR and Western blot. The relationship between miR-21 and PTEN was determined by the luciferase activity assay. Results We demonstrated that miR-21 bonded with the 3′-UTR of PTEN and suppressed PTEN expressions. Established models significantly induced cardiac infarct volume and endothelial injury marker expressions as well as miR-21 and PTEN expressions (PMiR-21 mimics exhibited significantly protective effects since they down-regulated both infarction size and injury marker expressions by increasing VEGF expression and inhibiting PTEN expression (PmiR-21 on cell proliferation, apoptosis, and angiogenesis (PMiR-21 exerts protective effects on endothelial injury through the PTEN/VEGF pathway after acute myocardial infarction. PMID:27708252

  11. Effects of antisense oligonucleotides targeting VEGF on radio sensitivity of uterine cervix cancer Hela cells%血管内皮生长因子反义核酸对宫颈癌Hela细胞的放射增敏作用

    Institute of Scientific and Technical Information of China (English)

    Lina Xing; Li Qi

    2009-01-01

    Objective: To determine the impact of antisense oligonucleotides targeting vascular endothelial growth factor (VEGF) on radiosensitivity of uterine cervix cancer Hela cells. Methods: VEGF antisense oligodeoxynucleotides (ASODN) was transfected into Hela cells by liposome-mediated method. Cells transfected with the oligodeoxynuclecotide and saline were used as control groups. Cells were irradiated by 6 MV X ray at the dose of 0 Gy, 2 Gy, 4 Gy and 6 Gy respectively. The expression of VEGF mRNA was determined by RT-PCR. Apoptosis were evaluated using FCM. Cloning efficiency was deter-mined by colony formation assay. Results: The expression of VEGF mRNA was inhibited by ASODN (P < 0.01) in Hela cells. The inhibited activation which was influenced by radiation resulted in increasing apoptosis (P < 0.01) and inhibiting plating efficiency (P < 0.01). Conclusion: The expression of VEGF induced by Ⅹ irradiation in Hela cells can be blocked by VEGF ASODN. Treatment with VEGF might increase apoptosis in HeLa cells and enhance radiosensitivity.

  12. HIF-α、VEGF 和 DLL4在非小细胞肺癌中的表达及临床意义%Expressions and Clinical Significance of HIF-α,VEGF and DLL4 in Non-small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    王维; 李强; 韩青松; 池菲; 黄文峰

    2016-01-01

    目的:探讨 Delta 样配体4( Delta-like ligand 4,DLL4)、低氧诱导因子α( hypoxia inducible factor alpha, HIF-α)和血管内皮生长因子( vascular endothelial growth factor,VEGF)在非小细胞肺癌( non-small cell lung cancer, NSCLC)中的表达及其临床意义。方法选取河北省胸科医院胸外科2012年10月—2015年11月经手术治疗 NSCLC患者的手术切除标本72例作为 NSCLC 组,另选距离原发肿瘤5 cm 以上的肺组织标本(经 HE 染色病理证实无肿瘤浸润)72例作为正常对照组。通过免疫组化染色的方法检测 DLL4、HIF-α及 VEGF 的表达情况,并结合患者的临床病理资料进行分析。结果 NSCLC 组 DLL4、HIF-α及 VEGF 阳性表达率显著高于正常对照组( P ﹤0.01);DLL4、HIF-α及VEGF 表达与 NSCLC 肿瘤分化程度、临床分期、淋巴结转移有关( P ﹤0.05),而与患者年龄、性别、病理类型及肿瘤长径无关(P ﹥0.05);DLL4、HIF-α与 VEGF 表达两两之间均呈显著正相关( r =0.320、0.366、0.335,P ﹤0.01)。结论DLL4、HIF-α及 VEGF 在 NSCLC 发生、发展和转移中可能起协同作用,检测 DLL4、HIF-α及 VEGF 的表达对临床判断非小细胞肺癌发生、发展、预后及研发新的靶向治疗药物有一定的价值。%Objective To investigate the expressions and clinical significance of delta-like ligand 4( DLL4), Hypoxia inducible factor alpha(HIF-α)and Vascular endothelial growth factor( VEGF)in non-small cell lung cancer (NSCLC). Methods A total of 72 samples of NSCLC patients undergoing surgery during October 2012 and November 2015 were chosen as NSCLC group,and 72 pulmonic tissue samples more than 5 centimeters away from of the primary tumor,which were confirmed with no tumor invasion by hematoxylin and eosin stain(HE)staining,were chosen as con-trol group. The expressions of DLL4,HIF-α and VEGF were detected using immunohistochemical staining method

  13. Recombinant Goat VEGF164 Increases Hair Growth by Painting Process on the Skin of Shaved Mouse.

    Science.gov (United States)

    Bao, Wenlei; Yin, Jianxin; Liang, Yan; Guo, Zhixin; Wang, Yanfeng; Liu, Dongjun; Wang, Xiao; Wang, Zhigang

    2014-09-01

    To detect goat vascular endothelial growth factor (VEGF)-mediated regrowth of hair, full-length VEGF164 cDNA was cloned from Inner Mongolia cashmere goat (Capra hircus) into the pET-his prokaryotic expression vector, and the recombinant plasmid was transferred into E. coli BL21 cells. The expression of recombinant 6×his-gVEGF164 protein was induced by 0.5 mM isopropyl thio-β-D-galactoside at 32°C. Recombinant goat VEGF164 (rgVEGF164) was purified and identi ed by western blot using monoclonal anti-his and anti-VEGF antibodies. The rgVEGF164 was smeared onto the dorsal area of a shaved mouse, and we noted that hair regrowth in this area was faster than in the control group. Thus, rgVEGF164 increases hair growth in mice. PMID:25178380

  14. The activation of TLR7 regulates the expression of VEGF, TIMP1, MMP2, IL-6, and IL-15 in Hela cells.

    Science.gov (United States)

    Li, Lei; Cheng, Feng-Wei; Wang, Fang; Jia, Bo; Luo, Xin; Zhang, Sheng-Quan

    2014-04-01

    Toll-like receptors (TLRs) play important roles in activation of immunoreaction and tumor development. Toll-like receptor 7 (TLR7), one of the TLRs binding with single-stranded RNA, activates intracellular pathways and stimulates the release of proinflammatory cytokines, chemokines. In this study, we investigated the impact of the TLR7-signaling pathway on the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP2), tissue inhibitor of metalloproteinase 1 (TIMP1), interleukin 6 (IL-6), and interleukin 15 (IL-15), which have been testified to refer to the immunomodulating and tumor progression. We confirmed that the TLR7 was expressed by Hela cells, despite the abundance was weak. Gardiquimod, one of the TLR7 ligands, can promote these five genes expression in varying degrees. After stimulating with gardiquimod, the expression of the IL-15V1, 3 increased about 4.5 times on RNA level, the other expression was only up-regulated about 2 times. We also discovered that gardiquimod could activate the MAPK/ERK- and PI3K/AKT-signaling pathways, and the specific inhibitors studies indicate that, the effect of gardiquimod on these genes expression is mainly or partially dependent on the activation of these two signaling pathways. To sum up, the activation of TLR7 signaling pathway may modulate some genes expression in Hela cells and may contribute to the pathogenesis of the cervical cancer.

  15. Effect of frankincense extract on VEGF and its receptor-1 expression in acute promyelocytic leukemia cell lines HL-60 cells%乳香提取物对HL-60细胞株VEGF分泌及其Flt-1受体表达的影响

    Institute of Scientific and Technical Information of China (English)

    张勇; 齐振华; 李乐赛; 符晓华; 彭小宁; 张娜; 于才红

    2011-01-01

    目的:探索不同浓度乳香提取物作用于HL-60细胞后,白血病细胞株HL-60细胞VEGF mRNA表达及VEGF蛋白分泌及受体Flt-1的变化.方法:MTT法检测乳香提取物对细胞增殖的抑制作用,选择适当的药物浓度及作用时间:RT-PCR法检测乳香提取物处理前后HL-60细胞中VEGF mRNA表达水平;Western Blot法检测乳香提取物处理前后HL-60细胞VEGF分泌和受体Flt-1蛋白表达水平.结果:乳香提取物在15.0 mg/L时在体外能下调HL-60细胞VEGF mRNA的表达和VEGF蛋白的分泌并呈时间与剂量依赖性(P<0.05).结论:乳香提取物在体外可以抑制HL-60细胞分泌VEGF,同时抑制HL-60细胞内VEGF及其受体Flt-1 mRNA及蛋白表达下降,具有潜在抑制急性早幼粒细胞白血病血管新生的作用,是一种可供选择的抗白血病药物.%Objective To assess the effects of Frankincense extract on VEGF and Fit-1 expression in acute promyelocytic leukemia Cell Lines HL-60 cells. Methods HL-60 cells were treated with Frankincense extract, then cell proliferation were examined by the method of MTT. The level of VEGF-mRNA expression was distinguished by semi -quantitative RT -PCR technique. Western Blot was applied to examine the protein expression of VEGF and Fit-1. Results Within the concentration of (10.0~15.0) mg/L, Frankincense extract strongly inhibited proliferation of HL-60 cells. When the drug is 15.0 mg/L, α-boswellic acid can inhibit the mRNA expression of VEGF and the protein expression of VEGF and Fit-1. Conclusion Within a certain drug concentration, Frankincense extract can inhibit HL-60 cells proliferation. Its role of inhibiting angiogenesis maybe relate with down regulating the expression of VEGF and Fit-1.

  16. The expression and function of VEGF at embryo implanta- tion "window" in the mouse

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that plays a critical role in angiogenesis. Recent reports indicated that VEGF was closely involved in embryo implantation and embryonic vasculogenesis. However, very little information is available about the detailed expression and function of VEGF at implantation "window". In this work, VEGFs were primarily present on uterine epithelial cell monolayer and blastocysts including the outgrew trophoblasts at implantation window. VEGF antibodies decreased the number of mice embryos implanted and the percentage of blastocysts with attachment and outgrowth in a co-culture model in a dose-dependant manner. These findings demonstrate that VEGF is one of the essential cytokines for embryo implantation in mouse. VEGF may act as a local mediator to regulate the maternal-fetal interaction, and facilitate blastocyst implantation.

  17. Recombinant Goat VEGF164 Increases Hair Growth by Painting Process on the Skin of Shaved Mouse

    OpenAIRE

    Bao, Wenlei; Yin, Jianxin; Liang, Yan; Guo, Zhixin; Wang, Yanfeng; Liu, Dongjun; Wang, Xiao; Wang, Zhigang

    2014-01-01

    To detect goat vascular endothelial growth factor (VEGF)-mediated regrowth of hair, full-length VEGF164 cDNA was cloned from Inner Mongolia cashmere goat (Capra hircus) into the pET-his prokaryotic expression vector, and the recombinant plasmid was transferred into E. coli BL21 cells. The expression of recombinant 6×his-gVEGF164 protein was induced by 0.5 mM isopropyl thio-β-D-galactoside at 32°C. Recombinant goat VEGF164 (rgVEGF164) was purified and identi ed by western blot using monoclonal...

  18. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration

    Science.gov (United States)

    Marazita, Mariela C.; Dugour, Andrea; Marquioni-Ramella, Melisa D.; Figueroa, Juan M.; Suburo, Angela M.

    2015-01-01

    Oxidative stress has a critical role in the pathogenesis of Age-related Macular Degeneration (AMD), a multifactorial disease that includes age, gene variants of complement regulatory proteins and smoking as the main risk factors. Stress-induced premature cellular senescence (SIPS) is postulated to contribute to this condition. In this study, we hypothesized that oxidative damage, promoted by endogenous or exogenous sources, could elicit a senescence response in RPE cells, which would in turn dysregulate the expression of major players in AMD pathogenic mechanisms. We showed that exposure of a human RPE cell line (ARPE-19) to a cigarette smoke concentrate (CSC), not only enhanced Reactive Oxygen Species (ROS) levels, but also induced 8-Hydroxydeoxyguanosine-immunoreactive (8-OHdG) DNA lesions and phosphorylated-Histone 2AX-immunoreactive (p-H2AX) nuclear foci. CSC-nuclear damage was followed by premature senescence as shown by positive senescence associated-β-galactosidase (SA-β-Gal) staining, and p16INK4a and p21Waf-Cip1 protein upregulation. N-acetylcysteine (NAC) treatment, a ROS scavenger, decreased senescence markers, thus supporting the role of oxidative damage in CSC-induced senescence activation. ARPE-19 senescent cultures were also established by exposure to hydrogen peroxide (H2O2), which is an endogenous stress source produced in the retina under photo-oxidation conditions. Senescent cells upregulated the proinflammatory cytokines IL-6 and IL-8, the main markers of the senescence-associated secretory phenotype (SASP). Most important, we show for the first time that senescent ARPE-19 cells upregulated vascular endothelial growth factor (VEGF) and simultaneously downregulated complement factor H (CFH) expression. Since both phenomena are involved in AMD pathogenesis, our results support the hypothesis that SIPS could be a principal player in the induction and progression of AMD. Moreover, they would also explain the striking association of this disease

  19. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Mariela C. Marazita

    2016-04-01

    Full Text Available Oxidative stress has a critical role in the pathogenesis of Age-related Macular Degeneration (AMD, a multifactorial disease that includes age, gene variants of complement regulatory proteins and smoking as the main risk factors. Stress-induced premature cellular senescence (SIPS is postulated to contribute to this condition. In this study, we hypothesized that oxidative damage, promoted by endogenous or exogenous sources, could elicit a senescence response in RPE cells, which would in turn dysregulate the expression of major players in AMD pathogenic mechanisms. We showed that exposure of a human RPE cell line (ARPE-19 to a cigarette smoke concentrate (CSC, not only enhanced Reactive Oxygen Species (ROS levels, but also induced 8-Hydroxydeoxyguanosine-immunoreactive (8-OHdG DNA lesions and phosphorylated-Histone 2AX-immunoreactive (p-H2AX nuclear foci. CSC-nuclear damage was followed by premature senescence as shown by positive senescence associated-β-galactosidase (SA-β-Gal staining, and p16INK4a and p21Waf-Cip1 protein upregulation. N-acetylcysteine (NAC treatment, a ROS scavenger, decreased senescence markers, thus supporting the role of oxidative damage in CSC-induced senescence activation. ARPE-19 senescent cultures were also established by exposure to hydrogen peroxide (H2O2, which is an endogenous stress source produced in the retina under photo-oxidation conditions. Senescent cells upregulated the proinflammatory cytokines IL-6 and IL-8, the main markers of the senescence-associated secretory phenotype (SASP. Most important, we show for the first time that senescent ARPE-19 cells upregulated vascular endothelial growth factor (VEGF and simultaneously downregulated complement factor H (CFH expression. Since both phenomena are involved in AMD pathogenesis, our results support the hypothesis that SIPS could be a principal player in the induction and progression of AMD. Moreover, they would also explain the striking association of this

  20. Regulating VEGF signaling in platelet concentrates via specific VEGF sequestering.

    Science.gov (United States)

    Belair, David G; Le, Ngoc Nhi; Murphy, William L

    2016-05-26

    Platelets contain an abundance of growth factors that mimic the composition of the wound healing milieu, and platelet-derived VEGF in particular can negatively influence wound healing if unregulated. Here, we sought to capture and regulate the activity of VEGF factor from human platelets using poly(ethylene glycol) microspheres. In this communication, we demonstrate that platelet freeze/thaw produced significantly higher levels of Vascular Endothelial Growth Factor (VEGF) than either calcium chloride treatment, protease activated receptor 1 activating peptide (PAR1AP) treatment, or thrombin treatment. PEG microspheres containing a VEGF-binding peptide (VBP), derived from VEGFR2, sequestered VEGF from platelet concentrate, prepared via freeze/thaw, and reduced the bioactivity of platelet concentrate in HUVEC culture, which suggests that VBP microspheres sequestered and reduced the activity of VEGF from patient-derived platelets. Here, we demonstrate the ability of VEGF sequestering microspheres to regulate the activity of VEGF derived from a growth factor-rich autologous human blood product. PMID:27010034

  1. Effect of glucose and insulin on the secretion of VEGF from 4T1 cells in vitro%葡萄糖和胰岛素对4T1肿瘤细胞分泌VEGF的影响

    Institute of Scientific and Technical Information of China (English)

    孙凤娥; 王蕾; 周慧敏

    2011-01-01

    Objective To observe the effect of different concentrations of glucose and insulin on the secretion of VEGF in 4T1 tumor cells by simulating the changes of glucose and insulin levels at different stages of diabetes mellitus in vitro. Methods The 4T1 tumor cells were cultured in vitro. According to the concentrations of glucose and insulin in culture medium the cells were divided into 15 groups. After different culture media were added,the cells were cultured for 48h. In all experiments VECF concentrations in the supernatant were detected by ELISA. Results As compared with that in group A (control group) ,the concentration of VEGF in group B,C,D and E had no significant differences ( P >0.05). In group H and group I,the levels of VEGF were significantly higher than those in group A. However the concentration of VEGF in group F,G,J had no significant difference,as compared with that in group A respectively ( P > 0. 05 ). In group L and group M, the levels of VEGF were significantly higher than those in group A ( P 0. 05). Conclusion The high concentration of insulin can increase secretion of VEGF from 4T1 tumor cells,however,the concentration of glucose has no obvious effect on the secretion of VEGF from 4T1 tumor cells.%目的 通过模拟糖尿病病程不同阶段患者体内葡萄糖和胰岛素浓度的变化,观察不同浓度的葡萄糖和胰岛素对乳腺癌细胞株4T1肿瘤细胞分泌血管内皮生长因子(VEGF)的影响.方法 体外培养4T1肿瘤细胞,根据培养液中加入的葡萄糖和胰岛素浓度的不同,将实验所用细胞分成15组.培养48 h后收集细胞培养上清,ELISA法检测VEGF的浓度.结果 B、C、D、E组VEGF的浓度与A组(对照组)比较差异无统计学意义(P>0.05).H、I组VEGF的浓度明显高于A组(P<0.05),而F、G、J组VEGF的浓度与A组比较差异无统计学意义(P>0.05).L、M组VEGF的浓度明显高于A组(P<0.05),而K、N、O组VEGF的浓度与A组比较差异无统计学意义(P>0

  2. Heparin-Based Coacervate of FGF2 Improves Dermal Regeneration by Asserting a Synergistic Role with Cell Proliferation and Endogenous Facilitated VEGF for Cutaneous Wound Healing.

    Science.gov (United States)

    Wu, Jiang; Ye, Jingjing; Zhu, Jingjing; Xiao, Zecong; He, Chaochao; Shi, Hongxue; Wang, Yadong; Lin, Cai; Zhang, Hongyu; Zhao, Yingzheng; Fu, Xiaobing; Chen, Hong; Li, Xiaokun; Li, Lin; Zheng, Jie; Xiao, Jian

    2016-06-13

    Effective wound healing requires complicated, coordinated interactions and responses at protein, cellular, and tissue levels involving growth factor expression, cell proliferation, wound closure, granulation tissue formation, and vascularization. In this study, we develop a heparin-based coacervate consisting of poly(ethylene argininylaspartate digylceride) (PEAD) as a storage matrix, heparin as a bridge, and fibroblast growth factor-2 (FGF2) as a cargo (namely heparin-FGF2@PEAD) for wound healing. First, in vitro characterization demonstrates the loading efficiency and control release of FGF2 from the heparin-FGF2@PEAD coacervate. The following in vivo studies examine the wound healing efficiency of the heparin-FGF2@PEAD coacervate upon delivering FGF2 to full-thickness excisional skin wounds in vivo, in comparison with the other three control groups with saline, heparin@PEAD as vehicle, and free FGF2. Collective in vivo data show that controlled release of FGF2 to the wounds by the coacervate significantly accelerates the wound healing by promoting cell proliferation, stimulating the secretion of vascular endothelial growth factor (VEGF) for re-epithelization, collagen deposition, and granulation tissue formation, and enhancing the expression of platelet endothelial cell adhesion molecule (CD31) and alpha-smooth muscle actin (α-SMA) for blood vessel maturation. In parallel, no obvious wound healing effect is found for the control, vehicle, and free FGF2 groups, indicating the important role of the coavervate in the wound healing process. This work designs a suitable delivery system that can protect and release FGF2 in a sustained and controlled manner, which provides a promising therapeutic potential for topical treatment of wounds.

  3. 血管内皮生长因子B对小鼠视神经保护作用的研究%Effect of VEGF-B on neuroprotection in mouse retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    张水华; 曲毅

    2009-01-01

    目的 探讨血管内皮生长因子B(VEGF-B)在视网膜组织的表达及其对视网膜神经节细胞的保护作用.方法 对照实验研究.35只成年雌性健康C57BL/6小鼠,分为正常对照组,视神经损伤后6 h、1 d、1周、2周组.其中10只鼠用于原位杂交,每组2只鼠;25只鼠用于实时定量逆转录聚合酶链反应(real time RT-PCR),每组5只鼠.采用原位杂交法观察实验鼠视网膜组织VEGF-B的mRNA表达;用real time RT-PCR法观察视网膜组织损伤后不同时间VEGF-B的mRNA定量表达;从双侧上丘行荧光金逆行标记和视网膜神经节细胞计数,评估玻璃体腔内注射重组人VEGF-B(450 mg/L)对视网膜神经节细胞的保护作用.应用SAS统计学软件进行数据分析.对组间real timeRT-PCR检测结果比较采用方差分析,对组间视网膜神经节细胞计数的计量资料比较采用秩和检验.以P<0.05作为差异有统计学意义.结果 小鼠视神经损伤后的视网膜组织VEGF-B表达显著增强,损伤后1周达高峰.玻璃体腔内注射重组人VEGF-B蛋白,可显著增加视网膜神经节细胞的存活数量,分别是单纯视神经损伤组和损伤加玻璃体腔内注射的阴性对照组的1.7倍(t=0.1301,P<0.01)和1.9倍(t=0.001,P<0.01).结论 VEGF-B参与小鼠视神经损伤后的修复,并对视网膜神经节细胞有保护作用.(中华眼科杂志,2009,45:38-42)%Objective To investigate the expression of vascular endothelial growth factor-B (VEGF-B) in retina and its effect on neuroprotection in mouse retinal ganglion cells (RGCs). Methods It was a experimental study. 35 of C57BL/6 mice (adult male) were used. Optic nerve crush injury was made in 28 mice, 7 as control.Expression of VEGF-B in retina was detected by hybridization in situ in each group of 2 at 6 hours, 1 day, 1 and 2 weeks after optic nerve crush. A quantitative analysis of VEGF-B mRNA was determined by real time reverse transcription polymerase chain reaction (RT-PCR) in each group

  4. Type II VLDLR promotes cell migration by up-regulation of VEGF, MMP2 and MMP7 in breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Lei He; Yanjun Lu; Jianli Guo

    2013-01-01

    Objective:Very low density lipoprotein receptor (VLDLR) has been considered as a multiple function receptor due to binding numerous ligands, causing endocytosis and regulating cel ular signaling. Our group previously reported that type II VLDLR overexpression in breast cancer tissues. The purpose of this study is to characterize type II VLDLR activities during cel migration using breast cancer cel lines. Methods:Western blotting was used to test protein expression. Cel migration was analyzed by Scratch wound assay. The mRNA expression was tested by realtime-PCR. Reporter assay was to test the transcription activity. Results:Scratch wound and Report assay indicated up-regulated VLDLR II expression promotes cel migration via activating Wnt/β-catenin pathway. The target genes such as VEGF, MMP2 and MMP7 were upregulated in VLDLR II overexpressed cel s. On the contrary, cel s treated with TFPI had an inhibition ef ect of cel migration response to down-regulation of VLDLR II. Conclusion:Type II VLDLR conferred a migration and invasion advantage by activating Wnt/β-catenin pathway, then up-regulating VEGF, MMP2 and MMP7 in breast cancer cel s.

  5. Angiogenic Effects of Collagen/Mesoporous Nanoparticle Composite Scaffold Delivering VEGF165

    Science.gov (United States)

    Kim, Tae-Hyun; Kang, Min Sil

    2016-01-01

    Vascularization is a key issue for the success of tissue engineering to repair damaged tissue. In this study, we report a composite scaffold delivering angiogenic factor for this purpose. Vascular endothelial growth factor (VEGF) was loaded on mesoporous silica nanoparticle (MSN), which was then incorporated within a type I collagen sponge, to produce collagen/MSN/VEGF (CMV) scaffold. The CMV composite scaffold could release VEGF sustainably over the test period of 28 days. The release of VEGF improved the cell proliferation. Moreover, the in vivo angiogenesis of the scaffold, as studied by the chick chorioallantoic membrane (CAM) model, showed that the VEGF-releasing scaffold induced significantly increased number of blood vessel complexes when compared with VEGF-free scaffold. The composite scaffold showed good biocompatibility, as examined in rat subcutaneous tissue. These results demonstrate that the CMV scaffold with VEGF-releasing capacity can be potentially used to stimulate angiogenesis and tissue repair.

  6. Analysis of germline variants in CDH1, IGFBP3, MMP1, MMP3, STK15 and VEGF in familial and sporadic renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Christopher Ricketts

    Full Text Available BACKGROUND: The investigation of rare familial forms of kidney cancer has provided important insights into the biology of sporadic renal cell carcinoma (RCC. In particular, the identification of the von Hippel Lindau (VHL familial cancer syndrome gene (VHL provided the basis for the discovery that VHL is somatically inactivated in most sporadic clear cell RCC. Many cases of familial RCC do not have mutations in known RCC susceptibility genes and there is evidence that genetic modifiers may influence the risk of RCC in VHL disease patients. Hence we hypothesised that low-penetrance functional genetic variants in pathways related to the VHL protein (pVHL function might (a modify the phenotypic expression of VHL disease and/or (b predispose to sporadic RCC. METHODOLOGY/PRINCIPAL FINDINGS: We tested this hypothesis for functional polymorphisms in CDH1 (rs16260, IGFBP3 (rs2854744, MMP1 (rs1799750, MMP3 (rs679620, STK15 (rs2273535 and VEGF (rs1570360. We observed that variants of MMP1 and MMP3 were significant modifiers of RCC risk (and risks of retinal angioma and cerebellar haemangioblastoma in VHL disease patients. In addition, higher frequencies of the MMP1 rs1799750 2G allele (p = 0.017, OR 1.49, 95%CI 1.06-2.08 and the MMP1/MMP3 rs1799750/rs679620 2G/G haplotype (OR 1.45, 95%CI 1.01-2.10 were detected in sporadic RCC patients than in controls (n = 295. CONCLUSIONS/SIGNIFICANCE: These findings (a represent the first example of genetic modifiers of RCC risk in VHL disease, (b replicate a previous report of an association between MMP1/MMP3 variants and sporadic RCC and (c further implicate MMP1/MMP3-related pathways in the pathogenesis of familial and sporadic RCC.

  7. 转染VEGF165的内皮祖细胞移植恢复糖尿病ED大鼠的勃起功能%Transplantation of endothelial progenitor cells transfected with VEGF165 to restore erectile function in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Xin Gou; Yong Chen; Wei-Yang He; Ming-Zhao Xiao; Ming Qiu; Ming Wang; Yuan-Zhong Deng; Chao-Dong Liu; Zao-Sing Tang; Re Li

    2011-01-01

    The present study investigated the effect of transplanting endothelial progenitor cells (EPCs) transfected with the vascular endothelial growth factor gene (VEGF165) into the corpora cavernosa of rats with diabetic erectile dysfunction (ED). A rat model of diabetic ED was constructed via intraperitoneal injection of streptozotocin. After streptozotocin treatment, pre-treated EPCs from each of three groups of rats were transplanted into their corpora cavernosa. Our results, following intracavernosal pressure (ICP) monitoring, showed that ICP increased significantly among rats in the trial group when compared to the results from rats in the blank-plasmid and control groups during basal conditions and electrical stimulation (P<0.01 for both comparisons). Histological examination revealed extensive neovascularisation in the corpora cavernosa of rats in the trial group. Fluorescence microscopy indicated that many of the transplanted EPCs in the trial group survived, differentiated into endothelial cells and integrated into the sites of neovascularisation. Based on the results of this study, we conclude that transplantation of VEGF165-transfected EPCs into the corpora cavernosa of rats with diabetic ED restores erectile function.

  8. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Science.gov (United States)

    Fearnley, Gareth W.; Smith, Gina A.; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A.; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T.; Zachary, Ian C.; Tomlinson, Darren C.; Harrison, Michael A.; Wheatcroft, Stephen B.; Ponnambalam, Sreenivasan

    2016-01-01

    ABSTRACT Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. PMID:27044325

  9. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  10. The carboxyl terminus of VEGF-A is a potential target for anti-angiogenic therapy.

    Science.gov (United States)

    Carter, James G; Gammons, Melissa V R; Damodaran, Gopinath; Churchill, Amanda J; Harper, Steven J; Bates, David O

    2015-01-01

    Anti-VEGF-A therapy has become a mainstay of treatment for ocular neovascularisation and in cancer; however, their effectiveness is not universal, in some cases only benefiting a minority of patients. Anti-VEGF-A therapies bind and block both pro-angiogenic VEGF-Axxx and the partial agonist VEGF-Axxxb isoforms, but their anti-angiogenic benefit only comes about from targeting the pro-angiogenic isoforms. Therefore, antibodies that exclusively target the pro-angiogenic isoforms may be more effective. To determine whether C-terminal-targeted antibodies could inhibit angiogenesis, we generated a polyclonal antibody to the last nine amino acids of VEGF-A165 and tested it in vitro and in vivo. The exon8a polyclonal antibody (Exon8apab) did not bind VEGF-A165b even at greater than 100-fold excess concentration, and dose dependently inhibited VEGF-A165 induced endothelial migration in vitro at concentrations similar to the VEGF-A antibody fragment ranibizumab. Exon8apab can inhibit tumour growth of LS174t cells implanted in vivo and blood vessel growth in the eye in models of age-related macular degeneration, with equal efficacy to non-selective anti-VEGF-A antibodies. It also showed that it was the VEGF-Axxx levels specifically that were upregulated in plasma from patients with proliferative diabetic retinopathy. These results suggest that VEGF-A165-specific antibodies can be therapeutically useful. PMID:25274272

  11. Anti-VEGF antibody treatment accelerates polycystic kidney disease.

    Science.gov (United States)

    Raina, Shagun; Honer, Michael; Krämer, Stefanie D; Liu, Yang; Wang, Xueqi; Segerer, Stephan; Wüthrich, Rudolf P; Serra, Andreas L

    2011-10-01

    Polycystic kidney growth implies expansion of the vasculature, suggesting that vascular endothelial growth factor (VEGF)-dependent processes play a critical role and that VEGF is a putative therapeutic target. Whether an anti-VEGF antibody improves renal cystic disease has not been determined. We administrated 5 mg/kg B20.4.1, an anti-VEGF-A antibody, or vehicle intraperitoneally twice weekly to 4-wk-old male normal (+/+) and cystic (Cy/+) Han:SPRD rats for 6 wk. Renal function, urinary protein excretion, organ/body weight ratios, cyst volume, tubular epithelial cell (TEC) proliferation, renal VEGF, hypoxia-inducible factor (HIF)-1α and -2α expression, renal histology, and kidney hypoxia visualized by [(18)F]fluoromisonidazole positron emission tomography were assessed. The treated compared with untreated +/+ rats had lower TEC proliferation rates, whereas Cy/+ rats receiving B20.4.1 displayed an increased proximal TEC proliferation rate, causing enhanced cyst and kidney growth. The +/+ and Cy/+ rats receiving B20.4.1 had severe renal failure and extensive glomerular damage. Proteinuria, which was highest in anti-VEGF-treated Cy/+ and lowest in untreated normal littermates, was positively correlated with renal HIF-1α and negatively correlated with VEGF expression. The untreated Cy/+ vs. +/+ rats had higher overall [(18)F]fluoromisonidazole uptake. The +/+ rats receiving B20.4.1 vs. untreated had increased [(18)F]fluoromisonidazole uptake, whereas the uptake was unchanged among treated vs. untreated Cy/+ animals. In conclusion, B20.4.1 caused an exaggerated cystic response of the proximal tubules in cystic rats and severe kidney injury that was associated with low renal VEGF and high HIF-1α levels. Anti-VEGF drug therapy may therefore not be a treatment option for polycystic kidney disease. PMID:21677148

  12. AlphaB-crystallin is involved in oxidative stress protection determined by VEGF in skeletal myoblasts.

    Science.gov (United States)

    Mercatelli, Neri; Dimauro, Ivan; Ciafré, Silvia Anna; Farace, Maria Giulia; Caporossi, Daniela

    2010-08-01

    Recent studies suggest that the effects of VEGF-A, the prototype VEGF ligand, may extend to a variety of cell types other than endothelial cells. The expression of VEGF-A and its main receptors, Flt-1/VEGFR-1 and KDR/Flk-1/VEGFR-2, was indeed detected in several cell types, including cardiac myocytes and regenerating myotubes. In addition to its proangiogenic activity, evidence indicates that VEGF-A can sustain skeletal muscle regeneration by enhancing the survival and migration of myogenic cells and by promoting the growth of myogenic fibers. In this study, our aim was to investigate whether VEGF could protect skeletal muscle satellite cells from apoptotic cell death triggered by reactive oxygen species and to identify the main molecular mechanisms. C2C12 mouse myoblasts, cultured in vitro in the presence of exogenous VEGF or stably transfected with a plasmid vector expressing VEGF-A, were subjected to oxidative stress and analyzed for cell growth and survival, induction of apoptosis, and molecular signaling. The results of our study demonstrated that VEGF protects C2C12 myoblasts from apoptosis induced by oxidative or hypoxic-like stress. This protection did not correlate with the modulation of the expression of VEGF receptors, but is clearly linked to the phosphorylation of the KDR/Flk-1 receptor, the activation of NF-kappaB, and/or the overexpression of the antiapoptotic protein alphaB-crystallin. PMID:20441791

  13. Activation of protease-activated receptor 2 induces VEGF independently of HIF-1

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Riis, Simone Elkjær; Frøbert, Ole;

    2012-01-01

    Human adipose stem cells (hASCs) can promote angiogenesis through secretion of proangiogenic factors such as vascular endothelial growth factor (VEGF). In other cell types, it has been shown that induction of VEGF is mediated by both protease activated receptor 2 (PAR2) and hypoxia inducible fact...... 1(HIF-1). The present study hypothesized that PAR2 stimulation through activation of kinase signaling cascades lead to induction of HIF-1 and secretion of VEGF....

  14. Enhanced expression of VEGF-A in β cells increases endothelial cell number but impairs islet morphogenesis and β cell proliferation

    OpenAIRE

    Cai, Qing; Brissova, Marcela; Reinert, Rachel B.; Pan, Fong Cheng; Brahmachary, Priyanka; Jeansson, Marie; Shostak, Alena; Radhika, Aramandla; Poffenberger, Greg; Quaggin, Susan E; Jerome, W. Gray; Daniel J Dumont; Alvin C Powers

    2012-01-01

    There is a reciprocal interaction between pancreatic islet cells and vascular endothelial cells (EC) in which EC-derived signals promote islet cell differentiation and islet development while islet cell-derived angiogenic factors promote EC recruitment and extensive islet vascularization. To examine the role of angiogenic factors in the coordinated development of islets and their associated vessels, we used a “tet-on” inducible system (mice expressing rat insulin promoter-reverse tetracycline...

  15. Identification and function analysis of a novel vascular endothelial growth factor, LvVEGF3, in the Pacific whiteleg shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Wang, Zhiwei; Li, Shihao; Li, Fuhua; Xie, Shijun; Xiang, Jianhai

    2016-10-01

    VEGF signaling pathway is first discovered in mammals and proved to play important roles in the biological processes of angiogenesis, tumor migration, cell differentiation, apoptosis, host-virus interaction etc. Three members in the VEGF signaling pathway, including LvVEGFR, LvVEGF1 and LvVEGF2 in shrimp have been proved to be related with WSSV infection in our previous studies. Currently, another member of VEGF family, LvVEGF3, was isolated and its function during the WSSV infection of shrimp was studied. The deduced amino acid sequence of LvVEGF3 contained a signal peptide, a typical PDGF/VEGF domain and a cysteine-knot motif (CXCXC). Tissue distribution analysis showed that LvVEGF3 was predominantly expressed in hemocytes. The transcriptional level of LvVEGF3 in hemocytes was apparently up-regulated during WSSV infection. Silencing of LvVEGF3 with double-stranded RNA caused a reduction of the cumulative mortality rate of shrimp during WSSV infection. The expression of LvVEGFR was apparently down-regulated after LvVEGF3 silencing and up-regulated after injection of recombinant LvVEGF3 protein, suggesting an interaction between LvVEGF3 and LvVEGFR. Furthermore, the interaction between LvVEGFR and LvVEGF3 was confirmed using the yeast two-hybrid system. The results provided new insights into understanding the role of VEGF signaling pathway during virus infection. PMID:27241034

  16. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment.

    Directory of Open Access Journals (Sweden)

    Bin Bao

    Full Text Available Hypoxia is known to play critical roles in cell survival, angiogenesis, tumor invasion, and metastasis. Hypoxia mediated over-expression of hypoxia-inducible factor (HIF has been shown to be associated with therapeutic resistance, and contributes to poor prognosis of cancer patients. Emerging evidence suggest that hypoxia and HIF pathways contributes to the acquisition of epithelial-to-mesenchymal transition (EMT, maintenance of cancer stem cell (CSC functions, and also maintains the vicious cycle of inflammation-all which lead to therapeutic resistance. However, the precise molecular mechanism(s by which hypoxia/HIF drives these events are not fully understood. Here, we show, for the first time, that hypoxia leads to increased expression of VEGF, IL-6, and CSC signature genes Nanog, Oct4 and EZH2 consistent with increased cell migration/invasion and angiogenesis, and the formation of pancreatospheres, concomitant with increased expression of miR-21 and miR-210 in human pancreatic cancer (PC cells. The treatment of PC cells with CDF, a novel synthetic compound inhibited the production of VEGF and IL-6, and down-regulated the expression of Nanog, Oct4, EZH2 mRNAs, as well as miR-21 and miR-210 under hypoxia. CDF also led to decreased cell migration/invasion, angiogenesis, and formation of pancreatospheres under hypoxia. Moreover, CDF decreased gene expression of miR-21, miR-210, IL-6, HIF-1α, VEGF, and CSC signatures in vivo in a mouse orthotopic model of human PC. Collectively, these results suggest that the anti-tumor activity of CDF is in part mediated through deregulation of tumor hypoxic pathways, and thus CDF could become a novel, and effective anti-tumor agent for PC therapy.

  17. Stimulatory Effect of Vascular Endothelial Growth Factor on Proliferation and Migration of Porcine Trophectoderm Cells and Their Regulation by the Phosphatidylinositol-3-Kinase-AKT and Mitogen-Activated Protein Kinase Cell Signaling Pathways.

    Science.gov (United States)

    Jeong, Wooyoung; Kim, Jinyoung; Bazer, Fuller W; Song, Gwonhwa

    2014-03-01

    Vascular endothelial growth factor (VEGF), a potent stimulator for angiogenesis, is likely to regulate implantation by stimulating endometrial angiogenesis and vascular permeability. In addition to known angiogenetic effects, VEGF has been suggested to participate in development of the early embryo as a mediator of fetal-maternal dialogue. Current studies have determined VEGF in terms of its role in endometrial vascular events, but VEGF-induced effects on the peri-implantation conceptus (embryo and extraembryonic membranes) remains unknown. In the present study, endometrial VEGF, VEGF receptor-1 (VEGFR-1), and VEGF receptor-2 (VEGFR-2) mRNAs increased significantly during the peri-implantation period of pregnancy as compared to the estrous cycle. Expression of VEGF, VEGFR-1, and VEGFR-2 mRNAs was abundant in endometrial luminal and glandular epithelia, endothelial blood vessels, and scattered cells in the stroma and conceptus trophectoderm. In addition, porcine trophectoderm (pTr) cells treated with VEGF exhibited increased abundance of phosphorylated (p)-AKT1, p-ERK1/2, p-p70RSK, p-RPS6, and p-4EBP1 in a time-dependent manner. The addition of U0126, an inhibitor of ERK1/2, inhibited VEGF-induced ERK1/2 phosphorylation, but AKT1 phosphorylation was not affected. The addition of LY294002, a PI3K inhibitor, decreased VEGF-induced phosphorylation of ERK1/2 and AKT1. Furthermore, VEGF significantly stimulated proliferation and migration of pTr cells, but these effects were blocked by SB203580, U0126, rapamycin, and LY294002, which inhibit p38 MAPK, ERK1/2, mTOR, and PI3K, respectively. These results suggest that VEGF is critical to successful growth and development of pTr during early pregnancy and that VEGF-induced stimulatory effect is coordinately regulated by multiple cell signaling pathways, including PI3K-AKT1 and MAPK signaling pathways. PMID:24451985

  18. COX-2, VEGF and tumour angiogenesis.

    LENUS (Irish Health Repository)

    Toomey, D P

    2009-06-01

    Epidemiological evidence suggests a protective effective of regular NSAID use against developing cancer. Cyclooxygenase-2, a target of NSAIDs, is upregulated in many cancers and has been associated with increased VEGF production and angiogenesis. Angiogenesis is the formation of new vessels from existing vasculature and as an essential process for tumour development represents an important therapeutic target. Following an extensive review of the literature this article details the current knowledge on the role of COX-2 in tumorigenesis focusing on its relationship to angiogenesis and VEGF production by tumour cells. While COX-2 is clearly detrimental to prognosis and NSAIDs have a beneficial effect, the possibility of COX-2 independent effects being partly or wholly responsible for this benefit cannot be excluded.

  19. VEGF-D expression correlates with colorectal cancer aggressiveness and is downregulated by cetuximab

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To gain mechanistic insights into the role played by epidermal growth factor receptor (EGFR) in the reg- ulation of vascular endothelial growth factors (VEGFs) in colorectal cancer (CRC). METHODS: The impact of high-level expression of the growth factor receptors EGFR and VEGF recep- tor (VEGFR)3 and the VEGFR3 ligands VEGF-C and VEGF-D on disease progression and prognosis in hu- man CRC was investigated in 108 patients using immu- nohistochemistry. Furthermore, the expression of the lymphangiogenic factors in response to the modulation of EGFR signalling by the EGFR-targeted monoclonal antibody cetuximab was investigated at the mRNA and protein level in human SW480 and SW620 CRC cell lines and a mouse xenograft model. RESULTS: Human CRC specimens and cell lines dis- played EGFR, VEGF-C and VEGF-D expression with varying intensities. VEGF-C expression was associated with histological grade. Strong expression of VEGF-D was significantly associated with lymph node metas- tases and linked to a trend for decreased survival in lymph node-positive patients. EGFR blockade with ce- tuximab resulted in a significant decrease of VEGF-D expression in vitro and in vivo. CONCLUSION: In conclusion, the expression of VEGF-D in colorectal tumours is significantly associated with lymphatic involvement in CRC patients and such expression might be blocked effectively by cetuximab.

  20. A Polyphenol-Enriched Fraction of Rose Oil Distillation Wastewater Inhibits Cell Proliferation, Migration and TNF-α-Induced VEGF Secretion in Human Immortalized Keratinocytes.

    Science.gov (United States)

    Wedler, Jonas; Rusanov, Krasimir; Atanassov, Ivan; Butterweck, Veronika

    2016-07-01

    Water steam distillation of rose flowers separates the essential oil from the polyphenol-containing rose oil distillation wastewater. Recently, a strategy was developed to separate rose oil distillation wastewater into a polyphenol depleted water fraction and a polyphenol-enriched fraction [RF20-(SP-207)]. The objective of the present study was to investigate RF20-(SP-207) and fraction F(IV), augmented in quercetin and ellagic acid, for possible antiproliferative effects in immortalized human keratinocytes (HaCaT) since rose petals are known to contain compounds with potential antiproliferative activity.RF20-(SP-207) revealed dose-dependent antiproliferative activity (IC50 of 9.78 µg/mL). In a nontoxic concentration of 10 µg/mL, this effect was stronger than that of the two positive controls LY294002 (10 µM, PI3 K-inhibitor, 30 % inhibition) and NVP-BEZ235 (100 nM, dual PI3 K/mTOR inhibitor, 30 % inhibition) and clearly exceeded the antiproliferative action of quercetin (50 µM, 25 % inhibition) and ellagic acid (1 µM, 15 % inhibition). Time-lapse microscopy detected a significant impairment of cell migration of RF20-(SP-207) and F(IV). At concentrations of 10 µg/mL of both, extract and fraction, cell migration was strongly suppressed (51 % and 28 % gap closure, respectively, compared to 95 % gap closure 24 hours after control treatment). The suppression of cell migration was comparable to the positive controls LY294002, NVP-BEZ235, and quercetin. Furthermore, basal and TNF-α-stimulated VEGF-secretion was significantly reduced by RF20-(SP-207) and F(IV) at 10 µg/mL (44 % vs. untreated control).In conclusion, RF20-(SP-207) showed promising antiproliferative and antimigratory effects and could be developed as a supportive, therapy against hyperproliferation-involved skin diseases. PMID:27093251

  1. Combined and sequential delivery of bioactive VEGF165 and HGF from poly(trimethylene carbonate) based photo-cross-linked elastomers.

    Science.gov (United States)

    Chapanian, R; Amsden, B G

    2010-04-01

    The ability of trimethylene carbonate (TMC) based elastomers to release bioactive vascular endothelial growth factor (VEGF(165)) and hepatocyte growth factor (HGF) separately and in combined and sequential fashions using an osmotic release mechanism was investigated. A TMC-based elastomer was chosen since TMC degrades without producing potentially harmful acidic degradation products, and its mechanical properties can be tailored by copolymerizing with D,L-lactide (DLLA) and epsilon-caprolactone (epsilon-CL) and by controlling the cross-link density. The bioactivities of released VEGF(165) and HGF were assessed using the proliferation of human aortic endothelial (HAEC) and CCL 208 monkey lung epithelial cell lines. VEGF(165) and HGF were lyophilized separately or together with trehalose, rat serum albumin (RSA) and NaCl. No significant elastomer degradation occurred over the initial 8 weeks, during which the bulk of the embedded growth factors were released. The presence of a low concentration of NaCl in the release media did not affect the viability of HAEC and CCL 208 cells. The TMC-based elastomer was able to provide a sustained release of highly bioactive VEGF(165) and HGF for more than 10 days. When released in combination from the same device, VEGF(165) and HGF were released at similar rates. By preparing a dual-layered cylinder, in which VEGF(165) was in the outer layer and HGF in the inner layer, a constant release of VEGF alone was first obtained, followed by overlapping and constant release of the two growth factors after a period of 4days. This study demonstrates the potential of TMC-based elastomers combined with an osmotic mechanism to release acid-sensitive growth factors in bioactive form alone and in combination, in controlled rates and sequences. PMID:19961885

  2. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism

    DEFF Research Database (Denmark)

    Yang, Yunlong; Zhang, Yin; Iwamoto, Hideki;

    2016-01-01

    The impact of discontinuation of anti-VEGF cancer therapy in promoting cancer metastasis is unknown. Here we show discontinuation of anti-VEGF treatment creates a time-window of profound structural changes of liver sinusoidal vasculatures, exhibiting hyper-permeability and enlarged open-pore sizes...... of the fenestrated endothelium and loss of VE-cadherin. The drug cessation caused highly leaky hepatic vasculatures permit tumour cell intravasation and extravasation. Discontinuation of an anti-VEGF antibody-based drug and sunitinib markedly promotes liver metastasis. Mechanistically, host hepatocyte......, but not tumour cell-derived vascular endothelial growth factor (VEGF), is responsible for cancer metastasis. Deletion of hepatocyte VEGF markedly ablates the 'off-drug'-induced metastasis. These findings provide mechanistic insights on anti-VEGF cessation-induced metastasis and raise a new challenge...

  3. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression

    Directory of Open Access Journals (Sweden)

    Colquhoun Alison

    2009-03-01

    Full Text Available Abstract Background Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results GLA caused a significant decrease in tumour size (75 ± 8.8% and reduced MVD by 44 ± 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF (71 ± 16% and the VEGF receptor Flt1 (57 ± 5.8% but not Flk1. Expression of ERK1/2 was also reduced by 27 ± 7.7% and 31 ± 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2 was reduced by 35 ± 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 ± 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 ± 18% while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 ± 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 ± 7.3% while p21 remained unchanged. The expression of p53 was increased (44 ± 16% by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 ± 11% of BrdU incorporation into the tumour in vivo. Conclusion Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein

  4. PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment.

    Directory of Open Access Journals (Sweden)

    Emmanuelle di Tomaso

    Full Text Available Recent clinical trials of VEGF inhibitors have shown promise in the treatment of recurrent glioblastomas (GBM. However, the survival benefit is usually short-lived as tumors escape anti-VEGF therapies. Here we tested the hypothesis that Platelet Derived Growth Factor-C (PDGF-C, an isoform of the PDGF family, affects GBM progression independent of VEGF pathway and hinders anti-VEGF therapy.We first showed that PDGF-C is present in human GBMs. Then, we overexpressed or downregulated PDGF-C in a human GBM cell line, U87MG, and grew them in cranial windows in nude mice to assess vessel structure and function using intravital microscopy. PDGF-C overexpressing tumors had smaller vessel diameters and lower vascular permeability compared to the parental or siRNA-transfected tumors. Furthermore, vessels in PDGF-C overexpressing tumors had more extensive coverage with NG2 positive perivascular cells and a thicker collagen IV basement membrane than the controls. Treatment with DC101, an anti-VEGFR-2 antibody, induced decreases in vessel density in the parental tumors, but had no effect on the PDGF-C overexpressing tumors.These results suggest that PDGF-C plays an important role in glioma vessel maturation and stabilization, and that it can attenuate the response to anti-VEGF therapy, potentially contributing to escape from vascular normalization.

  5. The expression of HIF-1α and VEGF as well as their correlation with angiogenesis in esophageal squamous cell carcinomas%HIF-1α与VEGF及MVD在食管鳞癌组织中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    Feng Liu; Xiaolong Yang; Boying Ding; Gang Ren; Rongfu Gong

    2009-01-01

    Objective: To investigate the correlations among the expressions of hypoxia-inducible factor-1α (HIF-1α), vas-cular endothelial cell growth factor (VEGF) and microvessel density (MVD), and their relationships to the clinicopathologic characteristics of esophageal squamous cell carcinomas (ESCC). Methods: The expressions of HIF-1α, VEGF and MVD were detected by immunohistochemical method in 45 cases of ESCC, 30 intraepithelial neoplasia and 35 normal esophageal mucosal epithelia tissues. The correlations among the expressions of HIF-1α, VEGF and MVD, and their relationships to the clinicopathologic features of ESCC were analyzed. Results: The rate of positive expression of HIF-1α and VEGF which were 80% and 84% in ESCC were significantly higher than those in intraepithelial neoplasia and normal esophageal rnucosal epi-thelium tissues (P<0.01) and so did the MVD value which was 71.10±15.02 in ESCC (P<0.01). The expression of HIF-1αand VEGF were positively correlated with the depth of tumor invasion, lymph node metastasis and TNM staging of ESCC.The expressions of HIF-1α were positively correlated with the expressions of VEGF and the value of MVD. Conclusion: Overexpression of HIF-1α is found in ESCC. HIF-la may induce the angiogenesis in ESCC by upregulating the transcription of VEGF gene. It may play an important role in the carcinogenesis and aggression in ESCC, HIF-1α, VEGF and MVD may be a useful marker for evaluating the biological behaviors of ESCC.

  6. 骨髓间充质干细胞移植对斑块内HIF-1α、VEGF的影响%Effect of marrow mesenchymal stem cells transplantation on hypoia inducible factor-1 α and VEGF in plaques

    Institute of Scientific and Technical Information of China (English)

    苏云娟; 张清华; 蒋知新; 高德禄

    2012-01-01

    Objective To observe the expressions of hypoxia inducible factor-1 a(HIF-la) and VEGF in atherosclerosis(As) plaques and study the correlation between HIF-1 α, VEGF and plaque neovascularization after bone marrow mesenchymal stem cells transplantation. Methods Thirty-six healthy male New Zealand white rabbits were randomly divided into group A (bone marrow mesenchymal stem cells transplantation group), group B (sham group injected with 0.9% sodium chloride), and group C (control group), 12 in each group. Animals in group A were injected with allogeneic bone marrow derived mesenchymal stem cells via the ear vein after modeling, those in group B were injected with 0.9% sodium chloride, and those in control group received no treatment. Lipid level was measured, and inflammatory markers and vulnerable plaque neovascularization parameters were detected at baseline, before and after bone marrow mesenchymal stem cells transplantation. Results The serum TC and TG levels were significantly higher in group A than in control group, the RAAPIs and I/M were significantly higher in group A than in group B, the microvessel density (MVD) was significantly higher in group A than in group B and control group, and the HIF-1 α , VEGF, and MVD levels were significantly higher in group A than in group B, after bone marrow mesenchymal stem cells transplantation(P<0.05). Conclusion Bone marrow mesenchymal stem cells transplantation can increase the expression of VEGF. VEGF and HIF-1 α can promote plaque neovascularization in AS patients, thus increasing the instability of plaques.%目的 观察缺氧诱导因子-1 α (HIF-1 α)、血管生长因子(VEGF)在动脉粥样硬化(AS)斑块中的表达,探讨骨髓间充质干细胞移植后HIF-1 α、VEGF与斑块内血管形成的关系.方法 36只健康雄性新西兰大白兔随机分为A组(骨髓间充质干细胞移植组)、B组(假手术组:0.9%氯化钠注射液注射组)、C组(空白对照组).A组造膜成功后耳缘静脉

  7. The study on significance of twist andVEGF proteins expression in non-small-cell lung cancer%Twist、VEGF在非小细胞肺癌中的表达及相关性研究

    Institute of Scientific and Technical Information of China (English)

    颜浩; 韩娟; 徐英

    2011-01-01

    目的 探讨Twist、VEGF蛋白在非小细胞肺癌(NSCLC)中的表达及其临床意义.方法 应用免疫组织化学方法检测54例NSCLC标本组织、10例正常肺组织和10例肺良性病变中Twist、VEGF的表达.结果 Twist在NSCLC癌组织中的表达(68.52%)明显高于正常肺组织(10%)和肺良性病变组织(20%)(P<0.05);VEGF表达率64.8%(35/54),明显高于正常肺组织(10%)和肺良性病变(20%)(P<0.05);Twist、VEGF在NSCLC癌组织中表达与肿瘤的分化程度、临床分期及淋巴结转移有关;Twist的表达与VEGF的表达存在明显正相关(r=0.654,P=0.000).结论 Twist蛋白可能通过VEGF介导的肿瘤血管生成,在NSCLC的浸润、转移过程中发挥重要作用.Twist具有较好的临床病理学诊断应用和治疗价值.%Objective To investigate the expression and clinical significance of Twist and VECF in non-small-cell lung cancer (NSCLC) tissues. Methods The expression of Twist and VEGF in 54 cases of NSCLC tissues, 10 cases of normal lung tissues andlo of cases benign lesion of lung was detected by using immunohistochemistry. Results The positive rates of Twist in NSCLC ( 68. 52%) was higher than that in normal lung tissues( 10%) and benign lesion of lung( 20% ) ( P < 0. 05 ) . The positive rates of VEGF in NSCLC(64. 8% ) was higher than that in normal lung tissues( 100% ) and henign lesion of lung( 20% ) ( P < 0. 05). The difference of Twist and VEGF expression was significant in group of tumor differentiation,clinical stage and lymphatic metastasis( P < 0. 05 ) . Positive correlation was ohtained between the expression of Twist and VEGF proteins ( r = 0. 654 , P = 0. 000) . Conclusion Twist protein in NSCLC might play an important role in the invasiveness and metastasis of the tumor through angiogenesis via VEGF. Twist may be helpful for the daignosis and therapy of lung cancer.

  8. DIAGNOSTIC VALUE OF SERUM VEGF, CEA AND NSE IN DIAGNOSIS OF NON-SMALL CELL LUNG CANCER%血清VEGF、CEA、NSE在非小细胞肺癌诊断中应用价值研究

    Institute of Scientific and Technical Information of China (English)

    郑立平; 林海峰

    2011-01-01

    [目的]探讨血清血管内皮生长因子(VEGF)、癌胚抗原(CEA)、神经元特异性烯醇化酶(NSE)在非小细胞肺癌(NSCLC)诊断中的应用价值,旨在为肺癌的诊治提供理论参考.[方法]采用ELISA方法测定100例NSCLC患者和50例健康查体者血清VEGF、CEA、NSE水平,并分析其与病理分型和临床分期的关系.[结果]肺癌组血清CEA、NSE、VEGF水平均显著高于对照组,相比较差异有统计学意义(P<0.05);鳞癌患者血清CEA和NSE水平显著高于腺癌,相比较差异有统计学意义(P<0.05);而血清VEGF水平在鳞癌和腺癌患者中差异无统计学意义(P>0.05);血清VEGF、CEA、NSE水平随着临床分期的递增而显著上升,其血清水平为Ⅳ期>Ⅲ期>I~Ⅱ期,3组之间比较差异有统计学意义(P<0.05).[结论]联合检测肺癌患者血清中VEGF、CEA、NSE水平的变化,对NSCLC的早期诊断和鉴别具有重要的临床价值.%[Objective] To explore diagnostic value of serum vascular endotbelial growth factor (VEGF), earcinoembry-onic antigen (CEA) and neuron-specific enolase (NSE) for diagnosis of the non-small cell lung cancer (NSCLC), and to provide theoretical reference for diagnosis and treatment of NSCLC. [Methods] 100 cases of patients with NSCLC and 50 cases of healthy people were determined by ELJSA, and their relationship with pathological type and clinical stage were analyzed. [ Results ] The serum CEA, NSE and VEGF levels of the lung cancer group were significantly higher than that of control group, the difference was significant (P 0.05); The serum VEGF, CEA and NSE levels significantly increased with increasing clinical stage, the difference was significant among the three groups (P< 0.05). [Conclusion] Combined detection of the serum VEGF, CEA and NSE levels has important clinical value for the early diagnosis and diagnosis of NSCLC.

  9. Enhancement of musculocutaneous nerve reinnervation after vascular endothelial growth factor (VEGF) gene therapy

    OpenAIRE

    Haninec Pavel; Kaiser Radek; Bobek Vladimír; Dubový Petr

    2012-01-01

    Abstract Background Vascular endothelial growth factor (VEGF) is not only a potent angiogenic factor but it also promotes axonal outgrowth and proliferation of Schwann cells. The aim of the present study was to quantitatively assess reinnervation of musculocutaneous nerve (MCN) stumps using motor and primary sensory neurons after plasmid phVEGF transfection and end-to-end (ETE) or end-to-side (ETS) neurorrhaphy. The distal stump of rat transected MCN, was transfected with plasmid phVEGF, plas...

  10. Thrombospondin-1 and VEGF in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Canan Alkim

    2012-01-01

    Full Text Available Angiogenesis is an important process in the pathogenesis of chronic inflammation. We aimed to study the angiogeneic balance in inflammatory bowel disease (IBD by evaluating the expression of vascular endothelial growth factor (VEGF and thrombospondin-1 (TSP-1 on colonic epithelial cells, together with the expression of inducible nitric oxide synthase (iNOS.Twenty-one ulcerative colitis (UC, 14 Crohn's disease (CD, 11 colorectal cancer patients, and 11 healthy controls colonic biopsy samples were evaluated immunohistochemically.The expressions of TSP-1, VEGF, and iNOS in UC and CD groups were higher than expression in healthy control group, all with statistical significance. However, in colorectal cancer group, VEGF and iNOS expressions were increased importantly, but TSP-1 expression was not statistically different from healthy control group's expression. Both TSP-1 and VEGF expressions were correlated with iNOS expression distinctly but did not correlate with each other.Both pro-angiogeneic VEGF and antiangiogeneic TSP-1 expressions were found increased in our IBD groups, but in colorectal cancer group, only VEGF expression was increased. TSP-1 increases in IBD patients as a response to inflammatory condition, but this increase was not enough to suppress pathologic angiogenesis and inflammation in IBD.

  11. Designer Leptin Receptor Antagonist Allo-aca Inhibits VEGF Effects in Ophthalmic Neoangiogenesis Models

    Science.gov (United States)

    Coroniti, Roberta; Fario, Rafal; Nuno, Didier J.; Otvos, Laszlo; Scolaro, Laura; Surmacz, Eva

    2016-01-01

    Experimental and clinical data suggest that pro-angiogenic, pro-inflammatory and mitogenic cytokine leptin can be implicated in ocular neovascularization and other eye pathologies. At least in part, leptin action appears to be mediated through functional interplay with vascular endothelial growth factor (VEGF). VEGF is a potent regulator of neoangiogenesis and vascular leakage with a proven role in conditions such as proliferative diabetic retinopathy, age-related macular degeneration and diabetic macular edema. Accordingly, drugs targeting VEGF are becoming mainstream treatments for these diseases. The crosstalk between leptin and VEGF has been noted in different tissues, but its involvement in the development of eye pathologies is unclear. Leptin is coexpressed with VEGF during ocular neovascularization and can potentiate VEGF synthesis and angiogenic function. However, whether or not VEGF regulates leptin expression or signaling has never been studied. Consequently, we addressed this aspect of leptin/VEGF crosstalk in ocular models, focusing on therapeutic exploration of underlying mechanisms. Here we show, for the first time, that in retinal (RF/6A) and corneal (BCE) endothelial cells, VEGF (100 ng/mL, 24 h) stimulated leptin mRNA synthesis by 70 and 30%, respectively, and protein expression by 56 and 28%, respectively. In parallel, VEGF induced RF/6A and BCE cell growth by 33 and 20%, respectively. In addition, VEGF upregulated chemotaxis and chemokinesis in retinal cells by ~40%. VEGF-dependent proliferation and migration were significantly reduced in the presence of the leptin receptor antagonist, Allo-aca, at 100–250 nmol/L concentrations. Furthermore, Allo-aca suppressed VEGF-dependent long-term (24 h), but not acute (15 min) stimulation of the Akt and ERK1/2 signaling pathways. The efficacy of Allo-aca was validated in the rat laser-induced choroidal neovascularization model where the compound (5 μg/eye) significantly reduced pathological

  12. VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo

    Directory of Open Access Journals (Sweden)

    E Wernike

    2010-02-01

    Full Text Available Bone formation and osseointegration of biomaterials are dependent on angiogenesis and vascularization. Angiogenic growth factors such as vascular endothelial growth factor (VEGF were shown to promote biomaterial vascularization and enhance bone formation. However, high local concentrations of VEGF induce the formation of malformed, nonfunctional vessels. We hypothesized that a continuous delivery of low concentrations of VEGF from calcium phosphate ceramics may increase the efficacy of VEGF administration.VEGF was co-precipitated onto biphasic calcium phosphate (BCP ceramics to achieve a sustained release of the growth factor. The co-precipitation efficacy and the release kinetics of the protein were investigated in vitro. For in vivo investigations BCP ceramics were implanted into critical size cranial defects in Balb/c mice. Angiogenesis and microvascularization were investigated over 28 days by means of intravital microscopy. The formation of new bone was determined histomorphometrically. Co-precipitation reduced the burst release of VEGF. Furthermore, a sustained, cell-mediated release of low concentrations of VEGF from BCP ceramics was mediated by resorbing osteoclasts. In vivo, sustained delivery of VEGF achieved by protein co-precipitation promoted biomaterial vascularization, osseointegration, and bone formation. Short-term release of VEGF following superficial adsorption resulted in a temporally restricted promotion of angiogenesis and did not enhance bone formation. The release kinetics of VEGF appears to be an important factor in the promotion of biomaterial vascularization and bone formation. Sustained release of VEGF increased the efficacy of VEGF delivery demonstrating that a prolonged bioavailability of low concentrations of VEGF is beneficial for bone regeneration.

  13. Osteogenesis and vascularization of bone marrow mesenchymal stem cells transfected by pcDNA3/hVEGF165 combined with freeze-dried cancellous bone in vivo%脂质体介导pcDNA3/hVEGF165转染骨髓基质干细胞复合冻干骨的体内成骨和血管化

    Institute of Scientific and Technical Information of China (English)

    张鹏; 董玲; 杨连甲

    2011-01-01

    BACKGROUND: Previous studies have shown that vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) can improve the implant livability and growth.OBJECTIVE: To study the effect of freeze-dried cancellous bone on the osteogenesis and vascularization of bone marrow stem cells transfected with pcDNA3/hVEGF165 in vivo.METHODS: The rabbit bone marrow stem cells, which were transfected with pcDNA3/hVEGF165 by liposome mediated method and then adhered to freeze-dried cancellous bone, were implanted in the muscle pouches of rabbits. The rabbits were divided into three groups: freeze-dried cancellous bone group (A group), freeze-dried cancellous bone combined with bone marrow stem cells group (B group), freeze-dried cancellous bone combined with bone marrow stem cells transfected with VEGF group (C group).RESULTS AND CONCLUSION: At the 8th week after implantation, it was found, compared with A group and B group, C group grew a large number of osteoblasts, osteoclasts and cartilage, and the number of vessels in C group was more than that in A or B group. The osteogenesis of the freeze-dried cancellous bone combined with bone marrow stem cells transfected with VEGF using pcDNA3/hVEGF165 by liposome mediated method is better than the freeze-dried cancellous bone or freeze-dried cancellous bone combined with bone marrow stem cells.%背景:以往的研究表明血管内皮生长因子、碱性成纤维细胞生长因子可以促进移植物的存活和体内生长.目的:观察脂质体介导的pcDNA3/hVEGF165转染骨髓基质干细胞后复合冻干松质骨在体内的成骨和血管化效果.方法:取同种异体新西兰大白兔的耾骨和股骨制备冻干骨,用脂质体将血管内皮生长因子转染入体外培养扩增新西兰大白兔骨髓基质干细胞中,使其附着于同种异体冻干松质骨.将新西兰大白兔分为3组,于兔竖脊肌分别植入单纯冻干骨、单纯骨髓间充质干细胞复合冻干骨组、转染

  14. Differential regulation of angiogenesis using degradable VEGF-binding microspheres.

    Science.gov (United States)

    Belair, David G; Miller, Michael J; Wang, Shoujian; Darjatmoko, Soesiawati R; Binder, Bernard Y K; Sheibani, Nader; Murphy, William L

    2016-07-01

    Vascular endothelial growth factor (VEGF) spatial and temporal activity must be tightly controlled during angiogenesis to form perfusable vasculature in a healing wound. The native extracellular matrix (ECM) regulates growth factor activity locally via sequestering, and researchers have used ECM-mimicking approaches to regulate the activity of VEGF in cell culture and in vivo. However, the impact of dynamic, affinity-mediated growth factor sequestering has not been explored in detail with biomaterials. Here, we sought to modulate VEGF activity dynamically over time using poly(ethylene glycol) microspheres containing VEGF-binding peptides (VBPs) and exhibiting varying degradation rates. The degradation rate of VBP microspheres conferred a differential ability to up- or down-regulate VEGF activity in culture with primary human endothelial cells. VBP microspheres with fast-degrading crosslinks reduced VEGF activity and signaling, while VBP microspheres with no inherent degradability sequestered and promoted VEGF activity in culture with endothelial cells. VBP microspheres with degradable crosslinks significantly reduced neovascularization in vivo, but neither non-degradable VBP microspheres nor bolus delivery of soluble VBP reduced neovascularization. The covalent incorporation of VBP to degradable microspheres was required to reduce neovascularization in a mouse model of choroidal neovascularization in vivo, which demonstrates a potential clinical application of degradable VBP microspheres to reduce pathological angiogenesis. The results herein highlight the ability to modulate the activity of a sequestered growth factor by changing the crosslinker identity within PEG hydrogel microspheres. The insights gained here may instruct the design and translation of affinity-based growth factor sequestering biomaterials for regenerative medicine applications. PMID:27061268

  15. 蜂毒素对人肝癌 BEL-7402细胞增殖和VEGF、bFGF表达的影响%Effects of Melittin on the proliferation of human hepatocarcinoma BEL-7402 cell lines and expression of VEGF and bFGF

    Institute of Scientific and Technical Information of China (English)

    宋长城; 吕祥; 程彬彬; 李柏; 凌昌全

    2011-01-01

    Aim To investigate the inhibitory effect of Melittin ( Mel )on the proliferation of hepatocarcinoma cells and expression of VEGF and bFGF. Methods The inhibitory effect of Mel with different concentrations on hepatocarcinoma cells was detected by MTT assay. The concentration of VEGF and bFGF in the supernatant of hepatocarcinoma cells was examined by ELISA. Expression of VEGF and bFGF was detected by immunocytochemical staining. mRNA levels of VEGF and bFGF were analyzed by real time fluorescent quantative polymerase chain reaction ( RT-PCR ). Results Mel significantly inhibited the proliferation of human hepatocarcinoma BEL-7402 cell lines in a timeand-dose-dependent manner, and its 50% inhibitory concertration ( ICso )of 24 h, 48 h and 72 h was 6. 80mg · 1-1, 5. 47 mg · L-1 and 4. 87 mg · L-1,respectively. ELISA assay showed that the secretion of VEGF and bFGF of BEL-7402 cells was significantly decreased after treatment with different concentrations of Mel ( ρ < 0. 05 or ρ < 0. 01 ). The positive expression index of VEGF and bFGF of Mel-treated groups was significantly lower than that of the control group (ρ <0. 01 ). RT-PCR showed Mel significantly down-regulated mRNA expressions of VEGF and bFGF in BEL7402 cells ( ρ< 0. 01 ). Conclusions Mel can inhibit the proliferation of human hepatocarcinoma BEL-7402 cell lines in vitro. and the down-regulation of VEGF and bFGF expression may result in the anti- hepatocarcinoma effect of Mel bv the inhibition of tumor angiogenesis.%目的 研究蜂毒素 (Melittin,Mel)对人肝癌细胞株 BEL-7402 增殖及 VEGF、bFGF 表达的影响.方法 应用 MTT 法检测Mel 对人肝癌 BEL-7402 细胞增殖的影响;采用 ELISA 法和免疫细胞化学法检测 VEGF 和 bFGF 的表达.实时荧光定量 PCR 检测 VEGF mRNA 和 bFGF mRNA 的变化.结果 Mel可明显抑制BEL-7402细胞的增殖活性,且具有浓度和时间依赖性.经Mel作用 24、48和72 h后的IC50分别为6.80、5.47和4.87 mg·L-1.Mel(2

  16. Effect of antiprogesterone RU486 on VEGF expression and blood vessel remodeling on ovarian follicles before ovulation.

    Directory of Open Access Journals (Sweden)

    Annunziata Mauro

    Full Text Available BACKGROUND: The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF drives angiogenesis before ovulation, the local role exerted by Progesterone (P₄ remains to be clarified, in particular when its concentration rapidly increases before ovulation. AIM: This in vivo study was designed to clarify the effect promoted by a P₄ receptor antagonist, RU486, on VEGF expression and follicular angiogenesis before ovulation, in particular, during the transition from pre to periovulatory follicles induced by human Chorionic Gonadotropins (hCG administration. MATERIAL AND METHODS: Preovulatory follicle growth and ovulation were pharmacologically induced in prepubertal gilts by combining equine Chorionic Gonadotropins (eCG and hCG used in the presence or absence of RU486. The effects on VEGF expression were analyzed using biochemical and immunohistochemical studies, either on granulosa or on theca layers of follicles isolated few hours before ovulation. This angiogenic factor was also correlated to follicular morphology and to blood vessels architecture. RESULTS AND CONCLUSIONS: VEGF production, blood vessel network and follicle remodeling were impaired by RU486 treatment, even if the cause-effect correlation remains to be clarified. The P₄ antagonist strongly down-regulated theca VEGF expression, thus, preventing most of the angiogenic follicle response induced by hCG. RU486-treated follicles displayed a reduced vascular area, a lower rate of endothelial cell proliferation and a reduced recruitment of perivascular mural cells. These data provide important insights on the biological role of RU486 and, indirectly, on steroid hormones during periovulatory follicular phase. In addition, an in vivo model is proposed to evaluate how periovulatory

  17. A two-compartment model of VEGF distribution in the mouse.

    Directory of Open Access Journals (Sweden)

    Phillip Yen

    Full Text Available Vascular endothelial growth factor (VEGF is a key regulator of angiogenesis--the growth of new microvessels from existing microvasculature. Angiogenesis is a complex process involving numerous molecular species, and to better understand it, a systems biology approach is necessary. In vivo preclinical experiments in the area of angiogenesis are typically performed in mouse models; this includes drug development targeting VEGF. Thus, to quantitatively interpret such experimental results, a computational model of VEGF distribution in the mouse can be beneficial. In this paper, we present an in silico model of VEGF distribution in mice, determine model parameters from existing experimental data, conduct sensitivity analysis, and test the validity of the model. The multiscale model is comprised of two compartments: blood and tissue. The model accounts for interactions between two major VEGF isoforms (VEGF(120 and VEGF(164 and their endothelial cell receptors VEGFR-1, VEGFR-2, and co-receptor neuropilin-1. Neuropilin-1 is also expressed on the surface of parenchymal cells. The model includes transcapillary macromolecular permeability, lymphatic transport, and macromolecular plasma clearance. Simulations predict that the concentration of unbound VEGF in the tissue is approximately 50-fold greater than in the blood. These concentrations are highly dependent on the VEGF secretion rate. Parameter estimation was performed to fit the simulation results to available experimental data, and permitted the estimation of VEGF secretion rate in healthy tissue, which is difficult to measure experimentally. The model can provide quantitative interpretation of preclinical animal data and may be used in conjunction with experimental studies in the development of pro- and anti-angiogenic agents. The model approximates the normal tissue as skeletal muscle and includes endothelial cells to represent the vasculature. As the VEGF system becomes better characterized in

  18. VEGF Spliced Variants: Possible Role of Anti-Angiogenesis Therapy

    Directory of Open Access Journals (Sweden)

    Caroline Hilmi

    2012-01-01

    Full Text Available Angiogenesis has been targeted in retinopathies, psoriasis, and a variety of cancers (colon, breast, lung, and kidney. Among these tumour types, clear cell renal cell carcinomas (RCCs are the most vascularized tumours due to mutations of the von Hippel Lindau gene resulting in HIF-1 alpha stabilisation and overexpression of Vascular Endothelial Growth Factor (VEGF. Surgical nephrectomy remains the most efficient curative treatment for patients with noninvasive disease, while VEGF targeting has resulted in varying degrees of success for treating metastatic disease. VEGF pre-mRNA undergoes alternative splicing generating pro-angiogenic isoforms. However, the recent identification of novel splice variants of VEGF with anti-angiogenic properties has provided some insight for the lack of current treatment efficacy. Here we discuss an explanation for the relapse to anti-angiogenesis treatment as being due to either an initial or acquired resistance to the therapy. We also discuss targeting angiogenesis via SR (serine/arginine-rich proteins implicated in VEGF splicing.

  19. VEGFR1-mediated pericyte ablation links VEGF and PlGF to cancer-associated retinopathy

    DEFF Research Database (Denmark)

    Cao, Renhai; Xue, Yuan; Hedlund, Eva-Maria;

    2010-01-01

    , and adenoviral vectors ablates pericytes from the mature retinal vasculature through the VEGF receptor 1 (VEGFR1)-mediated signaling pathway, leading to increased vascular leakage. In contrast, we demonstrate VEGF receptor 2 (VEGFR2) is primarily expressed in nonvascular photoreceptors and ganglion cells...

  20. Tumor-associated fibroblasts as "Trojan Horse" mediators of resistance to anti-VEGF therapy.

    Science.gov (United States)

    Francia, Giulio; Emmenegger, Urban; Kerbel, Robert S

    2009-01-01

    While targeting VEGF has shown success against a number of human cancers, drug resistance has resulted in compromised clinical benefits. In this issue of Cancer Cell, Crawford et al. (2009) report that tumors resistant to anti-VEGF therapy stimulate tumor-associated fibroblasts to express proangiogenic PDGF-C, implicating it as a potential therapeutic target.

  1. VEGF-induced angiogenesis following localized delivery via injectable, low viscosity poly(trimethylene carbonate).

    Science.gov (United States)

    Amsden, Brian G; Timbart, Laurianne; Marecak, Dale; Chapanian, Rafi; Tse, M Yat; Pang, Stephen C

    2010-07-14

    The purpose of this study was to examine the potential of low molecular weight poly(trimethylene carbonate) for localized vascular endothelial growth factor (VEGF) delivery. Poly(trimethylene carbonate) of various molecular weights was prepared by ring-opening polymerization initiated by 1-octanol. The resultant polymers were liquid at room temperature with low glass transition temperatures and viscosities at 37 degrees C that permitted their injection through an 18 (1/2) G 1.5'' needle. Particles consisting of VEGF co-lyophilized with trehalose were mixed into the polymers and the rate of release of VEGF was assessed in vitro. With a 1% particle loading, VEGF was released from the polymer at a rate of 20 ng/day over a period of 3 weeks. This release behavior was independent of the molecular weight of polymer used. Increasing the VEGF content in the lyophilized particles did not increase the VEGF release rate, an effect attributed to the solubility limit of VEGF in the solution formed upon dissolution of the particles. The VEGF released retained its bioactivity at greater than 95% of that of as-lyophilized VEGF, as assessed using a human aortic endothelial cell proliferation assay. This high bioactivity was supported by in vivo release experiments, wherein VEGF containing polymer implants induced the generation of significantly greater numbers of blood vessels towards the polymer implant than controls. The blood vessels did not remain stable and were reduced in number by three weeks, due to the unsustained and low concentration of VEGF released. This formulation approach, of using a low viscosity polymer delivery vehicle, is potentially useful for localized delivery of acid-sensitive proteins, such as VEGF. PMID:20381557

  2. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor.

    Science.gov (United States)

    Acevedo, Lisette M; Barillas, Samuel; Weis, Sara M; Göthert, Joachim R; Cheresh, David A

    2008-03-01

    Semaphorin 3A (Sema3A), a known inhibitor of axonal sprouting, also alters vascular patterning. Here we show that Sema3A selectively interferes with VEGF- but not bFGF-induced angiogenesis in vivo. Consistent with this, Sema3A disrupted VEGF- but not bFGF-mediated endothelial cell signaling to FAK and Src, key mediators of integrin and growth factor signaling; however, signaling to ERK by either growth factor was unperturbed. Since VEGF is also a vascular permeability (VP) factor, we examined the role of Sema3A on VEGF-mediated VP in mice. Surprisingly, Sema3A not only stimulated VEGF-mediated VP but also potently induced VP in the absence of VEGF. Sema3A-mediated VP was inhibited either in adult mice expressing a conditional deletion of endothelial neuropilin-1 (Nrp-1) or in wild-type mice systemically treated with a function-blocking Nrp-1 antibody. While both Sema3A- and VEGF-induced VP was Nrp-1 dependent, they use distinct downstream effectors since VEGF- but not Sema3A-induced VP required Src kinase signaling. These findings define a novel role for Sema3A both as a selective inhibitor of VEGF-mediated angiogenesis and a potent inducer of VP. PMID:18180379

  3. A Biomimic Reconstituted High Density Lipoprotein Nanosystem for Enhanced VEGF Gene Therapy of Myocardial Ischemia

    Directory of Open Access Journals (Sweden)

    Xiaotian Sun

    2015-01-01

    Full Text Available A biomimic reconstituted high density lipoprotein (rHDL based system, rHDL/Stearic-PEI/VEGF complexes, was fabricated as an advanced nanovector for delivering VEGF plasmid. Here, Stearic-PEI was utilized to effectively condense VEGF plasmid and to incorporate the plasmid into rHDL. The rHDL/Stearic-PEI/VEGF complexes with diameter under 100 nm and neutral surface charge demonstrated enhanced stability under the presence of bovine serum albumin. Moreover, in vitro cytotoxicity and transfection assays on H9C2 cells further revealed their superiority, as they displayed lower cytotoxicity with much higher transfection efficiency when compared to PEI 10K/VEGF and Lipos/Stearic-PEI/VEGF complexes. In addition, in vivo investigation on ischemia/reperfusion rat model implied that rHDL/Stearic-PEI/VEGF complexes possessed high transgene capacity and strong therapeutic activity. These findings indicated that rHDL/Stearic-PEI/VEGF complexes could be an ideal gene delivery system for enhanced VEGF gene therapy of myocardial ischemia, which might be a new promising strategy for effective myocardial ischemia treatment.

  4. VEGF promotes gastric cancer development by upregulating CRMP4

    Science.gov (United States)

    Peng, Jianjun; Zhai, Ertao; He, Yulong; Wu, Hui; Chen, Chuangqi; Ma, Jinping; Wang, Zhao; Cai, Shirong

    2016-01-01

    This study aimed to investigate the precise role of CRMP4 in gastric tumor growth and patient survival. The mRNA and protein expression levels of CRMP4, VEGF and VEGFR2 were validated by qRT-PCR and immunohistochemistry. We investigated the effects on tumor growth of overexpression and knockdown of CRMP4 both in vitro and in vivo by constructing stable gastric cell lines using lentiviral-mediated transduction and shRNA interference-mediated knockdown of CRMP4 expression. We further validated the role of the ERK/AKT signaling pathways in VEGF and CRMP4 expression using ERK and PI3K inhibitors. Increased expression of VEGF and CRMP4 were observed in gastric cancer tissues compared with tumor-adjacent tissue. We found that higher CRPM4 expression was associated with lymph node metastasis, TNM stage, tumor differentiation and poorer prognosis in gastric cancer patients. In HGC27 and SGC7901 gastric cancer cells, VEGF upregulated CRMP4 in time and dose-dependent manners. Overexpression of CRMP4 increased cell proliferation, migration and invasion, whereas knockdown of CRMP4 expression had opposite effects. VEGF activated CRMP4 expression in gastric cancer cells, and this effect was significantly inhibited by MAPK and PI3K inhibitors (PD98059 and LY294002). In mice, CRMP4 overexpression also resulted in increased tumor growth. These results suggest that increased CRMP4 expression mediated by the activation of VEGF signaling facilitates gastric tumor growth and metastasis, which may have clinical implications associated with a reduced survival rate in gastric cancer patients. PMID:26934554

  5. VEGF-B: a thing of beauty

    Institute of Scientific and Technical Information of China (English)

    Xuri Li

    2010-01-01

    More than a decade ago, when we first embarked on our journey to delineate the biological function of vascular endothelial growth factor B (VEGF-B),we had a hard time comprehending why VEGF-B was needed. In mice, geneticdeletion of VEGF-B seemed to be harmless, since the VEGF-B null mice, to a large extent, can still live a fairly normal life [1].

  6. Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Anna Leychenko

    Full Text Available Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF, which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic

  7. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    Science.gov (United States)

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P < 0.05) and endurance capacity (-47%; P < 0.05), which did not persist after 8 wk. In skmVEGF-/- mice, gastrocnemius complex time to fatigue measured in situ was 71% lower than control mice. Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. PMID:27225953

  8. Nucleolin Promotes Heat Shock-Associated Translation of VEGF-D to Promote Tumor Lymphangiogenesis.

    Science.gov (United States)

    Morfoisse, Florent; Tatin, Florence; Hantelys, Fransky; Adoue, Aurelien; Helfer, Anne-Catherine; Cassant-Sourdy, Stephanie; Pujol, Françoise; Gomez-Brouchet, Anne; Ligat, Laetitia; Lopez, Frederic; Pyronnet, Stephane; Courty, Jose; Guillermet-Guibert, Julie; Marzi, Stefano; Schneider, Robert J; Prats, Anne-Catherine; Garmy-Susini, Barbara H

    2016-08-01

    The vascular endothelial growth factor VEGF-D promotes metastasis by inducing lymphangiogenesis and dilatation of the lymphatic vasculature, facilitating tumor cell extravasion. Here we report a novel level of control for VEGF-D expression at the level of protein translation. In human tumor cells, VEGF-D colocalized with eIF4GI and 4E-BP1, which can program increased initiation at IRES motifs on mRNA by the translational initiation complex. In murine tumors, the steady-state level of VEGF-D protein was increased despite the overexpression and dephosphorylation of 4E-BP1, which downregulates protein synthesis, suggesting the presence of an internal ribosome entry site (IRES) in the 5' UTR of VEGF-D mRNA. We found that nucleolin, a nucleolar protein involved in ribosomal maturation, bound directly to the 5'UTR of VEGF-D mRNA, thereby improving its translation following heat shock stress via IRES activation. Nucleolin blockade by RNAi-mediated silencing or pharmacologic inhibition reduced VEGF-D translation along with a subsequent constriction of lymphatic vessels in tumors. Our results identify nucleolin as a key regulator of VEGF-D expression, deepening understanding of lymphangiogenesis control during tumor formation. Cancer Res; 76(15); 4394-405. ©2016 AACR. PMID:27280395

  9. Human NK Cell Subset Functions Are Differentially Affected by Adipokines

    OpenAIRE

    Huebner, Lena; Engeli, Stefan; Christiane D Wrann; Goudeva, Lilia; Laue, Tobias; Kielstein, Heike

    2013-01-01

    Background: Obesity is a risk factor for various types of infectious diseases and cancer. The increase in adipose tissue causes alterations in both adipogenesis and the production of adipocyte-secreted proteins (adipokines). Since natural killer (NK) cells are the host’s primary defense against virus-infected and tumor cells, we investigated how adipocyte-conditioned medium (ACM) affects functions of two distinct human NK cell subsets. Methods: Isolated human peripheral blood mononuclear cell...

  10. Postnatal Hyperoxia Exposure Differentially Affects Hepatocytes and Liver Haemopoietic Cells in Newborn Rats

    Science.gov (United States)

    Marconi, Guya Diletta; Zara, Susi; De Colli, Marianna; Di Valerio, Valentina; Rapino, Monica; Zaramella, Patrizia; Dedja, Arben; Macchi, Veronica; De Caro, Raffaele; Porzionato, Andrea

    2014-01-01

    Premature newborns are frequently exposed to hyperoxic conditions and experimental data indicate modulation of liver metabolism by hyperoxia in the first postnatal period. Conversely, nothing is known about possible modulation of growth factors and signaling molecules involved in other hyperoxic responses and no data are available about the effects of hyperoxia in postnatal liver haematopoiesis. The aim of the study was to analyse the effects of hyperoxia in the liver tissue (hepatocytes and haemopoietic cells) and to investigate possible changes in the expression of Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinase 9 (MMP-9), Hypoxia-Inducible Factor-1α (HIF-1α), endothelial Nitric Oxide Synthase (eNOS), and Nuclear Factor-kB (NF-kB). Experimental design of the study involved exposure of newborn rats to room air (controls), 60% O2 (moderate hyperoxia), or 95% O2 (severe hyperoxia) for the first two postnatal weeks. Immunohistochemical and Western blot analyses were performed. Severe hyperoxia increased hepatocyte apoptosis and MMP-9 expression and decreased VEGF expression. Reduced content in reticular fibers was found in moderate and severe hyperoxia. Some other changes were specifically produced in hepatocytes by moderate hyperoxia, i.e., upregulation of HIF-1α and downregulation of eNOS and NF-kB. Postnatal severe hyperoxia exposure increased liver haemopoiesis and upregulated the expression of VEGF (both moderate and severe hyperoxia) and eNOS (severe hyperoxia) in haemopoietic cells. In conclusion, our study showed different effects of hyperoxia on hepatocytes and haemopoietic cells and differential involvement of the above factors. The involvement of VEGF and eNOS in the liver haemopoietic response to hyperoxia may be hypothesized. PMID:25115881

  11. (-)-Epigallocatechin-3-gallate inhibits VEGF expression induced by IL-6 via Stat3 in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Bao-He Zhu; Hua-Yun Chen; Wen-Hua Zhan; Cheng-You Wang; Shi-Rong Cai; Zhao Wang; Chang-Hua Zhang; Yu-Long He

    2011-01-01

    AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activator of transcription 3 (Stat3) activity in gastric cancer.METHODS: Human gastric cancer (AGS) cells were treated with IL-6 (50 ng/mL) and EGCG at different concentrations. VEGF, total Stat3 and activated Stat3 protein levels in the cell lyses were examined by Western blotting, VEGF protein level in the conditioned medium was measured by enzyme-linked immunosorbent assay, and the level of VEGF mRNA was evaluated by reverse transcription polymerase chain reaction (RTPCR).Stat3 nuclear translocation was determined by Western blotting with nuclear extract, and Stat3-DNA binding activity was examined with Chromatin immunoprecipitation (ChIP) assay. IL-6 induced endothelial cell proliferation was measured with 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazoliumbromide assay, in vitro angiogenesis was determined with endothelial cell tube formation assay in Matrigel, and IL-6-induced angiogenesis in vitro was measured with Matrigel plug assay.RESULTS: There was a basal expression and secretion of VEGF in AGS cells. After stimulation with IL-6, VEGF expression was apparently up-regulated and a 2.4-fold increase was observed. VEGF secretion in the conditioned medium was also increased by 2.8 folds. When treated with EGCG, VEGF expression and secretion were dose-dependently decreased. IL-6 also increased VEGF mRNA expression by 3.1 folds. EGCG treatment suppressed VEGF mRNA expression in a dose-dependent manner. EGCG dose-dependently inhibited Stat3 activation induced by IL-6, but did not change the total Stat3 expression. When treated with EGCG or AG490,VEGF expressions were reduced to the level or an even lower level in the tumor cells not stimulated with IL-6. However, PD98059 and LY294002 did not change VEGF expression induced by IL-6. EGCG inhibited

  12. Detection of VEGF-A(xxx)b isoforms in human tissues.

    Science.gov (United States)

    Bates, David O; Mavrou, Athina; Qiu, Yan; Carter, James G; Hamdollah-Zadeh, Maryam; Barratt, Shaney; Gammons, Melissa V; Millar, Ann B; Salmon, Andrew H J; Oltean, Sebastian; Harper, Steven J

    2013-01-01

    Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls.

  13. Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues.

    Science.gov (United States)

    Honek, Jennifer; Seki, Takahiro; Iwamoto, Hideki; Fischer, Carina; Li, Jingrong; Lim, Sharon; Samani, Nilesh J; Zang, Jingwu; Cao, Yihai

    2014-10-14

    Mechanisms underlying age-related obesity and insulin resistance are generally unknown. Here, we report age-related adipose vascular changes markedly modulated fat mass, adipocyte functions, blood lipid composition, and insulin sensitivity. Notably, VEGF expression levels in various white adipose tissues (WATs) underwent changes uninterruptedly in different age populations. Anti-VEGF and anti- VEGF receptor 2 treatment in different age populations showed marked variations of vascular regression, with midaged mice exhibiting modest sensitivity. Interestingly, anti-VEGF treatment produced opposing effects on WAT adipocyte sizes in different age populations and affected vascular density and adipocyte sizes in brown adipose tissue. Consistent with changes of vasculatures and adipocyte sizes, anti-VEGF treatment increased insulin sensitivity in young and old mice but had no effects in the midaged group. Surprisingly, anti-VEGF treatment significantly improved insulin sensitivity in midaged obese mice fed a high-fat diet. Our findings demonstrate that adipose vasculatures show differential responses to anti-VEGF treatment in various age populations and have therapeutic implications for treatment of obesity and diabetes with anti-VEGF-based antiangiogenic drugs.

  14. Elevated serum level of VEGF in advanced non-small cell lung cancer and its clinical significance%晚期非小细胞肺癌外周血血管内皮生长因子检测及其临床意义

    Institute of Scientific and Technical Information of China (English)

    郭沁香; 宋霞

    2007-01-01

    Objective To study the level of serum vascular endothelial growth factor(sVEGF)in advanced non-small cell lung cancer(NSCLC) and its clinical significance.Methods Serum level of VEGF was detected by ELISA method in 96 patients with advanced NSCLC.sVEGF level was analyzed after giving 2-4 cycles of cisplatin-based chemotherapy.At the same time,serum level of VEGF in 50 healthy controls was detected.Results The level of sVEGF was significantly higher in patient with lung cancer than in control group (P<0.01).No statistical significant defference was observed between sVEGF level of stage Ⅲ and Ⅳ NSCLC patients,the patients with squamocellular lung cancer and adenocarcinoma(P>0.05);Descended sVEGF level was found in the patients with response to chemotherapy(P<0.05).Conclusion sVEGF can be used to evaluate chemotherapy response and diagnoses in the patients with advanced NSCLC.%目的 探讨晚期非小细胞肺癌(NSCLC)患者血清中血管内皮生长因子(sVEGF)水平及评价其临床意义.方法 应用酶联免疫吸附法(ELISA)测定sVEGF在96例晚期NSCLC患者血清中的表达,分别给含顺铂的联合化疗方案2~4个周期后再测定其sVEGF水平;同时检测50例健康体检者的sVEGF水平.结果 肺癌患者sVEGF含量明显高于健康对照组(P<0.01);腺癌sVEGF水平与鳞癌相比差异无统计学意义(P>0.05);Ⅲ、Ⅳ期患者sVEGF水平相比差异无统计学意义(P>0.05);所有缓解病例化疗后sVEGF水平均显著下降(P<0.05).结论 晚期NSCLC患者sVEGF水平与其诊断及治疗效果密切相关.

  15. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Kimberly D., E-mail: solomonk@livemail.uthscsa.edu [Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX (United States); UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX (United States); Ong, Joo L., E-mail: anson.ong@utsa.edu [Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX (United States); UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, TX (United States)

    2013-06-30

    Currently, tissue engineered constructs for critical sized bone defects are non-vascularized. There are many strategies used in order to promote vascularization, including delivery of growth factors such as vascular endothelial growth factor (VEGF). In this study, hydroxyapatite (HA) was coated with self-assembled monolayers (SAMs). The SAMs were in turn used to covalently bind VEGF to the surface of HA. The different SAM chain length ratios (phosphonoundecanoic acid (11-PUDA):16-phosphonohexadecanoic acid (16-PHDA) utilized in this study were 0:100, 25:75, 50:50, 75:25, and 100:0. Surfaces were characterized by contact angle (CA) and atomic force microscopy, and an in vitro VEGF release study was performed. It was observed that CA and root-mean-squared roughness were not significantly affected by the addition of SAMs, but that CA was significantly lowered with the addition of VEGF. VEGF release profiles of bound VEGF groups all demonstrated less initial burst release than adsorbed control, indicating that VEGF was retained on the HA surface when bound by SAMs. An in vitro study using human aortic endothelial cells (HAECs) demonstrated that bound VEGF increased metabolic activity and caused sustained production of angiopoietin-2, an angiogenic marker, over 28 days. In conclusion, SAMs provide a feasible option for growth factor delivery from HA surfaces, enhancing angiogenic activity of HAECs in vitro. - Highlights: • Vascular endothelial growth factor (VEGF) is attached to hydroxyapatite (HA). • Self-assembled monolayers (SAMs) delay the release of VEGF from hydroxyapatite. • SAM chain length ratio affects the total mass of VEGF released. • VEGF on HA up-regulates proliferation and angiogenic activity of endothelial cells.

  16. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells

    International Nuclear Information System (INIS)

    Currently, tissue engineered constructs for critical sized bone defects are non-vascularized. There are many strategies used in order to promote vascularization, including delivery of growth factors such as vascular endothelial growth factor (VEGF). In this study, hydroxyapatite (HA) was coated with self-assembled monolayers (SAMs). The SAMs were in turn used to covalently bind VEGF to the surface of HA. The different SAM chain length ratios (phosphonoundecanoic acid (11-PUDA):16-phosphonohexadecanoic acid (16-PHDA) utilized in this study were 0:100, 25:75, 50:50, 75:25, and 100:0. Surfaces were characterized by contact angle (CA) and atomic force microscopy, and an in vitro VEGF release study was performed. It was observed that CA and root-mean-squared roughness were not significantly affected by the addition of SAMs, but that CA was significantly lowered with the addition of VEGF. VEGF release profiles of bound VEGF groups all demonstrated less initial burst release than adsorbed control, indicating that VEGF was retained on the HA surface when bound by SAMs. An in vitro study using human aortic endothelial cells (HAECs) demonstrated that bound VEGF increased metabolic activity and caused sustained production of angiopoietin-2, an angiogenic marker, over 28 days. In conclusion, SAMs provide a feasible option for growth factor delivery from HA surfaces, enhancing angiogenic activity of HAECs in vitro. - Highlights: • Vascular endothelial growth factor (VEGF) is attached to hydroxyapatite (HA). • Self-assembled monolayers (SAMs) delay the release of VEGF from hydroxyapatite. • SAM chain length ratio affects the total mass of VEGF released. • VEGF on HA up-regulates proliferation and angiogenic activity of endothelial cells

  17. Metformin inhibits development of diabetic retinopathy through inducing alternative splicing of VEGF-A

    Science.gov (United States)

    Yi, Quan-Yong; Deng, Gang; Chen, Nan; Bai, Zhi-Sha; Yuan, Jian-Shu; Wu, Guo-Hai; Wang, Yu-Wen; Wu, Shan-Jun

    2016-01-01

    Previous studies have shown that metformin, an AMP-activated protein kinase activator widely prescribed for type 2 diabetes, is especially beneficial in cases of diabetic retinopathy (DR) with undetermined mechanisms. Here, we used a streptozotocin-induced diabetes model in mice to study the effects of metformin on the development of DR. We found that 10 weeks after STZ treatment, DR was induced in STZ-treated mice, regardless treatment of metformin. However, metformin alleviated the DR, seemingly through attenuating the retina neovascularization. The total vascular endothelial cell growth factor A (VEGF-A) in eyes was not altered by metformin, but the phosphorylation of the VEGF receptor 2 (VEGFR2) was decreased, which inhibited VEGF signaling. Further analysis showed that metformin may induce VEGF-A mRNA splicing to VEGF120 isoform to reduce its activation of the VEGFR2. These findings are critical for generating novel medicine for DR treatment.

  18. Functional Modification of Fibrous PCL Scaffolds with Fusion Protein VEGF-HGFI Enhanced Cellularization and Vascularization.

    Science.gov (United States)

    Zhao, Liqiang; Ma, Shaoyang; Pan, Yiwa; Zhang, Qiuying; Wang, Kai; Song, Dongmin; Wang, Xiangxiang; Feng, Guowei; Liu, Ruming; Xu, Haijin; Zhang, Jun; Qiao, Mingqiang; Kong, Deling

    2016-09-01

    The lack of efficient vascularization within frequently used poly(ε-caprolactone) (PCL) scaffolds has hindered their application in tissue engineering. Hydrophobin HGFI, an amphiphilic protein, can form a self-assembly layer on the surface of PCL scaffolds and convert their wettability. In this study, a fusion protein consisting of HGFI and vascular endothelial growth factor (VEGF) is prepared by Pichia pastoris expression system. Sodium dodecyl sulface-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting confirm that the VEGF-HGFI is successfully isolated and purified. Transmission electron microscope and water contact angle measurement demonstrate that VEGF-HGFI can form a self-assembly layer with about 25 nm in thickness on electrospun PCL fibers and increase their hydrophilicity. VEGF-HGFI modification can effectively enhance the adhesion, migration, and proliferation of human umbilical vein endothelial cells. Near-infrared fluorescence imaging shows that the VEGF-HGFI modification on PCL scaffolds can exist at least 21 d in vitro and at least 14 d in vivo. Bioluminescence imaging shows that VEGF-HGFI can effectively activate vascular endothelial growth factor receptor 2 receptors. Subcutaneous implantation in mice and rats reveal that cellularization and vascularization are significantly improved in VEGF-HGFI modified PCL scaffolds. These results suggest that VEGF-HGFI is a useful molecule for functional modification of scaffolds to enhance cellularization and vascularization in tissue engineering. PMID:27391702

  19. Fumaric acid esters stimulate astrocytic VEGF expression through HIF-1α and Nrf2.

    Directory of Open Access Journals (Sweden)

    Diana Wiesner

    Full Text Available Fumaric acid esters (FAE are oral analogs of fumarate that have recently been shown to decrease relapse rate and disease progression in multiple sclerosis (MS, prompting to investigate their protective potential in other neurological diseases such as amyotrophic lateral sclerosis (ALS. Despite efficacy in MS, mechanisms of action of FAEs are still largely unknown. FAEs are known to activate the transcription factor Nrf2 and downstream anti-oxidant responses through the succination of Nrf2 inhibitor KEAP1. However, fumarate is also a known inhibitor of prolyl-hydroxylases domain enzymes (PhD, and PhD inhibition might lead to stabilization of the HIF-1α transcription factor under normoxic conditions and subsequent activation of a pseudo hypoxic response. Whether Nrf2 activation is associated with HIF-1α stabilization in response to FAEs in cell types relevant to MS or ALS remains unknown. Here, we show that FAEs elicit HIF-1α accumulation, and VEGF release as its expected consequence, in astrocytes but not in other cell types of the central nervous system. Reporter assays demonstrated that increased astrocytic VEGF release in response to FAEs was dependent upon both HIF-1α and Nrf2 activation. Last, astrocytes of transgenic mice expressing SOD1(G93A, an animal model of ALS, displayed reduced VEGF release in response to FAEs. These studies show that FAEs elicit different signaling pathways in cell types from the central nervous system, in particular a pseudo-hypoxic response in astrocytes. Disease relevant mutations might affect this response.

  20. Fumaric acid esters stimulate astrocytic VEGF expression through HIF-1α and Nrf2.

    Science.gov (United States)

    Wiesner, Diana; Merdian, Irma; Lewerenz, Jan; Ludolph, Albert C; Dupuis, Luc; Witting, Anke

    2013-01-01

    Fumaric acid esters (FAE) are oral analogs of fumarate that have recently been shown to decrease relapse rate and disease progression in multiple sclerosis (MS), prompting to investigate their protective potential in other neurological diseases such as amyotrophic lateral sclerosis (ALS). Despite efficacy in MS, mechanisms of action of FAEs are still largely unknown. FAEs are known to activate the transcription factor Nrf2 and downstream anti-oxidant responses through the succination of Nrf2 inhibitor KEAP1. However, fumarate is also a known inhibitor of prolyl-hydroxylases domain enzymes (PhD), and PhD inhibition might lead to stabilization of the HIF-1α transcription factor under normoxic conditions and subsequent activation of a pseudo hypoxic response. Whether Nrf2 activation is associated with HIF-1α stabilization in response to FAEs in cell types relevant to MS or ALS remains unknown. Here, we show that FAEs elicit HIF-1α accumulation, and VEGF release as its expected consequence, in astrocytes but not in other cell types of the central nervous system. Reporter assays demonstrated that increased astrocytic VEGF release in response to FAEs was dependent upon both HIF-1α and Nrf2 activation. Last, astrocytes of transgenic mice expressing SOD1(G93A), an animal model of ALS, displayed reduced VEGF release in response to FAEs. These studies show that FAEs elicit different signaling pathways in cell types from the central nervous system, in particular a pseudo-hypoxic response in astrocytes. Disease relevant mutations might affect this response. PMID:24098549

  1. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hai-dong [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Cui, Guo-hong; Yang, Jia-jun [Department of Neurology, Shanghai No. 6 People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233 (China); Wang, Cun [Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Zhu, Jing; Zhang, Li-sheng; Jiang, Jun [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Shao, Shui-jin, E-mail: shaoshuijin@163.com [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer The designer peptide LRKKLGKA could self-assemble into nanofibers. Black-Right-Pointing-Pointer Injection of LRKKLGKA peptides could promote the sustained delivery of VEGF. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides lead to sufficient angiogenesis. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides improves heart function. -- Abstract: Poor vascularization and insufficient oxygen supply are detrimental to the survival of residual cardiomyocytes or transplanted stem cells after myocardial infarction. To prolong and slow the release of angiogenic factors, which stimulate both angiogenesis and vasculogenesis, we constructed a novel self-assembling peptide by attaching the heparin-binding domain sequence LRKKLGKA to the self-assembling peptide RADA16. This designer self-assembling peptide self-assembled into nanofiber scaffolds under physiological conditions, as observed by atomic force microscopy. The injection of designer self-assembling peptides can efficiently provide the sustained delivery of VEGF for at least 1 month. At 4 weeks after transplantation, cardiac function was improved, and scar size and collagen deposition were markedly reduced in the group receiving VEGF with the LRKKLGKA scaffolds compared with groups receiving VEGF alone, LRKKLGKA scaffolds alone or VEGF with RADA16 scaffolds. The microvessel density in the VEGF with LRKKLGKA group was higher than that in the VEGF with RADA16 group. TUNEL and cleaved caspase-3 expression assays showed that the transplantation of VEGF with LRKKLGKA enhanced cell survival in the infarcted heart. These results present the tailor-made peptide scaffolds as a new generation of sustained-release biomimetic biomaterials and suggest that the use of angiogenic factors along with designer self-assembling peptides can lead to myocardial protection, sufficient angiogenesis, and improvement in cardiac function.

  2. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction

    International Nuclear Information System (INIS)

    Highlights: ► The designer peptide LRKKLGKA could self-assemble into nanofibers. ► Injection of LRKKLGKA peptides could promote the sustained delivery of VEGF. ► Injection of VEGF with LRKKLGKA peptides lead to sufficient angiogenesis. ► Injection of VEGF with LRKKLGKA peptides improves heart function. -- Abstract: Poor vascularization and insufficient oxygen supply are detrimental to the survival of residual cardiomyocytes or transplanted stem cells after myocardial infarction. To prolong and slow the release of angiogenic factors, which stimulate both angiogenesis and vasculogenesis, we constructed a novel self-assembling peptide by attaching the heparin-binding domain sequence LRKKLGKA to the self-assembling peptide RADA16. This designer self-assembling peptide self-assembled into nanofiber scaffolds under physiological conditions, as observed by atomic force microscopy. The injection of designer self-assembling peptides can efficiently provide the sustained delivery of VEGF for at least 1 month. At 4 weeks after transplantation, cardiac function was improved, and scar size and collagen deposition were markedly reduced in the group receiving VEGF with the LRKKLGKA scaffolds compared with groups receiving VEGF alone, LRKKLGKA scaffolds alone or VEGF with RADA16 scaffolds. The microvessel density in the VEGF with LRKKLGKA group was higher than that in the VEGF with RADA16 group. TUNEL and cleaved caspase-3 expression assays showed that the transplantation of VEGF with LRKKLGKA enhanced cell survival in the infarcted heart. These results present the tailor-made peptide scaffolds as a new generation of sustained-release biomimetic biomaterials and suggest that the use of angiogenic factors along with designer self-assembling peptides can lead to myocardial protection, sufficient angiogenesis, and improvement in cardiac function.

  3. 康艾注射液辅助化疗对晚期非小细胞肺癌患者血清VEGF表达的干预作用%Intervention Effects of Adjuvant Chemotherapy Combined with Kang'ai Injection on Expression of Serum VEGF in Patients with Advanced Non-small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    张梅春; 赵子文; 曾军; 刘朝晖

    2011-01-01

    Objective To explore the effects of adjuvant chemotherapy combined with Kang'ai injection on the expression of serum VEGF in patients with advanced non-small cell lung cancer. Methods Forty-six patients with advanced non-small cell lung cancer were randomly divided equally into two groups. Patients in experimental group were treated with gemcitabine and cisplatin chemotherapy regimen(GP)combined with Kang'ai injection, while patients in the control were just treated with GP regimen chemotherapy. The expression levels of serum vascular endothelial growth factor(sVEGF) were measured by ELISA before and after the treatment,respectively. Results The sVEGF levels of all patients with advanced NSCLC were obviously higher than that of health controls(P<0. 05). And the level of sVEGF in squamous cell cancer group was higher than that in adenocarcinoma, large cell carcinoma or adenosquamous carcinoma group, respectively(P<0. 05),while there was no significant difference between the latter 3 groups(P>0. 05). Compared the well differentiated group, the sVEGF level of moderately and poorly defferentiated group was increased with no significance(P>0. 05). The sVEGF level was obviously decreased in two groups after the treatments(P<0. 05). Furthermore, the sVEGF level was significantly decreased combination therapy group than that in chemotherapy group(P<0. 05). Conclusion Kang'ai injection might decrease the expression of serum VEGF in patients with advanced non-small cell lung cancer which suppressed neovascularization. Serum VEGF could be a biomarker for lung cancer diagnosis and therapeutic effect of chemotherapy or biotherapy.%目的 探讨康艾注射液辅助化疗对晚期非小细胞肺癌患者血清VEGF(sVEGF)表达的干预作用.方法 将入组的46例晚期非小细胞肺癌患者随机分为实验组(康艾注射液联合化疗组,23例)和对照组(单纯化疗组23例),应用酶联免疫吸附法(ELISA)检测患者治疗前后sVEGF表

  4. P53、C-erbB-2和VEGF在非小细胞肺癌中的表达及其临床意义%The expressions and clinical significance of P53, C-erbB-2 and VEGF in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective: To investigate the expressions and the clinical significance of P53, C-erbB-2 and vascular endothelial growth factor(VEGF)in non-small cell lung cancer(NSCLC).Methods: 121 specimens of NSCLC were examined for P53, C-erbB-2 and VEGF by immunohistochemical staining.Results: The positive rates of P53, C-erbB-2 and VEGF in the carcinomatous tissue were 43%, 39% and 31% respectively.P53 gene protein expression in lung cancer was significantly related to histological type and P-TNM staging of lung cancer patients(P<0.05), and was not associated with the sex, age, the size of primary cancer, lymph node metastasis and cell differentiation(P>0.05).C-erbB-2 gene protein expression in lung cancer was closely related to histological type and cell differentiation(P<0.05), and was not associated with the sex, age, the size of primary cancer, lymph node metastasis and P-TNM staging of lung cancer patients(P>0.05).VEGF in lung cancer was only closely related to cell differentiation(P<0.05), and was not associated with the sex, age, the size of primary cancer, lymph node metastasis, histological type and P-TNM staging of lung cancer patients(P>0.05).Conclusion: It is possible for P53, C-erbB-2 and VEGF to play an important role in the oncogenesis and development of non-small cell lung cancer.

  5. Metallic gold treatment reduces proliferation of inflammatory cells, increases expression of VEGF and FGF, and stimulates cell proliferation in the subventricular zone following experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Østergaard; Larsen, Agnete; Pedersen, Dan Sonne;

    2009-01-01

    Traumatic brain injury represents a leading cause of morbidity in young individuals and there is an imperative need for neuroprotective treatments limiting the neurologic impairment following such injury. It has recently been demonstrated that bio-liberated gold ions liberated from small metallic...... increase in cell proliferation in both the ipsilateral and the contralateral subventricular zone was found in response to gold-treatment. In conclusion: we confirmed the previously demonstrated anti-inflammatory effect of bio-liberated gold ions, and further show that metallic gold increases growth factor...

  6. Effect of angiogenesis on Solanine and VEGF antibody in chicken embryo transplantation model of human colon cancer cells%龙葵碱联合VEGF抗体对人结肠癌鸡胚移植模型血管生成的影响

    Institute of Scientific and Technical Information of China (English)

    杨雪峰; 邓冬雪; 张桃; 宁伟伟; 郑兴斌; 谢铭

    2016-01-01

    目的:建立人结肠癌鸡胚移植模型,探讨龙葵碱、VEGF抗体及两者联合对人结肠癌细胞诱导肿瘤血管生成及肿瘤增殖的影响。方法将人结肠癌H T‐29细胞鸡胚移植模型分为实验组和对照组,实验组加入龙葵碱、V EG F抗体和龙葵碱+VEGF抗体混合液,对照组加入磷酸盐缓冲液(PBS)液。通过立体显微镜照相、IPP 6.0图像分析软件分析图片;免疫组织化学方法检测CD34抗原和ki‐67抗原,观察龙葵碱、VEGF抗体和龙葵碱联合VEGF抗体对肿瘤血管生成及肿瘤增殖的影响。结果肿瘤血管面积、CD34抗原和ki‐67抗原表达:龙葵碱+VEGF抗体组明显优于单药VEGF抗体组和龙葵碱组,VEGF抗体组优于龙葵碱组,3组均明显优于对照组(P<0.01)。结论龙葵碱、VEGF抗体及两者联合时均能抑制人结肠癌 HT‐29细胞系诱导的肿瘤血管生成及肿瘤增殖,为抗肿瘤血管生成提供了一种新途径。%Objective To establish model of the chicken embryo transplantation of human colon cancer cells ,and investigate the effect of Solanine、VEGF antibody and Solanine combined with VEGF antibody on human colon cancer cells induce tumor angio‐genesis and tumor proliferation .Methods The model of the chicken embryo transplantation of human colon cancer HT‐29 cells were divided into three experimental group and control group .We added to the chick embryo chorioallantoic membrane with Sola‐nine、VEGF antibody and Solanine+ VEGF antibody mixture ,PBS was added to the control group .Then we analysed picture through the stereomicroscope and IPP 6 .0 image analysis software ,using immunohistochemistry envision method to detect of CD34 antigen and ki‐67 antigen ,and observing effect of Solanine group ,VEGF antibody group ,Solanine+ VEGF antibody group and the effect on the tumor angiogenesis and tumor proliferation .Results The tumor angiogenesis ,CD34 antigen and ki‐67 antigen

  7. Experimental study of treatment for radiation-damaged mice by transgenic VEGF

    International Nuclear Information System (INIS)

    Objective: To study the effect of VEGF gene expression in the treatment of radiation damage, and to explore its molecular mechanism by transferring eukaryotic expression plasmid containing VEGF gene into irradiated mice cells. Methods: Normally Kunming mice were divided randomly into three groups as control group, irradiated group and transferred VEGF gene group. The mice were administered with 8 Gy X-ray exposure after intramuscular injection of VEGF recombinant plasmid in the transgenic group. The animals were killed at different times after X-ray exposure. Their clinical manifestation, mortality rate, pathology of tissues and in situ apoptosis in thymus and splenic cells were observed. Results: VEGF165 gene fragments were amplified from pSP73/HVEGF165 plasmid by PCR method, and then linked with pcDNA3.1 vector after incision by double enzyme. The recombinant plasmid pcDNA3.1/VEGF165 was constructed. Electrophoresis and sequencing showed that the recombinant plasmid sequence was exactly the same with the data in GenBank. The mortality of irradiated group and transgenic group 14 d post-irradiation was 64% and 36%, respectively, with the statistical difference (t=3.92, P165 was successfully constructed. Transgenic treatment with recombinant plasmid can remarkably decrease the mortality and apoptosis rate of thymus and spleen cells in mice suffering from severe radiation damage, and improve the pathologic change of immune organs. VEGF transgenic technique is one of the effective methods for treating severe radiation injury. (authors)

  8. Erythropoietin attenuates renal and pulmonary injury in polymicrobial induced-sepsis through EPO-R, VEGF and VEGF-R2 modulation.

    Science.gov (United States)

    Heitrich, Mauro; García, Daiana Maria de Los Ángeles; Stoyanoff, Tania Romina; Rodríguez, Juan Pablo; Todaro, Juan Santiago; Aguirre, María Victoria

    2016-08-01

    Sepsis remains the most important cause of acute kidney injury (AKI) and acute lung injury (ALI) in critically ill patients. The cecal ligation and puncture (CLP) model in experimental mice reproduces most of the clinical features of sepsis. Erythropoietin (EPO) is a well-known cytoprotective multifunctional hormone, which exerts anti-inflammatory, anti-oxidant, anti-apoptotic and pro-angiogenic effects in several tissues. The aim of this study was to evaluate the underlying mechanisms of EPO protection through the expression of the EPO/EPO receptor (EPO-R) and VEGF/VEF-R2 systems in kidneys and lungs of mice undergoing CLP-induced sepsis. Male inbred Balb/c mice were divided in three experimental groups: Sham, CLP, and CLP+EPO (3000IU/kg sc). Assessment of renal functional parameters, survival, histological examination, immunohistochemistry and/or Western blottings of EPO-R, VEGF and VEGF-R2 were performed at 18h post-surgery. Mice demonstrated AKI by elevation of serum creatinine and renal histologic damage. EPO treatment attenuates renal dysfunction and ameliorates kidney histopathologic changes. Additionally, EPO administration attenuates deleterious septic damage in renal cortex through the overexpression of EPO-R in tubular interstitial cells and the overexpression of the pair VEGF/VEGF-R2. Similarly CLP- induced ALI, as evidenced by parenchymal lung histopathologic alterations, was ameliorated through pulmonary EPO-R, VEGF and VEGF-R2 over expression suggesting and improvement in endothelial survival and functionality. This study demonstrates that EPO exerts protective effects in kidneys and lungs in mice with CLP-induced sepsis through the expression of EPO-R and the regulation of the VEGF/VEGF-R2 pair. PMID:27470403

  9. Prokaryotic Soluble Overexpression and Purification of Human VEGF165 by Fusion to a Maltose Binding Protein Tag.

    Directory of Open Access Journals (Sweden)

    Minh Tan Nguyen

    Full Text Available Human vascular endothelial growth factor (VEGF is a key regulator of angiogenesis and plays a central role in the process of tumor growth and metastatic dissemination. Escherichia coli is one of the most common expression systems used for the production of recombinant proteins; however, expression of human VEGF in E. coli has proven difficult because the E. coli-expressed VEGF tends to be misfolded and forms inclusion bodies, resulting in poor solubility. In this study, we successfully produced semi-preparative amounts of soluble bioactive human VEGF165 (hVEGF. We created seven N-terminal fusion tag constructs with hexahistidine (His6, thioredoxin (Trx, glutathione S-transferase (GST, maltose-binding protein (MBP, N-utilization substance protein A (NusA, human protein disulfide isomerase (PDI, and the b'a' domain of PDI (PDIb'a', and tested each construct for soluble overexpression in E. coli. We found that at 18°C, 92.8% of the MBP-tagged hVEGF to be soluble and that this tag significantly increased the protein's solubility. We successfully purified 0.8 mg of pure hVEGF per 500 mL cell culture. The purified hVEGF is stable after tag cleavage, contains very low levels of endotoxin, and is 97.6% pure. Using an Flk1+ mesodermal precursor cell (MPC differentiation assay, we show that the purified hVEGF is not only bioactive but has similar bioactivity to hVEGF produced in mammalian cells. Previous reports on producing hVEGF in E. coli have all been based on refolding of the protein from inclusion bodies. To our knowledge, this is the first report on successfully expressing and purifying soluble hVEGF in E. coli.

  10. Prokaryotic Soluble Overexpression and Purification of Human VEGF165 by Fusion to a Maltose Binding Protein Tag.

    Science.gov (United States)

    Nguyen, Minh Tan; Krupa, Martin; Koo, Bon-Kyung; Song, Jung-A; Vu, Thu Trang Thi; Do, Bich Hang; Nguyen, Anh Ngoc; Seo, Taewook; Yoo, Jiwon; Jeong, Boram; Jin, Jonghwa; Lee, Kyung Jin; Oh, Heung-Bum; Choe, Han

    2016-01-01

    Human vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis and plays a central role in the process of tumor growth and metastatic dissemination. Escherichia coli is one of the most common expression systems used for the production of recombinant proteins; however, expression of human VEGF in E. coli has proven difficult because the E. coli-expressed VEGF tends to be misfolded and forms inclusion bodies, resulting in poor solubility. In this study, we successfully produced semi-preparative amounts of soluble bioactive human VEGF165 (hVEGF). We created seven N-terminal fusion tag constructs with hexahistidine (His6), thioredoxin (Trx), glutathione S-transferase (GST), maltose-binding protein (MBP), N-utilization substance protein A (NusA), human protein disulfide isomerase (PDI), and the b'a' domain of PDI (PDIb'a'), and tested each construct for soluble overexpression in E. coli. We found that at 18°C, 92.8% of the MBP-tagged hVEGF to be soluble and that this tag significantly increased the protein's solubility. We successfully purified 0.8 mg of pure hVEGF per 500 mL cell culture. The purified hVEGF is stable after tag cleavage, contains very low levels of endotoxin, and is 97.6% pure. Using an Flk1+ mesodermal precursor cell (MPC) differentiation assay, we show that the purified hVEGF is not only bioactive but has similar bioactivity to hVEGF produced in mammalian cells. Previous reports on producing hVEGF in E. coli have all been based on refolding of the protein from inclusion bodies. To our knowledge, this is the first report on successfully expressing and purifying soluble hVEGF in E. coli. PMID:27231876

  11. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment

    International Nuclear Information System (INIS)

    Highlights: • A novel nanobody directed to antigenic regions on VEGF was identified. • Our nanobody was successfully purified. • Our nanobody significantly inhibited VEGF-induced proliferation of HUVECs in a dose dependent manner. - Abstract: Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production, large size, and immunogenicity are main drawbacks of conventional monoclonal therapy. Nanobodies are the smallest antigen-binding antibody fragments, which occur naturally in camelidae. Because of their remarkable features, we decided to use an immune library of nanobody to direct phage display to recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only blocked interaction of VEGF with its receptor in cell ELISA experiments, but also was able to significantly inhibit proliferation response of human umbilical vein endothelial cells to VEGF in a dose-dependent manner. Taken together, our study demonstrates that by using whole-cell ELISA experiments, nanobodies against antigenic regions included in interaction of VEGF with its receptors can be directed. Because of unique and intrinsic properties of a nanobody and the ability of selected nanobody for blocking the epitope that is important for biological function of VEGF, it represents novel potential drug candidate

  12. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Farajpour, Zahra [Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Kazemi, Bahram [Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ahmadvand, Davoud [School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-03-28

    Highlights: • A novel nanobody directed to antigenic regions on VEGF was identified. • Our nanobody was successfully purified. • Our nanobody significantly inhibited VEGF-induced proliferation of HUVECs in a dose dependent manner. - Abstract: Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production, large size, and immunogenicity are main drawbacks of conventional monoclonal therapy. Nanobodies are the smallest antigen-binding antibody fragments, which occur naturally in camelidae. Because of their remarkable features, we decided to use an immune library of nanobody to direct phage display to recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only blocked interaction of VEGF with its receptor in cell ELISA experiments, but also was able to significantly inhibit proliferation response of human umbilical vein endothelial cells to VEGF in a dose-dependent manner. Taken together, our study demonstrates that by using whole-cell ELISA experiments, nanobodies against antigenic regions included in interaction of VEGF with its receptors can be directed. Because of unique and intrinsic properties of a nanobody and the ability of selected nanobody for blocking the epitope that is important for biological function of VEGF, it represents novel potential drug candidate.

  13. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    Science.gov (United States)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-08-08

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  14. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    Science.gov (United States)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-08-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  15. Axitinib affects cell viability and migration of a primary foetal lung adenocarcinoma culture.

    Science.gov (United States)

    Menna, Cecilia; De Falco, Elena; Pacini, Luca; Scafetta, Gaia; Ruggieri, Paola; Puca, Rosa; Petrozza, Vincenzo; Ciccone, Anna Maria; Rendina, Erino Angelo; Calogero, Antonella; Ibrahim, Mohsen

    2014-01-01

    Fetal lung adenocarcinoma (FLAC) is a rare variant of lung adenocarcinoma. Studies regarding FLAC have been based only on histopathological observations, thus representative in vitro models of FLAC cultures are unavailable. We have established and characterized a human primary FLAC cell culture, exploring its biology, chemosensitivity, and migration. FLAC cells and specimen showed significant upregulation of VEGF165 and HIF-1α mRNA levels. This observation was confirmed by in vitro chemosensitivity and migration assay, showing that only Axitinib was comparable to Cisplatin treatment. We provide a suitable in vitro model to further investigate the nature of this rare type of cancer. PMID:24380379

  16. Concentrations of VEGF and VEGFR1 in paired tumor arteries and veins in patients with rectal cancer

    DEFF Research Database (Denmark)

    Svendsen, Mads N; Lykke, Jakob; Werther, Kim;

    2004-01-01

    platelets were performed in all samples. No significant difference between plasma VEGF levels in the obtained blood samples was found (0.35 < P < 0.86). Plasma sVEGFR1 concentrations were significantly increased in tumor veins compared with tumor arteries. In addition, a significant reduction in plasma s......VEGFR1 concentrations from preoperative to intraoperative samples was observed. There was a significant efflux of neutrophils to the tumor, but none of the observed changes in plasma VEGF or VEGFR1 levels correlated to changes in counts of white blood cells or platelets (sVEGF: 0.33 < P < 0.73 and s......Increased plasma concentrations of vascular endothelial growth factor (sVEGF) are associated with poor prognosis of colorectal cancer patients. The aim was to investigate the contribution of the tumor to plasma concentrations of VEGF and VEGF receptor 1 (VEGFR1). Preoperative blood samples from a...

  17. Roles of PI3K/Akt and c-Jun signaling pathways in human papillomavirus type 16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Erying Zhang

    Full Text Available Human papillomavirus (HPV-16 infection may be related to non-smoking associated lung cancer. Our previous studies have found that HPV-16 oncoproteins promoted angiogenesis via enhancing hypoxia-inducible factor-1α (HIF-1α, vascular endothelial growth factor (VEGF, and interleukin-8 (IL-8 expression in non-small cell lung cancer (NSCLC cells. In this study, we further investigated the roles of PI3K/Akt and c-Jun signaling pathways in it.Human NSCLC cell lines, A549 and NCI-H460, were stably transfected with pEGFP-16 E6 or E7 plasmids. Western blotting was performed to analyze the expression of HIF-1α, p-Akt, p-P70S6K, p-P85S6K, p-mTOR, p-JNK, and p-c-Jun proteins. VEGF and IL-8 protein secretion and mRNA levels were determined by ELISA and Real-time PCR, respectively. The in vitro angiogenesis was observed by human umbilical vein endothelial cells (HUVECs tube formation assay. Co-immunoprecipitation was performed to analyze the interaction between c-Jun and HIF-1α.HPV-16 E6 and E7 oncoproteins promoted the activation of Akt, P70S6K, P85S6K, mTOR, JNK, and c-Jun. LY294002, a PI3K inhibitor, inhibited HPV-16 oncoprotein-induced activation of Akt, P70S6K, and P85S6K, expression of HIF-1α, VEGF, and IL-8, and in vitro angiogenesis. c-Jun knockdown by specific siRNA abolished HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis. Additionally, HPV-16 oncoproteins promoted HIF-1α protein stability via blocking proteasome degradation pathway, but c-Jun knockdown abrogated this effect. Furthermore, HPV-16 oncoproteins increased the quantity of c-Jun binding to HIF-1α.PI3K/Akt signaling pathway and c-Jun are involved in HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis. Moreover, HPV-16 oncoproteins promoted HIF-1α protein stability possibly through enhancing the interaction between c-Jun and HIF-1α, thus making a contribution to angiogenesis in NSCLC cells.

  18. Bacterial antigen induced release of soluble vascular endothelial growth factor (VEGF) and VEGFR1 before and after surgery

    DEFF Research Database (Denmark)

    Svendsen, Mads N; Lykke, J; Werther, Kim;

    2005-01-01

    OBJECTIVE: The influence of surgery on release of soluble vascular endothelial growth factor (sVEGF) and the soluble inhibitory receptor (sVEGFR1) is unknown. The effect of major and minor surgery on variations in sVEGF and sVEGFR1 concentrations in vivo was studied, and on bacterial antigen...... concentrations in plasma changed during surgery. In vitro stimulation of blood samples with bacteria-derived antigens resulted in a significant increase in sVEGF (p ... significantly with neutrophil cell counts (0.53 surgery. In vitro bacterial stimulation led to increased release of sVEGF, which...

  19. In vivo characterization of {sup 68}Ga-NOTA-VEGF{sub 121} for the imaging of VEGF receptor expression in U87MG tumor xenograft models

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Choong Mo; Koo, Hyun-Jung; Lee, Kyung-Han; Choe, Yearn Seong [Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Sung-Min; Yim, Min Su; Ryu, Eun Kyoung [Korea Basic Science Institute, Division of Magnetic Resonance Research, Chungbuk (Korea, Republic of)

    2013-02-15

    Vascular endothelial growth factor receptors (VEGFRs) are associated with tumor growth and induction of tumor angiogenesis and are known to be overexpressed in various human tumors. In the present study, we prepared and evaluated {sup 68}Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-benzyl (NOTA)-VEGF{sub 121} as a positron emission tomography (PET) radioligand for the in vivo imaging of VEGFR expression. {sup 68}Ga-NOTA-VEGF{sub 121} was prepared by conjugation of VEGF{sub 121} and p-SCN-NOTA, followed by radiolabeling with {sup 68}GaCl{sub 3} and then purification using a PD-10 column. Human aortic endothelial cell (HAEC) binding of {sup 68}Ga-NOTA-VEGF{sub 121} was measured as a function of time. MicroPET and biodistribution studies of U87MG tumor xenografted mice were performed at 1, 2, and 4 h after injection of {sup 68}Ga-NOTA-VEGF{sub 121}. The tumor tissues were then sectioned and subjected to immunostaining. The decay-corrected radiochemical yield of {sup 68}Ga-NOTA-VEGF{sub 121} was 40 {+-} 4.5 % and specific activity was 243.1 {+-} 104.6 GBq/{mu}mol (8.6 {+-} 3.7 GBq/mg). {sup 68}Ga-NOTA-VEGF{sub 121} was avidly taken up by HAECs in a time-dependent manner, and the uptake was blocked either by 32 % with VEGF{sub 121} or by 49 % with VEGFR2 antibody at 4 h post-incubation. In microPET images of U87MG tumor xenografted mice, radioactivity was accumulated in tumors (2.73{+-}0.32 %ID/g at 2 h), and the uptake was blocked by 40 % in the presence of VEGF{sub 121}. In biodistribution studies, tumor uptake (1.84{+-}0.14 %ID/g at 2 h) was blocked with VEGF{sub 121} at a similar level (52 %) to that of microPET images. Immunostaining analysis of U87MG tumor tissues obtained after the microPET imaging showed high levels of VEGFR2 expression. These results demonstrate that {sup 68}Ga-NOTA-VEGF{sub 121} has potential for the in vivo imaging of VEGFR expression. In addition, our results also suggest that the in vivo characteristics of radiolabeled VEGF depend on the

  20. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    International Nuclear Information System (INIS)

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases

  1. Increased Expression of VEGF and CD31 in Postradiation Rectal Tissue: Implications for Radiation Proctitis

    Directory of Open Access Journals (Sweden)

    G. Karamanolis

    2013-01-01

    Full Text Available Background. Inflammation mediators related to radiation proctitis are partially elucidated, and neovascularization is thought to play a key role. Objectives. To investigate the expression of vascular endothelial growth factor (VEGF and CD31 as angiogenetic markers in postradiation rectal tissue. Methods. Rectal mucosa biopsies from 11 patients who underwent irradiation for prostate cancer were examined immunohistochemically for the expression of VEGF and CD31 at three time settings—before, at the completion of, and 6 months after radiotherapy. VEGF expressing vascular endothelial cells and CD31 expressing microvessels were counted separately in 10 high-power fields (HPFs. VEGF vascular index (VEGF-VI and microvascular density (MVD were calculated as the mean number of VEGF positive cells per vessel or the mean number of vessels per HPF, respectively. Histological features were also evaluated. Results. VEGF-VI was significantly higher at the completion of radiotherapy (0.17±0.15 versus 0.41±0.24, P=0.001 declining 6 months after. MVD increased significantly only 6 months after radiotherapy (7.3±3.2 versus 10.5±3.1, P<0.005. The histopathological examination revealed inflammatory changes at the completion of radiotherapy regressing in the majority of cases 6 months after. Conclusions. Our results showed that in postradiation rectal biopsy specimens neoangiogenesis seems to be inflammation-related and constitutes a significant postradiation component of the tissue injury.

  2. Association of Chemerin and Vascular Endothelial Growth Factor (VEGF) with Diabetic Nephropathy.

    Science.gov (United States)

    Lin, Shuhua; Teng, Jian; Li, Jixia; Sun, Fang; Yuan, Dong; Chang, Jing

    2016-01-01

    BACKGROUND Diabetic nephropathy (DN) is a common complication of diabetes, caused by diabetic microvascular lesions. The pathogenesis of DN is complicated, involving genetics, physics, chemistry, and environmental factors. Chemerin is a fat cell factor that participates in regulating inflammation. Vascular endothelial growth factor (VEGF) promotes vascular endothelial cell proliferation, differentiation, and angiogenesis. The relationship role of Chemerin and VEGF in DN is not fully understood. MATERIAL AND METHODS SD rats were randomly divided into 2 groups: the control group and the DN group. Streptozotocin was used to construct the DN model. Serum creatinine (Scr), blood urea nitrogen (BUN), and urine microalbumin (UAlb) were detected. Real-time PCR and Western blot were used to test Chemerin and VEGF mRNA and protein expression in kidney tissue. ELISA was performed to test TGF-β1, TNF-α, and INF-γ levels. The correlation of Chemerin and VEGF with renal function and inflammatory factors was analyzed. RESULTS DN group rats showed obviously increased Scr and BUN levels, and elevated TGF-β1, TNF-α, and INF-γ secretion (P<0.05). Compared with controls, Chemerin and VEGF were clearly overexpressed in the DN group (P<0.05). Chemerin and VEGF expression were positively correlated with inflammatory factors and renal function. CONCLUSIONS Chemerin and VEGF play important roles in DN by regulating inflammatory factors and renal function. They may be treated as indicators of DN. PMID:27612613

  3. Association of Chemerin and Vascular Endothelial Growth Factor (VEGF) with Diabetic Nephropathy

    Science.gov (United States)

    Lin, Shuhua; Teng, Jian; Li, Jixia; Sun, Fang; Yuan, Dong; Chang, Jing

    2016-01-01

    Background Diabetic nephropathy (DN) is a common complication of diabetes, caused by diabetic microvascular lesions. The pathogenesis of DN is complicated, involving genetics, physics, chemistry, and environmental factors. Chemerin is a fat cell factor that participates in regulating inflammation. Vascular endothelial growth factor (VEGF) promotes vascular endothelial cell proliferation, differentiation, and angiogenesis. The relationship role of Chemerin and VEGF in DN is not fully understood. Material/Methods SD rats were randomly divided into 2 groups: the control group and the DN group. Streptozotocin was used to construct the DN model. Serum creatinine (Scr), blood urea nitrogen (BUN), and urine microalbumin (UAlb) were detected. Real-time PCR and Western blot were used to test Chemerin and VEGF mRNA and protein expression in kidney tissue. ELISA was performed to test TGF-β1, TNF-α, and INF-γ levels. The correlation of Chemerin and VEGF with renal function and inflammatory factors was analyzed. Results DN group rats showed obviously increased Scr and BUN levels, and elevated TGF-β1, TNF-α, and INF-γ secretion (P<0.05). Compared with controls, Chemerin and VEGF were clearly overexpressed in the DN group (P<0.05). Chemerin and VEGF expression were positively correlated with inflammatory factors and renal function. Conclusions Chemerin and VEGF play important roles in DN by regulating inflammatory factors and renal function. They may be treated as indicators of DN. PMID:27612613

  4. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  5. Establishment of a recombinant adeno-associated virus expressing hVEGF165

    Institute of Scientific and Technical Information of China (English)

    Xianghui Huang; Zhibin Shi; Xiaoqian Dang; Chen Zhang; Pengbo Yu; Kunzheng Wang

    2008-01-01

    BACKGROUND: Because certain gene vectors could have deleterious effects in the central nervous system, the choice of a safe and effective vector system has become more important for gene therapy of nerve regeneration. OBJECTIVE: To construct a non-pathogenic, recombinant adeno-associated virus (AAV) simultaneously expressing human vascular endothelial growth factor 165 (hVEGF165) and green fluorescent protein (GFP). DESIGN, TIME AND SETTING: A randomized controlled experiment was performed at the Virology Laboratory of Shaanxi Provincial Center for Disease Control and Prevention between March and September 2007. MATERIALS: AAV helper-free system, AAV-293 packaging cell line, and AAV HT-1080 cells were purchased from Stratagene, USA. E. Coli DH5α was a stocked strain from Centers for Disease Control and Prevention of Shaanxi, China. Plasmid pUC18-hHVEGF165 was a gift from Zhibin Shi. METHODS: The hVEGF165 gene was amplified by PCR from pUC18-hHVEGF165 and inserted into plasmid pAAV-IRES-hrGFP to construct recombinant plasmid pAAV-hVEGF165-IRES-hrGFP. Subsequently pAAV-hVEGF165-IRES-hrGFP, pAAV-RC (the rep/cap-gene containing plasmid), and pHelper were co-transfected into AAV-293 cells to complete rAAV-hVEGF165-IRES-hrGFP packaging through homologous recombination. The efficiency of AAV packaging was monitored under a fluorescent microscope, and the recombinant viral particles were harvested from infected AAV-293 cells, and further concentrated and purified. AAV HT-1080 cells were infected with the recombinant virus AAV-hVEGF165-IRES-hrGFP. MAIN OUTCOME MEASURES: Recombinant virus titer was measured by fluorescent cell counting, and infection efficiency was detected by Fluorescence Activated Cell Sorter (FACS) upon infecting AAV-HT1080 cells. The recombination with the exogenous gene was verified by PCR. RESULTS: The PCR amplified products were verified as hVEGF165 gene by DNA sequencing, and the recombinant pAAV-hVEGF165-IRES-GFP was confirmed by double digestion

  6. Aflibercept exhibits VEGF binding stoichiometry distinct from bevacizumab and does not support formation of immune-like complexes.

    Science.gov (United States)

    MacDonald, Douglas A; Martin, Joel; Muthusamy, Kathir K; Luo, Jiann-Kae; Pyles, Erica; Rafique, Ashique; Huang, Tammy; Potocky, Terra; Liu, Yang; Cao, Jingtai; Bono, Françoise; Delesque, Nathalie; Savi, Pierre; Francis, John; Amirkhosravi, Ali; Meyer, Todd; Romano, Carmelo; Glinka, Meredith; Yancopoulos, George D; Stahl, Neil; Wiegand, Stanley J; Papadopoulos, Nicholas

    2016-07-01

    Anti-vascular endothelial growth factor (VEGF) therapies have improved clinical outcomes for patients with cancers and retinal vascular diseases. Three anti-VEGF agents, pegaptanib, ranibizumab, and aflibercept, are approved for ophthalmic indications, while bevacizumab is approved to treat colorectal, lung, and renal cancers, but is also used off-label to treat ocular vascular diseases. The efficacy of bevacizumab relative to ranibizumab in treating neovascular age-related macular degeneration has been assessed in several trials. However, questions persist regarding its safety, as bevacizumab can form large complexes with dimeric VEGF165, resulting in multimerization of the Fc domain and platelet activation. Here, we compare binding stoichiometry, Fcγ receptor affinity, platelet activation, and binding to epithelial and endothelial cells in vitro for bevacizumab and aflibercept, in the absence or presence of VEGF. In contrast to bevacizumab, aflibercept forms a homogenous 1:1 complex with each VEGF dimer. Unlike multimeric bevacizumab:VEGF complexes, the monomeric aflibercept:VEGF complex does not exhibit increased affinity for low-affinity Fcγ receptors, does not activate platelets, nor does it bind to the surface of epithelial or endothelial cells to a greater degree than unbound aflibercept or control Fc. The latter finding reflects the fact that aflibercept binds VEGF in a unique manner, distinct from antibodies not only blocking the amino acids necessary for VEGFR1/R2 binding but also occluding the heparin-binding site on VEGF165. PMID:27234973

  7. Mechanical Forces Induce Changes in VEGF and VEGFR-1/sFlt-1 Expression in Human Chondrocytes

    Directory of Open Access Journals (Sweden)

    Rainer Beckmann

    2014-09-01

    Full Text Available Expression of the pro-angiogenic vascular endothelial growth factor (VEGF stimulates angiogenesis and correlates with the progression of osteoarthritis. Mechanical joint loading seems to contribute to this cartilage pathology. Cyclic equibiaxial strains of 1% to 16% for 12 h, respectively, induced expression of VEGF in human chondrocytes dose- and frequency-dependently. Stretch-mediated VEGF induction was more prominent in the human chondrocyte cell line C-28/I2 than in primary articular chondrocytes. Twelve hours of 8% stretch induced VEGF expression to 175% of unstrained controls for at least 24 h post stretching, in promoter reporter and enzyme-linked immunosorbent assay (ELISA studies. High affinity soluble VEGF-receptor, sVEGFR-1/sFlt-1 was less stretch-inducible than its ligand, VEGF-A, in these cells. ELISA assays demonstrated, for the first time, a stretch-mediated suppression of sVEGFR-1 secretion 24 h after stretching. Overall, strained chondrocytes activate their VEGF expression, but in contrast, strain appears to suppress the secretion of the major VEGF decoy receptor (sVEGFR-1/sFlt-1. The latter may deplete a biologically relevant feedback regulation to inhibit destructive angiogenesis in articular cartilage. Our data suggest that mechanical stretch can induce morphological changes in human chondrocytes in vitro. More importantly, it induces disturbed VEGF signaling, providing a molecular mechanism for a stress-induced increase in angiogenesis in cartilage pathologies.

  8. Effect of glucose and insulin on the expression of VEGF mRNA in 4T1 Cells%葡萄糖和胰岛素对4T1肿瘤细胞VEGF mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    孙凤娥; 于春涛; 胡洁; 周慧敏

    2013-01-01

    目的 研究不同浓度的葡萄糖和胰岛素对4T1肿瘤细胞血管内皮生长因子(VEGF) mRNA表达的影响.方法 体外常规培养4T1肿瘤细胞,根据细胞培养液RPMI 1640培养基中所含葡萄糖和胰岛素浓度的不同将4T1肿瘤细胞分为15组.每组设双复孔,置于37℃、5% CO2的细胞培养箱培养,48h后收集细胞,提取总RNA,RT-PCR同时扩增目的片段VEGF和内参照β-actin,琼脂糖凝胶电泳,扩增产物在凝胶成像系统上扫描分析,计算VEGF mRNA相对表达量.整个实验过程重复3次.结果 培养液中含有不同浓度葡萄糖的B、C、D、E组VEGF mRNA的表达与A组相比变化不明显(P>0.05).F组、G组和J组VEGF mRNA的表达与A组相比差异均无统计学意义(P>0.05);在含有高浓度胰岛素的H组、I组VEGF mRNA的表达水平与A组相比差异有统计学意义(P<0.05).L组和M组的VEGF mRNA的表达水平与A组相比差异有统计学意义(P<0.05);而K组、N组和O组与A组相比差异均无统计学意义(P>0.05).结论 高浓度的胰岛素能够使4T1肿瘤细胞VEGF mRNA的表达上调,葡萄糖浓度的变化对4T1肿瘤细胞VEGF mRNA的表达无明显影响.

  9. 基质金属蛋白酶2和基质金属蛋白酶9、血管内皮生长因子在非小细胞肺癌中的表达及临床意义%Expression and clinic pathological features of MMP 2, MMP 9 and VEGF in non - small - cell lung carcinoma

    Institute of Scientific and Technical Information of China (English)

    李海燕; 郑有光; 程维刚; 陈丽萍; 张娜丽

    2011-01-01

    目的 观察非小细胞肺癌( NSCLC)标本中基质金属蛋白酶2(MMP 2)和MMP 9及血管内皮生长因子(VEGF)的表达,以探讨其在NSCLC中表达的意义,为临床的诊断、治疗和预后的判断提供参考.方法 用SP免疫组化技术检测MMP 2、MMP 9、VEGF在77例肺癌组织中的表达.结果 肺癌组织中MMP 2、MMP 9主要表达于肿瘤细胞的胞浆,在癌旁交界区组织也有表达,肿瘤组织的过表达率显著高于交界区(P<0.05),MMP 2、VEGF在肿瘤组织的过表达率与淋巴结转移状态、临床分期与原发肿瘤大小有关(P<0.05).结论 MMP 2、MMP 9、VEGF都参与了非小细胞癌发生、发展过程,MMP 2、VEGF在其中可能起到协同促进作用,MMP 2、VEGF联合分析可能更有助于评估NSCLC患者的预后.%Objective To investigate the expression and clinic pathological features of MMP2,MMP9 and VEGF in non - small - cell lung carcinoma,and provide reference for diagnosis,treatment and prognosis predictment of the disease.Methods MMP 2 and MMP 9,VEGF expressions were detected in 77 cases of non - small - cell lung carcinoma tissues and their adjacent tissues and 24 cases of normal lung tissues by steptavidinperoxdase immunohistochemical technique.Results The immunoreactivities of MMP 2 and MMP 9,VEGF were mainly shown in cytoplasma of tumor cells.The overexpressions of MMP 2 and MMP 9,VEGF in carcinoma tissues were significantly higher than in adjacent tissues ( P < 0.05).The overexpression of MMP 2 and VEGF in the cancer tissues were related to clinical stages,lymph node metastasis status and the size of primary cancer ( P < 0.05 ).There was a trend that the survival rate of these patients with overexpression of MMP 2 and MMP 9,VEGF was lower than that with non - overexpression,but there was no statistical significance.The survival rate of the group with both MMP 2 and MMP 9,VEGF overexpressions was lower than with non - overexpression ( P < 0.05 ).Conclusions MMP 2,MMP 9 and

  10. Effects of Traditional Chinese Medicine Zilongjin Extracts on Human Non-small Cell Lung Cancer Cells A549 and Endogenous VEGF Expression%紫龙金对人非小细胞肺癌A549细胞生长及VEGF表达的影响

    Institute of Scientific and Technical Information of China (English)

    史东升; 周静敏; 马淑萍

    2011-01-01

    目的:观察紫龙金和顺铂对人非小细胞肺癌A549细胞增殖及血管内皮生长因子(VEGF)表达的影响,探讨中药紫龙金抗癌机制.方法:体外培养A549细胞,采用MTT法检测紫龙金和顺铂对细胞生长的影响,RT-PCR定量检测细胞VEGF的表达,ELISA法检测细胞上清液中VEGF含量变化.结果:紫龙金和顺铂均可抑制A549细胞的增殖,细胞存活率随药物浓度的升高而下降(F 紫龙金=4 996.216,P 紫龙金<0.001;F 顺铂=6 834.121,P 顺铂<0.001).同一药物浓度,细胞存活率随处理天数的增加而下降(F 紫龙金=13.366,P 紫龙金<0.001;F 顺铂=1 471.067,P 顺铂<0.001).紫龙金作用24 h和72 h,A549细胞VEGF mRNA的表达随药物浓度提高而下降(F=216.826,P<0.001);而顺铂作用24 h,VEGF表达反而随浓度升高而上升.顺铂与紫龙金配伍后,随药物浓度的提高对VEGF表达均表现出抑制作用(F=4.318,P<0.05).结论:紫龙金能抑制人非小细胞肺癌A549细胞增殖,下调细胞VEGF表达,体现出多靶点抗癌作用;顺铂通过抑制细胞周期抑制A549细胞增殖,未见抑制VEGF转录水平的表达.%Objective: To investigate the effects of the Traditional Chinese medicine Zilongjin on the proliferation of human non-small cell lung cancer cells A549 and the downregulation of vascular endothelial growth factor ( VEGF ) expression. Methods: A549 cells were cultured in a variety of Zilongjin and cisplatin concentrations. Cell viability was detected with a 3- ( 4,5-dimethylthia-zol-2-yl) 2,5-diphenyl telrazolium bromide ( MTT ) assay and VEGF content of the A549 cell supemate was detected by ELISA assay after 24, 48, and 72 hours of exposure. The VEGF mRNA was detected by real time reverse transcription polymerase chain reaction ( RT-PCR ). Results: Zilongjin and cisplatin inhibit the proliferation of A549 cells and the cell activity declined with increasing drug concentrations ( Fzilongjin film = 4996.216, Pzilongjin film < 0.001; Fcisplatin = 6834

  11. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor

    OpenAIRE

    Acevedo, Lisette M; Barillas, Samuel; Weis, Sara M.; Göthert, Joachim R.; Cheresh, David A.

    2008-01-01

    Semaphorin 3A (Sema3A), a known inhibitor of axonal sprouting, also alters vascular patterning. Here we show that Sema3A selectively interferes with VEGF- but not bFGF-induced angiogenesis in vivo. Consistent with this, Sema3A disrupted VEGF- but not bFGF-mediated endothelial cell signaling to FAK and Src, key mediators of integrin and growth factor signaling; however, signaling to ERK by either growth factor was unperturbed. Since VEGF is also a vascular permeability (VP) factor, we examined...

  12. VEGF dose regulates vascular stabilization through Semaphorin3A and the Neuropilin-1+ monocyte/TGF-β1 paracrine axis.

    Science.gov (United States)

    Groppa, Elena; Brkic, Sime; Bovo, Emmanuela; Reginato, Silvia; Sacchi, Veronica; Di Maggio, Nunzia; Muraro, Manuele G; Calabrese, Diego; Heberer, Michael; Gianni-Barrera, Roberto; Banfi, Andrea

    2015-10-01

    VEGF is widely investigated for therapeutic angiogenesis, but while short-term delivery is desirable for safety, it is insufficient for new vessel persistence, jeopardizing efficacy. Here, we investigated whether and how VEGF dose regulates nascent vessel stabilization, to identify novel therapeutic targets. Monoclonal populations of transduced myoblasts were used to homogeneously express specific VEGF doses in SCID mouse muscles. VEGF was abrogated after 10 and 17 days by Aflibercept treatment. Vascular stabilization was fastest with low VEGF, but delayed or prevented by higher doses, without affecting pericyte coverage. Rather, VEGF dose-dependently inhibited endothelial Semaphorin3A expression, thereby impairing recruitment of Neuropilin-1-expressing monocytes (NEM), TGF-β1 production and endothelial SMAD2/3 activation. TGF-β1 further initiated a feedback loop stimulating endothelial Semaphorin3A expression, thereby amplifying the stabilizing signals. Blocking experiments showed that NEM recruitment required endogenous Semaphorin3A and that TGF-β1 was necessary to start the Semaphorin3A/NEM axis. Conversely, Semaphorin3A treatment promoted NEM recruitment and vessel stabilization despite high VEGF doses or transient adenoviral delivery. Therefore, VEGF inhibits the endothelial Semaphorin3A/NEM/TGF-β1 paracrine axis and Semaphorin3A treatment accelerates stabilization of VEGF-induced angiogenesis. PMID:26323572

  13. New common variants affecting susceptibility to basal cell carcinoma.

    NARCIS (Netherlands)

    Stacey, S.N.; Sulem, P.; Masson, G.; Gudjonsson, S.A.; Thorleifsson, G.; Jakobsdottir, M.; Sigurdsson, A.; Gudbjartsson, D.F.; Sigurgeirsson, B.; Benediktsdottir, K.R.; Thorisdottir, K.; Ragnarsson, R.; Scherer, D.; Hemminki, K.; Rudnai, P.; Gurzau, E.; Koppova, K.; Botella-Estrada, R.; Soriano, V.; Juberias, P.; Saez, B.; Gilaberte, Y.; Fuentelsaz, V.; Corredera, C.; Grasa, M.; Hoiom, V.; Lindblom, A.; Bonenkamp, J.J.; Rossum, M.M. van; Aben, K.K.H.; Vries, E. de; Santinami, M.; Mauro, M.G. Di; Maurichi, A.; Wendt, J.; Hochleitner, P.; Pehamberger, H.; Gudmundsson, J.; Magnusdottir, D.N.; Gretarsdottir, S.; Holm, H.; Steinthorsdottir, V.; Frigge, M.L.; Blondal, T.; Saemundsdottir, J.; Bjarnason, H.; Kristjansson, K.; Bjornsdottir, G.; Okamoto, I.; Rivoltini, L.; Rodolfo, M.; Kiemeney, L.A.L.M.; Hansson, J.; Nagore, E.; Mayordomo, J.I.; Kumar, R.; Karagas, M.R.; Nelson, H.H.; Gulcher, J.R.; Rafnar, T.; Thorsteinsdottir, U.; Olafsson, J.H.; Kong, A.; Stefansson, K.

    2009-01-01

    In a follow-up to our previously reported genome-wide association study of cutaneous basal cell carcinoma (BCC), we describe here several new susceptibility variants. SNP rs11170164, encoding a G138E substitution in the keratin 5 (KRT5) gene, affects risk of BCC (OR = 1.35, P = 2.1 x 10(-9)). A vari

  14. Adipose VEGF Links the White-to-Brown Fat Switch With Environmental, Genetic, and Pharmacological Stimuli in Male Mice.

    Science.gov (United States)

    During, Matthew J; Liu, Xianglan; Huang, Wei; Magee, Daniel; Slater, Andrew; McMurphy, Travis; Wang, Chuansong; Cao, Lei

    2015-06-01

    Living in an enriched environment (EE) decreases adiposity, increases energy expenditure, causes resistance to diet induced obesity, and induces brown-like (beige) cells in white fat via activating a hypothalamic-adipocyte axis. Here we report that EE stimulated vascular endothelial growth factor (VEGF) expression in a fat depot-specific manner prior to the emergence of beige cells. The VEGF up-regulation was independent of hypoxia but required intact sympathetic tone to the adipose tissue. Targeted adipose overexpression of VEGF reproduced the browning effect of EE. Adipose-specific VEGF knockout or pharmacological VEGF blockade with antibodies abolished the induction of beige cell by EE. Hypothalamic brain-derived neurotrophic factor stimulated by EE regulated the adipose VEGF expression, and VEGF signaling was essential to the hypothalamic brain-derived neurotrophic factor-induced white adipose tissue browning. Furthermore, VEGF signaling was essential to the beige cells induction by exercise, a β3-adrenergic agonist, and a peroxisome proliferator-activated receptor-γ ligand, suggesting a common downstream pathway integrating diverse upstream mechanisms. Exploiting this pathway may offer potential therapeutic interventions to obesity and metabolic diseases. PMID:25763639

  15. Using Anti-VEGF in Diabetic Retinopathy

    Science.gov (United States)

    Marashi, Ameen

    2016-01-01

    Vascular endothelium growth factor is the main pathological factor in diabetic retinopathy and diabetic macular edema (DME), Anti-VEGF agents are safe and effective in DME treatment, there are multiple Anti-VEGF agents, choosing between them is essential to individualize treatment for each patient to achieve the optimum results. PMID:27419238

  16. Glycer-AGEs-RAGE signaling enhances the angiogenic potential of hepatocellular carcinoma by upregulating VEGF expression

    Institute of Scientific and Technical Information of China (English)

    Junichi Takino; Shoichi Yamagishi; Masayoshi Takeuchi

    2012-01-01

    AIM:To investigate the effect of glyceraldehyde-derived advanced glycation end-products (Glycer-AGEs)on hepatocellular carcinoma (HCC) cells.METHODS:Two HCC cell lines (Hep3B and HepG2cells) and human umbilical vein endothelial cells (HUVEC) were used.Cell viability was determined using the WST-8 assay.Western blotting,enzyme linked immunosorbent assay,and real-time reverse transcriptionpolymerase chain reactions were used to detect protein and mRNA.Angiogenesis was evaluated by assessing the proliferation,migration,and tube formation of HUVEC.RESULTS:The receptor for AGEs (RAGE) protein was detected in Hep3B and HepG2 cells.HepG2 cells were not affected by the addition of Glycer-AGEs.GlycerAGEs markedly increased vascular endothelial growth factor (VEGF) mRNA and protein expression,which is one of the most potent angiogenic factors.Compared with the control unglycated bovine serum albumin (BSA)treatment,VEGF mRNA expression levels induced by the Glycer-AGEs treatment were 1.00 ± 0.10 vs 1.92± 0.09 (P < 0.01).Similarly,protein expression levels induced by the Glycer-AGEs treatment were 1.63 ± 0.04ng/mL vs 2.28 ± 0.17 ng/mL for the 24 h treatment and 3.36 ± 0.10 ng/mL vs 4.79 ± 0.31 ng/mL for the 48 h treatment,respectively (P < 0.01).Furthermore,compared with the effect of the control unglycated BSA-treated conditioned medium,the Glycer-AGEstreated conditioned medium significantly increased the proliferation,migration,and tube formation of HUVEC,with values of 122.4% ± 9.0% vs 144.5% ± 11.3% for cell viability,4.29 ± 1.53 vs 6.78 ± 1.84 for migration indices,and 71.0 ± 7.5 vs 112.4 ± 8.0 for the number of branching points,respectively (P < 0.01).CONCLUSION:These results suggest that Glycer-AGEs-RAGE signaling enhances the angiogenic potential of HCC cells by upregulating VEGF expression.

  17. The effect of siRNA targeted VEGF-C gene on the biological behavior of mouse 4T1 breast cancer cells%RNAi技术沉默VEGF-C基因对小鼠4T1细胞生物学行为的影响

    Institute of Scientific and Technical Information of China (English)

    于媛; 葛银林

    2012-01-01

    目的 体外观察siRNA靶向干扰VEGF-C基因对4T1小鼠乳腺癌细胞的生物学行为影响.方法 选用HifectinII真核转染试剂将化学修饰的针对小鼠VEGF-C基因的siRNA转染4T1小鼠乳腺癌细胞株,设立空白对照组(只加培养基),脂质体组(每孔加培养基与0.5 μL Hifectin II 真核转染试剂),SCR组(100 nM),siRNA组(100 nM).蛋白印迹试验检测转染前后细胞中VEGF-C的蛋白水平表达的变化;半定量RT-PCR检测VEGF-C、Survivin、BCL-2、BAX的mRNA水平表达的变化; MTT比色法检测细胞的增殖;Transwell小室方法检测肿瘤细胞的侵袭性改变;Hochest33258荧光染色观察细胞凋亡.结果 转染VEGF-C siRNA 48 h后4T1细胞的VEGF-C基因的mRNA和蛋白水平表达明显降低,空白对照组、脂质体组和siRNA SCR组各指标差异无显著性(P>0.05);4T1细胞生长受到抑制,Transwell小室方法检测肿瘤细胞的侵袭性降低,Hoechst 33258荧光染色显示细胞内可见凋亡小体.结论 化学修饰siRNA介导的RNA干扰能下调靶基因VEGF-C的表达并能够促进4T1细胞的凋亡,抑制4T1细胞的增殖与侵袭性.

  18. VEGF-C Is a Thyroid Marker of Malignancy Superior to VEGF-A in the Differential Diagnostics of Thyroid Lesions.

    Directory of Open Access Journals (Sweden)

    Kosma Woliński

    Full Text Available Thyroid nodular goiter is one of the most common medical conditions affecting even over a half of adult population. The risk of malignancy is rather small but noticeable-estimated by numerous studies to be about 3-10%. The definite differentiation between benign and malignant ones is a vital issue in endocrine practice. The aim of the current study was to assess the expression of vascular endothelial growth factor A (VEGF-A and VEGF-C on the mRNA level in FNAB washouts in case of benign and malignant thyroid nodules and to evaluate the diagnostic value of these markers of malignancy.Patients undergoing fine-needle aspiration biopsy (FNAB in our department between January 2013 and May 2014 were included. In case of all patients who gave the written consent, after ultrasonography (US and fine-needle aspiration biopsy (FNAB performed as routine medical procedure the needle was flushed with RNA Later solution, the washouts were frozen in -80 Celsius degrees. Expression of VEGF-A and VEGF-C and GADPH (reference gene was assessed in washouts on the mRNA level using the real-time PCR technique. Probes of patients who underwent subsequent thyroidectomy and were diagnosed with differentiated thyroid cancer (DTC; proved by post-surgical histopathology were analyzed. Similar number of patients with benign cytology were randomly selected to be a control group.Thirty one DTCs and 28 benign thyroid lesions were analyzed. Expression of VEGF-A was insignificantly higher in patients with DTCs (p = 0.13. Expression of VEGF-C was significantly higher in patients with DTC. The relative expression of VEGF-C (in comparison with GAPDH was 0.0049 for DTCs and 0.00070 for benign lesions, medians - 0.0036 and 0.000024 respectively (p<0.0001.Measurement of expression VEGF-C on the mRNA level in washouts from FNAB is more useful than more commonly investigated VEGF-A. Measurement of VEGF-C in FNAB washouts do not allow for fully reliable differentiation of benign and

  19. The Vascular-Ablative Agent VEGF121/rGel Inhibits Pulmonary Metastases of MDA-MB-231 Breast Tumors

    Directory of Open Access Journals (Sweden)

    Sophia Ran

    2005-05-01

    Full Text Available VEGF121/rGel, a fusion protein composed of the growth factor VEGF121 and the recombinant toxin gelonin (rGel, targets the tumor neovasculature and exerts impressive cytotoxic effects by inhibiting protein synthesis. We evaluated the effect of VEGF121/rGel on the growth of metastatic MDA-MB-231 tumor cells in SCID mice. VEGF121/rGel treatment reduced surface lung tumor foci by 58% compared to controls (means were 22.4 and 53.3, respectively; P < .05 and the mean area of lung colonies by 50% (210 ± 37 m2vs 415 ± 10 m2 for VEGF121/rGel and control, respectively; P < .01. In addition, the vascularity of metastatic foci was significantly reduced: (198 ± 37 vs 388 ± 21 vessels/mm2 for treated and control, respectively. Approximately 62% of metastatic colonies from the VEGF121/rGel-treated group had fewer than 10 vessels per colony compared to 23% in the control group. The VEGF receptor Flk-1 was intensely detected on the metastatic vessels in the control but not in the VEGF121/rGel-treated group. Metastatic foci present in lungs had a three-fold lower Ki-67 labeling index compared to control tumors. Thus, the antitumor vascular-ablative effect of VEGF121/rGel may be utilized not only for treating primary tumors but also for inhibiting metastatic spread and vascularization of metastases.

  20. Human NK cell subset functions are differentially affected by adipokines.

    Directory of Open Access Journals (Sweden)

    Lena Huebner

    Full Text Available BACKGROUND: Obesity is a risk factor for various types of infectious diseases and cancer. The increase in adipose tissue causes alterations in both adipogenesis and the production of adipocyte-secreted proteins (adipokines. Since natural killer (NK cells are the host's primary defense against virus-infected and tumor cells, we investigated how adipocyte-conditioned medium (ACM affects functions of two distinct human NK cell subsets. METHODS: Isolated human peripheral blood mononuclear cells (PBMCs were cultured with various concentrations of human and murine ACM harvested on two different days during adipogenesis and analyzed by fluorescent-activated cell sorting (FACS. RESULTS: FACS analyses showed that the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, granzyme A (GzmA and interferon (IFN-γ in NK cells was regulated in a subset-specific manner. ACM treatment altered IFN-γ expression in CD56(dim NK cells. The production of GzmA in CD56(bright NK cells was differentially affected by the distinct adipokine compositions harvested at different states of adipogenesis. Comparison of the treatment with either human or murine ACM revealed that adipokine-induced effects on NK cell expression of the leptin receptor (Ob-R, TRAIL and IFN-γ were species-specific. CONCLUSION: Considering the growing prevalence of obesity and the various disorders related to it, the present study provides further insights into the roles human NK cell subsets play in the obesity-associated state of chronic low-grade inflammation.

  1. Effect of neomycin on cell proliferation and expression of PDGF,VEGF,angiogenin in glioma cells%新霉素对脑胶质瘤细胞增殖及PDGF、VEGF和血管生成素表达的影响

    Institute of Scientific and Technical Information of China (English)

    赵佳; 郝利铭; 姜文华; 孔德霞; 李洪成; 周莉

    2014-01-01

    目的:探讨新霉素对脑胶质瘤细胞增殖及 PDGF、VEGF和血管生成素表达的影响。方法采用人脑胶质瘤细胞 U251,DMEM培养基添加10%胎牛血清培养。MTT细胞活性实验检测细胞增殖,Real Time PCR检测 mR-NA表达情况,酶联免疫吸附实验检测蛋白表达。结果 MTT结果表明,新霉素对 U251细胞增殖存在抑制作用,并以剂量依赖的方式进行,并发现新霉素的抑制作用随时间增强。Real Time PCR结果显示,新霉素作用后 U251细胞中PDGF、VEGF和血管生成素 mRNA 的表达都受到不同程度的抑制,分别降低了26.75%、38.23%和43.87%。ELISA分析表明新霉素能够降低PDGF、VEGF和血管生成素蛋白水平的表达。结论新霉素能够抑制脑胶质瘤细胞 U251中PDGF、VEGF和血管生成素的表达并抑制脑胶质瘤细胞增殖。%Objective To observe the effect of neomycin on cell proliferation and expression of PDGF,VEGF,angio-genin in U251 glioma cells.Methods The cell proliferation was analyzed using MTT.Real Time PCR and ELISA were applied to investigate the expression of PDGF,VEGF,angiogenin.Results The MTT results showed that neomycin positively inhibited the cell proliferation of U251 cells and the inhibition was enhanced by dose-dependent and time-de-pendent.Real Time PCR and ELISA results showed that neomycin inhibited the expression of PDGF,VEGF,angiogenin both on mRNA level and protein level.Conclusion Neomycin positively inhibited the cell proliferation and expression of PDGF,VEGF,angiogenin in U251 glioma cells.

  2. r84, a novel therapeutic antibody against mouse and human VEGF with potent anti-tumor activity and limited toxicity induction.

    Directory of Open Access Journals (Sweden)

    Laura A Sullivan

    Full Text Available Vascular endothelial growth factor (VEGF is critical for physiological and pathological angiogenesis. Within the tumor microenvironment, VEGF functions as an endothelial cell survival factor, permeability factor, mitogen, and chemotactic agent. The majority of these functions are mediated by VEGF-induced activation of VEGF receptor 2 (VEGFR2, a high affinity receptor tyrosine kinase expressed by endothelial cells and other cell types in the tumor microenvironment. VEGF can also ligate other cell surface receptors including VEGFR1 and neuropilin-1 and -2. However, the importance of VEGF-induced activation of these receptors in tumorigenesis is still unclear. We report the development and characterization of r84, a fully human monoclonal antibody that binds human and mouse VEGF and selectively blocks VEGF from interacting with VEGFR2 but does not interfere with VEGF:VEGFR1 interaction. Selective blockade of VEGF binding to VEGFR2 by r84 is shown through ELISA, receptor binding assays, receptor activation assays, and cell-based functional assays. Furthermore, we show that r84 has potent anti-tumor activity and does not alter tissue histology or blood and urine chemistry after chronic high dose therapy in mice. In addition, chronic r84 therapy does not induce elevated blood pressure levels in some models. The ability of r84 to specifically block VEGF:VEGFR2 binding provides a valuable tool for the characterization of VEGF receptor pathway activation during tumor progression and highlights the utility and safety of selective blockade of VEGF-induced VEGFR2 signaling in tumors.

  3. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Kristina Ramanauskiene

    2016-01-01

    Full Text Available Lemon balm (Melissa officinalis L. has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h. RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies.

  4. Genes affecting β-cell function in type 1 diabetes

    DEFF Research Database (Denmark)

    Fløyel, Tina; Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Type 1 diabetes (T1D) is a multifactorial disease resulting from an immune-mediated destruction of the insulin-producing pancreatic β cells. Several environmental and genetic risk factors predispose to the disease. Genome-wide association studies (GWAS) have identified around 50 genetic regions...... that affect the risk of developing T1D, but the disease-causing variants and genes are still largely unknown. In this review, we discuss the current status of T1D susceptibility loci and candidate genes with focus on the β cell. At least 40 % of the genes in the T1D susceptibility loci are expressed in human...... islets and β cells, where they according to recent studies modulate the β-cell response to the immune system. As most of the risk variants map to noncoding regions of the genome, i.e., promoters, enhancers, intergenic regions, and noncoding genes, their possible involvement in T1D pathogenesis as gene...

  5. The Schlemm's canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel.

    Science.gov (United States)

    Aspelund, Aleksanteri; Tammela, Tuomas; Antila, Salli; Nurmi, Harri; Leppänen, Veli-Matti; Zarkada, Georgia; Stanczuk, Lukas; Francois, Mathias; Mäkinen, Taija; Saharinen, Pipsa; Immonen, Ilkka; Alitalo, Kari

    2014-09-01

    In glaucoma, aqueous outflow into the Schlemm's canal (SC) is obstructed. Despite striking structural and functional similarities with the lymphatic vascular system, it is unknown whether the SC is a blood or lymphatic vessel. Here, we demonstrated the expression of lymphatic endothelial cell markers by the SC in murine and zebrafish models as well as in human eye tissue. The initial stages of SC development involved induction of the transcription factor PROX1 and the lymphangiogenic receptor tyrosine kinase VEGFR-3 in venous endothelial cells in postnatal mice. Using gene deletion and function-blocking antibodies in mice, we determined that the lymphangiogenic growth factor VEGF-C and its receptor, VEGFR-3, are essential for SC development. Delivery of VEGF-C into the adult eye resulted in sprouting, proliferation, and growth of SC endothelial cells, whereas VEGF-A obliterated the aqueous outflow system. Furthermore, a single injection of recombinant VEGF-C induced SC growth and was associated with trend toward a sustained decrease in intraocular pressure in adult mice. These results reveal the evolutionary conservation of the lymphatic-like phenotype of the SC, implicate VEGF-C and VEGFR-3 as critical regulators of SC lymphangiogenesis, and provide a basis for further studies on therapeutic manipulation of the SC with VEGF-C in glaucoma treatment.

  6. Stimulation of Odontogenesis and Angiogenesis via Bioactive Nanocomposite Calcium Phosphate Cements Through Integrin and VEGF Signaling Pathways.

    Science.gov (United States)

    Lee, Sang-Im; Lee, Eui-Suk; El-Fiqi, Ahmed; Lee, So-Youn; Eun-Cheol Kim; Kim, Hae-Won

    2016-05-01

    Formulating self-setting calcium phosphate cements (CPCs) with secondary phases particularly in the nanoscale order holds great promise to improve biological properties. Here, we focus on the effect that bioactive glass nanoparticles (BGN) incorporated in CPC compositions can have on the proliferation, odontogenic differentiation, and angiogenic stimulation of stem cells derived from human dental pulp (HDPSCs). These odontogenic and angiogenic events are of special importance in the dentin-pulp regeneration processes. In comparison to pure CPCs, nanocomposite cements exhibit a significantly improved proliferation of HDPSCs, and the improvement is more significant as the BGN content increases. The nanocomposite cements substantially enhance the adhesion of cells, and significantly up-regulate odontogenic differentiation, including alkaline phosphatase (ALP) activity and the expressions of odontogenic genes (sialophosphoprotein, dentin matrix protein I, ALP, osteopontin and osteocalcin). Furthermore, the use of nanocomposite cements result in stimulation of angiogenic gene expression (VEGF, FGF-2, VEGFRs, PECAM-1, and VE-cadherin) and protein production (VEGF, VEGFR-1). The angiogenic stimulation by the HDPSCs significantly affects the endothelial cell behaviors, that is, the endothelial cell migration and the tubular network formation are substantially improved when treated with HDPSC-conditioned medium, particularly with the help of nanocomposite cements. The integrin and VEGF signaling pathways are reasoned for the stimulation of the odontogenesis and angiogenesis of cells, where the nanocomposite cements up-regulate the integrin subsets α1, α2, α3, and β1, and activate the integrin downstream signal pathways, such as p-FAK, p-Akt, p-paxillin, JNK, EK, and NF-κB, as well as other nuclear transcriptional factors, including CREB, STAT-3, and ELK-1. The current results indicate that the new formulation of the nanocomposite self-setting cements might provide some

  7. VEGF-VEGFR2,Dll4-Notch1信号通路在基底细胞癌和鲍温病中的表达及关系%VEGF-VEGFR2, Relationship and Expression of Dll4-Notch1 Signaling Pathway in the Basal Cell Carcinoma and Bowen's Disease

    Institute of Scientific and Technical Information of China (English)

    孙晓佳; 郝彩玲; 丁楠; 赵琦

    2014-01-01

    Objective To compare the expression and relationship of VEGF/VEGFR2, Dl 4/Notch1 signaling pathway in dif erent types of epithelial tumors. Methods The expression of VEGF,VEGFR2,Dl 4 and Notch1 in 60 basal cellcarcinoma tissue and 26 Bowen's disease were observed by using immunohistochemistry. The relationship of VEGF,VEGFR2,Dl 4 and Notch1 were af irmed by correlation analysis. Results VEGF and VEGFR2 expression in the basal cellcarcinom group is higher than the Bowen's disease and the control ( <0.05), while Dl 4 and Notch1 is significantly lower than the the Bowen's disease and the control ( <0.05). VEGF and VEGFR2 expression in the Bowen's disease is higher than the control ( <0.05), for Dll4 and Notch1 is significantly lower than the control ( <0.05).Conclusion VEGF、VEGFR2、Dll4、Notch1 play a rool in the development and prognosis of dif erent epithelial skin tumor.%目的:比较VEGF-VEGFR2,Dl 4-Notch1信号通路在不同类型上皮源性肿瘤中的表达及关系。方法采用免疫组化方法,对60例基底细胞癌和26例鲍温病的石蜡包埋标本进行VEGF、VEGFR2、Dl 4、Notch1蛋白水平的检测,并进行相关性分析。结果 VEGF、VEGFR2、在基底细胞癌中的表达高于鲍温病及正常皮肤组织,差异具有统计学意义(P<0.05)。而Dl 4、Notch1在基底细胞癌中的表达低于鲍温病及正常皮肤组织,差异具有统计学意义(P<0.05)。结论 VEGF、VEGFR2、Dl 4、Notch1与不同种类上皮源性皮肤肿瘤的发展和预后有关。

  8. Determination of vascular endothelial growth factor (VEGF) in circulating blood: significance of VEGF in various leucocytes and platelets

    DEFF Research Database (Denmark)

    Werther, K; Christensen, Ib Jarle; Nielsen, Hans Jørgen

    2002-01-01

    contained considerable amounts of VEGF. In isolated lymphocytes and monocytes, VEGF was not present in measurable amounts. The number of neutrophils was significantly (p<0.0001) correlated to VEGF concentrations in lysed whole blood, but not to VEGF concentrations in plasma or serum. The number of platelets...... clotting. CONCLUSION: Circulating neutrophils contain considerable amounts of VEGF that contribute to high VEGF levels in lysed whole blood. VEGF in circulating platelets contributes to high VEGF levels in serum and lysed whole blood. Allowing whole blood samples to clot for between 2 and 6 h before serum......AIM: The sources of increased vascular endothelial growth factor (VEGF) concentrations in peripheral blood from cancer patients are not known in detail. The aim of the present study was to evaluate correlations between the VEGF content in isolated leucocyte subpopulations and VEGF concentrations in...

  9. Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells.

    Science.gov (United States)

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Batle, Juan Miguel; Tur, Josep Antoni; Pons, Antoni

    2016-09-01

    Acute exercise induces changes in peripheral mononuclear cells' (PBMCs) capabilities to produce cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on cytokine production, by lipopolysaccharide (LPS)-stimulated PBMCs after exercise, and the in vitro influence of temperature. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA (1.16 g DHA/day) for 8 weeks, whereas the placebo group consumed a similar non-enriched beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise. Nutritional intervention significantly increased the DHA content in erythrocytes only in experimental group (from 34 ± 3.6 to 43 ± 3.6 nmols DHA/10(9) erythrocytes). Exercise significantly increased Toll-like receptor 4 (TLR4) in PBMCs but only in the placebo group (203 %). Exercise also significantly increased IL6, IL8, VEGF, INFγ, TNFα, IL1α, IL1β, MCP1, and EGG production rates by LPS-stimulated PBMCs, and this response was attenuated by DHA supplementation. Temperature but not DHA also affected the pattern of cytokine production increasing IL6, IL8, IL1β, and MCP1 synthesis. The higher change was evidenced in IL1β increasing the production rate at 39.5 °C from 3.19 ± 0.77 to 22.4 ± 6.1 pg/h 10(6) PBMC in placebo and from 2.36 ± 0.11 to 10.6 ± 0.38 pg/h 10(6) PBMC in the supplemented group. The profile of affected cytokines differs between temperature and exercise, suggesting a different PBMC activation pathway. DHA diet supplementation only attenuated cytokine production after exercise and not that induced by temperature. PMID:27139422

  10. Affectivity

    OpenAIRE

    Stenner, Paul; Greco, Monica

    2013-01-01

    The concept of affectivity has assumed central importance in much recent scholarship, and many in the social sciences and humanities now talk of an ‘affective turn’. The concept of affectivity at play in this ‘turn’ remains, however, somewhat vague and slippery. Starting with Silvan Tomkins’ influential theory of affect, this paper will explore the relevance of the general assumptions (or ‘utmost abstractions’) that inform thinking about affectivity. The technological and instrumentalist char...

  11. Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model.

    Science.gov (United States)

    Jia, Weisheng; Tang, He; Wu, Jianjian; Hou, Xianglin; Chen, Bing; Chen, Wei; Zhao, Yannan; Shi, Chunying; Zhou, Feng; Yu, Wei; Huang, Shengquan; Ye, Gang; Dai, Jianwu

    2015-11-01

    Extensive urethral defects have a serious impact on quality of life, and treatment is challenging. A shortage of material for reconstruction is a key limitation. Improving the properties of biomaterials and making them suitable for urethral reconstruction will be helpful. Previously, we constructed a fusion protein, collagen-binding VEGF (CBD-VEGF), which can bind to collagen scaffold, stimulate cell proliferation, and promote angiogenesis and tissue regeneration. We proposed that CBD-VEGF could improve the performance of collagen in reconstruction of extensive urethral defects. Our results showed that collagen scaffolds modified with CBD-VEGF could promote urethral tissue regeneration and improve the function of the neo-urethra in a beagle extensive urethral defect model. Thus, modifying biomaterials with bioactive factors provides an alternative strategy for the production of suitable biomaterials for urethral reconstruction.

  12. VEGF concentrations in tumour arteries and veins from patients with rectal cancer

    DEFF Research Database (Denmark)

    Werther, Kim; Bülow, Steffen; Hesselfeldt, Peter;

    2002-01-01

    , automated complete white cell and platelet counts were performed. In serum and EDTA plasma, no significant differences in VEGF concentrations were observed (p = 0.1 and p = 0.5), respectively) between tumour arteries and tumour veins. However, in supernatants from lysed blood, VEGF concentrations were......This pilot study investigated the hypothesis that the tumour itself is the source of the elevated vascular endothelial growth factor (VEGF) concentrations which are often observed in peripheral blood from patients with rectal cancer. Twenty-four consecutive patients with primary rectal cancer were...... included. Blood samples were drawn preoperatively from peripheral veins (I) and intraoperatively from peripheral veins (II), tumour arteries (III), and tumour veins (IV). In the four compartments, VEGF concentrations were measured in serum, EDTA plasma, and supernatants from lysed whole blood. Additionally...

  13. Enhancement of musculocutaneous nerve reinnervation after vascular endothelial growth factor (VEGF gene therapy

    Directory of Open Access Journals (Sweden)

    Haninec Pavel

    2012-06-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is not only a potent angiogenic factor but it also promotes axonal outgrowth and proliferation of Schwann cells. The aim of the present study was to quantitatively assess reinnervation of musculocutaneous nerve (MCN stumps using motor and primary sensory neurons after plasmid phVEGF transfection and end-to-end (ETE or end-to-side (ETS neurorrhaphy. The distal stump of rat transected MCN, was transfected with plasmid phVEGF, plasmid alone or treated with vehiculum and reinnervated following ETE or ETS neurorrhaphy for 2 months. The number of motor and dorsal root ganglia neurons reinnervating the MCN stump was estimated following their retrograde labeling with Fluoro-Ruby and Fluoro-Emerald. Reinnervation of the MCN stumps was assessed based on density, diameter and myelin sheath thickness of regenerated axons, grooming test and the wet weight index of the biceps brachii muscles. Results Immunohistochemical detection under the same conditions revealed increased VEGF in the Schwann cells of the MCN stumps transfected with the plasmid phVEGF, as opposed to control stumps transfected with only the plasmid or treated with vehiculum. The MCN stumps transfected with the plasmid phVEGF were reinnervated by moderately higher numbers of motor and sensory neurons after ETE neurorrhaphy compared with control stumps. However, morphometric quality of myelinated axons, grooming test and the wet weight index were significantly better in the MCN plasmid phVEGF transfected stumps. The ETS neurorrhaphy of the MCN plasmid phVEGF transfected stumps in comparison with control stumps resulted in significant elevation of motor and sensory neurons that reinnervated the MCN. Especially noteworthy was the increased numbers of neurons that sent out collateral sprouts into the MCN stumps. Similarly to ETE neurorrhaphy, phVEGF transfection resulted in significantly higher morphometric quality of myelinated axons

  14. Vascular endothelial growth factor C (VEGF-C in esophageal cancer correlates with lymph node metastasis and poor patient prognosis

    Directory of Open Access Journals (Sweden)

    Naganawa Yasuhiro

    2010-06-01

    Full Text Available Abstract Background The diagnosis of lymph node metastasis in esophageal cancer by the presence and number of metastatic lymph nodes is an extremely important prognostic factor. In addition, the indication of non-surgical therapy is gaining more attention. Vascular endothelial growth factor C (VEGF-C is potentially lymphangiogenic and selectively induces hyperplasia of the lymphatic vasculature. In this study, we investigated the expression of VEGF-C and whether it correlated with various clinico-pathologic findings. Methods KYSE series of esophageal cancer cell lines and 106 patients with primary esophageal squamous cell carcinomas who had undergone radical esophagectomy were analyzed. VEGF-C mRNA expression was determined by quantitative RT-PCR. Results High expression of VEGF-C was detected in most of the KYSE cell lines, especially KYSE410, yet, in an esophageal normal epithelium cell line, Het-1A, VEGF-C was not detected. In the clinical specimen, the expression of VEGF-C in the cancerous tissue was higher than in the corresponding noncancerous esophageal mucosa (p = 0.026. The expression of VEGF-C was found to be higher in Stage2B-4A tumors than in Stage0-2A tumors (p = 0.049. When the patients were divided into two groups according to their expression levels of VEGF-C (a group of 53 cases with high expression and a group of 53 cases with low expression, the patients with high VEGF-C expression had significantly shorter survival after surgery than the patients with low expression (p = 0.0065. Although univariate analysis showed that high expression of VEGF-C was a statistically significant prognostic factor, this was not shown in multivariate analysis. In the subgroup of patients with Tis and T1 tumors, the expression of VEGF-C was higher in N1 tumors than in N0 tumors (p = 0.029. The survival rate of patients from the high expression group (n = 10 was lower than that in the low expression group (n = 11, and all the patients in the low

  15. Enhanced Vascularization in Hybrid PCL/Gelatin Fibrous Scaffolds with Sustained Release of VEGF

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2015-01-01

    Full Text Available Creating a long-lasting and functional vasculature represents one of the most fundamental challenges in tissue engineering. VEGF has been widely accepted as a potent angiogenic factor involved in the early stages of blood vessel formation. In this study, fibrous scaffolds that consist of PCL and gelatin fibers were fabricated. The gelatin fibers were further functionalized by heparin immobilization, which provides binding sites for VEGF and thus enables the sustained release of VEGF. In vitro release test confirms the sustained releasing profile of VEGF, and stable release was observed over a time period of 25 days. In vitro cell assay indicates that VEGF release significantly promoted the proliferation of endothelial cells. More importantly, in vivo subcutaneous implantation reflects that vascularization has been effectively enhanced in the PCL/gelatin scaffolds compared with the PCL counterpart due to the sustained release of VEGF. Therefore, the heparinized PCL/gelatin scaffolds developed in this study may be a promising candidate for regeneration of complex tissues with sufficient vascularization.

  16. Moderation of calpain activity promotes neovascular integration and lumen formation during VEGF-induced pathological angiogenesis.

    Directory of Open Access Journals (Sweden)

    Mien V Hoang

    Full Text Available BACKGROUND: Successful neovascularization requires that sprouting endothelial cells (ECs integrate to form new vascular networks. However, architecturally defective, poorly integrated vessels with blind ends are typical of pathological angiogenesis induced by vascular endothelial growth factor-A (VEGF, thereby limiting the utility of VEGF for therapeutic angiogenesis and aggravating ischemia-related pathologies. Here we investigated the possibility that over-exuberant calpain activity is responsible for aberrant VEGF neovessel architecture and integration. Calpains are a family of intracellular calcium-dependent, non-lysosomal cysteine proteases that regulate cellular functions through proteolysis of numerous substrates. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse skin model of VEGF-driven angiogenesis, retroviral transduction with dominant-negative (DN calpain-I promoted neovessel integration and lumen formation, reduced blind ends, and improved vascular perfusion. Moderate doses of calpain inhibitor-I improved VEGF-driven angiogenesis similarly to DN calpain-I. Conversely, retroviral transduction with wild-type (WT calpain-I abolished neovessel integration and lumen formation. In vitro, moderate suppression of calpain activity with DN calpain-I or calpain inhibitor-I increased the microtubule-stabilizing protein tau in endothelial cells (ECs, increased the average length of microtubules, increased actin cable length, and increased the interconnectivity of vascular cords. Conversely, WT calpain-I diminished tau, collapsed microtubules, disrupted actin cables, and inhibited integration of cord networks. Consistent with the critical importance of microtubules for vascular network integration, the microtubule-stabilizing agent taxol supported vascular cord integration whereas microtubule dissolution with nocodazole collapsed cord networks. CONCLUSIONS/SIGNIFICANCE: These findings implicate VEGF-induction of calpain activity and impairment of

  17. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    Science.gov (United States)

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  18. Myelosuppression of Thrombocytes and Monocytes Is Associated with a Lack of Synergy between Chemotherapy and Anti-VEGF Treatment

    OpenAIRE

    Patrick Starlinger; Philipp Brugger; Dominic Schauer; Silvia Sommerfeldt; Dietmar Tamandl; Irene Kuehrer; Schoppmann, Sebastian F; Michael Gnant; Christine Brostjan

    2011-01-01

    Purpose: Chemotherapeutic agents that have shown improved patient outcome when combined with anti-vascular endothelial growth factor (VEGF) therapy were recently identified to induce the mobilization of proangiogenic Tie-2-expressing monocytes (TEMs) and endothelial progenitor cells (EPCs) by platelet release of stromal cell-derived factor 1α (SDF-1α). VEGF blockade was found to counteract cell mobilization. We aimed to determine why agents like gemcitabine do not elicit TEM and EPC recruitme...

  19. ARTEMIN promotes de novo angiogenesis in ER negative mammary carcinoma through activation of TWIST1-VEGF-A signalling.

    Directory of Open Access Journals (Sweden)

    Arindam Banerjee

    Full Text Available The neurotrophic factor ARTEMIN (ARTN has been reported to possess a role in mammary carcinoma progression and metastasis. Herein, we report that ARTN modulates endothelial cell behaviour and promotes angiogenesis in ER-mammary carcinoma (ER-MC. Human microvascular endothelial cells (HMEC-1 do not express ARTN but respond to exogenously added, and paracrine ARTN secreted by ER-MC cells. ARTN promoted endothelial cell proliferation, migration, invasion and 3D matrigel tube formation. Angiogenic behaviour promoted by ARTN secreted by ER-MC cells was mediated by AKT with resultant increased TWIST1 and subsequently VEGF-A expression. In a patient cohort of ER-MC, ARTN positively correlated with VEGF-A expression as measured by Spearman's rank correlation analysis. In xenograft experiments, ER-MC cells with forced expression of ARTN produced tumors with increased VEGF-A expression and increased microvessel density (CD31 and CD34 compared to tumors formed by control cells. Functional inhibition of ARTN by siRNA decreased the angiogenic effects of ER-MC cells. Bevacizumab (a humanized monoclonal anti-VEGF-A antibody partially inhibited the ARTN mediated angiogenic effects of ER-MC cells and combined inhibition of ARTN and VEGF-A by the same resulted in further significant decrease in the angiogenic effects of ER-MC cells. Thus, ARTN stimulates de novo tumor angiogenesis mediated in part by VEGF-A. ARTN therefore co-ordinately regulates multiple aspects of tumor growth and metastasis.

  20. 巨噬细胞集落刺激因子和粒细胞-巨噬细胞集落刺激因子对小鼠乳腺癌4T1细胞迁移及血管内皮生长因子A表达的影响%Effect of M-CSF and GM-CSF on migration and VEGF-A expression of breast cancer cell line 4T1

    Institute of Scientific and Technical Information of China (English)

    古晓东; 李飞栋; 王玉

    2014-01-01

    Objective To investigate the effect of M-CSF and GM-CSF on migration and expression of VEGF-A in breast cancer cell line 4T1.Methods Real-time PCR was used to detect VEGF-A mRNA expression in 4T1 cells treated by 5 ng/ml or 10 ng/ml M-CSF or GM-CSF.Ability of migration and metastasis of 4T1 cells were analyzed by scratch and Transwell assays.Results The relative expression of VEGF-A mRNA at 12 h and 24 h in 4T1 cells treated by 5 ng/ml or 10 ng/ml M-CSF were 17.81±2.49 and 17.48± 5.43,5.15±2.59 and 5.45±4.28,respectively,while those treated by GM-CSF were 9.77±2.39 and 7.61±2.80,6.53±2.41 and 6.30±2.89,respectively.M-CSF and GM-CSF can promote the expression of VEGF-A in 4T1 cells (P < 0.05).The relative expression of VEGF-A was higher in 4T1 cells treated for 12 h than that for 24 h (P < 0.01).M-CSF,GM-CSF and VEGF-A can promote metastasis of 4T1 cells (all P < 0.05),whereas no gross migration of 4T1 cells was showed by VEGF-A treatment.Conclusion M-CSF and GM-CSF can promote the migration and expression of VEGF-A in breast cancer cell line 4T1.%目的 探讨巨噬细胞集落刺激因子(M-CSF)和粒细胞-巨噬细胞集落刺激因子(GM-CSF)对乳腺癌4T1细胞迁移及血管内皮生长因子(VEGF)-A表达的影响.方法 分别用5、10 ng/ml M-CSF和GM-CSF处理小鼠乳腺癌4T1细胞株,采用实时荧光定量PCR方法检测4T1细胞中细胞因子VEGF-AmRNA表达量的变化.划痕实验和Transwell实验检测用5 ng/ml M-CSF、5 ng/ml GM-CSF和10 ng/mlVEGF-A对4T1细胞迁移和侵袭能力的影响.结果 经5、10ng/ml M-CSF分别处理4T1细胞后VEGF-AmRNA在12h和24 h的相对表达量分别为17.81±2.49和17.48±5.43、5.15±2.59和5.45±4.28;经5、10 ng/ml GM-CSF分别处理4T1细胞后VEGF-A mRNA在12h和24 h的相对表达量分别为9.77±2.39和7.61±2.80、6.53±2.41和6.30±2.89.与无细胞因子处理的对照组相比,除10 ng/ml GM-CSF处理4T1细胞24 h组VEGF-A mRNA表达水平差异无统计学意义(P>0.05)外,其他各组VEGF

  1. Expression of vascular endothelial growth factor (VEGF) and VEGF-C in serum and tissue of Wilms tumor

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; ZHANG Da; CHEN Xin-rang; FAN Yu-xia; WANG Jia-xiang

    2011-01-01

    Background Angiogenesis and lymphogenesis which were promoted by vascular endothelial growth factor (VEGF)and VEGF-C are important in the growth and metastasis of solid tumors.The high level of VEGF and VEGF-C were distributed in numerous types of cancers,but their distribution and expression in Wilms tumor,the most common pediatric tumor of the kidney,was unclear.Methods To learn about the distribution,mass spectroscopy and immunohistochemistry were used to measure the level of VEGF and VEGF-C in serum and tissue of Wilms tumor.Results The expression level of VEGF in serum of Wilms tumor was the same as in pre-surgery and control,so it was the same case of VEGF-C.Both of these factors were chiefly located in Wilms tumor tissue,but not in borderline and normal.In addition,the higher clinical staging and histopathologic grading were important elements in high expression of VEGF and VEGF-C.Gender,age and the size of tumor have not certainly been implicated in expression level of VEGF and VEGF-C.Conclusions The lymph node metastasis and growth of tumors resulted from angiogenesis and lymphogenesis which were promoted by VEGF and VEGF-C in Wilms tumor.The autocrine and paracrine process of VEGF and VEGF-C were the principal contributor to specific tissues of Wilms tumor but not to the entire body.

  2. VEGF regulates TRPC6 channels in podocytes

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Loddenkemper, Christoph;

    2012-01-01

    BACKGROUND: Both, increased plasma concentrations of vascular endothelial growth factor (VEGF) and increased expression of transient receptor potential canonical type 6 (TRPC6) channels in podocytes have been associated with proteinuric kidney diseases. Now, we investigated the hypothesis that VE...

  3. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Rapidly Indicates Vessel Regression in Human Squamous Cell Carcinomas Grown in Nude Mice Caused by VEGF Receptor 2 Blockade with DC101

    Directory of Open Access Journals (Sweden)

    Fabian Kiessling

    2004-05-01

    Full Text Available The purpose of our study was the investigation of early changes in tumor vascularization during antiangiogenic therapy with the vascular endothelial growth factor (VEGF receptor 2 antibody (DC101 using dynamic contrast-enhanced magnetic resonance imaging (DCE MRI. Subcutaneous heterotransplants of human skin squamous cell carcinomas in nude mice were treated with DC101. Animals were examined before and repeatedly during 2 weeks of antiangiogenic treatment using Gd-DTPA-enhanced dynamic T1-weighted MRI. With a two-compartment model, dynamic data were parameterized in "amplitude" (increase of signal intensity relative to precontrast value and kep (exchange rate constant. Data obtained by MRI were validated by parallel examinations of histological sections immunostained for blood vessels (CD31. Already 2 days after the first DC101 application, a decrease of tumor vascularization was observed, which preceded a reduction of tumor volume. The difference between treated tumors and controls became prominent after 4 days, when amplitudes of treated tumors were decreased by 61% (P = .02. In line with change of microvessel density, the decrease in amplitudes was most pronounced in tumor centers. On day 7, the mean tumor volumes of treated (153 ± 843 mm3 and control animals (596 ± 384 mm3 were significantly different (P = .03. After 14 days, treated tumors showed further growth reduction (83 ± 93 mm3, whereas untreated tumors (1208±822 mm3 continued to increase (P=.02. Our data underline the efficacy of DC101 as antiangiogenic treatment in human squamous cell carcinoma xenografts in nude mice and indicate DCE MRI as a valuable tool for early detection of treatment effects before changes in tumor volume become apparent.

  4. Expression of pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in cultured glomerular mesangial cells (GMC) by high glucose and interventional effects of rAAV-AS%高糖环境下VEGF与PEDF在GMC中表达及rAAV-AS基因的干预作用

    Institute of Scientific and Technical Information of China (English)

    赵猛; 李伟

    2011-01-01

    Objective To explore the effect of pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in cultured glomerular mesangial cells (GMCs) and intervention of recombinant adeno-associated virus mediated angiostatin gene.Methods Cultured HBZY21 rat GMCs were divided into 6 groups ( glucose as a stimulated factor, rAAV-AS as an intervenor): low glucose, high glucose, high glucose and rAAV, high glucose and rAAV-AS.The expressions of PEDF and VEGF of each group were measured by immunohistochemistry and ELISA.Results ( 1 ) The level of VEGF protein was remarkably increased and the level of PEDF protein was decreased by high glucose.(2) High glucose could increase the expression of VEGF and decrease significantly the expression of PEDF.rAAV-AS could prevent this change induced by high glucose.Conclusions rAAV-AS might play an important role in preventing diabetes nephropathy by partly compensating the unbalanced expressions of VEGF and PEDF induced by hyperglycemia.%目的 探讨高糖对大鼠肾小球系膜细胞(GMC)色素上皮细胞衍生因子(PEDF) 和血管内皮生长因子(VEGF)表达影响以及腺相关病毒介导血管抑素(rAAV-AS)基因的干预作用.方法 将培养的大鼠GMC株分为6组,高糖作为刺激因素,rAAV-AS 作为干预因素.分别设低糖组、高糖组、高糖加腺相关病毒(rAAV)组及高糖加rAAV-AS 治疗组.用免疫细胞化学及ELISA法测定各组系膜细胞PEDF 以及VEGF蛋白表达.结果 高糖可下调GMC中PEDF蛋白的表达,上调GMC中VEGF蛋白的表达.rAAV-AS可逆转高糖导致GMC的VEGF蛋白表达的增加及PEDF蛋白表达的降低.结论 rAAV-AS可以一定程度改善高糖诱导的VEGF和PEDF表达失衡而发挥对糖尿病肾病(DN)的保护作用.

  5. Sequestration of Vascular Endothelial Growth Factor (VEGF Induces Late Restrictive Lung Disease.

    Directory of Open Access Journals (Sweden)

    Minna M Wieck

    Full Text Available Neonatal respiratory distress syndrome is a restrictive lung disease characterized by surfactant deficiency. Decreased vascular endothelial growth factor (VEGF, which demonstrates important roles in angiogenesis and vasculogenesis, has been implicated in the pathogenesis of restrictive lung diseases. Current animal models investigating VEGF in the etiology and outcomes of RDS require premature delivery, hypoxia, anatomically or temporally limited inhibition, or other supplemental interventions. Consequently, little is known about the isolated effects of chronic VEGF inhibition, started at birth, on subsequent developing lung structure and function.To determine whether inducible, mesenchyme-specific VEGF inhibition in the neonatal mouse lung results in long-term modulation of AECII and whole lung function.Triple transgenic mice expressing the soluble VEGF receptor sFlt-1 specifically in the mesenchyme (Dermo-1/rtTA/sFlt-1 were generated and compared to littermate controls at 3 months to determine the impact of neonatal downregulation of mesenchymal VEGF expression on lung structure, cell composition and function. Reduced tissue VEGF bioavailability has previously been demonstrated with this model.Triple transgenic mice demonstrated restrictive lung pathology. No differences in gross vascular development or protein levels of vascular endothelial markers was noted, but there was a significant decrease in perivascular smooth muscle and type I collagen. Mutants had decreased expression levels of surfactant protein C and hypoxia inducible factor 1-alpha without a difference in number of type II pneumocytes.These data show that mesenchyme-specific inhibition of VEGF in neonatal mice results in late restrictive disease, making this transgenic mouse a novel model for future investigations on the consequences of neonatal RDS and potential interventions.

  6. Clinical Significance of Vascular Endothelial Growth Factor (VEGF) in Sera of Patients with Pediatric Malignancies

    International Nuclear Information System (INIS)

    Angiogenesis is essential for solid tumor growth. It is induced by tumor cells through stimulatory angiogenic peptides, one such peptide is vascular endothelial growth factor (VEGF). Purpose: The ultimate aim of the work is to investigate the possible role of VEGF as an early bio molecule involved in the progression of pediatric malignant tumors with high metastatic potential. Patients and Methods: Forty-five pediatric patients were studied. They included four groups with malignant solid tumors suffering from Ewing's sarcoma, osteosarcoma, neuroblastoma, and rhabdomyosarcoma. In addition, a healthy control group including fifteen age and sex matched children was included in the study. Serum VEGF levels were determined by ELISA technique. The level of VEGF was significantly higher in all types of solid tumors compared to normal healthy children. The mean values obtained for patients and controls were 429.44±258.55 pg/ml and 79.36±63.81 pg/ml, respectively. No significant difference was detected in the level of VEGF among males and females. Also, no statistically significant difference was detected among the different types of malignant tumors. However, a marked significant difference was elucidated between metastatic and non-metastatic cancer patients, the values recorded were 753.33±173.64 pg/ml and 267.5±75.54 pg/ml, respectively (p < 0.00 I). Furthermore, the results showed that 207 pg/ml of serum level of VEGF is the optimal cutoff value (mean ± 2 SD of control) with sensitivity of 87% and specificity of 100%. Using the receiver operating characteristic (ROC) curve analysis, the area under the curve (0.917) indicated the validity of using serum VEGF level in the diagnosis of all different types of pediatric malignant solid tumors with high potentiality to metastasis. VEGF is an angiogenic stimulatory peptide. Its serum level colud be a reliable marker in assessing pediatric malignancies with high metastatic potentials

  7. Comparative VEGF receptor tyrosine kinase modeling for the development of highly specific inhibitors of tumor angiogenesis.

    Science.gov (United States)

    Schmidt, Ulrike; Ahmed, Jessica; Michalsky, Elke; Hoepfner, Michael; Preissner, Robert

    2008-01-01

    The Vascular Endothelial Growth Factor receptors (VEGF-Rs) play a significant role in tumor development and tumor angiogenesis and are therefore interesting targets in cancer therapy. Targeting the VEGF-R is of special importance as the feed of the tumor has to be reduced. In general, this can be carried out by inhibiting the tyrosine kinase function of the VEGF-R. Nevertheless, there arise some problems with the specificity of known kinase inhibitors: they bind to the ATP-binding site and inhibit a number of kinases, moreover the so far most specific inhibitors act at least on these three major types of VEGF-Rs: Flt-1, Flk-1/KDR, Flt-4. The goal is a selective VEGF-R-2 (Flk-1/KDR) inhibitor, because this receptor triggers rather unspecific signals from VEGF-A, -C, -D and -E. Here, we describe a protocol starting from an established inhibitor (Vatalanib) with 2D-/3D-searching and property filtering of the in silico screening hits and the "negative docking approach". With this approach we were able to identify a compound, which shows a fourfold higher reduction of the proliferation rate of endothelial cells compared to the reduction effect of the lead structure.

  8. Genome rearrangement affects RNA virus adaptability on prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Kendra ePesko

    2015-04-01

    Full Text Available Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wildtype gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense nonsegmented RNA viruses (order Mononegavirales have specific genome architecture: 3′ UTR – core protein genes – envelope protein genes – RNA-dependent RNA-polymerase gene – 5′ UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV variants with the nucleocapsid (N gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N-gene translocation towards the 5’ end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function, especially on PC3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective

  9. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors.

    Science.gov (United States)

    Takayama, Naoya; Nishikii, Hidekazu; Usui, Joichi; Tsukui, Hiroko; Sawaguchi, Akira; Hiroyama, Takashi; Eto, Koji; Nakauchi, Hiromitsu

    2008-06-01

    Human embryonic stem cells (hESCs) could potentially represent an alternative source for blood transfusion therapies and a promising tool for studying the ontogeny of hematopoiesis. When we cultured hESCs on either C3H10T1/2 or OP-9 cells to facilitate hematopoiesis, we found that exogenous administration of vascular endothelial growth factor promoted the emergence of sac-like structures, which we named embryonic stem cell-derived sacs (ES-sacs). These ES-sacs consisted of multiple cysts demarcated by cellular monolayers that retained some of the properties of endothelial cells. The spherical cells inside ES-sacs expressed primarily CD34, along with VE-cadherin, CD31, CD41a, and CD45, and were able to form hematopoietic colonies in semisolid culture and to differentiate into mature megakaryocytes by day 24 in the presence of thrombopoietin. Apparently, ES-sacs provide a suitable environment for hematopoietic progenitors. Relatively large numbers of mature megakaryocytes could be induced from the hematopoietic progenitors within ES-sacs, which were then able to release platelets that displayed integrin alpha IIb beta 3 activation and spreading in response to ADP or thrombin. This novel protocol thus provides a means of generating platelets from hESCs, which could serve as the basis for efficient production of platelets for clinical transfusion and studies of thrombopoiesis.

  10. Aflibercept, bevacizumab and ranibizumab prevent glucose-induced damage in human retinal pericytes in vitro, through a PLA2/COX-2/VEGF-A pathway.

    Science.gov (United States)

    Giurdanella, Giovanni; Anfuso, Carmelina Daniela; Olivieri, Melania; Lupo, Gabriella; Caporarello, Nunzia; Eandi, Chiara M; Drago, Filippo; Bucolo, Claudio; Salomone, Salvatore

    2015-08-01

    Diabetic retinopathy, a major cause of vision loss, is currently treated with anti-VEGF agents. Here we tested two hypotheses: (i) high glucose damages retinal pericytes, the cell layer surrounding endothelial cells, via VEGF induction, which may be counteracted by anti-VEGFs and (ii) activation of PLA2/COX-2 pathway by high glucose might be upstream and/or downstream of VEGF in perycites, as previously observed in endothelial cells. Human retinal pericytes were treated with high glucose (25mM) for 48h and/or anti-VEGFs (40μg/ml aflibercept, 25μg/ml bevacizumab, 10μg/ml ranibizumab). All anti-VEGFs significantly prevented high glucose-induced cell damage (assessed by LDH release) and improved cell viability (assessed by MTT and Evans blue). High glucose-induced VEGF-A expression, as detected both at mRNA (qPCR) and protein (ELISA) level, while receptor (VEGFR1 and VEGFR2) expression, detected in control condition, was unaffected by treatments. High glucose induced also activation of PLA2/COX-2 pathway, as revealed by increased phosphorylation of cPLA2, COX-2 expression and PGE2 release. Treatment with cPLA2 (50μM AACOCF3) and COX-2 (5μM NS-392) inhibitors prevented both cell damage and VEGF-A induced by high glucose. Finally, challenge with exogenous VEGF-A (10ng/ml) induced VEGF-A expression, while anti-VEGFs reduced VEGF-A expression induced by either high glucose or exogenous VEGF-A. These data indicate that high glucose directly damages pericytes through activation of PLA2/COX-2/VEGF-A pathway. Furthermore, a kind of feed-forward loop between cPLA2/COX-2/PG axis and VEGF appears to operate in this system. Thus, anti-VEGFs afford protection of pericytes from high glucose by inhibiting this loop. PMID:26056075

  11. Tnactivation of PTEN is associated with increased angiogenesis and VEGF overexpression in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Ye-Jiang Zhou; Yu-Xia Xiong; Xiao-Ting Wu; De Shi; Wei Fan; Tong Zhou; Yue-Chun Li; Xiong Huang

    2004-01-01

    AIM: To investigate the expression of PTEN/MMAC1/TEP1and vascular endothelial growth factor (VEGF), their roles in biologic behavior and angiogenesis and their association in gastric cancer.METHODS: Immunohistochemical staining was used to evaluate the expression of PTEN, VEGF and microvascular density (MVD) on paraffin-embedded sections in 70 patients with primary gastric cancer and 24 patients with chronic superficial gastritis (CSG). Expression of PTEN, VEGF and MVD were compared with clinicopathological features of gastric cancer. The relationship between expression of PTEN, VEGF and MVD as well as the relationship between PTEN and VEGF expression in caner cells were investigated.RESULTS: PTEN expression significantly decreased (t= 3.98,P<0.01) whereas both VEGF expression and MVD significant increased (t = 4.29 and 4.41, respectively, both P<0.01)in gastric cancer group compared with CSG group. PTEN expression was significantly down-regulated (t = 1.95,P<0.05) whereas VEGF expression (t = 2.37, P<0.05) and MVD (t = 3.28, P<0.01) was significantly up-regulated in advanced gastric cancer compared with early-stage gastric cancer. PTEN expression in gastric cancer showed a negative association with lymph node metastasis (t= 3.91, P<0.01),invasion depth (t= 1.95, P<0.05) and age (t= 4.69, P<0.01).MVD in PTEN-negative gastric cancer was significantly higher than that in PTEN-positive gastric cancer (t = 3.69,P<0.01), and there was a negative correlation between PTEN expression and MVD (γ = -0.363, P<0.05). VEGF expression was positively associated with invasion depth (especially with serosa invasion, t = 4.69, P<0.01), lymph node metastasis (t= 2.31, P<0.05) and TNM stage (t= 3.04,P<0.01). MVD in VEGF-positive gastric cancer was significantly higher than that in VEGF-negative gastric cancer (t = 4.62,P<0.01), and there was a positive correlation between VEGF expression of and MVD (γ = 0.512, P<0.05). VEGF expression in PTEN

  12. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering.

    Science.gov (United States)

    Khojasteh, Arash; Fahimipour, Farahnaz; Eslaminejad, Mohamadreza Baghaban; Jafarian, Mohammad; Jahangir, Shahrbanoo; Bastami, Farshid; Tahriri, Mohammadreza; Karkhaneh, Akbar; Tayebi, Lobat

    2016-12-01

    Bone tissue engineering is sought to apply strategies for bone defects healing without limitations and short-comings of using either bone autografts or allografts and xenografts. The aim of this study was to fabricate a thin layer poly(lactic-co-glycolic) acid (PLGA) coated beta-tricalcium phosphate (β-TCP) scaffold with sustained release of vascular endothelial growth factor (VEGF). PLGA coating increased compressive strength of the β-TCP scaffolds significantly. For in vitro evaluations, canine mesenchymal stem cells (cMSCs) and canine endothelial progenitor cells (cEPCs) were isolated and characterized. Cell proliferation and attachment were demonstrated and the rate of cells proliferation on the VEGF released scaffold was significantly more than compared to the scaffolds with no VEGF loading. A significant increase in expression of COL1 and RUNX2 was indicated in the scaffolds loaded with VEGF and MSCs compared to the other groups. Consequently, PLGA coated β-TCP scaffold with sustained and localized release of VEGF showed favourable results for bone regeneration in vitro, and this scaffold has the potential to use as a drug delivery device in the future. PMID:27612772

  13. Acute hypoxia up-regulates HIF-1α and VEGF mRNA levels in Amazon hypoxia-tolerant Oscar (Astronotus ocellatus).

    Science.gov (United States)

    Baptista, R B; Souza-Castro, N; Almeida-Val, V M F

    2016-10-01

    Amazon fish maintain oxygen uptake through a variety of strategies considered evolutionary and adaptive responses to the low water oxygen saturation, commonly found in Amazon waters. Oscar (Astronotus ocellatus) is among the most hypoxia-tolerant fish in Amazon, considering its intriguing anaerobic capacity and ability to depress oxidative metabolism. Previous studies in hypoxia-tolerant and non-tolerant fish have shown that hypoxia-inducible factor-1α (HIF-1α) gene expression is positively regulated during low oxygen exposure, affecting vascular endothelial growth factor (VEGF) transcription and fish development or tolerance in different manners. However, whether similar isoforms exists in tolerant Amazon fish and whether they are affected similarly to others physiological responses to improve hypoxia tolerance remain unknown. Here we evaluate the hepatic HIF-1α and VEGF mRNA levels after 3 h of acute hypoxia exposure (0.5 mgO2/l) and 3 h of post-hypoxia recovery. Additionally, hematological parameters and oxidative enzyme activities of citrate synthase (CS) and malate dehydrogenase (MDH) were analyzed in muscle and liver tissues. Overall, three sets of responses were detected: (1) as expected, hematocrit, hemoglobin concentration, red blood cells, and blood glucose increased, improving oxygen carrying capacity and glycolysis potential; (2) oxidative enzymes from liver decreased, corroborating the tendency to a widespread metabolic suppression; and (3) HIF-1α and VEGF increased mRNA levels in liver, revealing their role in the oxygen homeostasis through, respectively, activation of target genes and vascularization. This is the first study to investigate a hypoxia-related transcription factor in a representative Amazon hypoxia-tolerant fish and suggests that HIF-1α and VEGF mRNA regulation have an important role in enhancing hypoxia tolerance in extreme tolerant species.

  14. Study on serum IL-18, VEGF levels of non small cell lung cancer patients with and its clinical significance%非小细胞肺癌患者血清IL-18、VEGF水平的临床意义

    Institute of Scientific and Technical Information of China (English)

    王晓燕; 倪松石

    2012-01-01

    OBJECTIVE To study VEGF, IL-18 in non-small cell lung carcinoma expression and early diagnosis effect. METHODS Selected patients with non small cell lung cancer as the observation group, benign lung lesions in patients with as control group, subjects with physical examination served as healthy controls. Peripheral blood VEGFA, VEGFB, VEGFC and IL-18 contents were detected. RESULTS The VEGF, IL-18 contents showed observation group > benign lesion controls > healthy controls; in the observed group, VEGF, IL-18 contents in different staging of patients showed TNM Ⅰ < TNMⅡ < TNM Ⅲ < TNMⅣ. CONCLUSION VEGF and IL-18 in peripheral blood of non small cell lung cancer patients are significantly higher than those of the benign and healthy persons, and the worse of tumor stage is, the higher of its content is. For early diagnosis of the disease, VEGF and IL-18 are of positive significance.%目的 研究VEGF、IL-18在非小细胞肺癌中的表达并早期诊断作用.方法 选择非小细胞肺癌患者作为观察组,肺部良性病变患者作为良性对照组,体检者作为健康对照组,检测外周血中VEGFA、VEGFB、VEGFC以及IL-18的含量.结果 3组患者中VEGF、IL-18含量为观察组>良性病变对照组>健康对照组;观察组不同分期患者中VEGF、IL-18含量为TNMⅠ<TNMⅡ<TNMⅢ<TNMⅣ.结论 非小细胞肺癌患者外周血中VEGF和IL-18的含量明显高于良性病变者和健康者,并且肿瘤分期越差其含量越高,对于疾病的早期诊断具有积极意义.

  15. Hypoxia and the Presence of Human Vascular Endothelial Cells Affect Prostate Cancer Cell Invasion and Metabolism

    Directory of Open Access Journals (Sweden)

    Ellen Ackerstaff

    2007-12-01

    Full Text Available Tumor progression and metastasis are influenced by hypoxia, as well as by interactions between cancer cells and components of the stroma, such as endothelial cells. Here, we have used a magnetic resonance (MRcompatible invasion assay to further understand the effects of hypoxia on human prostate cancer cell invasion and metabolism in the presence and absence of human umbilical vein endothelial cells (HUVECs. Additionally, we compared endogenous activities of selected proteases related to invasion in PC-3 cells and HUVECs, profiled gene expression of PC-3 cells by microarray, evaluated cell proliferation of PC-3 cells and HUVECs by flow cytometry, under hypoxic and oxygenated conditions. The invasion of less-invasive DU-145 cells was not affected by either hypoxia or the presence of HUVECs. However, hypoxia significantly decreased the invasion of PC-3 cells. This hypoxia-induced decrease was attenuated by the presence of HUVECs, whereas under oxygenated conditions, HUVECs did not alter the invasion of PC-3 cells. Cell metabolism changed distinctly with hypoxia and invasion. The endogenous activity of selected extracellular proteases, although altered by hypoxia, did not fully explain the hypoxia-induced changes in invasion. Gene expression profiling indicated that hypoxia affects multiple cellular functions and pathways.

  16. Role of VEGF receptors in normal and psoriatic human keratinocytes: evidence from irradiation with different UV sources.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zhu

    Full Text Available Vascular endothelial growth factor (VEGF promotes angiogenesis and plays important roles both in physiological and pathological conditions. VEGF receptors (VEGFRs are high-affinity receptors for VEGF and are originally considered specific to endothelial cells. We previously reported that VEGFRs were also constitutively expressed in normal human keratinocytes and overexpressed in psoriatic epidermis. In addition, UVB can activate VEGFRs in normal keratinocytes, and the activated VEGFR-2 signaling is involved in the pro-survival mechanism. Here, we show that VEGFRs were also upregulated and activated by UVA in normal human keratinocytes via PKC, and interestingly, both the activated VEGFR-1 and VEGFR-2 protected against UVA-induced cell death. As VEGFRs were over-expressed in psoriatic epidermis, we further investigated whether narrowband UVB (NB-UVB phototherapy or topical halomethasone monohydrate 0.05% cream could affect their expression. Surprisingly, the over-expressed VEGFRs in psoriatic epidermis were significantly attenuated by both treatments. During NB-UVB therapy, VEGFRs declined first in the basal, and then gradually in the upper psoriatic epidermis. VEGFRs were activated in psoriatic epidermis, their activation was enhanced by NB-UVB, but turned undetectable after whole therapy. This process was quite different from that by halomethasone, in which VEGFRs and phospho-VEGFRs decreased in a gradual, homogeneous manner. Our findings further suggest that UV-induced activation of VEGFRs serves as a pro-survival signal for keratinocytes. In addition, VEGFRs may be involved in the pathological process of psoriasis, and UV phototherapy is effective for psoriasis by directly modulating the expression of VEGFRs.

  17. VEGF concentration from plasma-activated platelets rich correlates with microvascular density and grading in canine mast cell tumour spontaneous model

    OpenAIRE

    Patruno, R; Arpaia, N; Gadaleta, CD; Passantino, L.; N. Zizzo; Misino, A; Lucarelli, NM; Catino, A; Valerio, P; Ribatti, D; Ranieri, G.

    2008-01-01

    Abstract Canine cutaneous mast cell tumour (CMCT) is a common cutaneous tumour in dog, with a higher incidence than in human. CMCT is classified in three subgroups, well and intermediately differentiated (G1 and G2), corresponding to a benign disease, and poorly differentiated (G3), corresponding to a malignant disease, which metastasize to lymph nodes, liver, spleen and bone marrow. In this study, we have evaluated serum (S), platelet-poor plasma (P-PP), plasma-activated platelet rich (P-APR...

  18. Impaired endothelial shear stress induces podosome assembly via VEGF up-regulation.

    Science.gov (United States)

    Fey, Theres; Schubert, Kai Michael; Schneider, Holger; Fein, Evelyn; Kleinert, Eike; Pohl, Ulrich; Dendorfer, Andreas

    2016-08-01

    Podosomes are dynamic cytoskeletal membrane structures with local adhesive and proteolytic activity. They are critically involved in angiogenesis and vascular adaptive growth. Here, we studied in HUVECs and murine small vessels whether shear stress controls podosome assembly and local proteolytic activity. Podosomes were characterized by immunohistochemistry, and their proteolytic activity was assessed as degradation imprints in fluorescent gelatin that was used as growth substrate. Compared with controls (10 dyn/cm(2)), the number of podosomes formed per time was doubled when cells were exposed to low shear stress (0.3 dyn/cm(2)) or even increased 5-fold under static conditions. This was a result of an enhanced expression of VEGF after reduction of shear stress. Consequently, enhanced podosome formation could be prevented by a VEGF receptor antagonist as well by interruption of VEGF signaling via inhibition of PI3K, Src, or p38. Increase of podosome assembly went along with significantly augmented cell motility. In vivo experiments in mouse arteries confirmed increased endothelial podosome numbers when shear stress was abolished by vessel occlusion. We conclude that shear stress, by reducing VEGF release, inhibits podosome assembly. Hence, endothelial cell-mediated matrix proteolysis and migratory activity are inhibited, thereby stabilizing the structure of the vessel wall.-Fey, T., Schubert, K. M., Schneider, H., Fein, E., Kleinert, E., Pohl, U., Dendorfer, A. Impaired endothelial shear stress induces podosome assembly via VEGF up-regulation.

  19. Vascular endothelial growth factor (VEGF-C - a potent risk factor in children diagnosed with stadium 4 neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Bogdan Miskowiak

    2009-01-01

    Full Text Available To evaluate the immunohistochemical expression of VEGF-C, CD34 and VEGFR-2 in cancer tissue of children diagnosed with stadium 4 neuroblastoma (NB and correlate their presence with the survival rate of children diagnosed with that stage of the disease. Eighteen children assigned to stadium 4 composed the study group. Fourteen patients (allocated to stadium 3 formed a control group. VEGF-C, CD34 and VEGFR-2 expressions were evaluated by immunohistochemical assay. Consecutive slides incubated with anti-CD34 and anti-VEGFR-2 antibodies revealed that the two markers were colocalized within endothelial layer of the blood vessels. On the other hand, VEGF-C was expressed exclusively in tumour cells. As demonstrated by Fisher's exact test, the risk of NB treatment failure (progression or relapse as well as tumour related death, when all the patients were considered, was found to be significant in VEGF-C positive patients. VEGF-C expression in NB constitutes a potent risk factor and may direct future anti-angiogenic treatment strategy. The proximity of VEGF-C and CD34/VEGFR-2 of NB could be the equivalent of a potentially interesting VEGF-C fashion involving a tumour cell invasion into the blood vessels in an early phase of metastases promoting.

  20. Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PIGF-1/VEGF heterodimers

    DEFF Research Database (Denmark)

    Eriksson, A.; Cao, R.; Pawliuk, R.;

    2002-01-01

    , the biological function of its related homolog, placenta growth factor (PlGF), is poorly understood. Here we demonstrate that PlGF-1, an alternatively spliced isoform of the PlGF gene, antagonizes VEGF-induced angiogenesis when both factors are coexpressed in murine fibrosarcoma cells. Overexpression of PlGF-1...

  1. New common variants affecting susceptibility to basal cell carcinoma

    OpenAIRE

    Stacey, Simon N.; Sulem, Patrick; Masson, Gisli; Gudjonsson, Sigurjon A.; Thorleifsson, Gudmar; Jakobsdottir, Margret; Sigurdsson, Asgeir; Daniel F Gudbjartsson; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R.; Thorisdottir, Kristin; Ragnarsson, Rafn; Scherer, Dominique; Hemminki, Kari; Rudnai, Peter

    2009-01-01

    In a follow-up to our previously reported genome-wide association study of cutaneous basal cell carcinoma (BCC)1, we describe here several new susceptibility variants. SNP rs11170164, encoding a G138E substitution in the keratin 5 (KRT5) gene, affects risk of BCC (OR = 1.35, P = 2.1 × 10−9). A variant at 9p21 near CDKN2A and CDKN2B also confers susceptibility to BCC (rs2151280[C]; OR = 1.19, P = 6.9 × 10−9), as does rs157935[T] at 7q32 near the imprinted gene KLF14 (OR = 1.23, P = 5.7 × 10−10...

  2. Low molecular weight heparin suppresses lymphatic endothelial cell proliferation induced by vascular endothelial growth factor C in vitro

    Institute of Scientific and Technical Information of China (English)

    CAO Guang; WU Ji-xiang; WU Qing-hua

    2009-01-01

    Background Pancreatic cancer is one of the most aggressive human malignancies. Lymphangiogenesis plays an important role in lymph node metastasis of many solid tumors. It is well known that low molecular weight heparins (LMWHs) can inhibit cell growth, cell invasion and angiogenesis, which are key processes in tumor progression. Methods We measured the expression of vascular endothelial growth factor C (VEGF-C) in pancreatic cancer cells (PANC-1) using reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. We used an in vitroassay to evaluate the anti-lymphangiogenic effect of an LMWH, Fragmin, on human lymphatic endothelial cell (HLEC) proliferation. Results Fragmin at a low concentration can effectively inhibits HLEC proliferation induced by VEGF-C. VEGF-C secreted by PANC-1 cells stimulated HLEC proliferation. Low concentration LMWH suppressed HLEC proliferation induced by VEGF-C but did not affect proliferation or VEGF-C expression of PANC-1 cells, whereas high concentrations of LMWH inhibited PANC-1 cell proliferation. Conclusions These results suggest that VEGF-C released by cancer cells plays an important role in promoting HLEC proliferation. The LMWH Fragmin has anti-lymphangiogenic effects and may inhibit lymphatic metastasis in pancreatic cancer.

  3. Net Platelet Angiogenic Activity (NPAA) Correlates with Progression and Prognosis of Non-Small Cell Lung Cancer

    OpenAIRE

    Lijuan Yao; Hang Dong; Yiqin Luo; Jianping Du; Wen Hu

    2014-01-01

    Circulating platelets are abundant sources of angiogensis molecules for the tumor vasculature affecting tumor growth and metastasis. The relationship between non-small cell lung cancer (NSCLC) and intra-platelet levels of VEGF, TSP-1 and net platelet angiogenic activity (NPAA) is unclear. The aim of this study was to better understand the role of these factors in the progression of NSCLC cancer and to assess its clinical significance. Platelet VEGF and TSP-1 and NPAA were measured preoperativ...

  4. Platelet number and interleukin-6 correlate with VEGF but not with bFGF serum levels of advanced cancer patients

    OpenAIRE

    Salgado, R.; Vermeulen, P B; Benoy, I; Weytjens, R; Huget, P; Van Marck, E; Dirix, L Y

    1999-01-01

    We have compared the platelet number and the serum concentration of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and interleukin-6 (IL-6) in 80 blood samples of 50 patients with advanced cancer. We have also measured the mitogenic effect of patient sera on endothelial cells in vitro in order to estimate the biological activity of serum VEGF. Serum VEGF concentration correlated with platelet number (r = 0.61; P < 10−4). Serum IL-6 levels correlated with plat...

  5. Effect of Total Alkaloids from Solanum lyratum on Regulating Apoptosis and Cell Cycle of A549 Cells Through VEGF-related Pathway%白英总碱通过VEGF相关信号通路调控A549细胞的凋亡与周期

    Institute of Scientific and Technical Information of China (English)

    韩林; 孙彩霞; 王建农

    2016-01-01

    目的:基于血管内皮生长因子(VEGF)相关信号通路探讨白英总碱对A549细胞的凋亡与周期的影响。方法设立对照组和白英总碱低、中、高剂量组(50,100,200 mg·L-1),通过流式细胞术检测细胞凋亡及周期分布情况, Western blot法检测PI3K、 Akt、 Ras、 MAP2、 VEGF蛋白的表达。结果流式细胞术检测白英总碱将该细胞周期阻滞于G2期,呈现剂量依赖性的诱导A549细胞的凋亡,尤其是早期凋亡细胞。 Western blot结果显示,白英总碱均可下调PI3K、 Akt、 Ras、 MAP2、 VEGF蛋白的表达,中、高剂量组各蛋白的相对表达量与对照组比较,差异均有统计学意义(P<0.01)。结论白英总碱可通过调控VEGF相关信号通路诱导A549细胞的凋亡,阻滞细胞周期于G2期。%ObjectiveTo investigate the effect of total alkaloids fromSolanumlyratumon the apoptosis and cell cycle of A549 cells based on vascular endothelial growth factor(VEGF)-related signal pathway.MethodsControl group and three experimental groups were set up,cell cycle and apoptosis were tested by flow cytometry,and protein levels of PI3K,Akt,Ras,MAP2,and VEGF were examined by Western blot method.ResultsThe results of flow cytometry showed that total alkaloids fromSolanumlyratumarrested the cell cycle at G2 phase,and induced A549 cells apoptosis in a dose-dependent manner,especially for the early apoptotic cells. The results of Western blotting showed that total alkaloids fromSolanumlyratumdown-regulated the protein levels of PI3K,Akt,Ras,MAP2,and VEGF,and the relative protein expression quantity in middle- and high-dose groups obviously differed from that of the control group (P<0.01).ConclusionTotal alkaloids fromSolanumlyratumcould induce A549 cells apoptosis and arrest cell cycle at G2/M phase through VEGF-related signal pathway.

  6. New common variants affecting susceptibility to basal cell carcinoma.

    Science.gov (United States)

    Stacey, Simon N; Sulem, Patrick; Masson, Gisli; Gudjonsson, Sigurjon A; Thorleifsson, Gudmar; Jakobsdottir, Margret; Sigurdsson, Asgeir; Gudbjartsson, Daniel F; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R; Thorisdottir, Kristin; Ragnarsson, Rafn; Scherer, Dominique; Hemminki, Kari; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Botella-Estrada, Rafael; Soriano, Virtudes; Juberias, Pablo; Saez, Berta; Gilaberte, Yolanda; Fuentelsaz, Victoria; Corredera, Cristina; Grasa, Matilde; Höiom, Veronica; Lindblom, Annika; Bonenkamp, Johannes J; van Rossum, Michelle M; Aben, Katja K H; de Vries, Esther; Santinami, Mario; Di Mauro, Maria G; Maurichi, Andrea; Wendt, Judith; Hochleitner, Pia; Pehamberger, Hubert; Gudmundsson, Julius; Magnusdottir, Droplaug N; Gretarsdottir, Solveig; Holm, Hilma; Steinthorsdottir, Valgerdur; Frigge, Michael L; Blondal, Thorarinn; Saemundsdottir, Jona; Bjarnason, Hjördis; Kristjansson, Kristleifur; Bjornsdottir, Gyda; Okamoto, Ichiro; Rivoltini, Licia; Rodolfo, Monica; Kiemeney, Lambertus A; Hansson, Johan; Nagore, Eduardo; Mayordomo, José I; Kumar, Rajiv; Karagas, Margaret R; Nelson, Heather H; Gulcher, Jeffrey R; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Olafsson, Jon H; Kong, Augustine; Stefansson, Kari

    2009-08-01

    In a follow-up to our previously reported genome-wide association study of cutaneous basal cell carcinoma (BCC), we describe here several new susceptibility variants. SNP rs11170164, encoding a G138E substitution in the keratin 5 (KRT5) gene, affects risk of BCC (OR = 1.35, P = 2.1 x 10(-9)). A variant at 9p21 near CDKN2A and CDKN2B also confers susceptibility to BCC (rs2151280[C]; OR = 1.19, P = 6.9 x 10(-9)), as does rs157935[T] at 7q32 near the imprinted gene KLF14 (OR = 1.23, P = 5.7 x 10(-10)). The effect of rs157935[T] is dependent on the parental origin of the risk allele. None of these variants were found to be associated with melanoma or fair-pigmentation traits. A melanoma- and pigmentation-associated variant in the SLC45A2 gene, L374F, is associated with risk of both BCC and squamous cell carcinoma. Finally, we report conclusive evidence that rs401681[C] in the TERT-CLPTM1L locus confers susceptibility to BCC but protects against melanoma. PMID:19578363

  7. Glucagon like peptide-2 induces intestinal restitution through VEGF release from subepithelial myofibroblasts.

    Science.gov (United States)

    Bulut, Kerem; Pennartz, Christian; Felderbauer, Peter; Meier, Juris J; Banasch, Matthias; Bulut, Daniel; Schmitz, Frank; Schmidt, Wolfgang E; Hoffmann, Peter

    2008-01-14

    Glucagon like peptide-2 (GLP-2) exerts intestinotrophic actions, but the underlying mechanisms are still a matter of debate. Recent studies demonstrated the expression of the GLP-2 receptor on fibroblasts located in the subepithelial tissue, where it might induce the release of growth factors such as keratinocyte growth factor (KGF) or vascular endothelial growth factor (VEGF). Therefore, in the present studies we sought to elucidate the downstream mechanisms involved in improved intestinal adaptation by GLP-2. Human colonic fibroblasts (CCD-18Co), human colonic cancer cells (Caco-2 cells) and rat ileum IEC-18 cells were used. GLP-2 receptor mRNA expression was determined using real time RT-PCR. Conditioned media from CCD-18Co cells were obtained following incubation with GLP-2 (50-250 nM) for 24 h. Cell viability was assessed by a 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide (MTT)-assay, and wound healing was determined with an established migration-assay. Transforming Growth Factor beta (TGF-beta), VEGF and KGF mRNA levels were determined by RT-PCR. Protein levels of VEGF and TGF-beta in CCD-18Co cells following GLP-2 stimulation were determined using ELISA. Neutralizing TGF-beta and VEGF-A antibodies were utilized to assess the role of TGF-beta and VEGF-A in the process of wound healing. GLP-2 receptor expression was detected in CCD-18Co cells. Conditioned media from CCD-18Co cells dose-dependently induced proliferation in Caco-2 cells, but not in IEC-18 cells. Conditioned media also enhanced cell migration in IEC-18 cells (PCCD-18Co. The migratory effects of GLP-2 were completely abolished in the presence of TGF-beta and VEGF-A antibodies. GLP-2 exerts differential effects on the epithelium of the small intestine and the colon. Thus, in small intestinal cells GLP-2 stimulates wound repair, whereas no such effects were observed in colonic cells. The mechanisms underlying GLP-2 induced intestinal wound repair seem to involve the secretion of

  8. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism

    OpenAIRE

    Welty, Nathan E.; Staley, Christopher; Ghilardi, Nico; Sadowsky, Michael J.; Igyártó, Botond Z.; Kaplan, Daniel H.

    2013-01-01

    Dendritic cells (DCs) in the intestinal lamina propria (LP) are composed of two CD103+ subsets that differ in CD11b expression. We report here that Langerin is expressed by human LP DCs and that transgenic human langerin drives expression in CD103+CD11b+ LP DCs in mice. This subset was ablated in huLangerin-DTA mice, resulting in reduced LP Th17 cells without affecting Th1 or T reg cells. Notably, cognate DC–T cell interactions were not required for Th17 development, as this response was inta...

  9. Lipogems Product Treatment Increases the Proliferation Rate of Human Tendon Stem Cells without Affecting Their Stemness and Differentiation Capability.

    Science.gov (United States)

    Randelli, Pietro; Menon, Alessandra; Ragone, Vincenza; Creo, Pasquale; Bergante, Sonia; Randelli, Filippo; De Girolamo, Laura; Alfieri Montrasio, Umberto; Banfi, Giuseppe; Cabitza, Paolo; Tettamanti, Guido; Anastasia, Luigi

    2016-01-01

    Increasing the success rate of rotator cuff healing remains tremendous challenge. Among many approaches, the possibility of activating resident stem cells in situ, without the need to isolate them from biopsies, could represent valuable therapeutic strategy. Along this line, it has been recently demonstrated that lipoaspirate product, Lipogems, contains and produces growth-factors that may activate resident stem cells. In this study, human tendon stem cells (hTSCs) from the rotator cuff were cocultured in a transwell system with the Lipogems lipoaspirate product and compared to control untreated cells in terms of cell proliferation, morphology, stem cell marker and VEGF expression, and differentiation and migration capabilities. Results showed that the Lipogems product significantly increases the proliferation rate of hTSCs without altering their stemness and differentiation capability. Moreover, treated cells increase the expression of VEGF, which is crucial for the neovascularization of the tissue during the healing process. Overall, this study supports that directly activating hTSCs with the Lipogems lipoaspirate could represent a new practical therapeutic approach. In fact, obtaining a lipoaspirate is easier, safer, and more cost-effective than harvesting cells from tendon or bone marrow biopsies, expanding them in GMP facility and then reinjecting them in the patient.

  10. Lipogems Product Treatment Increases the Proliferation Rate of Human Tendon Stem Cells without Affecting Their Stemness and Differentiation Capability

    Directory of Open Access Journals (Sweden)

    Pietro Randelli

    2016-01-01

    Full Text Available Increasing the success rate of rotator cuff healing remains tremendous challenge. Among many approaches, the possibility of activating resident stem cells in situ, without the need to isolate them from biopsies, could represent valuable therapeutic strategy. Along this line, it has been recently demonstrated that lipoaspirate product, Lipogems, contains and produces growth-factors that may activate resident stem cells. In this study, human tendon stem cells (hTSCs from the rotator cuff were cocultured in a transwell system with the Lipogems lipoaspirate product and compared to control untreated cells in terms of cell proliferation, morphology, stem cell marker and VEGF expression, and differentiation and migration capabilities. Results showed that the Lipogems product significantly increases the proliferation rate of hTSCs without altering their stemness and differentiation capability. Moreover, treated cells increase the expression of VEGF, which is crucial for the neovascularization of the tissue during the healing process. Overall, this study supports that directly activating hTSCs with the Lipogems lipoaspirate could represent a new practical therapeutic approach. In fact, obtaining a lipoaspirate is easier, safer, and more cost-effective than harvesting cells from tendon or bone marrow biopsies, expanding them in GMP facility and then reinjecting them in the patient.

  11. Lipogems Product Treatment Increases the Proliferation Rate of Human Tendon Stem Cells without Affecting Their Stemness and Differentiation Capability

    Science.gov (United States)

    Randelli, Pietro; Menon, Alessandra; Ragone, Vincenza; Creo, Pasquale; Bergante, Sonia; Randelli, Filippo; De Girolamo, Laura; Alfieri Montrasio, Umberto; Banfi, Giuseppe; Cabitza, Paolo; Tettamanti, Guido; Anastasia, Luigi

    2016-01-01

    Increasing the success rate of rotator cuff healing remains tremendous challenge. Among many approaches, the possibility of activating resident stem cells in situ, without the need to isolate them from biopsies, could represent valuable therapeutic strategy. Along this line, it has been recently demonstrated that lipoaspirate product, Lipogems, contains and produces growth-factors that may activate resident stem cells. In this study, human tendon stem cells (hTSCs) from the rotator cuff were cocultured in a transwell system with the Lipogems lipoaspirate product and compared to control untreated cells in terms of cell proliferation, morphology, stem cell marker and VEGF expression, and differentiation and migration capabilities. Results showed that the Lipogems product significantly increases the proliferation rate of hTSCs without altering their stemness and differentiation capability. Moreover, treated cells increase the expression of VEGF, which is crucial for the neovascularization of the tissue during the healing process. Overall, this study supports that directly activating hTSCs with the Lipogems lipoaspirate could represent a new practical therapeutic approach. In fact, obtaining a lipoaspirate is easier, safer, and more cost-effective than harvesting cells from tendon or bone marrow biopsies, expanding them in GMP facility and then reinjecting them in the patient. PMID:27057170

  12. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    Science.gov (United States)

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-01

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell's behaviors to the global mechanics and patterns of tissues.

  13. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yi-Yong; Lee, Dong-Keon [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); So, Ju-Hoon; Kim, Cheol-Hee [Department of Biology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Jeoung, Dooil [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Lee, Hansoo [Department of Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Choe, Jongseon [Department of Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Won, Moo-Ho [Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Ha, Kwon-Soo [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Kwon, Young-Guen [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752 (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of)

    2015-08-07

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC{sub 50} of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases.

  14. The effect of all-tram retinoic acid on the expressions of VEGF and VEGF receptors,and growth inhibition of human colon cancer Lovo cell line%全反式维甲酸对结肠癌Lovo细胞VEGF及其受体表达的影响

    Institute of Scientific and Technical Information of China (English)

    黄江龙; 卫洪波; 韩晓燕; 黄勇; 张富程

    2010-01-01

    目的 探讨全反式维甲酸(ATRA)对结肠癌Lovo细胞血管内皮细胞生长因子(VEGF)及其受体的影响,为其临床应用提供理论依据.方法 MTT法观察不同浓度ATRA对结肠癌Lovo细胞株生长的抑制作用以及对外源性VEGF刺激Lovo细胞生长的抑制作用.流式细胞仪分析ATRA作用后Lovo细胞周期变化以及细胞凋亡情况.ELISA法检测ATRA作用前后细胞培养上清液中VEGF含量变化.流式细胞仪测定Lovo细胞VEGF受体表达.结果 ATRA对Lovo细胞的生长具有抑制作用,呈时间与剂量依赖性.外源性VEGF165能刺激Lovo细胞生长,ATRA能够抑制VEGF165对细胞生长的刺激作用.随ATRA作用浓度增加,细胞周期G0/G1期细胞比例从(60.10±1.27)%增加至(84.80±1.40)%;细胞凋亡率增加至(39.79±3.96)%.ATRA能抑制Lovo细胞表达VEGF及VEGF受体,呈时间与剂量依赖性.结论 ATRA具有抑制结肠癌Lovo细胞株VEGF及其受体表达的作用,抑制肿瘤细胞的生长,可能机制为阻断VEGF自分泌及旁分泌,与促进肿瘤细胞凋亡及阻滞细胞周期有关.

  15. Inhibitory Effects of Anti-VEGF Antibody on the Growth and Angiogenesis of Estrogen-induced Pituitary Prolactinoma in Fischer 344 Rats: Animal Model of VEGF-targeted Therapy for Human Endocrine Tumors

    International Nuclear Information System (INIS)

    Estrogen-induced pituitary prolactin-producing tumors (PRLoma) in F344 rats express a high level of vascular endothelial growth factor (VEGF) associated with marked angiogenesis and angiectasis. To investigate whether tumor development in E2-induced PRLoma is inhibited by anti-VEGF monoclonal antibody (G6-31), we evaluated tumor growth and observed the vascular structures. With simultaneous treatment with G6-31 for the latter three weeks of the 13-week period of E2 stimulation (E2+G6-31 group), the following inhibitory effects on the PRLoma were observed in the E2+G6-31 group as compared with the E2-only group. In the E2+G6-31 group, a tendency to reduction in pituitary weight was observed and significant differences were observed as (1) reductions in the Ki-67-positive anterior cells, (2) increases in TUNEL-positive anterior cells, and (3) repair of the microvessel count by CD34-immunohistochemistry. The characteristic “blood lakes” in PRLomas were improved and replaced by repaired microvascular structures on 3D observation using confocal laser scanning microscope. These inhibitory effects due to anti-VEGF antibody might be related to the autocrine/paracrine action of VEGF on the tumor cells, because VEGF and its receptor are co-expressed on the tumor cells. Thus, our results demonstrate that anti-VEGF antibody exerted inhibitory effects on pituitary tumorigenesis in well-established E2 induced PRLomas

  16. Japanese encephalitis virus disrupts cell-cell junctions and affects the epithelial permeability barrier functions.

    Directory of Open Access Journals (Sweden)

    Tanvi Agrawal

    Full Text Available Japanese encephalitis virus (JEV is a neurotropic flavivirus, which causes viral encephalitis leading to death in about 20-30% of severely-infected people. Although JEV is known to be a neurotropic virus its replication in non-neuronal cells in peripheral tissues is likely to play a key role in viral dissemination and pathogenesis. We have investigated the effect of JEV infection on cellular junctions in a number of non-neuronal cells. We show that JEV affects the permeability barrier functions in polarized epithelial cells at later stages of infection. The levels of some of the tight and adherens junction proteins were reduced in epithelial and endothelial cells and also in hepatocytes. Despite the induction of antiviral response, barrier disruption was not mediated by secreted factors from the infected cells. Localization of tight junction protein claudin-1 was severely perturbed in JEV-infected cells and claudin-1 partially colocalized with JEV in intracellular compartments and targeted for lysosomal degradation. Expression of JEV-capsid alone significantly affected the permeability barrier functions in these cells. Our results suggest that JEV infection modulates cellular junctions in non-neuronal cells and compromises the permeability barrier of epithelial and endothelial cells which may play a role in viral dissemination in peripheral tissues.

  17. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1{alpha} expression

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Chuan-Xiu; Shi, Zhumei [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China); Meng, Qiao; Jiang, Yue; Liu, Ling-Zhi [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jiang, Bing-Hua, E-mail: binghjiang@yahoo.com [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China); Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)

    2010-07-30

    Research highlights: {yields} P70S6K1 regulates VEGF expression; {yields} P70S6K1 induces transcriptional activation through HIF-1{alpha} binding site; {yields} P70S6K1 regulates HIF-1{alpha}, but not HIF-1{beta} protein expression; {yields} P70S6K1 mediates tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression. -- Abstract: The 70 kDa ribosomal S6 kinase 1 (p70S6K1), a downstream target of phosphoinositide 3-kinase (PI3K) and ERK mitogen-activated protein kinase (MAPK), is an important regulator of cell cycle progression, and cell proliferation. Recent studies indicated an important role of p70S6K1 in PTEN-negative and AKT-overexpressing tumors. However, the mechanism of p70S6K1 in tumor angiogenesis remains to be elucidated. In this study, we specifically inhibited p70S6K1 activity in ovarian cancer cells using vector-based small interfering RNA (siRNA) against p70S6K1. We found that knockdown of p70S6K1 significantly decreased VEGF protein expression and VEGF transcriptional activation through the HIF-1{alpha} binding site at its enhancer region. The expression of p70S6K1 siRNA specifically inhibited HIF-1{alpha}, but not HIF-1{beta} protein expression. We also found that p70S6K1 down-regulation inhibited ovarian tumor growth and angiogenesis, and decreased cell proliferation and levels of VEGF and HIF-1{alpha} expression in tumor tissues. Our results suggest that p70S6K1 is required for tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression, providing a molecular mechanism of human ovarian cancer mediated by p70S6K1 signaling.

  18. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis.

    Science.gov (United States)

    Hayashi, Hisaki; Al Mamun, Abdullah; Sakima, Miho; Sato, Motohiko

    2016-03-15

    Activator of G-protein signaling 8 (AGS8, also known as FNDC1) is a receptor-independent accessory protein for the Gβγ subunit, which was isolated from rat heart subjected to repetitive transient ischemia with the substantial development of collaterals. Here, we report the role of AGS8 in vessel formation by endothelial cells. Knockdown of AGS8 by small interfering RNA (siRNA) inhibited vascular endothelial growth factor (VEGF)-induced tube formation, as well as VEGF-stimulated cell growth and migration. VEGF stimulated the phosphorylation of the VEGF receptor-2 (VEGFR-2, also known as KDR), ERK1/2 and p38 MAPK; however, knockdown of AGS8 inhibited these signaling events. Signal alterations by AGS8 siRNA were associated with a decrease of cell surface VEGFR-2 and an increase of VEGFR-2 in the cytosol. Endocytosis blockers did not influence the decrease of VEGFR-2 by AGS8 siRNA, suggesting the involvement of AGS8 in VEGFR-2 trafficking to the plasma membrane. VEGFR-2 formed a complex with AGS8 in cells, and a peptide designed to disrupt AGS8-Gβγ interaction inhibited VEGF-induced tube formation. These data suggest a potential role for AGS8-Gβγ in VEGF signal processing. AGS8 might play a key role in tissue adaptation by regulating angiogenic events.

  19. Anthrax lethal toxin suppresses high glucose induced VEGF over secretion through a post-translational mechanism

    Institute of Scientific and Technical Information of China (English)

    Wei-Wei; Zhang; Xin; Wang; Ping; Xie; Song-Tao; Yuan; Qing-Huai; Liu

    2015-01-01

    AIM: To prove anthrax lethal toxin(Le Tx) blocks the mitogen activated protein kinases(MAPKs) activation by degrading the MAPK/ERK kinases(MEKs) to suppress vascular endothelial growth factor(VEGF) secretion.METHODS: Human adult retinal pigmented epithelium(ARPE) cells were cultured and treated with normal glucose, high glucose or high glucose with Le Tx for additional 24, 48 or 72 h for viable cell count. Total RNA from the ARPE was isolated for reverse transcription polymerase chain reaction(RT-PCR). The conditioned medium of ARPE cells treated in different group for 48 h was filtered and diluted to detect the concentration of VEGF by enzyme-linked immunosorbant assays.Evaluate the role of MEK/MAPK pathway in the secretion of VEGF by immunoblotting. RESULTS: In this study, we proved high glucose induced activation of the MAPK extracellular signal-regulated kinase(ERK1/2) and p38 in the ARPE cell line was blocked by anthrax Le Tx. Le Tx also inhibited high glucose induced ARPE cell over proliferation.CONCLUSION: Le Tx suppressed high glucose induced VEGF over secretion in the ARPE cells, mainly through a post-translational mechanism.

  20. VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2–dependent Ca2+ signaling

    Science.gov (United States)

    Favia, Annarita; Desideri, Marianna; Gambara, Guido; D’Alessio, Alessio; Ruas, Margarida; Esposito, Bianca; Del Bufalo, Donatella; Parrington, John; Ziparo, Elio; Palombi, Fioretta; Galione, Antony; Filippini, Antonio

    2014-01-01

    Vascular endothelial growth factor (VEGF) and its receptors VEGFR1/VEGFR2 play major roles in controlling angiogenesis, including vascularization of solid tumors. Here we describe a specific Ca2+ signaling pathway linked to the VEGFR2 receptor subtype, controlling the critical angiogenic responses of endothelial cells (ECs) to VEGF. Key steps of this pathway are the involvement of the potent Ca2+ mobilizing messenger, nicotinic acid adenine-dinucleotide phosphate (NAADP), and the specific engagement of the two-pore channel TPC2 subtype on acidic intracellular Ca2+ stores, resulting in Ca2+ release and angiogenic responses. Targeting this intracellular pathway pharmacologically using the NAADP antagonist Ned-19 or genetically using Tpcn2−/− mice was found to inhibit angiogenic responses to VEGF in vitro and in vivo. In human umbilical vein endothelial cells (HUVECs) Ned-19 abolished VEGF-induced Ca2+ release, impairing phosphorylation of ERK1/2, Akt, eNOS, JNK, cell proliferation, cell migration, and capillary-like tube formation. Interestingly, Tpcn2 shRNA treatment abolished VEGF-induced Ca2+ release and capillary-like tube formation. Importantly, in vivo VEGF-induced vessel formation in matrigel plugs in mice was abolished by Ned-19 and, most notably, failed to occur in Tpcn2−/− mice, but was unaffected in Tpcn1−/− animals. These results demonstrate that a VEGFR2/NAADP/TPC2/Ca2+ signaling pathway is critical for VEGF-induced angiogenesis in vitro and in vivo. Given that VEGF can elicit both pro- and antiangiogenic responses depending upon the balance of signal transduction pathways activated, targeting specific VEGFR2 downstream signaling pathways could modify this balance, potentially leading to more finely tailored therapeutic strategies. PMID:25331892

  1. VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2-dependent Ca2+ signaling.

    Science.gov (United States)

    Favia, Annarita; Desideri, Marianna; Gambara, Guido; D'Alessio, Alessio; Ruas, Margarida; Esposito, Bianca; Del Bufalo, Donatella; Parrington, John; Ziparo, Elio; Palombi, Fioretta; Galione, Antony; Filippini, Antonio

    2014-11-01

    Vascular endothelial growth factor (VEGF) and its receptors VEGFR1/VEGFR2 play major roles in controlling angiogenesis, including vascularization of solid tumors. Here we describe a specific Ca(2+) signaling pathway linked to the VEGFR2 receptor subtype, controlling the critical angiogenic responses of endothelial cells (ECs) to VEGF. Key steps of this pathway are the involvement of the potent Ca(2+) mobilizing messenger, nicotinic acid adenine-dinucleotide phosphate (NAADP), and the specific engagement of the two-pore channel TPC2 subtype on acidic intracellular Ca(2+) stores, resulting in Ca(2+) release and angiogenic responses. Targeting this intracellular pathway pharmacologically using the NAADP antagonist Ned-19 or genetically using Tpcn2(-/-) mice was found to inhibit angiogenic responses to VEGF in vitro and in vivo. In human umbilical vein endothelial cells (HUVECs) Ned-19 abolished VEGF-induced Ca(2+) release, impairing phosphorylation of ERK1/2, Akt, eNOS, JNK, cell proliferation, cell migration, and capillary-like tube formation. Interestingly, Tpcn2 shRNA treatment abolished VEGF-induced Ca(2+) release and capillary-like tube formation. Importantly, in vivo VEGF-induced vessel formation in matrigel plugs in mice was abolished by Ned-19 and, most notably, failed to occur in Tpcn2(-/-) mice, but was unaffected in Tpcn1(-/-) animals. These results demonstrate that a VEGFR2/NAADP/TPC2/Ca(2+) signaling pathway is critical for VEGF-induced angiogenesis in vitro and in vivo. Given that VEGF can elicit both pro- and antiangiogenic responses depending upon the balance of signal transduction pathways activated, targeting specific VEGFR2 downstream signaling pathways could modify this balance, potentially leading to more finely tailored therapeutic strategies. PMID:25331892

  2. The prognostic value of the hypoxia markers CA IX and GLUT 1 and the cytokines VEGF and IL 6 in head and neck squamous cell carcinoma treated by radiotherapy ± chemotherapy

    Directory of Open Access Journals (Sweden)

    Goethals Laurence

    2005-04-01

    Full Text Available Abstract Background Several parameters of the tumor microenvironment, such as hypoxia, inflammation and angiogenesis, play a critical role in tumor aggressiveness and treatment response. A major question remains if these markers can be used to stratify patients to certain treatment protocols. The purpose of this study was to investigate the inter-relationship and the prognostic significance of several biological and clinicopathological parameters in patients with head and neck squamous cell carcinoma (HNSCC treated by radiotherapy ± chemotherapy. Methods We used two subgroups of a retrospective series for which CT-determined tumoral perfusion correlated with local control. In the first subgroup (n = 67, immunohistochemistry for carbonic anhydrase IX (CA IX and glucose transporter-1 (GLUT-1 was performed on the pretreatment tumor biopsy. In the second subgroup (n = 34, enzyme linked immunosorbent assay (ELISA was used to determine pretreatment levels of the cytokines vascular endothelial growth factor (VEGF and interleukin-6 (IL-6 in serum. Correlation was investigated between tumoral perfusion and each of these biological markers, as well as between the markers mutually. The prognostic value of these microenvironmental parameters was also evaluated. Results For CA IX and GLUT-1, the combined assessment of patients with both markers expressed above the median showed an independent correlation with local control (p = 0.02 and disease-free survival (p = 0.04 with a trend for regional control (p = 0.06. In the second subgroup, IL-6 pretreatment serum level above the median was the only independent predictor of local control (p = 0.009, disease-free survival (p = 0.02 and overall survival (p = 0.005. Conclusion To our knowledge, we are the first to report a link in HNSCC between IL-6 pretreatment serum levels and radioresistance in vivo. This link is supported by the strong prognostic association of pretreatment IL-6 with local control, known to be

  3. Influence of hepatic arterial blockage on blood perfusion and VEGF, MMP-1 expression of implanted Iiver cancer rats

    Institute of Scientific and Technical Information of China (English)

    Wei-Jian Guo; Jie Li; Wan-Long Ling; Yong-Rui Bai; Wen-Zhu Zhang; Yu-Fan Cheng; Wen-Hua Gu; Jun-Yan Zhuang

    2002-01-01

    AIM: To investigate the influence of hepatic arterial blockageon blood perfusion of transplanted cancer in rat liver and theexpression of vascular endothelial growth factor (VEGF)and matrix metalloproteinase-1 (MMP-1), and to explore themechanisms involved in transarterial embolization (TAE)-induced metastasis of liver cancer preliminarily.METHODS: Wallker 256 carcinosarcoma was transplanted intorat liver to establish the liver cancer model. Hepatic arterialligation (HAL) was used to block the hepatic arterial bloodsupply and simulate TAE. Blood perfusion of tumor incontrol, laparotomy control, and HAL group was anslyzedby Hoechst 33 342 labeling assay, the serum VEGF level wasassayed by ELISA, the expression of VEGF and MMP-1mRNA was detected by in situ hybridization.RESULTS: Two days after HAL, the number of Hoechst 33342 labeled cells which represent the blood perfusion oftumor directly and hypoxia of tumor indirectly in HAL groupdecreased significantly compared with that in control group(329+29 vs 384+ 19, P<0.01). The serum VEGF level inthe HAL group increased significantly as against that of thecontrol group (93 ng@ L-1 + 44 ng@ L-1 vs 55 ng@ L-1 + 19 ng@ L-1,P< 0.05). The expression of VEGF and MMP-1 mRNA in thetumor tissue of the HAL group increased significantlycompared with that of the control and the laparotomy controlgroups ( P < 0. 05). The blood perfusion data of the tumor,represented by the number of Hoechst 33 342 labeled calls,showed a good linear inverse correlation with the serumVEGF level ( r = -0.606, P < 0. 05 ) and the expression ofVEGF mRNA in the tumor tissue ( r= -0.338, P< 0.01).CONCLUSION: Blockage of hepatic arterial blood supplyresults in decreased blood perfusion and increasedexpression of metastasis-associated genes VEGF and MMP-1of transplanted liver cancer in rats. Decreased bloodperfusion and hypoxia may be the major cause of up-regulated expression of VEGF.

  4. The mRNA expression of hTERT in human breast carcinomas correlates with VEGF expression

    Directory of Open Access Journals (Sweden)

    Kirkpatrick Katharine L

    2004-01-01

    Full Text Available Abstract Background Telomerase is a ribonucleoprotein enzyme that synthesises telomeres after cell division and maintains chromosomal stability leading to cellular immortalisation. hTERT (human telomerase reverse transcriptase is the rate-limiting determinant of telomerase reactivation. Telomerase has been associated with negative prognostic indicators in some studies. The present study aims to detect any correlation between hTERT and the negative prognostic indicators VEGF and PCNA by quantitatively measuring the mRNA expression of these genes in human breast cancer and in adjacent non-cancerous tissue (ANCT. Materials and methods RNA was extracted from 38 breast carcinomas and 40 ANCT. hTERT and VEGF165, VEGF189 and PCNA mRNA expressions were estimated by reverse transcriptase-PCR (RT-PCR and Taqman methodology. Results The level of expression of VEGF-165 and PCNA was significantly higher in carcinoma tissue than ANCT (p = 0.02. The ratio of VEGF165/189 expression was significantly higher in breast carcinoma than ANCT (p = 0.025. hTERT mRNA expression correlated with VEGF-189 mRNA (p = 0.008 and VEGF165 (p = 0.07. Conclusions hTERT mRNA expression is associated with the expression of the VEGF189 and 165 isoforms. This could explain the poorer prognosis reported in breast tumours expressing high levels of hTERT. The relative expression of the VEGF isoforms is significantly different in breast tumour to ANCT, and this may be important in breast carcinogenesis.

  5. Inflammatory cytokines regulate secretion of VEGF and chemokines by human conjunctival fibroblasts: Role in dysfunctional tear syndrome.

    Science.gov (United States)

    Nagineni, Chandrasekharam N; William, Abitha; Cherukuri, Aswini; Samuel, William; Hooks, John J; Detrick, Barbara

    2016-02-01

    Ocular surface inflammation is one of the primary mechanisms associated with dysfunctional tear syndrome (DTS), also known as dry eye disease. DTS, more prevalent in older populations, causes ocular discomfort and visual disturbance due to dryness on the surface layer in the eye. We used human conjunctival fibroblast cultures (HCJVF) to investigate the effects of inflammatory cytokines IFN-γ, TNF-α and IL-1β (ITI) on the secretions of VEGF and chemokines. Our results demonstrate the elevated secretion of angiogenic VEGF molecules by ITI without affecting anti-angiogenic molecules, PEDF, endostatin, thrombospondin and sVEGF-R1. The secretion of interferon-γ inducible chemokines, CXCL9, -10, -11 by HCJVF were significantly enhanced by ITI. Our in vitro study supports previously reported observations of elevated VEGF and chemokines in tear fluids of DTS patients, reiterating the role of inflammatory reactions in DTS. PMID:26615568

  6. Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology.

    OpenAIRE

    Banks, R E; Forbes, M. A.; Kinsey, S E; Stanley, A; Ingham, E; Walters, C; Selby, P J

    1998-01-01

    Vascular endothelial growth factor (VEGF) is a potent angiogenic factor with a key role in several pathological processes, including tumour vascularization. Our preliminary observations indicated higher VEGF concentrations in serum samples than in matched plasma samples. We have now demonstrated that this difference is due to the presence of VEGF within platelets and its release upon their activation during coagulation. In eight healthy volunteers, serum VEGF concentrations ranged from 76 to ...

  7. Expression of VEGF and semaphorin genes define subgroups of triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    R Joseph Bender

    Full Text Available Triple negative breast cancers (TNBC are difficult to treat due to a lack of targets and heterogeneity. Inhibition of angiogenesis is a promising therapeutic strategy, but has had limited effectiveness so far in breast cancer. To quantify heterogeneity in angiogenesis-related gene expression in breast cancer, we focused on two families--VEGFs and semaphorins--that compete for neuropilin co-receptors on endothelial cells. We compiled microarray data for over 2,600 patient tumor samples and analyzed the expression of VEGF- and semaphorin-related ligands and receptors. We used principal component analysis to identify patterns of gene expression, and clustering to group samples according to these patterns. We used available survival data to determine whether these clusters had prognostic as well as therapeutic relevance. TNBC was highly associated with dysregulation of VEGF- and semaphorin-related genes; in particular, it appeared that expression of both VEGF and semaphorin genes were altered in a pro-angiogenesis direction. A pattern of high VEGFA expression with low expression of secreted semaphorins was associated with 60% of triple-negative breast tumors. While all TNBC groups demonstrated poor prognosis, this signature also correlated with lower 5-year survival rates in non-TNBC samples. A second TNBC pattern, including high VEGFC expression, was also identified. These pro-angiogenesis signatures may identify cancers that are more susceptible to VEGF inhibition.

  8. Neurogenic effect of VEGF is related to increase of astrocytes transdifferentiation into new mature neurons in rat brains after stroke.

    Science.gov (United States)

    Shen, Shu-Wen; Duan, Chun-Ling; Chen, Xian-Hua; Wang, Yong-Quan; Sun, Xiao; Zhang, Qiu-Wan; Cui, Hui-Ru; Sun, Feng-Yan

    2016-09-01

    To study the cellular mechanism of vascular endothelial growth factor (VEGF)-enhanced neurogenesis in ischemic brain injury, we used middle cerebral artery occlusion (MCAO) model to induce transient focal ischemic brain injury. The results showed that ischemic injury significantly increased glial fibrillary acidic protein immunopositive (GFAP(+)) and nestin(+) cells in ipsilateral striatum 3 days following MCAO. Most GFAP(+) cells colocalized with nestin (GFAP(+)-nestin(+)), Pax6 (GFAP(+)-Pax6(+)), or Olig2 (GFAP(+)-Olig2(+)). VEGF further increased GFAP(+)-nestin(+) and GFAP(+)-Pax6(+) cells, and decreased GFAP(+)-Olig2(+) cells. We used striatal injection of GFAP targeted enhanced green fluorescence protein (pGfa2-EGFP) vectors combined with multiple immunofluorescent staining to trace the neural fates of EGFP-expressing (GFP(+)) reactive astrocytes. The results showed that MCAO-induced striatal reactive astrocytes differentiated into neural stem cells (GFP(+)-nestin(+) cells) at 3 days after MCAO, immature (GFP(+)-Tuj-1(+) cells) at 1 week and mature neurons (GFP(+)-MAP-2(+) or GFP(+)-NeuN(+) cells) at 2 weeks. VEGF increased GFP(+)-NeuN(+) and BrdU(+)-MAP-2(+) newborn neurons after MCAO. Fluorocitrate, an astrocytic inhibitor, significantly decreased GFAP and nestin expression in ischemic brains, and also reduced VEGF-enhanced neurogenic effects. This study is the first time to report that VEGF-mediated increase of newly generated neurons is dependent on the presence of reactive astrocytes. The results also illustrate cellular mechanism of VEGF-enhanced neural repair and functional plasticity in the brains after ischemic injury. We concluded that neurogenic effect of VEGF is related to increase of striatal astrocytes transdifferentiation into new mature neurons, which should be very important for the reconstruction of neurovascular units/networks in non-neurogenic regions of the mammalian brain. PMID:26603138

  9. VEGF system, a multi therapeutic target [Sistema VEGF, um alvo multi-terapêutico

    Directory of Open Access Journals (Sweden)

    Daniel L. M. de Aguiar

    2009-08-01

    Full Text Available The ability to modulate the vascular endothelial growth factor system (VEGF is fundamental in thetreatment of several pathophysiologies and in the maintenance of homeostasis. Here, some strategies ofcontrol are discussed, e.g. extracellular actions, monoclonal antibodies and aptamers acting as inhibitors ofVEGF and its receptors (VEGFR. In addition, in the cytoplasm one must include inhibitors of the tyrosine kinasedomain.

  10. The Schlemm’s canal is a VEGF-C/VEGFR-3–responsive lymphatic-like vessel

    Science.gov (United States)

    Aspelund, Aleksanteri; Tammela, Tuomas; Antila, Salli; Nurmi, Harri; Leppänen, Veli-Matti; Zarkada, Georgia; Stanczuk, Lukas; Francois, Mathias; Mäkinen, Taija; Saharinen, Pipsa; Immonen, Ilkka; Alitalo, Kari

    2014-01-01

    In glaucoma, aqueous outflow into the Schlemm’s canal (SC) is obstructed. Despite striking structural and functional similarities with the lymphatic vascular system, it is unknown whether the SC is a blood or lymphatic vessel. Here, we demonstrated the expression of lymphatic endothelial cell markers by the SC in murine and zebrafish models as well as in human eye tissue. The initial stages of SC development involved induction of the transcription factor PROX1 and the lymphangiogenic receptor tyrosine kinase VEGFR-3 in venous endothelial cells in postnatal mice. Using gene deletion and function-blocking antibodies in mice, we determined that the lymphangiogenic growth factor VEGF-C and its receptor, VEGFR-3, are essential for SC development. Delivery of VEGF-C into the adult eye resulted in sprouting, proliferation, and growth of SC endothelial cells, whereas VEGF-A obliterated the aqueous outflow system. Furthermore, a single injection of recombinant VEGF-C induced SC growth and was associated with trend toward a sustained decrease in intraocular pressure in adult mice. These results reveal the evolutionary conservation of the lymphatic-like phenotype of the SC, implicate VEGF-C and VEGFR-3 as critical regulators of SC lymphangiogenesis, and provide a basis for further studies on therapeutic manipulation of the SC with VEGF-C in glaucoma treatment. PMID:25061878

  11. The cytoprotective drug amifostine modifies both expression and activity of the pro-angiogenic factor VEGF-A

    Directory of Open Access Journals (Sweden)

    Bouchecareilh M

    2010-03-01

    Full Text Available Abstract Background Amifostine (WR-2721, delivered as Ethyol® is a phosphorylated aminothiol compound clinically used in addition to cis-platinum to reduce the toxic side effects of therapeutic treatment on normal cells without reducing their efficacy on tumour cells. Its mechanism of action is attributed to the free radical scavenging properties of its active dephosphorylated metabolite WR-1065. However, amifostine has also been described as a potent hypoxia-mimetic compound and as a strong p53 inducer; both effects are known to potently modulate vascular endothelial growth factor (VEGF-A expression. The angiogenic properties of this drug have not been clearly defined. Methods Cancer cell lines and endothelial cells were used in culture and treated with Amifostine in order to study (i the expression of angiogenesis related genes and proteins and (ii the effects of the drug on VEGF-A induced in vitro angiogenesis. Results We demonstrated that the treatment of several human cancer cell lines with therapeutical doses of WR-1065 led to a strong induction of different VEGF-A mRNA isoforms independently of HIF-1α. VEGF-A induction by WR-1065 depends on the activation of the eIF2alpha/ATF4 pathway. This up-regulation of VEGF-A mRNA was accompanied by an increased secretion of VEGF-A proteins fully active in stimulating vascular endothelial cells (EC. Nevertheless, direct treatment of EC with amifostine impaired their ability to respond to exogenous VEGF-A, an effect that correlated to the down-regulation of VEGFR-2 expression, to the reduction in cell surface binding of VEGF-A and to the decreased phosphorylation of the downstream p42/44 kinases. Conclusions Taken together, our results indicate that amifostine treatment modulates tumour angiogenesis by two apparently opposite mechanisms - the increased VEGF-A expression by tumour cells and the inhibition of EC capacity to respond to VEGF-A stimulation.

  12. 松花粉对肝癌细胞株HepG2的PIVKA-Ⅱ、AFP和VEGF含量的影响%Infl uence of pine pollen on content of PIVKA-Ⅱ、AFP and VEGF of hepatoma cell line HepG2

    Institute of Scientific and Technical Information of China (English)

    于雯珺; 陈源红

    2016-01-01

    Objective To detect in vitro the infl uence of pine pollen on content of PIVKA-Ⅱ,AFP and VEGF of hepatoma cell line HepG2 with the optimal concentration(2 mg/hole) and effect time(48 h).Method ELISA was applied to detect content of PIVKA-Ⅱ,AFP and VEGF in the supernatant of culture cells in pine pollen treat group and HepG2 control group.Result Compared with HepG2 control group, content of PIVKA-Ⅱ and AFP in pine pollen treat group decreased (P<0.05), while VEGF content of that group reduced significantly (P<0.05). Conclusion The proliferative inhibition and apoptosis-promoting effect of pine pollen on HepG2 cells might be related to down regulation of PIVKA-Ⅱ,AFP and VEGF.%目的:体外检测最佳作用浓度(2 mg/孔)和最佳作用时间(48 h)松花粉对肝癌细胞株HepG2的PIVKA-Ⅱ、AFP和VEGF含量的影响。方法用ELISA法检测松花粉治疗组与HepG2对照组培养细胞上清液中PIVKA-Ⅱ、AFP和VEGF的含量。结果松花粉治疗组与HepG2对照组相比,PIVKA-Ⅱ、AFP的含量下降,差异有统计学意义(P<0.05);VEGF的含量极显著下降,差异有统计学意义(P<0.05)。结论松花粉对HepG2细胞的增殖抑制作用和促凋亡作用可能与下调PIVKA-Ⅱ、AFP和VEGF有关。

  13. NADPH oxidase 4 mediates insulin-stimulated HIF-1α and VEGF expression, and angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Dan Meng

    Full Text Available Acute intensive insulin therapy causes a transient worsening of diabetic retinopathy in type 1 diabetes patients and is related to VEGF expression. Reactive oxygen species (ROS have been shown to be involved in HIF-1α and VEGF expression induced by insulin, but the role of specific ROS sources has not been fully elucidated. In this study we examined the role of NADPH oxidase subunit 4 (Nox4 in insulin-stimulated HIF-1α and VEGF expression, and angiogenic responses in human microvascular endothelial cells (HMVECs. Here we demonstrate that knockdown of Nox4 by siRNA reduced insulin-stimulated ROS generation, the tyrosine phosphorylation of IR-β and IRS-1, but did not change the serine phosphorylation of IRS-1. Nox4 gene silencing had a much greater inhibitory effect on insulin-induced AKT activation than ERK1/2 activation, whereas it had little effect on the expression of the phosphatases such as MKP-1 and SHIP. Inhibition of Nox4 expression inhibited the transcriptional activity of VEGF through HIF-1. Overexpression of wild-type Nox4 was sufficient to increase VEGF transcriptional activity, and further enhanced insulin-stimulated the activation of VEGF. Downregulation of Nox4 expression decreased insulin-stimulated mRNA and protein expression of HIF-1α, but did not change the rate of HIF-1α degradation. Inhibition of Nox4 impaired insulin-stimulated VEGF expression, cell migration, cell proliferation, and tube formation in HMVECs. Our data indicate that Nox4-derived ROS are essential for HIF-1α-dependent VEGF expression, and angiogenesis in vitro induced by insulin. Nox4 may be an attractive therapeutic target for diabetic retinopathy caused by intensive insulin treatment.

  14. VEGF Mediates ApoE4-Induced Neovascularization and Synaptic Pathology in the Choroid and Retina.

    Science.gov (United States)

    Antes, Ran; Salomon-Zimri, Shiran; Beck, Susanne C; Garcia Garrido, Marina; Livnat, Tami; Maharshak, Idit; Kadar, Tamar; Seeliger, Mathias; Weinberger, Dov; Michaelson, Daniel M

    2015-01-01

    Apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for Alzheimer's disease (AD), is associated with neuronal and vascular impairments. Recent findings suggest that retina of apoE4 mice have synaptic and functional impairments. We presently investigated the effects of apoE4 on retinal and choroidal vasculature and the possible role of VEGF in these effects. There were no histological differences between the retinal and choroidal vasculatures of naïve apoE3 and apoE4 mice. In contrast, laserdriven choroidal injury induced higher levels of choroidal neovascularization (CNV) in apoE4 than in apoE3 mice. These effects were associated with an inflammatory response and with activation of the Muller cells and asrocytic markers gluthatione synthetase and GFAP, all of which were more pronounced in the apoE4 mice. CNV also induced a transient increase in the levels of the synaptic markers synaptophysin and PSD95 which were however similar in the apoE4 and apoE3 naive mice. Retinal and choroidal VEGF and apoE levels were lower in naïve apoE4 than in corresponding apoE3 mice. In contrast, VEGF and apoE levels rose more pronouncedly following laser injury in the apoE4 than in apoE3 mice. Taken together, these findings suggest that the apoE4-induced retinal impairments, under basal conditions, may be related to reduced VEGF levels in the eyes of these mice. The hyper-neovascularization in the apoE4 mice might be driven by increased inflammation and the associated surge in VEGF following injury. Retinal and choroidal VEGF and apoE levels were lower in naïve apoE4 than in corresponding apoE3 mice. In contrast, VEGF and apoE levels rose more pronouncedly following laser injury in the apoE4 than in apoE3 mice. Taken together, these findings suggest that the apoE4-induced retinal impairments, under basal conditions, may be related to reduced VEGF levels in the eyes of these mice. The hyper-neovascularization in the apoE4 mice might be driven by increased inflammation

  15. DISTRIBUTION OF VEGF mRNA IN BREAST CANCER WITH NONRADIOACTIVE IN SITU HYBRIDIZATION AT ELECTRON MICROSCOPIC LEVELS

    Institute of Scientific and Technical Information of China (English)

    王医术; 林; 王心蕊; 李一雷; 吴珊; 张丽红

    2002-01-01

    Object: To localize the mRNA coding for VEGF at Ultrastractural level in human breast cancer by using digoxigenin-labeled cDNA probes. Methods: Nonradio- active in situ hybridization at electron microscopic level was employed to detected VEGF mRNA in breast cancer. Result: Cancer cells and endothelial cell of angiogensis show dark color in experiment sections. No dark color can be found in control sections. Positive hybridization signals showed dark dot and were locatedin various compartments of the breast cancer cell and endothelial cell in experiment section. No labeling was observed in control sections. In experiment sections, the staining appeared concentrated in cytoplasm and nucleus of the breast cancer cell and endothelial cell. Conclusion: Nonradioactive in situ hybridization at electron microscopic level is efficient for direct observation of the target site mRNA of VEGF in the cytoplasm and nucleus.

  16. The VEGF receptor, neuropilin-1, represents a promising novel target for chronic lymphocytic leukemia patients.

    Science.gov (United States)

    Piechnik, Agnieszka; Dmoszynska, Anna; Omiotek, Marcin; Mlak, Radosław; Kowal, Małgorzata; Stilgenbauer, Stephan; Bullinger, Lars; Giannopoulos, Krzysztof

    2013-09-15

    Angiogenesis has been shown to substantially contribute to the progression of chronic lymphocytic leukemia (CLL). Neuropilin-1 (NRP1) represents a receptor for vascular endothelial growth factor (VEGF), which has been reported to be overexpressed in several malignancies. In our study, we characterized mRNA levels of VEGF receptors including NRP1 in a large cohort of CLL patients (n = 114), additionally we performed a detailed characterization of NRP1 expression on B cells, plasmacytoid dendritic cells (PDCs) and regulatory T cells (Tregs). The expression of NRP1 was significantly higher on leukemic lymphocytes compared to control B lymphocytes on mRNA and protein levels (22.72% vs. 0.2%, p = 0.0003, respectively), Tregs (42.6% vs. 16.05%, p = 0.0003) and PDCs (100% vs. 98% p < 0.0001). In functional studies, we found higher NRP1 expression on CLL cells after stimulation with VEGF. The correlation between expression of VEGF receptors: FLT1, NRP1 and FOXP3 expression (r(2) = 0.53, p < 0.0001 and r(2) = 0.49, p < 0.0001, respectively) was observed. Earlier we described the specific Treg reduction during the therapy with thalidomide in vivo. Now we observe the reduction of the NRP1 expression on Tregs in vitro, thereby suggesting a possible target of thalidomide action. In conclusion, NRP1 might represent an interesting link between angiogenesis and tolerance mechanisms and represents interesting target for therapy.

  17. Primary breast cancer induces pulmonary vascular hyperpermeability and promotes metastasis via the VEGF-PKC pathway.

    Science.gov (United States)

    Jiang, Man; Qin, Chengyong; Han, Mingyong

    2016-06-01

    The lung is one of the most frequent target organs for breast cancer metastasis. When breast cancer cells from a primary tumor do not colonize the lung, which we named the premetastatic phase, the microenvironment of the lung has already been influenced by the primary tumor. However, little is known about the exact premetastatic alteration and regulatory mechanisms of the lung. Here, we used 4T1 cells (a mouse breast cancer cell line which can specifically metastasize to the lung) to build a mouse breast cancer model. We found that primary breast tumor induced increased pulmonary vascular permeability in the premetastatic phase, which facilitated the leakage of rhodamine-dextran and the extravasation of intravenous therapy injected cancer cells. Furthermore, tight junctions (TJs) were disrupted, and the expression of zonula occludens-1(ZO-1), one of the most important components of tight junctions, was decreased in the premetastatic lung. In addition, elevated serum vascular endothelial growth factor (VEGF) was involved in the destabilization of tight junctions and the VEGF antagonist bevacizumab reversed the primary tumor-induced vascular hyperpermeability. Moreover, activation of the protein kinase C (PKC) pathway disrupted the integrity of TJs and accordingly, the disruption could be alleviated by blocking VEGF. Taken together, these data demonstrate that primary breast cancer may induce tight junction disruptions in the premetastatic lung via the VEGF-PKC pathway and promote pulmonary vascular hyperpermeability before metastasis. © 2015 Wiley Periodicals, Inc. PMID:26152457

  18. The VEGF signaling pathway in cancer: the road ahead

    Institute of Scientific and Technical Information of China (English)

    Steven A.Stacker; Marc G.Achen

    2013-01-01

    The vascular endothelial growth factor (VEGF) family of soluble protein growth factors consists of key mediators of angiogenesis and lymphangiogenesis in the context of tumor biology.The members of the family,VEGF-A (also known as VEGF),VEGF-B,VEGF-C,VEGF-D,and placenta growth factor (PIGF),play important roles in vascular biology in both normal physiology and pathology.The generation of a humanized neutralizing antibody to VEGF-A (bevacizumab,also known as Avastin) and the demonstration of its benefit in numerous human cancers have confirmed the merit of an anti-angiogenesis approach to cancer treatment and have validated the VEGF-A signaling pathway as a therapeutic target.Other members of the VEGF family are now being targeted,and their relevance to human cancer and the development of resistance to anti-VEGF-A treatment are being evaluated in the clinic.Here,we discuss the potential of targeting VEGF family members in the diagnosis and treatment of cancer.

  19. Human immunodeficiency syndromes affecting human natural killer cell cytolytic activity

    Directory of Open Access Journals (Sweden)

    Daniel Denis Billadeau

    2014-01-01

    Full Text Available NK cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T-cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center (MTOC through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with SNARE-dependent fusion promotes lytic granule release into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process.

  20. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF.

    Science.gov (United States)

    Amirian, Jhaleh; Linh, Nguyen Thuy Ba; Min, Young Ki; Lee, Byong-Taek

    2015-05-01

    A composite scaffold of gelatin (Gel)-pectin (Pec)-biphasic calcium phosphate (BCP) was fabricated for the successful delivery of growth factors. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) were coated on the Gel-Pec-BCP surface to investigate of effect of them on bone healing. Surface morphology was investigated by scanning electron microscopy, and BCP dispersion in the hydrogel scaffolds was measured by energy dispersive X-ray spectroscopy. The results obtained from Fourier transform infrared spectroscopy showed that BMP-2 and VEGF were successfully coated on Gel-Pec-BCP hydrogel scaffolds. MC3T3-E1 preosteoblasts were cultivated on the scaffolds to investigate the effect of BMP-2 and VEGF on cell viability and proliferation. VEGF and BMP-2 loaded on Gel-Pec-BCP scaffold facilitated increased cell spreading and proliferation compared to Gel-Pec-BCP scaffolds. In vivo, bone formation was examined using rat models. Bone formation was observed in Gel-Pec-BCP/BMP-2 and Gel-Pec-BCP/VEGF scaffolds within 4 weeks, and was greatest with Gel-Pec-BCP/BMP-2 scaffolds. In vitro and in vivo results suggest that Gel-Pec-BCP/BMP-2 and Gel-Pec-BCP/VEGF scaffolds could enhance bone regeneration.

  1. Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF)

    International Nuclear Information System (INIS)

    Purpose: To correlate dynamic MRI assays of macromolecular endothelial permeability with microscopic area–density measurements of vascular endothelial growth factor (VEGF) in tumors. Methods and material: This study compared tumor xenografts from two different human cancer cell lines, MDA-MB-231 tumors (n = 5), and MDA-MB-435 (n = 8), reported to express respectively higher and lower levels of VEGF. Dynamic MRI was enhanced by a prototype macromolecular contrast medium (MMCM), albumin-(Gd-DTPA)35. Quantitative estimates of tumor microvascular permeability (KPS; μl/min × 100 cm3), obtained using a two-compartment kinetic model, were correlated with immunohistochemical measurements of VEGF in each tumor. Results: Mean KPS was 2.4 times greater in MDA-MB-231 tumors (KPS = 58 ± 30.9 μl/min × 100 cm3) than in MDA-MB-435 tumors (KPS = 24 ± 8.4 μl/min × 100 cm3) (p < 0.05). Correspondingly, the area–density of VEGF in MDA-MB-231 tumors was 2.6 times greater (27.3 ± 2.2%, p < 0.05) than in MDA-MB-435 cancers (10.5 ± 0.5%, p < 0.05). Considering all tumors without regard to cell type, a significant positive correlation (r = 0.67, p < 0.05) was observed between MRI-estimated endothelial permeability and VEGF immunoreactivity. Conclusion: Correlation of MRI assays of endothelial permeability to a MMCM and VEGF immunoreactivity of tumors support the hypothesis that VEGF is a major contributor to increased macromolecular permeability in cancers. When applied clinically, the MMCM-enhanced MRI approach could help to optimize the appropriate application of VEGF-inhibiting therapy on an individual patient basis.

  2. Osmotic stress affects functional properties of human melanoma cell lines

    CERN Document Server

    La Porta, Caterina A M; Pasini, Maria; Laurson, Lasse; Alava, Mikko J; Zapperi, Stefano; Amar, Martine Ben

    2015-01-01

    Understanding the role of microenvironment in cancer growth and metastasis is a key issue for cancer research. Here, we study the effect of osmotic pressure on the functional properties of primary and metastatic melanoma cell lines. In particular, we experimentally quantify individual cell motility and transmigration capability. We then perform a circular scratch assay to study how a cancer cell front invades an empty space. Our results show that primary melanoma cells are sensitive to a low osmotic pressure, while metastatic cells are less. To better understand the experimental results, we introduce and study a continuous model for the dynamics of a cell layer and a stochastic discrete model for cell proliferation and diffusion. The two models capture essential features of the experimental results and allow to make predictions for a wide range of experimentally measurable parameters.

  3. An increase in vascular endothelial growth factor (VEGF and VEGF soluble receptor-1 (sFlt-1 are associated with early recurrent spontaneous abortion.

    Directory of Open Access Journals (Sweden)

    Lihong Pang

    Full Text Available Recurrent spontaneous abortion (RSA is a health problem that affects approximately 1% to 5% reproductive age woman. Yet, in around half of these patients, the mechanism for RSA is unexplained. Recent studies have indicated that placental ischemia/hypoxia and endothelial dysfunction are important factors in miscarriage. Other studies have indicated that the level and expression of soluble FMS-like tyrosine kinase-1 (sFlt1 is increased under a hypoxic environment. However, decreased sFlt-1 in the maternal circulation during the first trimester has recently been proposed as a potential marker for identifying risk of pregnancy loss. In this prospective study clinical samples were obtained within a short time after the fetal death, protein expression and maternal serum levels of sFlt1 were assessed and compared to samples taken from those with normal pregnancies. Our results indicate that levels of VEGF and sFlt-1 are both increased in women during early pregnancy compared women that are not pregnant (p<0.05 indicating that VEGF and sFlt-1 are both associated with pregnancy. More importantly, we detected a significant (p<0.05 increase in sFlt1 and VEGF levels and expression in the RSA patients who suffered subsequent miscarriages compare to controls. These results demonstrate that there is likely a relationship between VEGF, sFlt-1 and RSA suggesting that the high levels and over expression of sFlt-1 and VEGF might be associated with the pathogenesis of RSA.

  4. Piper and Vismia Species from Colombian Amazonia Differentially Affect Cell Proliferation of Hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Leandro J. Lizcano

    2014-12-01

    Full Text Available There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations < 75 µg/mL or even protected cells from basal death (P. putumayoense in primary cultures of rat hepatocytes. In every case, cytotoxicity was accompanied by an intracellular accumulation of reactive oxygen species (ROS. These results provide evidence for the anticancer activities of the studied plants on specific cell lines and suggest that cell killing could be mediated by ROS, thus involving mechanisms independent of the plants free radical scavenging activities. Results also support the use of these extracts of the Vismia and Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma.

  5. Molecular mechanism of extrinsic factors affecting antiagingof stem cells

    Institute of Scientific and Technical Information of China (English)

    Tzyy Yue Wong; Mairim Alexandra Solis; Ying-Hui Chen; Lynn Ling-Huei Huang

    2015-01-01

    Scientific evidence suggests that stem cells possessthe anti-aging ability to self-renew and maintaindifferentiation potentials, and quiescent state. Theobjective of this review is to discuss the microenvironmentwhere stem cells reside in vivo , thesecreted factors to which stem cells are exposed, thehypoxic environment, and intracellular factors includinggenome stability, mitochondria integrity, epigeneticregulators, calorie restrictions, nutrients, and vitaminD. Secreted tumor growth factor-β and fibroblastgrowth factor-2 are reported to play a role in stem cellquiescence. Extracellular matrices may interact withcaveolin-1, the lipid raft on cell membrane to regulatequiescence. N-cadherin, the adhesive protein on nichecells provides support for stem cells. The hypoxicmicro-environment turns on hypoxia-inducible factor-1to prevent mesenchymal stem cells aging throughp16 and p21 down-regulation. Mitochondria expressglucosephosphate isomerase to undergo glycolysisand prevent cellular aging. Epigenetic regulators suchas p300, protein inhibitors of activated Stats and H19help maintain stem cell quiescence. In addition, calorierestriction may lead to secretion of paracrines cyclicADP-ribose by intestinal niche cells, which help maintainintestinal stem cells. In conclusion, it is crucial tounderstand the anti-aging phenomena of stem cells atthe molecular level so that the key to solving the agingmystery may be unlocked.

  6. VEGF is upregulated by hypoxia-induced mitogenic factor via the PI-3K/Akt-NF-κB signaling pathway

    Directory of Open Access Journals (Sweden)

    Huang Chuanshu

    2006-03-01

    Full Text Available Abstract Background Hypoxia-induced mitogenic factor (HIMF is developmentally regulated and plays an important role in lung pathogenesis. We initially found that HIMF promotes vascular tubule formation in a matrigel plug model. In this study, we investigated the mechanisms which HIMF enhances expression of vascular endothelial growth factor (VEGF in lung tissues and epithelial cells. Methods Recombinant HIMF protein was intratracheally instilled into adult mouse lungs, VEGF expression was examined by immunohistochemical staining and Western blot. The promoter-luciferase reporter assay, RT-PCR, and Western blot were performed to examine the effects of HIMF on VEGF expression in mouse lung epithelial cell line MLE-12. The activation of NF-kappa B (NF-κB and phosphorylation of Akt, IKK and IκBα were examined by luciferase assay and Western blot, respectively. Results Intratracheal instillation of HIMF protein resulted in significant increase of VEGF, mainly localized to airway epithelial and alveolar type II cells. Deletion of NF-κB binding sites within VEGF promoter abolished HIMF-induced VEGF expression in MLE-12 cells, suggesting that activation of NF-κB is essential for VEGF upregulation induced by HIMF. Stimulation of lung epithelial cells by HIMF resulted in phosphorylation of IKK and IκBα, leading to activation of NF-κB. In addition, HIMF strongly induced Akt phosphorylation, and suppression of Akt activation by specific inhibitors and dominant negative mutants for PI-3K, and IKK or IκBα blocked HIMF-induced NF-κB activation and attenuated HIMF-induced VEGF production. Conclusion These results suggest that HIMF enhances VEGF production in mouse lung epithelial cells in a PI-3K/Akt-NF-κB signaling pathway-dependent manner, and may play critical roles in pulmonary angiogenesis.

  7. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    Science.gov (United States)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  8. Tendon lesion and VEGF-111 injection

    OpenAIRE

    Kaux, Jean-François; Drion, Pierre; Libertiaux, Vincent; Pascon, Frédéric; Colige, Alain; Le Goff, Caroline; Lambert, Charles; Janssen, Lauriane; Nusgens, Betty; Gothot, André; CESCOTTO, Serge; Defraigne, Jean-Olivier; Rickert, Markus; Crielaard, Jean-Michel

    2010-01-01

    Introduction: Tendon lesion is one of the most frequent pathology in sports and by physical workers. This pathology often becomes chronic. For this reason, it is of interest to develop new treatments. Injection of platelet-rich plasma (PRP) seems to be a promising one by releasing growth factors (GF) locally. Among all the GF released by activated platelets, the vascular endothelial growth factor-A (VEGF-A) is known to induce positive effects on vascular function and angiogenesis, and could b...

  9. A Switch in the Dynamics of Intra-Platelet VEGF-A from Cancer to the Later Phase of Liver Regeneration after Partial Hepatectomy in Humans.

    Directory of Open Access Journals (Sweden)

    Bibek Aryal

    Full Text Available Liver regeneration (LR involves an early inductive phase characterized by the proliferation of hepatocytes, and a delayed angiogenic phase distinguished by the expansion of non-parenchymal compartment. The interest in understanding the mechanism of LR has lately shifted from the proliferation and growth of parenchymal cells to vascular remodeling during LR. Angiogenesis accompanied by LR exerts a pivotal role to accomplish the process. Vascular endothelial growth factor (VEGF has been elucidated as the most dynamic regulator of angiogenesis. From this perspective, platelet derived/Intra-platelet (IP VEGF-A should be associated with LR.Thirty-seven patients diagnosed with hepatocellular carcinoma and undergoing partial hepatectomy (PH were enrolled in the study. Serum and IP VEGF-A was monitored preoperatively and at four weeks of PH. Liver volumetry was determined on computer models derived from computed tomography (CT scan.Serum and IP VEGF-A was significantly elevated at four weeks of PH. Preoperative IP VEGF-A was higher in patients with advanced cancer and vascular invasion. Postoperative IP VEGF-A was higher after major liver resection. There was a statistically significant correlation between postoperative IP VEGF-A and the future remnant liver volume. Moreover, the soluble vascular endothelial growth factor receptor-1 (sVEGFR1 was distinctly down-regulated suggesting a fine-tuned angiogenesis at the later phase of LR.IP VEGF-A is overexpressed during later phase of LR suggesting its implications in inducing angiogenesis during LR.

  10. Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma.

    Science.gov (United States)

    Pritchard-Jones, R O; Dunn, D B A; Qiu, Y; Varey, A H R; Orlando, A; Rigby, H; Harper, S J; Bates, D O

    2007-07-16

    Malignant melanoma is the most lethal of the skin cancers and the UK incidence is rising faster than that of any other cancer. Angiogenesis - the growth of new vessels from preexisting vasculature - is an absolute requirement for tumour survival and progression beyond a few hundred microns in diameter. We previously described a class of anti-angiogenic isoforms of VEGF, VEGF(xxx)b, that inhibit tumour growth in animal models, and are downregulated in some cancers, but have not been investigated in melanoma. To determine whether VEGF(xxx)b expression was altered in melanoma, PCR and immunohistochemistry of archived human tumour samples were used. In normal epidermis and in a proportion of melanoma samples, VEGF(xxx)b staining was seen. Some melanomas had much weaker staining. Subsequent examination revealed that expression was significantly reduced in primary melanoma samples (both horizontal and vertical growth phases) from patients who subsequently developed tumour metastasis compared with those who did not (analysis of variance (ANOVA) Pxxx)b expression appears to predict metastatic spread in patients with primary melanoma. These results suggest that there is a switch in splicing as part of the metastatic process, from anti-angiogenic to pro-angiogenic VEGF isoforms. This may form part of a wider metastatic splicing phenotype.

  11. Lymphangiogenesis and Axillary Lymph Node Metastases Correlated with VEGF-C Expression in Two Immunocompetent Mouse Mammary Carcinoma Models

    Directory of Open Access Journals (Sweden)

    Yuko Ito

    2011-01-01

    Full Text Available Lymphangiogenesis and the expression of vascular endothelial cell growth factor C (VEGF-C in tumors have been considered to be causally promoting lymphatic metastasis. There are only a few studies on lymphatic metastasis in immunocompetent allograft mouse models. To study the relationship between VEGF-C-mediated lymphangiogenesis and axillary lymph node metastasis, we used two mouse mammary carcinoma cell lines; the BJMC338 has a low metastatic propensity, whereas the BJMC3879 has a high metastatic propensity although it originated from the former cell line. Each cell line was injected separately into two groups of female BALB/c mice creating in vivo mammary cancer models. The expression level of VEGF-C in BJMC3879 was higher than BJMC338. As the parent cell line, BJMC3879-derived tumors showed higher expression of VEGF-C compared to BJMC338-derived tumors. This higher expression of VEGF-C in BJMC3879-derived tumors was associated with marked increase in infiltrating macrophages and enhanced expression of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1 reflecting increased tumoral lymphatic density and subsequent induction of axillary lymph node metastasis. Our mouse mammary carcinoma models are allotransplanted tumors showing the same axillary lymph node metastatic spectrum as human breast cancers. Therefore, our mouse models are ideal for exploring the various molecular mechanisms of cancer metastasis.

  12. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    Science.gov (United States)

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  13. The study on the expression level of VEGF-D in oral carcinoma-associated fibroblasts%VEGF-D在口腔鳞癌相关成纤维细胞的表达研究

    Institute of Scientific and Technical Information of China (English)

    刘英; 莫金龙; 刘震; 唐婉容

    2014-01-01

    目的:研究VEGF-D在口腔癌相关成纤维细胞( carcinoma-associated fibroblasts,CAFs)的表达情况以及其表达水平是否与口腔鳞癌淋巴结转移相关。方法:通过免疫组化和RT-PCR检测VEGF-D在NFs、无淋巴结转移CAFs、淋巴结转移CAFs的蛋白和mRNA表达情况。结果:成功培养和纯化CAFs,与NFs相比,CAFs阳性表达α-SMA,生长增殖速度明显增加,细胞排列混乱;VEGF-D在淋巴结转移 CAFs的染色强度明显增加,用2-ΔΔCT 法计算 VEGF-D 的 mRNA 表达水平分别为0.8067±0.117、1.1925±0.125、2.0853±0.131。结论:与NFs相比,CAFs表达VEGF-D明显增加,且与患者淋巴结转移相关。%Objective:To explore the protein expression level of VEGF-D in oral carcinoma-associated fibroblasts and analyze its cor-relation with lymphatic metastasis of oral carcinoma. Methods:The protein and mRNA expression levels of VEGF-D in NFs,Non-meta-static CAFs and metastatic CAFs were detected by immunochemical staining and RT-PCR after digesting the primary culture human mu-cosa cells. Results:We successfully cultured and purified CAFs. The CAFs were positive byα-SMA Immunohistochemical staining,high proliferation rate,chaos cytoarchitecture and the staining intensity of VEGF-D.β-actinas used as a reference gene,the mRNA level of VEGF-D respectively showed 0. 8,1. 2 and 2. 1. Conclusion:Compared with the NFs,CAFs increased the expression of VEGF-D,and the expression levels of VEGF-D correlates with the lymphatic metastasis.

  14. Effects of White Mange Mixture on VEGF Content and Genetic and Protein Expressions of VEGFR-2 in Cultured HaCaT Cells%白疕合剂对体外培养人永生化角质形成细胞分泌血管内皮生长因子及其受体2表达的影响

    Institute of Scientific and Technical Information of China (English)

    陈兴; 李忻红; 卢益萍

    2015-01-01

    Objective To observe the effects of White Mange Mixture on the content of VEGF and the genetic and protein expressions of VEGFR-2 of HaCaT cells;To explore its mechanism. Methods HaCaT cells were cultured in vitro to establish psoriasis experimental model. SD rats were randomly divided into the blank serum group, white mange mixture of low-, medium- and high- dose groups and acitretin group, meanwhile to set up blank control group. Cultured HaCaT cells model were intervened with different medicine serum. ELISA was applied to detect the content of VEGF. RT-PCR and Western blot were used to detect the genetic and protein expressions of VEGFR-2.Results Compared with the blank control group, White Mange Mixture of low-, medium- and high-dose groups interventing HaCaT cells could obviously inhibit the secretion of VEGF and decrease the genetic and protein expression of VEGFR-2 in a dose-dependent manner. Conclusion White Mange Mixture plays a role in the treatment of psoriasis possibly through inhibiting the content of VEGF and decreasing the genetic and protein expressions of VEGFR-2.%目的 观察中药白疕合剂干预人永生化角质形成细胞(HaCaT 细胞)后,对其血管内皮生长因子(VEGF)的分泌量及其受体2(VEGFR-2)基因和蛋白表达的影响,并探讨其作用机制.方法 体外培养HaCaT细胞建立银屑病实验模型.SD大鼠随机分为空白血清组、阿维A组和白疕合剂低、中、高剂量组,并单设空白对照组.给药后制备血清,干预HaCaT细胞模型.ELISA检测VEGF分泌量,RT-PCR检测VEGFR-2基因表达,Western blot检测VEGFR-2蛋白表达.结果 与空白对照组比较,白疕合剂低、中、高剂量组干预HaCaT细胞后,VEGF分泌量及VEGFR-2基因和蛋白表达均明显抑制,且呈浓度依赖性.结论 白疕合剂可能通过抑制VEGF分泌量、降低VEGFR-2基因和蛋白表达以达到治疗银屑病的作用.

  15. Screening and Improvement of an Anti-VEGF DNA Aptamer

    Directory of Open Access Journals (Sweden)

    Kazunori Ikebukuro

    2010-01-01

    Full Text Available To obtain an aptamer with a high affinity for vascular endothelial growth factor (VEGF, we focused on the receptor-binding domain (RBD of VEGF as a target epitope. Three rounds of screening gave Vap7, which bound to the VEGF isoforms VEGF121 and VEGF165 with KD values of 1.0 nM and 20 nM, respectively. Moreover, Vap7 showed specificity within the VEGF family. Secondary structure predictions and circular dicrhoism suggested that Vap7 folds into a G-quadruplex structure. We obtained a mutant aptamer that contains only this region of the aptamer sequence. This truncated mutant (V7t1 bound to both VEGF121 and VEGF165 with KD values of 1.1 nM and 1.4 nM, respectively. Its sequence was 5'-TGTGGGGGTGGACGGGCCGGGTAGA-3', and it appeared to form a G-quadruplex structure. We also produced an aptamer heterodimer consisting of our previously derived aptamer (del5-1, which binds to the heparin-binding domain of VEGF, linked to V7t1. The resulting heterodimer bound strongly to VEGF165 with a KD value of 4.7 × 102 pM.

  16. Hansenula polymorpha pex11 cells are affected in peroxisome retention

    NARCIS (Netherlands)

    Krikken, Arjen M; Veenhuis, Marten; van der Klei, Ida J

    2009-01-01

    We have cloned and characterized the Hansenula polymorpha PEX11 gene. Our morphological data are consistent with previous observations that peroxisome proliferation can be regulated by modulating Pex11p levels. Surprisingly, pex11 cells also showed a defect in peroxisome retention in mother cells du

  17. Coral-Derived Compound WA-25 Inhibits Angiogenesis by Attenuating the VEGF/VEGFR2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Shih-Wei Lin

    2015-02-01

    Full Text Available Background: WA-25 (dihydroaustrasulfone alcohol, a synthetic derivative of marine compound WE-2 suppresses atherosclerosis in rats by reducing neointima formation. Because angiogenesis plays a critical role in the pathogenesis of atherosclerosis, the present study investigated the angiogenic function and mechanism of WA-25. Methods: The angiogenic effect of WA-25 was evaluated using a rat aortic ring assay and transgenic zebrafish models were established using transgenic Tg(fli-1:EGFPy1 and Tg(kdrl:mCherryci5-fli1a:negfpy7 zebrafish embryos. In addition, the effect of WA-25 on distinct angiogenic processes, including matrix metalloproteinase (MMP expression, endothelial cell proliferation and migration, as well as tube formation, was studied using human umbilical vein endothelial cells (HUVECs. The effect of WA-25 on the endothelial vascular endothelial growth factor (VEGF signaling pathway was elucidated using qRT-PCR, immunoblot analysis, immunofluorescence and flow cytometric analyses. Results: The application of WA-25 perturbed the development of intersegmental vessels in transgenic zebrafish. Moreover, WA-25 potently suppressed microvessel sprouting in organotypic rat aortic rings. Among cultured endothelial cells, WA-25 significantly and dose-dependently inhibited MMP-2/MMP-9 expression, proliferation, migration and tube formation in HUVECs. Mechanistic studies revealed that WA-25 significantly reduced the VEGF release by reducing VEGF expression at the mRNA and protein levels. In addition, WA-25 reduced surface VEGF receptor 2 (VEGFR2/Flk-1 expression by repressing the VEGFR2 mRNA level. Finally, an exogenous VEGF supply partially rescued the WA-25-induced angiogenesis blockage in vitro and in vivo. Conclusions: WA-25 is a potent angiogenesis inhibitor that acts through the down-regulation of VEGF and VEGFR2 in endothelial cells. General Significance: WA-25 may constitute a novel anti-angiogenic drug that acts by targeting endothelial

  18. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the pro